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Abstract
The paper presents a system for knowledge representation and coordination, where autonomous
agents reason and act in a shared environment. Agents autonomously pursue individual goals,
but can interact through a shared knowledge repository. In their interactions, agents deal with
problems of synchronization and concurrency, and have to realize coordination by developing
proper strategies in order to ensure a consistent global execution of their autonomously derived
plans. This kind of knowledge is modeled using an extension of the action description language B.
A distributed planning problem is formalized by providing a number of declarative specifications
of the portion of the problem pertaining a single agent. Each of these specifications is executable
by a stand-alone CLP-based planner. The coordination platform, implemented in Prolog, is easily
modifiable and extensible. New user-defined interaction protocols can be integrated.
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1 Introduction

Representing and reasoning in multi-agent domains are two of the most active research
areas in multi-agent system (MAS) research. The literature in this area is extensive, and
it provides a plethora of logics for representing and reasoning about various aspects of
MAS, e.g., [13, 9, 17, 15, 7]. Several logics proposed in the literature have been designed
to specifically focus on particular aspects of MAS, often justified by a specific application
scenario. This makes them suitable to address specific subsets of the general features required
to model real-world MAS domains. The task of generalizing these proposals to create a
uniform and comprehensive framework for modeling different aspects of MAS domains is
an open problem. We do not dispute the possibility of extending the existing proposals in
various directions, but the task is not easy. Similarly, a variety of multi-agent programming
platforms have been proposed, mostly in the style of multi-agent programming languages,
e.g., Jason, ConGolog, 3APL, GOAL [1, 4, 3, 10], but with limited planning capabilities.

Our effort here is on developing a multi-agent system for knowledge representation based
on a high-level action language. The starting point of this work is the action language
BMV [6]; this is a flexible single-agent action language, that generalizes the action language
B [8], with support for multi-valued fluents, non-Markovian domains, and constraint-based
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formulations (which enable, for example, the formulation of costs and preferences). In this
work, we propose a further extension to support MAS scenarios. The perspective is that of
a distributed environment, with agents pursuing individual goals but capable of interacting
through shared knowledge and concurrent actions. A first step in this direction has been
described in the BMAP language [5]; BMAP extends BMV providing a multi-agent action
language with capabilities for centralized planning. In this paper, we embed BMAP into a truly
distributed multi-agent platform. The language is extended with Communication primitives
for modeling interactions among Autonomous Agents. We refer to this language as BAAC.
Differently from [5], agents can have private goals and are capable of developing independent
plans. Agents’ plans are developed in a distributed fashion, leading to replanning and/or to
the introduction of coordination actions to enable a consistent global execution. The system
is implemented in SICStus Prolog, using the libraries clpfd and linda.

2 Syntax of the Multi-agent Language BAAC

The signature of the language BAAC consists of a set G of agent names, used to identify the
agents in the system, a (unique) set F of fluent names, a set A of action names, and a set V
of values for the fluents in F—we assume V = Z. The behavior of each agent a is specified
by an action description theory Da, i.e., a collection of axioms of the forms described next.

Name and priority of the agent a are specified in Da by agent declarations:

agent a [ priority n ] (1)

where n ∈ N. 0 (default value) denotes the highest priority. Priorities might be used to
resolve conflicts among actions of different agents. Agent a can access only those fluents
that are declared in Da by axioms of the form:

fluent f1, . . . , fh valued dom (2)

with fi ∈ F , h ≥ 1, and dom ⊂ V is a set of values representing the admissible values for
f1, . . . , fh (possibly represented as an interval [v1, v2]). We refer to these fluents as the “local
state” of agent a. Fluents accessed by multiple agents are assumed to be defined consistently.

