
Declarative Output by Ordering Text Pieces
Stefan Brass

Martin-Luther-Universität Halle-Wittenberg, Institut für Informatik,
Von-Seckendorff-Platz 1, D-06099 Halle (Saale), Germany
brass@informatik.uni-halle.de

Abstract
Most real-world programs must produce output. If a deductive database is used to implement
database application programs, it should be possible to specify the output declaratively. There is
no generally accepted, completely satisfying solution for this. In this paper we propose to specify
an output document by defining the position of text pieces (building blocks of the document).
These text pieces are then ordered by their position and concatenated. This way of specifying
output fits well to the bottom-up way of thinking about rules (from right to left) which is
common in deductive databases. Of course, when evaluating such programs, one wants to avoid
sorting operations as far as possible. We show how rules involving ordering can be efficiently
implemented.

1998 ACM Subject Classification D.1.6 Logic Programming

Keywords and phrases Deductive Databases, Logic Programming, Declarative Output, Bottom-
Up Evaluation, Order, Sorting, Implementation

Digital Object Identifier 10.4230/LIPIcs.ICLP.2011.151

1 Introduction

Currently, database application programs are usually developed in a combination of two or
more languages, e.g. PHP for programming and SQL for the database queries and updates.
SQL is declarative, but most languages used for the programming part are not.

The goal of deductive databases is that only a single, declarative language is used for
programming and database tasks. The advantages of declarativity have been clearly shown
in SQL: The productivity is higher (because the programs are shorter and there is no need
to think about efficient evaluation), and new technology (parallel hardware and new data
structures and algorithms) can be used for existing application programs without changing
them (only the DBMS needs to be updated).

While in general, it might be difficult to reach acceptable performance for really declarative
programs (Prolog is not completely declarative), database applications are quite special and
usually not very difficult. For the most part, the task of an application program is to check
the input and to generate an output document (e.g., a web page).

Although generating output is practically very important, it seems that there is no
really good solution in logic programming yet. The standard solution in Prolog with a
write-predicate is clearly non-declarative: It depends on the specific evaluation order used
in Prolog.

The Gödel programming language, which improves upon Prolog in many ways, did also
not solve this problem: “Gödels input/output facilities do not have a declarative semantics,
so it is very important that input/output predicates are confined to as small a part of
a program as possible.” [4]. Certainly, it is a good advice to separate the generation of
output documents from the more complex logic of the program. But at least for database

© Stefan Brass;
licensed under Creative Commons License ND

Technical Communications of the 27th International Conference on Logic Programming (ICLP’11).
Editors: John P. Gallagher, Michael Gelfond; pp. 151–161

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICLP.2011.151
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

152 Declarative Output by Ordering Text Pieces

applications, the generation of output is a substantial part of the program, and deserves a
declarative specification, too.

Another standard way is to use an accumulator pair: A prefix of the document to be
generated is passed as an input argument to every predicate involved in generating output,
and the current state of the document after the output of the predicate is returned. For
instance, this solution is used in Mercury. The Mecury tutorial [1] contains this example:

main(IOState_in, IOState_out) :-
io.write_string("Hello, ", IOState_in, IOState_1),
io.write_string("World!", IOState_1, IOState_2),
io.nl(IOState_2, IOState_out).

This is declarative, but has some problems, too:
1. It complicates the programs (many predicates have two additional arguments). In part,

this problem can be solved by using special syntactic features to hide these arguments.
E.g., Mecury has special state variables as a syntactic convenience [1] (only one argument
is written instead of two, and the numbering of variables is done automatically).

2. Another problem is that if backtracking is possible, the actual output cannot be immedi-
ately done, and furthermore, the possibility remains that the program might sometimes
produce alternative documents, which is certainly not expected. In the Mercury language,
this problem is solved by checking the determinism of predicates which perform I/O, and
using destructive input and unique output modes for the arguments [1].

