A semantic approach to illative combinatory logic*

Łukasz Czajka

University of Warsaw
Institute of Informatics
lukaszczz@gmail.com

Abstract

This work introduces the theory of illative combinatory algebras, which is closely related to systems of illative combinatory logic. We thus provide a semantic interpretation for a formal framework in which both logic and computation may be expressed in a unified manner. Systems of illative combinatory logic consist of combinatory logic extended with constants and rules of inference intended to capture logical notions. Our theory does not correspond strictly to any traditional system, but draws inspiration from many. It differs from them in that it couples the notion of truth with the notion of equality between terms, which enables the use of logical formulas in conditional expressions. We give a consistency proof for first-order illative combinatory algebras. A complete embedding of classical predicate logic into our theory is also provided. The translation is very direct and natural.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases Illative combinatory logic, term rewriting, first-order logic
Digital Object Identifier 10.4230/LIPIcs.CSL.2011.174

1 Introduction

When in the early 1930s Curry and Church invented their systems of, respectively, combinatory logic [4] and lambda calculus [3], they intended them to be foundational systems on which logic and mathematics could be based. These systems were soon shown to be inconsistent by Kleene and Rosser [9]. As a result, Church abandoned his program of basing logic on lambda-calculus. Curry, however, persisted in his aims. He and his followers tried to formulate various systems weaker than the original system of Curry in the hope of obtaining ones that would be consistent, but still strong enough to interpret traditional logic. Today, the basic part of Curry's theory is known as combinatory logic, the systems additionally incorporating logical constants as illative combinatory logic. The search for strong and consistent theories proved to be elusive. Only after more than half a century since the first publications of Church and Curry, several systems were proven complete for minimal first-order intuitionistic logic in [2], [5], [6], and for PRED $\lambda \rightarrow$ in [5]. See [11] for a historical overview of illative combinatory logic.

The tradition of the Curry school has been formalist, with emphasis on constructive proof-theoretic methods (cf. [11]). In this work we propose a semantic interpretation for various illative constants. In contrast to traditional systems, the meaning of these constants is given by appropriately extending the equality relation. We attempt to give a model-theoretic style semantics. As potential models we study illative combinatory algebras. These are combinatory algebras with additional elements corresponding to illative constants. One important constant which is present in our theory, but usually absent from illative systems,

[^0]is the conditional Cond. It acts as a connector between logic and computation, allowing to choose between two branches in a (generalized) program depending on the truth value of a quantified formula. Furthermore, formulas themselves are nothing else than generalized programs, and may contain S and K.

Our formalization is very natural and straightforward. What is non-obvious here is that it is actually correct. Modifying sligthly our axioms in seemingly harmless ways leads to inconsistent theories. In the presence of unrestricted abstraction and fixed points of arbitrary elements it is far from obvious how to formulate a consistent logical system.

Very closely related to our theory are applicative theories of Feferman (see [7]), which form the basis of his systems of explicit mathematics. These systems were intended to provide a foundation for constructive mathematics. Applicative theories are, however, usually based on partial logic. In terms of methods employed perhaps the total applicative theories with non-constructive μ-operator (see [8]) come even closer to our theory than does illative combinatory logic. Indeed, the key idea in the proofs leading to the central Corollary 42 is essentially analogous to that in the proof from the appendix of [8], where similar techniques are used in a much less general context. The author did not know about [8] until after having written down the proof in full.

Our consistency proof for first-order illative combinatory algebras is based on a non-trivial construction of a term model. We show how to extend any left-linear applicative term rewriting system satisfying some mild additional conditions into a term rewriting system whose associated quotient algebra is a first-order illative combinatory algebra. The extension is constructed by transfinitely iterating a process of expanding the term rewriting system with rules implementing quantification, until a fixpoint is reached. This bears some resemblance to transfinite truth definitions as used by Kripke (cf. [10]), which were also the inspiration for the three-valued semantics of logic programming. The details, however, are much more complicated.

The outline of the rest of this paper is as follows. Section 2 contains the definition of firstorder illative combinatory algebras. In Section 3 we define a translation from first-order logic to illative language and prove its soundness. Section 4 introduces the class of functional term rewriting systems and recapitulates some known results from the theory of term rewriting. Section 5 contains the details of the term model construction. In Section 6 we use the result of Section 5 to prove completeness of the translation from Section 3 .

2 Illative combinatory algebras

In this section we introduce the central concept of this work - illative combinatory algebras. Basic familiarity with ordinary combinatory logic is assumed.

- Definition 1. An applicative algebra \mathcal{A} is a tuple $\langle\omega, \cdot, v\rangle$ where:
(1) ω is a set of combinators
(2) $\cdot: \omega \times \omega \rightarrow \omega$ is the application function
(3) $v \subseteq \omega$ is the set of undefined combinators

We call $\delta=\omega \backslash v$ the set of defined combinators. By $\omega(\mathcal{A}), v(\mathcal{A})$ we denote respectively the ω and v components of \mathcal{A}, by $\delta(\mathcal{A})$ we denote $\omega(\mathcal{A}) \backslash v(\mathcal{A})$.

In expressions involving the application function we customarily omit parentheses and adopt the convention of association to the left, i.e. $M \cdot X \cdot Y \cdot Z$ stands for $((M \cdot X) \cdot Y) \cdot Z$. We will also sometimes omit the dots. We adopt the convention of referring to the elements of an algebra as combinators.

- Definition 2. An illative combinatory algebra (ICA) is an applicative algebra \mathcal{A} with elements T, F, K, S, P, Q, Cond, A_{δ} which satisfy the following for any $X, Y, Z \in \omega(\mathcal{A})$:
(1) $T \neq F$
(2) $T, F \in \delta$
(3) $K \cdot X \cdot Y=X$
(4) $S \cdot X \cdot Y \cdot Z=X \cdot Z \cdot(Y \cdot Z)$
(5) $\left\{\begin{array}{l}P \cdot F \cdot X=T \\ P \cdot X \cdot T=T \\ P \cdot T \cdot F=F \\ P \cdot X \cdot Y \in v \text { otherwise }\end{array}\right.$
(6) $\left\{\begin{array}{l}\text { Cond } \cdot T \cdot X \cdot Y=X \\ \text { Cond } \cdot F \cdot X \cdot Y=Y \\ \text { Cond } \cdot X \cdot Y \cdot Z \in v \text { if } X \notin\{T, F\}\end{array}\right.$
(7) $\begin{cases}Q \cdot X \cdot X & \in\{T\} \cup v \\ Q \cdot X \cdot Y & \in\{F\} \cup v \text { for } X \neq Y \\ Q \cdot X \cdot Y & \in \delta \text { if } X, Y \in \delta\end{cases}$
(8) $\left\{\begin{array}{l}A_{\delta} \cdot X=T \text { if } X \in \delta \\ A_{\delta} \cdot X \in\{F\} \cup v \text { if } X \in v\end{array}\right.$

We will sometimes write A for A_{δ}.

- Remark. Intuitively, in an illative combinatory algebra undefined combinators are interpreted as meaningless at the object level, but not necessarily completely meaningless. Indeed, there may be undefined combinators which applied to a defined combinator give a defined result. The set δ is intuitively interpreted as the universe of discourse. It is intended to encompass everything we may meaningfully talk about at the object level. In particular, it includes the truth values T and F. The combinator A stands for a partial predicate which is true for elements of δ, and false or undefined for elements of v. This predicate cannot be defined from the other combinators. The combinator Q is intended to represent a partial equality predicate.
- Remark. Any illative combinatory algebra satisfies the principle of combinatory abstraction and has a fixed point combinator. Thus, for every equation of the form

$$
M \cdot X_{1} \cdot \ldots \cdot X_{n}=\Phi\left(M, X_{1}, \ldots, X_{n}\right)
$$

where $\Phi\left(Y, X_{1}, \ldots, X_{n}\right)$ is a combination of Y, X_{1}, \ldots, X_{n} and some of the combinators postulated in the definition of an ICA, there exists a combinator M such that the equation holds for any combinators X_{1}, \ldots, X_{n}. We will often rely on this fact and define combinators by such equations. Sometimes we will also use the lambda-notation $\lambda x \Phi(x)$ to denote a combinator M such that $M X=\Phi(X)$ for all $X \in \omega$. If there can be more than one combinator satisfying a given equation, then it is tacitly understood that we choose one such specific combinator and it does not matter which one.

