
Improved Functional Flow and Reachability
Analyses Using Indexed Linear Tree Grammars
Jonathan Kochems and Luke Ong

Oxford University Computing Laboratory

Abstract
The collecting semantics of a program defines the strongest static property of interest. We study
the analysis of the collecting semantics of higher-order functional programs, cast as left-linear
term rewriting systems. The analysis generalises functional flow analysis and the reachability
problem for term rewriting systems, which are both undecidable. We present an algorithm that
uses indexed linear tree grammars (ILTGs) both to describe the input set and compute the
set that approximates the collecting semantics. ILTGs are equi-expressive with pushdown tree
automata, and so, strictly more expressive than regular tree grammars. Our result can be seen
as a refinement of Jones and Andersen’s procedure, which uses regular tree grammars. The main
technical innovation of our algorithm is the use of indices to capture (sets of) substitutions, thus
enabling a more precise binding analysis than afforded by regular grammars. We give a simple
proof of termination and soundness, and demonstrate that our method is more accurate than
other approaches to functional flow and reachability analyses in the literature.

Keywords and phrases Flow analysis, reachability, collecting semantics, higher-order program,
term rewriting, indexed linear tree grammar

Digital Object Identifier 10.4230/LIPIcs.RTA.2011.187

Category Regular Research Paper

1 Introduction

In program analysis, the collecting semantics of a program maps a given program point to
the collection of all states attainable by a run of the program when control reaches that point.
Thus the collecting semantics defines the strongest static property of interest [3]. A good
method of analysing the collecting semantics of programs is the basis of a useful generic
tool; it can be employed, a fortiori, to analyse such practically important computational
properties as reachability and control flow.

A higher-order functional program with pattern-matching algebraic data types may be
viewed1 as a (left-linear) term rewriting system, namely, a set P = { li → ri ∣ 1 ≤ i ≤ p} of
rewrite rules where each li and ri are elements of the term algebra of a given signature,
generated from a set of variables. The one-step rewrite relation, →P , is standard: if a
ground term t has a subterm u that matches the pattern li (i.e. t = C[u] for some context
C[-], and σ li = u for some ground substitution σ) then t = C[σ li] rewrites in one step to
C[σ ri], written C[σ li] →P C[σ ri]. What then is the collecting semantics of P? Following
Jones and Andersen [10], we take the program points of P to be the rewrite rules, and the

1 The idea goes back to Reynolds’ defunctionalization [20]. A higher-order lambda-term can be sys-
tematically “lambda-lifted” to an equivalent term rewriting system that has explicit binary application
operators, systematically replacing closed higher-order lambda-terms by named combinators; thus every
function is treated as “curried”. See, for example, Jones and Andersen’s account of the translation [10].

© Jonathan Kochems and Luke Ong;
licensed under Creative Commons License NC-ND

22nd International Conference on Rewriting Techniques and Applications.
Editor: M. Schmidt-Schauß; pp. 187–202

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.RTA.2011.187
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

188 Functional Collecting Semantics and Indexed Linear Tree Grammars

states of P to be the ground substitutions. The collecting semantics of P over a set I of
input terms is then the tuple (Z0, Z1, . . . , Zp), where

Z0 ∶= { (Id, t) ∣ ∃s ∈ I . s→∗

P
t}

Zi ∶= { (σ, t) ∣ ∃s ∈ I . s→∗

P
C[σ li] ∧ σ ri →∗

P
t} for 1 ≤ i ≤ p

In words, Zi consists of all pairs (σ, t) where σ is a substitution that matches the LHS of rule
i in a P-computation which is reachable from I (we call σ an I-reachable substitution), and
t is a result term which is reachable from the RHS of rule i when instantiated by σ. (In a
functional computation, control flow is determined by a sequence of function calls, possibly
unknown at compile time. Thus, the flow analysis of P amounts to approximating the values
that may be substituted for the program variables of each rewrite rule during a run of P.
It follows that one can use collecting semantics to flow-analyse functional programs.) Since
a precise characterisation of the collecting semantics is uncomputable, our goal is to build
over-approximations of the Zis.

The key to our construction is a binding analysis that uses indices to explicitly model
(sets of) I-reachable substitutions in the setting of indexed linear tree grammars (ILTGs).
The rules of an ILTG rewrite term-trees in which leaf-nodes may be labelled by a non-
terminal annotated with a sequence of indices; indices propagate from the root to the leaves
of a term-tree. ILTGs are strictly more expressive than regular tree grammars; in fact, they
are equi-expressive with pushdown tree automata. We give an algorithm which takes three
input arguments (namely, a program P as before, a set of input terms defined by an ILTG
G0, and an accuracy parameter n ≥ 0) and constructs an ILTG Gn that approximates the
collecting semantics of P on input given by G0. Precisely, the ILTG Gn, which is equipped
with distinguished non-terminals

Ri (denoting the “results of the P-rule, li → ri”), for each 1 ≤ i ≤ p, and
X, for each program variable X,

over-approximates Zi (for each 0 ≤ i ≤ p) in the following sense:

local safety: for every (σ, t) ∈ Zi, there is (constructively) an index sequence δσ such
that Ri δσ →∗

Gn
t and X δσ →∗

Gn
σX for each variable X that occurs in ri

where σX denotes the term obtained by applying the substitution σ to the variable X, and
→Gn is the one-step rewrite relation of Gn. The superscript n of Gn controls the accuracy of
approximation: if n < n′ then the ILTG Gn′ offers at least as accurate an approximation as
Gn. Happily, the ILTG Gn is not prohibitively large: its size is polynomial in the number of
rules in P and G0, and exponential in n and the number2 of program variables in P.

As far as we know, our algorithm gives the first completion procedure for indexed linear
tree grammars (equivalently, pushdown tree automata). It extends Jones and Andersen’s
safe approximation of collecting semantics by admitting a strictly larger class of input sets.
Even when restricted to regular input sets, for each n ≥ 0, our algorithm builds an ILTG Gn
which is at least as accurate as the result of Jones and Andersen’s method.

Since the 2-projection of Z0 is the set ReachP(I) of terms that are reachable from the
input set I under rewriting by P, our analysis of collecting semantics may also be viewed
as a contribution to the reachability problem for left-linear term rewriting systems (TRS)
(i.e. given an input set I and a left-linear TRS R, construct a set that over-approximates
ReachR(I)) [9, 5, 2]. To the best of our knowledge, none of the over-approximation results
in the literature can admit an arbitrary pushdown tree language as the input set.

2 This can be improved to max1≤i≤p #vars(li) where #vars(li) is the number of variables in li.

Jonathan Kochems and Luke Ong 189

Outline In Section 2, after fixing notations we introduce indexed linear tree grammars
and the notion of minimally reachable match. The ILTG completion algorithm for over-
approximating the collecting semantics of a program on an input set is presented in Section 3.
The termination proof and soundness proof are given in Sections 4 and 5 respectively. In the
concluding section, we evaluate our result and set out a number of further directions. Note,
a long version of the paper is available [13] containing the proofs that are omitted from the
main text together with two complete worked examples which illustrate the workings of our
algorithm.

