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—— Abstract

Modeling the semantics of programming languages like C for the automated termination analysis

of programs is a challenge if complete coverage of all language features should be achieved. On the
other hand, low-level intermediate languages that occur during the compilation of C programs
to machine code have a much simpler semantics since most of the intricacies of C are taken
care of by the compiler frontend. It is thus a promising approach to use these intermediate
languages for the automated termination analysis of C programs. In this paper we present the
tool KITTeL based on this approach. For this, programs in the compiler intermediate language are
translated into term rewrite systems (TRSs), and the termination proof itself is then performed
on the automatically generated TRS. An evaluation on a large collection of C programs shows
the effectiveness and practicality of KITTeL on “typical” examples.
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1 Introduction

Methods for automatically proving termination of imperative programs operating on integers
have received increased attention recently. The most commonly used automatic method for
this is based on linear ranking functions which linearly combine the values of the program
variables in a given state [5, 6, 19, 20]. More recently, the combination of abstraction
refinement and linear ranking functions has been considered [8, 9]. Based on this idea, the
tool Terminator [10] has reportedly been used for showing termination of device drivers.

Developing a tool that can handle all intricacies of C is a challenge since C employs a
complex syntax and semantics. It is not clear to what extent the implementations of the
aforementioned methods can handle real-life C programs since the papers are typically based
on idealized transition systems and the implementations are not publicly available.

We advocate to perform the termination analysis of C programs not on the source code
level but rather on the level of a compiler intermediate representation (IR). This approach
has the following advantages:

1. The IR is considerably simpler than C. This makes it relatively easy to accept any C
program as an input. Features of the IR that are not (yet) supported by the termination
analysis techniques can easily be abstracted automatically.
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2. The program that is analyzed is much closer to the program that is actually executed on
the computer since ambiguities of C’s semantics have already been resolved.

3. In producing the IR, compilers already use program optimizations that might simplify
the termination analysis significantly.

For similar reasons, termination analysis of Java programs is often performed on the bytecode

level and not on the source code [1, 22, 18, 4].

In this paper, we focus on the LLVM compiler framework and its intermediate language
LLVM-IR [17]. The method itself is independent of the concrete IR, however. Since there are
compilers for various programming languages built atop of LLVM, the methods presented
in this paper can be used for the termination analysis of programs written in C, C++,
Objective-C, and further programming languages.

Termination analysis of LLVM-IR programs is then performed by generating a term
rewrite system (TRS) from the LLVM-IR program. Termination analysis of TRSs has been
investigated extensively in the past (see [24] for a survey). In this paper, TRSs with
constraints over the integers (int-based TRSs) are used, where the constraints are relations
on the variables expressed as quantifier-free formulas from non-linear arithmetic. Similarly
to what was proposed in [12, 15], well-known methods from the term rewriting literature can
be adapted for the termination analysis of int-based TRSs.

» Example 1. Consider the C program on the left-hand side:

int power(int x, int y) {

int r — 1: statestart (Va, Uy, Vy.0, Ur0) — Stateentry;, (Vz, Uy, Uy.0, Ur0)
-
while (y > 0) { stateentry;, (Vi Uy, Vy.0, Ur.0) — Stateppy,, (Va, vy, vy, 1)
T=r*% Statebbli" (UI’ Uy, Vy.0, PUT‘O) - Statebbin (’Uﬂcv Vy; Vy.0, U’I‘.O) [[’UyAO > Oﬂ
) y=y-5 statepbi,, (Va, Vy, Vy.0, Vr.0) — Stateretumi, (Vz, Vy, Vy.0, Vr0) [Vy.0 < 0]
i i statepb,, (Va, Vy, Vy.0, Ur.0) — Statewbi,, (Vs, Uy, Vy.0 — 1, V0 * Ug)
} statereturn;, (UI7 Vy, Vy.0, U'nO) — statestop (Ua;7 Vy, Vy.0, Uno)

Using the methods presented in this paper, the int-based TRS shown on the right-hand side
is automatically obtained from the LLVM-IR of the C program. Intuitively, the variables v,
and v, represent the inputs to the function, whereas the variables v, ¢ and v, ¢ correspond
to the (changing) program variables y and r used inside the loop of the function (why the
program variable y gives rise to v, and v, is explained in Section 3). The function symbols
used in the int-based TRS intuitively correspond to a program counter. <

The approach has been implemented in the publicly available termination tool KITTeL.
An empirical evaluation on a large collection of examples taken from various sources clearly
shows the effectiveness and practicality of our method.

