
CDAOStore: A Phylogenetic Repository Using
Logic Programming and Web Services∗

Brandon Chisham1, Enrico Pontelli1, Tran Cao Son1, and
Ben Wright1

1 Dept. Computer Science, New Mexico State University
{bchisham | epontell | tson | bwright}@cs.nmsu.edu

Abstract
The CDAOStore is a portal aimed at facilitating the storage and retrieval of data and metadata
associated to studies in the field of evolutionary biology and phylogenetic analysis. The novelty
of CDAOStore lies in the use of a semantic-based approach to the storage and querying of
data. This enables CDAOStore to overcome the data format restrictions and complexities of
other repositories (e.g., TreeBase) and to provide a domain-specific query interface, derived from
studies of querying requirements for phylogenetic databases.

CDAOStore represents the first full implementation of the EvoIO stack, an inter-operation
stack composed of a formal ontology (the Comparative Data Analysis Ontology), an XML ex-
change format (NeXML), and a web services API (PhyloWS). CDAOStore has been implemen-
ted on top of an RDF triple store, using a combination of standard web technologies and logic
programming technology. In particular, we employed Prolog to support some of the format trans-
formation tasks and, more importantly, in the implementation of several of the domain-specific
queries, whose structure is beyond the reach of standard RDF query languages (e.g., SPARQL).
CDAOStore is operational and it already hosts over 90 million RDF triples, imported from Tree-
Base or submitted by other domain scientists.

1998 ACM Subject Classification J.3 Life and Medical Sciences

Keywords and phrases Bioinformatics, Phylogenetic Analysis, Prolog, Ontologies

Digital Object Identifier 10.4230/LIPIcs.ICLP.2011.209

1 Introduction

The explosive growth of stock-piled information in the biological and earth sciences presents
a wealth of opportunities for expanding bioinformatics-based analyses with respect to both
the amount of data incorporated and the diversity of data types and sources to be integrated.
While large-scale or integrative analyses of such data may use generic methods of machine
learning, there is a theory-based comparative approach to the analysis of diverse types
of biological data, in which the similarities and differences between compared things are
interpreted as evolved differences that have arisen by a process of descent-with-modification
from common ancestors. This evolutionary comparative approach, used throughout biology
and paleobiology, depends fundamentally on “phylogenetic trees” representing paths of
descent. While powerful tools exist for the inference of phylogenies, and while evolutionary
approaches are increasingly recognized as effective, the lack of interoperability in tree-based
data and services hinders large-scale and integrative analyses.

∗ The research has been partially supported by NSF grants DGE-0947465, IIS-0812267, CBET-0754525
and HRD-0420407.

© B. Chisham, E. Pontelli, T. Son, B. Wright;
licensed under Creative Commons License NC-ND

Technical Communications of the 27th International Conference on Logic Programming (ICLP’11).
Editors: John P. Gallagher, Michael Gelfond; pp. 209–219

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICLP.2011.209
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

210 LP in Querying Phylogenetic Information

To address this overarching problem, a collaboration among computational scientists
and evolutionary biologists has been established—within a working group (EvoInfoWG)
sponsored by the National Evolutionary Synthesis Center—leading to the development of an
interoperation stack (EvoIO Stack) for the exchange of evolutionary structures. The EvoIO
Stack comprises of (i) an ontology for the description of data (the Comparative Data Analysis
Ontology), (ii) an exchange format (NeXML), and (iii) a web service interface (PhyloWS).

The use of components of the EvoIO Stack has been gaining momentum—e.g., NeXML
is now a supported format by several analysis tools (e.g., Mesquite [11], DAMBE [22]),
CDAO and PhyloWS are supported by TreeBase [1]), the largest repository of phylogenetic
trees. While these efforts adopt components of the EvoIO Stack as adds-on to the existing
features of the tools and repositories, the EvoInfoWG has initiated the development of a
novel data repository completely built around the EvoIO Stack and capable of providing
forms of access to evolutionary data that are beyond the relational access forms offered by
traditional repositories, like TreeBase. The CDAOStore is the first effort in this direction.

CDAOStore is a triple store that implements the complete EvoIO Stack. As a triple store,
it maintains a semantic-based repository for phylogenetic data, as RDF triples; it provides
the ability to import and export the content in NeXML and other commonly used formats,
and it supports querying through a PhyloWS web service interface. CDAOStore offers a
domain-specific querying interface supporting classes of queries relevant to phylogenetic
investigation, as identified by domain experts. The implementation of the CDAOStore
combines established web services and ontology technologies with Prolog; logic programming
is employed to provide an effective implementation of several classes of domain-specific queries,
which are beyond the reach of traditional ontology-based query languages (e.g., SPARQL
[16]). In particular, Prolog enables the elegant encoding of operations that manipulate
collection of phylogenetic trees, performing selection of branches and transitive closures.

