
Constraints in Non-Boolean Contexts
Leslie De Koninck, Sebastian Brand, and Peter J. Stuckey

National ICT Australia, Victoria Research Laboratory
Dept. of Computer Science & Software Engineering, University of Melbourne
Australia
{lesliedk,sbrand,pjs}@csse.unimelb.edu.au

Abstract
In high-level constraint modelling languages, constraints can occur in non-Boolean contexts:
implicitly, in the form of partial functions, or more explicitly, in the form of constraints on local
variables in non-Boolean expressions. Specifications using these facilities are often more succinct.
However, these specifications are typically executed on solvers that only support questions of the
form of existentially quantified conjunctions of constraints.

We show how we can translate expressions with constraints appearing in non-Boolean contexts
into conjunctions of ordinary constraints. The translation is clearly structured into constrained
type elimination, local variable lifting and partial function elimination. We explain our approach
in the context of the modelling language Zinc. An implementation of it is an integral part of our
Zinc compiler.

1998 ACM Subject Classification F.4.1 Mathematical Logic: Logic and constraint program-
ming; F.3.3 Semantics of Programming Languages; I.2.2 Automatic Programming: Program
transformation

Keywords and phrases Constraint modelling languages, model transformation, partial functions

Digital Object Identifier 10.4230/LIPIcs.ICLP.2011.117

1 Introduction

In high-level constraint modelling languages such as Essence [3], OPL [13] and Zinc [8]
constraints can occur in non-Boolean expressions: i.e. expressions whose value is not a
Boolean, but for instance an integer. Most commonly, such constraints appear in the form
of partial functions. For example “y + 1 div y = 2 ∨ y 6 0” is a constraint involving an
application of the partial function div (integer division), which is undefined if the divisor
equals zero. The subexpression 1 div y is an integer expression that implicitly introduces
the constraint that y must be non-zero.

Several proposals for dealing with such constraints resulting from partiality are studied
in [5]. In an imperative language, we may simply abort if y takes the value 0, but in a declar-
ative language, this is unacceptable. The most popular approach for (constraint) modelling
languages is the so-called relational semantics, which treats functions as “shorthand” for
relations, since this is easy to support by solvers. In this semantics, the implicit constraint
y 6= 0 is active at the nearest enclosing Boolean context. The above example thus means
“(y + 1 div y = 2 ∧ y 6= 0) ∨ y 6 0”.

In Zinc, constraints in non-Boolean contexts can also arise in the form of a local variable
declaration in a non-Boolean context if the type-inst1 is constrained. Local variables are
created using expressions of the form “let {T : x = A} in E” where E is a (Boolean or

1 A type-inst in Zinc is the combination of a type, such as int, and an instantiation pattern. See Section 2.

© Leslie De Koninck, Sebastian Brand, and Peter J. Stuckey;
licensed under Creative Commons License NC-ND

Technical Communications of the 27th International Conference on Logic Programming (ICLP’11).
Editors: John P. Gallagher, Michael Gelfond; pp. 117–127

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICLP.2011.117
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

118 Constraints in Non-Boolean Contexts

non-Boolean) expression in which we introduce a new local variable called x whose type-inst
is T and whose assignment (optional) is A. A formal semantics of these let expressions is
given in Section 2.

Now consider the following constraint, imposing an ordering between two tuples
(u, v) < (y, let {var 0..4: x = 2 · y + 1} in x · x)
where a local variable x is introduced to factor out a computation. It also implicitly intro-
duces the constraint 0 6 x 6 4 in the context of the non-Boolean expression x · x. In the
relational semantics this constraint is active at the level of the nearest enclosing Boolean
expression, that is, at the level of the tuple comparison.

In the above example, we introduced a range type-inst (var 0..4), which is one of the
forms of constrained type-ints in Zinc. The most general form is the arbitrarily constrained
type-inst: (T : x where C(x)) with T a type-inst, x a name to refer to any value of T , and
C(x) a constraint that all values of the resulting constrained type-inst have to satisfy.