3. This solution needs recursion already for simple tasks, e.g. printing the contents of a
database table. As Molham Aref stated in his invited talk at last year’s ICLP, one of
the advantages of Datalog is that not so experienced users can be easily offered subsets
of the language with restricted complexity. It seems unlucky that recursion is basically
unavoidable if one uses this state-passing method for specifying output.

4. The situation is even worse, because one also needs lists or similar data structures: In
databases, several answers are most naturally constructed as several solutions to a query
(e.g. via backtracking). For instance, database tables are normally represented as sets
of facts. This does not fit well with requiring deterministic code for output: One must
use a predicate like findall, and then recurse over the resulting list. (Our proposal
also contains lists, but many interesting programs do not need recursion, and do not
need to inspect the constructed lists, i.e. no complex terms in body literals are needed.
Furthermore, the use of lists can be hidden with some syntactic sugar.)

In functional programming, monads are used for declarative output [6, 5]. However, they
depend on higher order programming, which is not common practice in logic programming.
Therefore, monads are not easily understandable for logic programmers.

2 Basic Idea

The basic idea of our proposed solution is very simple: The Datalog program defines a
predicate output with two arguments: The first argument determines the position in the
output, and the second argument is a text piece. A simple example is:

output(1, ’Hello, ’).
output(2, Name) ← name(Name).
output(3, ’.’).
name(’Nina’).

Stefan Brass 153

output([1], ’<table>\n’).
output([2], ’<tr><th>Points</th><th>Student</th></tr>\n’).
output([3,Points,Name,1], ’<tr><td>’) ← homework(Name, Points).
output([3,Points,Name,2], Points) ← homework(Name, Points).
output([3,Points,Name,3], ’</td><td>’) ← homework(Name, Points).
output([3,Points,Name,4], Name) ← homework(Name, Points).
output([3,Points,Name,5], ’</td></tr>’) ← homework(Name, Points).
output([4], ’</table>\n’).
homework(’Ann’, 5).
homework(’Bob’, 10).
homework(’Chris’, 10).

Figure 1 Generating an HTML Table with Homework Results

The generated output document can be computed as follows: One first uses standard bottom-
up evaluation to generate all derivable facts of the form output(P,T), then one sorts them
by the first argument P, and prints the strings T in this sequence. Two comments must be
made here:
1. Probably nobody likes to write the numbers for the output sequence, but syntactic sugar

can be used to hide that (see Section 3). Basic Horn clauses are used to have a simple,
common semantic framework, but different tasks might need different syntactic variants
to specify the task clearly and concisely. For instance, definite clause grammar rules are
a very useful notation in Prolog for syntax analysis tasks.

2. In the same way, there is not only one algorithm for the evaluation of rules, but different
algorithms can be used for special cases of rules. In the above example, it would not be
necessary to first generate all derivable output-facts and then sort them: Since the sorting
argument is given explicitly in the rules, the rules might be applied in that order, and
the text pieces immediately printed. But it is important to have a very simple evaluation
algorithm for a directly executable semantics before discussing optimizations.

Of course, using only numbers as position specifications becomes impractical as soon as
one wants to produce already slightly more complex documents. Therefore, we suggest to
use a list as the first argument of output. Lists are sorted as usual: They are compared
element by element, and the first position in which they differ decides the sequence. For
instance, suppose we have stored homework points in a predicate homework(Name, Points).
An HTML table which contains the data sorted by points, and for equal points by name,
can be generated as shown in Figure 1. Note that the sorting based on the data is for free if
one uses this approach: Since the ID of the text piece contains first the points and then the
name, these two sorting criteria are applied with the points having higher priority.

3 Syntactic Sugar

Of course, one wants to eliminate the ordering argument as far as possible. Furthermore,
it should not be necessary to split a text whenever a parameter value must be inserted.
Quotation marks and explicit commands for line breaks should be avoided as far as possible.
With the pattern syntax which we propose, it is possible to write longer pieces of text, just
as it appears in the output, and mark the places where something must be inserted.