I Example 1. Let us specify a domain inspired by volleyball. There are two teams: black and
white, with one player in each team; let us focus on the domain for the white team (Sect. 4
deals with the case that involves more players). We introduce fluents to model the positions
of the players and of the ball, the possession of the ball, the score, and a numerical fluent
defense_time. All players know the positions of all players. Since the teams are separated
by the net, the x-coordinates of a black and white players must differ. This can be stated by:

agent player(white,X) :- num(X).
known_agents player(black,X) :- num(X).

fluent x(player(white,X)) valued [B,E] :- num(X), net(NET),B is NET+1, linex(E).
fluent x(player(black,X) valued [1,E] :- num(X), net(NET),E is NET-1.
fluent y(A) valued [1,MY] :- player(A), liney(MY).
fluent x(ball) valued [1,MX] :- linex(MX).
fluent y(ball) valued [1,MY] :- liney(MY).
fluent hasball(A) valued [0,1] :- agent(A).
fluent point(T) valued [0,1] :- team(T).
fluent defense_time valued [0,1].

team(black). team(white). num(1). linex(11). net(6). liney(5).

where linex, and liney are the field sizes, and net is the x-coordinate of the net. �
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Fluents are used in Fluent Expressions (FE), which are defined as follows:

FE ::= n | f t | f@r | FE1 ⊕ FE2 | − (FE) | abs(FE) | rei(C) (3)

where n ∈ V, f ∈ F , t ∈ {0,−1,−2,−3, . . . }, ⊕ ∈ {+,−, ∗, /, mod}, and r ∈ N. FE is referred
to as a timeless expression if it contains no occurrences of f t with t 6= 0 and no occurrences
of f@r. f can be used as a shorthand of f0. The notation f t is an annotated fluent expression.
The expression refers to the value f had −t steps in the past. An expression of the form f@r

denotes the value f has at the rth step in the evolution of the world (i.e., an absolute point in
time). We use the expression pair(FE1, FE2) to encode a pair, and the projection functions
x(·) and y(·) such that x(pair(a, b)) = a and y(pair(a, b)) = b. The reified expression rei(C)
represents a Boolean value indicating the truth value of the constraint C.

A Primitive Constraint (PC) is formula FE1 op FE2, where FE1 and FE2 are fluent expres-
sions, and op ∈ {=, 6=,≥,≤, >, <}. A constraint C is a propositional combination of PCs. As
a syntactic sugar, f++ (f--) denotes the primitive constraint f = f−1 + 1 (f = f−1 − 1).

An axiom of the form action x in Da, declares that the action x ∈ A is available to
the agent a. The same action name x can be used by different agents. A special action, nop
is always executable by every agent, and it causes no changes to any of the fluents.

I Example 2. The actions for each player A of Example 1 are:
• A : move(d) one step in direction d, where d is one of the eight directions: north, north-
east, . . . , west, north-west (i.e., analogous to the moves of a King on a chess-board).
• A : throw(d, f) the ball in direction d (same eight directions as above) with a strength
f varying from 1 to a maximum throw power (5 in our example).

Moreover, the player of each team is in charge of checking if a point has been scored (in such
case, he whistles). We write the actions as act([A],action_name) and state these axioms:

action act([A],move(D)) :- whiteplayer(A),direction(D).
action act([A],throw(D,F)) :- whiteplayer(A),direction(D),power(F).
action act([player(white,1)],whistle).

where whiteplayer, power, and direction can be defined as follows:
whiteplayer(player(white,N)) :- agent(player(white,N)).
power(1). power(2). power(3). power(4). power(5).
direction(D) :- delta(D,_,_). delta(nw,-1,1). delta(n,0,1). delta(ne,1,1).
delta(w,-1,0). delta(e,1,0). delta(sw,-1,-1). delta(s,0,-1). delta(se,1,-1). �

The executability of the actions is described by axioms of the form:

executable x if C (4)

where x ∈ A and C is a constraint, stating that C has to be entailed by the current state in
order for x to be executable. We assume that at least one executability axiom is present for
each action x. Multiple executability axioms are treated as a disjunction.