- Remark. Our aim is to make as many combinators belong to δ as possible, since these are the combinators on which our additional elements are guaranteed to "work". However, one cannot get rid of v altogether because the existence of fixed points of arbitrary combinators would lead to a contradiction. In fact, it can be easily shown that if $M \cdot X \in \delta$ for all $X \in \omega$ then $M \cdot X=M \cdot Y$ for all $X, Y \in \omega$.

For brevity, we will mostly omit explicit references to illative combinatory algebras. The following facts and definitions are to be understood that they are relative to some fixed illative combinatory algebra.

We use the notation N for $\lambda x \cdot P x F, \wedge$ for $\lambda x \cdot \lambda y \cdot N(P x(N y))$, and \vee for $\lambda x \cdot \lambda y \cdot P(N x) y$. We occasionally adopt infix notation for \wedge and \vee.

It is easy to see that P, N, \wedge and \vee satisfy the following equations for any $X, Y \in \omega$:

$$
\left.\begin{array}{rll}
P X Y=T & \text { iff } & X=F \text { or } Y=T \\
P X Y=F & \text { iff } & X=T \text { and } Y=F \\
N X=T & \text { iff } & X=F \\
N X=F & \text { iff } & X=T \\
\wedge X Y=T & \text { iff } & X=T \text { and } Y=T \\
\wedge X Y=F & \text { iff } & X=F \text { or } Y=F \\
\wedge X & X X Y=T & \text { iff }
\end{array} \quad X=T \text { or } Y=T\right\}
$$

- Definition 3. A set of combinators $\tau \subseteq \omega$ is a type represented by $M \in \omega$ if the following conditions hold:
(1) $M \cdot X=T$ for $X \in \tau$
(2) $M \cdot X \in\{F\} \cup v$ for $X \in \omega \backslash \tau$

Note that ω and δ are types represented by $K \cdot T$ and A respectively. We use the notation b for the type represented by $A_{b}=\lambda x .(Q x T) \vee(Q x F)$.

- Definition 4. Let $\sigma, \rho \subseteq \omega$. A function space $\sigma \Rightarrow \rho$ from σ to ρ is the set of all combinators M such that $M \cdot X \in \rho$ for $X \in \sigma$.

We use small Greek letters $\tau, \sigma, \rho, \omega$, etc. both to denote subsets of ω and as parts of symbols denoting constants or combinators, e.g. in A_{τ}. In the second case the subscript does not have a meaning of its own, but only highlights a connection of the symbol with some set τ, which may even be defined only after introducing the symbol itself. Analogously, we use subscripts of the form $\sigma \rightarrow \rho$ when we intend to highlight a connection to the function space $\sigma \Rightarrow \rho$. In compound expressions \rightarrow and \Rightarrow are assumed to be right-associative. We adopt the notation $\sigma^{n} \Rightarrow \rho$ for $\sigma \Rightarrow \ldots \Rightarrow \sigma \Rightarrow \rho$ where σ occurs n times. Analogously, we use $\sigma^{n} \rightarrow \rho$ in subscripts.

- Definition 5. A combinator M is τ-total, for $\tau \subseteq \omega$, if $M X \in \delta$ for all $X \in \tau$.
- Definition 6. Let $\tau \subseteq \omega$. A τ-quantifier is any combinator Π_{τ} such that:
$\Pi_{\tau} \cdot X=T$ if for all $Y \in \tau$ we have $X \cdot Y=T$
$\Pi_{\tau} \cdot X=F$ if there exists $Y \in \tau$ such that $X \cdot Y=F$
$\Pi_{\tau} \cdot X \in v$ otherwise
We use the notation Σ_{τ} for $\lambda x . N\left(\Pi_{\tau}(S(K N) x)\right)$. A combinator Π_{δ} satisfying the above equations for $\tau=\delta$ is a first-order quantifier. We will sometimes write Π instead of Π_{δ}.

It is straightforward to verify that Π_{τ} and Σ_{τ} satisfy the following for any $X \in \omega$:

$$
\begin{array}{lll}
\Pi_{\tau} X=T & \text { iff } & X Y=T \text { for all } Y \in \tau \\
\Pi_{\tau} X=F & \text { iff } & X Y=F \text { for some } Y \in \tau \\
\Sigma_{\tau} X=T & \text { iff } & X Y=T \text { for some } Y \in \tau \\
\Sigma_{\tau} X=F & \text { iff } & X Y=F \text { for all } Y \in \tau
\end{array}
$$

It is easy to see that if A_{τ} is a δ-total combinator representing a type $\tau \subseteq \delta$, then the combinator $\lambda x \cdot \Pi_{\delta} \lambda y \cdot P\left(A_{\tau} y\right)(x y)$ is a τ-quantifier. Moreover, if $\Pi_{\tau_{1}}$ is a τ_{1}-quantifier and $A_{\tau_{2}}$ represents a type τ_{2}, then $\tau_{1} \Rightarrow \tau_{2}$ is a type represented by $A_{\tau_{1} \rightarrow \tau_{2}}=\lambda x \cdot \Pi_{\tau_{1}} \lambda y \cdot A_{\tau_{2}}(x y)$.

- Definition 7. A first-order illative combinatory algebra (FO-ICA) is an illative combinatory algebra with signature extended with Π_{δ}, and with the laws from Definition 6 for Π_{δ} added as axioms
- Remark. One may wonder why we postulate the existence of Π_{δ} instead of Π_{ω}, whose range of quantification is broader. After all, we could use $\Pi_{\delta}^{\prime}=\lambda x \cdot \Pi_{\omega} \lambda y \cdot P(A y)(x y)$. However, Π_{δ}^{\prime} is not a δ-quantifier. The reason is the existence of undefined combinators and the fact that they are included in the range of quantification of Π_{ω}. For instance, suppose M is such that $M \cdot X=T$ iff $X \in \delta$. One may easily show that there is $Y \in v$ such that $A \cdot Y \in v$. Hence, $P(A Y)(M Y) \in v$. Moreover, by definitions of A and M there is no Z such that $P(A Z)(M Z)=F$. So the last equation in the definition of Π_{ω} applies, and we have $\Pi_{\delta}^{\prime} M \in v$.

More generally, if A_{τ} represents a type $\tau \neq \omega$, then by an analogous argument we could prove that $\Pi_{\omega} \lambda x \cdot P\left(A_{\tau} x\right)(M x) \in v$ for any $M \in \omega$ such that $M \cdot X=T$ iff $X \in \tau$. This shows that Π_{ω} is not particularly interesting, because its range cannot be restricted in a meaningful way.

