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Abstract

This paper introduces some novel features of Maude 2.6 focusing on the variants of a term. Given an
equational theory (Σ,Ax∪E), the E,Ax-variants of a term t are understood as the set of all pairs consist-
ing of a substitution σ and the E,Ax-canonical form of tσ . The equational theory (Ax∪E) has the finite
variant property iff there is a finite set of most general variants. We have added support in Maude 2.6 for:
(i) order-sorted unification modulo associativity, commutativity and identity, (ii) variant generation, (iii)
order-sorted unification modulo finite variant theories, and (iv) narrowing-based symbolic reachability
modulo finite variant theories. We also explain how these features have a number of interesting appli-
cations in areas such as unification theory, cryptographic protocol verification, business processes, and
proofs of termination, confluence and coherence.
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1 Introduction

In [4] the Maude 2.4 features for order-sorted unification modulo axioms Ax, including commuta-
tivity (C) and associativity commutativity (AC), and for narrowing-based reachability analysis of
rewrite theories modulo such axioms Ax were described. In this paper we present the new features
of variant-generation, variant-based unification, and symbolic reachability analysis modulo a theory
with the finite variant property supported by Maude 2.6. The key distinction, now supported for
the first time in Maude, is one between dedicated unification algorithms for a limited set of axioms
Ax, and generic unification algorithms such as variant-based unification which can be applied to a
much wider range of user-definable theories. As explained in Section 6, this opens up many ap-
plications, including: (i) unification-related applications; (ii) cryptographic protocol analysis; (iii)
symbolic reachability analysis of concurrent systems; and (iv) formal reasoning capabilities such as
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termination proofs, and proofs of local confluence and coherence that can now be performed modulo
a much wider set of equational theories thanks to the use of variants.

Comon-Lundh and Delaune’s notion of variant [7] characterizes the instances of a term w.r.t.
an equational theory E ∪Ax such that the equations E are covergent and coherent modulo axioms
Ax. The E,Ax-variants of a term t are pairs (t ′,θ), with θ a substitution and t ′ the E,Ax-canonical
form of tθ . A preorder relation of generalization that holds between such pairs provides a notion
of most general variants and also of completeness of a set of variants. An equational theory E ∪Ax
has the finite variant property iff there is a finite complete set of most general variants for each term.
This property also ensures the existence of a generic finitary E ∪Ax-unification algorithm based on
computing variants. Such generic unification algorithm involves performing Ax-unification using a
dedicated algorithm and computing the E,Ax-variants.

As we explain in Section 2, the base of axioms now supported by Maude with a dedicated unifi-
cation algorithm has been extended to include associative-commutative with identity (ACU) function
symbols, in combination with the previously supported C, AC, and free ( /0) function symbols. On
this extended axiom base, Full Maude 2.6, an extension of Maude written in Maude itself by tak-
ing advantage of its reflective capabilities, now offers the following new features for user-definable
order-sorted theories E ∪ Ax with the finite variant property and satisfying some simple require-
ments: (i) variant generation, that is, computing the most general E,Ax-variants of a term (Section
3); (ii) variant-based order-sorted unification modulo E ∪Ax (Section 4); and (iii) narrowing-based
symbolic reachability analysis of a concurrent system whose equational subtheory satisfies the finite
variant property (Section 5). There are several programming languages based on narrowing but none
supporting narrowing modulo finite variant theories.

2 Implementation of Order-Sorted ACU Unification

The addition of ACU to the theories handled by the dedicated unification algorithm in Maude re-
quired substantial changes to the unification infrastructure implemented in previous versions of
Maude for C and AC theories because of the problems associated with collapse theories. In this
section we give an overview of the techniques used and highlight a novel algorithm for selecting sets
of Diophantine basis elements during the computation of ACU unifiers.