I Example 3. In our working example, we can state executability as follows:
executable act([player(white,1)],whistle) if [S eq 0] :- build_sum(S).
executable act([A],move(D)) if [hasball(A) eq 0, defense_time gt 0,

Net lt x(A)+DX, x(A)+DX leq MX, 1 leq y(A)+DY, y(A)+DY leq MY] :-
action(act([A],move(D))), delta(D,DX,DY), net(Net), linex(MX), liney(MY).

executable act([A],throw(D,F)) if
[hasball(A) gt 0,defense_time eq 0, 1 leq x(A)+DX*F, x(A)+DX*F leq MX,
1 leq y(A)+DY*F, y(A)+DY*F leq MY] :-

action(act([A],throw(D,F))), delta(D,DX,DY), linex(MX), liney(MY).

These axioms state that neither a player nor the ball can leave the field. build_sum is recurs-
ively defined to return the expression: defense_time + hasball(A1) + · · ·+ hasball(An)
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where A1, . . . , An are the players (i.e., player(white,1) and player(black,1)). Let us
observe that =, 6=,≤, <, etc. are concretely represented by eq,neq,leq,lt, respectively. �

The effects of an action are described by axioms (dynamic causal laws) of the form:

x causes Eff if Prec (5)

where x ∈ A, Prec is a constraint, and Eff is a conjunction of primitive constraints of the
form f = FE, where f ∈ F . The axiom asserts that if Prec is true w.r.t. the current
state, then Eff must hold after the execution of x. Since agents share fluents, their actions
may cause inconsistencies. A conflict happens when the effects of different actions lead to
an inconsistent state; a procedure has to be applied to resolve conflicts and determine a
consistent subset of the conflicting actions (Sect. 3.2). A failure occurs whenever an action x

cannot be executed as planned by an agent a as a consequence of the above procedure.

I Example 4. Let us state the effects of the actions in the volleyball domain. When the
ball is thrown, with force f , in direction d, it reaches a destination cell whose distance is as
follows: a) if d is either north or south then ∆X = 0, ∆Y = f ; b) if d is east or west then
∆X = f, ∆Y = 0; c) if d is any other direction, ∆X = f, ∆Y = f . As a further effect of
throw, the fluent defense_time is set (to 1 in our example).

actocc([A],throw(D,F)) causes hasball(A) eq 0 :- action(act([A],throw(D,F))).
actocc([A],throw(D,F)) causes defense_time eq 1 :- action(act([A],throw(D,F))).
actocc([A],throw(D,F)) causes pair(x(ball),y(ball)) eq

pair(x(A)−1+ F*DX,y(A)−1+ F*DY) :-
action(act([A],throw(D,F))), delta(D,DX,DY).

actocc([A],throw(D,F), causes hasball(B) eq 1
if [pair(x(B),y(B)) eq pair(x(A)+F*DX, y(A)+F*DY)] :-
action(act([A],throw(D,F))), player(B), neq(A,B),delta(D,DX,DY).

actocc([A],throw(D,F)) causes point(black) eq 1 if [x(A)+F*DX eq Net] :-
action(act([A],throw(D,F))), delta(D,DX,_), net(Net).

The effects of the other two actions move and whistle can be stated by:
actocc([player(white,1)],whistle) causes point(white) eq 1

if [x(ball) lt NET] :- net(NET).
actocc([player(white,1)],whistle) causes point(black) eq 1

if [NET lt x(ball)] :- net(NET).
actocc([A],move(D)) causes pair(x(A),y(A)) eq pair(x(A)−1+DX,y(A)−1+DY) :-

action(act([A],move(D))), delta(D,DX,DY).
actocc([A],move(D)) causes defense_time-- :- action(act([A],move(D))).
actocc([A],move(D)) causes hasball(A) eq 1

if [pair(x(ball),y(ball)) eq pair(x(A)+DX,y(A)+DY)] :-
action(act([A],move(D))), delta(D,DX,DY).