Constrained type-insts are useful to improve locality during modelling, but in particular
they also frequently arise in the process of (automatic) type reduction: the mapping of com-
plex structured types to basic types that can be handled by solvers. Consider the expression
min((x, 1), (y, 2)) where x and y are integer variables, which represents the minimum of the
tuples (x, 1) and (y, 2) (in lexicographic order). It may be mapped to
let {(tuple(var int, var int): t

where (x 6 y → t = (x, 1)) ∧ (x > y → t = (y, 2))): m} in m

so that it can be dealt with by solvers that do not support min/2 over tuples.
These examples illustrate how constraint models can involve (in some cases quite com-

plex) constraints attached to non-Boolean expressions. To match the relational semantics
of constraint modelling languages, and to eventually reach a constraint model that can be
directly supported by underlying solvers, these constraints must be lifted to the nearest
enclosing Boolean context. This is a non-trivial task since the enclosing non-Boolean oper-
ations can be deeply nested.

While Zinc has a direct way of expressing constraints in non-Boolean contexts using local
variables with constrained type-insts, other constraint modelling languages such as F [7] and
Essence [3] have to deal with such constraints as well during model transformations. In
these languages, the model transformation rules need to keep track of constraints attached to
non-Boolean expressions, and each rule needs to state how to deal with them appropriately.

In this paper, we propose a series of transformations to obtain the relational semantics
for non-Boolean expressions that have constraints attached to them. Partial functions are
a special case of this, and in that respect, this work generalises [5] by dealing with any
sort of constraint in a non-Boolean context, and by decomposing the problem into partial
function elimination, local variable lifting and constrained type elimination. While we focus
on the Zinc language, this work is relevant to all constraint modelling languages and logic
programming-based languages that allow partial function applications, and in particular also
to functional-logic programming languages such as Curry [6]. Our transformations have the
following significant features:
Zinc-to-Zinc: the result of the transformations is Zinc – no separate information outside a

model needs to be maintained. This means these transformations can be followed by or
combined with other Zinc transformations.

Data-independence: the transformations are independent of parameter values. Instance
data need not be available at transformation time.

Locality: the transformations are only concerned with those parts of the model that contain
non-Boolean constraints. Flattening of the model is not required.

Leslie De Koninck, Sebastian Brand, and Peter J. Stuckey 119

2 Preliminaries

Zinc. A Zinc model consists of a set of items for decision variable and parameter declar-
ations, constraints, solving objective and output. A variable or parameter declaration has
the form “T : x” or “T : x = A”, where x is the name of the variable, T is its type-inst and
expression A is its optional assignment.2 A type-inst is the combination of a type (a set of
values) and an instantiation pattern, which determines which components of a variable are
fixed when solving starts. Examples of type-insts are int, var 0..1, tuple(bool, var float)
and array[int] of var set of 1..9, representing respectively an integer parameter, a binary
variable, a tuple whose first and second field are a Boolean parameter and a float variable
respectively, and an integer-indexed array whose elements are set variables taking elements
from 1..9. The distinction between variables and parameters via the instantiation pattern
in the type is crucial for data-independent transformation and compilation of Zinc models.

A constraint item holds a constraint. A solve item states whether the aim of solving is
satisfaction, or optimisation in which case it also holds the objective function. An output
item states how a solution to the problem should be presented. There are other types of
items; see [8] for more details.

I Example 1. Here is a simple Zinc model:

int: c; % declare an integer parameter c
var set of 1..3: s; % declare a set variable s, subset of {1, 2, 3}
constraint card(s) = c; % enforce that the cardinality of s is c
solve satisfy; % search for any solution
output [“s = ”, show(s)]; % output the resulting set

c = 2;

The last line defines the parameter c. It could be in a separate data file. J

In the following, we highlight some features of Zinc that are important for our discussion.
Zinc supports type-insts beyond the base ones (int, float, etc.), called constrained

type-insts. One particularly expressive case of these are arbitrarily constrained type-insts.
An example is (int: i where i > 0), denoting the positive integers.

Variables with a local scope can be introduced by let expressions. The scope, and thus
the type-inst of the let expression itself, can be Boolean or non-Boolean. One can have
multiple comma-separated variable declarations inside a single let expression.

