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Abstract
Representing and solving constraint satisfaction problems is one of the challenges of artificial
intelligence. In this paper, we present answer set programming (ASP) models for an important
and very general class of constraints, including all constraints specified via grammars or automata
that recognise some formal language. We argue that our techniques are effective and efficient,
e.g., unit-propagation of an ASP solver can achieve domain consistency on the original constraint.
Experiments demonstrate computational impact.
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1 Introduction

Answer set programming (ASP; [3]) provides a compact, declarative, and highly competitive
approach to modelling and solving constraint satisfaction problems (CSP) [21, 9, 11]. CSP
are combinatorial problems defined as a set of variables whose value must satisfy a number of
limitations (the constraints), and stem from a variety of areas. One very promising method
for scheduling, rostering and sequencing problems is to specify constraints via grammars
or automata that recognise some formal language [23, 27, 25, 16]. For instance, we might
want to ensure that anyone working three consecutive shifts then has two or more days
off, or that an employee changes activities only after a fifteen minutes break or one hour
lunch. Grammar-based constraint propagators were proposed in [27, 25], and modelled with
Boolean satisfiability (SAT; [4]) in [26, 1], while an automata-based constraint propagator was
presented in [23], and modelled with SAT in [2]. Whilst SAT models can be directly converted
into ASP [21], we here show that grammar and related constraints can be modelled with
ASP in a more straightforward and easily maintainable way without paying any penalty,
e.g., in form of efficiency, for using ASP. First, we show that the grammar constraint can
be modelled with ASP based on the production rules in the grammar. Second, we present
alternative ASP models for a special case of the grammar constraint, that is, the regular
constraint, based on deterministic finite automata. Third, we give theoretical results on
the pruning achieved by unit-propagation of an ASP solver, and runtime complexity. Forth,
we provide an ASP model for the precedence constraint [18] which is a special case of
the regular constraint. It is useful for breaking value symmetry in CSP. We argue that
our encoding improves runtime complexity over regular. Finally, we demonstrate the
applicability of our approach on shift-scheduling and graph colouring instances. We show
that symmetry breaking using our ASP models yield significant improvements in runtime,
and outperforms recent generic approaches to symmetry breaking for ASP.
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2 Background

Answer Set Programming

A (normal) logic program over a set of primitive propositions A, ⊥ ∈ A, is a finite set of
rules r of the form

a0 ← a1, .., am, not am+1, .., not an

where ai ∈ A are atoms for 0 ≤ i ≤ n, and {a1, .., am, not am+1, .., not an} is the body of r.
We also consider choice rules of the form
{h1, .., hk} ← a1, .., am, not am+1, .., not an

that allow for the nondeterministic choice over atoms in {h1, .., hk}. Their semantics is
given through program transformations [28]. The answer sets of a logic program Π can
be characterised as Boolean assignments A over the atoms and bodies in Π, dom(A), that
satisfy nogoods imposed by Π [13]. Formally, an assignment A is a set {σ1, .., σn} of (signed)
literals σi expressing that a ∈ dom(A) is assigned true or false. The proposition ⊥ denotes an
atom that is false in every assignment. In our context, a nogood [8] is a set δ = {σ1, .., σm}
of literals, expressing a condition violated by any assignment A if δ ⊆ A. Nogoods allow
for a transparent technology transfer from SAT since every nogood can be syntactically
represented by a clause, for instance, inferences in ASP can be viewed as unit-propagation
on nogoods [13]. For a nogood δ, a literal σ ∈ δ, and an assignment A, we say that δ is unit
and the complement of σ is unit-resulting if δ \A = {σ}. Unit-propagation is the process of
repeatedly extending A by unit-resulting literals until no unit nogood remains or is violated.
A total assignment A is a solution to a set of nogoods ∆ if δ 6⊆ A for all δ ∈ ∆. Given a logic
program Π, one can specify a set of nogoods such that its solutions capture the models of
the Clark’s completion of Π [6, 13]. We denote this set ∆(Π). If Π is tight [12], the solutions
to ∆(Π) are precisely the answer sets of Π. (All logic programs presented in this paper are
tight.) Otherwise, loop formulas, expressed in the set of nogoods Λ(Π), have to be added to
establish full correspondence to the answer sets of Π [19].