Let us observe here that we concretely used actocc instead of act. This has been introduced
to give the idea of the occurrence of an action. �

At least two perspectives can be followed, by assigning either a passive or an active role
to the conflicting agents during conflict resolution. In the first case, a supervising entity
is in charge of resolving the conflicts, and all the agents will adhere to the supervisor’s
decisions. Alternatively, the agents are in charge of reaching an agreement, possibly through
negotiation. The following declarations describe basic reaction policies the agents can use:

action x [OPT ] (6)

where:
OPT ::= on_conflict OC [OPT ] | on_failure OF [OPT ]

OC ::= retry_after T [provided C] | forego [provided C] | arbitration
OF ::= retry_after T [if C] | replan [if C] [add_goal C] | fail [if C]
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In these axioms one can also specify policies to be adopted when a failure occurs during
action execution. Reacting to a failure is a “local” activity the agent performs after the state
transition has been completed. In the axioms (6), one can specify different reactions to a
conflict (resp. a failure) of the same action, to be considered in their order of appearance.

Apart from the communications occurring among agents during conflict resolution, other
forms of “planned” communication can be modeled in an action theory. An agent might seek
help from other agents to make a constraint true. The request can be broadcast to all known
agents or sent to some specific agents. The agent can optionally offer a “reward” in case of
acceptance of the proposal. This allows us to model negotiations and bargaining.

request C1[ to_agent a′] if C2 [ offering C3 ] (7)

Various global constraints can be exploited to impose control knowledge and maintenance
goals representing properties that must persist. For example:
• FC holds_at n: the fluent constraint FC holds at the nth time step.
• always FC: the fluent constraint FC holds in all states of the evolution of the world.
A detailed description of these constraints and their semantics can be found in [6].

An action domain description consists of a collection Da of axioms of the forms described
so far, for each agent a ∈ G. Moreover, it includes a collection Oa of goal axioms (objectives),
of the form goal C, where C is a constraint, and a collection Ia of initial state axioms of the
form: initially C where C is a constraint involving only timeless expressions. We assume
that all the sets Ia are drawn from a consistent global initial state description I, i.e., Ia ⊆ I.
A specific instance of a planning problem is a triple

〈
〈Da〉a∈G , 〈Ia〉a∈G , 〈Oa〉a∈G

〉
. The prob-

lem has a solution only if 〈Oa〉a∈G characterizes a consistent state, i.e., there exists a con-
sistent assignment of values to the fluents that satisfies the constraint

∧
a∈G

∧
goalC∈Oa

C.

3 System Behavior

The behavior of BAAC can be split in two parts: the semantics of the action description
languages used locally by each agent, ignoring the axioms (6) and (7), and the behavior
of the overall system that deals with agents’ interactions. Let us assume that there is an
overall planning horizon length N. Due to space restrictions, we don’t enter into the details
of the “local” semantics which is given in terms of transition systems (as in [8]). The formal
semantics of the language BMV , upon which BAAC is defined, is given in detail in [6].

3.1 Concurrent Plan Execution
The agents are autonomous and plan their activities independently. In executing their plans,
the agents must take into account the effects of concurrent actions. We developed a basic
communication mechanism among agents by exploiting a tuple space, realized using the
Linda system [2]. Moreover, most of the interactions among concurrent agents, especially
those aimed at resolving conflicts, are managed by a specific process, the supervisor, that also
provides a global time to all agents, enabling them to execute their actions synchronously.
1. At the beginning, the supervisor acquires the initial state description I =

⋃
a∈G Ia.

2. At each time step the supervisor starts a new state transition:
Each active agent sends to the supervisor a request to perform an action specifying
its effects on the (local) state.
The supervisor collects these requests and determines whether subsets of actions/a-
gents are conflicting. A conflict occurs whenever agents require incompatible assign-
ments of values to the same fluents. The transition takes place once all conflicts have
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been resolved and a subset of compatible actions has been identified using one or more
policies (see below). These actions are enabled while the remaining ones are inhibited.
All the enabled actions are executed, yielding changes that define a new (global) state.
These changes are then sent back to all agents, to update their local states. Those
agents whose actions have been inhibited receive a failure message.