- Remark. Logic based on the theory of first-order illative combinatory algebras is, in a practical sense, more expressive than traditional predicate logic. For example, denote by \underline{n} the Church numeral representing $n \in \mathbb{N}$. Now we can write a recursive definition of U as follows:

```
\(U \underline{n}=\operatorname{Cond}(Q \underline{n} 0)(S K K)(\lambda f . \Pi \lambda x \cdot \Sigma \lambda y \cdot U(\operatorname{Pred} \underline{n})(f x y))\)
```

where Pred is the predecessor combinator for Church numerals. By simple induction one can show:

$$
U \underline{n}=\lambda f \cdot \Pi \lambda x_{1} \cdot \Sigma \lambda y_{1} \ldots \Pi \lambda x_{n} \cdot \Sigma \lambda y_{n} \cdot f x_{1} y_{1} x_{2} y_{2} \ldots x_{n} y_{n}
$$

Now assume that we have a δ-total combinator which represents the type \mathcal{N} consisting of Church numerals, and that all Church numerals are in δ. Theorem 43 implies that the definition of a FO-ICA may be modified to satisfy these assumptions without sacrificing any of the results in this paper. Then there exists an \mathcal{N}-quantifier $\Pi_{\mathcal{N}}$. Now, given a combinator M, the expression

$$
\Sigma_{\mathcal{N}} \lambda x . U x M
$$

is true iff there exists an alternation of $2 n$ quantifiers such that

$$
\Pi \lambda x_{1} \cdot \Sigma \lambda y_{1} \ldots \Pi \lambda x_{n} \cdot \Sigma \lambda y_{n} \cdot M x_{1} y_{1} \ldots x_{n} y_{n}
$$

is true. To be precise, $\Sigma_{\mathcal{N}} \lambda x . U x M$ will most often be in v if such an alternation does not exist.

The power comes from the fact that quantifiers may be freely combined with S and K. This allows for recursive definitions involving logical operators.

Another important feature of our theory is the presence of the combinator Cond and the fact that the truth notion at the meta-level is coupled with the notion of equality between terms. In other words, being true is equivalent to evaluating to a concrete value T, which may be used in the "program" itself. This is significantly different from simply stating that
some terms are "true" or "derivable" by means of some meta-level definition, but without providing any possibility of using this information inside the system.

For instance, with our approach one can write recursive definitions of the form:

$$
M=\lambda x . \Psi\left(\operatorname{Cond}\left(\Pi \Phi_{1}(x, M)\right) \Phi_{2}(x, M) \Phi_{3}(x, M)\right)
$$

and they behave as expected - if $\Pi \Phi_{1}(X, M)$ is true then the first branch constitutes the value of $M X$, if false then the second. What is more, it may happen that we know that $\Pi \Phi_{1}(X, M)$ is true regardless of what X is, and we may conclude that $M=\lambda x . \Psi\left(\Phi_{2}(x, M)\right)$. The combinator Cond acts as a connector between logic and computation.

3 Translation from first-order to illative theories

In this section we define a natural translation from the language of first-order logic to illative language and prove its soundness with respect to FO-ICAs. We defer the proof of completeness to Section 6. Much of the present section contains some fairly obvious but necessary definitions.

We will be dealing mostly with applicative terms, i.e. terms from languages over signatures consisting solely of a single binary function symbol \cdot and constants including all the constants postulated in the definition of a FO-ICA. We denote such a language by $\mathcal{L}(\Sigma, V)$, where Σ is a set of constants, and V is a set of variables. All terms are assumed to be applicative, unless qualified with the phrase first-order. We use the symbols t, s, etc. for terms, x, y, etc. for variables, and M, X, etc. for combinators (elements of an algebra), except that we use the same symbols for primitive constants and corresponding combinators defined in Section 2. The intended meaning of a symbol will always be clear from the context.

We use the notation $\llbracket t \rrbracket_{\mathcal{A}}^{u}$ for the value of t under variable valuation u in the structure \mathcal{A}. We omit the decorations when obvious from the context or irrelevant. We also adopt the notation $t_{1}\left[x / t_{2}\right]$ for the term t_{1} with all free occurences of x substituted for t_{2}. Analogously, we use $u[x / M]$ for the valuation u^{\prime} such that $u^{\prime}(y)=u(y)$ for $y \neq x$ and $u^{\prime}(x)=M$.

We define lambda-abstraction at the syntactic level by the standard abstraction algorithm: $\lambda^{*} x . x=S K K, \lambda^{*} x . t=K t$ if $x \notin F V(t)$, and $\lambda^{*} x . t_{1} t_{2}=S\left(\lambda^{*} x . t_{1}\right)\left(\lambda^{*} x . t_{2}\right)$. In what follows the symbols A_{b}, \wedge, etc. will sometimes stand for terms defined completely analogously to the corresponding combinators in Section 2, but at the syntactic level using the abstraction algorithm. We still use these symbols to denote the combinators as well. Again, the intended meaning will always be clear from the context.

Let \mathcal{A} be a FO-ICA, and u a valuation. It is easy to verify that for any terms t_{1}, t_{2} we have $\llbracket\left(\lambda^{*} x . t_{1}\right) t_{2} \rrbracket_{\mathcal{A}}^{u}=\llbracket t_{1}\left[x / t_{2} \rrbracket \rrbracket_{\mathcal{A}}^{u}\right.$. Also for any term t and any $M \in \omega(\mathcal{A})$ we have the identity $\llbracket \lambda^{*} x . t_{1} \rrbracket_{\mathcal{A}}^{u} \cdot M=\llbracket t_{1} \rrbracket_{\mathcal{A}}^{u^{\prime}}$ where $u^{\prime}=u[x / M]$.

We now redefine some standard notions from elementary first-order logic. Subseqently, we will refer to the original notions by qualifying them with the phrase first-order. The redefined notions will be qualified with illative, but the qualification will often be dropped. By an illative theory we mean a set of applicative terms. We say that a FO-ICA \mathcal{A} satisfies a term t under variable valuation u, denoted by $\mathcal{A} \models^{u} t$, if $\llbracket t \rrbracket_{\mathcal{A}}^{u}=T$. We define the notions of illative semantic consequence $(\Gamma \models t)$ and illative model $(\mathcal{A} \models \Gamma)$ completely analogously to standard definitions in first-order logic, but with arbitrary terms in place of formulas and requiring all structures to be FO-ICAs.

We use the symbol Δ for a first-order theory, ϕ, ψ for first-order formulas, $\models_{F O}$ for the first-order semantic consequence relation.

By a first-order expression we mean a first-order formula or a first-order term. We extend the notion of first-order valuation to formulas. If $\mathcal{A} \models_{F O}^{u} \phi$ then $\llbracket \phi \rrbracket_{\mathcal{A}}^{u}=T$, otherwise $\llbracket \phi \rrbracket_{\mathcal{A}}^{u}=F$.

We assume that in a first-order language the only logical connective is \rightarrow, the only quantifier \forall, and there is a constant \perp for false. We also assume that we have a new constant A_{ς} in the illative signature, and the signature contains as constants all symbols (of any arity) from the corresponding first-order language.

We write A_{ι} for the term $\lambda^{*} x \cdot\left(A_{\varsigma} x\right) \wedge\left(A_{\delta} x\right)$ and Π_{ι} for $\lambda^{*} y \cdot \Pi_{\delta} \lambda^{*} x \cdot P\left(A_{\iota} x\right)(y x)$. We define $A_{\iota^{n+1} \rightarrow \iota}$ inductively as $\lambda^{*} x \cdot \Pi_{\iota} \lambda^{*} y \cdot A_{\iota^{n} \rightarrow \iota}(x y)$, where $A_{\iota^{0} \rightarrow \iota}=A_{\iota}$. Analogously, we define $A_{\iota^{n+1} \rightarrow b}$ as $\lambda^{*} x \cdot \Pi_{\iota} \lambda^{*} y \cdot A_{\iota^{n} \rightarrow b}(x y)$.

- Definition 8. The illative theory Γ_{0} constains the terms $\Pi_{\delta}\left(S\left(K A_{b}\right) A_{\iota}\right), \Sigma_{\delta} A_{\iota}, A_{\iota^{n} \rightarrow \iota} f$ for all function symbols f of arity $n \geq 0$, and $A_{\iota^{n} \rightarrow b} r$ for all relation symbols r of arity $n>0$.
- Definition 9. We define inductively a translation Ψ as follows.