ICLP 2011

154 Declarative Output by Ordering Text Pieces

homeworks_table(#
<table>
<tr><th>Points</th><th>Student</th></tr>
<#homeworks_row>
</table>

#).

homeworks_row([Points, Name]#
<tr><td><$Points></td><td><$Name></td></tr>

#) ← homeworks(Name, Points).

Figure 2 Generating an HTML Table with Patterns

homeworks_table([1], ’<table>\n’).
homeworks_table([2], ’<tr><th>Points</th><th>Student</th></tr>\n’).
homeworks_table([3|X], Y) ← homeworks_row(X, Y).
homeworks_table([4], ’</table>’).

homeworks_row([Points, Name, 1], ’<tr><td>’).
homeworks_row([Points, Name, 2], Points).
homeworks_row([Points, Name, 3], ’</td><td>’).
homeworks_row([Points, Name, 4], Name).
homeworks_row([Points, Name, 5], ’</td></tr>’).

Figure 3 Internal Rules denoted by Patterns

Figure 2 shows the running example in this syntax, and Figure 3 shows the rules that are
generated by the patterns.

Each pattern corresponds to a predicate. One writes the pattern/predicate name, then
“(”, then possibly a list as part of the position specification (if the pattern is instantiated
multiple times), then a “#”, then several lines which form the text of the pattern, then “#)”,
and then possibly a rule body. Within the pattern text, two special markers can be used:
“<#p>” links to another pattern p, which is embedded here, and “<$X>” inserts the value of a
variable which is bound in the rule body.

The generated predicates have two arguments just as the output-predicate (one can use
pattern syntax for the output-predicate, too). The pattern text is internally split into as
many pieces as needed, at least the inserted patterns and variables must be pieces of their
own, but one can in addition split the text at line breaks. Each piece gets a sequential
number. Then one fact or rule is generated for each piece:
1. The position consists of the optional list of variables (specified before the # in the first

line of the pattern), then the piece number, and in case of an embedded pattern, the
position argument of that pattern.

2. The second argument is either the text piece, or, if a variable is inserted at this point,
the variable, or, if a pattern is embedded here, a variable for a text piece of that pattern.

3. If the pattern has a body, it is attached to each generated rule. If this position is for an
embedded pattern, a call to the corresponding predicate is added to the body.

A predicate or pattern called “output” is the “main” predicate, which defines the overall
output of the program (the example is only a part of the generation of an entire web page).

Stefan Brass 155

4 Efficient Evaluation

The goal is not having to do a lot of sorting when evaluating the rules. Sorting is a relatively
expensive operation, and furthermore it is necessary to store intermediate results. Relational
database management systems often work internally with tuple streams, where the next
tuple is computed on demand only (using an iterator/cursor interface). In this way, the
materialization of intermediate results is avoided. Only sorting needs intermediate storage,
because the first result tuple can only be produced after the last input tuple was seen.

Often, already by choosing the right evaluation order of the rules, sorting can be avoided.
Furthermore, if we can get the tuples for the predicates in the body in the right sorted
sequence, this sorting can often be preserved. For the base predicates (the EDB predicates
stored in database relations), sorting can sometimes be avoided, if they are stored in an
ISAM file or index-organized table (if the required sorting sequence matches the key) or if a
b-tree index with a fitting search key is available.

First note that the only way in which the predicate output should be treated specially is
that the second argument is printed in the end, when the tuples (derived facts) are accessed
ordered by the first argument. For instance, it should be possible to write

output([X, Y], Z) ← p(Z, X, Y).

Thus, in order to produce the tuples for output ordered by first argument, we need to
generate the tuples for p ordered by second and third arguments (second argument with
higher priority than third argument, i.e. the third argument is only important for determining
the order of two tuples if the second argument is equal). So in general, we need to produce
tuples for any predicate in the program ordered by any given sequence for the arguments.