The work reported here is based on preliminary results first presented in the first author’s
MSc dissertation [12].

2 Preliminaries

Term Rewriting Systems and Programs Let Σ be a ranked alphabet equipped with a
function ar giving the arity of each symbol in Σ. We write Σn ∶= ar−1(n) and use letters
f, g, h, a and b to denote members of Σ. The free algebra over an arbitrary set X , written
TΣ(X), is the smallest set such that X ⊆ TΣ(X), and if f ∈ Σn and t1, . . . , tn ∈ TΣ(X) then
f(t1, . . . , tn) ∈ TΣ(X). Elements of TΣ(X) are called terms, denoted by letters s and t; and
we write TΣ ∶= TΣ(∅) for the set of ground terms.

Let V = {X,Y,Z,⋯} be a set of variables, and Σ = ∆ ⊍ Γ be a ranked alphabet that is
partitioned into disjoint sets ∆ and Γ. Symbols in ∆ and Γ are called defined operators and
constructors respectively. A call is a term of the form f(t1, . . . , tn) with f ∈ ∆; a pattern
is a call in which every variable occurs at most once. A term rewriting system (TRS) over
Σ is a finite set of rewrite rules P = {li → ri ∣ li, ri ∈ TΣ(V); 1 ≤ i ≤ p} such that for every i,
li is a call, and every variable that occurs in ri also occurs in li; further P is left-linear just
if for each i, li is a pattern. The (one-step) rewrite relation →P ⊆ (TΣ(X))2 of a TRS P is
defined as

C[σ l]→P C[σ r]

with C[-] ranging over one-hole contexts, σ ∶ V → TΣ ranging over substitutions, and l → r

ranging over rules in P. The n-step rewrite relation, →n
P
, and the reflexive, transitive closure,

→∗

P
, of →P are defined in the usual way.
Henceforth we fix a ranked alphabet Σ = ∆ ⊍ Γ. By a program we mean a pair (Σ,P)

where P is a left-linear TRS over Σ. (We can think of the defined operators and constructors
respectively as the non-terminals and terminals of the program.) An input of P is a set I ⊆ TΣ
of ground terms. We are interested in analysing (inter alia) the set ReachP(I) ∶= {t ∣ s ∈
I, s→∗

P
t} of P-reachable terms from I.

▸ Example 2.1 (Running Example). Consider the program P with ∆1 = {counter,genh,genk},
Γ0 = {0,a,b}, Γ1 = {S,h,k}, Γ2 = {f}, and rules as follows:

1 counter(x) → counter(S(x))
2 counter(x) → f(genh(x),genk(x))
3 genh(0) → a

4 genh(S(x)) → h(genh(x))
5 genk(0) → b
6 genk(S(x)) → k(genk(x))

Let I = { counter(0) }. The set of reachable constructor-terms from I, namely, ReachP(I) ∩
TΓ, is { f(hn(a),kn(b)) ∣ n ≥ 0}.3

3 There is a simpler program that gives the same set of reachable constructor terms, namely,

RTA’11

190 Functional Collecting Semantics and Indexed Linear Tree Grammars

Indexed Linear Tree Grammar (ILTG) Jones and Andersen’s algorithm constructs a reg-
ular tree grammar to over-approximate the collecting semantics of a given program P on
input I. Our refinement works in a similar fashion but builds an indexed linear tree grammar
instead. Let us introduce ILTG with an example.

▸ Example 2.2. Consider the grammar with non-terminal alphabet N = {S,S ’,A,B}, ter-
minal alphabet Σ = {f ,h,k,a,b} and index set F = {α,β}. The rewrite rules are as follows.

1 S → S’ β
2 S’→ S’α
3 S’→ f(A,B)

4 Aα → h(A)
5 Aβ → a
6 Bαα → k(k(B))

7 Bαβ → k(b)
8 Bβ → b

This ILTG rewrites terms in TΣ(NF∗). For example, the rule Bαα → k(k(B)) allows
us to replace the term Bααν1 ... νn by the term k(k(Bν1 ...νn)) where ν1...νn ∈ F∗ —note
the propagation of ν1 ... νn from the root of the term-tree k(k(B)) to its leaf. Similarly Rule
4 allows the term Aαβ to rewrite to h(Aβ). A possible rewrite using the above rules is

S’α β → S’α α β → f(Aαα β ,Bαα β) → f(Aαα β ,k(k(Bβ))).

In this ILTG, the set of reachable ground terms (in TΣ) from input {S } of the ILTG is
{f(hn(a),kn(b)) ∣ n ≥ 0} which is the same as that of the TRS in Example 2.1. Note that
the set is not regular; it follows that ILTGs are strictly more expressive than regular tree
grammars. Note also the similarities between the computation of this ILTG and that of the
TRS in Example 2.1.

We now give a formal definition of indexed linear tree grammars.

▸ Definition 2.3 (ILTG). An indexed linear tree grammar (ILTG) is a 5-tuple (Σ,N ,F , S,G)
(of finite objects) where

Σ is a ranked alphabet of terminal symbols (ranged over by f, g, a, b, etc.)
N is an alphabet of nullary non-terminal symbols (ranged over by A,B,C, etc.), and
S ∈ N is a distinguished start symbol
F is a set of index symbols (ranged over by α,β, etc.)
G a set of rewrite rules of the form Aγ →G t, where A ∈ N , γ ∈ F∗ and t ∈ TΣ(NF∗).

By abuse of notation, we shall refer to the ILTG as G. The (one-step) rewrite relation of G,
→G ⊆ (TΣ(NF∗))2, is defined as

C[Aγ δ]→G C[distδ(t)]

with C[-] ranging over (one-holed) contexts, δ over F∗ and Aγ →G t over rules in G, and
distδ(t) is defined as distδ(Aγ) ∶= Aγ δ and distδ(f(t1, . . . , tn)) ∶= f(distδ(t1), . . . ,distδ(tn)),
where n ≥ 0, and f,A and γ range over Σ,N and F∗ respectively. For example,

distα1α2(f(Aβ1, g(Bβ2β3, a))) = f(Aβ1α1α2, g(Bβ2β3α1α2, a)).

We denote the reflexive, transitive closure and the n-step rewrite relation of →G by →∗

G
and

→n
G
respectively.

gen(x,y) → gen(h(x),k(y)) | f(x,y) with input I = { gen(a, b)}.

Jonathan Kochems and Luke Ong 191

Take an ILTG (Σ,N ,F , S,G), and let I ⊆ TΣ(NF∗). We define ReachG(I) ∶= {t ∣
s ∈ I, s →∗

G
t}; for singleton sets we omit set braces e.g. ReachG(t) means ReachG({t}); and

if S is G’s start symbol we write ReachG for ReachG(S). If ReachG is well-defined we write
ReachP(G) ∶= ReachP(ReachG) and set Reacho

G
(I) ∶= ReachG(I)∩TΣ. Note that elements of

TΣ(NF∗) are term-trees: they can be viewed as (finite) ranked trees, whose internal nodes
are labelled by symbols in Σ (of non-zero arities), and whose leaves are labelled by symbols
in NF∗ ∪Σ0. Thus we define the language of (finite) Σ-labelled trees generated by G to be
Reacho

G
.