Zinc allows the user to define their own functions and predicates (functions returning var
bool). A function definition has the form “function T : f(T1: x1, . . . , Tn: xn) = E”, where
T is the return type-inst, f is the function name, Ti and xi are respectively the type-insts
and names of its arguments, and E is its body, which is an expression of type-inst T .

Semantics of Zinc. In this paper we are mainly concerned with constraints on non-Boolean
expressions. In the introduction, we already gave an example of the intended meaning of an
expression involving division. In the relational semantics, we consider Boolean expressions
only, and in particular we decompose nested non-Boolean expressions into a conjunction of
equality constraints. We denote the meaning of a Boolean expression E by I(E). Here is a
(partial) definition of I, given in priority order:
I(x = y) := x = y where x and y are variables or constants;

2 A parameter must be assigned, but the assignment can be in a separate data file.

ICLP 2011

120 Constraints in Non-Boolean Contexts

I(x = B) := x ↔ I(B) with x a variable or constant and B a Boolean expression;

I(x = f(y1, . . . , yn)) := ∃y′
1, . . . , y′

n :
∧

i∈1..n I(y′
i = yi) ∧ x = f(y′

1, . . . , y′
n) for

any total non-Boolean function f/n where x is a variable or constant;

I(x = f(y1, . . . , yn)) := ∃y′
1, . . . , y′

n :
∧

i∈1..n I(y′
i = yi) ∧ p(y′

1, . . . , y′
n, x)

for any partial non-Boolean function f/n where x is a variable or constant and
p(z1, . . . , zn, zn+1)↔ (f(z1, . . . , zn) = zn+1);

I(x = let {T : y = A} in E) := ∃y : Iti(T, y) ∧ I(y = A) ∧ I(x = E) with x a
variable or constant and Iti(T, y) the interpretation of y being of type-inst T ;

I(p(x1, . . . , xn)) := ∃x′
1, . . . , x′

n :
∧

i∈1..n I(x′
i = xi) ∧ p(x′

1, . . . , x′
n) for any pre-

dicate p/n, including operators such as ∧/2, ¬/1, = /2 and 6 /2.
The interpretation for partial functions can also be used for total functions; however, the
latter is more compact.

I Example 2. For the example from the introduction we find

I(y + 1 div y = 2 ∨ y 6 0) =
(∃i1 : (∃i2 : div(1, y, i2) ∧ i1 = y + i2) ∧ i1 = 2) ∨ y 6 0

(after some simplification). For y = 0 it evaluates to true. J

From Zinc to solver. Our compiler for Zinc proceeds in two main stages. First, the high-
level Zinc model is reduced to an equivalent model in a subset of Zinc called CoreZinc. For
fixed expressions (expressions over parameters), CoreZinc is equivalent to Zinc. For expres-
sions involving decision variables, CoreZinc is similar to MiniZinc [9]. The transformation
from Zinc to CoreZinc is done independently of instance data by rewrite rules in the model
transformation language Cadmium [1].

The resulting CoreZinc model is compiled into procedural code for the entire solution
process, that is, to create variables and post constraints in the solvers, maintain communic-
ation between solvers, handle search, and generate output.

To handle constraints in non-Boolean context there are three interacting translations:
elimination of constrained type-insts, lifting local variables, and elimination of unsafe partial
function applications. They are described in the following three sections.

3 Elimination of Constrained Type-Insts

In Zinc, type-insts can be basic (e.g. bool, int, float) or constrained. Constrained type-
insts have one of the following forms:

ranges of the form “l..u” with l and u either (fixed) integer or float expressions;
enumerated sets, e.g. {1, 3, 4}, or set parameters;
arbitrarily constrained type-insts of the form (T : x where C(x)) with T a type-inst, x a
name, and C(x) a constraint;
structured type-insts with constrained type-insts as components.

Solvers typically support range domains for their variables. The more complex type con-
straints, however, need to be converted into regular constraints.