3. The computation stops when the time N is reached.
After each step of the local plan execution, the agents need to check if the reached state still
supports their successive planned actions. If not, each agent has to reason locally and revise
its plan, i.e., initiate a replanning phase. This may occur in two cases: (a) The proposed
action was inhibited, so the agent actually executed a nop; this case occurs when the agent
receives a failure message from the supervisor. (b) The interaction was successful, i.e., the
planned action was executed, but the effects of the actions performed by other agents affected
fluents in its local state, preventing the successful continuation of the rest of the plan—e.g.,
the agent a may have assumed that the fluent g maintained its value by inertia, but another
agent changed such value. This might affect the executability of the next action of a’s plan.

3.2 Conflicts Resolution
A conflict resolution procedure is performed by the supervisor whenever it identifies a set
of incompatible actions. Different policies can be adopted in this phase and different roles
can be played by the supervisor. First, the supervisor exploits the priorities of the agents to
attempt a resolution of the conflict, by inhibiting the actions of low priority agents. If this
does not suffice, further options are applied. Two simple options have been implemented in
our prototype, assigning the active role either to the supervisor or to the conflicting agents.
The architecture is modular, and can be extended with more complex policies.

The supervisor has the active role—it decides which actions to inhibit. In the current
prototype, the arbitration strategy is limited to (1) A random selection of a single action
to be executed or (2) The computation of a maximal set of compatible actions to be
executed. This computation is done by solving a dynamically generated CSP. In this
strategy, the on_conflict policies assigned to actions by axioms (6) are ignored.
The supervisor simply notifies the set of conflicting agents about the inconsistency of
their actions. The agents involved in the conflict are completely in charge of resolving
it via negotiation. The supervisor waits for a solution from the agents. In solving the
conflict, each agent a makes use of one of the on_conflict directives (6) specified for
its conflicting action x. The semantics of these directives are as follows ([provided C]
is an optional qualifier; if omitted it will be interpreted as provided true):

The option on_conflict arbitration causes the execution of the supervisor which
performs an arbitration phase to resolve the conflict, as previously described.
The option on_conflict forego provided C causes the agent a to “search” among
the other conflicting agent for someone, say b, that can guarantee the condition C. In
this case, b performs its action while the execution of a’s action fails, and a executes
a nop in place of its action x. Different strategies can be implemented in order to
perform such a “search for help”, e.g., a round-robin policy described below, but
other alternatives are possible and should be considered in completing the prototype.
The option on_conflict retry_after T provided C, differs from the preceding
one because a will execute nop during the following T time steps and then will try
again to execute its action (provided that the preconditions of the action still hold).
If there is no applicable option (e.g., no option is defined or none of the agents accept
to, or is able to, guarantee C), the action is inhibited and its execution fails.
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The way in which agents exploit the on_conflict options can rely on several policies.
In the current prototype we implemented a round-robin policy. Let us assume that the
agents a1, . . . , am aim at executing actions z1, . . . , zm, respectively, and these actions are
conflicting. The agents are sorted by the supervisor, and the agents take turn in resolving
the conflict. Suppose that at a certain round j of the procedure the agent ai is selected.
It determines the j-th option for its action and tries to apply it. If the option is directly
applicable or an agreement is reached with another agent on a condition C, then the
two agents exit the procedure. If no arbitration is invoked, then the remaining agents
will complete the procedure. If the option does not lead to an agreement, then the next
agent in the sequence will start its active role in the round, while ai will wait its next
turn in round j + 1. This procedure always ends with a solution to the conflict, since a
finite number of on_conflict options are defined for each action. This a rigid policy,
and it represents a simple example of how to realize a terminating protocol for conflict
resolution. Alternative solutions can be added to the prototype thanks to its modularity.