2 Background

Phylogenetics and Interoperation: Phylogenetic trees (a.k.a. phylogenies) have gained
a central role in modern biology. Trees provide a systematic structure to organize evolu-
tionary knowledge about diversity of life. Trees have become fundamental tools for building
new knowledge, thanks to their explanatory and comparative-based predictive capabilities.
Evolutionary relationships provide clues about processes underlying biodiversity and enable
predictive inferences about future changes in biodiversity (e.g., in response to climate or
anthropogenic changes). Phylogenies are used with increase frequency in several fields,
e.g., comparative genomics [2], metagenomics [21], and community ecology [19]. The major
obstacle hindering broad availability and repurposing of phylogenies has been, for a long time,
the lack of effective standards and a community-driven process for adopting and extending
them. Existing file formats allow for representation of trees using a simple string and also
the molecular or morphological character data used to infer the tree. There are no widely
accepted standards for annotating tips, internal nodes or branches, and different applications
have adopted unique methods for modifying the tree strings, meaning that annotations from
one program may generate errors or be misinterpreted when import into another program.
Other types of data/metadata, such as descriptions of evolutionary models or metadata
annotations for provenance, have not seen any attempts at standardization.

The EvoIO Stack: The EvoIO Stack [17] has been proposed as a platform that coherently
combines support for exchange of data and their semantics and predictable programmatic
access. The EvoIO Stack is seeded with a triplet of emerging interoperability standards—

B. Chisham, E. Pontelli, T. Son, B. Wright 211

NeXML, CDAO, and PhyloWS.
NeXML [18] is an exchange standard for phylogenetic trees, data matrices, and arbitrary

metadata. NeXML is an XML schema for comparative biology that draws on the successful
high-level block structure of NEXUS [10], but takes advantage of widespread support for
XML, and harnesses the W3C-proposed RDFa standard to embed semantically rich metadata.

The Comparative Data Analysis Ontology (CDAO) [15] provides a formal ontology for
describing phylogenies and their associated character state matrices. It provides a gen-
eral framework for talking about the relationships between taxa, characters, states, their
matrices, and associated phylogenies. The ontology is organized around four central concepts:
operational taxonomic units (OTUs), characters, character states, phylogenetic trees, and
transitions. A phylogenetic analysis starts with the identification of a collection of Operational
Taxonomic Units (OTUs), representing the entities being described (e.g., species, genes).
Each OTU is described, in the analysis, by a collection of properties, typically referred to as
characters. The values that characters can assume are referred to as character states. In
phylogenetic analysis, it is common to collect the characters and associated character states
in a matrix, the character state matrix, where the rows correspond to the different OTUs and
the columns correspond to the characters. Phylogenetic trees are used to represent paths of
descent-with-modification, capturing the evolutionary process underlying the OTUs.

PhyloWS [8] is a web-services standard for searching, addressing, and accessing phylogen-
etic trees, data matrices, and their associated metadata in a predictable and programmable
way from online phylogenetic data providers. All PhyloWS URI’s begin with /phylows/ as
the standard delimiter. Then based on the phylogenetic information being queried a data
structure will be given, such as taxon, tree, or study. This is followed by any specific identifiers
needed for the query. For example, http://purl.org/phylo/treebase/phylows/tree/TB2:
Tr3099?format=rdf returns the tree with the TreeBase ID equal to ’Tr3099’ in RDF format.

3 CDAOStore

The CDAOStore is a novel repository and portal aimed at facilitating the storage
and retrieval of phylogenetic data; it is the first instance of a repository built on the
EvoIO stack. The novelty of CDAOStore
lies in the use of a semantic-based approach
to the storage and querying of data, build-
ing on CDAO for the semantic annotation
of data. This approach enables scientists to
overcome the restrictions imposed by the use
of specific data formats—thus, facilitating
inter-operation among phylogenetic analysis
applications. This is different, e.g., from the
main existing repository for phylogenies, Tree-
Base, which requires submissions in NEXUS

TreeBase Triple-Store

Ph
yl

og
en

et
ic

 D
at

a

NEXUS

NeXML

PHYLIP

MEGA

CDAO
Triples

CDAO
Triples

Queries

IM
PO

RT
ER

 M
O

D
U

LE

EX
PO

RT
ER

 M
O

D
U

LE

QUERY
ENGINE

Ph
yl

oW
S

Vi
su

al
iz

er
s

Request
Manager

Query
Processing

Output
Formatting

Figure 1 Overall structure of CDAOStore

format; there is experimental evidence (e.g., [13]) that data reuse and inter-operation has
been hard to achieve, and TreeBase has high rates of rejected submissions due to incorrect
data formats (e.g., a study showed that, over a period of time, 9% of the submissions to
TreeBase were complete, and 11% of them could not be parsed). Furthermore, the use of
a semantic-based repository makes it possible to design and implement more meaningful
domain-specific queries. The overall structure of CDAOStore is illustrated in Fig. 1. The
system is organized in three modules. The Importer module enables the submission of new