Constraint Satisfaction

We want to use ASP to model and solve CSP. Formally, a CSP is a triple (V,D,C) where
V is a finite set of variables, D is a set of finite domains such that each variable v ∈ V
has an associated domain dom(v) ∈ D, and C is a set of constraints. A constraint c is a
pair (RS , S) where RS is an n-ary relation on the variables in S ∈ V n, called the scope of c. A
(variable) assignment v 7→ t means that variable v ∈ V is mapped to the value t ∈ dom(v). A
(compound) assignment (v1, .., vm) 7→ (t1, .., tm) denotes the assignments vi 7→ ti, 1 ≤ i ≤ m.
A constraint c = (RS , S) is satisfied iff S 7→ (t1, .., tm) and (t1, .., tm) ∈ RS . A solution of a
CSP is an assignment for all variables in V satisfying all constraints in C. Constraint solvers
typically use backtracking search to explore assignments in a search tree. In a search tree,
each node represents an assignment to some variables, child nodes are obtained by selecting
an unassigned variable and having a child node for each possible value for this variable, and
the root node is empty. Every time a variable is assigned a value, a propagation stage is
executed, pruning the set of values for the other variables, i.e., enforcing a certain type of local
consistency such as domain consistency. An n-ary constraint c = (RS , S) is domain consistent
iff whenever a variable vi ∈ S is assigned a value ti ∈ dom(vi), there exist compatible values
in the domains of all the other variables tj ∈ dom(vj) for all 1 ≤ j ≤ n, j 6= i such that
(t1, .., tn) ∈ RS , forming a support for vi 7→ ti.
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30 Modelling Grammar Constraints with Answer Set Programming

Grammar Constraints

We will consider constraints requiring that values taken by the sequence of variable in
its scope belong to a formal language generated by a context-free grammar or accepted
by an automaton. A context-free grammar (CFG; [5]) is formally defined as a quadruple
G = (N,Σ, P, S), where N is a finite set of nonterminal symbols, Σ is a finite set of terminal
symbols (disjoint from N), P ⊆ N×(N∪Σ)∗ is a set of production rules, and the distinguished
start nonterminal S ∈ N . We often omit to specify the complete quadruple and only provide
the set of productions using the following conventions: capital letters denote nonterminals
in N , lowercase letters denote terminals in Σ, and υ and ω denote a sequence of letters called
string. We also assume that S is the start nonterminal. Moreover, productions (A,ω) ∈ P
can be written as A ::= ω, and productions (A,ω1), .., (A,ωm) ∈ P can be written as
A ::= ω1 | .. | ωm. We write υ1Aυ2 ⇒G υ1ωυ2 iff (A,ω) ∈ R, ω1 ⇒∗G ωm iff there exists a
sequence of strings ω2, .., ωm−1 such that ωi ⇒G ωi+1 for all 1 ≤ i < m. For ω1 ⇒∗G ωm we
say that ω1 generates ωm and ω1 is derived from ωm. The language produced by G is the set of
strings LG = {ω ∈ Σ∗ | S ⇒∗G ω}. A CFG is in Chomsky normal form iff all productions are
of the form A ::= a or A ::= BC. Every CFG G such that the empty string ε is not generated
by G can be transformed into a grammar H such that LG = LH and H is in Chomsky normal
form. Transformations are described in most textbooks on automata theory, such as [14],
with at most a linear increase in the size of the grammar. Given a CFG G, the grammar
constraint grammar(G, [v1, .., vn]) is satisfied by just those assignments to the sequence of
variables (v1, .., vn) which belong to the language produced by G [27, 25].