A constraint in the type-inst of a global variable can immediately be extracted and
posted as a regular constraint at the model root level. The interesting case is that of a local
variable with constrained type-inst. In that case, the type constraints need to be lifted to

Leslie De Koninck, Sebastian Brand, and Peter J. Stuckey 121

the nearest enclosing Boolean context. This is done by first lifting the variable declaration
to this nearest Boolean context and then extracting the parts of the type constraint that
can cause failure. The lifting to a Boolean context is described in Section 4. We show here
how to extract the type constraint and add it to the Boolean context of the declaration.

The type-inst in the declaration of a local variable can cause failure in three ways:
(a) the type domain of the variable is empty;
(b) its assignment is not within its type-inst;
(c) its assignment fails.

We deal with case (a) by redeclaring the local variable with a guaranteed non-empty
type-inst and adding a constraint stating that the original type-inst must be non-empty.
For range type-insts, we do so by transforming “let {var l..u: x} in B” into
“let {var l..max(l, u): x} in B ∧ l 6 u”. Here and in what follows, B is Boolean because
we assume the let expression has already been lifted to the nearest Boolean context.

Local declarations with non-range set type-insts are dealt with as follows:

let {var s: x} in B

which states that x can take any value in s, is transformed into

let {var (if card(s) > 0 then s else {d} endif): x} in B ∧ card(s) > 0
where d is an arbitrary value of the appropriate type, e.g. 0 for the integers.

For tuples and record types, we ensure each field has a non-empty type-inst. Set types
are always non-empty, as the empty set is always a possible value. Array types are non-
empty if their element type is non-empty. The index type can be empty, as in such case the
empty array is a possible value.

For case (b), an assignment that might not be within the type-inst, we relax the type-
inst to its base type-inst, which always includes the assigned value. The original type-inst
is made explicit as an arbitrarily constrained type-inst and then extracted.

For range type-insts, “let {var l..u: x = A} in B” is transformed into
“let {var int: x = A} in B ∧ l 6 A ∧ A 6 u”.

For set type-insts in general, “let {var s: x = A} in B” is transformed into
“let {var T : x = A} in B ∧ A in s” where T is the (base) element type of s.

The final case (c), a (non-Boolean) assignment that fails, can only occur because of
partial functions. We treat it in Section 5.

4 Lifting Local Variables

Constraints that appear in non-Boolean contexts, either implicitly for partial functions or
explicitly, must be lifted to the nearest enclosing Boolean context. Similarly, in order to
allow solving by a constraint solver that can only handle existentially quantified conjunctions
of constraints, all local variables must be lifted to the top level.

Local variable lifting is the process of lifting local variable declarations through enclosing
expressions, modifying the declarations and occurrences of the declared variables as needed.
It is the key step in dealing with these kinds of requirements.

In this section we show how we can lift local variable definitions through the different
Zinc constructs.

ICLP 2011

122 Constraints in Non-Boolean Contexts

4.1 Base Case
The base case for lifting is simple. For non-Boolean expression Ei, introducing local variable
x and appearing as an argument to function f : f(E1, . . . , let {T : x} in Ei, . . . , En)
transforms into let {T : x} in f(E1, . . . , Ei, . . . , En). We assume x does not occur in
E1, . . . , Ei−1, Ei+1, . . . , En, renaming it to a unique new name if necessary.

4.2 Boolean Contexts
For a local variable declaration in a Boolean context, we apply the transformations of Sec-
tion 3 to extract potentially failing type constraints. We can then safely lift the local variable
above the Boolean context in which it appears using the base case.

One complication is that Zinc does not allow unassigned local variables in negative
Boolean contexts, such as the argument of not or the first argument of implication ->. This
is because existentially quantified variables become universally quantified by lifting through
negation, and our target solvers do not implement universal quantification.

I Example 3. The expression “not (let {var float: x} in B)” means that there is no float
value x for which B holds. In other words, for all float values x, expression B is false. J

Original Zinc models with unassigned local variables in negative contexts will be rejec-
ted, hence all originally occurring let constructs can be lifted out. The failure extraction
transformations of Section 3 never remove an assignment.

However, sometimes an unassigned local variable may in fact be constrained to a single
value by a type constraint. For example, “let {(T : x where x = A): y} in E(y)” is
of course equivalent to “let {T : x = A} in E(x)”. Another example, that cannot be
written equivalently as an assignment, was given in the introduction where we translated
the minimum of two tuples into an appropriately constrained tuple variable. We allow such
implicitly assigned variables to be lifted over negative contexts.