2 int-Based TRSs

In order to model integers, the function symbols from Fi,e = Fz U {+,*, —} with Fyz =
{n | n € Z} and types +,* : int X int — int, and — : int — int are used. Terms built
from these function symbols and a disjoint set V of variables are called int-terms. We use
a simplified notation for int-terms, e.g., the int-term (z + (—(y x y))) + 3 is written as
x —y?+ 3. A linear int-term is an int-term that does not contain any occurrence of “*”.
Fint is extended by finitely many function symbols f with types int X ... X int — univ,
where univ is a type distinct from int. The set containing these additional function symbols
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is denoted by F and 7 (F, Fins, V) denotes the set of terms of the form f(sy,...,s,) where

f € Fand sy,...,s, are int-terms. A substitution is a mapping from variables to int-terms.

int-constraints are quantifier-free formulas from (non-linear) integer arithmetic. An
atomic int-constraint has the form s ~ ¢, s > t, or s > t for int-terms s,t and the set of
int-constraints is the closure of atomic int-constraints under T (truth), - (negation), and A
(conjunction). The Boolean connectives L, V, =, and < are defined as usual. int-constraints
have the expected semantics regarding int-validity and int-satisfiability. These properties
are in general only decidable for linear or variable-free int-constraints.

The rewrite rules of int-based TRSs are equipped with int-constraints. These constraints
are used in order to restrict the applicability of the rewrite rules, see Definition 3. The rules
generalize the PA-based rewrite rules from [12]. Alternatively, they can be interpreted as a
restricted form of the rewrite rules considered in [15] which allow nested function symbols.

» Definition 2. An int-based rewrite rule has the form | — r[¢] such that I = f(x1,...,2zy)

where x4, ..., z, are pairwise distinct variables, r € T (F, Fin, V), and ¢ is an int-constraint.

Notice that r and ¢ may contain variables that are not occurring in /. The restriction that
the arguments on the left-hand side are pairwise distinct variables simplifies the definition
of the rewrite relation of an int-based TRS since matching becomes trivial. Notice that
equality between the arguments x; and z; can be enforced by adding the int-constraint
x; ~ xj. The constraint T is omitted in an int-based rewrite rule { — r[T]. An int-based
term rewrite system (int-based TRS) R is a finite set of int-based rewrite rules.

» Definition 3. For an int-based TRS R, the relation s —;,,\z t for terms s,t of the
form f(nq,...,ng) with ny,...,ng € Fz holds iff there exist { — r[p] € R and an Fyz-based
substitution ¢ such that 1. s = lo, 2. po is int-valid, and 3. ¢ = norm(rco). Here, a
substitution o is Fz-based iff o(x) € Fy for all variables x and norm(ro) evaluates according

My

to the usual semantics of “4+”, “x”, and “—” on variable-free terms.

Termination of int-based TRSs can be shown by using an extension of the methods
presented in [12] which are motivated by the dependency pair method [2, 16, 11] and are
based on the notion of chains. For an int-based TRS R, a (possibly infinite) sequence of
int-based rewrite rules I1 — r1[p1],la — r2p2], ... from R is an R-chain iff there exists
an Fz-based substitution o such that norm(r;o) = l;110 and ;0 is int-valid for all ¢ > 1.

Chains provide a precise characterization of termination in the sense that an int-based
TRS R is terminating if and only if there are no infinite R-chains. This characterization
of termination is utilized by introducing sound processors which are used to transform an
int-based TRS into a set of int-based TRSs such the input TRS is terminating if all output
TRSs are terminating. The following are the two most important processors for int-based
TRSs (details on these processors and their implementation can be found in [13]):

e SCC decomposition: Here, it is approximated which rules may follow each other in chains.

Then, R is decomposed into the non-trivial SCCs of the thus obtained graph.

e Polynomial interpretations: A polynomial interpretation maps each n-ary f € F to a
polynomial Pol(f) € Z[x1,...,x,]. This mapping extends to terms from 7 (F, Fins, V) by
letting [f(t1,...,tn)]por = Pol(f)(t1,...,ts). Then, terms are compared (in the context of

a constraint) by comparing polynomials, and all strictly decreasing rules may be deleted.