Once all conflicts have been addressed, the supervisor applies the enabled actions, and
obtains the new global state. Each agent receives a communication containing the outcome
of its action execution and the changes to its local state. Moreover, further information
might be sent to the participating agents, depending on the outcome of the coordination
procedure. For instance, when two agents agree on an on_conflict option, they “promise”
to execute specific actions (e.g., one agent may have to execute T consequent nop). This
information has to be sent back to the interested agents to guide their replanning phases.

3.3 Failure Policies
Agents receiving a failure message from the supervisor need to revise their original plans to
detect if the local goals can still be achieved. Different approaches can be used. For instance,
one agent could avoid developing an entire plan at each step, but only produce a partial plan
for the very next step. Alternatively, an agent could determine the “minimal” modifications
to the existing plan in order to make it valid with respect to the new encountered state. At
this time, the prototype includes only replanning from scratch at each step.

While replanning, the agent might exploit the on_failure options associated to the
inhibited action. The intuitive semantics of these options is as follows. (The options declared
for the inhibited action are considered in the given order, executing the first applicable one).

retry_after T [if C]: the agent evaluates the constraint C; if C holds, then it will
execute nop T times and then try again the failed action (provided it is executable).
replan [if C1] [add_goal C2]: the agent evaluates C1; if it holds, then in the replan-
ning phase the goal C2 will be added to the local goal. The add_goal C2 is optional; if it is
not present then nothing will be added to the goal, i.e., it is the same as add_goal true.
fail [if C1]: this is analogous to replan [if C1] add_goal false. In this case the
agent declares that it is impossible to reach its goal.
If none of the above options is applicable, then the agent will proceed as if the option
replan if true is present.

It might be the case that some global constraints (such as holds_at and always) involve
fluents that are not known by any of the agents. Therefore, none of the agents is able to
consider such constraints while developing his plan. These constraints have to be enforced
when merging the individual plans. In doing so, the supervisor adopts the same strategies
introduced to deal with conflicts and failures among actions, as described earlier.
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3.4 Broadcasting and Direct Requests
Let us describe a simple protocol for implementing communications among agents, following
an explicit request of the form (7). We assume that the current state is the i-th one of the
plan execution. The handling of requests is interleaved with the agent-supervisor interac-
tions; nevertheless, requests and offers are directly exchanged among agents. The main steps
involved in a state transition, from the point of view of an agent a, are:
1. Agent a tries to execute its action and sends this information to the supervisor (Sect. 3.1).
2. Possibly after a coordination phase, a receives from the supervisor the outcome of its

attempt to execute the action (namely, failure or success, the changes in the state, etc.)
3. If the action execution is successful, before declaring the current transition completed,

the agent a starts an interaction with the other agents to handle pending requests. All the
communications associated to such interactions are realized using Linda’s tuple-space.
3.a. Agent a fetches the collection H of all pending requests. For each request h ∈ H,
e.g., originating from agent b, a decides whether to accept h. Such a decision might involve
exploitation of the planning facilities, in order to determine if the requested condition
can be achieved by a, possibly by modifying its original plan. If possible, a posts its offer
into the tuple-space and waits for a rendezvous with b.
3.b. Agent a checks whether there are replies to the requests it previously posted. For
each request, a collects the set of offers/agents that expressed their willingness to help
a and, by using some strategy, selects one of them, say b. The policy for choosing the
responding agent can be programmed (e.g., by exploiting priorities, etc.). Once the choice
has been made, a communicates with the selected agent, declares its availability to b,
and communicates the fulfillment of the request to the other agents. The request is also
removed from the tuple space, along with all the obsolete offers.

4. At that point, the transition is completed for agent a. By taking into account the in-
formation about the outcome of the coordination phase in solving conflicts (point (2)),
the agreement reached in handling requests (point (3)), a might need to modify its plan.
If the replanning phase succeeds, then a will execute the next action in its local plan.