The regular constraint [23] regular(G, [v1, .., vn]) is a special case of the grammar
constraint, i.e., it accepts just those assignments to the sequence of variables (v1, .., vn)
which belong to the regular language, that is, produced by a regular grammar G. As we
are recognising only strings are of a fixed length, a transformation of grammar constraints
into regular constraints which may increase the space required to represent the constraint
is presented in [17]. Regular languages are strictly contained within context-free languages,
and can be specified with productions of the form A ::= t or A ::= tB. Alternatively,
regular languages can be specified by means of an automaton. A deterministic finite
automaton (DFA) M is a quintuple (Q,Σ, δ, q0, F ), where Q is a finite, non-empty set of
states, Σ is a finite, non-empty input alphabet, δ is a transition function Q×Σ→ Q, q0 is the
initial state, and F is a set of accepting states. A DFA takes a sequence of input symbols ω
as input, each symbol t ∈ Σ causes M to perform a transition from its current state q to a
new state δ(q, t), where M starts off in the state q0. The input ω is recognised by M iff ω
causes M to transition from q0 in one of the accepting states. The language recognised by
M is the set of inputs LM = {ω ∈ Σ∗ | M recognises ω}. Given a DFA M , the regular
constraint regular(M, [v1, .., vn]) is satisfied on just those assignments to the sequence of
variables (v1, .., vn) which belong to the language recognised by M .

The precedence constraint [18] is a special case of the regular constraint. It is used for
breaking symmetries of interchangeable values in a CSP. A pair of values are interchangeable
if we can swap them in any solution. Pairwise precedence of s over t in a sequence of variables
(v1, .., vn), denoted as precedence([s, t], [v1, .., vn]), holds iff whenever there exists j such
that vj 7→ t, then there must exist i < j such that vi 7→ s. Many CSPs, however, involve
multiple interchangeable values, not just two. For instance, when we assign colours to vertices
in the graph colouring problem, all values are interchangeable. Then, the precedence
constraint precedence([t1, .., tm], [v1, .., vn]) holds iff min({i | vi 7→ tk}∪{n+1}) < min({i |
vi 7→ t`} ∪ {n + 2}) for all 1 ≤ k < ` < m. A similar idea for breaking symmetries in the
planning domain is presented in [15].
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Modelling Multi-valued Variables
We want to model grammar, regular, and precedence constraints with ASP. Their
encoding requires access to information on the variables v1, .., vn in the scope of the constraint,
i.e., information on possible assignments vi 7→ t with t ∈ dom(v). In this paper, we will
follow previous work on modelling CSP with ASP [11], and maintain a consistent set of
assignments through translation into ASP together with our constraint encodings. Each
possible assignment vi 7→ t is represented by an atom [[vi 7→ t]]. It is false iff t has been pruned
from the domain of vi. Conversely, it is true iff vi 7→ t. The following rules, collected in
encode([v1, .., vn]), ensure that one and only one value tij

∈ Σ can be assigned, for 1 ≤ i ≤ n
and dom(vi) = {ti1 , .., tim

}.
{[[vi 7→ ti1 ]], .., [[vi 7→ tim

]]} ←
⊥ ← [[vi 7→ tij ]], [[vi 7→ tik

]], j 6= k

⊥ ← not [[vi 7→ ti1 ]], .., not [[vi 7→ tim ]]
Although there are O(nm2) nogoods resulting from this ASP model, unit-propagation
is performed on these nogoods in O(nm). A more compact O(nm) representation that
propagates in O(nm) time is presented in [11, 28].

3 Modelling the Grammar Constraint

We show here how to model grammar(G, [v1, .., vn]) with ASP in a very straightforward way,
based on the well known CYK parser [29] which requires the CFG to be in Chomsky normal
form. Our encoding of the CYK parser constructs a parsing table T where each A ∈ T [i, j]
is a nonterminal symbol that is derived from a substring ω of j symbols starting at the ith
symbol such that the assignment (vi, vi+1, .., vi+j−1) 7→ ω is possible. Our O(|P |n3) sized
ASP model, denoted as encode(G), is as follows:
1. We introduce new atoms A(i, j) which are true iff A ∈ A[i, j]. A consistent assignment

to A(i, j) is enforced by the rules that follow below.
2. Each production of the form A ::= t is encoded by

A(i, 1)← [[vi 7→ t]]
which states that A can be derived from the ith symbol if vi 7→ t, i.e., the ith symbol is t.