ICLP 2011

http://purl.org/phylo/treebase/phylows/tree/TB2:Tr3099?format=rdf
http://purl.org/phylo/treebase/phylows/tree/TB2:Tr3099?format=rdf

212 LP in Querying Phylogenetic Information

phylogenies, data matrices, or metadata for existing phylogenies into the repository. The
Query module supports all the queries to the repository. The Exporter module implements the
user interface to the CDAOStore. In the following subsections, we review the functionalities
and implementation of these three modules. The details of the Query modules are discussed
in the following sections, as this module represents the core of the system.
Importer Module: The purpose of the Importer module is to import phylogenies and their
associated data into the repository, automatically extracting their representations in terms
of instances of CDAO. The data importer module can process phylogenetic data encoded in
several commonly used data formats—currently, the Importer supports NEXUS [10], NeXML
[18], PHYLIP [3], and MEGA [7] formats. The Importer has been realized by developing a
semantic characterization of each data format in terms of CDAO concepts and relations. The
Importer module includes a permanent link to TreeBase—i.e., the CDAOStore repository
provides a semantic mirroring of the complete content of TreeBase, and new updates to
TreeBase are immediately reflected into CDAOStore. The various parsing sub-modules have
been developed from scratch, using combinations of C++, Prolog, and XSLT. In particular,
Prolog has been used to implement a parser for NEXUS—accommodating for differences
in the interpretations of the NEXUS specification [10] through non-determinism[6]. The
Importer maps data from the input files to an object model that mirrors CDAO classes,
producing RDF/XML triples that can be deposited in the CDAOStore triple store. The data
importer module is also capable of mapping the object model back into any of the acceptable
data formats; this enables the use of CDAOStore for conversion among data formats.
Exporter Module: The Exporter modules provides the user interfaces of CDAOStore.
It consists of a Web portal, which allows users to submit and query data, and a series of
visualization tools, referred to as CDAO Explorer. CDAO Explorer includes an application
for visualizing phylogenetic trees, that provides different visualization formats and the ability
to highlight or hide parts of the trees according to user-defined criteria, an application for
displaying character data matrices, with capabilities to use color coding to highlight character
patterns, and a tool to graphically add annotations to existing phylogenies. Additionally,
the Exporter module includes the ability to map phylogenies encoded in the triple store to
any of a number of formats (e.g., phyloXML, NeXML, Newick, RDF/XML), which can be
piped to other visualization tools, such as Nexplorer 3 [4], which accepts CDAO RDF/XML
input, and PhyloBox [5], which accepts phyloXML and Newick representations.
Query Module: At the core of CDAOStore we find a triple store which collects data and
meta-data associated to phylogenetic analysis studies. All the data and metadata are stored
as RDF triples, encoded using CDAO. The repository itself has been implemented using the
RDFlib library (www.rdflib.net), a Python-based RDF store which uses a MySQL database
to maintain the serialized RDF triples representing instances of CDAO. RDFlib was selected
for its simplicity and for the flexibility offered in formatting the output of queries posed to
the store. The Query module is articulated into three components—a request manager, a
query processor, and an output formatter.

The request manager provides the infrastructure for the PhyloWS web service API and
prepares the queries for execution on the triple store. The PhyloWS API is the basis for all
the data access features of CDAOStore. The other web components and the CDAO Explorer
use PhyloWS to access data. The URI’s of the CDAOStore implementation of PhyloWS
are divided into three conceptual parts: (1) the address of the store site and path prefix
www.cs.nmsu.edu/~cdaostore/cgi-bin/phylows, (2) a query type (e.g., tree, matrix, msc,
nca, size), and (3) a parameter list, dependent on the specific type of query. For example,
the msc (maximum spanning clade) and nca (nearest common ancestor) query types expect a

www.rdflib.net
www.cs.nmsu.edu/~cdaostore/cgi-bin/phylows

B. Chisham, E. Pontelli, T. Son, B. Wright 213

list of taxon id’s separated by ‘/’. The listing query takes optional limit and offset parameters
to paginate results. The size query requires parameters describing a direction (greater, less,
or equal), a criteria (node, internal, or leaf) and a limit (a numeral). The request manager
handles parsing, sanitizing, interpreting request arguments, and orchestrating the remaining
components. The results produced by the execution of a query are returned to the Exporter
for output. For most queries, the formatting is largely determined by the format string
given to the query processor, and a query-dependent header and footer. For the queries
determining phylogenies, the output is filtered through a post-processing layer to reorder its
components and make it easier to be processed by the exporter module—e.g., the components
of the phylogeny are exported in an order that resembles a breadth-first traversal of the tree.

