
Left-linear Bounded TRSs are Inverse
Recognizability Preserving
Irène Durand and Marc Sylvestre

LaBRI, Université Bordeaux 1
351 Cours de la libération, F-33405 Talence cedex, France

Abstract
Bounded rewriting for linear term rewriting systems has been defined in (I. Durand, G. Sén-
izergues, M. Sylvestre. Termination of linear bounded term rewriting systems. Proceedings of
the 21st International Conference on Rewriting Techniques and Applications) as a restriction
of the usual notion of rewriting. We extend here this notion to the whole class of left-linear
term rewriting systems, and we show that bounded rewriting is effectively inverse-recognizability
preserving. The bounded class (BO) is, by definition, the set of left-linear systems for which
every derivation can be replaced by a bottom-up derivation. The class BO contains (strictly)
several classes of systems which were already known to be inverse-recognizability preserving: the
left-linear growing systems, and the inverse right-linear finite-path overlapping systems.

1998 ACM Subject Classification Primary: F.4.2, Secondary: F.3.2, F.4.1

Keywords and phrases Term Rewriting, Preservation of Recognizability, Rewriting Strategies

Digital Object Identifier 10.4230/LIPIcs.RTA.2011.361

Category Regular Research Paper

1 Introduction

General framework. A term rewriting system (TRS) R is effectively recognizability preserving
(respectively inverse recognizability preserving) if for every recognizable set of terms T the
set [T](→∗R) = {s | ∃t ∈ T, t→∗R s} (resp. (→∗R)[T] = {s | ∃t ∈ T, s→∗R t}) is recognizable
and can be built. Many efforts have been made for finding subclasses of TRSs which are
(inverse) recognizability preserving. The identification of such subclasses is important and
has applications in equational reasoning, formal computation, automated deduction, and
verification. For example, the reachability problem which is central in these areas, particularly
in verification, is decidable for these classes of TRSs. The techniques used to prove reachability
are often based on the computation of [E](→∗R) for some set E, and are coming from the
Knuth and Bendix completion algorithm (see [14] for the seminal paper). An entire workshop
is devoted to the reachability problem: the Workshop on Reachability Problem (RP). Each
result of recognizability preservation yields also almost directly a new decidable call-by-need
class [4] and decidability results on confluence (see [1] or [7] for a survey) and joinability.
This notion has also been used to prove termination of systems for which none of the already
known termination techniques work [10]. Different techniques for proving termination have
been implemented in several softwares (Matchbox [24], AProVE [11], TORPA [25], CiME
[3]). Consequently, the seek of a class which preserves the recognizability is well motivated.
Many such classes have been defined by imposing syntactical restrictions on the rewrite rules
(e.g. growing TRSs [16, 12] and finite-path overlapping TRSs [20, 21]). Another way is to use
a strategy, i.e. restrictions on the derivations rather than on the rules, to ensure preservation
of recognizability. Various such strategies where studied in [8, 17, 19, 5, 6]. In this paper,

© Irène Durand and Marc Sylvestre;
licensed under Creative Commons License NC-ND

22nd International Conference on Rewriting Techniques and Applications (RTA’11).
Editor: M. Schmidt-Schauß; pp. 361–376

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.RTA.2011.361
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

362 Left-linear Bounded TRSs are Inverse Recognizability Preserving

we extend the bounded rewriting for linear TRSs to left-linear TRSs that may have non
right-linear rules and we prove that this strategy is inverse recognizability preserving.
From linear TRSs to left-linear TRSs. Bounded rewriting for linear TRSs is essentially a new
version of bottom-up rewriting [5] that is easier to define and has better properties. The
reader may refer to [6] for more details on bounded rewriting for linear TRSs. Intuitively, for
a linear TRS R, a derivation is k-bounded (lbo(k)) if when a rule is applied, the parts of the
substitution located at a depth greater than k are not rewritten further in the derivation,
i.e. do not match the left-handside of a rule applied further. A linear TRS R is lbo(k) if
for any derivation s →∗R t there exists a lbo(k) derivation s k→∗R t. The class of linear
lbo(k) TRSs is denoted by LBO(k). One of the goals of this paper is to drop the right-linear
restriction and propose an extension of bounded rewriting to left-linear TRSs. This extension
cannot be the trivial one: even if nothing in the definition of LBO(k) TRSs requires the linear
condition, keeping this definition unchanged would define a class containing only linear TRSs
(see example 4.14).

To solve this problem, we introduce a binary symbol E and a set E of three rewrite
rules to handle this symbol: the introduction rule x → E(x, x), and two selection rules
E(x, y) → x and E(x, y) → y. Intuitively, E allows to store several descendants of the
same initial subterm. Let R be a left-linear TRS over a signature F . Roughly speaking,
a derivation in R∪ E is k-bounded if when a rule is applied, the parts of the substitution
located at a depth greater than k (without taking the E into consideration) are not rewritten
further in the derivation, i.e. do not match the left-handside of a rule of R applied further.
A derivation in s→∗R t is k-bounded convertible (boc(k)) if there exists a bo(k)-derivation
from s to t in R∪ E . Note that this definition does not constrain the application of the rules
of E . A TRS is bo(k) if every derivation is boc(k).

The class of bo(k) TRSs is denoted by BO(k). Let us see how we use the symbol E.
Suppose that f(a)→f(x)→g(x,x) g(a, a)→a→b g(a, b). The symbol E is used to apply the rule
a→ b before the rule f(x)→ g(x, x). First, we use E to create an envelop which contains a
and b: f(a)→x→E(x,x) f(E(a, a))→a→b f(E(a, b)). Then we can apply the rule f(x)→ g(x, x),
and use the selections rules to obtain g(a, b): f(E(a, b)) → g(E(a, b), E(a, b)) →E(x,y)→x
g(a, E(a, b)) →E(x,y)→y g(a, b). The introduction of the symbol E can be viewed as a
counterpart of the construction of the powerset automaton in the extension of Jacquemard’s
saturation method [12] by Nagaya and Toyama [16] (this saturation method is used to prove
that left-linear growing TRSs are inverse recognizability preserving).
Inverse recognizability preservation. In section 5, we prove that bounded rewriting for
left-linear TRSs is effectively inverse recognizability preserving. This result is obtained by
simulating bo(k)-derivations by a ground tree transducer. The idea of simulating bo(k)-
derivations is similar to the idea developed in [5] where bottom-up(k) derivations are simulated
using a ground TRS. This simulation yields directly to the inverse preservation result since
GTTs are effectively inverse recognizability preserving.
Strongly bounded systems. In section 6, we introduce a subclass of BO(k) called the strongly
bounded class (SBO(k)). The membership problem for SBO(k) is decidable whereas the
membership problem for BO(0) is undecidable. The class of strongly bounded TRSs contains
inverse right-linear finite-path overlapping TRSs [22] and left-linear growing TRSs [16]. Note
that a long version of this paper is available at: http://hal.archives-ouvertes.fr/
hal-00580528/fr/.

http://hal.archives-ouvertes.fr/hal-00580528/fr/
http://hal.archives-ouvertes.fr/hal-00580528/fr/

Irène Durand and Marc Sylvestre 363

2 Preliminaries

Given a set E, we denote by P(E) its powerset i.e. the set of all its subsets. Its cardinality is
denoted by Card(E). A finite word over an alphabet A is a map u : [0, `− 1]→ A, for some
` ∈ N. The integer ` is the length of the word u and is denoted by |u|. The set of words over A
is denoted by A∗ and endowed with the usual concatenation operation u, v ∈ A∗ 7→ u ·v ∈ A∗.
The empty word is denoted by ε.

Assume that the set A is ordered. We denote by �LexA the lexicographic order on the
set of words A∗. We may omit LexA when it is clear from the context. We assume the
reader familiar with terms and automata (see e.g. [2] or [23] for an introduction). We call
signature a set F of symbols with arity ar : F → N. The subset of symbols with arity m ∈ N
is denoted by Fm.