3. Each production of the form A ::= BC is encoded by
A(i, j)← B(i, k), C(i+k, j−k).

Intuitively, above rule states that A is derived from the string starting at the ith symbol
of length j if B is derived from the substring starting at the ith symbol of length k, and
C is derived from the substring starting at the i+kth symbol of length j−k. In other
words, k splits the string generated by A into the substrings B and C.

4. Finally, the condition that the start nonterminal S has to be derived from the input
string is captured by
⊥ ← not S(1, n)

which expresses that every answer set of the resulting ASP model contains S(1, n).

I Theorem 1. The assignments satisfying grammar(G, [v1, .., vn]) correspond one-to-one
to the answer sets of encode(G) ∪ encode([v1, .., vn]).
The theorem follows from the proof of correctness of the CYK parser. Unfortunately, our
straightforward ASP model is not very efficient from a theoretical point of view, i.e., it does
not prune all possible values.
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32 Modelling Grammar Constraints with Answer Set Programming

I Example 2. Consider the following CFG G given through the productions S ::= SA | AS | b
and A ::= a. Suppose the input sequence of length 2, (v1, v2) with dom(v1) = dom(v2) =
{a, b, c}. Our model encode(G) comprise the following rules

A(1, 1)← [[v1 7→ a]] S(1, 1)← [[v1 7→ b]] S(1, 2)← S(1, 1), A(2, 1)
A(2, 1)← [[v2 7→ a]] S(2, 1)← [[v2 7→ b]] S(1, 2)← A(1, 1), S(2, 1)

⊥ ← not S(1, 2)
Although the value c does not appear in a satisfying assignment for grammar(G, [v1, v2]),
unit-propagation on ∆(encode(G) ∪ encode([v1, v2])) does not prune c from the domains.

A SAT model of the grammar constraint, based on and-or-graphs, such that unit-propagation
achieves domain consistency on the original constraint was presented in [26]. To achieve
a similar result, we revise our ASP model that we now denote encodeDC(G). The idea is
that A(i, j) is set to true iff the nonterminal A participates in a successful parsing of the
input string starting from the start nonterminal S.
1. We introduce atoms A(i, j) which are true iff S ⇒∗G ω1Aω2 ⇒∗G ω for some ω1, ω2,

where ω is the input string and A is derived by the substring starting from i of length j.
Similarly, we introduce atoms ωBC(i, j) which indicate whether S ⇒∗G ω1BCω2 ⇒∗G ω
and the two nonterminals BC is derived by the substring starting from i of length j.
A consistent assignment to A(i, j), ωBC(i, j) respectively, is enforced by the rules that
follow below.

2. Each production of the form A ::= t is now encoded by
{A(i, 1)} ← [[vi 7→ t]] .

To ensure that unit-propagation prunes all possible values, we capture the condition
that for each assignment vi 7→ t there exist a nonterminal A that generates t at the ith
symbol and participates in a successful parsing starting from S. Let A1, .., Am be all
nonterminals such that A` ::= t for 1 ≤ ` ≤ m. We encode support for vi 7→ t by
⊥ ← [[vi 7→ t]], not A1(i, 1), .., not Am(i, 1) .

3. Each production of the form A ::= BC is encoded by
{A(i, j)} ← ωBC(i, j) {ωBC(i, j)} ← B(i, k), C(i+k, j−k)

stating that if a production for A applies (e.g., the string ωBC), then A may or may not be
in a parsing starting from S. To ensure that unit-propagation prunes all possible values,
we have to encode the condition that whenever ωBC(i, j) is true then there must be a
nonterminal A that generates BC, i.e., S ⇒∗G ω1Aω2 ⇒G ω1BCω2 ⇒∗G ω for some ω1,
ω2, where ω is the input string and A ::= BC. Let A1, .., Am be all such nonterminal A.
Then we encode this condition by
⊥ ← ωBC(i, j), not A1(i, j), .., not Am(i, j) .