4 Domain-Specific Queries

4.1 Querying Biological Phylogenies
CDAOStore maps phylogenies and characters state data matrices to instances of CDAO, and
stores them as RDF triples in a triple store. The triple store of CDAOStore is exposed to
the users via the PhyloWS web service interface, enabling them to submit SPARQL queries
[16]. These queries are processed by the SPARQL processor implemented by the RDFlib
library. Nevertheless, the use of a SPARQL interface has several drawbacks; SPARQL is a
relatively complex query language, which is relatively inaccessible to the average life scientist.
Furthermore, there is evidence in the literature on uses of phylogenetic analysis in biological
investigations that the type of queries required are often more complex than what standard
SPARQL can provide. In particular, SPARQL is weak in handling queries to hierarchical
structures of arbitrary depth and offers limited support for aggregate functions.

To address these issues, we developed a domain-specific query interface to the triple
store, providing classes of queries that have been determined to be of general interest to
life scientists using phylogenies in their investigations. The classes of queries have been
devised through a combination of focus groups with life scientists and investigation of the
relevant literature—the problem of storing and accessing phylogenies has been recognized for
quite some time (e.g., [14]) and attacked by various research groups (e.g., the Evolutionary
Database Interoperability group at the Natl. Evolutionary Synthesis Center). In particular,
a seminal paper on desiderata for phylogenetic databases [12] provided a classification of
phylogenetic investigations and the associated types of queries.

The study in [12] identifies six classes of uses of phylogenetic repositories: (1) Casual Uses
(occasional search for a phylogeny, e.g., for informational use); (2) Visualization Uses (retrieval
of one or more phylogeny for graphical display); (3) Study Development Uses (contribution of
new phylogenies or update of existing ones); (4) Super-Tree Uses (for assembly of phylogenies
into super-trees); (5) Simulation Studies (e.g., to assess performance of models of evolution);
(6) Comparative Genomics Studies (use of phylogenies to relate different genes/genomes).

The investigation in [12] identified the needs of these six application leading to eleven
basic types of phylogenetic queries. We revised these classes of queries through our own
focus groups and refined them into the following classes of queries:
• Q1 Determine all the phylogenies containing a given set of taxa—e.g., locate all trees
containing the taxonomic units named Ilex anomala and Ilex glabra.

• Q2 Determine the relations among a set of taxa in all phylogenies (query not supported).
• Q3 Determine the minimum spanning tree/clade for a given set of taxa—e.g., locate the
minimum spanning clade in the tree Tree3099 (TreeBase identifier) for the taxonomic
units Ilex anomala and Ilex glabra.

ICLP 2011

214 LP in Querying Phylogenetic Information

• Q4 Determine all phylogenies constructed using a given inference method—e.g., locate
all the phylogenies constructed using a parsimony method.

• Q5 Determine all the phylogenies containing a set number of taxa—e.g., locate all the
phylogenies with at most 25 taxa.

• Q6 Determine all the phylogenies produced by a given tool or author—e.g., locate all the
phylogenies published by W. Piel.

• Q7 Determine all phylogenies satisfying a given geometric property—e.g., locate all the
phylogenies that have diameter equal to 5.

• Q8 Given a phylogeny P , a measure m, and a quantity q, determine all the phylogenies
that are at distance q from P according to the measure m (e.g., for the purpose of
clustering phylogenies that are “close” to a given tree).

• Q9 Given a model of evolution, determine all the phylogenies that have been constructed
using such model of evolution—e.g., identify all the phylogenies that have been constructed
using Jukes-Cantor model for estimating distance.

• Q10 Given a measure, return statistics about the measure in the phylogenies present in
the repository—e.g., determine the distribution of tree lengths

• Q11 Given a type of data and a set of taxa, determine all the phylogenies on the set of
taxa that have been constructed using the specified type of data. sequences.

Two classes of queries are currently not supported—classes Q2 and Q8. The class Q2, drawn
from the study in [12], is only vaguely specified, and further investigation is in progress
to characterize the type of relationships to be considered—the queries in this class are
aimed at discovering opportunities for clustering of taxa based on how they are related
by the phylogenies in the repository. Queries in class Q8 are associated to the use of
distance measures between phylogenetic trees (e.g., Robinson-Foulds distance, K tree score)
to determine clusters of trees. For questions Q7, we support the computation of radii and
diameters—defined in terms minimum and maximum eccentricity of the phylogeny, where
the eccentricity is the maximum distance in the phylogeny among any two nodes.