3 Translating LLVM-IR Programs into int-Based TRSs

Converting programs from a real-life programming language such as C into int-based TRSs
is non-trivial. C has a complex syntax and semantics, resulting in many cases that need to
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be considered. An alternative to operating on the source code level is the use of compiler
intermediate languages. These intermediate languages typically have a simple syntax and
semantics, thus simplifying the translation into int-based TRSs significantly.

In this paper, we consider LLVM and its intermediate language LLVM-IR [17]. An LLVM-
IR program is an assembly program for a register machine with an unbounded number
of registers. A program consists of type definitions, global variable declarations, and the
program itself, given in the form of one or more functions. Each function is represented as a
graph of basic blocks (see Example 4 for an LLVM-IR program), where each basic block is a
list of instructions, and execution of a function starts at the basic block named entry. For
our purpose, LLVM-IR instructions can be categorized into six classes:
Three-address code (TAC) instructions such as %2 = mul i32 %r.0, %x.
Control flow instructions: Branch (br), return (ret), phi (phi).
Function calls using call instructions.
Memory access instructions, namely load and store.
Address calculations using getelementptr instructions.

Auziliary instructions like type casts or bit-level instructions.
Branches and return instructions are only allowed as the last instruction of a basic block and
each basic block is terminated by one of these instructions.

LLVM-IR programs are in static single assignment (SSA) form, i.e., each register (variable)
is assigned exactly once in the static LLVM-IR program. Due to this, it becomes necessary
to introduce the phi-instruction phi, which is used to select one of several values whenever
the control flow in a program converges again (e.g., after an if-then-else statement). For
example, the meaning of %r.0 = phi i32 [ 1, %entry 1, [ %1, %bb ] contained in the
basic block bb1 in Example 4 is that the register %r.0 is assigned the value 1 if the control
flow passed from entry to bbl. If control passed from bb to bbi, then %r.0 is assigned the
value contained in %1. Phi-instructions only occur at the beginning of basic blocks.

All variables in LLVM-IR are typed. Available types include a void type, integer types like
132 (where the bit-width is given explicitly), floating-point types, and derived types (such as
pointer, array and structure types). The integer type i1 is used as a dedicated Boolean type.
Aggregate types (structures and arrays) are accessed using memory load/store operations
and offset calculations using the getelementptr instruction.

» Assumption 1. All LLVM-IR integer types ik with k& > 1 are identified with Z.

3.1 Single Non-Recursive Function Operating on Integers

First, it is assumed that the LLVM-IR program operates only on integer types. Furthermore,
it is assumed that there is exactly one function, and that this function does not contain any
call instruction. It thus only contains arithmetical instructions (add, sub, mul, signed and
unsigned div and rem), comparison instructions (equality eq, disequality neq, (un)signed
greater-than (u|s)gt, greater-or-equal (u|s)ge, less-than (u|s)1t, and less-or-equal (us)le),
control flow instructions, and type cast instructions.

» Example 4. For the C program from Example 1, the LLVM-IR program shown in Figure 1
is obtained using the LLVM compiler frontend 11vm-gcc. Here, the basic blocks bb1 and bb
correspond to the while-loop in the C program. |

An LLVM-IR program is now translated into an int-based TRS as follows. Each integer-
typed function argument, each register defined by an integer-typed TAC instruction, and
each register defined by an integer-typed phi-instruction is mapped to a variable in the TRS.
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define 132 @power(i32 %x, i32 %y) {

bb:
entry: 9 455 9
9 %1 = mul i32 %r.0, %x

br label %bbil Y2 = sub i32 Yy.0, 1
bb1: br label %bbi

%y.0 = phi i32 [ %y, %entry 1, [ %2, %bb ] X

%r.0 = phi i32 [ 1, %entry 1, [ %1, %bb 1 re::,fni'sz "e.0

%0 = icmp sgt 132 %y.0, O } o

br i1l %0, label %bb, label Yreturn

Figure 1 LLVM-IR program for the C program from Example 1.

Then, each integer-typed TAC instruction [ is assigned two function symbols stater,, and
stater,, and gives rise to a rewrite rule stater, (...) — stater, (...)[¢] that mimics the effect
of I. Here, division and remainder instructions are handled by introducing fresh variables on
the right-hand side and adding appropriate constraints on that variable.