Similarly, we encode support for each nonterminal A′ ∈ N \ {S}, i.e., A′ must be in the
right-hand-side of a production, say the string ωBC for A′ = B or A′ = C, such that
S ⇒∗G ω1ωBCω2 ⇒G ω1BCω2 ⇒∗G ω for some ω1, ω2, where ω is the input string. Let
ωBC,1, .., ωBC,m be all such strings ωBC . Then we encode this condition by
⊥ ← A′(i, j), not ωBC,1(i1, j1), .., not ωBC,m(im, jm) .

Observe that for all 1 ≤ ` ≤ m we have either i` = i or j` = j. Hence, there are only
O(|P |n3) rules from this item, i.e., encodeDC(G) does not increase the space complexity
over encode(G).

4. The condition that the starting nonterminal S has to generate the input string remains
unchanged.
⊥ ← not S(1, n)
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Altogether, the rules in encodeDC(G) enforce that whenever A(i, j) is in an answer set then
the nonterminal A is used to generate the substring at the ith symbol of length j in a
successful parsing starting from S. This observation also applies to ωBC(i, j).

I Example 3. Consider again the CFG G from Example 2, again applied to (v1, v2) with
dom(v1) = dom(v2) = {a, b, c}. Our ASP model encodeDC(G) comprises the following rules
{A(1, 1)} ← [[v1 7→ a]] {S(1, 1)} ← [[v1 7→ b]] {ωSA(1, 2)} ← S(1, 1), A(2, 1)
{A(2, 1)} ← [[v2 7→ a]] {S(2, 1)} ← [[v2 7→ b]] {ωAS(1, 2)} ← A(1, 1), S(2, 1)
{S(1, 2)} ← ωSA(1, 2) {S(1, 2)} ← ωAS(1, 2) ⊥ ← not S(1, 2)
⊥ ← ωSA(1, 2), not S(1, 2) ⊥ ← A(1, 1), not ωAS(1, 2) ⊥ ← S(1, 1), not ωSA(1, 2)
⊥ ← ωAS(1, 2), not S(1, 2) ⊥ ← A(2, 1), not ωSA(1, 2) ⊥ ← S(2, 1), not ωAS(1, 2)
⊥ ← [[v1 7→ a]], not A(1, 1) ⊥ ← [[v1 7→ b]], not S(1, 1) ⊥ ← [[v1 7→ c]]
⊥ ← [[v2 7→ a]], not A(2, 1) ⊥ ← [[v2 7→ b]], not S(2, 1) ⊥ ← [[v2 7→ c]]

Unit-propagation on ∆(encodeDC(G)∪ encode([v1, v2])) prunes the value c from the domains,
i.e., sets [[v1 7→ c]] and [[v2 7→ c]] to false.

Unit-propagation of an ASP solver provides an efficient propagator for free, i.e., unit-
propagation on our revised encoding is enough to achieve domain consistency.

I Theorem 4. The assignments satisfying grammar(G, [v1, .., vn]) correspond one-to-one to
the answer sets of encodeDC(G)∪ encode([v1, .., vn]). Unit-propagation on ∆(encodeDC(G)∪
encode([v1, .., vn])) enforces domain consistency on grammar(G, [v1, .., vn]) in O(|P |n3) down
any branch of the search tree.

The proof follows the one in [26], where an and-or-graph is created that is very similar to the
structure (i.e., the body-atom graph [20]) of encodeDC(G), and subsequently, a SAT formula
is constructed in a fashion that resembles the Clark’s completion of our ASP model. Note
that the propagators for the grammar constraint presented in [27, 25] have a similar overall
complexity.

An extension which is sometimes useful in practice but goes slightly outside CFGs
considers restrictions on some of the productions [26], e.g., in shift scheduling we want that
an employee works on an activity for a minimum of one hour. Then, for a production of
the form A ::= BC and conditions represented by cA(i, j), cB(i, j), cC(i, j) we restrict its
application by encoding A ::= BC in encode(G) by

A(i, j)← B(i, k), C(i+k, j−k), cA(i, j), cB(i, k), cC(i+k, j−k) .
This rule encodes that the nonterminal A generates a string starting at the ith symbol of
length j if (1) the condition cA(i, j) is satisfied, (2) B generates a string starting at the ith
symbol of length k such that the condition cB(i, k) is satisfied, and (3) C generates a string
starting at the i+kth symbol of length j−k such that the condition cC(i+k, j−k) is satisfied.
Similarly, productions of the form A ::= t can be constrained. The changes to encodeDC(G)
are symmetric.