▸ Proposition 2.4. ILTGs are equi-expressive with pushdown tree automata [8] as generators
of Σ-labelled tree languages. Thus ILTGs generate precisely the level-1 trees4 of the hierarchy
of (collapsible) pushdown trees [18].

The idea is that the non-terminals and indices of an ILTG correspond respectively to the
states and stack symbols of a pushdown tree automaton. See the full paper for a proof.

▸ Remark 2.5. (i) ILTGs are similar to Aho’s indexed grammars [1] but there are important
differences. First Aho’s grammars are generators of word languages which are equi-expressive
with second-order pushdown word automata; they define level 2 of the Maslov Hierarchy
[16, 18]. Secondly, the linearity constraint on ILTG (each leaf of the RHS of a rule has at
most one occurrence of a non-terminal) has the effect of reining in the power of indices, so
that the branch language of a tree generated by an ILTG is context-free. (ii) Engelfriet and
Vogler [4] introduced regular tree grammars with pushdown store which are equi-expressive
with context-free tree languages [8], and with ILTGs. (iii) ILTGs define a class of trees with
rich algorithmic properties, which make them highly suitable for verification (for example,
their emptiness problem is in EXPTIME). In fact, all trees in the hierarchy of (collapsible)
pushdown trees have decidable MSO theories [17].

ILTGs are a concise formalism; when rewriting, indices propagate from the root of a
term-tree to its leaves, just like substitutions. We think that ILTGs are an attractive vehicle
for the presentation of our algorithm.

Minimally Reachable Match Minimally reachable match is a concept due to Jones and
Andersen [10]; it formalises the idea of rewriting a term by as many steps as necessary—but
no more—in order to achieve a match against a pattern. Here we generalise it to the setting
of indexed grammar, and consider the substitution that witnesses a minimally reachable
match of a uniformly indexed term against a pattern. A term t ∈ TΣ(NF∗) is said to be
uniformly indexed (or simply uniform) just if t = distδ(s) for some δ ∈ F∗ and s ∈ TΣ(N)
i.e. every non-terminal in t is annotated with the same index sequence.

▸ Definition 2.6 (Minimally Reachable Match). Let G = (Σ,N ,F , S,G) be an ILTG, s ∈ TΣ(V)
be a pattern, and distα1...αnt be a uniform term (thus t ∈ TΣ(N)). We say that a substitution
σ is a minimally reachable match of distα1...αn(t) against s just if there exists m ≥ 0 such
that

(i) distα1...αn(t)→mG σs, and
(ii) ¬(∃σ′.distα1...αn(t)→m−1

G
σ′s→ σs), and

(iii) ¬(∃σ′.∃k < n.(distα1...αk(t)→mG σ′s and σ = distαk+1...αn(σ′))).

4 See, for example, the survey [18] for an introduction to the hierarchies of finite and infinite ranked
trees. Note that ILTGs are generators of (languages of) both finite and infinite trees.

RTA’11

192 Functional Collecting Semantics and Indexed Linear Tree Grammars

I.e. m is the minimal number of reduction steps from distα1...αnt, and α1 . . . αn is a corres-
ponding minimal index sequence, that are required to achieve a match against the pattern
s. We shall sometimes refer to σ as a minimally reachable substitution.

Condition (iii) means that every index in α1 . . . αn must be “consumed” in the construc-
tion of σ. For example, take the rules in Example 2.2 and the pattern s = f(g(X),h(h(Y)))
then f(Aαα ,Bαα) →∗ f(g(Aα) ,h(h(B))) = σs is a minimal derivation, where σ = {X ↦ Aα,
Y ↦ B}. However the derivation f(Aαα β ,Bαα β)→∗ f(g(Aαβ) ,h(h(Bβ)))= distβ(σs) is
not minimal, because β is superfluous. Note that in the absence of indices (i.e. in a regular
tree grammar), n is necessarily 0, and so, the notion of minimally reachable match here
coincides with that of Jones and Andersen’s.

We say that an ILTG is uniform if the RHS of every rule is uniform. In a uniform ILTG,
a minimally reachable match of a uniform term t against a pattern p has the nice property
that the substitution in question will only replace a variable with a subterm of t (which
is uniform) or an indexed subterm of the RHS of a rule (which is also uniform). In the
following we write r′ ≤ r to mean that r′ is a subterm of r.

▸ Proposition 2.7. Let G be an ILTG, t ∈ TΣ(N) and p ∈ TΣ(V). If σ is the substitution of
a minimally reachable match of distγ(t) against p then for all X in Vars(p), σX ≤ distγ(t),
or σX = distγ′(g) for some index sequence γ′ and some subterm g of the right-hand-side
(RHS) of a G-rule.

▸ Notational Convention 2.8. Henceforth we assume a program P = { li → ri ∣ 1 ≤ i ≤ p} and a
set I of input terms over a ranked alphabet Σ = ∆⊍Γ, where ∆ consists of defined-operator
symbols and Γ consists of constructor symbols. We further assume that the input I ∶=
Reacho

G0
where G0 is a (uniform) ILTG with start symbol R0. We aim to over-approximate

the collecting semantics of P on I by means of ILTGs, ranged over by G, that are defined
over a terminal alphabet which is set to be Σ, and a non-terminal alphabet N that satisfies

N ⊇ {X ∣X ∈ Vars(li),1 ≤ i ≤ p} ∪ {R0,R1, . . . ,Rp }

where R0 is the start symbol. Note that every symbol of P (whether user-defined or con-
structor) is a terminal symbol of G; and every program variable of P is a non-terminal of G.
For each 1 ≤ i ≤ p, the non-terminal Ri (read “the results of the rule li → ri”) is intended to
generate a superset of all the terms that are reachable from li in a rewriting sequence that
originates from a term in I.

We make precise what it means for an ILTG to be a safe over-approximation of the
collecting semantics of P on I, and distinguish two versions of safety.

▸ Definition 2.9 (Safety). Let (Σ,N ,F , S,G) be an ILTG.
(i) G is globally safe for P on I just if there are terms (i.e. elements of TΣ(NF∗))
R̃0, R̃1, . . . , R̃p, and
X̃, for each X ∈ Vars(ri), each 1 ≤ i ≤ p

such that for every i and (σ, g) ∈ Zi, R̃i →∗

G
g; and X̃ →∗

G
σX for each X ∈ Vars(ri).

(ii) G is locally safe for P on I just if for every i and (σ, g) ∈ Zi, there is an index
sequence δσ such that Ri δσ →∗

G
g; and X δσ →∗

G
σX for each X ∈ Vars(ri).

Note that regular tree grammars are ILTGs with an empty index set. Both versions of
safety subsume Jones and Andersen’s (which assumes regularity of both the input and the
approximating grammar).

Jonathan Kochems and Luke Ong 193

3 The Grammar Completion Algorithm

Suppose we want to investigate the effect the program P in Example 2.1 has on the set
ReachG where the ILTG G is defined in Example 3.1.

