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Abstract
This paper describes a doctoral research in three areas: Hybrid ASP – an extension of Answer
Set Programming for reasoning about dynamical systems, an extension of Set Constraint atoms
for reasoning about preferences, computing stable models of logic programs using Metropolis
type algorithms. The paper discusses a possible application of all three areas to the problem of
maximizing total expected reward.
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1 Introduction and Problem Description

The research investigates three areas related to ASP.
Area 1: H-ASP. The main motivation for this area is the question of how to reason about
dynamical systems that exhibit both discrete and continuous behavior. The unique feature
of Hybrid ASP (H-ASP) is that H-ASP rules can be thought of as general input-output
devices. In particular, H-ASP programs allow the user to include ASP type rules that act
as controls for when to apply a given algorithm to advance the system to the next position.
This feature allows H-ASP to be used with Partial Differential Equation (PDE) solvers and
Ordinary Differential Equation (ODE) solvers.

Area 2: preferences as SC atoms. The notion of a set constraint atom (SC atom) was
introduced by Marek and Remmel [18]. This notions is extended to the notion of an extended
set constraint atom (ESC atom) to model preferences.

Area 3: computing stable models of logic programs using Metropolis type al-
gorithms. The Metropolis algorithm introduced by Metropolis et al. [16] in 1953, is a
widely applicable procedure for drawing samples from a specified distribution on a large finite
set. It was later generalized to the Metropolis-Hastings algorithm [8]. Since its introduction
the Metropolis algorithm has found many applications in statistical physics, biology, statistics,
and other areas of science [5]. The subject of the research is to produce algorithms that use
Metropolis type algorithms for the following two tasks:

1. Given a finite propositional logic program P which has a stable model, find a stable
model M of P .

2. Given a finite propositional logic program P which has no stable model, find a maximal
program P ′ ⊆ P which has a stable model and find a stable model M ′ of P ′.

Finding maximal subprograms that have stable models is important for certain extensions
of ASP where arbitrary set constraints are used to model both hard and soft preferences. In
such situations, one may not be able to satisfy all soft preferences so that stable models may
not exist that satisfy all preferences. However, if certain soft preferences are dropped, then
the subprograms that do have stable models may be found.
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The three areas can be combined when one considers certain problems. For instance:
what is a next action that an agent acting in a dynamical system has to perform in order to
maximize the total expected reward. The idea is to describe a dynamical system in H-ASP,
define optimal strategy as a set of preferred stable models and then perform computations
using Metropolis type algorithm.

2 Background and Overview of Existing Literature

The following is a review of the definitions of normal propositional logic programs and stable
model semantics. A normal propositional logic program P consists of clauses of the form
C = a← a1, . . . , am,¬b1, . . . ,¬bn where a, a1, . . . , am, b1, . . . , bn are atoms. Here a1, . . . , an

are called the premises of clause C, b1, . . . , bm are called the constraints of clause C, and a
is called the conclusion of clause C. For any clause C as above, let prem(C) = {a1, . . . , an},
cons(C) = {b1, . . . , bm}, and c(C) = a. Either prem(C), cons(C), or both may be empty. C
is said to be a Horn clause if cons(C) is empty. Let mon(P ) denote the set of all Horn clauses
of P and nmon(P ) = P \mon(P ). The elements of nmon(P ) will be called nonmonotonic
clauses. Let H(P ) denote the Herbrand base of P . A subset M ⊆ H(P ) is called a model
of a clause C if whenever prem(C) ⊆ M and cons(C) ∩M = ∅, then c(C) ∈ M . M is a
model of a program P if it is a model of every clause C ∈ P . The Gelfond-Lifschitz reduct
of P with respect to M denoted PM is obtained by removing every clause C such that
cons (C) ∩M 6= ∅ and then removing the constraints from all the remaining clauses. M is
called a stable model of P if M is the least model of PM .