In order to concentrate on the sorting problem, we make two simplifying assumptions in
this paper:

We do not consider recursive rules. There is a large body of work on evaluating recursive
rules, but in most cases, sorting sequences for the predicates in the body do not give a
sorting sequence for the derived tuples. Furthermore, in order to guarantee termination,
the resulting tuples must be stored (materialized), so that duplicates can be eliminated.
When this is anyway needed, one could of course choose a b-tree or similar data structure
which gives the required sorting on output.
While we need structured terms in the head of the rules (to build lists for the position
specifications), we assume that the body literals contain only variables and constants.

4.1 Interface for Relations
As usual in relational DBMS, we use a tuple stream interface for relations (predicates), i.e. it
is possible to open a cursor (scan, iterator) over the relation, which permits to loop over all
tuples. We assume that for every normal predicate p, there is a class p_cursor with the
following methods:

void open(): Open a scan over the relation, i.e. place the cursor before the first tuple.
bool fetch(): Move the cursor to the next tuple. This function must also be called to
access the first tuple. It returns true if there is a first/next tuple, or false, if the cursor
is at the end of the relation.
T col_i(): Get the value of the i-th column (attribute) of the current tuple (T is the
data type of this column). This interface permits to get access to the attribute values
without actually materializing the tuple (especially, large data values do not need to be
copied).

ICLP 2011

156 Declarative Output by Ordering Text Pieces

void close(): Close the cursor.
p_cursor_pos position(): Return current position of the cursor for a later call to
restore (in order to return to this position). This is only used for complicated loop
structures, and very seldom more than one position must be saved at the same time.
void restore(p_cursor_pos): Return to a previously saved position of the cursor. It
is possible to return multiple times to the same position.

The objects of the class p_cursor do not guarantee any specific order of the returned
tuples. Thus, we also need classes p_cursor_i1_..._ik, which return tuples sorted by
argument i1 with highest priority, i2 with second highest priority, and so on.

Our goal in the section is to create code for such cursors for the derived predicates (IDB
predicates), given such cursors for the base predicates (stored relations, EDB predicates). As
mentioned above, the storage structures for the base predicates sometimes give the sorting
more or less for free, otherwise some explicit sorting is unavoidable.

Again, in order to focus on the main problem (the sorting), and not to overload the paper
with details already considered extensively in the literature, we ignore a very important
optimization:

Often, when a predicate is called, values are known for some arguments. Thus, one does
not need to produce the entire extension of the predicate. One could extend the cursor
interface by attaching a binding pattern to the cursor name (specifying which arguments
are bound in the call, i.e. input arguments), and permit to specify values for them in the
open() call. This is also interesting for base predicates with indexes.
This situation is even more complicated, since some arguments are known at compile-time,
others only at runtime. Furthermore, one might want to pass not only equality conditions
for the arguments to the called predicate, but also other simple conditions (e.g. X ≤ 5).
An extreme case in this direction is the SLDMagic-method of the author [2]. There is a
large body of literature on Magic Sets that treats such problems.

4.2 Single Rule, Nested Loop Join
Consider the rule

p(t1, . . . , tn)← B1 ∧ · · · ∧ Bm

and suppose an ordering of the derived tuples by arguments i1, . . . , ik is required.
Then we first determine a sequence of variables X1, . . . , Xl that appear in the head such

that the matches found for the body must be ordered in this sequence. These variables are
simply the variables that appear in ti1 , . . . , tik

in the order of first appearance. For instance,
given the head

p([a, X, Y, b], c, [Z, Y, X])

and the sorting of the derived p-tuples by arguments 1, 2, 3, the considered variable assign-
ments must be sorted by values for X, Y, Z in this sequence.