As usual, a finite set P ⊆ N∗ is called a tree-domain (or, domain, for short) iff for every
u ∈ N∗, i ∈ N (u · i ∈ P ⇒ u ∈ P) & (u · (i+1) ∈ P ⇒ u · i ∈ P). We call P ′ ⊆ P a subdomain
of P iff, P ′ is a domain and, for every u ∈ P, i ∈ N (u·i ∈ P ′ & u·(i+1) ∈ P)⇒ u·(i+1) ∈ P ′.

A (first-order) term on a signature F is a partial map t : N∗ → F whose domain is a
non-empty tree-domain and which respects the arity assignment. We denote by T (F ,V)
the set of first-order terms over the signature F ∪ V, where F is a signature and V is a
denumerable set of variables of arity 0.

The domain of t is also called its set of positions and denoted by Pos(t). The set of
variables of t is denoted by Var(t). A variable x is said to occur at depth n in t if there exists a
position u ∈ Pos(t) such that t(u) = x and |u| = n. The root symbol of t is denoted by root(t).
Given a set of symbols and variables A ⊆ F ∪V and a term t, the set of positions u ∈ Pos(t)
such that t(u) ∈ A is denoted by PosA(t) and the set of position u ∈ Pos(t) such that
t(u) /∈ A is denoted by Pos\A(t). Let X be either A or \A and u ∈ PosX(t). We denote by
PosX�u(t) (respectively PosX≺u(t)) the set of positions v ∈ PosX(t) such that v � u (resp.
v ≺ u) and by PosX�u(t) (respectively PosX�u(t)) the set of positions v ∈ PosX(t) such that
v � u (resp. v � u). When A = {f} for some f ∈ F ∪V we may denote Posf (t) (respectively
Pos\f (t)) instead of Pos{f}(t) (resp. Pos\{f}(t)). A substitution σ is a mapping from V into
T (F ,V). The substitution σ is naturally extended to a morphism σ : T (F ,V)→ T (F ,V),
where σ(f(t1, .., tn)) = f(σ(t1), . . . , σ(tn)), for each f ∈ Fn, ti ∈ T (F ,V). Substitutions will
often be used in postfix notation: tσ is the result of applying σ to the term t. The depth
of a term t is defined by dpt(t) := sup{Card(Pos�u(t)) | u ∈ Pos\V(t)}. This definition is
extended to substitutions dpt(σ) := max{dpt(xσ) | x ∈ V}. For a term t and a symbol f ∈ F ,
we define dpt\f (t) by: dpt\f (t) := sup{Card(Pos\f �u(t)) |u ∈ Pos\{f}∪V(t)}. This definition
is extended to substitutions dpt\f (σ) := max{dpt\f (xσ) | x ∈ V}. The set of leaves of t is the
set PosV∪F0(t) and is also denoted by Lv(t). For a variable x ∈ Var(t), the set of positions
Posx(t) is also denoted by Pos(t, x). Let w ∈ Lv(t). The branch containing w is the set of
positions u such that u � w.

Given a term t and u ∈ Pos(t) the subterm of t at u is denoted by t/u and defined by
Pos(t/u) = {w | uw ∈ Pos(t)} and ∀w ∈ Pos(t/u), t/u(w) = t(uw).

A term that does not contain twice the same variable is called linear. Given a linear term
t ∈ T (F ,V), x ∈ Var(t), we denote by pos(t, x) the position of x in t.

A term containing no variable is called ground. The set of ground terms is abbreviated
to T (F) or T whenever F is understood.

We denote by C[t1, . . . , tn]u1,...,un the term obtained from C[]u1,...,un by replacing, for
every i ∈ {1, . . . , n}, the symbol � at position ui by the term ti. Let t be a term, and
{u1, . . . , un} ⊂ Pos(t) be a set of incomparable positions given in lexicographic order. We

RTA’11

364 Left-linear Bounded TRSs are Inverse Recognizability Preserving

denote by t[]u1,...,um the context obtained from t by replacing each subterm t/ui at a position
ui by a leaf labeled by �.

A rewrite rule over the signature F is a pair l→ r of terms in T (F ,V).
We call l (resp. r) the left-handside (resp. right-handside) of the rule (lhs and rhs for

short). A rule is linear if both its left and right-handsides are linear. A rule is left-linear if
its left-handside is linear.

A term rewriting system (TRS for short) is a pair (F ,R) where F is a signature and R a
finite set of rewrite rules over the signature F . When F is clear from the context or contains
exactly the symbols of R, we may omit F and write simply R.

We denote by LHS(R) the set of lhs of R, and by RHS(R) the set of rhs of R.
Rewriting is defined as usual: for every s, t ∈ T (F), s →R t means that there exist

a position v ∈ Pos(s), a rule l → r ∈ R, and a substitution σ such that s = s[lσ]v and
t = s[rσ]v.

We denote by →+
R the transitive closure of →, by →0,1

R its reflexive closure, and by →∗R
its reflexive and transitive closure. We may omit R when it is clear from the context. We
say that there exists a derivation from s to t in R when s→∗R t. The length of a derivation
is the number of steps in this derivation. An n-step derivation from s to t is denoted by
s→n t. More generally, the notation defined in [13] will be used in proofs.

A TRS is linear (resp. left-linear) if each of its rules is linear (resp. left-linear). A TRS
R is growing [12] if every variable of a right-handside occurs at depth at most 1 in the
corresponding left-handside.

We shall consider finite bottom-up term (tree) automata [2] (which we abbreviate to
f.t.a.). An automaton A is given by a 4-tuple (F ,Q,Qf ,Γ) where F is a signature, Q is a
finite set of symbols of arity 0, called the set of states and such that Q ∩ F0 = ∅, Qf ⊆ Q is
the set of final states, Γ is the set of transitions. A transition has either the form q → r for
some q, r ∈ Q, or f(q1, . . . , qm)→ q for some m ≥ 0, f ∈ Fm, q1, . . . , qm ∈ Q. Note that we
can have rules of the form c→ q with c ∈ F0, and q ∈ Q. We shall also consider automaton
on a denumerable signature. Such an automaton is given by a 4-tuple (F ,Q,Qf ,Γ) where F
is a denumerable signature, Q is a finite set of symbols of arity 0, Qf ⊆ Q is the set of final
states, and Γ is an denumerable set of transitions.

The set of rules Γ can be viewed as a TRS over the signature F ∪ Q. We then denote
by →A the one-step rewriting relation generated by Γ. Given an automaton A, the set of
terms accepted by A is defined by: L(A) := {t ∈ T (F) | ∃q ∈ Qf , t→∗A q}. A set of terms T
is recognizable if there exists a term automaton A such that T = L(A). The automaton A is
called deterministic if there is no rule of the form q → r for some q, r ∈ Q and if for every
t ∈ T (F ∪ Q), q, q′ ∈ Q, (t → q ∈ Γ & t → q′ ∈ Γ) ⇒ (q = q′). The automaton A is called
complete if for every m ≥ 0, f ∈ Fm and m-tuple of states (q1, . . . , qm) ∈ Qm, there exists
q ∈ Q such that f(q1, . . . , qm)→ q ∈ Γ.

Ground tree transducers have been introduced in [15]. A ground tree transducer (GTT)
is a pair V := (A1,A2) of f.t.a. automata over a signature F . Let A1 = (F ,Q1, ∅,Γ1),
A2 = (F ,Q2, ∅,Γ2). The relation recognized by V is the set L(V) := {(t, t′) | t, t′ ∈
T (F),∃s ∈ T (F ∪ (Q1 ∩ Q2)), t →∗A1

s, t′ →∗A2
s}. A set T ⊆ T (F) × T (F) is said to

be recognizable by a GTT if there exists a GTT V such that T = L(V). The reflexive and
transitive closure of the relation L(V) is recognizable by a GTT (see e.g. chapter 3.2 of [2]).

A ground recognizable TRS (GRS) (F ,G) is a (possibly infinite) TRS of the form G =
{l→ r | i ∈ I, l ∈ Ri, r ∈ Ki}, where I is a finite set, Ri and Ki for all i ∈ I are recognizable
sets of terms over F . One can easily check that the relation →∗G is recognizable by a GTT.