▸ Example 3.1. N = {R0,R1,Rσ1
1 ,Rσ2

1 ,R2,Rσ1
2 ,Rσ2

2 }, F = {σ1,σ2}, Σ0 = {0}, Σ1 = {counter,
genh,genk,S,h,k}, Σ2 = {f}

R0 → counter(0) | Rσ1
1 | Rσ1

2
Rσ1

1 → R1σ1
Rσ2

1 → R1σ2
Rσ1

2 → R2σ1
Rσ2

2 → R2σ2

R1 → counter(S(X)) | Rσ2
1 | Rσ2

2
R2 → f(genh(X),genk(X))
Xσ1 → 0
Xσ2 → S(X)

If we rewrite the term R2σ2σ1 (which is easily seen to be in ReachG)

R2σ2σ1 →∗

G
f(genh(S(Xσ1)),genk(Xσ2σ1)) →P f(h(genh(Xσ1)),genk(Xσ2σ1)) =∶ t

then we observe that t is P reachable from a term in ReachG , but t is not in ReachG which
thus can be seen not to be invariant under P. However, if we place the rules of Example 3.4
and G in a new ILTG G′ then using the latter we can rewrite

R2σ2σ1 →∗ f(R4σ3σ1),genk(Xσ2σ1)) →∗ f(h(genh(Xσ1)),genk(Xσ2σ1)).

Thus G′ can be seen as a partial completion of G with respect to P; the former is however
still not complete w.r.t. P. In fact, G is an intermediate result of our algorithm to build
an over-approximation of P on the input ReachG0 where G0 is the ILTG with a single rule
R0 → counter(0) and start symbol R0 .

We aim to over-approximate the collecting semantics of P on I by means of ILTGs G
that conform to Notational Convention 2.8, using an operator on ITLG, δn

P
(-), which we

will introduce shortly. First we define an auxiliary operation that takes a rule of an ILTG
and returns a set of rules.

▸ Definition 3.2 (Ext-Operator). Let G be an ILTG, n ≥ 0 and Aγ → C[distα1...αk(g′)] ∈ G
where g′ ∈ TΣ(N). The set Extn

P,G(Aγ → C[distα1...αk(g′)]) contains (only) the following
rules

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Aγ → C[Rσi α1 . . . αk] (I)

Rσi β1 . . . βmin(m,n) → { Ri σ if m ≤ n
Ri σ ⊺ otherwise (II)

Ri → ri (III)
Xσ → aprxn(σ0X), for each X ∈ Vars(ri) (IV)

whenever there exist an index sequence β = β1 . . . βm, a substitution σ0, and an 1 ≤ i ≤ n
such that

(1) β and α = α1 . . . αk are compatible sequences (i.e. one is a prefix of the other), and
(2) σ0 is a minimally reachable match of distβ1...βm(g′) against li, and
(3) σ is the index (qua substitution) defined by σX ∶= erase(σ0X) for each variableX, where

erase(t) erases every index sequence, and every superscript of every non-terminal, that
occur in t ∈ TΣ(NF∗); for example

erase(g(f(Rτ1α1α2, h(a,Xβ1β2β3)))) = g(f(R1, h(a,X))))

RTA’11

194 Functional Collecting Semantics and Indexed Linear Tree Grammars

where aprxi(Aα1 . . . αk) ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

A⊺ if i = 0
Aα1 . . . αk if i > 0 ∧ k ≤ i
Aα1 . . . αi ⊺ if i > 0 ∧ k > i.

The function aprxi is extended to terms and substitutions in the natural way.

▸ Remark 3.3. (i) In rule of type (IV) above, X on the LHS is a non-terminal; the expression
aprxn(σ0X) on the RHS denotes the term obtained by applying the substitution aprxn(σ0)
to the variable X (of P). (ii) Several minimally reachable matches σ0 may give rise to
the same substitution σ. The equation in condition (3) is intended to “merge” indices so
that only a finite number of indices is eventually generated. (iii) In case m > n, the
type-(II) rule is added: Rσi α1 . . . αn → Ri σ ⊺. The operation Extn

P,G(-) does not produce a
rule with Ri σ or Ri σ ⊺ on the LHS. The point of the distinguished index ⊺—as indicated
in the definition of ⊺(G) in the following—is to introduce a measure of non-determinacy,
conflating all possible instantiations of a variable X by substitutions introduced during the
construction. (iv) Every rule of Extn

P,G(Aγ → C[distα1...αk(g′)]) has index sequences of
length at most n + 1, assuming that Aγ → C[distα1...αk(g′)] itself has index sequences of
length at most n.

▸ Example 3.4. The following are the rules in Ext1
G,P(R2→f ([genh(X)],genk(X))) where G

and P are as before.

R2 → f(Rσ3
4 ,genk(X))

R2 → f(Rσ4
3 ,genk(X))

Rσ4
3 σ1 → R3σ4

R3 → a
Xσ3 → X

Rσ3
4 σ2 → R4σ3

R4 → h(genh(X))

The rules are the result of the two minimally reachable matches σ3 (which is the substi-
tution {X↦X}) of genh(Xσ2) against genh(S(X)) and σ4 (which is the empty substitution)
of genh(Xσ1) against genh(0). The two patterns are the LHSs of P’s 4th and 3rd rule.

An ILTG completion algorithm Let n ≥ 0. Using the operation Extn
P,G(-) on G-rules, we

first define an operator δn
P
(-) on ILTGs, and then construct a sequence of ILTGs by iterating

it.
δn
P
(G) ∶= ⋃

Aγ→C[distα1...αk (g
′)]∈G

Extn
P,G(Aγ → C[distα1...αk(g′)]) ∪ ⊺(G)

where (writing γ′ < γ to mean “γ′ is a proper prefix of γ”)

⊺(G) ∶= ⋃
A≠Rσ

i
Aγ→t∈G

⋃
γ′<γ

{Aγ′⊺→ aprx0(t)} ∪ ⋃
Rσi γ→t∈G

⋃
γ′<γ

{Rσi γ′⊺→ aprx1(t)}

The construction then proceeds as follows. Starting off with an ILTG G0, we inductively
construct a sequence of ILTGs by Gn0 ∶= G0 and Gni+1 ∶= Gni ∪ δnP(Gni). For each n ≥ 0, this
gives an increasing sequence of ILTGs (qua sets of rules): Gn0 ⊆ Gn1 ⊆ Gn2 ⊆ Gn3 ⊆ . . .
▸ Remark 3.5. The seed, G0, is an arbitrary uniform ILTG (conforming to Notational Conven-
tion 2.8). Note that uniformity is not a real restriction since every ILTG can be transformed
to an equivalent uniform ILTG. It follows from Proposition 2.4 that the input set of our
algorithm can be an arbitrary pushdown-tree language.

▸ Example 3.6. Combining the rules below and Examples 3.1 and 3.4 we get the result of
our procedure to approximate the collecting semantics of the program P in Example 2.1 on
the input grammar G0 = {R0 → counter(0)}.