The simplest implementation of the rule body is a nested loop join. It is well known that
that an ordering of tuples in the outer loop is preserved by the nested loop join. This holds
more generally. For instance, consider the rule body

q(X, Y, a) ∧ r(Y, Z)

A nested loop join works as shown in Figure 4. Of course, the code shown in Figure 4 must
be rewritten so that it fits itself in a fetch() method. Currently we would need coroutines

Stefan Brass 157

q_cursor_1_2 q;
r_cursor_2_1 r;
q.open();
while(q.fetch()) { // q(X, Y, a)

if(q.col_3 == ’a’) {
int X = q.col_1();
int Y = q.col_2();
r.open();
while(r.fetch()) { // r(Y, Z)

if(r.col_1 == Y) {
int Z = r.col_2();
print(X, Y, Z); // Variable assignment satisfying body

}
}
r.close();

}
}
q.close();

Figure 4 Nested Loop Join for q(X, Y, a) ∧ r(Y, Z)

(when a match found, instead of the print, one must do a “yield return”, so the next call to
fetch() starts at this place). But this restructuring of the code is a simple task for an able
programmer. We have used the above code so that the nested loops are easily visible.

It is quite obvious that the program in Figure 4 produces the tuples ordered by the values
for X ,Y, Z: Let (X1, Y1, Z1) and (X2, Y2, Z2) be two tuples that the above code yields, where
the second tuple is produced later. Then there are two cases to consider:

Suppose that the second tuple is produced in a different (later) iteration of the outer loop.
The cursor over q guarantees that the tuples are considered sorted by first argument,
and for equal first argument, by the second argument. There is no order for the third
argument, but if we can assume that there are no duplicate tuples, the constant in the
third argument means that tuples produced in different iterations of the loop must differ
in at least one of the first two arguments. Therefore, we can conclude that either X1 < X2
or X1 = X2 and Y1 < Y2.
Now suppose that both tuples are produced in the same iteration of the outer loop,
but the second tuple is produced in a later iteration of the inner loop. Of course, we
immediately get X1 = X2 and Y1 = Y2. Since the second argument is the main sorting
criterion in the inner loop, it follows that Z1 ≤ Z2.

Now, in general, suppose we need the variable assignments sorted by X1, . . . , Xl, and that
the body B1 ∧ · · · ∧ Bm is evaluated by nesting loops in this order, i.e. B1 corresponds to the
outermost loop and Bm to the innermost. Then the following condition must be satisfied for
each i = 1, . . . , l:

Suppose that Bj is the first body literal, in which Xi appears.
Then for given values for X1, . . . , Xi−1, there can be only a single match for B1, . . . , Bj−1,
(i.e. a single assignment of tuples to literals such that the conditions of B1, . . . , Bj−1 are
satisfied), and furthermore,
the argument in which Xi appears in Bj is in the sorting specification for the cursor,
preceded only by arguments in which one of {X1, . . . , Xi−1} or a constant appears.

ICLP 2011

158 Declarative Output by Ordering Text Pieces

This ensures that the variable assignments are produced in the right order: Suppose this were
not the case. Then there are tuples (d1, . . . , dn) and (d′1, . . . , d′n) of values for X1, . . . , Xn,
where the second tuple is produced later and for some i∈{1, . . . , n}: d1 = d′1, . . . , di−1 = d′i−1,
and di > d′i. Let Bj be the first body literal in which Xi appears. Since for the given
values (d1, . . . , di−1), there is only a single match for B1 ∧ · · · ∧ Bj−1, the outer loops are
not switched forward between the two assignments, i.e. the problem occurs within a single
run through the loop for Bj . But all arguments in Bj with higher sorting priority than the
argument for Xi are filled with variables from {X1, . . . , Xi−1} (which have the same value
in both tuples), or constants (also the same value). Thus, the required ordering for Bj is
violated.

4.3 More Interesting Loops
Of course, the above condition cannot always be reached by a permutation of the body
literals. However, using only one loop per literal is not the only possibility.

Consider a rule with body

p(X, Y) ∧ q(Y, Z)

and suppose we need the matching assignments ordered by X, Z. If the outer loop is over
p_cursor_1_2, and the inner loop over q_cursor_2_1, we get a wrong sequence given the
following predicate extensions:

p
X Y
1 3
1 4

q
Y Z
4 5
3 6

Result
X Z
1 6
1 5

Here the condition is violated that for every value for X, there is only a single match
for p(X, Y). The problem is that the value for Y from the first literal selects only specific
facts for the second literal, and thus the ordering on Z in the second literal is not preserved,
not even for a single X value.