4.2 Query Implementation
The various queries listed above have been implemented in CDAOStore using a combination of
SPARQL and Prolog; some of the queries (e.g., Q1) can be mapped to corresponding SPARQL
queries; other queries require more involved reasoning on phylogenies (e.g., computation of
nearest common ancestors) and these are implemented by mapping phylogenies into Prolog
terms and using Prolog to address the queries.

In order to use of Prolog in CDAOStore, we developed a pre-processor, which is used to
generate a Prolog program that will produce the result of the submitted query. The first
step of the pre-processor is to generate SPARQL queries to retrieve from the triple store
the phylogenies of interest (i.e., those referred to by the query being executed) and convert
the RDF representation of such phylogenies into a collection of ground Prolog facts. The
pre-processor combines these ground facts with a set of pre-determined Prolog rules, which
describe the computation of the query, and feeds the result to a Prolog engine for execution
(in our case, SWI-Prolog). Finally, the pre-processor converts the result back into a RDF
format for final output. The facts used to describe phylogenies include facts of the form:

tree(TreeName). node(TreeName, NodeName).
edge(TreeName, EdgeName, Direction, SourceNode, DestinationNode).

The nodes are classified as internal, root, or leaf nodes by adding suitable simple rules. The
set of rules added include those used to determine the ancestors of a node, in the form of a

B. Chisham, E. Pontelli, T. Son, B. Wright 215

predicate ancestor_of(Tree, Ancestor, Node), as a simple transitive closure of the edge
predicate. For queries that involve the entire repository (e.g., Q10), the process above is
broken down into chunks, where the Prolog system is invoked not on all the phylogenies
at once, but on groups of a given size (established as a system parameter); the results are
incrementally aggregated to produce the final result.
Queries Q1: This class of queries is used to determine all the phylogenies containing a
given set of taxa. This query can be implemented directly in SPARQL:

PREFIX study: <http://www.cs.nmsu.edu/~bchisham/study.owl#>
PREFIX contact: <http://www.w3.org/2000/10/swap/pim/contact#>
PREFIX foaf: <http://www.mindswap.org/2003/owl/foaf#>
SELECT ?tree WHERE { ?tree has_TU TU1. . . . ?tree has_TU TUN. }

The various taxa passed as arguments refer to standardized names of taxa within the
CDAOStore; work is in progress to adapt the internal nomenclature to satisfy global naming
standards being developed by several working groups (e.g., the Darwin Core [20]).
Queries Q3: This class of queries is used to determine the minimum spanning clade for a
given set of taxa or the nearest common ancestor of a given collection of taxa. These queries
are implemented using the Prolog engine. The nearest common ancestor is an ancestor of all
taxa in a given set such that none of its descendants is also an ancestor of all such taxa:

common_ancestor_of(Tree, Ancestor, [Node]) :- !, ancestor_of(Tree, Ancestor, Node).
common_ancestor_of(Tree, Ancestor, [Node | Nodes]) :-

ancestor_of(Tree, Ancestor, Node), common_ancestor_of(Tree, Ancestor, Nodes).
distant_common_ancestor_of(Tree,DistantAncestor,Nodes) :-

common_ancestor_of(Tree,Anc,Nodes), ancestor_of(Tree,DistantAncestor,Anc).
nearest_common_ancestor_of(Tree,Nca,Nodes) :- common_ancestor_of(Tree,Nca,Nodes),

not(distant_common_ancestor_of(Tree, Nca, Nodes)).

The minimum spanning clade of a set of taxa is the set of nodes that includes the
nearest-common ancestor of all the taxa in the set, and all of its descendants.

clade(Tree, Node, Member):- ancestor_of(Tree, Node, Member).
clade(Tree, Node, Node):- node(Tree, Node).
msclade(Tree, Nodes, Clade):- nearest_common_ancestor_of(Tree,NCA,Nodes),

setof(Member, clade(Tree, NCA, Member), Clade).

Queries Q4: This class of queries is used to determine all the phylogenies constructed using
a given inference method. There are two different “methods” information that can be checked
(as from the CDAO specification)—i.e., the algorithm used and the specific phylogenetic
inference system (i.e., the specific software used). Both cases can be handled in SPARQL:

SELECT ?tree WHERE { SELECT ?tree WHERE {
?study study:has_analysis ?analysis. ?study study:has_analysis ?analysis .
?analysis study:has_algorithm ’$ALGO’ . ?analysis study:has_software ’$ALGO’ .
?analysis study:has_output_tree ?tree . } ?analysis study:has_output_tree ?tree . }

where $ALGO is the variable for the given algorithm/software being checked for.
Queries Q5: This queries are used to determine all phylogenies containing a given number of
taxa. This query requires the use of Prolog, to count the number of leaves in the phylogenies:

taxa_count(Tree, Count) :- leaf_count(Tree, Count).
leaf_count(Tree,C) :- setof(LNode, leaf(Tree,LNode),Nodes), length(Nodes,C).
tree_with_n_taxa(N, Trees) :- findall(T, (tree(T), taxa_count(T,N)), Trees).