Jonathan Kochems and Luke Ong 195

//. . . the rules of Examples 3.1 and 3.4
R2 → f(Rσ3

4 , Rσ4
5) | f(Rσ3

4 , Rσ3
6)

R2 → f(Rσ4
3 , Rσ4

5) | f(Rσ4
3 , Rσ3

6)
R4 → h(Rσ4

3) | h(Rσ3
4)

Rσ4
5 σ1 → R5σ4

Rσ3
6 σ2 → R6σ3

R5 → b
R6 → k(genk(X)) | k(Rσ4

5) | k(Rσ3
6)

Note that the results introduced by the operator ⊺(−) have been omitted. It can be
easily seen that the reachable ground terms of the resulting ILTG are precisely the terms
reachable by P from G0. Further the ground terms reachable from R2σ

n
2 σ1 are

f(hi(genhn−i(a),kj(genkn−j(b))))

which are the result terms bound to the substitution σn2 ○ σ1 in Z2 in P’s collecting se-
mantics (where we write fn = f ○ . . . ○ f n-times), letting n range over all n we get pre-
cisely Z2.5 Moreover, the set of reachable ground constructor terms from R0 is precisely
{ f(hn(a), kn(b)) ∣ n ≥ 0}. Note that the tree language generated by P from G0 is non-
regular. Thus, we can see that our algorithm makes use of the greater expressivity provided
by ILTGs to describe this set.

4 Termination

There are two key ideas in the termination proof of the ILTG completion algorithm. The
first, due to Jones and Andersen, concerns minimally reachable match. By considering only
these substitutions when constructing Extn

P,Gi(-), the RHS of every rule that is generated
is guaranteed to be a variant of a subterm of the RHS of either a P-rule or a G0-rule; and
the set of such variants is bounded. Secondly, the merging of substitutions via erase ensures
that only finitely many indices are generated eventually.

Variants Let X be a set of terms. A X -variant of t is a term obtained from t by replacing
one or more subterms by an element of X . For example, the term f(g(Aαβ,Bααα), a) is a
N ′F ′≤3-variant of the term t = f(g(h(A), f(A′, b, c), a), where N ′ = {A,B} and F ′ = {α,β}
and we write A≤k for the set of sequences of elements of A of length no more than k. Note
that the term t trivially is a TΣ(NF∗) -variant of itself. The following definition makes the
variant relation precise.

▸ Definition 4.1 (X -Variant). Let X ⊆ TΣ(NF∗). We define the X -variant relation ⊑X ⊆
TΣ(NF∗) × TΣ(NF∗) by induction over the following rules:

t ⊑X t for t ∈ TΣ(NF∗)
s ⊑X t for s ∈ X and t ∈ TΣ(NF∗)
if ti ⊑X t′i for each 1 ≤ i ≤ n then f(t1, . . . , tn) ⊑X f(t′1, . . . , t′n)

If s ⊑X t we say s is an X -variant of t.

We note at this point that for a fixed X the relation ⊑X is reflexive and transitive.
The next proposition captures the observation that our flow analysis procedure does not

really add “new information”. It turns out that all RHSs of rules in Gni are in fact variants
of subterms of terms t where t ranges over the RHSs of rules in G0 and P.

For i, n ≥ 0, define Fi,n be the index set of Gni and write Ni,n (N0) for the set of non-
terminals occurring in Gni (G0).

5 Owing to the “merging” of substitutions, it is not always possible to identify indices with substitutions.

RTA’11

196 Functional Collecting Semantics and Indexed Linear Tree Grammars

▸ Proposition 4.2. Assume that G0 is uniform. For each i, n ≥ 0 and each rule Aγ → t in
Gni , there exist a rule l → r in P∪G0 and r′ ≤ r such that t ⊑X r′ where X = Ni,nF≤max(n+1,2)

i,n ,
and t is uniform.

In the following we write VP = ⋃pi=1 Vars(li) and NP = {Ri ∣ 1 ≤ i ≤ p}.

▸ Lemma 4.3. For each i, n ≥ 0, Fi,n ⊆ F0 ∪ {⊺} ∪ {σ ∣ σ has type VP → Y } where

Y ∶= { t ∈ TΣ(NF∗) ∣ there exist l → r ∈ G0 ∪P and r′ ≤ r such that t ⊑NP∪VP r′ }

and F0 is the index set of G0 (which is defined to be ∅ in case G0 is regular). Hence there
is some m ≥ 0 such that for all i, n ≥ 0, ∣Fi,n∣ ≤m.

Termination of our completion procedure is an immediate consequence of Proposition 4.2
and Lemma 4.3.

▸ Theorem 4.4 (Termination). For each n ≥ 0, there is some i ≥ 0 such that Gni = Gni+1.
I.e. the algorithm terminates.

We will refer to the fixpoint ILTG by Gn from now on.
We can give the following size bound for Gn.

∣Gn∣ = O ((size(P) + size(G0))2∣VP ∣m(n,D) × size(P)D∣VP ∣m(n,D)+D+1)

where m(n,D) = D(max(n + 1,2) + 1) + n + 1, size(P) is linear in ∣P ∣, ∣VP ∣ and the number
of subterms of the largest RHS of P, and size(G0) is linear in ∣G0∣, the number of G′0s non-
terminals, indices and LHSs and number of subterms of the largest RHS of G0. Note that
D is greatest number (k + 1)d such that d = depth(r) and k is the arity of a Σ symbol
occurring in r, where r ranges over the RHSs of P and G0. Thus, we can see the size of Gn is
polynomial in the number of rules in P and G0, and exponential in n, D and the number of
variables.6 For comparison, a similar analysis yields that the size of the fixpoint grammar
of Jones and Andersen’s procedure is O(size(G0) + size(P))3 × size(P)D).

5 Soundness: Local and Global Safety

A program P (or an ILTG G) determines a transition graph whose vertices are terms and
whose edge-set is the rewrite relation of the program (or grammar). In such a setting it
is natural to consider simulation. A key insight of our soundness proof is that reachability
under ILTG Gn is invariant under P-transition, modulo simulation. I.e. whenever a term
t ∈ TΣ(NF∗), which is reachable from s under rewriting by Gn, can make a P-transition to
t′, then there is a term, which is reachable from s under rewriting by Gn, that simulates t′.

The main technical result (Theorem 5.12) is that Gn is locally safe, from which global
safety follows. We organise our proof as follows. First, we identify a crucial property of
ILTGs that are candidates for approximating the collecting semantics of P on I, called
emulation (Definition 5.5). We show that emulation implies invariance under P-transition,
modulo simulation (Proposition 5.6), which implies local safety (Proposition 5.7). It then
remains to show that Gn satisfies emulation (Theorem 5.10).

6 Note that D can be made into a constant by enforcing a constraint on the depth of RHSs. A program
can be transformed into a conforming program by introducing “subroutines” to reduce the depth of
RHSs. The increase in rules is then polynomial in the length of P.

Jonathan Kochems and Luke Ong 197

Simulation Fix Σ,N ,F and a program P = { li → ri ∣ 1 ≤ i ≤ p} (over Σ) and let the meta-
variable R range over P and ILTGs G.