4 Modelling the Regular Constraint

In some cases, we only need a regular language, e.g., generated by a regular grammar, to
specify problem constraints. One important point about regular grammars is that each
nonterminal A ∈ T [i, j] is derived by a substring at the ith symbol to the nth symbol, i.e.,
j = n. Using this insight we encode a production of the form A ::= tB in encode(G) as
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34 Modelling Grammar Constraints with Answer Set Programming

below, for 1 ≤ i ≤ n.
A(i, n−i+1)← [[vi 7→ t]], B(i+1, n−i)

The changes to encodeDC(G) are symmetric. For regular languages, propagation is faster.

I Theorem 5. If G is regular then unit-propagation on ∆(encodeDC(G)∪ encode([v1, .., vn]))
enforces domain consistency on grammar(G, [v1, .., vn]) in O(|P |n) down any branch of the
search tree.

Recall that each regular language L can also be specified by means of a DFA M =
(Q,Σ, δ, q0, F ) that accepts assignments to a sequence of variables iff it is a member of L.
One important advantage of using an automata-based representation is that it permits
to compress the ASP model using standard techniques for automaton minimisation. An
automata-based propagator for the regular constraint was first proposed in [23], and a
SAT model such that unit-propagation enforces domain consistency was presented in [2].
We show here how to model regular(M, [v1, .., vn]) with ASP in a straightforward and
easily maintainable way. Given M , we propose an ASP model, denoted encode(M), which
represents all possible states the DFA can be in after processing i symbols. An accepted
input string must generate a sequence of transformations starting at q0 and ending in some
finite state. Our encoding is as follows:
1. We introduce atoms qk(i) for each step i of M ’s processing, 0 ≤ i ≤ n, and each state

qk ∈ Q to indicate whether M is in state qk after having processed the first i symbols.
2. Each transition δ(qj , t) = qk is encoded as follows, for 1 ≤ i ≤ n.

qk(i)← qj(i−1), [[vi 7→ t]]
Intuitively, whenever M is in state qj after having processed the first i−1 symbols and M
reads t as the ith symbol then M transitions to the state qk in step i.

3. The condition that M must start processing in starting state q0 is captured by
q0(0)←

which sets q0(0) unconditionally to true.
4. To represent that M must not finish processing in a rejecting state qrej ∈ Q \ F , we post

⊥ ← qrej(n) .
Intuitively, it expresses the condition that no answer set contains qrej(n) for qrej ∈ Q \F .

To ensure that unit-propagation prunes all possible values, support has to be encoded. We
extend encode(M) by one item, resulting in encodeDC(M).
6. There is support for vi 7→ ti whenever there exists a transition δ(qj , t) = qk from the

state qj to the state qk at step i while reading t. To encode support for vi 7→ t, we define
auxiliary atoms d(qj , qk, i) for each transition δ(qj , t) = qk, for 1 ≤ i ≤ n, by

d(qj , qk, i)← qj(i−1), qk(i) .
Now, for each assignment vi 7→ t, we encode the existence of such a support by
⊥ ← [[vi 7→ t]], not d(qj1 , qk1 , i), not d(qj2 , qk2 , i), .., d(qjm , qkm , i) .

This rule is satisfied if either vi 7→ t has a support, or [[vi 7→ t]] is false.

