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Abstract
We present Anagopos, an open source tool for visualizing reduction graphs of terms in lambda
calculus and term rewriting. Anagopos allows step-by-step generation of reduction graphs under
six different graph drawing algorithms. We provide ample examples of graphs drawn with the tool.
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1 Introduction

Anagopos1 is a tool for visualizing reduction graphs (see, e.g., Figure 1). We created the
software with the following two goals in mind:

Figure 1 The sphere-like reduction graph
of (ttI)(ttI) with I = λx.x and t = λxy.~yxxy,
where ~y = yy · · · y︸ ︷︷ ︸

15

.

Automation Allow for the drawing of large num-
bers of reduction graphs, which is infeasible
by hand; this will hopefully allow researchers
to formulate new hypotheses regarding the
topological properties of reduction graphs.

Visualization Allow for the dynamics of rewrit-
ing to be shown more clearly to students. For
example, in the case of the Church-Rosser
Theorem, it is often hard for students to com-
prehend the dynamics when moving beyond
either single step reductions, or beyond the
tiling diagram usually drawn in the proof for
orthogonal systems.

Anagopos can draw reduction graphs of both
(untyped) lambda terms and terms from (first-
order) term rewriting. To provide immediate

1 Roughly a contraction of the Greek words anagogí (reduction) and tópos (place).
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62 Anagopos: A Reduction Graph Visualizer

access to a large number of predefined term rewriting systems, the tool supports the XML-
format used by the Termination Problems Data Base (TPDB) from version 7 onwards2. As it
is a priori not clear what constitutes a good layout for a reduction graph, Anagopos supports
multiple algorithms for drawing graphs.

Anagopos is implemented in Python 2.6 [23] and available for download from:

http://code.google.com/p/anagopos/

Packages for Ubuntu and other Debian-based systems are provided, as well as a binary for
Mac OS X. The source code is available under the GNU General Public License (GPL).

Related software. The only other tool capable of drawing reduction graphs seems to be
the traces function from PLT Redex [21]; it appears to support only a hierarchical graph
drawing algorithm (displaying the initial term on the left and drawing successive reducts
further and further to the right). More common are tools that compute reductions: The user
specifies the starting term of a reduction and the subsequent redexes contracted are then
either selected by the user, or by the program following some pre-defined reduction strategy.
Roughly, these tools can be classified according to their presentation of terms, this either in
some textual form [27, 37], or in the form of a parse tree [20, 24, 33, 31, 5].

Although not a software tool, also worth mentioning in this context for its graphical
qualities is the Alligator Eggs puzzle game that teaches lambda calculus to children by
representing lambda abstractions as alligators and variables as their eggs [36].

Outline. The paper is structured as follows: In Section 2 we provide background on
reduction graphs. In Sections 3, 4, and 5 we describe, respectively, the interface, graph
drawing algorithms, and architecture of Anagopos. In Section 6 we conclude, mentioning
some directions in which Anagopos can potentially be extended, and suggesting a number of
open problems whose solutions could potentially be found with the help of Anagopos.

2 Reduction Graphs

Recall that an abstract rewrite system (ARS) consists of a set A and a set of binary relations
over A; throughout this paper, we consider only a single relation at a time, writing an ARS
as a pair (A,→). Also recall that the abstract reduction system induced by a term rewriting
system (TRS) is obtained by letting A be the set of terms and → be the rewrite relation
over the set of terms. The following is a slight adaptation of Definition 1.1.7 in [30]:

I Definition 2.1. Let (A,→) be an ARS and let a ∈ A. The reduction graph G(a) of a is
the directed graph (V,E) such that V is the set of reducts of a and (b, c) ∈ E iff b→ c.