▸ Definition 5.1 (Σ-equal R-simulation). We call a relation R ⊆ (TΣ(NF∗))2 a Σ-equal
pre-R-simulation just if R ⊆ FR(R), where FR(R) is defined to be the set of pairs (t1, t2) ∈
(TΣ(NF∗))2 satisfying

(i) t̂1 = t̂2, where t̂ ∈ TΣ(∗) is obtained from t by replacing every NF∗-subterm of t by a
special symbol ∗, which is assumed not to be a member of Σ ∪∆; and

(ii) for every t′1 if t1 →R t′1 then there exists t′2 such that t2 →R t′2 and (t′1, t′2) ∈ R.
Since FR is a monotone function, by Knaster-Tarski Fixpoint Theorem, it has a greatest fix-
point, which we write as ⪯R and refer to as Σ-equal R-simulation (or simply R-simulation).
We read s ⪯R t as “t R-simulates s”.

We denote the intersection of the G-simulation and P-simulation by ⪯G,P i.e. ⪯G,P ∶=
⪯G ∩ ⪯P . Whenever it is clear from the context, we drop the subscript and write it simply
as ⪯.

▸ Proposition 5.2. Let G be an ILTG, then the relation ⪯ has the following properties.

(i) Whenever two terms are related by ⪯, if one of them is ground (i.e. a member of TΣ)
then so is the other, and they are equal terms.

(ii) ⪯ is a pre-congruence i.e. if t ⪯ t′ then C[t] ⪯ C[t′].
(iii) ⪯ is a preorder on TΣ(NF∗).
(iv) If t1 ⪯ t2 and t1 →∗ t′1 then there is a term t′2 such that t2 →∗ t′2 and t′1 ⪯ t′2
(v) If t ⪯ t′ and t→∗ s for some s ∈ TΣ, then t′ →∗ s.
(vi) If t ⪯ t′ then Reacho

G
(t) ⊆ Reacho

G
(t′).

▸ Proposition 5.3. Let t0 be a term such that if t ∈ ReachG(t0) and t→P t′ then there exists
t′′ ∈ ReachG(t0) such that t′ ⪯ t′′. Then

(i) for each n ≥ 0, if t ∈ ReachG(t0) and t→n
P
t′ then there exists t′′ ∈ ReachG(t0) such that

t′ ⪯ t′′.
(ii) Reacho

P
(ReachG(t0)) ⊆ Reacho

G
(t0)

Emulation The collecting semantics of a program P on an input set I can be characterised
as follows [10, Lemma 2.6]. We aim to introduce a notion (called emulation) that mimicks
the property.

▸ Lemma 5.4 (Jones and Andersen 2007). The collecting semantics of P on I is the smallest
(ordered point-wise) tuple of sets of pairs, (Z0, Z1, . . . , Zp), that satisfies:

(1) If g ∈ I then (id, g) ∈ Z0.
(2) If (σ,C[σ′ li]) ∈ Zj then (σ′, σ′ ri) ∈ Zi for 0 ≤ i, j ≤ p.
(3) If (σ,C[σ′ li]) ∈ Zj and (σ′, g′) ∈ Zi, then (σ,C[g′]) ∈ Zj for 0 ≤ i, j ≤ p.

In the definition to follow, we assume that ITLGs G0 and G that satisfy the Notational
Convention 2.8, with the input to P set to ReachG0 . Let the meta-variable A range over the
following subset of non-terminals (of G0 and G)

{R0,R1, . . . ,Rp } ∪ {X ∣X ∈ Vars(ri),1 ≤ i ≤ p}. (1)

▸ Definition 5.5 (Emulation). An ILTG G emulates the collecting semantics of P on input
Reacho

G0
just if

RTA’11

198 Functional Collecting Semantics and Indexed Linear Tree Grammars

(i) ReachG0 ⊆ ReachG(R0)
(ii) whenever C[σ li] ∈ ReachG(Aγ) then there are δσ ∈ F∗ and substitution σ′ such that

(a) σ′ ri ∈ ReachG(Ri δσ), σ′Z ∈ ReachG(Z δσ) for each Z ∈ Vars(ri), and σ ⪯ σ′

(i.e. σX ⪯ σ′X for all X ∈ V)
(b) if t ∈ ReachG(Ri δσ) then C[t] ∈ ReachG(Aγ).

▸ Proposition 5.6. Let G be an ILTG that emulates the collecting semantics of P on Reacho
G0
.

Then, with A ranging over the set (1) of non-terminals, and δ ranging over F∗

(i) if t ∈ ReachG(Aδ) and t→∗

P
t′ then there exists t′′ ∈ ReachG(Aδ) such that t′ ⪯ t′′.

(ii) Reacho
P
(ReachG(Aδ)) ⊆ Reacho

G
(Aδ).

Proof. (i) Let t ∈ ReachG(Aδ). We assume that t→P t′; the general case of t→∗

P
t′ then

follows from Proposition 5.3. By assumption, t = C[σli] and t′ = C[σri] for some i. Thus by
assumption of emulation there exist σ′ and δσ such that σ′ri ∈ ReachG(Riδσ) and σ ⪯ σ′. So
C[σri] ⪯ C[σ′ri] as ⪯ is a pre-congruence. Also since σ′ri ∈ ReachG(Riδσ), it follows from
the emulation assumption that C[σ′ri] ∈ ReachG(Aδ).

(ii) Follows from Proposition 5.3 when combined with (i).
◂

▸ Proposition 5.7. Let G be an ILTG that emulates the collecting semantics of P on Reacho
G0
.

Then G is locally safe for P on Reacho
G0
.

Proof. Let (σ, g) ∈ Zi, then there exists w ∈ Reacho
G0

and context C[-] such that w →∗

P

C[σ li] and σ ri →∗

P
g. Note that C[σ li], σ ri and g are elements of TΣ. Thus C[σli] ∈

Reacho
P
(ReachG0) ⊆ Reacho

P
(ReachG(R0)) ⊆ Reacho

G
(R0), the second inclusion follows from

Proposition 5.6(ii). Thus by definition there exist σ′ and δσ such that σ′ ri ∈ ReachG(Ri δσ),
σ′X ∈ ReachG(X δσ) for each X ∈ Vars(ri), and σ ⪯ σ′.

Since range(σ) ⊆ TΣ, σ ⪯ σ′ and ⪯ is Σ-equal, we have that σ = σ′. Hence we can conclude
that in fact σ ri ∈ ReachG(Ri δσ) and σX ∈ ReachG(X δσ). Now since σ ri →∗

P
g, it follows

from Proposition 5.6(ii) that g ∈ Reacho
P
(ReachG(Ri δσ)) ⊆ Reacho

G
(Ri δσ). Thus Ri δσ →∗ g

and X δσ →∗ σX.
◂

▸ Remark 5.8. Define a simulation relation over index sequences by γ ⪯ γ′ just if Aγ ⪯ Aγ′
for all A ∈ N . If an ILTG is locally safe for P on Reacho

G0
and has an index ⊺ (say) that

simulates every index (i.e. α ⪯ ⊺ for all α ∈ F), then it is also globally safe, for we can set
R̃i ∶= Ri ⊺ and X̃ ∶=X ⊺.