Given a TRS R and a set of terms T , we define (→∗R)[T] := {s ∈ T (F) | ∃t ∈ T, s→∗R t}

Irène Durand and Marc Sylvestre 365

and [T](→∗R) := {s ∈ T (F) | ∃t ∈ T, t →∗R s}. A TRS R is effectively recognizability
preserving if for every recognizable T , [T](→∗R) is recognizable and can be built. A TRS
R is effectively inverse recognizability preserving if for every recognizable T , (→∗R)[T] is
recognizable and can be built.

We shall illustrate many of our definitions with the following left-linear TRS (F1,R1)
and the following complete deterministic automaton A1.

I Example 2.1. F1 = {a, b, f(), h(), g(,), i(,)} is a signature, {x, y} is a set of variables,
R1 = {a → b, f(x) → g(x, x), h(b) → b, g(h(x), y) → i(x, y)} is a set of rules, A1 =
(F ,QA1 , {qf},ΓA1) with QA1 = {qf , qa, qb q⊥}, ΓA1 = {a→ qa, b→ qb, h(qa)→ qa, h(qb)→
qb, h(q⊥) → q⊥, i(qa, qb) → qf} ∪{f(q) → q⊥ | q ∈ QA1} ∪ {g(q, q′) → q⊥ | q, q′ ∈ QA1}
∪{i(q, q′)→ q⊥ | q, q′ ∈ QA1 , (q, q′) 6= (qa, qb)} is a complete deterministic automaton. We
have:
L(A1) = {i(t1, t2) | t1 ∈ {a, h(a), . . . , h(h(. . . (a))), . . .}, t2 ∈ {b, h(b), . . . , h(h(. . . (b))), . . .}}
and
(→∗R1

)(L(A1)) = {i(t1, t2), g(h(t1), t2), f(h(t1)) | t1 ∈ {a, h(a), . . . , h(h(. . . (a))), . . .},
t2 ∈ {a, h(a), . . . , h(h(. . . (a))), . . .} ∪ {b, h(b), . . . , h(h(. . . (b))), . . .}}.

3 The TRS E

From now on, until the end of this paper, we denote by F a finite signature, and by R a
left-linear TRS over F . Let E /∈ F be a fresh symbol of arity 2.

I Definition 3.1. Let x, y ∈ V . The left-linear TRS E is the TRS over F ∪{E} with the rules

x→ E(x, x) (1) E(x, y)→ x and E(x, y)→ y (2)

Rule (1) is the introduction rule. Rules (2) are the selection rules. Note that the TRS R∪ E
is left-linear. This TRS will be used to define bounded rewriting (section 4) and has the
following property.

I Proposition 3.2. Let s, t ∈ T (F). We have s→∗R t iff s→∗R∪E t.

4 Bounded Rewriting

Roughly speaking, a derivation in R ∪ E is k-bounded (bo(k)) if when a rule is applied,
the parts of the substitution located at a depth greater than k (without taking the E into
consideration) do not match a left-handside of a rule of R applied further. To indicate which
positions are allowed to be rewritten further, we are going to apply a marking process. A mark
is an integer. A marked term t is just a term t where all the symbols are marked. To every
derivation s0 →R∪E . . .→R∪E sn, we associate a marked derivation s0 ◦→R∪E . . . ◦→R∪E sn
(i.e. a derivation where all terms are marked terms). This derivation starts on the term s0
which is obtained from s0 by setting all the marks to 0. Now, if we consider a marked term
sj in this derivation, a mark i on a symbol f in sj indicates that the maximal depth (again,
without taking the E into consideration) at which the symbol appears in a substitution
during the derivation s0 →∗R∪E sj is i. The derivation will be said bo(k) if the maximal mark
that appears on a lhs in the marked derivation s0 ◦→R∪E . . . ◦→R∪E sn is ≤ k. Formal
definitions are given in the next sections.

RTA’11

366 Left-linear Bounded TRSs are Inverse Recognizability Preserving

4.1 Marked Terms
We define the signature of marked symbols: FN := {f i | i ∈ N, f ∈ F}. The operation
m() returns the mark of a marked symbol: for f ∈ F , i ∈ N,m(f i) = i. We extend this
operation to the symbol E: m(E) = 0, and to variables: ∀x ∈ V,m(x) = 0. We define F≤k
by F≤k := {f i | i ∈ {0, . . . , k}, f ∈ F} and by F≥k the signature F≥k := {f i | i ≥ k, f ∈ F}.
Marked terms are elements of TM (V) := T (FN ∪ {E},V). The set of ground marked terms
is denoted by TM . The operation m extends to marked terms: if t ∈ V, m(t) = 0, otherwise,
m(t) = m(root(t)). We use mmax(t) to denote the maximal mark on t. We denote by ti
the term obtained by setting all the marks in t at a position u ∈ PosF (t) to i. We extend
this notation to sets of terms (Si := {si|s ∈ S}), and to substitutions (σi : x→ (xσ)i). For
every f ∈ F , we identify f0 and f ; it follows that T (F) ⊆ T (FN), and T (F ∪ {E}) ⊆ TM .
We usually denote by t (or t̂) a marked term such that t0 = t (where t ∈ T (FN ∪ {E},V)).
The same rule will apply to substitutions and contexts. For a set of terms T ⊆ T (F ,V), we
denote by TN the set of terms {t ∈ TM | t ∈ T}.

I Example 4.1. m(f3(E(a4, b1))) = 3,m(x) = 0,m(E(a1, b2)) = 0,mmax(f3(E(a4, b1))) =
4,mmax(E(a1, b2)) = 2, and if t = g3(a0, E(x, b2)), then t1 = g1(a1, E(x, b1)).

From now on and until the end of section 5, let us fix, a language T ⊆ T (F) recognized
by a complete deterministic automaton, A = (F ,QA,Qf,A,ΓA).

We start giving some technical definitions and lemmas.

The Automaton AP
I Definition 4.2. We denote by A the (infinite) automaton A := (FN,QA,Qf,A,ΓA), with:
ΓA = {f i(q1, . . . , qn)→ q | i ∈ N, (f(q1, . . . , qn)→ q) ∈ ΓA}.

Note that A is deterministic and complete over FN, and contains all the rules ci → q for
i ∈ N, c ∈ F0, (c→ q) ∈ ΓA.

I Lemma 4.3. Let t, t̂ ∈ T (FN), q ∈ QA,m > 0. If t→∗A q then t̂→∗A q.

I Definition 4.4. We define the (infinite) automaton AP := {FN ∪ {E},QP ,Qf,P ,ΓP}
built from A, where QP = P(QA), Qf,P = {{q} | q ∈ Qf,A}, ΓP = {E(S1, S2) → S1 ∪
S2 | S1, S2 ∈ QP} ∪ {f i(S1, . . . , Sn) → Sfi(S1,...,Sn) | i ∈ N, f ∈ Fn, S1, . . . , Sn ∈ QP} with
Sfi(S1,...,Sn) = {q ∈ QA | ∀j ∈ {1, . . . , n},∃sj ∈ Sj s.t. f i(s1, . . . , sn)→ q ∈ ΓA}

Note that subsets rules are obtained like in a classical determinization procedure AP contains
all the rules ci → {q} for c ∈ F0, i ∈ N, c → q ∈ ΓA, and that AP is deterministic and
complete over FN ∪ {E}. The language recognized by AP is L(AP) = TN. For every term
t ∈ T (FN ∪ {E} ∪ QP), there is a unique state Q ∈ QP such that t →AP Q. The state Q
is the normal form associated to t and is denoted by nfAP (t). Since AP erases the marks
nfAP (t) = nfAP (t). We extend the operation m to T (FN∪QP ∪{E},V) by setting m(S) = 0.
For a term t ∈ T (FN ∪QP ∪ {E},V), and an integer i we denote by ti the term obtained by
setting all the marks in t at a position u ∈ PosF (t) to i, and we usually denote by t or t̂ a
term such that t0 = t (where t ∈ T (F ∪QP ∪ {E},V)).