For first-order terms:

- $\Psi(x)=x$ for a variable x
- $\Psi\left(f\left(t_{1}, \ldots, t_{n}\right)\right)=f \cdot \Psi\left(t_{1}\right) \cdot \ldots \cdot \Psi\left(t_{n}\right)$ for a function symbol f of arity $n \geq 0$

For first-order formulas:

- $\Psi(\perp)=F$
- $\Psi\left(r\left(t_{1}, \ldots, t_{n}\right)\right)=r \cdot \Psi\left(t_{1}\right) \cdot \ldots \cdot \Psi\left(t_{n}\right)$ for a relation symbol r of arity n
- $\Psi\left(t_{1}=t_{2}\right)=Q \cdot \Psi\left(t_{1}\right) \cdot \Psi\left(t_{2}\right)$
- $\Psi\left(\phi_{1} \rightarrow \phi_{2}\right)=P \cdot \Psi\left(\phi_{1}\right) \cdot \Psi\left(\phi_{2}\right)$
- $\Psi\left(\forall_{x} \phi\right)=\Pi_{\iota} \lambda^{*} x . \Psi(\phi)$

For a first-order theory Δ we define $\Psi(\Delta)$ to be the sum of Γ_{0} and the image $\operatorname{Im}_{\Psi}(\Delta)$ of Ψ on Δ.

The general idea of the soundness proof is to construct for every illative model \mathcal{B} of $\Psi(\Delta)$ a first-order structure \mathcal{A} which satisfies exactly those sentences whose translations are true in \mathcal{B}. Such a structure will obviously be a model of Δ. Hence, any semantic consequence ϕ of Δ will be satisfied by \mathcal{A}, so $\Psi(\phi)$ will be true in \mathcal{B}.

- Definition 10. Let \mathcal{B} be an illative model of Γ_{0}. We define $\iota_{\mathcal{B}}$ to be the set of all combinators $M \in \omega(\mathcal{B})$ such that $\llbracket A_{\iota} \rrbracket_{\mathcal{B}} \cdot M=T$. The subscript will be dropped when obvious from the context.

It is easy to see that if \mathcal{B} is an illative model of Γ_{0}, then $\llbracket A_{\iota} \rrbracket_{\mathcal{B}}$ is a δ-total combinator representing the non-empty type $\iota_{\mathcal{B}} \subseteq \delta(\mathcal{B})$. It is also true that in every illative model \mathcal{B} of Γ_{0} the combinator $\llbracket \Pi_{\iota} \rrbracket_{\mathcal{B}}$ is a $\iota_{\mathcal{B}}$-quantifier.

- Definition 11. A first-order structure \mathcal{A} and a FO-ICA \mathcal{B} are correspondent if the universe U of \mathcal{A} is a subset of $\omega(\mathcal{B})$ and the following conditions hold:
- every function symbol f of arity n is interpreted in \mathcal{A} by the function

$$
\left\{\left(X_{1}, \ldots, X_{n}, Y\right) \in U^{n+1} \mid \llbracket f \rrbracket_{\mathcal{B}} \cdot X_{1} \cdot \ldots \cdot X_{n}=Y\right\}
$$

- every relation symbol r of arity n is interpreted in \mathcal{A} by the relation

$$
\left\{\left(X_{1}, \ldots, X_{n}\right) \in U^{n} \mid \llbracket r \rrbracket_{\mathcal{B}} \cdot X_{1} \cdot \ldots \cdot X_{n}=T\right\}
$$

Lemma 12. Assume \mathcal{B} is an illative model of Γ_{0} and \mathcal{A} is a first-order structure with $\iota_{\mathcal{B}}$ as the universe. If \mathcal{A} and \mathcal{B} are correspondent, then $\llbracket e \rrbracket_{\mathcal{A}}^{u}=\llbracket \Psi(e) \rrbracket_{\mathcal{B}}^{u}$ for any first-order expression e and any valuation u such that $R g(u) \subseteq \iota_{\mathcal{B}}$.

Proof. Simple induction on the complexity of e.
For instance, assume $e=\forall_{x} \psi$ and $\llbracket \forall_{x} \psi \rrbracket_{\mathcal{A}}^{u}=T$. Then for every $X \in \iota$ we have $T=\llbracket \psi \rrbracket_{\mathcal{A}}^{u^{\prime}}=\llbracket \Psi(\psi) \rrbracket_{\mathcal{B}}^{u^{\prime}}$ by inductive hypothesis, where $u^{\prime}=u[x / X]$. So for every $X \in \iota$ we have $\llbracket \lambda^{*} x . \Psi(\psi) \rrbracket_{\mathcal{B}}^{u} \cdot X=\llbracket \Psi(\psi) \rrbracket_{\mathcal{B}}^{u^{\prime}}=T$. Hence, by the fact that $\llbracket \Pi_{\iota} \rrbracket_{\mathcal{B}}$ is a ι-quantifier in \mathcal{B} we have $\llbracket \Pi_{\iota} \lambda^{*} x . \Psi(\psi) \rrbracket_{\mathcal{B}}^{u}=T$.

The other cases are similar. We need the assumption of correspondence in the cases $e=f\left(t_{1}, \ldots, t_{n}\right)$ and $e=r\left(t_{1}, \ldots, t_{n}\right)$. In the second of these $A_{\iota^{n} \rightarrow b} r \in \Gamma_{0}$ is also needed.

- Theorem 13. Soundness

Let ϕ and all formulas in Δ be closed. If $\Delta \models_{F O} \phi$ then $\Psi(\Delta) \models \Psi(\phi)$.
Proof. Suppose $\Delta \models_{F O} \phi$. Because all terms in $\Psi(\Delta)$ as well as $\Psi(\phi)$ are closed by our construction, it suffices to show that every illative model of $\Psi(\Delta)$ is an illative model of $\Psi(\phi)$.

So assume \mathcal{B} is an illative model of $\Psi(\Delta)$. Since $\Gamma_{0} \subseteq \Psi(\Delta)$ then \mathcal{B} is an illative model of Γ_{0}. Hence, $\iota_{\mathcal{B}} \subseteq \delta(\mathcal{B})$ is a non-empty type represented by $\llbracket A_{\iota} \rrbracket_{\mathcal{B}}$.

Let \mathcal{A} be a first-order structure with universe ι and functions and relations as in Definition 11. Note that it is not immediately obvious that this is well-defined, because the interpretation of a function symbol f of arity n must be a total function from ι^{n} to ι. However, this is satisfied because $A_{\iota^{n} \rightarrow \iota} f \in \Psi(\Delta)$. Note also that the non-emptiness of ι is necessary because the universe of a first-order structure is always assumed to be non-empty.

Therefore, by Lemma 12 we may conclude that $\llbracket \psi \rrbracket_{\mathcal{A}}=\llbracket \Psi(\psi) \rrbracket_{\mathcal{B}}$ for every closed firstorder formula ψ. We have $\mathcal{A} \models_{F O} \Delta$, because $\llbracket \psi \rrbracket_{\mathcal{A}}=\llbracket \Psi(\psi) \rrbracket_{\mathcal{B}}=T$ for $\psi \in \Delta$. From the initial assumption $\Delta \models_{F O} \phi$ we may now conclude that $\mathcal{A} \models_{F O} \phi$. This implies $\llbracket \Psi(\phi) \rrbracket_{\mathcal{B}}=\llbracket \phi \rrbracket_{\mathcal{A}}=T$. Therefore, $\mathcal{B} \models \Psi(\phi)$.