The literature on reduction graphs for term rewriting systems is sparse, consisting of few
general results beyond the standard confluence and Church-Rosser diagrams. For lambda
calculus, many basic notions were defined, and conjectures posed, by Barendregt [2] and
Klop [16]. The first comprehensive study of reduction graphs appears to be by Venturini
Zilli [35, 34]. Subsequent studies by Hirokawa and Sekimoto, and Intrigila and Laurenzi
have disproved several early conjectures concerning reduction graphs [26, 11]. Intrigila and
Venturini Zilli have investigated representability of ordinals as reduction graphs of lambda
terms [12].

2 See http://www.termination-portal.org/ for the database and details on the XML-format.
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(a) G(k5) whose underlying undirected
graph is K5.

(b) G(c4) whose underlying undirected
graph is the 4-dimensional hypercube.

Figure 2 The reduction graphs of two of the lambda terms defined in Proposition 2.3. Both
graphs are drawn with the Neato drawing algorithm (see Section 4).

Very few general, positive results are known for reduction graphs; the following does hold:

I Proposition 2.2. For every connected digraph G with precisely one source node, there
exists a TRS R and a term t of that TRS such that G(t) = G. If G is finite, then R may be
chosen to have finitely many rules.

Proof. Let the signature of R have a distinct, nullary function symbol for each node of G,
and for any two function symbols a and b let there be a rule a→ b iff the node corresponding
to a has a directed edge to the node corresponding to b. Let t be the function symbol
corresponding to the source node of G. Then, G(t) = G. J

Clearly, by the above proposition, Anagopos requires general graph drawing algorithms
to draw reduction graphs.

For lambda calculus, we have:

I Proposition 2.3. The following (families of) graphs are realizable as the underlying
undirected versions of reduction graphs of lambda terms:

1. For every positive natural number n, the complete undirected graph Kn on n nodes.
2. For every positive natural number n, the underlying undirected graph of the n-dimensional

hypercube.

Proof. We give the families of terms explicitly (see also Figure 2):

1. Fix a variable y and define k1 = y, and kn+1 = (λx.y) kn for all n ≥ 1. Then, for any
n ≥ 1, a straightforward induction shows that for all 1 ≤ i ≤ n: kn+1 →β ki, whence the
result follows.

2. Fix a variable y and define s = (λx.x) y. Set s1 = s and sn = s sn−1 for n > 1.
Then the set of nodes of the reduction graph of sn are all of the form u1 · · ·un with
ui ∈ {s, y} for all 1 ≤ i ≤ n, and directed edges between all pairs u1 · · ·ui−1 s ui+1 · · ·un
and u1 · · ·ui−1 y ui+1 · · ·un. Clearly, the underlying undirected graph is (isomorphic) to
the n-dimensional hypercube. J

RTA’11



64 Anagopos: A Reduction Graph Visualizer

By the above, K5 may occur as the underlying undirected graphs of lambda terms. Thus, by
Kuratowski’s theorem, reduction graphs of lambda terms are not, in general, planar.

Not every digraph can occur as reduction graph in lambda calculus; an example is the
digraph • •oo // • , which cannot occur by the Church-Rosser theorem.

Figure 3 The graph of I((λy.Ix)z), as
drawn with Dot (see Section 4). The starting
term occurs at the bottom.

In addition to the above, observe that a re-
duction graph need not have a lattice structure,
even in case of orthogonal systems [4, 18]: Con-
sider, for example, the reduction graph of the
lambda term I((λy.Ix)z) in Figure 3, taken from
[19] and with I = λx.x, where the starting term
occurs at the bottom; note that the set consisting
of the two nodes with two successors each does
not have a least upper bound.

For lambda calculus and orthogonal term
rewriting systems, one can instead consider an-
other type of graph: The Hasse diagram of reduc-
tions with extension as ordering. As complete
developments in such systems satisfy the Cube
Lemma, the resulting graph is a complete lattice
[4, 18]. Anagopos currently does not support visualization of these reductions.