I Example 4.5. Let us consider the automaton A1 from example 2.1. The following rules
belong to the set of rules of A1P : E({qa}, {qb}) → {qa, qb}, a3 → {qa}, h2({qa, q⊥}) →
{qa, q⊥}, i1({qa, qb}, {qb})→ {q⊥, qf},

E({qa, qf}, {qb, qa})→ {qa, qb, qf}, g4({qa}, {qb})→ {q⊥}.

Irène Durand and Marc Sylvestre 367

I Definition 4.6. We denote by A+
P the automaton (FN ∪ {E},QP ,Qf,P ,Γ+

P), where Γ+
P =

ΓP ∪ {S → S′ | S ∈ QP , S′ ⊂ S}.

The language recognized by the automaton A+
P is L(A+

P) = (→∗{E(x,y)→x,E(x,y)→y})[TN].

I Definition 4.7. For an automaton C = (FN ∪ {E},QC ,QC,f ,ΓC) and for every n ∈ N, we
denote by C≤n (respectively C≥n) the (finite) automaton C≤n := (F≤n∪{E},QC ,QC,f ,ΓC≤n)
(resp. C≥n := (F≥n ∪ {E},QC ,QC,f ,ΓC≥n)) where ΓC≤n := {l → r ∈ ΓC | l, r ∈ T (F≤n ∪
{E} ∪ QC)} (resp. ΓC≥n := {l→ r ∈ ΓC | l, r ∈ T (F≥n ∪ {E} ∪ QC)}).

The automaton A+
P
≥k+1 will be used to define the top of a marked term, i.e. the top part of

the term that could be used in a k-bounded derivation (see definition 5.3 given further). The
automaton A+

P
≤k will be a part of the GRS G used to simulate k-bounded derivations (see

definition 5.14).

I Definition 4.8. For all linear terms t ∈ T (FN ∪ {E} ∪ QP ,V), for all n ∈ N, we define
t� n as the unique marked term such that (t� n)0 = t, and, ∀u ∈ PosF (t), m(t� n/u) =
max(m(t/u),Card(Pos\E≺u(t)) + n)

4.2 Marked Rewriting
From now on and until the end of this paper, let us fix an integer k > 0. We introduce here
the rewrite relation ◦→ between marked terms.

I Definition 4.9 (Marked rewriting step). A ground marked term s ∈ TM rewrites to a ground
marked term t ∈ TM in R∪ E if there exist a rule l → r ∈ R ∪ E , a position v ∈ Pos(s), a
marked term l, and a marked substitution σ such that : s = s[lσ]v, t = s[r(σ � j)]v, where:
j = 0, if l→ r ∈ E , and j = 1, if l→ r ∈ R. We then just write s ◦→R∪E t.

We may omit R∪E when it is clear from the context. We use two different marking (j = 0 or
j = 1) depending on the rule applied only to properly extend the notion of weakly bottom-up
for linear TRSs (defined in [5]) to left-linear TRSs (see section 6). This notion is helpful to
prove that several already known classes of TRSs belong to the class of bounded TRSs. Let
us give some properties of marked derivations.

Associated Marked Derivation

Every derivation
d : s0 = s0[l0σ0]v0 →R∪E s0[r0σ0]v0 = s1 →R∪E . . .→R∪E sn−1[rn−1σn−1]vn−1 = sn,

is mapped to a marked derivation d called the marked derivation associated to d
d : s0 = s0[l0σ0]v0 ◦→R∪E s0[r0(σ0 � i0)]v0 = s1 ◦→R∪E
. . . ◦→R∪E sn−1[rn−1(σn−1 � in−1)]vn−1 = sn
where s0 = s0. Note that this map is unique since the position vj , the rule (lj , rj), and sj
completely determine sj+1.

4.3 Bounded Derivations and Bounded TRSs
I Definition 4.10 (Bounded derivations). A marked rewriting step s = s[lσ]v ◦→R∪E t =
s[r(σ � j)]v is k-bounded (bo(k)) if l → r ∈ E or if l → r ∈ R and the following assertion
holds: (l /∈ V ⇒ mmax(l) ≤ k) and (l ∈ V ⇒ sup({m(s/u) | u ≺ v}) ≤ k).
A marked derivation in R ∪ E is bo(k) if all its rewriting steps are bo(k). A derivation in
R∪ E is bo(k) if the associated marked derivation is bo(k). A derivation s→∗R t, s, t ∈ T (F)

RTA’11

368 Left-linear Bounded TRSs are Inverse Recognizability Preserving

is k-bounded convertible (boc(k)) if there exists a bo(k)-derivation s→∗R∪E t in R∪ E . The
left-linear TRS R is k-bounded if every derivation in R is boc(k). We denote by BO(k) the
class of k-bounded TRS and by BO the class

⋃
k∈N BO(k).

I Example 4.11. Let R1 be the TRS of example 2.1, and let
d : s0 = f(h(a)) →f(x)→g(x,x) s1 = g(h(a), h(a)) →a→b s2 = g(h(a), h(b)) →g(h(x),y)→i(x,y)
s3 = i(a, h(b))→h(b)→b s4 = i(a, b) be a derivation in R1. Let us prove that this derivation is
boc(1), i.e. that there is a derivation d′ in R1 ∪ E which is bo(1).

Let us take d′ = d. We are going to prove that this derivation is bo(2) but not bo(1), i.e.
that in the associated marked derivation, the maximal mark that appears on a lhs is 2
By definition, d starts on the term f0(h0(a0)). To build the associated marked derivation,
we just apply the marking process exposed in section 4.2. We obtain the following
derivation d : s0 = f0(h0(a0)) ◦→ s1 = g0(h1(a2), h1(a2)) ◦→ s2 = g0(h1(a2), h1(b0))
◦→ s3 = i0(a2, h1(b2)) ◦→ s4 = i0(a2, b0). We now look at the marks that appear on a
lhs during this derivation. The lhs are f0, a2, g0(h1(x), y), and h1(b2), and the maximal
mark that appears on the lhs is 2. Thus, we have proved that d is boc(2), but we want to
prove that d is boc(1).
To obtain a derivation d′ which is bo(1), we apply the rules going from the bottom to
the top. We apply the rules in this order: a → b, h(b) → b, then f(x) → g(x, x) and,
to finish g(h(x), y)→ i(x, y). Since the rule f(x)→ g(x, x) is not linear and duplicates
the variable x we need to use the symbol E to apply the rules in the correct order. We
introduce an E just above a and then apply the rule a→ b:
f0(h0(a0))→x→E(x,x) f0(h0(E(a0, a0)))→a→b f0(h0(E(a0, b0))).
Now, we introduce a second symbol E above the symbol h and get ride of the first one
with selection rules, and then apply the rule h(b)→ b:
f0(h0(E(a0, b0)))→x→E(x,x) f0(E(h0(E(a1, b1)), h0(E(a1, b1))))→E(x,y)→x
f0(E(h0(a1), h(E(a1, b1))))→E(x,y)→y f0(E(h0(a1), h0(b1)))→h(b)→b f0(E(h0(a1), b0)).
Hence, we apply the rule f(x)→ g(x, x):
f0(E(h0(a1), b0)) →f(x)→g(x,x) g0(E(h1(a2), b1), E(h1(a2), b1)), then select the needed
copies:
g0(E(h1(a2), b1), E(h1(a2), b1)) →E(x,y)→x g0(h1(a2), E(h1(a2), b1))
→E(x,y)→y g0(h1(a2), b1),
and apply the last rule:
g0(h1(a2), b1) →g(h(x),y)→i(x,y) i0(a2, b1).
The maximal mark that appears on a lhs is 1. So, d′ is bo(1) and d is boc(1).

Let us introduce a convenient notation.

I Definition 4.12. The binary relation k◦→R∪E over T (FN∪{E}) is defined by s k◦→R∪E t
if there is a bo(k) marked rewriting step in R ∪ E between s and t. The binary relation
k◦→∗R∪E over T (FN ∪ {E}) is defined by s k◦→∗R∪E t if there is a bo(k) marked derivation
from s to t. The binary relation k→∗R over T (F) is defined by s k→∗R t if there is a boc(k)
derivation in R from s to t.