The control flow of the LLVM-IR program is mimicked as follows. The function symbols
stategarr and stategop are introduced, denoting starting and stopping states, respectively.
These
function symbols correspond to the points after the final phi-instruction in bb and before the

Next, each basic block bb is assigned two function symbols statey,, and statey,,.
branch or return instruction of bb, respectively. If bb contains the (possibly empty) sequence
Q= (I,...,I,) of integer-typed TAC instructions, then, for two consecutive instructions
Iy and Ij4q, the function symbols stater, —and stater ., —are identified. Furthermore,
rules statep, (...) — stater, (...) and stater, (...) — statep,,(...) (if © is non-empty) or
statepp, (. ..) — statepp,, (. ..) (if  is empty) is added. If bb is terminated by a return instruc-
tion, then the rule statey,, (...) — statesop(. . .) is added. Otherwise, bb is terminated by a
branch instruction. For an unconditional branch to bb', a rule stateps,,,(...) — stateyy (.. .)
is added, where the variables on the right-hand side that correspond to phi-instructions are
instantiated according to their value in the case where control flow passes from bb to bb'. A
conditional branch is treated similarly, but now the rules are equipped with the (possibly
negated) branch condition as a constraint.

» Example 5. Consider the C program from Example 1 and its LLVM-IR from Example 4.
Using the translation outlined above, the int-based TRS
statestart (Va, Vy, Vy.0, Ur.0, V1, V2) — Stateentry;, ('Ux, Vy, Vy.0, Ur.0, U1, 'U2)

Stateentryin Vz, Uy, Vy.0, Vr.0,V1,V2) — Stateentryout (vw7 Uy, Vy.0, Ur.0, V1, 7)2)

stateentryou: (Ve s Vy, Vy.0, Ur.0, V1, V2) — Statewpy,, (Vz, Uy, Uy, 1,01, v2)

stateppi.

in

( )
(Va v2)
(Ve v2)
(e, Uy, Vy.0, Vr.0, V1, V2) — Statepple, (Ve Vy, Vy.0, Ur.0, V1, V2)
statebbiyy (Vz, Vy, Vy.0, Vr.0, V1, V2) — stateps, (U, Uy, Vy.0, Vr.0, V1, V2) [vy.0 > 0]
statepbig,: ('Uacy Vy, Uy.0, Ur.0, V1, 'UQ) — statereturn;, (’Ufl)y Vy, Uy.0, Ur.0, V1, UQ) [['UyAO < 0]]
statepp,, (Va, Vy, Uy.0, Ur.0, V1, V2) — stater (Vz, Uy, Vy.0, Ur.0, V1, V2)
state1 (g, vy, Uy.0, Ur.0, V1, V2) — statez (Vz, Uy, Uy.0, Ur.0, Ur.0 * Uz, V2)
states (Vz, Uy, Vy.0, Ur.0, U1, V2) — States(Vsz, Uy, Vy.0, Ur.0, V1, Vy.0 — 1)
states (v, Uy, Vy.0, Vr.0, U1, V2) — Statepb,, (Vs, Uy, Vy.0, Ur.0, V1, V2)
stateppe,, (Va; Vy, Vy.0, Ur.0, V1, V2) — Stateppy,, (Vz, vy, V2, V1,01, V2)
statereturn;, ('Uau Uy, Vy.0, Ur.0, V1, 'UZ) — statereturngy: (U[):'7 Vy, Vy.0, Ur.0, V1, UQ)
)

statereturnoy: ('Uz7 Uy, Vy.0, Ur.0,V1,02) — Statestop(vz7 Uy, Vy.0, Ur.0, V1, 'UQ)

is obtained. Here, simplified names have been used for the function symbols. <
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Now an LLVM-IR program is terminating if the int-based TRS R p is terminating, but
R p might be non-terminating even if P is terminating (see Section 3.5 for a partial remedy).

3.2 Simplification of int-Based Rewrite Rules

The translation given above produces a large number of int-based rewrite rules since each
integer-typed TAC instruction and each transition between basic blocks gives rise to one
or more rules. In order to decrease the number of int-based rewrite rules, it is possible to
combine several rules into a single one. Intuitively, this corresponds to the composition of
the effect of several integer-typed TAC instructions into a single state change.