H-ASP
Modern computational models and simulations such as the model of dog’s heart described

in [11], or the model of internal tides within Monterey Bay and the surrounding area described
in [10] rely on PDE solvers and ODE solvers to determine the values of parameters. Such
simulations proceed by invoking appropriate algorithms to advance a system to the next
state, which is often distanced by a short time interval into the future from the current state.
In this way, a simulation of continuously changing parameters is achieved. The parameter
passing mechanisms and the logic for making decisions regarding what algorithms to invoke
and when are part of the ad-hoc control algorithm. Thus the laws of a system are implicit in
the ad-hoc control software.

Action languages [7] which are also used to model dynamical systems allow the users to
describe the laws of a system explicitly. Initially action languages did not allow simulation
of the continuously changing parameters. Recently, Chintabathina introduced an action
language H [4] where he proposed an elegant approach to modeling continuously changing
parameters. However, the implementation of H discussed in [4] cannot use PDE solvers
nor ODE solvers. This means that parameters governed by physical processes such as the
distribution of heat or air flow, that cannot be described explicitly as functions of time and
realistic simulations of which require sophisticated numerical methods, cannot be modeled
using the current implementations of H.

Hybrid ASP [3] is an extension of ASP that allows users to combine the strength of the
ad-hoc approaches, i.e. the use of numerical methods to faithfully simulate physical processes,
and the expressive power of ASP, which provides the ability to elegantly model laws of a
system. Hybrid ASP provides mechanisms to express the laws of the modeled system via
hybrid ASP rules which can control execution of algorithms relevant for simulation.

Let S be a parameter space and let At be a set of atoms. The universe is At × S.
Given M ⊆ At× S and Bi = a

(i)
1 , . . . , a

(i)
ni ,¬b

(i)
1 , ...,¬b(i)

mi , where a
(i)
1 ,....a(i)

ni , b
(i)
1 ,...,b(i)

mi ∈ At
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and p ∈ S, M satisfies Bi at p, if (a(i)
j ,p) ∈ M for j = 1, . . . , ni, and (b(i)

j ,p) 6∈ M for
j = 1, . . . ,mi. Advancing Rules are of the form

B1;B2; . . . ;Br : A,O
a

where A is an algorithm, each Bi is as above, a ∈ At, and O ⊆ Sr is such that if (p1, . . . ,pr) ∈
O, then t(p1) < . . . < t(pr), A (p1, . . . ,pr) ⊆ S, and for all q ∈ A (p1, . . . ,pr), t(q) > t(pr).
The idea is that if for each i, Bi is satisfied at pi, then the algorithm A can be applied to
(p1, . . . ,pr) to produce a set O′ ⊆ S such that if q ∈ O′, then t(q) > t(pr) and (a,q) holds.
Stationary rules are of the form

B1;B2; . . . ;Br : H,O
a

where each Bi is as above, a ∈ At, O ⊆ Sr such that if (p1, . . . ,pr) ∈ O, then t(p1) <
· · · < t(pr), and H is a Boolean algorithm such that for all (p1, . . . ,pr) ∈ O, H(p1, . . . ,pr)
is defined. The idea is that if (p1, . . . ,pr) ∈ O and for each i, Bi is satisfied at pi, and
H(p1, . . . ,pr) is true, then (a,pr) holds.

Modeling Preferences as SC Atoms
SC atoms were first introduced by Marek and Remmel in [18]. A SC atom is a pair

〈X,F〉 where X is a finite set and F ⊆ 2X . A set constraint clause (SC clause) is a string of
the form 〈X,F〉 ← 〈Y1,G1〉, . . . , 〈Yn,Gn〉, where 〈X,F〉, 〈Y1,G1〉, . . . , 〈Yn,Gn〉 are SC atoms.
A set constraint program (SC program) is a finite set of SC clauses. Let M be a set of atoms
and K = 〈X,F〉 be a SC atom. Define M |= K if X ∩M ∈ F . Marek and Remmel in [18]
defined the stable model semantics for SC program using the notion of NSS transform.

The basic idea of using SC atoms to define preferences is to consider triples of the from
〈X,F , wt〉 or 〈X,F ,4〉 where X is a finite set of atoms, F ⊆ 2X , wt : F → [0,∞) ⊆ R, 4 is
a partial order in F .