Since the composition of two bo(k) marked derivations is a bo(k) marked derivation,
k◦→∗R∪E is the transitive and reflexive closure of k◦→R∪E . Note that the composition of
two boc(k)-derivation is not always a boc(k)-derivation.

Let us recall the notion of linear k-bounded rewriting defined in [6] which will be denoted
here lbo to avoid confusion.

Irène Durand and Marc Sylvestre 369

I Definition 4.13. Let R be a linear TRS. A marked rewriting step s = s[lσ]v ◦→R t =
s[r(σ � 1)]v is linear k-bounded (lbo(k)) if the following assertion holds

(l /∈ V ⇒ mmax(l) ≤ k), and (l ∈ V ⇒ sup({m(s/u) | u ≺ v}) ≤ k) (3)

A marked derivation is lbo(k) if all its rewriting steps are bo(k). A derivation in R is lbo(k) if
the associated marked derivation is lbo(k). The TRS R is linear k-bounded if every derivation
s→∗R t can be replaced by a lbo(k) derivation from s to t. We denote by LBO(k) the class
of linear k-bounded TRSs and by LBO the class

⋃
k∈N LBO(k).

By definition, LBO(k) ⊆ BO(k). Moreover, one can easily check that for every linear TRS R,
R ∈ LBO(k) iff R ∈ BO(k). Since the LBO(0) membership problem is undecidable, the BO(0)
membership problem is undecidable too. Note that in the definition of an lbo(k)-derivation,
nothing requires the linear condition. But if we consider lbo(k)-derivations for left-linear
TRSs, then the class LBO(k) does not contain left-linear TRSs with non right-linear rules.
This is illustrated in the following example.

I Example 4.14. Let R2 = {f(x) → g(x, x), a → b} and let k ∈ N. There is a bo(0)-
derivation f(f(. . . (f(a)) . . .))→E f(f(. . . (f(E(a, a)) . . .)))→a→b f(f(. . . (f(E(a, b)) . . .)))
→f(x)→g(x,x) g(f(. . . (f(E(a, b)) . . .)), f(. . . (f(E(a, b)) . . .))) →E(x,y)→x
g(f(. . . (f(a) . . .)), f(. . . (f(E(a, b)) . . .))) →E(x,y)→y g(f(. . . (f(a)) . . .), f(. . . (f(b)) . . .)) but
there is no bo(k)-derivation from f(f(. . . (f(a)) . . .)) to g(f(. . . (f(a)) . . .), f(. . . (f(b)) . . .)) which
does not use the rules of E . Note that the TRS R2 is bo(0) since every derivation in R2 is
boc(0).

Well-marked Derivation

Terms that appear on a marked derivation starting on a term s ∈ T (F) have a special form
and are said to be well-marked.

I Definition 4.15 (well-marked). A term s ∈ T (FN ∪ {E} ∪ QP ,V) is well-marked for k if
these two assertions holds
1. for all w ∈ PosV(s), for all v � w, m(s/v) ≤ k,
2. for all w ∈ Lv(s)\PosV(s), one of these two assertions holds

a. for all v � w, m(s/v) ≤ k,
b. there exists u ∈ PosF�w(s) such that:

for all v ≺ u, m(s/v) ≤ k,
for all v ∈ PosF�w(s) such that v � u, m(s/v) = k + 1 + Card(Pos\E≺v(s)) −
Card(Pos\E≺u(s)).

A marked derivation is well-marked if every term in the derivation is well-marked.

So, a term is well-marked if for every w ∈ Lv(t), the sequence of marks on the symbols of F
that appear on the branch containing w has the form: m0,m1, . . . ,mn, k+ 1, k+ 2, . . . , k+ l

with mi ≤ k in case 2b. is satisfied and m0,m1, . . . ,mn with mi ≤ k in case 1. or 2a. is
satisfied. Note that an unmarked term is well-marked, and that condition 2a. is equivalent
to for all v ≺ u,m(s/v) ≤ k, m(s/u) = k + 1, and for all v ∈ PosF�w(s) such that v � u,
m(s/v)−m(s/u) = Card(Pos\E≺v(s))− Card(Pos\E≺u(s)).

I Example 4.16. Let k = 3 and let R1 and A1 be the TRS and the automaton from example
2.1. The terms f1(E(f2(a2), x)), f0(E(f3(a4), x)), f0(f3(E(f4(a5), f3(a3)))), f2(E(f0(a4), x)),
f4(f5(E(f6({qa, q⊥}), f6(b7)))) are well-marked. The terms f4(E(f5(a6), x)),
f2(f3(E(f4(a4), f3(a4)))), and f2(f3(E(f4(a6), f3({qb, qf})))) are not well-marked since neither
1 or 2 hold.

RTA’11

370 Left-linear Bounded TRSs are Inverse Recognizability Preserving

I Lemma 4.17. A bo(k)-derivation is well-marked iff it is starting on a well-marked term.

5 Main Result

The main theorem of this section (and of the paper) is the following.

I Theorem 5.1. Let R be a left-linear rewriting TRS over a signature F . Let T be some
recognizable subset of T (F) and let k > 0. Then, the set (k→∗R)[T] is recognizable too and
can be built.

To obtain this result, we simulate bo(k)-derivations using a GTT. The construction of
the proof can be divided into three steps:

First, we define the top part Top(t) of a well-marked term t which is the part of t that
could be rewritten using a rule of R in a bo(k)-derivation.
Then we define a GRS G which has the following properties:
- If s→∗G t, then there exists t′ such that s k◦→∗R t′ →∗AP+ t (lifting rewriting with G to
R).
- If s k◦→∗R t then Top(s)→∗G Top(t) (projecting rewriting with R to G).
From these two properties of G and using some technical lemmas, we obtain the simulation
lemma 5.22. The relation →∗G is recognizable by a GTT, and since GTTs are effectively
inverse recognizability preserving, we obtain theorem 5.1.

Top of a Marked Term

By definition of a bo(k)-derivation, a symbol in a term t can match a lhs of a rule of R only
if the mark of this symbol is smaller or equal to k. This leads us to define the top part of a
well-marked term t which is (intuitively) obtained by replacing all the useless subterms t/u
by their normal form nfAP (t/u).

I Definition 5.2. Let t ∈ T (FN ∪ {E} ∪ QP ,V) be well-marked. We define Topd(t) the top
domain of t as: u ∈ Topd(t) iff u ∈ Pos(t) and ∀v ≺ u,m(t/v) ≤ k.

I Definition 5.3. Let t ∈ T (FN ∪ {E} ∪ QP ,V) be well-marked. We denote by Top(t) the
unique term such that
Pos(Top(t)) = Topd(t),
t→∗AP≥k+1 Topd(t),
for all t′ such that Pos(t′) = Topd(t) and t→∗AP≥k+1 t′, we have t′ →∗AP≥k+1 Top(t).

I Example 5.4. Let k = 3 and letR1 andA1 be the TRS and the automaton from example 2.1.
Let t0 = f0(E({qa}, g0(a0, b0))), t1 = f2(E({qa}, g0(a3, b4))), t2 = f2(E({qa}, g3(a4, b4))),
t3 = f2(E({qa}, g4(a5, b5))), t4 = f4(E({qa}, g5(a6, b6))). Note that these terms are well-
marked. We have Topd(t0) = Topd(t1) = Topd(t2) = Pos(t0), Topd(t3) = {ε, 0, 00, 01},
Topd(t4) = {ε} and t0 →0

A1P
≥4 Top(t0) = t0, t1 →A1P

≥4 f2(E({qa}, g0(a3, {qb}))) = Top(t1),
t2 →A1P

≥4 f2(E({qa}, g3(a4, {qb})))→A1P
≥4 f2(E({qa}, g3({qa}, {qb}))) = Top(t2),

t3 →A1P
≥4 f2(E({qa}, g4(a5, {qb})))→A1P

≥4 f2(E({qa}, g4({qa}, {qb}))) →A1P
≥4

f2(E({qa}, {q⊥})) = Top(t3), t4 →A1P
≥4 f4(E({qa}, g5(a6, {qb})))→A1P

≥4

f4(E({qa}, g5({qa}, {qb}))) →A1P
≥4 f4(E({qa}, {q⊥}))→A1P

≥4 f4({qa, q⊥})
→A1P

≥4 {q⊥} = Top(t4)

Irène Durand and Marc Sylvestre 371

5.1 Definition of the GRS G Used for the Simulation
Comb Associated to a Term and the Set C≤n
Before giving the definition of G we need to introduce some notations.