Gn emulates the collecting semantics For our soundness argument it remains to show that
for each n, the fixpoint ILTG Gn emulates the collecting semantics. We begin by stating a
technical lemma.

▸ Lemma 5.9. For each n ≥ 0, if Aγ →∗

Gn
C[σli] then there are σ0, σ

′

0 and δ such that

(i) Aγ →∗

Gn
C[σ0li] and σ0ri →∗

Gn
σri

(ii) Aγ →∗

Gn
C[Riδ]

(iii) X δ →∗

Gn
σ′0X, for each X ∈ Vars(ri)

(iv) σ0 ⪯ σ′0

Emulation is a straightforward consequence of the above result.

Jonathan Kochems and Luke Ong 199

▸ Theorem 5.10. For each n ≥ 0, Gn emulates the collecting semantics of P on Reacho
G0
.

Proof. We will now show that the conditions (i), (iia) and (iib) of Definition 5.5 hold for Gn.
By construction it is the case that Gn ⊇ G0, thus ReachG0 = ReachG0(R0) ⊆ ReachGn(R0).
Therefore condition (i) is satisfied. For condition (iia) and (iib), suppose that C[σli] ∈
ReachGn(Aγ). By applying Lemma 5.9 to Aγ →∗

Gn
C[σli], it follows that for some δσ,σ0,σ′0,

we have Aγ →∗ C[Riδσ], Xδσ →∗ σ′0X for every X that occurs in ri, σ0ri →∗

Gn
σri and

σ0 ⪯ σ′0. Since σ0 ⪯ σ′0, σ0X →∗

Gn
σX , there is a term σ′X such that σ′0X →∗

Gn
σ′X and

σX ⪯ σ′X for all X ∈ Vars(ri). Thus we can infer that σ ⪯ σ′ and σ′0ri →∗

Gn
σ′ri. Hence

Xδσ →∗

Gn
σ′0X →∗

Gn
σ′X. Further Riδσ → distδσri →∗ σ′ri by rewriting all non-terminals

X ∈ Vars(ri) to σ′X. We can thus infer that σ′ri ∈ ReachGn(Riδσ), σ′X ∈ ReachGn(Xδσ)
where σ ⪯ σ′. Hence condition (iia) holds. For condition (iib) further suppose that t ∈
ReachGn(Riδσ), then since Aγ →∗ C[Riδσ] and Riδσ →∗ t we can rewrite Aγ →∗ C[t], i.e.
C[t] ∈ ReachGn(Aγ). ◂

Thus it follows from Proposition 5.7 that Gn is locally safe for each n ≥ 0. To prove
global safety, we combine the following lemma with Remark 5.8.

▸ Proposition 5.11. For all γ0, γ1, γ2 ∈ F∗ we have γ0γ1 ⪯ γ0⊺γ2 in Gn.

To summarise

▸ Theorem 5.12. For each n ≥ 0, the fixpoint ILTG Gn is both locally and globally safe for
program P on input ReachG0 .

6 Related Work

TRS Reachability Problem There is a line of work in the rewriting community devoted to
the construction of ReachR(I) where I is a regular set and R is a TRS satisfying various
restrictions. This is an interesting problem because for a regular input set I, ReachR(I) is
not necessarily regular, even if R is a confluent and terminating linear TRS [7].

Based on earlier work by Genet [6], Feuillade et al. [5] proposed a tree-automaton com-
pletion algorithm for over-approximating ReachR(I), for a given (left-linear) TRS R and a
regular input set I. The algorithm constructs a sequence of tree automata and is paramet-
rised by an abstraction function that maps terms to states of the automaton. This method
is quite versatile as the completion procedure can be fine-tuned by choosing the appropri-
ate abstraction function. However, the approach is not fully automatic; further not every
abstraction function is guaranteed to lead to a fixpoint automaton.

Building on this work, Boichut et al. [2] introduced a semi-algorithm which automatically
chooses abstraction functions for the completion procedure. Their aim is to obtain a more
conclusive analysis of whether a term t is reachable from a given input set. The abstraction
function is refined in order to obtain either a fixpoint automaton which does not accept t or
an under-approximation of ReachP(I) which does include t. However, this approach is not
guaranteed to terminate.

Model Checking Functional Programs Kobayashi et al. [11] introduced a type-based
model-checking method for an extension of higher-order recursion schemes called higher-
order multi-parameter tree transducers (HMTT). They gave an algorithm for checking if
the tree generated by a given HMTT satisfies a given output specification, provided the
input trees conform to a given input specification. It is not easy to compare our work with
theirs, but two aspects stand out. First their specifications are restricted to regular tree

RTA’11

200 Functional Collecting Semantics and Indexed Linear Tree Grammars

languages. Secondly patterns (for matching) in their framework are required to satisfy a
rigid type constraint; for example, their method cannot handle our Example 2.1 (unless
certain invariants on intermediate data structures are provided by the programmer [21]).

Ong and Ramsay [19] recently introduced pattern-matching recursion schemes (PMRS)
as an accurate model of computation for functional programs that manipulate algebraic data
types. They present a verification method that, given an order-n PMRS P and an input
set I generated by a regular tree grammar, constructs an order-n weak PMRS which over-
approximates the set of terms reachable from I under rewriting from P. Their construction
uses a binding analysis à la Jones and Andersen to over-approximate only the first-order
pattern-matching behaviour, whilst remaining completely faithful to the higher-order control
flow. We believe that their binding analysis can be refined by using a variant of our ILTG-
based completion algorithm, thus giving a more accurate over-approximation of pattern-
matching in their framework.

XML Type Checking The extensible markup language XML is the standard format for
exchanging structured data. Central to XML processing is the type checking problem: given
an input type, an output type and a transformation f , does f transform every input that
conforms to the input type to an output that conforms to the output type? Since the XML
type checking problem is undecidable, general solutions are necessarily approximate. How-
ever, by restricting types and transformations appropriately, type checking can be made
decidable. A recent direction [14, 15] considers types given by languages recognisable by
finite-state automata, and transformations specified by (versions of) stay macro tree trans-
ducers (SMTTs). SMTTs are first-order functional programs that generate output trees by
top-down pattern matching its first (tree) argument, while possibly accumulating intermedi-
ate results in the other (tree) parameters: they are essentially first-order pattern-matching
recursion schemes [19]. It would be interesting to understand the approach based on SMTTs,
as it seems likely that there are connections with our work.