4 Functional term rewriting systems

This section defines the class of functional term rewriting systems and briefly recapitulates some known results from the term rewriting theory for the sake of completeness. Term rewriting notation and terminology conforms to that from [1].

- Definition 14. The set of positions of a term $t \in \mathcal{L}(\Sigma, V)$ is a set $\operatorname{Pos}(t)$ of strings over the alphabet $\{0,1\}$ defined inductively as follows: $\operatorname{Pos}\left(t_{0} \cdot t_{1}\right)=\{\varepsilon\} \cup\left\{0 p \mid p \in \operatorname{Pos}\left(t_{0}\right)\right\} \cup\{1 p \mid p \in$ $\left.\operatorname{Pos}\left(t_{1}\right)\right\}$, and $\operatorname{Pos}(x)=\varepsilon$, where ε is the empty string and $x \in V$. The leftmost position of t is the position 0^{i}, where 0^{n} for $n \in \mathbb{N}$ means 0 repeated n times, such that no position of t is of the form 0^{j} for $j>i$. For $p \in \operatorname{Pos}(t)$, the subterm of s at position p, denoted by $t_{\mid p}$, is defined by induction on the length of $\mathrm{p}: t_{\mid \varepsilon}=t,\left(t_{0} \cdot t_{1}\right)_{\mid b q}=t_{b \mid q}$. A context C is a term over $\mathcal{L}(\Sigma \cup\{\square\}, V)$ with exactly one occurence of \square. By $C[t]$ for $t \in \mathcal{L}(\Sigma, V)$ we denote the term C with \square replaced by t.
- Definition 15. A rewrite rule, or simply rule, over $\mathcal{L}(\Sigma, V)$ is a pair $(l, r) \in \mathcal{L}(\Sigma, V) \times$ $\mathcal{L}(\Sigma, V)$ such that l is not a variable and $\operatorname{Var}(r) \subseteq \operatorname{Var}(l)$. Rewrite rules will be written as $l \rightarrow r$. The term l is called the left side of the rule, r the right side. A rule $l \rightarrow r$ is left-linear if no variable occurs twice in l. A rule $l \rightarrow r$ is trivial if $l=r$. A term rewriting system is a set of rewrite rules. A term rewriting system is left-linear if each of its rules is left-linear.

Let R be a term rewriting system. The reduction relation $\rightarrow_{R} \subseteq \mathcal{L}(\Sigma, V) \times \mathcal{L}(\Sigma, V)$ is defined as follows:

$$
\begin{array}{ll}
t \rightarrow_{R} s \quad \text { iff } \quad & \text { there exist } l \rightarrow r \in R, \text { a context } C \text { and a substitution } \sigma \\
& \text { such that } t=C[\sigma l] \text { and } s=C[\sigma r] .
\end{array}
$$

We sometimes write $t \rightarrow_{R}^{p} s$ to indicate at which position the reduction takes place.
We say that a rule $l \rightarrow r \in R$ applies to t if there exist $p \in \operatorname{Pos}(t)$ and a substitution σ such that $t_{\mid p}=\sigma l$. We say that a term is in R-normal form if no rule from R applies to it.

- Notation 16. Let \rightarrow be a binary relation on terms. We denote by $\rightarrow \equiv$ the reflexive closure of \rightarrow, by $\xrightarrow{*}$ the reflexive transitive closure, and by $\stackrel{*}{\leftrightarrow}$ the reflexive transitive symmetric closure. We write $t \rightarrow s$ to indicate that $(t, s) \in \rightarrow$. Analogously for $\rightarrow \bar{\equiv}$, $\xrightarrow{*}$ and $\stackrel{*}{\leftrightarrow}$.
- Definition 17. A position p of a term $t \in \mathcal{L}(\Sigma, V)$ is a function position if either $p=q 0$ or the size of t is 1 and $p=\varepsilon$. A term $t \in \mathcal{L}(\Sigma, V)$ is functional if it does not have any variables at function positions. We use the notation $\Sigma_{f}(t)$ for the set of constants at function positions in a term t. By $\mathcal{H}(t)$ we denote the constant at the leftmost position in a functional term t. A rule $l \rightarrow r$ is functional if l is a functional term. A functional term rewriting system (FTRS) is a term rewriting system over $\mathcal{L}(\Sigma, V)$, such that all rules are functional. We use the notation $\Sigma_{f}(R)$ for $\bigcup_{l \rightarrow r \in R} \Sigma_{f}(l)$, and $\mathcal{H}(R)$ for $\{\mathcal{H}(l) \mid l \rightarrow r \in R\}$.
- Fact 18. If t is a functional term and s is such that $\Sigma_{f}(t) \nsubseteq \Sigma_{f}(s)$, then there is no substitution σ and position p such that $s_{\mid p}=\sigma t$. Moreover, if s is a functional term and $\mathcal{H}(t) \notin \Sigma_{f}(s)$, then t does not unify with a non-variable subterm of s.
- Definition 19. A functional term rewriting system R generates an applicative algebra $\mathcal{A}_{R}=\langle\omega, \cdot, v\rangle$ where $\omega=\left\{[t]_{R}\right\}$ is the set of equivalence classes of $\stackrel{*}{\leftrightarrow}_{R}$ on closed terms, v is the set of those $[t]_{R}$ for which there is no t^{\prime} in R-normal form such that $t \stackrel{*}{\leftrightarrow}{ }_{R} t^{\prime}$, and \cdot is defined by $\left[t_{1}\right]_{R} \cdot\left[t_{2}\right]_{R}=\left[t_{1} \cdot t_{2}\right]_{R}$.
- Definition 20. Let $l_{1} \rightarrow r_{1} \in R_{1}, l_{2} \rightarrow r_{2} \in R_{2}$, let p be a position such that $l_{1 \mid p}$ is not a variable. We assume the rules do not share variable names. Let σ be the most general unifier of $l_{1 \mid p}$ and l_{2}. Then $\left\langle\sigma r_{1},\left(\sigma l_{1}\right)\left[\sigma r_{2}\right]_{p}\right\rangle$ is a critical pair between R_{1} and R_{2}. A critical pair is a root critical pair if $p=\varepsilon$. The set of all critical pairs between R_{1} and R_{2} is denoted by $\operatorname{Crit}\left(R_{1}, R_{2}\right)$, the set of all root critical pairs by $\operatorname{Crit}_{r}\left(R_{1}, R_{2}\right)$, and $\operatorname{Crit}_{i}\left(R_{1}, R_{2}\right)$ is the set of all non-root critical pairs between R_{1} and R_{2}. A critical pair $\left\langle u_{1}, u_{2}\right\rangle \in \operatorname{Crit}\left(R_{1}, R_{2}\right)$ may be closed if $u_{1} \rightarrow_{R_{2}} u_{2}$ or $u_{2} \rightarrow_{R_{1}} u_{1}$.
- Definition 21. R_{1} is compatible with R_{2} if
- for all $\left\langle u_{1}, u_{2}\right\rangle \in \operatorname{Crit}\left(R_{1}, R_{2}\right)$ there is u such that $u_{1} \stackrel{*}{\rightarrow}_{R_{2}} u$ and $u_{2} \rightarrow \overline{\bar{R}}_{1} u$,
- for all $\left\langle u_{2}, u_{1}\right\rangle \in \operatorname{Crit}_{i}\left(R_{2}, R_{1}\right)$ we have $u_{1} \rightarrow \overline{\bar{R}}_{2} u_{2}$.

Two term rewriting systems R_{1}, R_{2} are compatible if R_{1} is compatible with R_{2} or vice versa.