For int-based TRSs obtained from LLVM-IR, the set of control points C consists of the
function symbols stategart, Statestop, and statey, for each basic block bb of the program. It is
then possible to eliminate int-based rewrite rules that contain a function symbol not occurring

in C' by combining an int-based rewrite rule state;(z1, ..., z,) — statej(ey, ..., e,)[¢], where
state; € C and state; ¢ C, with a rule state;(z1,...,2,) — stateg(e], ..., e),)[¢], resulting
in state;(x1,...,2,) — stateg(efw,...,elw)[e A Yw] where w = {21 — e1,..., 2, — en}.

This chaining needs to be done for all possible rules that have state; on their left-hand side.
The old rules are replaced by the new rules and the process is iterated until all rules with a
function symbol from C' on the left-hand side also have a function symbol from C on their
right-hand side.

» Example 6. Continuing Example 5, the control points are statesar, Statestop, Stateentry,,
stateppi,,, Statepy,,, and statereturn;,,- Combining rules w.r.t. these control points produces

in )

statestart (Ve , Uy, Vy.0, Ur.0, V1, V2) — Stateentry;, (Vz, Vy, Vy.0, Ur.0, U1, U2)
stateentry;, (Va; Uy, Vy.0, Ur.0, V1, V2) — Statepbi,, (Vz, Uy, Uy, 1,1, V2)
stateppi,, (Va; Uy, Vy.0, Ur.0, V1, U2) — Statepp,, (Va, Uy, Vy.0, Ur.0, V1,02) [Uy.0 > 0]
statepp,, (Va, Vy, Vy.0, Ur.0, V1, V2) — Statereturn;, (Va, Uy, Vy.0, Ur.0, V1, V2) [Vy.0 < 0]
statepp,, (’Uz, Vy, Vy.0, VUr.0, V1, ’Ug) — statepb;, (’UI, Vy, Vy.0—1, V.0 * Vg, V1, Vy.0— 1)
statereturn;, (Va, Uy, Vy.0, Vr.0, V1, V2) — Statestop(Vz, Uy, Vy.0, Vr.0, V1, V2)

as a new int-based TRS. <

After the combination of int-based rewrite rules, it is possible to remove some arguments
from the function symbols. Notice that the effect of instructions that are only used in the
same basic block where they are defined or in phi-instructions has been propagated by the
combination of rules. Thus, the corresponding variables can be removed as arguments from
the function symbols. On the syntactic level of rewrite rules, an argument position i is
unneeded if, for all rewrite rules [ — r[], the variable occurring in position ¢ of I does not
occur in ¢ and only in argument position 4 of .

» Example 7. After removing the unneeded arguments in Example 6,

statestart (Ve, Uy, Uy.0, Ur.0) — Stateentry;, (Vz, Vy, Vy.0, Vr.0)
stateentry;, (Va, Uy, Vy.0, Vr.0) — Stateppi,, (Vz, Uy, Uy, 1)
) — statepp,, (Va, Uy, Vy.0, Vr.0) [vy.0 > 0]
)
)
)

Statebbli — Statereturnin (U.’Ey Vy, Vy.0, UT.O) [[Uy.O S 0]]

n

T
T

Vz, Vy, Uy.O, Vr.0
T

statepp,, (Va, Uy, Vy.0, Ur.0) — Statewpy, (Va, Uy, Vy.0 — 1, V.0 * Uz)

in

(
(
stateppi;, (Vz, Vy, Vy.0, Ur.0
(
(
(

statereturn;, (Vz; Vy, Vy.0, Vr.0) — Statestop(vw7 Vy, Vy.0, 'UT'.O)

is obtained since arguments 5 and 6 are not needed. The methods outlined in Section 2 can
easily prove termination of this TRS. |
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3.3 Several Functions Operating on Integers

In this section it is discussed how the translation from LLVM-IR programs into int-based
TRSs can be extended to the case of several functions. For this, the user first specifies which
function should be the starting function for the termination analysis (often, this is the main
function). It is then necessary to include all functions that are (transitively) called by this
starting function in the termination analysis.

A given LLVM-IR program might not contain implementations of all functions being called.
Instead, some functions may only be given as prototype declarations (e.g., library functions).

» Assumption 2. All functions that are only declared as prototypes are terminating. Further-
more, these functions do not call functions defined in the program.