3 Anagopos—Interface and User’s Guide

The main interface of Anagopos is shown in Figure 4. On the right, the reduction graph of
the current term is shown (to improve aesthetic quality self-loops are omitted). The area on
the left is divided into three distinct parts:

At the top, see Figure 5(a), we can choose between visualization of either a lambda term
or a first-order term and input the term we are interested in. The syntax of the terms is
as expected, except that in lambda terms λ is replaced by \. A random term can also be
generated.
In the middle, see Figure 5(b), a number of buttons occur that influence the step-by-step
drawing of reduction graphs, as explained below.
At the bottom the term is displayed that corresponds to the last node from the reduction
graph selected by the user.

Graph drawing—the middle-left area. The middle-left area supports the step-by-step
drawing of reduction graphs. The Draw Graph button will display the nodes representing
the initial term and its immediate reducts. Successors of reducts are, respectively, added and
removed by pressing the Forward and Backward buttons, where the numbers indicate the
number of reducts that will be treated.

Of the remaining interface elements, the Redraw Graph button resets the positions of the
vertices and re-computes the layout of the reduction graph. The Optimize Graph button
instructs the force-directed graph drawing algorithms (see Section 4) to attempt to improve
the layout. Finally, the particular graph drawing algorithm can be selected under Select
Layout Algorithm and Show start and Show newest mark, respectively, the initial vertex of
the reduction graph and the last one whose immediate reducts were computed.
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Figure 4 Anagopos displaying part of G((λx.xx(xx))(λx.xxy)) using Neato (see Section 4).

(a) The top-left area. (b) The middle-left area.

Figure 5 Close-ups of two parts of the user interface.
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4 Anagopos—Graph Drawing Algorithms

Anagopos supports six general graph drawing algorithms, including three variations from
the class of so-called force-directed algorithms, the current de facto standard in general
graph drawing; all algorithms in this class draw graphs by employing minimization methods
involving mechanical attraction and repulsion of nodes. For background on these drawing
algorithms and others, including the ones mentioned below, we refer the reader to the relevant
survey literature [3, 10, 14].

The six supported graph drawing algorithms are as follows, where we refer the reader to
Figure 6 to get a taste of the drawings produced by each of the algorithms:
Neato and Neato Animated These are, respectively, the force-directed algorithm from

[13, 8] and a slight variation with an animation-like appearance, which also draws the
graph at intermediate stages of the minimization taking place.

Fdp This is an implementation of the force-directed graph drawing algorithm from [7].
Dot Constructs a hierarchical layout using Bézier curves for edges.
Circo and Twopi These are, respectively, an implementation of the algorithm from [28, 15],

placing nodes on a circle, and the algorithm from [38], placing nodes on several concentric
circles.

Implementation Details. Except for the Neato Animated algorithm, which we implemented
ourselves to allow for its animation-like appearance, we draw heavily on the GraphViz graph
visualization library [1], providing off-the-shelf implementations of all mentioned algorithms.
This too explains the choice of the drawing algorithms.

To facilitate the implementation of the Neato Animated algorithm, we also implemented
the highly efficient algorithm from [25] for solving the distance version of the all-pairs-
shortest-path problem. As many graph drawing algorithms (and also other graph related
tasks) depend on finding the graph-theoretical distance between all pairs of nodes, we expect
this algorithm will find further uses in future extensions of Anagopos.

Anagopos lends itself to easy addition of new graph drawing algorithms; one is only
required to implement a very simple interface DrawingAlgorithm through which (a) a graph
can be passed to the drawing algorithm, and through which (b) the algorithm can be told to
compute a layout for the given graph.

5 Anagopos—Architecture

Anagopos is implemented in Python 2.6 [23], making heavy use of the object-oriented features
of the language. The tool has a Model-View-Controller architecture [17], separating the
model (the reduction graph of a term) from the manipulation of the model (user input) and
the presentation of the model (display of the reduction graph).