ICLP 2011

216 LP in Querying Phylogenetic Information

Queries Q6: These queries determine all the phylogenies produced by a given tool or author;
these can be easily addressed using SPARQL, e.g., to search for a specific author:

SELECT ?study WHERE {
?study study:has_author ?authorid.
?authorid foaf:last_name ’$LAST_NAME’^^<http://www.w3.org/2001/XMLSchema#string>.
?authorid foaf:first_name ’$FIRST_NAME’^^<http://www.w3.org/2001/XMLSchema#string>.}

where $LAST_NAME and $FIRST_NAME are the last and first name of the author,
respectively. The option to search on just the last name is also available.

Queries Q7: CDAOStore currently supports only the computation of queries requesting
phylogenies with a given constraint on either their radii or their diameters. The code for the
radius is provided next—the predicate computes the radii of the trees (through a recursive
comparison of distances among leaves) and selects those that have a radius equal to the
requested value R. The code for the diameter is analogous, with the exception that we will
maximize the eccentricity instead of minimizing it.

radius_count(Tree, R, Trees) :- setof(T, (tree(T), radius(T,R)), Trees).
radius(Tree, R) :- findall(Leaf, leaf(Tree, Leaf), [L|Leaves]),

max_distance(Tree, L, Leaves, Curr), radii(Tree, Leaves, R, Curr).
radii(_, Leaf, R, R) :- length(Leaf, 1), !.
radii(Tree, [Leaf | Leaves], Radius, Curr) :-

max_distance(Tree,Leaf,Leaves, Len),
(Len < Curr *-> radii(Tree,Leaves,Radius,Len); radii(Tree,Leaves,Radius,Curr)).

eccList(_,_,[],[]).
eccList(Tree, Leaf, [LeafNode | Leaves], [E | Rest]) :-

pathlength(Tree,Leaf,LeafNode,E), eccList(Tree,Leaf,Leaves,Rest).
max_distance(Tree,Node,Nodes,D) :- eccList(Tree,Node,Nodes,Lens), max_list(Lens,D).

Queries Q9: This query is used to determine all phylogenies that have been constructed
using a particular model of evolution; this query is mapped to a SPARQL query that filters
phylogenies based on the model of evolution property. Unfortunately, the TreeBase repository
is lacking this type of meta-data, preventing us from experimenting with it.
Queries Q10: This class of queries is used to determine statistical information about the
phylogenies present in the repository (e.g., distribution of tree lengths). The code has been
developed to support the computation of the mean, median, mode, and standard deviation
of size of trees, edge lengths, radii, and diameters of all phylogenies in the repository. These
queries are implemented in Prolog. Here below we sketch its main aspects.

stat_measures(Type, Mean, Median, Mode, Dev) :-
select_data(Type, List), msort(List, Sorted),
find_mean(Sorted, Mean), find_median(Sorted, Median),
find_mode(Sorted, Mode), find_stddev(Sorted, Dev).

select_data(size, List) :- findall(C, node_count(Tree,C), List).
select_data(edge_length, List) :-

findall(C, (edge(Tree,Name,_,_,_), edge_length(Name,C)), List).
...
findMean(List, Mean):- sum(List, Sum), length(List, N), Mean is Sum / N.

Queries Q11: This class of queries is used to determine, given a type of data and a set of
taxa, all the phylogenies containing all the given taxa and whose construction involved data
of the given type (e.g., DNA). This type of queries can be addressed using SPARQL, since
CDAO provides properties describing all these features; the overall structure of the query is

B. Chisham, E. Pontelli, T. Son, B. Wright 217

SELECT ?tree WHERE {
?study has_analysis ?analysis. ?analysis has_output_tree ?tree.
?analysis has_input_matrix ?matrix.
?tree has_TU <TU1>. . . . ?tree has_TU <TUN>.
?matrix has_Character ?character.
?character rdf:type cdao:AminoAcidResidueCharacter. }

5 Preliminary Evaluation

The CDAOStore has been implemented and it is now available for access. The implementation
has been realized using a collection of publicly available tools. In particular, the triple store
has been implemented on top of the RDFlib Python library, the Prolog components in
SWI-Prolog, and various libraries have been adopted to deal with specialized data formats.
The store has been populated by importing into CDAOStore the complete content of the
TreeBase [1] repository, encoded using CDAO and enhanced with semantic annotations
drawn from several associated repositories. At this time, CDAOStore contains over 4, 000
phylogenies, and the overall size of the repository is now at more than 90 million RDF triples.