4.3 Structured Types
Constraints can occur within a component of a structured type, e.g. within a field of a tuple
or within an element of an array. Following the relational semantics, this constraint holds
for the whole structure, and so we have to be careful with evaluating structure access as
shown in the following example.

I Example 4. Consider the constraint “(5, let {var 1..10: i = 0} in i).1 = 5”. Evaluating
the tuple access would result in “5 = 5”, which is trivially true. Alternatively, we could lift
the declaration, giving us “let {var 1..10: i = 0} in ((5, i).1 = 5)” which further evaluates
to false. The correct answer is found by looking at the semantics (Section 2) and treating
tuple construction and access as non-Boolean functions. We obtain t.1 = 5 ∧ t = (5, t2) ∧
(∃i : i = 0 ∧ i ∈ 1..10 ∧ t2 = i). The failure holds for the entire structure. J

One important consequence of this is that some seemingly reasonable simplifications are
incorrect. For example, the tuple access (a1, . . . , an).i cannot always be replaced by ai.

4.4 Comprehensions
An array comprehension [H(i) | i in G where W (i)] generates an array of instances of
H for each value in the array G satisfying condition W . Local variables can appear in
comprehensions in three places: in the comprehension head H, in a generator expression G,
and in the condition W . We now look at each of these in detail.

Leslie De Koninck, Sebastian Brand, and Peter J. Stuckey 123

Comprehension head. The way a local variable declaration is lifted outside of a compre-
hension head depends on which of the following properties the declaration has:
(1) the type-inst is independent of the generator;
(2) the assignment (if present) is independent of the generator;
(3) the assignment (if present) is free of local unassigned variables.
Before describing the general approach, we give two special cases for which we can do better.

Special case 1: an assignment is present and all properties (1), (2) and (3) hold. We can
lift the variable declaration outside as is, as the different instantiations of the declaration,
one for each value of the generator, have the same value and type-inst. More formally,
[let {T : x = A} in E(x) | g in G] is rewritten to let {T : x = A} in [E(x) | g in G].

I Example 5. To see that property (3) is indeed needed, consider
[let {var int: x = y + let {var 0..8: z} in z} in a[x] > 0 | i in 1..9]
which evaluates to an array of 9 Boolean variables. This would become
let {var int: x = y + let {var 0..8: z} in z} in [a[x] > 0 | i in 1..9].
However, this is not equivalent to the original version: it would force all 9 instantiations of
z (and x by transition) to take the same value. J

Special case 2: property (1) holds, and if an assignment is present, it does not have
property (2) or (3). In this case the instantiations of the local variable within the compre-
hension are different in general. We need one copy of it for each generator value. Therefore,
we create an array of variables outside the comprehension and replace each occurrence of
the original local variable by a lookup into this array. More concretely,
[let {T : x = A(g)} in E(x) | g in G] is rewritten to
let {array[G] of T : y = [A(g) | g in G]} in [E(y[g]) | g in G]. The case without an
assignment to x is similar: we simply omit the assignment to y.

Here, we use the generator as an index into the array. This is not always possible, i.e.
when the generator values are either not fixed, or potentially contain duplicates. If necessary,
we first transform the comprehension so that its generator ranges are sets. For example,
[E(x) | g in G] is rewritten to [E(G[g′]) | g′ in index_set(G)].

General case: property (1) does not necessarily hold. Again, we create an array for
separate declarations outside of the comprehension, but this time we need to generalise the
type-inst of its element type to make it independent of the generator. This is done in two
steps. We will illustrate them using the comprehension
[let {T (g): x = A(g)} in E(x) | g in G].
First, we make those type constraints that depend on the generator explicit by using an
arbitrarily constrained type-inst:
[let {(T ′: y where CT (y, g)): x = A(g)} in E(x) | g in G]
where T ′ is a supertype of T that does not depend on g. In the second step, we create
a constrained type-inst for the resulting array in which each element has the appropriate
generator-dependent type constraint:
let {(array[G] of T ′: w where forall(g in G)(CT (w[g], g))): z =