- Fact 22. If R_{1}, R_{2} are FTRSes such that $\Sigma_{f}\left(R_{1}\right) \cap \Sigma_{f}\left(R_{2}\right)=\emptyset$, then they are compatible.
- Definition 23. We say that two relations \rightarrow_{1} and \rightarrow_{2} commute whenever $t{ }^{*}{ }_{1} t_{1}$ and $t{ }_{\rightarrow}^{*} t_{2}$ implies the existence of s such that $t_{1} \xrightarrow{*}_{2} s$ and $t_{2}{ }^{*}{ }_{1} s$. Two term rewriting systems R_{1} and R_{2} commute if $\rightarrow_{R_{1}}$ and $\rightarrow_{R_{2}}$ commute.

- Lemma 24. Commutative Union Lemma

If R_{1} and R_{2} are confluent and they commute, then $R_{1} \cup R_{2}$ is confluent.
The following theorem is a special case of the result from [12]. We do not state it in its full generality mostly due to lack of space to introduce the necessary concepts.

- Theorem 25. Compatible left-linear term rewriting systems commute.

It follows from Theorem 25 and the Commutative Union Lemma that if R is left-linear and compatible with itself, then it is confluent.

5 Extensions of standard systems

This section contains the mathematically non-trivial part of this work. We show how to extend any FTRS satisfying some mild additional conditions into an FTRS that generates a FO-ICA.

- Definition 26. A functional term rewriting system R is standard if it is left-linear, confluent, and $\Sigma_{f}(R) \cap\{\Pi, Q, A\}=\emptyset$.
- Definition 27. The term rewriting system PROP is defined by the following rules:

$$
\begin{align*}
& K \cdot x \cdot y \rightarrow x \tag{1}\\
& S \cdot x \cdot y \cdot z \rightarrow x \cdot z \cdot(y \cdot z) \tag{2}\\
& P \cdot F \cdot x \rightarrow \tag{3}\\
& P \cdot x \cdot T \rightarrow \tag{4}\\
& P \cdot T \cdot F \rightarrow F \tag{5}\\
& P \cdot x \cdot y \rightarrow P \cdot x \cdot y \tag{6}\\
& \text { Cond } \cdot T \cdot x \cdot y \rightarrow \tag{7}\\
& \text { Cond } \cdot F \cdot x \cdot y \rightarrow y \tag{8}\\
& \text { Cond } \cdot x \cdot y \cdot z \rightarrow \tag{9}\\
& \text { Cond } \cdot x \cdot y \cdot z
\end{align*}
$$

- Lemma 28. The term rewriting system PROP is standard.

Proof. There are only the following root critical pairs, all of which satisfy the requirements of compatibility.

- The pair $\langle T, P \cdot F \cdot x\rangle$ between rules (3) and (6). We have $P \cdot F \cdot x \rightarrow T$ by rule (3).
- The root critical pairs between rules (6) and (3), (4) and (6), (6) and (4), (5) and (6), (6) and (5), (7) and (9), (9) and (7), (8) and (9), (9) and (8) are dealt with completely analogously to the above one.
- The trivial critical pair $\langle T, T\rangle$ between rules (3) and (4) or (4) and (3).

Note that it follows directly from Lemma 28, Theorem 25 and the Commutative Union Lemma that $R \cup \mathrm{PROP}$ is standard.

- Definition 29. A term t is R-standard if it is a closed term in $R \cup$ PROP-normal form such that $\Sigma_{f}(t) \subseteq \Sigma_{f}(R \cup \mathrm{PROP})$.

For the rest of this section we assume a fixed standard functional term rewriting system R compatible with PROP, and a fixed family $\mathcal{T}_{\mathbb{I}}=\left\{\mathcal{T}_{i} \mid i \in \mathbb{I}\right\}$ of sets of R-standard terms, where \mathbb{I} is some arbitrary index set.

- Definition 30. The term rewriting system R_{I} is defined by the following rules:

$$
\begin{aligned}
\Pi \cdot x & \rightarrow \Pi \cdot x \\
Q \cdot x \cdot y & \rightarrow Q \cdot x \cdot y \\
A \cdot x & \rightarrow A \cdot x \\
A_{\mathcal{T}_{i}} \cdot t_{i} & \rightarrow T \\
A_{\mathcal{T}_{i}} \cdot x & \rightarrow A_{\mathcal{T}_{i}} \cdot x
\end{aligned}
$$

for all $i \in \mathbb{I}$ and all terms $t_{i} \in \mathcal{T}_{i}$, where $A_{\mathcal{T}_{i}}$ are new symbols not present in $\Sigma_{f}(R) \cup$ $\Sigma_{f}(\mathrm{PROP}) \cup\{\Pi, Q, A\}$.

It is easy to see that every R-standard term is in R_{I}-normal form.

- Definition 31. The term rewriting system $R_{I I}$ is defined by the following rules:

$$
\begin{aligned}
Q \cdot t \cdot t & \rightarrow T \\
Q \cdot t_{1} \cdot t_{2} & \rightarrow F \\
A \cdot t & \rightarrow T \\
A_{\mathcal{T}_{i}} \cdot t_{i} & \rightarrow F
\end{aligned}
$$

for all $i \in \mathbb{I}$ and all closed terms t, t_{1}, t_{2}, t_{i} in $R \cup P R O P \cup R_{I}$-normal form, such that $t_{1} \neq t_{2}$ and $t_{i} \notin \mathcal{T}_{i}$.

Below we use the notation R_{0} for $R \cup \mathrm{PROP} \cup R_{I} \cup R_{I I}$.

- Lemma 32. The term rewriting system R_{0} is left-linear and confluent.

Proof. It is evident that R_{0} is left-linear. Notice that $R \cup \mathrm{PROP} \cup R_{I}$ is confluent because $R \cup \mathrm{PROP}$ and R_{I} are compatible by Fact 22 and the fact that $R \cup \mathrm{PROP}$ is standard.

We now prove that $R_{I I}$ is confluent. It is evident from Definition 31 that there are no root critical pairs. For two rules to form a non-root critical pair the left side of one of the rules has to unify with a proper subterm of the left side of the other rule. Because all left sides are closed terms, this is equivalent to the situation when the left side of one rule is equal to a proper subterm of another. It follows directly from definitions that all proper subterms of left sides of rules are in $R \cup \mathrm{PROP} \cup R_{I}$-normal form. However, no left side of a rule is in $R \cup \mathrm{PROP} \cup R_{I}$-normal form because the corresponding trivial rule from R_{I} applies. This implies that there are no critical pairs.

We show that $R \cup \mathrm{PROP} \cup R_{I}$ is compatible with $R_{I I}$. Because $R \cup \mathrm{PROP}$ is standard, then by Fact 22 we need to consider only critical pairs between R_{I} and $R_{I I}$. It is evident that all such pairs are root critical pairs between a trivial rule from R_{I} and a rule from $R_{I I}$. They may be closed by simply applying the rule from $R_{I I}$.

- Definition 33. For an ordinal $\alpha>0$, define R_{α} as the sum of $\bigcup_{\beta<\alpha} R_{\beta}$ and the rules:
- $\Pi \cdot t \rightarrow T$ for all closed terms t such that for any closed term s in R_{0}-normal form there is an ordinal $\beta<\alpha$ for which $t \cdot s \stackrel{*}{\rightarrow}_{R_{\beta}} T$.
- $\Pi \cdot t \rightarrow F$ for all closed terms t such that there is a closed term s in R_{0}-normal form and an ordinal $\beta<\alpha$ for which $t \cdot s \stackrel{*}{\rightarrow}_{R_{\beta}} F$.

A simple cardinality argument shows that there exists the least ordinal ζ such that $R_{\zeta}=\bigcup_{\alpha<\zeta} R_{\alpha}$. We sometimes write $R_{\zeta}^{T_{\mathbb{I}}}$ for R_{ζ} when $\mathcal{T}_{\mathbb{I}}$ is not obvious from the context.