However, it is possible to create a loop structure that preserves the ordering as required.
The idea is to iterate with the outer loop only over different X-values, then to iterate with
a middle loop over the second literal, and finally iterate with an innermost loop over the
tuples of the first literal for a given X-value (i.e. an X-partition of p). For space reasons, the
details cannot be shown here, but more information is available on the project web page.

4.4 Using Merge Joins, Explicit Sorting and Intermediate Storage
Of course, ordered tuple streams are also useful for merge joins, which can be much faster
than a nested loop join. In general, the output of a merge join remains ordered only on the
join columns, which sometimes might be just what is needed, but often not.

With techniques like shown above in the “interesting loops” example, one could do e.g. an
outer loop over X-values, and inside do merge joins over Y. This is not as good as a single
merge join, but also not as bad as a nested loop join (if there are several Y-values for a
single X-value).

There are many ways to evaluate a given logic program, and especially there is always
the option to require no order for the computation of the tuples for a predicate p, and then
do an explicit sorting before the tuples are used. This would for instance give all options
for merge joins in the evaluation of rules for p. Furthermore, if the tuples are used multiple

Stefan Brass 159

times (e.g. in an inner loop of a nested loop join), one has the advantage of computing them
only once. The performance tests we did in [3] show that this becomes an important factor
if the computation of the tuples of p is not easy. Thus, even if no explicit sorting is needed
(because the tuples are produced in the right order using the techniques shown above), it
might still be useful to materialize the tuples for some intermediate predicates. In general,
one would use a cost-based optimizer which generates a number of alternative evaluation
plans, estimates their costs, and chooses the cheapest.

4.5 Multiple Rules for a Predicate

So far, we have only considered the evaluation of a single rule. Of course, there are often
several rules about a predicate.

Again, the goal is to produce the tuples sorted by given arguments. In the most general
case, we implement each rule as shown above, so that each rule produces the tuples in the
required order, and then merge the tuple streams produced by the rules (i.e. we compare the
current tuple of every rule, output the smallest, and fetch the next tuple from that rule).

However, often by analyzing the rule heads, we can see that all tuples produced by one
rule must come before all tuples produced by another rule. In that case we can of course
evaluate one rule first, and then the other. I.e. the explicit merging at runtime may be
avoided or reduced, because we need to compare only tuples from rules where the order
cannot be determined already at compile time.

Let us again consider the example from Figure 1. From the first list element in the head
it is clear, that we must first apply the first rule, then the second, then the following block of
rules, and finally the last rule.

Now the block of rules with first list element 3 is an interesting case, because they all
have the same body, and each of the rules has the same variables in position 2 and 3 in the
list, and position 4 is again a constant which can be ordered at compile-time. Thus, when
we found one match for homework(Name, Points), we can output five tuples in the order of
the rules. Of course, the tuples for homework must be produced in sorted order, with the
second argument sorted with higher priority.

Note that it is not required that the rule bodies are exactly equal. What is required is
that we can get a superset for the possible values for the variables in the rule head in sorted
order. Since after the variables, distinct constants follow, we can give each rule a chance in
turn, whether it wants to produce facts with the given values for the variables. For instance,
it would be no problem if the rule bodies contained further literals besides the common
literal which determines the set of values for the variables Points and Name.

Of course, in general, the special treatment of the list-valued positioning argument should
not be done only for the predicate output. Thus, the compiler should try to determine
intervals of possible values for ordering arguments. If the intervals for two rules about a
predicate do not overlap, the sequence of rule applications is again clear, and no merging at
runtime is needed.