7 Evaluation, Conclusion and Further Directions

Evaluation A few remarks by way of comparison with related work. (i) Our algorithm can
take an arbitrary pushdown tree language as the input set. To our knowledge, all published
over-approximation results for the reachability problem for left-linear TRS assume a regular
input set. (ii) For each fixed n ≥ 0, our completion method is at least as accurate as Jones
and Andersen’s [10] (because after erasing all references to indices, our method yields the
same result as Jones and Andersen’s, modulo some superfluous rules). (iii) A source of
inaccuracy in Jones and Andersen’s approach is the decoupling of the pairing (σ, t) ∈ Zi
(in the collecting semantics) between a reachable substitution σ and the associated result
term t. The notion of emulation allows us to introduce a weak form of coupling between
σ and t in the sense of local safety. The definition of emulation also applies to Jones
and Andersen’s fixpoint regular tree grammar. However, in the absence of indices, δσ = ε.
Thus, we can see that the coupling of program results and program states (substitutions)
is stronger in our fixpoint ILTG. (iv) It is not straightforward to compare our result with
related work from the rewriting community [9, 5, 2]. We can see from Example 2.1 that
our approach accurately captures a non-regular set of reachable terms. Because Feuillade et
al. and Boichut et al. use finite tree automata, such accuracy is beyond their reach. However,
there is an example in the full version of this paper [13] for which our algorithm produces
a strict over-approximation which is regular, whereas, by a judicious choice of parameters,

Jonathan Kochems and Luke Ong 201

the algorithm of Feuillade et al. can yield a better over-approximation. On the other hand,
our algorithm is fully automatic and guaranteed to terminate for each fixed n (as is Jones
and Andersen’s), neither of which is true of the methods of Feuillade et al. and of Boichut
et al..

Conclusion Using indices to capture (sets of) substitutions, we have presented a completion
algorithm which, given a left-linear TRS P, an input set described by an ILTG G0 and n ≥ 0,
constructs an ILTG Gn that safely over-approximates the collecting semantics of P on G0.
To our knowledge, this is the first completion procedure for pushdown tree automata, and
it yields a strong approximation result for the left-linear TRS reachability problem.

Further Directions (i) A priority is to construct an implementation of our completion
algorithm for empirical evaluation. (ii) A key idea of our approach is to merge substi-
tutions, σ and σ′, just when erase(σ) = erase(σ′). One way to improve our algorithm
is to refine the merge operation. For example, one could define erase1(Aα1 . . . αn) ∶=
A erase(α1) . . . erase(αn). A similar argument to our current termination algorithm should
apply. One could envisage an inductive definition in the same style for erase2, erase3,
(iii) It would be interesting to identify sufficient conditions for the ILTG completion al-
gorithm to be accurate for reachability i.e. for which class of programs does the fixpoint
ILTG generate precisely the set of reachable terms?

Acknowledgements Financial support by EPSRC (research grant EP/F036361/1 and
OUCL DTG Account doctoral studentship for the first author) is gratefully acknowledged.
We would like to thank Damien Sereni and Steven Ramsay for helpful discussions and in-
sightful comments, and the anonymous reviewers for their detailed reports.

References
1 Alfred V. Aho. Indexed grammars - an extension of context-free grammars. Journal of the

ACM (JACM), 15(4):647–671, 1968.
2 Yohan Boichut, Roméo Courbis, Pierre-Cyrille Héam, and Olga Kouchnarenko. Finer is

better: Abstraction refinement for rewriting approximations. In Proceedings of Rewriting
Techniques and Applications (RTA), volume 5117 of Lecture Notes in Computer Science,
pages 48–62. Springer, 2008.

3 Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In Proceedings of
the Symposium on Principles of Programming Languages (POPL), pages 238–252. ACM,
1977.

4 Joost Engelfriet and Heiko Vogler. Pushdown machines for the macro tree transducer.
Theoretical Computer Science, 42:251–368, 1986.

5 Guillaume Feuillade, Thomas Genet, and Valérie Viet Triem Tong. Reachability Analysis
over Term Rewriting Systems. Journal of Automated Reasoning, 33(3-4):341–383, 2005.

6 Thomas Genet. Decidable approximations of sets of descendants and sets of normal forms.
In Proceedings of Rewriting Techniques and Applications (RTA), volume 1379 of Lecture
Notes in Computer Science, pages 151–165. Springer, 1998.

7 Rémi Gilleron and Sophie Tison. Regular tree languages and rewrite systems. Fundamenta
Informaticae, 24(1/2):157–174, 1995.

8 Irène Guessarian. Pushdown tree automata. Mathematical Systems Theory, 16(4):237–263,
1983.

RTA’11

202 Functional Collecting Semantics and Indexed Linear Tree Grammars

9 Florent Jacquemard. Decidable approximations of term rewriting systems. In Proceedings of
Rewriting Techniques and Applications (RTA), volume 1103 of Lecture Notes in Computer
Science, pages 362–376. Springer, 1996.

10 Neil D. Jones and Nils Andersen. Flow analysis of lazy higher-order functional programs.
Theoretical Computer Science, 375(1-3):120–136, 2007.

11 Naoki Kobayashi, Naoshi Tabuchi, and Hiroshi Unno. Higher-order multi-parameter tree
transducers and recursion schemes for program verification. In Proceedings of the Sym-
posium on Principles of Programming Languages (POPL), pages 495–508. ACM, 2010.

12 Jonathan Kochems. Approximating reachable terms of functional programs. Oxford Uni-
versity MMathsCS 4th-year Project Report, 2010.

13 Jonathan Kochems and C.-H. Luke Ong. Improved functional flow and reachability analyses
using indexed linear tree grammars. Long version, 2010.

14 Sebastian Maneth, Alexandru Berlea, Thomas Perst, and Helmut Seidl. Xml type checking
with macro tree transducers. In Proceedings of the Symposium on Principles of Database
Systems (PODS), pages 283–294. ACM, 2005.

15 Sebastian Maneth, Thomas Perst, and Helmut Seidl. Exact xml type checking in polynomial
time. In Proceedings of the International Conference on Database Theory (ICDT), volume
4353 of Lecture Notes in Computer Science, pages 254–268. Springer, 2007.

16 A. N. Maslov. Multilevel stack automata. Problems of Information Transmission, 12:38–43,
1976.

17 C.-H. Luke Ong. On model-checking trees generated by higher-order recursion schemes.
In Proceedings of Symposium on Logic in Computer Science (LICS), pages 81–90. IEEE
Computer Society, 2006.

18 C.-H. Luke Ong. Models of Higher-Order Computation: Recursion Schemes and Collapsible
Pushdown Automata. In J. Esparza, B. Spanfelner, and O. Grumberg, editors, Logics and
Languages for Reliability and Security, pages 263–300. IOS Press, 2010. NATO Science for
Peace and Security Series, D: Information and Communication Security - Vol. 25.

19 C.-H. Luke Ong and Steven James Ramsay. Verifying Higher-Order Functional Programs
with Pattern-Matching Algebraic Data Types. In Proceedings of the Symposium on Prin-
ciples of Programming Languages (POPL), pages 587–598. ACM, 2011.

20 John C. Reynolds. Definitional interpreters for higher-order programming languages.
Higher-Order and Symbolic Computation, 11(4):363–397, 1998.

21 Hiroshi Unno, Naoshi Tabuchi, and Naoki Kobayashi. Verification of tree-processing pro-
grams via higher-order model checking. In Proceedings of the Asian Symposium on Pro-
gramming Languages and Systems (APLAS), volume 6461 of Lecture Notes in Computer
Science, pages 312–327. Springer, 2010.

	Introduction
	Preliminaries
	The Grammar Completion Algorithm
	Termination
	Soundness: Local and Global Safety
	Related Work
	Evaluation, Conclusion and Further Directions