Combining Unification Algorithms. The basic approach to solving unification problems where
function symbols are drawn from more than one theory is variable abstraction where alien subterms,
i.e., subterms headed by a symbol from a theory different from that of the top symbol of the parent
term, are replaced by fresh variables to form pure unification subproblems which only involve vari-
ables and functions symbols from a single theory and which can be passed to a unification algorithm
for such a theory. Proving termination of combinations of algorithms is nontrivial, as variables are
necessarily shared between theories and the unification of variables in one theory can create new
unification subproblems in another theory, potentially ad infinitum. Stickel’s algorithm [22], which
combined the AC and free theories, required an elaborate termination proof by Fages [15]. Boudet et
al. [2] proposed a much simpler approach where all unification subproblems and variable bindings
in a given theory are solved (and re-solved if another subproblem in that theory is created) simul-
taneously. This method requires a simultaneous E-unification algorithm for each theory E and was
the method implemented in Maude for C, AC, and /0 prior to the addition of ACU.

Collapse theories add two major complications to the combination of unification algorithms.
Firstly, theory clashes where two terms with top symbols from different theories are required to
unify, can no longer be treated as a failure, since if one or other top symbol belongs to a collapse
theory, a collapse may occur, yielding solutions. Secondly, compound cycles, that is, problems of the
form x1 =? t1(. . . ,x2, . . .),x2 =? t2(. . . ,x3, . . .), . . . ,xn =? tn(. . . ,x1, . . .) where the terms ti are pure in
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different theories, can no longer be treated as failure, since solutions may be possible via collapse.
Several authors have proposed combination schemes that can handle collapse theories. We use a

simplified version of an algorithm due to Boudet [1]. The original algorithm also handles nonregular
theories but we omit that capability to simplify the implementation. The key idea is that each theory
E needs a restricted simultaneous E-unification algorithm which solves the simultaneous unification
problem for pure equations that are pure in E but where certain variables may be marked as only
being allowed to unify with other variables. A theory clash subproblem f (. . .) =? g(. . .), is split into
a disjunction of two subproblems each of which is a conjunction x =? f (. . .)∧ x =? g(. . .) where x
is a fresh variable. In one subproblem x is marked in the f equation and in the other subproblem x
is marked in the g equation; either or both branches of the search may return solutions. Restricted
unification is also used to break compound cycles. Because we do not handle nonregular theories,
Boudet-style variable-elimination algorithms are unnecessary.

Boudet’s algorithm assumes that theories are disjoint; i.e., that they do not share function sym-
bols. Because in Maude this is not quite true – identities can contain symbols from other theories –
we need to handle a special kind of variable elimination. We illustrate the issue with the following
example:

fmod CYCLE is sort S . vars X Y : S . ops a b c d : -> S .
op f : S S -> S [assoc comm id: g(c, d)] .
op g : S S -> S [assoc comm id: f(a, b)] .

endfm
Maude> unify X =? f(Y, a, b) /\ Y =? g(X, c, d) .

Here the unification problem would already be in solved form but for the compound cycle formed
by the X and Y variables. Restricted unification cannot break this cycle, since neither of the right-
hand sides can collapse out of their theory. However, putting Y = g(c,d) eliminates Y from the
first equation yielding X = f (a,b) which eliminates X from the second equation, yielding a solu-
tion. This situation is somewhat pathological in Maude programs, and we do not really care about
performance in its handling. Maude handles it by looking for this kind of cyclic dependency be-
tween theories when the signature is preprocessed and setting a flag so that a brute force variable
elimination algorithm will be used to try and break compound cycles at unification time.

Diophantine Basis Element Selection. We solve restricted simultaneous ACU unification using an
extension of the simultaneous AC unification algorithm in [2]. For an ACU function symbol f we are
presented with a set of flattened pure equations that take the form f (xp1

1 , . . . ,xpn
n ) =? f (yq1

1 , . . . ,yqm
m )

or x1 =? f (yq1
1 , . . . ,yqm

m ). Each f -equation yields a Diophantine equation p1X1 + · · ·+ pnXn = q1Y1 +
· · ·+qmYm or respectively, X1 = q1Y1 + · · ·+qmYm where the Xi’s and Yi’s are non-negative Diophan-
tine variables. If an original variable is marked in some equation, the corresponding Diophantine
variable receives an upper-bound of 1. Also, we may be able to obtain an upper-bound from order-
sorting information, using the signature analysis technique in [12].

The general solution to a set of non-negative Diophantine equations is a set of basis elements
from which all solutions can be obtained by linear combination. Upper-bound information may
trivially eliminate some basis elements from consideration and can be used by the Diophantine
solver to terminate the search for basis elements early.