The interface is implemented using wxWidgets [29], a cross-platform GUI library. The
various parsers of Anagopos (for parsing TRSs, first-order terms, and lambda terms), are
simple and implemented either by hand or using pyparsing [22]. The only exception is the
TPDB parser which is constructed around the Expat XML parser [6].

Internally, terms are represented as DAGs; bound variables of lambda terms are canonized
to ensure alpha equivalent terms have a unique representation (canonization retains informa-
tion on unbound variables within the term structure). Reduction graphs are represented as
instances of a custom-made Graph-class.
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(a) Neato: Attempts to ensure that neighbor-
ing nodes are at equal distance from each other.

(b) Neato Animated: As Neato, but with op-
timizations animated. The picture shows the
graph at a stage where it is not fully optimized.

(c) Fdp: Produces a graph comparable to
Neato, but in this case reaches a local min-
imum with a loop-like quality.

(d) Dot: Attempts to create a hierarchy, which
proves difficult in this case due to the large
number of cycles in the reduction graph.

(e) Circo: Places all nodes of the reduction
graph on a circle.

(f) Twopi: Places the nodes on several concen-
tric circles.

Figure 6 A partial reduction graph of the lambda term HIH from [2, Exercise 3.5.5(i)], with
H = λxy.x(λz.yzy)x and I = λx.x, as drawn with each of the supported drawing algorithms.

RTA’11
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(a) The reduction graph of the term
((λx.x)y)((λx.xxx)λy.y)((λx.xx)λy.y).

(b) G((ttI)c2) with t = λxy.yyyyxxy,
I = λx.x, and c2 as in Proposition 2.3.

Figure 7 The “poor man’s 3D-effect” visible in some of the reduction graphs drawn with Neato.

The reduction graphs are generated in a breadth-first fashion. Currently, Anagopos con-
tracts at most 106 redexes per graph; this value is easily changed, but GraphViz performance
becomes problematic for graphs of larger size.

6 Conclusion and Future Work

We have presented Anagopos, a tool for drawing reduction graphs of both lambda terms and
terms from term rewriting. While we regard Anagopos in its current incarnation mainly as
a tool for education and leisure, we believe that the tool may prove useful for hypothesis
formation and, possibly, the formulation of proofs of new results concerning reduction graphs.
As an appetizer, we mention the following problems:

The set of reduction graphs of the set of terms of a TRS with finite signature is recursively
enumerable. Which recursively enumerable classes of finite graphs are realizable as the set
of reduction graphs of a terminating TRS? And, if we drop the requirement that graphs
need to be finite, which classes of countable graphs are realizable as the set of reduction
graphs of a TRS?
Precisely which undirected graphs can be realized as the underlying undirected graphs of
lambda terms?

Anagopos is open source and easily extended. Based on our initial experimentation with
the tool, it would be obvious to include support for some general higher-order rewriting
format and to implement zooming, panning, and manual rearrangements of the nodes of
graphs. Furthermore, considering the tantalizing “poor man’s 3D-effect” of force-directed
algorithms such as Neato (see Figure 7), it seems natural to try to generate three-dimensional
representations of the graphs combined with rotation. Moreover, use could be made of
a general-purpose visualization framework like Tulip [32], which not only allows for easy
visualization of graphs, but also of meta-data concerning the graphs. Finally, while we
have considered only the most basic notion of a reduction graph, as induced by the “raw”
rewrite relation of lambda calculus and TRSs, the standard literature on rewriting also
considers equivalence relations over reductions (e.g., in orthogonal TRSs) [30, Chapter 8]; it
would be natural if Anagopos could also take an equivalence relation as input and generate
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the resulting graphs. This could include equivalence relations designed specifically to give
insight into the global structure of reduction graphs; something which has already shown its
usefulness in the area of state space visualization [9].

Acknowledgments The authors thank Jan Willem Klop, Peter Sestoft, and the anonymous
referees for useful feedback.
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