If the user-defined functions have a function call hierarchy with arbitrary recursion, then
it needs to be ensured that the sequence of recursive calls is terminating. For this, each call
instruction to a function with non-void type gives rise to two rewrite rules. One rewrite rule
introduces a fresh variable on the right-hand side which abstracts the return value of the
called function.! This rule has the form state;(...) — state;(...,z,...), where z is a fresh
variable. The second rewrite rule has the form state;(...) — statel,,.(...), where statel,,, is
the called function’s start symbol. A call to a function with void type is handled similarly,
but no fresh variable is introduced on the right-hand side.

» Example 8. The C and LLVM-IR programs in Figure 2 compute Ackermann’s function.
Termination of the generated TRS can easily be shown using the methods from Section 2. <

3.4 Programs Containing Pointers and Floating Point Numbers

int-based TRSs (currently) do not support pointers or floating point numbers. Thus, all
instructions of these types are ignored in the translation. In order to have a non-termination
preserving translation, instructions that take a pointer or a floating point number and return
an integer (such as load or fptosi) are abstracted to an unspecified value which corresponds
to a fresh variable on the right-hand side of the generated rule. Similarly, comparisons of
floating point numbers are abstracted to return arbitrary results.

3.5 Utilizing Static Analysis Methods

Notice that the translation from LLVM-IR programs into int-based TRSs does not propagate
information about the initial state of the program. Thus, the int-based TRS Rp might
be non-terminating even if the program P is terminating since reductions w.r.t. Rp are
not restricted to reductions that are reachable from the initial state. It is thus desirable
to make information about the initial state explicit throughout the program. Furthermore,
a successful automatic termination proof might require simple invariants on the program
variables (such as “a variable is always non-negative”). This kind of information can be
obtained automatically using static analysis tools such as Aspic/C2fsm [14]. The obtained
information can be added to the C program in the form of calls to an assume function
with a built-in semantics. In the translation, these calls are converted into constraints that
correspond to the invariants. We are planning to integrate a static analysis tool into the
translation process so that these annotations do not need to be added manually.

1 This simple abstraction is already sufficient in many cases. It is of course also possible to add constraints
on the return value. Non-recursive functions can also be inlined on the LLVM-IR level, thus precisely
tracking their return value.
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int ack(int m, int n) {

if (m <= 0)
return n + 1;
else if (n <= 0)
return ack(m — 1, 1);

Termination Analysis of C Programs Using Compiler Intermediate Languages

define 132 @ack(i32 %m, i32 %n) {
entry:

%0 = icmp sle i32 %m, O

br il %0, label %bb, label J%bbil

el bb‘yzl add nsw i32 % 1
il = nsw i /in,
) return ack(m — 1, ack(m, n — 1)); ret i32 Y1
bbl:
statestart (Um, Un ) — Stateentry;, (Um, Un) %2 = icmp sle i32 Yn, O
br il %2, label %bb2, label %bb3
stateentry;, (Vm, Un) — statepsy, (Vm, Un) [vm < 0]
stateentry;, (Um, Un) — statepby;, (’Um7 ’l}n) [[Um > Oﬂ bb2:
%3 = sub nsw i32 %m, 1
stateb,, (Vm, Un) — Statestop(vm, vn) %4 = call i32 Qack(i32 %3, i32 1)
statepby;, (vm,vn) — stateppy;, (Um, Un) an < 0]] ret 132 %4
statepp;, (Vm, Un) — statepss, (Um, Un) [Un > 0]  pp3:
statepba,, (Vm, Un) — statestart(vm — 1,1) 245 = sub nsw 132 %n, 1 ) .
%6 = call i32 @ack(i32 %m, i32 %5)
statepb, (Vm, Un) — Statestop(Vm, vn) %7 = sub nsw i32 %m, 1
statewbs;, (Vm, Un) — statesart (Vm, vn — 1) 48 = call 132 @ack(i32 47, 132 %6)
ret 132 %8
statepbs;, (Um, Un) — statestart (Um — 1, 2) }
statepbs;, (Um, Un) — Statestop(Vm, Un)

Figure 2 Ackermann’s function in C, LLVM-IR, and as an int-based TRS.

4 Evaluation

In order to show the effectiveness and practicality of the proposed approach, it has been
implemented in the tool KITTeL (KIT int-based TRS Termination Laboratory). Like its
predecessor pasta [12], KITTeL consists of about 2400 lines of OCaml code. The input to
KITTeL is an int-based TRS, the translation from LLVM-IR into int-based TRSs has been
implemented in the separate tool 11vm2kittel using about 3800 lines of C++ code.