[A(g) | g in G]} in [E(z[g]) | g in G]
I Example 6.
[let {tuple(var 1..j, var i..j): x = f(i)} in g(x) | i in 1..5]

ICLP 2011

124 Constraints in Non-Boolean Contexts

is a more concrete example. Only the second component of the type-inst of x depends on a
generator. It is first transformed to
[let ({tuple(var 1..j, var int): y where i 6 y.2 ∧ y.2 6 j): x = f(i)}

in g(x) | i in 1..5].
Then the constrained type-inst is lifted out of the comprehension to give
let {(array[1..5] of tuple(var 1..j, var int): y where

forall(i in 1..5)(i 6 y[i].2 ∧ y[i].2 6 j)): x = [f(i) | i in 1..5]}
in [g(x[i]) | i in 1..5]. J

Generator expression. A declaration in the generator expression can directly be lifted out
of the comprehension since it is independent of the generator.

where condition. The where condition forms a Boolean context, and so the rules of Sec-
tion 3 apply. A non-failing declaration in a where condition can be lifted outside the com-
prehension similar to declarations in the comprehension head.

Multiple generators. Zinc allows multiple generators for the same comprehension. The
extension to handle these is straightforward: essentially the declaration is lifted to a multi-
dimensional array declaration. The most complicated case is declarations in generator ex-
pressions. In general
[E | g1 in G1, . . . , gi in let {T : x = A} in Gi(x), . . . , gn in Gn where C]
can be rewritten into
let {array[T1, . . . , Ti−1] of T : x =

[(g1, . . . , gi−1): A | g1 in G1, . . . , gi−1 in Gi−1]}
in [E | g1 in G1, . . . , gi in Gi(x[g1, . . . , gi−1]), . . . , gn in Gn where C]
where T1 . . . Ti−1 are the element type-insts of the arrays G1, . . . , Gi−1.

5 Elimination of Unsafe Partial Function Applications

Zinc includes various built-in partial functions, such as division and modulo (not defined if
the divisor equals zero), array lookup (not defined for index values outside of the index set
of the array), or the minimum of a set (not defined if the set is empty). Furthermore, there
are a number of partial real functions, such as trigonometric ones.

The treatment of a partial function application depends on whether it operates on a
fixed value. If so, the application is left as is, and it is simply evaluated when required. Not
translating fixed applications avoids the associated increase in expression size.

For non-fixed values, the partial function acts as a constraint that restricts the values
to be within the domain of the function. These applications are transformed to make
the constraints explicit. In the process, the partial function application is made safe: its
argument is guaranteed to be within the function’s domain.

Solvers generally do not support reified versions of constraints such as the element
constraint, which models an array lookup with a variable as the index, or integer division.
Moreover, such reified constraints are absent in low-level solver input languages, such as
FlatZinc [9] or XCSP [10]. If we simply lift such constraints to the top level conjunction,
we end up with the strict semantics rather than the relational one [5]. We must therefore
eliminate partiality from models.

The basic idea behind the transformation is that we encode the potential failure of
a partial function application by a local variable declaration with a constrained type-inst.

Leslie De Koninck, Sebastian Brand, and Peter J. Stuckey 125

How to move it to the nearest Boolean context is discussed earlier in the paper. Furthermore,
we ensure that the partial function application in constraint form never fails because it is
applied using input values outside of its domain.

Integer division. As an example of a partial arithmetic function, we show how integer
division is made safe. A propagator for division as a constraint excludes zero from the
domain of the divisor. Let x div y be a potentially unsafe division. That is, it is not a priori
clear that y can never assume the value 0. A first attempt to transform this division is
let {(var int: w′ where w′ = y): w} in x div w.
Constrained-type elimination will extract the type constraint w′ = y and add it to the
nearest enclosing Boolean context. An issue here is that w is an unassigned local variable.
If the original expression x div y appears in a negative Boolean context, then we now have
an unassigned local variable in a negative context, a situation we disallow. Therefore, we
find the above formulation undesirable. We prefer
let {(var int: w′ where w′ = y): w = y + bool2int(y = 0)} in x div w.
Again, constrained-type elimination will extract the type constraint and add it to the appro-
priate context. Moreover, w has an assignment which is guaranteed to be inside the domain
of the partial function.