I Definition 5.5. We define the binary relation @ over T (FN ∪ QP ∪ {E}) by s @ t if
root(s) ∈ FN ∪ QP , root(t) = E, and there exists u ∈ {w ∈ Pos\E(t) | Pos≺w\E (t) = ∅} such
that t/u = s. We define s 6@ t by s 6@ t if s @ t does not hold.

Note that for all t, t 6@ t.

I Definition 5.6. Let t ∈ T (FN ∪ QP ∪ {E}). Let B be the TRS B := {E(x,E(y, z))− >
E(E(x, y), z)}. We denote by � t� the normal form associated to t: � t� = nfB(t).

Note that B can be easily shown to be terminating and confluent.

I Definition 5.7. Let t ∈ T (FN ∪QP ∪ {E}). Let D be the (infinite) ground TRS
D := {E(E(xσ, yσ), zσ)→ E(xσ, yσ) | σ : V → T (FN ∪QP ∪ {E}) & zσ @ E(xσ, yσ)}
∪{E(E(xσ, yσ), zσ)→ E(xσ, zσ) | σ : V → T (FN ∪QP ∪ {E}) & xσ = yσ}.
The comb associated to t is denoted by btc and is defined by btc := nfD(� t�). We extend
this definition to marked substitutions (bσc : x 7→ bxσc).

Note that D can be shown to be terminating, and that there is a unique normal form
associated to � t� .

I Example 5.8. Let t0 = E(a0, a0), t1 = E(a1, E(a2, b1)), t2 = E(a1, E(a1, b1)) and t3 =
f(E(E(b1, a2), E(b2, a2))). We have � t0 � = t0, � t1 � = E(E(a1, a2), b1), �
t2 � = E(E(a1, a1), b1), � t3 � = f(E(E(E(b1, a2), b2), a2)), bt0c = t0, bt1c = � t1 � ,
� t2 � = E(a1, b1), and bt3c = f(E(E(b1, a2), b2)).

I Definition 5.9. Let n ∈ N. Let A = {}. We denote by C≤n the (finite) set of combs:
C≤n := {btc | t ∈ T (F≤k ∪QP ∪ {E}) & dpt\E(t) ≤ n}.

Note that for a comb t, the set of term {s | bsc = t} is recognizable. The next lemma is used
to prove the projecting lemma 5.18.

I Proposition 5.10 (Comb form proposition). Let s, t ∈ T (F≤k ∪ QP ∪ {E}), u ∈ C≤k+2,
n ∈ N. If bs� nc = u and bt� nc = u, then s� n ◦→∗E t� n.

I Definition 5.11. Let t ∈ T (FN ∪ QP ∪ {E},V), Var(t) = {x1, . . . , xn}. For all 1 ≤ i ≤ n,
let ji = Card(Pos(t, xi)), and let Pos(t, xi) = {v1,1, . . . , v1,ji} where the vp,q are given in
lexicographic order. We define lin(t) as the term
lin(t) := t[x1,1, . . . , x1,j1 , . . . , xn,1, . . . , xn,jn]v1,1,...,v1,j1 ,...vn,1,...vn,jn

,

where the xi,j are distinct variables.

Each time we use the notation lin(t), we implicitly suppose that if Var(t) = {x1, . . . , xn},
then the variables in Var(lin(t)) are denoted xi,j as in definition 5.11.

Overview of the Simulation

Let us give an overview of the proof of the projecting and lifting lemmas used to simulate
bo(k)-derivations by a GTT (lemmas 5.18 and 5.15).
For every rule l → r ∈ R ∪ E , every term l ∈ T (F≤k ∪ QP ∪ {E}) and every substitution
τ : V → C≤k+2 such that τ �a : V → C≤k+2 (where a = 1 if l→ r ∈ R, and a = 0 otherwise),

RTA’11

372 Left-linear Bounded TRSs are Inverse Recognizability Preserving

we build a GRS Gl,r,τ = (L,R), where L is the recognizable set containing all the terms lσ
such that bσc = τ and R is the recognizable set containing all the terms lin(r)(σ � a) such
that for all xi,j ∈ Var(lin(r)), the associated comb of (xi,jσ � a) is bxiτ � ac. The GRS G
over F≤k ∪QP ∪ {E} is hence defined as the union of all the GRS Gl,r,τ and A+

P
≤k.

Now, let us see how the simulation works. The simulation is based on the projecting lemma
5.18 and the lifting lemma 5.15. Let us start with the projecting lemma. Let l→ r ∈ R, and
let us suppose that we want to simulate a rewriting step s = s[lσ]v k◦→R∪E t = s[rσ � a]v
using the GRS G.

The projecting lemma 5.18 claims that we can rewrite the useful top part of s to the
useful top part of t, i.e. that Top(s) = Top(s)[lTop(σ)]v →∗G Top(t) = Top(s)[rTop(σ � a)].
We obtain this derivation in two steps:

First, we cut the useless part of Top(s) using AP≤k, i.e. the parts of xσ that are marked
by an integer greater than k in xσ � a. Let us denote by σ′ the substitution obtained
after this step (i.e. the unique substitution such that σ′ � a = Top(σ � a)).
Then, since lbσ′c → rbσ′ � ac ∈ G(l, r, bσ′c), we obtain the required derivation Top(s) =
s[lσ]v →A≤kP Top(s)[lσ′]v →G(l,r,bσ′c) Top(s)[r(σ′ � a)]v = Top(s)[rTop(σ � a)]v = Top(t).

Now, let us see how the lifting lemma works. Let s = s[lσ]→G(l,r,τ) t = s[lin(r)σ′]. We want
to prove that there exists a term s′ and a derivation s k◦→R∪E s′ →∗AP t. First, we apply
the rule l→ r. We obtain a derivation s = s[lσ]v k◦→R s[r(σ � a)]. We then use the comb
form proposition 5.10, and some other technical lemmas to obtain a term s′ and a derivation
s k◦→R s[r(σ � a)] k◦→∗E s′ →AP t.

The GRS G

For every linear term t ∈ T (FN ∪ QP ∪ {E},V), and every substitution σ : V → C≤k+2, the
set {t σ′ | σ′ : V → T (Fk ∪QP ∪ {E}),∀x ∈ V, bxσ′c = xσ} is recognizable.

I Definition 5.12. We denote by Λa the set of substitutions τ : V → C≤k+2 such that
bτ � ac : V → C≤k+2.

I Definition 5.13. Let l → r ∈ R ∪ E , l ∈ T (F≤k ∪ QP ∪ {E},V). Let a = 0 if l → r ∈ E ,
and let a = 1 if l → r ∈ R. Let Var(l) = {x1, . . . , xn} and Var(r) = {x1, . . . , xm}. Let
τ ∈ Λa, and let

L = {lσ |σ : V → T (F≤k∪QP∪{E}),∀i ∈ {1, . . . , n}, bxiσc = xiτ}, R = {lin(r)(σ�a)|σ :
V → T (F≤k ∪ QP ∪ {E}), ∀i ∈ {1, . . . ,m},∀j ∈ {1, . . . ,Card(Pos(r, xi))}, bxi,jσ � ac =
bxiτ � ac}. Note that L and R are two recognizable sets of ground terms. We define the
G(l, r, τ) over F≤k ∪QP ∪ {E} by: G(l, r, τ) := {l→ r | l ∈ L, r ∈ R}.