- Lemma 34. For $\alpha \geq 0$, a term t is in $R \cup P R O P \cup R_{I}$-normal form iff it is in R_{α}-normal form.

Proof. If a rule from $R_{\alpha} \backslash\left(R \cup \mathrm{PROP} \cup R_{I}\right)$, e.g. $Q \cdot s \cdot s \rightarrow T$, applies to t, then the corresponding trivial rule, e.g. $Q \cdot x \cdot x \rightarrow Q \cdot x \cdot x$, from R_{I} also applies. The other direction of the equivalence follows from the fact that $R \cup \mathrm{PROP} \cup R_{I} \subseteq R_{\alpha}$.

- Lemma 35. If $l \rightarrow r \in R_{I} \cup R_{I I}$ and $p \neq \varepsilon$ is such that $l_{\mid p}$ is not a variable, then $\sigma l_{\mid p}$ is in R_{α}-normal form for any substitution σ.

Proof. We show that $\sigma l_{\mid p}$ is in $R \cup \mathrm{PROP} \cup R_{I}$-normal form. If $l \rightarrow r \in R_{I}$ then $l=A_{\mathcal{T}_{i}} \cdot t_{i}$ where t_{i} is an R-standard term. Hence t_{i} is in $R \cup P R O P \cup R_{I}$-normal form. Because $p \neq \varepsilon$ and t_{i} is closed, this implies that $\sigma l_{\mid p}=l_{\mid p}$ is in $R \cup \mathrm{PROP} \cup R_{I}$-normal form as well. Analogously,
if $l \rightarrow r \in R_{I I}$ then the fact that $\sigma l_{\mid p}=l_{\mid p}$ is a closed term in $R \cup \mathrm{PROP} \cup R_{I}$-normal form follows directly from Definition 31 and from $p \neq \varepsilon$.

Therefore, an application of Lemma 34 establishes our claim.

- Lemma 36. If t is in $R \cup P R O P$-normal form and $\Sigma_{f}(t) \subseteq \Sigma_{f}(R \cup P R O P)$, then t is in R_{α}-normal form.

Proof. From $\mathcal{H}\left(R_{I} \cup R_{I I}\right) \cap \Sigma_{f}(R \cup \mathrm{PROP})=\emptyset$ and Fact 18 it follows that t is in R_{0}-normal form. Lemma 34 implies that it is also in R_{α}-normal form.

- Notation 37. We use S_{α} for $R_{\alpha} \backslash \bigcup_{\beta<\alpha} R_{\beta}, \rightarrow_{\leq \alpha}$ for $\rightarrow_{R_{\alpha}}$, and $\rightarrow_{=\alpha}$ for $\rightarrow_{S_{\alpha}}$.

We will now prove a series of lemmas which together imply that R_{α} and R_{β} commute for all $\alpha, \beta \leq \zeta$, and therefore R_{ζ} is confluent. The key idea in the proofs of these lemmas could be summarized by the following two diagrams.

We adopt the notation $\rightarrow_{* \alpha}$ for $\rightarrow_{R_{\alpha} \backslash R_{0}}$ when $\alpha>0$, and $\rightarrow_{* 0}$ for $\rightarrow_{=0}$. In the following, whenever we write a reduction sequence of the form $t_{0} \xrightarrow[\rightarrow]{*}_{* \alpha_{1}} t_{1} \xrightarrow[\rightarrow]{*}_{* \alpha_{2}} \ldots \xrightarrow{*}_{* \alpha_{n}} t_{n}$ we tacitly assume that there exists $\alpha \leq \zeta$ such that each α_{i} for $i=1, \ldots, n$ is either 0 or α, and there is no $j \in\{1, \ldots, n-1\}$ such that $\alpha_{j}=\alpha_{j+1}$. It is easy to see that every reduction $t \xrightarrow{*} \leq \alpha s$ can be represented by a reduction sequence in this form.

- Lemma 38. If R_{0} and $R_{\alpha} \backslash R_{0}$ commute, then so do R_{0} and R_{α}.

Proof. Let $t \xrightarrow{*}=0 t_{1}$ and $t=s_{0} \xrightarrow{*}_{* \alpha_{1}} s_{1} \xrightarrow{*}_{* \alpha_{2}} \ldots \xrightarrow{*}_{* \alpha_{n}} s_{n}=t_{2}$ for some $n \geq 1$ and $\alpha_{1}, \ldots, \alpha_{n} \in\{0, \alpha\}$. The proof proceeds by simple induction on n.

- Lemma 39. For all $\alpha \leq \zeta$ the term rewriting systems R_{0} and $R_{\alpha} \backslash R_{0}$ commute.

Proof. We use transfinite induction on α to show that R_{0} is compatible with $R_{\alpha} \backslash R_{0}=$ $\bigcup_{0<\beta \leq \alpha} S_{\beta}$.

Let $\left\langle u_{1}, u_{2}\right\rangle \in \operatorname{Crit}\left(R_{0}, S_{\beta}\right)$ for some $0<\beta \leq \alpha$. Because $R \cup$ PROP is standard and $\Pi \notin \Sigma_{f}(R \cup \mathrm{PROP})$, the critical pair must be between a rule from $R_{I} \cup R_{I I}$ and a rule from S_{β}. Therefore, we have rules $l_{1} \rightarrow r_{1} \in R_{I} \cup R_{I I}, l_{2} \rightarrow r_{2} \in S_{\beta}$, a substitution σ, and a position p such that $u_{1}=\sigma r_{1}, u_{2}=\left(\sigma l_{1}\right)\left[\sigma r_{2}\right]_{p}, \sigma l_{1 \mid p}=\sigma l_{2}$, and p is such that $l_{1 \mid p}$ is not a variable. If $p=\varepsilon$ then $l_{1}=r_{1}$ by definition of R_{I} and $R_{I I}$, and we have $u_{1} \rightarrow_{\leq \beta} u_{2}$. The case $p \neq \varepsilon$ is impossible by Lemma 35 .

Now let $\left\langle u_{2}, u_{1}\right\rangle \in \operatorname{Crit}_{i}\left(S_{\beta}, R_{0}\right)$ for some $0<\beta \leq \alpha$. We have $u_{2} \in\{T, F\}$. There are terms t, t^{\prime} and a context C such that $u_{1}=\Pi \cdot C\left[t^{\prime}\right], t \rightarrow_{=0} t^{\prime}$ and $\Pi \cdot C[t] \rightarrow_{=\beta}^{\varepsilon} u_{2}$. Assume $u_{2}=T$. The proof for $u_{2}=F$ is analogous. So let s be a term in R_{0}-normal form. We have $C[t] \cdot s \xrightarrow{*} \leq \gamma T$ for some $\gamma<\beta$. But we may invoke the inductive hypothesis to conclude that R_{0} and $R_{\gamma} \backslash R_{0}$ commute. So by Lemma 38 we obtain that R_{0} and R_{γ} commute as well. Hence $C\left[t^{\prime}\right] \cdot s \xrightarrow{*} \leq \gamma T$, because $C[t] \cdot s \xrightarrow{*} \leq \gamma T, C[t] \cdot s \rightarrow=0 ~ C\left[t^{\prime}\right] \cdot s$ and T is in R_{0}-normal form. But s was an arbitrary term in R_{0}-normal form, so we obtain $u_{1}=\Pi \cdot C\left[t^{\prime}\right] \rightarrow_{=\delta} T$ for some $0<\delta \leq \beta$.

- Lemma 40. If $R_{\alpha} \backslash R_{0}$ and $R_{\beta} \backslash R_{0}$ commute then so do R_{α} and R_{β}.

Proof. The proof may be easily reconstructed from the following diagram.

- Lemma 41. For $\alpha^{\prime}, \beta^{\prime} \leq \zeta$ the term rewriting systems $R_{\alpha^{\prime}} \backslash R_{0}$ and $R_{\beta^{\prime}} \backslash R_{0}$ commute.