Looking at the interpretation of both expressions (see Section 2), we have that I(z =
x div y), which reduces to div(x, y, z), is equivalent to

I(z = let {(var int : w′ where w′ = y) : w = y + bool2int(y = 0)} in x div w).

Assuming a total division operation, this reduces to

∃w : w = y ∧ w = y + bool2int(y = 0) ∧ z = x div w

which for y = 0 simplifies to false and for y 6= 0 to z = x div y. Moreover, we can safely
remove zero from the domain of w without affecting the possibility of y being zero.

Alternative encodings are possible, for example
let {(var int: w′ where w′ = y): w = [y, 1][bool2int(y = 0) + 1]} in x div w.
Which encoding is more suitable depends on which solver is being used.

General approach. In general, let f/1 be a unary partial function, c/1 a constraint that
succeeds when its input is in the domain of f/1 and fails otherwise, T be the type-inst of
the domain of f/1 and d a value within the domain of f/1. We can transform a call f(x)
into a safe partial function application as follows:
let {(var T : w′ where w′ = x): w = [d, x][bool2int(c(x)) + 1]} in f(w).
We can consider n-ary functions as unary functions operating on n-ary tuples.

6 Conclusions

Local variables and constrained types are crucial for both high-level modelling and effective
model transformation (e.g. type reduction or solver-specific constraint transformations).
To solve Zinc models, we must have a way to transform away these constructs to obtain
existentially quantified conjunctions of constraints. The transformations that do this in
a data-independent way are challenging and form a core part of Zinc. Any declarative
language that wishes to treat partial functions correctly and in a data-independent manner
must address these issues.

ICLP 2011

126 Constraints in Non-Boolean Contexts

We have presented three sets of transformation rules to deal with respectively constrained
type-insts, local variables and partial functions in Zinc. They transform valid Zinc models to
semantically equivalent ones that are free of arbitrarily constrained type-insts, local variable
declarations and potentially failing partial function applications. Our transformations are
data-independent and can be run concurrently. Previous work on Zinc [8] required flattening
the model and was not data independent.

In practice, we run partial function elimination first. Local variable lifting and con-
strained type elimination take place concurrently. They are run multiple times during the
model transformation process, because other transformations introduce local variables and
constrained type-insts but may assume a model without them.

Related Work
Zinc belongs to the family of constraint modelling languages that also includes F [7] and its
successor esra [2], s-COMMA [12], Essence [3] and OPL [13].
F provides function variables. Both partial and total functions can be represented. It

supports a function membership operation 〈i, j〉 ∈ F which is equivalent to i ∈ dom(F) ∧
F (i) = j. However, function application is only allowed for values within the domain of the
function. F models are translated into a lower-level language. For some expressions, this
translation requires the introduction of new variables and constraints. Since local variables
and a way to encapsulate constraints in non-Boolean contexts are not part of the language,
these new variables and constraints need to be lifted. It is not described how this is done.

The s-COMMA language is an object-oriented constraint modelling language. It appears
to support division and variable index array lookups, but it is unclear how it deals with
undefinedness in these operations.

Essence is a specification language for CSPs and shares many features with Zinc. Es-
sence models are transformed into the lower-level language Essence′ using transformation
rules written in Conjure [4]. In Conjure, the result of rewriting an expression is a new
expression that may be tagged with a set of constraints. Since Essence lacks local vari-
ables and an encapsulation mechanism for constraints in a non-Boolean context, rules need
to state explicitly what to do with constraints that result from refining subexpressions.

Frisch and Stuckey [5] study undefinedness in the constraint (logic) programming lan-
guages ECLiPSe, SWI-Prolog, SICStus Prolog, OPL and MiniZinc. They discuss three
different formal semantics and show how to transform models to ensure they behave as de-
sired. The transformations consist of first identifying the nearest Boolean context of every
unsafe function application and creating a local variable alias for it, which is immediately
lifted to the top level. Next, each of these Boolean contexts is made safe by replacing unsafe
function applications by safe versions and adding the necessary constraints. The approach
of [5] is not always applicable to Zinc, as it can be the case that the unsafe partial function
application uses variables that are not defined at the level of the nearest Boolean context.