A fresh variable zk is allocated for each basis element αk and unifiers are formed by finding sets
of basis elements that satisfy certain properties and constructing assignments xi ← f (. . . ,z

αk,i
k , . . .)

where k ranges over the indices of the selected basis elements and αk,i is the value of Xi in the basis
element αk.

The criteria for choosing the sets of basis elements is the key difference between AC unification,
ACU unification, and restricted ACU unification. With AC unification, every selection of basis
elements whose sum yields a nonzero value for each Xi and Yi must be considered. With ACU
unification that requirement is lifted because of the availability of an identity element. The identity
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element also means that any assignment including basis element αk generalizes the same assignment
with αk removed by assigning the identity element to zk and thus there is a single most general
solution, formed by selecting all the basis elements.

In the case of restricted ACU unification, we may have upper-bounds on variables because they
are marked. In Maude, order-sorted considerations may place upper-bounds on variables, and may
also place a lower-bound of 1 on variables where the corresponding original variable has a sort that
cannot take the identity element. In order to find a complete set of unifiers we need to find all
maximal sets of basis elements whose sum satisfies the upper and lower-bounds on the variables.

Several explicit schemes for searching the subsets of basis elements were tried but the search
was typically the dominant cost for ACU unification, often rendering the solution of quite modest
unification problems impractical. In the current implementation this search is performed symbol-
ically using a Binary Decision Diagram (BDD) [3] based algorithm. A BDD variable is allocated
for each basis element, whose value, true or false, denotes whether the basis element is included in
the subset. A BDD, called legal, is constructed, which evaluates to true on exactly those valuations
that correspond to selections of basis elements that satisfy the upper- and lower-bound constraints
on each Diophantine variable. Enforcement of the upper-bounds on the sum is done using dynamic
programming and the BDD ite operation. Using the BDD legal, a second BDD, called maximal, is
constructed which is true on exactly those valuations where legal is true, and changing a false into a
true makes legal false. These valuations of the BDD variables and thus the subsets of basis elements
they encode are then recovered by tracing the paths from the root to the true terminal in maximal.
This method yielded a dramatic speed up (from hours to milliseconds) on problems of useful size.

Admissible Equational Theories. Maude 2.6 currently provides a built-in order-sorted Ax-unifica-
tion algorithm for all order-sorted theories (Σ,Ax) such that:

the order-sorted signature Σ is preregular modulo Ax (see [5, Section 3.8]);
the axioms Ax associated to function symbols are as follows:

there can be arbitrary function symbols and constants with no equational attributes;
the iter equational attribute1 can be declared for some unary symbols;
the comm or assoc comm or assoc comm id: attributes2 can be declared for some binary
function symbols, but then no other equational attributes must be given for such symbols.

Explicitly excluded are theories with binary function symbols having any combination of: (i) the
idem attribute3; (ii) the id:, left id:, or right id: attributes without assoc comm; or (iii) the
assoc attribute without comm.

3 Variants and Variant Generation

Variant generation for an equational theory (Σ,E ∪Ax) is defined modulo Ax using the order-sorted
Ax-unification procedure described in Section 2.

The equational theories that are admissible for variant generation are as follows. Let fmod
(Σ,Ax∪E) endfm be an order-sorted functional module where E is a set of equations specified with
the eq keyword, and Ax is a set of axioms such that (Σ,Ax) satisfies the restrictions of Section 2.
Furthermore, the equations E must satisfy the following extra conditions:

The equations E are unconditional and convergent, sort-decreasing and coherent modulo Ax.
An equation’s left-hand side cannot be a variable, and the owise feature is not allowed.

1 Maude provides a built-in mechanism called the iter (short for iterated operator) theory whose goal is to permit
the efficient input, output, and manipulation of very large stacks of a unary operator. See [6] for additional details.