The triples of the form 〈X,F , wt〉 are called weight preference set constraint atoms and
triples of the form 〈X,F ,4〉 are called partially ordered preference set constraint atoms. A
set of atoms M is satisfies 〈X,F , wt〉 or 〈X,F ,4〉 if and only if M satisfies 〈X,F〉. Now
suppose that we have a SC program P and an additional finite set of clauses T of the form
〈Xi,Fi, wti〉 ← , i ∈ {1, . . . , n}. Suppose that M is a stable model of P ∪ T . Then we can
define the weight of the model M as W (M) =

∑n
i=1 wti(Xi ∩M). The weight functions can

be used to describe user’s preferences for what the user wants M ∩Xi to be by saying that
for F1, F2 ∈ Fi, F1 is preferred over F2 if wti(F1) < wti(F2). A stable model M1 of P ∪ T is
preferred over the stable model M2 of P ∪ T if W (M1) < W (M2). Thus the introduction of
weight preference set constraint atoms can lead to a natural weighting of stable models which
can be used to model preferences. Similarly, suppose that there is an SC program P which
in addition has a finite set of clauses T of the form 〈Xi,Fi,4i〉 ← for i ∈ {1, . . . , n}. Now
suppose that two stable models M1 and M2 of P ∪ T are given. Then M1 4M2 if and only
if M1 ∩Xi 4i M2 ∩Xi for i = 1, . . . , n. Thus the introduction of partial order preference set
constraint atoms can lead to a natural partial order on stable models which can be used to
model preferences.

Computing Stable Models of Logic Programs Using Metropolis Type Algorithms
The use of Metropolis type algorithms to compute stable models of logic programs is based

on the Forward Chaining (FC) algorithm introduced by Marek et al.[17]. The FC algorithm
provides two ingredients necessary for any procedure to be used with the Metropolis type
algorithms: a way to produce a "next" candidate given a current candidate, and a measure of
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merit that assigns a numeric score to a candidate (based on how closely it corresponds to a
stable model).

Given a Markov chain K (x, y) and a probability distribution π (x), let G (x, y) =
π (y)K (y, x) /π (x)K (x, y) . The Metropolis-Hastings algorithm defines a new Markov chain
M (x, y), where the probability M (x, y) is equal to the probability of drawing xt+1 = y given
xt = x using the following procedure:

1. given current state xt = x, draw y based on the Markov chain K (x, ·);
2. draw U from the uniform distribution on [0, 1];
3. set xt+1 = y if U ≤ G (xt, y) and set xt+1 = xt otherwise.
The key result about the Metropolis-Hasting algorithm is the following.

I Theorem 1. Let X be a finite set and K (x, y) be a Markov chain on X such that ∀x, y ∈ X
K (x, y) > 0 iff K (y, x) > 0. Let π (x) be a probability distribution on X. Let M (x, y) be
the Metropolis-Hastings chain as defined above. Then π (x)M (x, y) = π (y)M (y, x) for all
x, y. In particular, for all x, y ∈ X lim

n→∞
Mn (x, y) = π (y).

The relevance of this result to the task of finding stable models of normal propositional
logic programs is in the following: after sampling from M for sufficiently many steps the
probability of being at y is π (y) regardless of the starting state. If π (y) is defined to be
relatively large whenever y corresponds to a stable model then for a normal propositional
logic program P which has a stable model, samples generated from M will eventually include
those corresponding to the stable models and moreover the sampling from M will be biased
towards those samples that correspond to the stable models of P .

There are various approaches to computing stable models of logic programs. Systems
such as smodels [20] and clasp [6] use complete algorithms that will either find stable models
if they exist or will report that stable models do not exist. These systems are not based on
the Metropolis type algorithms. The use of the Metropolis type algorithm for the purpose of
finding stable models of logic programs was investigated in [13], [14], and [15]. The Metropolis
algorithm is also used in SAT solvers [19].