I Definition 5.14. Let GR = {G(l, r, τ) | l → r ∈ R, l ∈ T (F≤k ∪ {E},V), τ ∈ Λ1},
GE := {G(l, r, τ) | l → r ∈ E , τ ∈ Λ0}. We define G as the GRS over F≤k ∪ {E} ∪ QP
G := GR ∪ GE ∪ ΓP(A)+≤k .

The transitive and reflexive closure of a GRS is recognizable by a GTT. The GTT
recognizing →∗G will be used to simulate bo(k)-derivations in R∪ E (see lemma 5.22).

Lifting Lemma

The lifting lemma simulates a derivation s →∗A+
P
s′ →G t by a bo(k)-derivation in R ∪ E

followed by a derivation in AP+. The proof can be found in the long version of this article.

Irène Durand and Marc Sylvestre 373

I Lemma 5.15 (lifting lemma). Let l → r ∈ R ∪ E, l ∈ T (F≤k ∪ QP ∪ {E}), let a = 0 if
l → r ∈ E and a = 1 if l → r ∈ R, and let σ ∈ Λa be a substitution. Let s ∈ T (FN ∪ {E}),
s′, t ∈ T (F≤k ∪QP ∪{E}) be such that s→∗A+

P
s′ →G(l,r,σ) t. There exists t′ ∈ T (FN,∪{E})

such that s k◦→+
R∪E t

′ →∗A+
P
t.

s s′ t

t′

AP+

∗

G(l, r, σ)

R
∪ E

+

k

A
P + ∗

Figure 1 Lifting One Step.

I Example 5.16. Let R1 and A1 be the TRS and the automaton of example 2.1 and
let k = 1. Let s = f0(E(h0(a1), E(a0, a1))) →AP+ s′ = f0(E(h0({qa}), E(a0, a1))), let
xσ = E(h0({qa}), E(a0, a1)), and let τ = bσc. Let
s′ →G(f0(x),g0(x,x),τ) t = g0(E(E(h1({qa}), h1({qa})), a1), E(h1({qa}), E(a1, a1))) (this step
holds since bE(E(h1({qa}), h1({qa})), a1)c = bE(h1({qa}), E(a1, a1))c = bxτ � ac
= E(h1({qa}), a1)). We want to find a term t′ such that s 1◦→∗R∪E t′ →∗A+

P
t. First, we apply

the rule f(x)→ g(x, x) which gives the bo(1)-step
s′ 1◦→R t′ = g0(E(h1(a2), E(a1, a1)), E(h1(a2), E(a1, a1))). Then, since
bE(h1(a2), E(a1, a1))c = xbτ � 1c, using the comb form proposition 5.10 we obtain a deriva-
tion t′ 1◦→∗E g0(E(E(h1(a2), h1(a2)), a1), E(h1(a2), E(a1, a1)))→∗AP+ t.

I Corollary 5.17 (lifting n-steps). Let s ∈ T (FN ∪ QP ∪ {E}), s′, t ∈ T (F≤k ∪ QP ∪ {E})
be such that s→∗G t. There exists t′ ∈ T (FN ∪QP ∪ {E}) such that s k◦→∗R∪E t′ →∗A+

P
t.

Projecting Lemma

The projecting lemma simulates one bo(k)-step s k◦→R∪E t by a derivation in G from Top(s)
to Top(t). The full proof is given in the long version of this paper.

I Lemma 5.18 (Projecting one step). Let s, t ∈ T (FN ∪ QP ∪ {E}), be such that s is
well-marked and s = s[lσ]v k◦→R∪E t = s[r(σ � j)]v.
1. If ∀u ≺ v, m(s/u) ≤ k then there exist a term s′ ∈ T (F≤k ∪ QP ∪ {E}), a substitution

σ′ : V → C≤k+2 such that Top(s)→∗AP≤k s
′ →G(l,r,σ′) Top(t),

2. otherwise, Top(s)→∗
A+
P
≤k Top(t).

I Example 5.19. Let us consider the TRS R1, and the automaton A1 of example 2.1,
and k = 1. We have the following derivation between these two well-marked terms s =
f1(E(a0, E(a1, E(b1, h0(h0(a1)))))) →f(x)→g(x,x) t =
g(E(a1, E(a1, E(b1, h1(h2(a3))))), E(a1, E(a1, E(b1, h1(h2(a3)))))).
Let xσ = E(a0, E(a1, E(b1, h0(h0((a1)))))). We have s = f1(xσ), t = g(xσ � 1, xσ � 1),
Top(s) = s and Top(t) = g(E(a1, E(a1, E(b1, h1({q⊥})))), E(a1, E(a1, E(b1, h1({q⊥}))))).
First, we cut the “useless” part of s using A1P

≤1 i.e. the part of xσ that is marked by an
integer greater that 1 in xσ � 1 = E(a1, E(a1, E(b1, h1(h2(a3))))). We obtain the following

RTA’11

374 Left-linear Bounded TRSs are Inverse Recognizability Preserving

s t

Top(s) s′ Top(t)

R∪ Ek

G(l, r, σ′)

AP≥k+1

∗
AP≥k+1

∗

AP≤k
∗

Figure 2 Projecting One Step, case 1.

derivation Top(s)→∗
A≤k1P

f1(E(a0, E(a1, E(b1, h0({q⊥}))))). We are now ready to apply the

step of the GRS that simulates the rule l→ r. Let xσ′ = E(a0, E(a1, E(b1, h1({q⊥)))). Let
τ = bσ′c and s′ = f(xσ′). The comb associated to xσ′ is xτ = E(E(E(a0, a1), b1), h1({q⊥})).
Moreover, the comb associated to xσ′ � 1 = E(a1, E(a1, E(b1, h1({q⊥})))) is bxτ � 1c =
E(E(a1, b1), h1({q⊥})). By definition, it means that lσ′ → r(σ′ � 1) ∈ G(l, r, τ). Hence, we
obtain the derivation Top(s)→A≤1

1P
s′ = f1(xσ′)→G(l,r,bxσ′c) g(xσ′ � 1, xσ′ � 1) = Top(t).

I Corollary 5.20 (Projecting n -steps). Let s, t ∈ T (FN ∪ QP ∪ {E}), be such that s is
well-marked and s k◦→∗R∪E t. We have Top(s)→∗G Top(t).

I Lemma 5.21. Let s ∈ T (F), q ∈ QA. We have ∃t ∈ T (FN), s k ◦→∗R∪E t →∗A q iff
s→∗G {q}.

Inverse Recognizability Preservation

I Lemma 5.22 (simulation lemma). We have (→∗G)[Qf,P] ∩ T (F) = (k→∗R)[T].

Proof. Let s ∈ (k→∗R)[T]. By definition, there exist t ∈ T (F) and q ∈ Qf,A such that
s k→∗R t→∗A q. By definition of a boc(k) derivation, there exists a marked term t such that
s k◦→∗R∪E t. By lemma 4.3, since t→∗A q, we have t→∗A q. By lemma 5.21, s→∗G {q}, and
since {q} ∈ Qf,P , we have s ∈ (→∗G)[Qf,P]. Hence, (k→∗R)[T] ⊆ (→∗G)[Qf,P] ∩ T (F).
Let s ∈ (→∗G)[Qf,P] ∩ T (F). There exists q ∈ Qf,A such that s →∗G {q}. By lemma 5.21,
there exists t ∈ T (FN) such that s k◦→∗R∪E t→∗A q. By proposition 3.2, s→∗R t, and since
there exists a bo(k) marked derivation from s to t, s k→∗R t. By lemma 4.3, since t→∗A q,
we have t→∗A q. So, t ∈ T , and s ∈ (k→∗R)[T]. J

We are now ready to prove theorem 5.1.

I Theorem 5.1. Let R be some (finite) left-linear TRS over a signature F . Let T be some
recognizable subset of T (F) and let k > 0. Then, the set (k→∗R)[T] is recognizable too.