I Theorem 6. The answer sets of encode(M) ∪ encode([v1, .., vn]) correspond one-to-one to
assignments that satisfy regular(M, [v1, .., vn]). Unit-propagation on ∆(encodeDC(M) ∪
encode([v1, .., vn])) enforces domain consistency on regular(M, [v1, .., vn]) in O(|δ|n) down
any branch of the search tree.
The proof follows the one in [2], i.e., we can exploit the fact that Clark’s completion of our
ASP model results in the SAT formula presented in [2]. Note that the propagator for the
regular constraint proposed in [23] has a similar overall complexity.
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5 Modelling the Precedence Constraint

For breaking value symmetry in a CSP, we only need a special case of the regular constraint.
Recall, precedence([t1, .., tm], [v1, .., vn]) holds iff whenever vj 7→ t` then there exists v 7→ tk
such that i < j, for all 1 ≤ k < ` ≤ m. We can model the precedence constraint with ASP.
Our encoding, denoted encode(pre[t1, .., tm]), is as follows:
1. We introduce new atoms taken(t`, j) for each t` ∈ [t1, .., tm], and each position j,

0 ≤ j ≤ n, to indicate whether vi 7→ t` for some i < j.
2. For each value t` ∈ [t1, .., tm], we encode that it has been taken if vi 7→ t`, 1 ≤ i ≤ n.

taken(t`, i+1)← [[vi 7→ tj ]]
To propagate the information to the other indices greater than i, our ASP model contains

taken(t`, i+1)← taken(t`, i) .
3. Finally, we post the condition that vj cannot be assigned a value t` such that t` ∈ [t1, .., tm]

if some value tk has not been taken by a variable vi such that i < j, 1 ≤ k < ` ≤ m.
⊥ ← [[vj 7→ t`]], not taken(tk, i)

Compared to our encodings for regular constraints, our ASP model for the precedence
constraint is more economical with respect to auxiliary variables and rule size while unit-
propagation can still enforce domain consistency.

I Theorem 7. The assignments satisfying precedence([t1, .., tm], [v1, .., vn]) correspond
one-to-one to the answer sets of encode(pre[t1, .., tm])∪ encode([v1, .., vn]). Down any branch
of the search tree, unit-propagation on ∆(encode(pre[t1, .., tm]) ∪ encode([v1, .., vn])) enforces
domain consistency on precedence([t1, .., tm], [v1, .., vn]) in O(m2n).

6 Experiments on Shift Scheduling

We tested the practical utility of our ASP models of the grammar constraint on a set of
shift-scheduling benchmarks [7]. The problem is to schedule employees in a company to
activities subject to the following rules. An employee either works on activity ai, has a
break b, has lunch l, or rests r. If the company business is open, an employee works on an
activity for a minimum of one hour and can change activities after a fifteen minutes break or
one hour lunch. Break and lunch both are scheduled between periods of work. A part-time
employee works at least three hours and at most six hours plus a fifteen minutes break, while
a full-time employee works at least six hours and at most eight hours plus an hour and a
half for the lunch and the breaks. Our goal is to minimise the number of hours worked. The
schedule of an employee is modelled with a sequence of 96 variables, each represents a time
slot of 15 minutes, that must be generated by the following CFG G.

S ::= RFR, cF (i, j) ≡ 30 ≤ j ≤ 38 F ::= PLP L ::= lL | l, cL(i, j) ≡ j = 4
S ::= RPR, cF (i, j) ≡ 13 ≤ j ≤ 24 P ::= WbW W ::= Ai, cW (i, j) ≡ j ≥ 4
Ai ::= aiAi | ai, cAi

(i, j) ≡ open(i) R ::= rR | r
Related work in [26] converts the shift scheduling problem into a SAT model, denoted SAT.
Experiments also consider our two ASP models of the grammar constraint: encode(G) and
encodeDC(G). We denote these models as ASP and ASP-DC, respectively. A bottom-up
ASP grounder such as gringo (3.0.3; [24]) can be employed to instantiate our models. Then,
the grounder simulates a CYK parser, i.e., it constructs all possible parsings for all possible
subsequences of the input string. However, as the CYK parser, it also instantiates productions
that cannot participate in a successful parsing, i.e., productions which are uninteresting for
us. We have implemented a grounder for the special purpose of this benchmark based on
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Table 1 Results on shift scheduling; |A|: number of activities; #: problem number; m: number of
employees; number of worked hours (boldfaced if best solution found amongst the different methods)