3 Goal of the Research

Each of the 3 areas studied has its own goal. Thus the goal of the research in the area of
Hybrid ASP is to produce theoretical machinery necessary to build an H-ASP software system
that is able to reason about dynamical systems that exhibit both discrete and continuous
behavior, and to produce a prototype of such a software system.

In action languages like H, the goal is to compile an H program into a variant ASP
program that can be processed with variant ASP solvers. A long term goal of this research
is to develop extensions of ASP solvers that can process Hybrid ASP programs. This would
allow the development of extensions of action languages like H that could be compiled to
Hybrid ASP programs which, in turn would be processed by Hybrid ASP solvers.

The goal of the research in the area of modeling preferences is to produce theoretical
machinery necessary to build a software system for finding preferred stable models of SC
logic programs and to produce a prototype of such a software system.

The goal of the research in the area of computing stable models of logic programs using
Metropolis type algorithms is to produce a theoretical machinery necessary to build a software
system for finding stable models of logic programs using Metropolis type algorithms and to
produce a prototype of such a software system.
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Finally, it would be interesting to combine the research to produce a theoretical foundation
and software system for solving the following problem: what is a next action that an agent
acting in a dynamical system has to perform in order to maximize the total expected reward.

4 Current Status of the Research

Hybrid ASP. A paper on H-ASP [3] was accepted as a technical communication to ICLP
2011. Proof of concept software prototypes are developed and successfully tested to research
the feasibility of combining H-ASP with numerical algorithms for solving PDEs and with
decision making algorithms (see [22] for a review of decision making algorithms).
Preferences as SC atoms. The framework of theoretical definitions is created and various
examples of the use of SC atoms to model preferences are being investigated.
Computing stable models of logic programs using Metropolis type algorithms.
The subject is discussed in [2]. The paper discusses Metropolized Forward Chaining (MFC)
algorithm and some computer experiments performed using the algorithm.

5 Preliminary Results Accomplished

Hybrid ASP. see section 4.
Preferences as SC atoms. Preliminary results include being able to successfully model
preferences as defined in [21], as well as to model preferences in various toy examples.
Computing stable models of logic programs using Metropolis type algorithms.
Preliminary results include software prototypes, both single processor and parallel versions, as
well as a size 300 (2, 6) Van der Waerden certificate found by the software as discussed in [2].
The certificate was found using a 288 processor parallel run in under 2 weeks. To illustrate
the difficulty of finding size 300 (2, 6) Van der Waerden certificate - a single processor version
of smodels has failed to find size 210 certificate (while running for over 3 weeks), and a single
processor version of clasp 1.3.3 has failed to produce size 240 certificate (while running for
over 2 weeks). The experiments demonstrate that the method is feasible for the problem
of finding stable models of logic programs and merits additional research. A different set
of experiments was used to validate the use of MFC for the problem of finding maximal
subprograms that have stable models of the programs that don’t have stable models. Two
Metropolis type algorithm were tested: Metropolis algorithm and Stochastic Approximation
Monte Carlo (SAMC) algorithm [1], [12]. Preliminary experiments indicate that for difficult
problems SAMC performs significantly better than the Metropolis algorithm.

6 Open Issues and Expected Achievements

Hybrid ASP. It is expected that the theoretical foundation necessary for computations
with H-ASP will be produced as well as a software proof of concept prototype.
Preferences as SC atoms. It is expected that a theoretical foundation necessary for
modeling preferences using SC atoms will be produced. It is not clear whether a software
proof of concept prototype will be produced as part of the dissertation.
Computing stable models of logic programs using Metropolis type algorithms.
The initial goal of this area is already mostly achieved. However research produced many open
issues. Here are some of them: 1. what are the relative merits of using various Metropolis
type algorithms? 2. What other approaches to using Metropolis type algorithms for finding
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stable models of logic programs are there? 3. How does MFC compare in performance to the
existing algorithms?

Regarding combining the 3 areas: it is not clear whether a fusion of 3 areas will be
accomplished, and a proof of concept prototype will be produced as part of the dissertation.
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