2 The operator attribute assoc stands for associativity, comm for commutativity and id: for identity.
3 The operator attribute idem stands for idempotency.
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All equations must be variant-preserving [14], i.e., if two left-hand sides of E (possibly renamed)
overlap — i.e., there is a substitution θ s.t. (l1θ)|p =Ax l2θ , where p can be a variable or non-
variable position of l1 — then either:
1. l1θ does not have a pattern modulo Ax, i.e., for every term u s.t. u =Ax l1θ , u is reducible in

E modulo Ax below the root position, or
2. l1θ has a pattern modulo Ax, i.e., there is a term u s.t. u =Ax l1θ and u is reducible in E

modulo Ax only at the root position, but then the matching substitution is E,Ax-irreducible.
Variant-preservingness is necessary for an eager generation of variants; see [5] for details.
An equation’s right-hand side must be a strongly irreducible term, i.e., for any E,Ax-normalized
substitution σ , the term tσ is E,Ax-irreducible. A term containing only variables and non-
defined (constructor) symbols is strongly irreducible.

The above conditions ensure that (Σ,E ∪Ax) has the finite variant property. We refer the reader to
[14] for a detail explanation of variants and variant generation as well as for automated methods for
ensuring the finite variant property. Any rewrite theory mod (Σ,Ax∪E ∪G,R) endm where G is an
additional set of equations is also considered admissible for variant generation if the equational part
(Σ,Ax∪E) satisfies the conditions described above. Note that when an equational theory (Σ,Ax∪
E ∪G) is provided to Full Maude, each equation in E (used for variant computation) must include
the variant attribute.

Given a module ModId, Full Maude provides a variant generation command of the form:
(get variants [ in ModId : ] t .)

ACU-Coherence Completion. The convergence and sort-decreasingness of equational Maude spec-
ifications can be checked using Maude’s Church-Rosser Checker (CRC) [10] and Termination
Checker (MTT) [8]. For theories Ax that are combinations of associativity, commutativity, and
identity axioms, we can make any specification Ax-coherent by using a procedure which adds Ax-
extensions and always terminates (see [20], and [6, Section 4.8] for a more informal explanation).

The user modules are automatically completed for Ax-coherence when used for variant genera-
tion and variant-based unification (Section 4) and narrowing (Section 5). The user can access these
automatically completed user modules by invoking the command

(acu coherence completion [ <module-expr.> ] .)
where <module-expr.> is any module expression. If no module expression is given the default cur-
rent module is completed.

A corresponding acuCohComplete function is available at the metalevel of Maude.
op acuCohComplete : Module -> Module .

If no module expression is given, the default current module is used.

A Motivating Example. Consider, for example, the following Petri-net-like specification of a vend-
ing machine to buy apples (a) or cakes (c) with dollars ($) and/or quaters (q):

(mod VENDING-MACHINE is
sorts Coin Item Marking Money State . subsort Money Item < Marking .
op empty : -> Money . op <_> : Marking -> State . subsort Coin < Money .
op __ : Money Money -> Money [assoc comm id: empty] .
op __ : Marking Marking -> Marking [assoc comm id: empty] .
ops $ q : -> Coin . ops a c : -> Item . var M : Marking .
rl [buy-c] : < M $ > => < M c > .
rl [buy-a] : < M $ > => < M a q > .
eq [change]: q q q q = $ [variant] .

endm)

The equational theory underlying this rewrite theory contains two subsort-overloaded ACU symbols
and an equation q q q q = $ (for variant computation). Note that the module is not ACU-coherent.
It is automatically completed for coherence modulo ACU by replacing the change equation by the
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equation “eq [change-Ext]: M q q q q = M $ [variant] .". Note also that this equation
satisfies all the conditions above for admissible theories, especially strongly right irreducibility and
variant preservingness. We can get variants of a term as follows.

Maude> (get variants in VENDING-MACHINE : < $ q q X:Marking > .)
Variant 1
< $ q q X:Marking >, empty substitution
Variant 2
< $ $ #5:Marking >, X:Marking --> q q #5:Marking

These two variants represent a finite, complete, and maximal set of variants for the given term.
For instance, the variant

{< $ $ q q Y:Marking >, X:Marking --> q q q q Y:Marking}
is an instance of the first variant above, i.e., the canonical form < $ $ q q Y:Marking > is an
instance of the normal form < $ q q X:Marking > of the first variant, and the (normalized ver-
sion) of the instantiating substitution (X:Marking --> $ Y:Marking) is an instance of the empty
substitution of the first variant. Note that this variant is not an instance of the second variant above
because the substitution X:Marking --> q q q q Y:Marking is normalized before comparing it
with the substitution X:Marking --> q q #5:Marking of the second variant above.