|A| # m ASP ASP-DC SAT |A| # m ASP ASP-DC SAT
1 2 4 26.00 26.25 26.00 2 1 5 25.00 25.00 25.00
1 3 6 37.25 37.50 37.50 2 2 10 58.00 58.75 59.25
1 4 6 38.00 38.00 38.00 2 3 6 39.50 40.25 39.50
1 5 5 24.00 24.00 24.00 2 4 11 68.25 68.50 69.00
1 6 6 33.00 33.00 33.00 2 5 4 24.50 24.75 25.50
1 7 8 49.00 49.00 49.00 2 6 5 28.25 29.25 28.50
1 8 3 20.50 20.50 20.50 2 8 5 32.00 32.75 32.25
1 10 9 54.00 54.25 54.25 2 9 3 19.00 19.00 19.00

2 10 8 57.25 57.75 57.00

the algorithm in [26]. This will allow for unit-propagation in the ASP model to achieve a
strong type of local consistency close to domain consistency. Experiments were run with
the system clasp (1.3.5; [24]) on a 2.00 GHz PC under Linux, where each run was limited
to 3600 sec time and 1 GB RAM. Table 1 presents the results for 17 satisfiable instances
of the benchmark involving one or two activities. The solver returned a feasible solution
for all instances regardless of the model after a few seconds, and subsequently optimised
the solution, where no model performs significantly better that the other. However, we can
draw a few conclusions. First, the ASP model encode(G) is strong enough in our setting, i.e.,
enforcing domain consistency does not increase runtime. And, second, we do not pay any
penalty for using our straightforward, easily maintainable ASP models vs the SAT model.

7 Experiments on Graph Colouring

A colouring of a graph (V,E) is a a mapping c from V to {1, .., k} such that c(v) 6= c(w) for
every edge (v, w) ∈ E with a given number k of colours. The graph colouring problem is
to determine the existence of a colouring. Our experiments consider different options for
breaking value symmetry between the colours: The options regular and regular-dc use
our ASP model for a DFA-based encoding of the precedence constraint. The option all
uses our ASP model for the precedence constraint to break all value symmetry. We denote
pairwise our ASP model of the method [18] which posts precedence constraints between
pairwise interchangeable values. The option none breaks no symmetry while generic
employs the preprocessor sbass (1.0; [24]) for symmetry breaking in terms of detected
symmetry generators [10]. We experimented on random graph colouring instances, but
restricted ourselves to 3-, 4- and 5-colourings, when we noticed that the relative performance
of symmetry breaking increased with each additional colour (exponentially with the number
of colours). For each of the k-colouring experiments we generated 600 instances around the
phase transition density with 400, 150, 75 vertices, respectively. All tests were run with the
system clasp (1.3.2) on a 2.00 GHz PC under Linux, where each run was limited to 600 s
time and 1 GB RAM. The results on 3-, and 5- colourings shown in Figure 1 indicate that
all symmetry breaking techniques considered in our study are effective, i.e., improve runtime.
The data on any colouring clearly suggest that the generic and regular methods are
inferior to enforcing value precedence through the precedence constraint using pairwise
and all, or regular-dc, where regular-dc outperforms regular due to the strong
type of local consistency achieved in regular-dc. For the 3-colouring case, all gives
a significantly better improvement compared to pairwise. For the 5-colouring case the
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Figure 1 Histogram of the average time required by different symmetry breaking approaches.

same conclusion can be drawn, albeit less convincing. (5-colouring instances have fewer
vertices, i.e., variables. This can improve propagation between precedence constraints in
pairwise.) The overall conclusion from our graph colouring experiments is that breaking all
value symmetry enforcing precedence is most effective.

8 Conclusions

Our work addresses modelling and solving CSP with ASP. We have presented ASP models
of grammar and related constraints specified via grammars or automata. Finally, we have
given an ASP model for the precedence constraint. All our encodings are straightforward
and easily maintainable without paying any penalty vs related SAT models. Unit-propagation
of an ASP solver can prune all values, i.e., unit-propagation can achieve domain consistency
on the original constraint. Future work concerns lazy modelling techniques [22] and ASP
encodings of further constraints useful for modelling and solving CSP.
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