We performed some preliminary experiments to evaluate the performance of the system on
some sample queries, drawn from scientific publications. Let us observe that performance was
not one of the main driving criteria in initial design and implementation of CDAOStore—we
focused more on providing an environment that is flexible and provides querying capabilities
that are beyond what supported in existing repositories. Furthermore, CDAOStore is viewed
as a service provider that will be used by other clients for various types of applications.

The performance in answering the queries has been measured in terms of time to respond.
Since our Web portal uses cgi-bin, we evaluated performance by performing a direct call
with a specific URL, instead of going through the actual HTML form, in order to get a more
accurate time measurement. The queries have been performed on a server running on a HP
Intel Core i7 860 machine, with 8GB of memory and making use of SuSE Linux.

Table 1 Execution Times for Sample Queries (time in sec.)

Query PhyloWS Time Web Portal Time
T1 2.44 1.20
T2 1.82 3.18
T3 0.91 4.19
T4 6.12 6.18
T5 6.19 6.26
T6 32.58 35.22
T7 5.42 5.04
T8 15.91 *

Table 2 summarizes the queries and results, while Table 1 summarizes some of the
execution times. The timings are expressed in seconds. The different rows correspond
to different queries. The first time column reports the response time while issuing the
query through the PhyloWS API, while the second made use of the web portal. Note that
occasionally the web portal provides a faster response time as some of the argument parsing
is pre-determined by the specific fields in the portal. We do not report results for queries of
type 9 because meta-data about models of evolution are missing from the current repository.
Queries 10 and 11 have been only very recently integrated in the system. A particular note
for query of type 7—the pre-processing of the query required excessive time, leading to a
time-out of the web server; we are working on addressing this issue.

ICLP 2011

218 LP in Querying Phylogenetic Information

Table 2 Sample queries

Query Description Query Answer
Type

T1 Phylogenies containing taxa Ilex anomala and
Ilex glabra

Q1 16 phylogenies

T2 Minimum Spanning Clade for taxa Ilex anomala
and Ilex glabra in tree Tree3099

Q3 1 clade, 14 nodes

T3 Nearest Common Ancestor of taxa Ilex anomala
and Ilex glabra in tree Tree3099

Q3 1 node

T4 Phylogenies constructed using Parsimony al-
gorithm

Q4 3,636 phylogenies

T5 Phylogenies constructed using PAUP∗ Q4 4,091 phylogenies
T6 Phylogenies with less than 25 nodes Q5 3,120 phylogenies
T7 Phylogenies co-authored by W.H. Piel Q6 3 phylogenies
T8 Phylogenies with radius equal to 10 Q7 1 phylogeny

Some of the queries require a larger execution times (in the order of several tens of
seconds), due to the fact that the queries check all possible phylogenies in the triple store,
rather than looking only at nodes from a particular phylogeny. Some ways to improve these
execution times may include maintaining summary information of the various phylogenies.
An asynchronous query mechanism would also be useful for running queries such as radius
and diameter, avoiding the web server timeout issue mentioned earlier.

6 Conclusion and Future Work

The CDAOStore is a collaborative effort to implement a repository of results from phylogenetic
analysis studies in the field of life sciences, built on a formally specified inter-operation
stack, the EvoIO stack, composed of a formal ontology, a standard exchange format, and
a web service API. The first deployment of CDAOStore has been completed with success,
embedding a sophisticated domain-specific querying API and Web interface, implemented
using a combination of SPARQL and Prolog. The CDAOStore platform is open-source and is
available as a SourceForge project, at sourceforge.net/projects/cdaotools. The portal
to CDAO-Store is available at http://www.cs.nmsu.edu/~cdaostore.

The novelty of CDAOStore lies in the use of a semantic-based approach to the storage
and querying of data, building on established ontologies for the semantic annotation of
data and on a query language which is domain-specific. These are features that are absent
from related existing repositories (e.g., TreeBase [1], Tree of Life Web project [9], Dryad
datadryad.org). This approach enables us to overcome restrictions imposed by the use of
specific data formats (facilitating interoperation among phylogenetic analysis applications)
and makes it possible to formulate more meaningful domain-specific queries.