The procedure for variant generation is also available at the metalevel of Maude thanks to the
getVariants function.

op getVariants : Module Term -> VariantFourSet .

Handling of Other Axioms. Variant generation and variant-based unification (Section 4) and nar-
rowing (Section 5) have also been extended to deal with any combination of associativity and/or
commutativity and/or identity axioms except associativity without commutativity. The general idea,
borrowed from [9], is to replace a specification (Σ,(Ax∪ Id)∪E) where Ax contains C, AC, or ACU
axioms and Id : maude− rta11.tex,v1.52011/04/0512 : 19 : 20schaussExp contains all other iden-
tity axioms, by a semantically equivalent specification (Σ,Ax∪ (~Id ∪ Ê)), where the Id : maude−
rta11.tex,v1.52011/04/0512 : 19 : 20schaussExp axioms have been oriented as rules, and the equa-
tions Ê are the ~Id,Ax-variants of the original equations E.

A command is available in Full Maude of the form:
(remove id attributes [ <module-expr.> ] .)

It shows the specified module with the identity attributes (id, right id, and left id) transformed
into rules and the equations Ê obtained using ~Id,Ax-variants.

A corresponding function removeIds is available at the metalevel of Maude.
op removeIds : Module -> Module .

If no module expression is given, the default current module is used.

4 Variant-based Equational Order-Sorted Unification

The intimate connection between E,Ax-variants and E ∪Ax-unification is as follows. Suppose that
we extend the equational theory (Σ,E ∪Ax) to (Σ̂, Ê ∪Ax) by adding to Σ a new sort Truth, not
related to any sort in Σ, with a constant tt, and for each top sort [s] of each connected component s,
an operator eq : [s] × [s]→ Truth; and where Ê extendes E by adding for each top sort [s] and x of
sort [s] an extra rule eq(x,x)→ tt. Then, given any two terms t, t ′, if θ is a (E,Ax)-unifier of t and t ′,
then the E,Ax-canonical forms of tθ and t ′θ must be Ax-equal and therefore the pair (tt,θ) must be
a variant of the term eq(t, t ′), i.e., eq(t, t ′)θ →! tt. Furthermore, if the term eq(t, t ′) has a finite set of
most general variants, then we are guaranteed that the set of most general (E,Ax)-unifiers of t and
t ′ is finite and subsumes (tt,θ).

Given a module ModId of the general form mod (Σ,Ax∪E ∪G,R) endm where (Σ,Ax∪E) satis-
fies the requirements of Section 3, Full Maude provides a command for E∪Ax-equational unification
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based on variant generation of the form:
(variant unify [ in ModId : ] t =? t ′ .)

Consider again the vending machine. We can ask whether there is an E ∪Ax-equational unifier
of two configurations, one containing a dollar and two quarters and another containing two quarters:

Maude> (variant unify in VENDING-MACHINE : < q q X:Marking > =? < $ Y:Marking > .)
Solution 1
X:Marking --> q q Y:Marking
Solution 2
X:Marking --> $ #12:Marking ; Y:Marking --> q q #12:Marking

There are no more general unifiers. For instance, X:Marking --> q q, Y:Marking --> empty is an
instance of the first solution by using the identity property of the operator for markings.

The procedure for variant-based equational unification is also available at the metalevel thanks
to the metaVariantUnify function.

op metaVariantUnify : Module Term Term -> SubstitutionSet .
A useful special case of the variant-based equational unification feature is that of Ax′-unification

for theories (Σ,Ax′) where: (i) Ax′ = Ax∪ Ids, (ii) (Σ,Ax) satisfies the requirements in Section 3,
and (iii) Ids is a collection of id:, left id:, right id: axioms. This case is handled by invoking
the variant unify command directly on (Σ,Ax′), since Full Maude first invokes the remove id
attributes transformation command described in Section 3.