4.6 Avoiding List Construction, Example

One final point for the efficient evaluation of the output-rules is that the positioning argument
is seldom explicitly needed, and one wants of course to avoid constructing the list terms if at
all possible. In most cases, computing tuples in the right sequence and knowing intervals for
the possible values is all that is needed. This is especially clear if the lists appear only in the

ICLP 2011

160 Declarative Output by Ordering Text Pieces

main()
{

print("<table>\n");
print("<tr><th>Points</th><th>Student</th></tr>\n");
homework_cursor_2_1 h;
h.open();
while(h.fetch()) {

print("<tr><td>");
print(h.col_2()); // Points
print("</td><td>");
print(h.col_1()); // Name
print("</td></tr>");

}
h.close();
print("</table>\n");

}

Figure 5 Implementation for the Example from Figure 1

rules about output, or in rules about predicates which have a unique position in the final
output (i.e. no explicit sorting or merging is needed for the resulting tuples).

Putting all together, we arrive at the natural program for the example shown in Figure 5.
Of course, for output, we do not generate a cursor, but directly print the second argument
of the derived facts.

5 Conclusions

In this paper, we made a simple proposal for specifying output declaratively in deductive
databases. An important feature in these languages is that one thinks from right to left,
i.e. in the natural direction of the rules (corresponding to bottom-up evaluation). Therefore
output, updates, and other results of program execution seem to be specified most natural in
the rule heads. Furthermore, it seems normal that literals have several solutions, which all
need to be printed — no backtracking should be needed for this (backtracking is not really a
concept of bottom-up evaluation: it is always implicitly set-oriented).

Although in its pure form, specifying output in this way is not very convenient, with the
proposed pattern syntax, it seems quite reasonable. Of course, more can and should be done
for special output problems (e.g., currently, putting a comma between list elements, but not
at the end needs a self join to check whether there is still another element).

In the second half of the paper, we showed that the rules can often be evaluated without
explicit sorting: In the end, the proposed solution should be as efficient as a standard,
imperative program (regarding output). Therefore, it is good to see that the declarative
specification can be translated into a C++ program, which does only as much sorting as the
data really requires and any program must do.

The web page [http://www.informatik.uni-halle.de/~brass/output/] contains a
small prototype program that does bottom-up evaluation and computes the output (currently
without optimizations) and a few examples for interesting loop structures.

http://www.informatik.uni-halle.de/~brass/output/

Stefan Brass 161

References
1 Ralph Becket. Mercury tutorial. Technical report, University of Melbourne, Dept. of

Computer Science, 2010.
http://www.mercury.csse.unimelb.edu.au/information/papers/book.pdf.

2 Stefan Brass. SLDMagic — the real magic (with applications to web queries).
In W. Lloyd et al., editors, First International Conference on Computational Logic
(CL’2000/DOOD’2000), number 1861 in LNCS, pages 1063–1077, Heidelberg, Berlin, 2000.
Springer.

3 Stefan Brass. Implementation alternatives for bottom-up evaluation. In International
Conference on Logic Programming (ICLP’10): Technical Communications, LIPIcs. Schloss
Dagstuhl, 2010.

4 Patricia M. Hill and John W. Lloyd. The Gödel Programming Language. MIT Press,
Cambridge, Massachusetts, 1994.

5 Simon Peyton Jones. Tackling the awkward squad: monadic input/output, concurrency,
exceptions, and foreign language calls in haskell. In Tony Hoare, Manfred Nroy, and Ralf
Steinbruggen, editors, Engineering theories of software construction, pages 47–96, Amster-
dam, 2000. IOS Press. Updated version available at:
http://research.microsoft.com/en-us/um/people/simonpj/papers/marktoberdorf/.

6 Philip Wadler. How to declare an imperative. ACM Computing Surveys, 29(3):240–263,
1997. See also: http://homepages.inf.ed.ac.uk/wadler/topics/monads.html.

ICLP 2011

	Introduction
	Basic Idea
	Syntactic Sugar
	Efficient Evaluation
	Interface for Relations
	Single Rule, Nested Loop Join
	More Interesting Loops
	Using Merge Joins, Explicit Sorting and Intermediate Storage
	Multiple Rules for a Predicate
	Avoiding List Construction, Example

	Conclusions