In the functional-logic programming language Curry [6], a program is a set of functions.
A function in Curry can be nondeterministic and in particular it can be partial. Whenever
a partial function is applied to a value outside of its domain, the function application fails,
which is different from returning false. As a result, we have that for instance not x evaluates
to True if x evaluates to False and vice versa, but fails if x fails.

Mercury [11] allows functions to have a solution or to fail. Unlike Curry, it allows
reasoning about success and failure using conjunction, disjunction, negation, etc. Failure is
automatically lifted to the nearest Boolean context. However, Mercury is only concerned
with evaluating fixed expressions.

Leslie De Koninck, Sebastian Brand, and Peter J. Stuckey 127

References
1 Gregory J. Duck, Leslie De Koninck, and Peter J. Stuckey. Cadmium: An implementation

of ACD Term Rewriting. In María García de la Banda and Enrico Pontelli, editors, 24th
International Conference on Logic Programming, volume 5366 of Lecture Notes in Computer
Science, pages 531–545. Springer, 2008.

2 Pierre Flener, Justin Pearson, and Magnus Ågren. Introducing esra, a relational language
for modelling combinatorial problems. In Sandro Etalle, editor, 14th International Sym-
posium on Logic Based Program Synthesis and Transformation, volume 3018 of Lecture
Notes in Computer Science, pages 214–232. Springer, 2004.

3 Alan M. Frisch, Warwick Harvey, Christopher Jefferson, Bernadette Martínez Hernández,
and Ian Miguel. Essence: A constraint language for specifying combinatorial problems.
Constraints, 13(3):268–306, 2008.

4 Alan M. Frisch, Christopher Jefferson, Bernadette Martínez Hernández, and Ian Miguel.
The rules of constraint modelling. In Leslie Pack Kaelbling and Alessandro Saffiotti, editors,
19th International Joint Conference on Artificial Intelligence, pages 109–116. Professional
Book Center, 2005.

5 Alan M. Frisch and Peter J. Stuckey. The proper treatment of undefinedness in constraint
languages. In Ian Gent, editor, 15th International Conference on Principles and Practice
of Constraint Programming, volume 5732 of Lecture Notes in Computer Science, pages
367–382. Springer, 2009.

6 Michael Hanus. Curry: a multi-paradigm declarative language. In François Bry, Burkhard
Freitag, and Dietmar Seipel, editors, 12th Workshop on Logic Programming, 1997.

7 Brahim Hnich. Function variables for constraint programming. PhD thesis, Uppsala Uni-
versity, 2003.

8 Kim Marriott et al. The design of the Zinc modelling language. Constraints, 13(3):229–267,
2008.

9 Nicholas Nethercote et al. MiniZinc: Towards a standard CP modelling language. In
Christian Bessiere, editor, 13th International Conference on Principles and Practice of
Constraint Programming, volume 4741 of Lecture Notes in Computer Science, pages 529–
543. Springer, 2007.

10 Olivier Roussel and Christophe Lecoutre. XML representation of constraint networks:
Format XCSP 2.1. Computing Research Repository (CoRR), abs/0902.2362, 2009.

11 Zoltan Somogyi, Fergus Henderson, and Thomas Conway. The execution algorithm of
Mercury: an efficient purely declarative logic programming language. Journal of Logic
Programming, 29(1-3):17–64, 1996.

12 Ricardo Soto. Languages and Model Tranformation in Constraint Programming. PhD
thesis, CNRS, LINA, Université de Nantes, France, 2009.

13 Pascal Van Hentenryck, Irvin Lustig, Laurent Michel, and Jean-François Puget. The OPL
Optimization Programming Language. MIT Press, 1999.

ICLP 2011

	Introduction
	Preliminaries
	Elimination of Constrained Type-Insts
	Lifting Local Variables
	Base Case
	Boolean Contexts
	Structured Types
	Comprehensions

	Elimination of Unsafe Partial Function Applications
	Conclusions