5 Narrowing-based Symbolic Reachability Analysis

Narrowing [16] generalizes term rewriting by allowing free variables in terms and by performing
unification instead of matching. Likewise, narrowing modulo Ax∪E [18] generalizes rewriting with
rules R modulo Ax∪E. Given an order-sorted rewrite theory (Σ,Ax∪E,R), where R is a set of
unconditional rewrite rules such that the lefthand sides are non-variable terms and the rules are
explicitly Ax∪E-coherent [19], and (Σ,Ax∪E) is an equational theory such that a finitary Ax∪E-
unification procedure is available, the (R,Ax∪E)-narrowing relation is defined as t ;σ ,p,R,Ax∪E t ′

iff there is a non-variable position p of t, a (possibly renamed) rule l → r in R, and a unifier σ ∈
Unif Ax∪E(t|p, l) such that t ′ = σ(t[r]p).

The classical application of (R,Ax∪E)-narrowing is to perform R∪Ax∪E-unification when the
rules R are understood as equations. Indeed the variant-based equational order-sorted unification al-
gorithm of Section 4 is based on an E,Ax-narrowing strategy, called folding variant narrowing [14],
that terminates when E ∪Ax has the finite variant property [7], even though full E,Ax-narrowing
typically does not terminate when Ax contains AC axioms (see [7, 14]).

Instead, when the rules R are understood as transition rules, a completely different application
of R,Ax∪ E-narrowing is that of symbolic reachability analysis [19]. Specifically, we consider
transition systems specified by order-sorted rewrite theories of the form mod (Σ,Ax∪E,R) endm
where: (i) E ∪Ax satisfies the requirements of Section 3, and (ii) the transition rules R are E ∪Ax-
coherent and topmost (so that rewriting is always done at the top of the term). Then, narrowing
modulo E ∪Ax is a complete deductive method [19] for symbolic reachability analysis, that is, for
solving existential queries of the form ∃x : t(x)→∗ t ′(x) in the sense that the formula holds for
(Σ,Ax∪E,R) iff there is a narrowing sequence t ;∗R,E∪Ax u such that u and t ′ have a E ∪Ax-unifier.

This symbolic reachability analysis is supported by Full Maude’s search command, which has
the form:

(search [ [n,m] ] [ in ModId : ] t1 SearchArrow t2 .)
where: n and m are optional arguments providing, respectively, a bound on the number of desired
solutions and the maximum depth of the search; ModId is the module where the search takes place;
t1 is the starting non-variable term, which may contain variables; t2 is the term specifying the pattern
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that has to be reached, with variables, some of which possibly shared with t1; and SearchArrow is an
arrow indicating the form of the narrowing proof from t1 until t2, where ~>1 indicates a narrowing
proof consisting of exactly one step; ~>+ indicates a proof of one or more steps; ~>* indicates a proof
of none, one, or more steps; and ~>! indicates that the reached term cannot be further narrowed. This
narrowing-based search command was already introduced in [4] but now can be performed modulo
theories with the finite variant property.

Consider again the vending machine of Section 3. We can use the narrowing search command
to answer the question: Is there any combination of one or more coins that returns exactly an apple
and a cake? This can be done by searching for states that are reachable from a term < M:Money >
and match the desired pattern at the end.

Maude> (search [1] in VENDING-MACHINE : < M:Money > ~>* < a c > .)
Solution 1
M:Money --> $ q q q

Note that we must restrict the search to just one solution, because narrowing does not terminate for
this reachability problem even though the above solution is indeed the only solution.

Narrowing-based reachability analysis is also available at the metalevel by using the following
metaNarrowSearch function.

op metaNarrowSearch :
Module Term Term Substitution Qid Bound Bound Bound -> ResultTripleSet .

If a non-identity substitution is provided in the fourth argument, then any computed substitution must
be an instance of the provided one, i.e., we can restrict the computed narrowing sequences to some
concrete shape. The Qid metarepresents the appropriate search arrow, similar to the metaSearch
command (see [5, Section 11.4.6]). For the bounds, the first one is the number of computed solutions,
the second one is the maximum length of the narrowing sequences, i.e., the depth of the narrowing
tree, and the third one is the chosen solution (in order to provide all solutions in a sequential way, as
many meta-level commands in Maude do).