We are currently working on extending the set of domain-specific queries supported by
CDAOStore, paying particular attention at queries used to discover clustering of taxa and
clustering of phylogenies, according to different types of distance measures. We are also
exploring ways of enhancing the speed of some queries, through better representations and
pre-computation of additional meta-data. An important component of our future work will
include the evaluation of the suitability of the current platform (based on RDFlib) to sustain
the growing size of the triple store. Alternative platforms are available (e.g., Jena, RAP,
AllegroGraph), with probably better performance but also with steeper amount of work
required to integrate the various system components.

sourceforge.net/projects/cdaotools
http://www.cs.nmsu.edu/~cdaostore
datadryad.org

B. Chisham, E. Pontelli, T. Son, B. Wright 219

References
1 Treebase. http://www.treebase.org, 2010.
2 H. Ellegren. Comparative genomics and the study of evolution by natural selection. Mo-

lecular Ecology, 17(21):4586–4596, 2008.
3 J. Felsenstein. PHYLIP: Phylogeny Inference Package. Cladistics, 5:164–166, 1989.
4 V. Gopalan, W. Qiu, M. Chen, and A. Stoltzfus. Nexplorer: phylogeny-based exploration

of sequence family data. Bioinformatics, 22(1):120–121, 2006.
5 A. Hill, S. Pick, and R. Guralnick. PhyloBox, 2010.
6 J.R. Iglesias, G. Gupta, E. Pontelli, D. Ranjan, and B. Milligan. Interoperability between

bioinformatics tools: A logic programming approach. In PADL, pages 153–168. Springer
Verlag, 2001.

7 S. Kumar, J. Dudley, M. Nei, and K. Tamura. MEGA: A Biologist-centric Software for
Evolutionary Analysis of DNA and Protein Sequences. Briefings in Bioinformatics, 9:299–
306, 2008.

8 H. Lapp and R. Vos. Phyloinformatics web services api: Overview. https://www.
nescent.org/wg/evoinfo/index.php?title=PhyloWS, National Evolutionary Synthesis
Center, 2009.

9 D. Maddison, K. Schulz, and W. Maddison. The Tree of Life Web Project. Zootaxa,
1668:19–40, 2007.

10 D. Maddison, D. Swofford, and W. Maddison. NEXUS: an Extensible File Format for
Systematic Information. Syst. Biol., 46(4):590–621, 1997.

11 W. Maddison and D. Maddison. Mesquite: a modular system for evolutionary analysis.
http://mesquiteproject.org, 2010.

12 L. Nakhleh, D. Miranker, and F. Barbancon. Requirements of phylogenetic databases. In
Third IEEE Symposium on Bioinformatics and Bioengineering, pages 141–148. IEEE, 2003.

13 NESCent. Supporting nexus. https://www.r-phylo.org/wg_phyloinformatics/
Supporting_NEXUS, National Evolutionary Synthesis Center, 2008.

14 W.H. Piel. Phyloinformatics and tree networks. In Computational Biology and Genome
Informatics, pages 239–252. World Scientific Press, 2003.

15 F. Prosdocimi, B. Chisham, E. Pontelli, J.D. Thompson, and A. Stoltzfus. Initial imple-
mentation of a comparative data analysis ontology. Evolutionary Bioinformatics, 5:47–66,
July 2009.

16 E. Prud’hommeaux and A. Seaborne. SPARQL Query Language for RDF. Technical Report
REC-rdf-sparql-query-20080115, W3C, 2008.

17 A. Stoltzfus, N. Cellinese, K. Cranston, H. Lapp, S. McKay, E. Pontelli, and R. Vos. The
evoio interop project. http://www.evoio.org/wiki/Main_Page, National Evolutionary
Synthesis Center, 2009.

18 R. Vos. NeXML: Phylogenetic data in xml. http://www.nexml.org, 2008.
19 C. Webb, D. Ackerly, M. McPeek, and M. Donoghue. Phylogenies and communtiy ecology.

Annu. Rev. Ecol. Syst., 33(1), 2002.
20 J. Wieczorek, M. Döring, R. De Giovanni, T. Robertson, and D. Vieglais. Darwin core.

http://rs.tdwg.org/dwc/index.htm, Darwin Core Task Group / TDWG, 2009.
21 M. Wu and J. Eisen. A simple, fast, and accurate method of phylogenomic inference.

Genome Biology, 9(10):R151, 2008.
22 X. Xia and Z. Xie. DAMBE: Data analysis in molecular biology and evolution. Journal of

Heredity, 92:371–373, 2001.

ICLP 2011

http://www.treebase.org
https://www.nescent.org/wg/evoinfo/index.php?title=PhyloWS
https://www.nescent.org/wg/evoinfo/index.php?title=PhyloWS
http://mesquiteproject.org
https://www.r-phylo.org/wg_phyloinformatics/Supporting_NEXUS
https://www.r-phylo.org/wg_phyloinformatics/Supporting_NEXUS
http://www.evoio.org/wiki/Main_Page
http://www.nexml.org
http://rs.tdwg.org/dwc/index.htm

	Introduction
	Background
	CDAOStore
	Domain-Specific Queries
	Querying Biological Phylogenies
	Query Implementation

	Preliminary Evaluation
	Conclusion and Future Work