By lemma 5.22, (→∗G)[Qf,P] ∩ T (F) = (k→∗R)[T]. The relation →∗G is recognizable by a
GTT, and since GTTs are inverse recognizability preserving (see e.g. chapter 3.2 of [2]),
(→∗G)[Qf,P] ∩ T (F) is recognizable, and thus (k→∗R)[T] is recognizable. To effectively build
the set (k→∗R)[T], we need to construct the automaton A≤kP and the GTT (→∗G). Since
GTTs are effectively inverse recognizability preserving, the result holds.

I Corollary 5.23. Every BO(k) TRS are effectively inverse recognizability preserving.

6 Strongly Bounded TRSs

We introduce here strongly bounded TRSs. The reader may refer to the long version of the
article for more details.

Irène Durand and Marc Sylvestre 375

I Definition 6.1. A marked step s = s[lσ]v ◦→R t = s[r(σ � j)]v is weakly bottom-
up (wbu for short) if l → r ∈ E or if l → r ∈ R and the following assertion holds:
(l /∈ V ⇒ m(l) = 0) and (l ∈ V ⇒ sup({m(s/u) | u ≺ v) = 0). A marked derivation is wbu
if all its rewriting steps are wbu. A derivation s →∗R∪E t is wbu if the associated marked
derivation is wbu. A derivation s→∗R t is weakly bottom-up convertible (wbuc for short) if
there exists a wbu derivation s→∗R∪E t. Let k ∈ N. A TRS is strongly k-bounded (SBO(k)
for short) if every wbu derivation starting on a term s ∈ T (F) is bo(k). We denote by SBO(k)
the class of SBO(k) TRSs. Finally, the class of strongly bounded TRS SBO is defined by:
SBO =

⋃
k∈N SBO(k).

Note that every marked derivation in E is wbu. Roughly speaking, a wbu derivation is a
derivation in which the rules of R are applied going from the bottom to the top. Moreover,
every derivation is wbuc and SBO(k) ⊂ BO(k). The class SBO contains inverse right-
linear finite-path overlapping TRSs [20], and left-linear growing TRSs [16]. Moreover, the
membership problem for the class of SBO(k) TRSs such that LHS(R) ∩ V = ∅ is decidable,
whereas the membership problem for BO(0) is undecidable, as shown in [5].

7 Perspectives

Here are some natural perspectives of development for this work.
The method developed here also might be used for testing some termination properties
and might lead to a proof of the decidability of the termination of left-linear growing
TRSs as conjectured in [16].
A dual notion of top-down rewriting should be defined (at least for linear TRSs). The
class would presumably extend the class of layered transducing TRSs defined in [18].
The TRSs considered in [9] and the TRSs considered here might be treated in a unifed
manner for the linear case and if so, might be extended to the left-linear case.

Some work in these directions has been undertaken by the authors.
Acknowledgment. We thank the anonymous referees for their useful comments, which
improved the presentation of our results.

References
1 B. Buchberger. Basic features and development of the critical-pair/completion procedure.

In Proceedings of the 1st International Conference on Rewriting Techniques and Applica-
tions, pages 1–45, 1985.

2 H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison,
and M. Tommasi. Tree automata techniques and applications. Available at: http://www.
grappa.univ-lille3.fr/tata, 2007. release October, 12th 2007.

3 Evelyne Contejean, Claude Marché, and Xavier Urbain. CiME, 2004. Available at http:
//cime.lri.fr/.

4 I. Durand and A. Middeldorp. Decidable call-by-need computations in term rewriting. Inf.
Comput., 196(2):95–126, 2005.

5 I. Durand and G. Sénizergues. Bottom-up rewriting for words and terms, March 2009.
Available at: http://arXiv.org/abs/0903.2554.

6 I. Durand, G. Sénizergues, and M. Sylvestre. Termination of linear bounded term rewriting
systems. In Christopher Lynch, editor, Proceedings of the 21st International Conference
on Rewriting Techniques and Applications, pages 341–356. LIPIcs, July 2010.

7 Guillaume Feuillade, Thomas Genet, and Valérie Viet Triem Tong. Reachability Analysis
over Term Rewriting Systems. Research Report RR-4970, INRIA, 2003.

RTA’11

http://www.grappa.univ-lille3.fr/tata
http://www.grappa.univ-lille3.fr/tata
http://cime.lri.fr/
http://cime.lri.fr/
http://arXiv.org/abs/0903.2554

376 Left-linear Bounded TRSs are Inverse Recognizability Preserving

8 Z. Fülöp, E. Jurvanen, M. Steinby, and S. Vágvölgyi. On one-pass term rewriting. In
MFCS, pages 248–256, 1998.

9 A. Geser, D. Hofbauer, and J. Waldmann. Match-bounded string rewriting systems.
Journal Applicable Algebra in Engineering, Communication and Computing, 15(3-4):149–
171, November, 2004.

10 A. Geser, D. Hofbauer, J. Waldmann, and H. Zantema. On tree automata that certify
termination of left-linear term rewriting systems. Inform. and Comput., 205(4):512–534,
2007.

11 J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Automated Termination Proofs
with AProVE (system description). In Proceedings of the 15th International Conference on
Rewriting Techniques and Applications, pages 210–220, 2004.

12 F. Jacquemard. Decidable approximations of term rewriting systems. In Proceedings of
the 7th International Conference on Rewriting Techniques and Applications, volume 1103
of LNCS, pages 362–376, 1996.

13 J.W. Klop. Term rewriting systems. In Handbook of Logic in Computer Science, Vol. 2,
pages 1–116. Oxford University Press, 1992.

14 D. Knuth and P. Bendix. Simple word problems in universal algebras. In Leech, editor,
Computational problems in abstract algebra, pages 263–297. Pergamon Press, 1970.

15 P. Lescanne, T. Heuillard, M. Dauchet, and S. Tison. Decidability of the confluence of
ground term rewriting systems. Research Report RR-0675, INRIA, 1987.

16 T. Nagaya and Y. Toyama. Decidability for left-linear growing term rewriting systems. In
Proceedings of the 10th International Conference on Rewriting Techniques and Applications,
pages 256–270, London, UK, 1999. Springer-Verlag.

17 P. Réty and J. Vuotto. Tree automata for rewrite strategies. J. Symb. Comput., 40(1):749–
794, 2005.

18 H. Seki, T. Takai, Y. Fujinaka, and Y. Kaji. Layered transducing term rewriting system and
its recognizability preserving property. In Proceedings of the 13th International Conference
on Rewriting Techniques and Applications, volume 2378 of LNCS. Springer Verlag, 2002.

19 F. Seynhaeve, S. Tison, and M. Tommasi. Homomorphisms and concurrent term rewriting.
In FCT, pages 475–487, 1999.

20 T. Takai, Y. Kaji, and H. Seki. Right-linear finite path overlapping term rewriting systems
effectively preserve recognizability. In Proceedings of the 11th International Conference on
Rewriting Techniques and Applications, pages 246–260, 2000.

21 T. Takai, Y. Kaji, and H. Seki. Termination property of inverse finite path overlapping term
rewriting system is decidable. IEICE transactions on information and systems, 85(3):487–
496, 2002-03-01.

22 T. Takai, Y. Kaji, and H. Seki. Right-linear finite-path overlapping term rewriting systems
effectively preserve recognizability. Scienticae Mathematicae Japonicae, 2006. (to appear,
preliminary version: IEICE Technical Report COMP98-45).

23 Terese. Term Rewriting Systems by Terese, volume 55. Cambridge University Press, 2003.
24 J. Waldmann. Matchbox: A Tool for Match-Bounded String Rewriting (system descrip-

tion). In Proceedings of the 15th International Conference on Rewriting Techniques and
Applications, pages 85–94, 2004.

25 H. Zantema. TORPA: Termination of Rewriting Proved Automatically (system descrip-
tion). In Proceedings of the 15th International Conference on Rewriting Techniques and
Applications, pages 95–104, 2004.

	Introduction
	Preliminaries
	The TRS E
	Bounded Rewriting
	Marked Terms
	Marked Rewriting
	Bounded Derivations and Bounded TRSs

	Main Result
	Definition of the GRS G Used for the Simulation

	Strongly Bounded TRSs
	Perspectives