3.5 Implementation Issues
A prototype of the system has been implemented in SICStus Prolog, using the libraries clpfd
for reasoning (and the planners described in [5, 6]), and the libraries system, linda/server,
and linda/client for process communication. The system is organized in modules and it
is available, together with some sample domains at www.dimi.uniud.it/dovier/BAAC.

Each autonomous agent corresponds to an instance of the module plan_executor, which,
in turn, relies on a planner for planning/replanning activities, and on client for interacting
with other actors in the system. As previously explained, a large part of the coordination
is guided by the module supervisor. Notice that both the supervisor and client act
as Linda-clients. Conflict resolution functionalities are provided to the modules client and
supervisor by the modules ConflictSolver_client and ConflictSolver_super, respect-
ively. Finally, the arbitration_opt module implements the arbitration protocol(s).

Let us remark that all the policies exploited in coordination, arbitration, and conflict
handling can be customized by providing a different implementation of individual predic-
ates exported by the corresponding modules. For instance, to implement a conflict resolution
strategy different from the round-robin described earlier, it suffices to add to the system a
new implementation of the module ConflictSolver_super (and for ConflictSolver_client,
if the specific strategy requires an active role of the conflicting agents). Similar extensions

www.dimi.uniud.it/dovier/BAAC
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can be done for arbitration_opt. A settings.pl file is available to enable specification
of various parameters, e.g., the names of the files containing the action descriptions, the
number of planning steps allowed, the selected conflict resolution strategies, etc.

As far as the planning module is concerned, we modified the interpreters of the BMV

and the BMAP languages [5, 6] to accept the coordination constructs described in this paper.
The two planners, sicsplan and bmap, have been integrated in the system to process BMV

and BMAP theories. However, the system is open to further extensions and different planners
(even not necessarily based on Prolog technology) can be easily integrated thanks to the
simple interface with the module plan_executor, which consists of few Prolog predicates.

4 The Volleyball Domain

Let us describe a specification in BAAC of a coordination problem between two multi-agent
systems. Let us extend the domains described in Examples 1–4. There are two teams: black
and white whose objective is to score a point, i.e., to throw the ball in the field of the other
team (passing over the net) in such a way that no player of the other team can reach the ball
before it touches the ground. Each team is modeled as a multi-agent system that elaborates
its own plan in a centralized manner (thus, each step in the plan consists of a set of actions).

The playing field is discretized by fixing a linex×liney rectangular grid that determines
the positions where the players (and the ball) can move (see Fig. 1). The leftmost (rightmost)
cells are those of the black (white) team, while the net (x = 6) separates the two subfields.
There are p players per team (p = 2 in Fig. 1). The allowed actions are: move(d), throw(d, f),
and whistle. During the defense time, the players can move to catch the ball and/or to
re-position themselves on the court. When a player reaches the ball (s)he will have the ball
and will throw the ball again. A team scores a point either if it throws the ball to a cell
in the opposite subfield that is not reached by any player of the other team in the defense
time, or if the opposite team throws the ball in the net. The captain (first player) of each
team is in charge of checking if a point has been scored. In this case, (s)he whistles.

Each team is modeled as a centralized multi-agent system, which acts as a singe agent in
the interaction with the other team. Alternative options in modeling are also possible—for
instance, one could model each single player as an independent agent that develops its own
plan and interacts with all other players. The two teams have the goal of scoring a point:
goal(point(black) eq 1). for blacks and goal(point(white) eq 1). for whites.