Full Maude’s search command also supports a more general form of symbolic reachability
analysis that uses narrowing with simplification. We can allow more general rewrite theories of the
form mod (Σ,Ax∪E∪G,R) endm where: (i) E∪Ax satisfies the requirements of Section 3, (ii) G is an
additional set of equations, and (iii) the rules R are E∪Ax∪G-coherent and topmost. The remaining
equations G are now used in the combined relation ;R,E∪Ax;→!

E∪G,Ax. Note that this combined
relation may be incomplete, i.e., given a reachability problem of the form ∃x : t(x)→∗ t ′(x) and a
solution σ (i.e., σ(t)→∗R,E∪Ax∪G σ(t ′)), the relation ;R,E∪Ax;→!

E∪G,Ax may not be able to find a
solution more general than σ .

6 Applications

The key usefulness of the new variant unify feature is to greatly extend the range of theories
for which a unification algorithm can be provided by Maude. The key distinction is one between
dedicated algorithms for a given theory, and generic algorithms such as folding variant narrowing
which can be applied to a wide range of user-defined theories. As explained in this paper, Maude 2.6
has a dedicated algorithm supporting order-sorted unification modulo axioms Ax which may contain
C, AC, and ACU axioms. The variant unify feature then allows us to automatically derive a
finitary unification algorithm for any theory E ∪Ax such that satisfies the requirements in Section 3
and therefore enjoys the finite variant property. In particular, as shown in [7], a good number of
cryptographic theories of practical interest satisfy the finite variant property modulo axioms such as
AC or /0.

Support for variant-based unification can therefore be exploited by cryptographic protocol anal-
ysis tools performing symbolic reachability analysis. Such protocols can be modeled as rewrite



Durán, Eker, Escobar, Meseguer, and Talcott 39

theories (Σ,E ∪Ax,R), where the algebraic properties of the cryptographic functions are specified
by equations E ∪Ax, and the protocol’s transition rules are specified by the rewrite rules R. Thus the
narrowing search feature modulo a theory E ∪Ax satisfying the finite variant property is a feature
which, by being available also at the metalevel, can be the basis of a protocol analysis tool perform-
ing reachability analysis for protocol verification. This is exactly the approach that has been followed
for analyzing cryptographic protocols modulo algebraic properties in the Maude-NPA tool [13, 21],
which has been able to analyze a substantial collection of cryptographic protocols modulo their alge-
braic properties. With the metaNarrowSearch operator, this same functionality becomes now avail-
able to other protocol analysis tools. As an example, business processes can be similarly analyzed
to check for violations. The Document Logic Analysis tool [17] represents document processing
protocols as theories in rewriting logic and uses symbolic reachability analysis in Maude to look for
forgeries and invalid signatures.

The usefulness of variants and variant generation goes beyond the availability of finitary uni-
fication algorithms and symbolic reachability analysis for cryptographic protocols and for other
concurrent systems. As demonstrated by its recent applications to termination algorithms modulo
axioms in [9], and to algorithms for checking confluence and coherence of rewrite theories modulo
axioms, such as those used in the most recent Maude CRC and ChC tools [10, 11], computing the
E,Ax-variants of a term may be just as important as computing E ∪Ax-unifiers. The key idea is the
following. Suppose that R is a collection of rewrite rules modulo axioms Ax for which we want to
prove, say, termination, or confluence. We may not have any tools for checking such properties that
can work modulo the given set of axioms Ax. However, we can decompose Ax as a disjoint union
E ∪Ax′, where E is convergent, sort-decreasing and coherent modulo Ax′, and where we have meth-
ods to prove, e.g., termination or confluence modulo Ax′. As shown in [9], we can transform R,Ax
into a semantically equivalent theory R̂∪E,Ax′, where R̂ specializes each rule in R to the family of
E,Ax′-variants of their lefthand sides. If E ∪Ax′ has the finite variant property, we are sure that R̂
will be a finite set; but in practice R̂ can often be finite without such a property. For example, Ax
can be the theory A of associativity, for which unification is not even finitary, yet in an order-sorted
setting A can often be added as a rule so that R̂ is finite in practice. We refer to [9, 10, 11] for details.
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