The implementation in KITTeL/1lvm2kittel has been evaluated on a collection of
174 examples that were taken from various places, including several recent papers on the
termination of imperative programs [3, 5, 6, 8, 9, 19, 20|, the textbook [21], and the z1ib
compression library. Furthermore, 31 examples were taken from TPDB’s Java category
[23] and converted to C. The collection of examples includes “classical” algorithms such
as searching and sorting algorithms, cyclic redundancy check and hash code algorithms,
encryption/decryption algorithms, image processing algorithms, and numerical algorithms.
14 out of these 174 examples require simple invariants on the program variables (such as “a
variable is always non-negative”) for a successful termination proof. This kind of information
can be obtained automatically using static program analysis tools such as Aspic/C2fsm [14].

KITTeL/1lvm2kittel has been able to show termination of all?> examples fully automati-
cally, on average taking less than 0.3 seconds (on a 2.4 GHz Intel® Core™2 Duo processor
with 4 GB main memory) for each example, with the longest time being slightly more than 3
seconds. These times include the compilation from C into LLVM-IR, the translation from

2 If the invariants are omitted from the aforementioned 14 examples, then termination cannot be shown.
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LLVM-IR into a TRS, and the termination analysis of the obtained TRS. The following table
contains details for some of the examples. Here, “LOC” gives the number of code lines in
the C program and “RR” gives the number of rewrite rules that are generated.

’ C program ‘ LOC ‘ RR ‘ Time / s H C program ‘ LOC ‘ RR ‘ Time / s ‘
allroots 200 7 0.861 || fft 99 30 0.342
almabench 390 42 0.370 || hash 241 80 0.566
barr-crci16é 265 45 0.398 || jfdctint 366 15 0.374
barr-crc32 265 45 0.402 || lpbench 419 | 134 1.155
barr-crc-ccitt 265 35 0.318 || mergesort-recursive 42 50 0.634
bellman-ford 75 39 0.369 || n-body 141 35 0,287
blit 98 28 0.311 || prim 83 44 0.487
blowfish 476 43 0.389 || sort 138 90 0.757
bmpfile 749 | 254 3.050 || spectral-norm 52 39 0.312
bresenham 36 9 0.106 || sphere 157 68 0.617
c-aes 236 64 0.385 || spiral 176 80 0.722
c-des 399 64 0.477 || zlib-adler32 124 34 0.891
cube 146 68 0.616 || zlib-crc32-BYFOUR 335 41 1.182
dijkstra 78 58 0.693 || zlib-crc32 333 13 0.170

Notice that an empirical comparison with the methods from [5, 6, 8, 9, 19, 20] is not
possible since implementations of these methods are not publicly available. The 31 Java
programs from TPDB were also analyzed using the web interfaces of the Java termination
tools COSTA [1] and AProVE [18, 4] using the default settings.

H Successful proofs ‘ Unsuccessful attempts | Timeouts (60s) ‘ Average time / s ‘

KITTeL 31 - - 0.133
COSTA 22 9 - 0.265
AProVE 28 - 3 13.265

Thus, KITTeL clearly shows the practicality and effectiveness of the proposed approach
on a collection of “typical” examples. The examples, detailed results, an a link to a web
interface of KITTeL are available at http://baldur.iti.kit.edu/~falke/kittel/.

5 Conclusions

We have presented a method for showing termination of C programs that is based on compiler
intermediate languages and term rewriting techniques. For this, a C program is translated
into an intermediate language by the compiler frontend and the obtained intermediate
representation is then translated into a term rewrite system. Finally, termination of the
obtained TRS is shown using term rewriting techniques.

In this paper, all integer types of the intermediate language are identified with Z. Notice,
however, that this abstraction might alter the termination behavior of the program under
investigation. The methods from [5, 6, 8, 9, 19, 20] also exhibit this problem, and only
[7] investigates the generation of ranking functions for bitvectors. In future work, we are
planning to investigate how to model the bitvector behavior more precisely. While the
translation into TRSs does not need to be modified substantially, proving termination of a
TRS operating on bitvectors has not been investigated thus far. A further topic for future
work is to suitably model the memory content (stack, heap, and global variables).
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