At the beginning of the execution every team has a winning strategy, developed as a
local plan; these are possibly revised after each play to accommodate for the new state of
the worlds reached. An execution (as printed by the system) is reported in Fig. 1, for a plan
length of 9. The symbol 0 (respectively, Y) denotes the white (respectively, black) players, Q
(resp. X) denotes a white player with the ball. The throw moves applied are:

[player(black,1)]:throw(ne,3) (time 1) [player(black,2)]:throw(se,3) (time 3)
[player(white,1)]:throw(w,5) (time 5) [player(black,1)]:throw(e,5) (time 7)

Let us observe that, although it would be in principle possible for the white team to
reach the ball and throw it within the time allowed, it would be impossible to score a point.
Therefore, players prefer to avoid to perform any move.

The complete description of the encoding of this domain is available at http://www.
dimi.uniud.it/dovier/BAAC. The repository includes also additional domains—e.g., a domain
inspired by games involving one ball and two-goals, as found in soccer. Although the encoding
might seem similar to that of volleyball, the possibility of contact between two players makes
this encoding more complex. Indeed, thanks to the fact that the net separates the two teams,
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Time 0: Time 1: Time 2: Time 3: Time 4:
******|****** ******|****** ******|****** ******|****** ******|******
* | * * | * * | * * | * * | *
* Y | O* * Yo | O* * X | O * * Y | O * * Y | O *
* | * * | * * | * * | * * | *
* | O * * | O * * Y | O * * Y | O * *Y | *
*X | * *Y | * * | * * |o * * |Q *
******|****** ******|****** ******|****** ******|****** ******|******
Time 5: Time 6: Time 7: Time 8: Time 9:

******|****** ******|****** ******|****** ******|****** ******|******
* | * * | * * | * * | * * | *
* Y | O * * Y | O * * Y | O * *Y | O * *Y | O *
* | * * | * * | * * | * * | *
*Y | * * | O * * | O * * | O * * | O *
* o |O * * X | * * Y |o * *Y |o * *Y |o *
******|****** ******|****** ******|****** ******|****** ******|******

Figure 1 A representation of an execution of the volleyball domain

in the volleyball domain rules like the following one suffice to avoid collisions:
always(pair(x(A),y(A)) neq pair(x(B),y(B))) :-

A=player(black,N),B=player(black,M), num(N), num(M), N<M.

In a soccer world this is not true because only the supervisor can be aware, in advance,
of possible contacts between different team players originating from concurrent actions.
This generates interesting concurrency problems, e.g., concerning the ball possession after
a contact. A simple way to address this problem consists in assigning a fluent to each field
cell, whose value can be −1 (free), 0 (resp., 1) if a white (resp. black) player is in the cell.
The supervisor identifies a conflict when two opponent players move to the same cell, thus
assigning to that fluent a different value. In this case, the supervisor arbitrarily enables one
action, the other agent waits a turn to retry the action:

action act([A],move(D)) on_failure retry_after 1 on_conflict arbitrate :-
agent(A), direction(D).

5 Conclusions and future work

In this paper, we designed a system for reasoning with action description languages in multi-
agent domains. The language enables the description of agents with individual goals operat-
ing in shared environments. The agents can interact (by requesting help from other agents
in achieving goals) and implicitly cooperate in resolving conflicts that arise during execution
of their plans. The implementation is distributed, and uses Linda to enable communication.

The work is preliminary but shows strong potential and several directions of research. The
immediate goal is to refine strategies and coordination mechanisms, involving, for instance,
payoff, trust, etc. We intend to evaluate the performance and quality of the system in several
multi-agent domains (e.g., game playing scenarios, auctions, and other domains requiring
distributed planning). We will investigate the use of future references in the fluent constraints
(as supported in BMV )—we believe this feature may provide a more elegant approach to
handle the requests among agents, and it is necessary to enable the expression of complex
interactions among agents (e.g., to model commitments). In particular, we view this platform
as ideal to experiment with models of negotiation (e.g., as discussed in [14]) and to deal with
commitments [11]. We will also explore the implementation of different strategies associated
to conflict resolution; we are interested in investigating how to capture the notion of “trust”
among agents, as a dynamic property that changes depending on how reliable agents have
been in providing services to other agents.
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