Proof. We use induction on pairs $\left\langle\alpha^{\prime}, \beta^{\prime}\right\rangle$ of indices of $R_{\alpha^{\prime}}, R_{\beta^{\prime}}$ ordered lexicographically.
Let $\left\langle u_{2}, u_{1}\right\rangle \in \operatorname{Crit}_{i}\left(S_{\beta}, S_{\alpha}\right)$ for some $0<\alpha \leq \alpha^{\prime}, 0<\beta \leq \beta^{\prime}$. The term u_{2} is a constant. There are terms t, t^{\prime} and a context C such that $t \rightarrow{ }_{=\alpha}^{\varepsilon} t^{\prime}, u_{1}=\Pi \cdot C\left[t^{\prime}\right]$, and $\Pi \cdot C[t] \rightarrow_{=\beta}^{\varepsilon} u_{2}$. Assume $u_{2}=F$. There is a term s in R_{0}-normal form such that $C[t] \cdot s \xrightarrow{*} \leq \gamma F$ for some $\gamma<\beta$. By the inductive hypothesis $R_{\alpha} \backslash R_{0}$ and $R_{\gamma} \backslash R_{0}$ commute. Therefore, by Lemma 40 we may conclude that $\rightarrow_{\leq \alpha}$ and $\rightarrow_{\leq \gamma}$ commute. Hence $C\left[t^{\prime}\right] \cdot s \xrightarrow{*} \leq \gamma F$, because $C[t] \cdot s \xrightarrow{*} \leq \gamma$, $C[t] \cdot s \rightarrow_{=\alpha} C\left[t^{\prime}\right] \cdot s$ and F is in R_{α}-normal form. Therefore, $u_{1}=\Pi \cdot C\left[t^{\prime}\right] \rightarrow_{\leq \beta} F=u_{2}$. The argument for $u_{2}=T$ is analogous.

Now let $\left\langle u_{1}, u_{2}\right\rangle \in \operatorname{Crit}\left(S_{\alpha}, S_{\beta}\right)$ for some $\alpha \leq \alpha^{\prime}, \beta \leq \beta^{\prime}$. The case when $\left\langle u_{1}, u_{2}\right\rangle$ is a non-root critical pair is analogous to the case we have just considered. If $\left\langle u_{1}, u_{2}\right\rangle$ is a root critical pair, then both $u_{1}, u_{2} \in\{T, F\}$, and we need to show that $u_{1}=u_{2}$. It may happen otherwise only when there is a term t such that $\Pi \cdot t \rightarrow_{=\alpha} u_{1}, \Pi \cdot t \rightarrow_{=\beta} u_{2}$. Without loss of generality assume $u_{1}=T, u_{2}=F$. So there is a closed term s in R_{0}-normal form such that $t \cdot s \xrightarrow{*} \leq \delta T$ and $t \cdot s \xrightarrow{*} \leq \gamma F$ for some $\delta<\alpha, \gamma<\beta$. The inductive hypothesis and Lemma 40 imply that $\rightarrow \leq \delta$ and $\rightarrow \leq \gamma$ commute, which gives a contradiction.

We have thus shown that $R_{\alpha^{\prime}} \backslash R_{0}$ and $R_{\beta^{\prime}} \backslash R_{0}$ are compatible, so they commute by left-linearity and Theorem 25 .

- Corollary 42. The term rewriting system R_{ζ} has the Church-Rosser property.
- Theorem 43. Let R be a standard FTRS compatible with PROP, and $\mathcal{T}_{\mathbb{I}}=\left\{\mathcal{T}_{i} \mid i \in \mathbb{T}\right\}$ be a family of sets of R-standard terms. The applicative algebra $\mathcal{A}_{R_{\zeta}}$ generated by $R_{\zeta}^{\mathcal{T}_{\Pi}}$ is a FO-ICA such that for each $i \in \mathbb{I}$ the set $\left\{[t]_{R_{\zeta}} \mid t \in \mathcal{T}_{i}\right\}$ is a type represented by $\left[A_{\mathcal{T}_{i}}\right]_{R_{\zeta}}$ which is a δ-total combinator. Furthermore, if $t_{1}, t_{2} \in \mathcal{L}(\Sigma)$ are in $R \cup P R O P$-normal form, $t_{1} \neq t_{2}$, and $\Sigma_{f}\left(t_{1}\right), \Sigma_{f}\left(t_{2}\right) \subseteq \Sigma_{f}(R \cup P R O P)$, then $\left[t_{1}\right]_{R_{\zeta}},\left[t_{2}\right]_{R_{\zeta}} \in \delta\left(\mathcal{A}_{R_{\zeta}}\right)$ and $\left[t_{1}\right]_{R_{\zeta}} \neq\left[t_{2}\right]_{R_{\zeta}}$.

Proof. First, we check that $\mathcal{A}_{R_{\zeta}}$ is a first-order illative combinatory algebra. To save on notation we use the same symbols for terms and corresponding abstraction classes in $\mathcal{A}_{R_{\zeta}}$.

- The axioms $T \neq F$ and $T, F \in \delta\left(A_{R_{\zeta}}\right)$ follow from the Church-Rosser property of R_{ζ} and the fact that T and F are in R_{ζ}-normal form.
- The axioms (3)-(6) in Definition 2 follow directly from the definition of PROP.
- The axioms (7) and (8) follow directly from the definitions of $R_{I}, R_{I I}$ and from Lemma 34, which is needed to prove that $A \cdot X \in\{F\} \cup v$ for $X \in v$.
- The axioms for Π follow from the Church-Rosser property of R_{ζ}, Lemma 34 and the fact that $R_{\zeta}=\bigcup_{\alpha<\zeta} R_{\alpha}$.

The fact that each set $\left\{[t]_{R_{\zeta}} \mid t \in \mathcal{T}_{i}\right\}$ is a type represented by $\left[A_{\mathcal{T}_{i}}\right]_{R_{\zeta}}$ which is a δ-total combinator follows directly from Lemma 34 and the definitions of R_{I} and $R_{I I}$. Finally, the last claim follows from Lemma 36 and the Church-Rosser property of R_{ζ}.

6 Completeness of the first-order translation

In this section we prove completeness of the translation introduced in Section 3. We work under the same assumptions and definitions as in Section 3.

- Theorem 44. Completeness

Let ϕ and all formulas in Δ be closed. If $\Psi(\Delta) \models \Psi(\phi)$ then $\Delta \models_{F O} \phi$.
Proof. Suppose $\Psi(\Delta) \models \Psi(\phi)$. Let \mathcal{A} be a first-order model of Δ.
We construct a functional term rewriting system R as follows. The signature of R consists of all elements of the universe of \mathcal{A}, all relation and function symbols from $\mathcal{L}_{F O}$ and the constants T, F. We assume the relation and function symbols are different from T, F, P, Q, etc. For every n-ary relation $r^{\mathcal{A}}$ on \mathcal{A}, which interprets a relation symbol r, the rule $r \cdot a_{1} \cdot \ldots \cdot a_{n} \rightarrow T$ belongs to R for exactly those a_{1}, \ldots, a_{n} for which $r^{\mathcal{A}}\left(a_{1}, \ldots, a_{n}\right)$ holds, the rule $r \cdot a_{1} \cdot \ldots \cdot a_{n} \rightarrow F$ when $r^{\mathcal{A}}\left(a_{1}, \ldots, a_{n}\right)$ does not hold. For every n-ary function $f^{\mathcal{A}}$ on \mathcal{A}, which interprets a function symbol f, the rule $f \cdot a_{1} \cdot \ldots \cdot a_{n} \rightarrow b$ belongs to R if $f^{\mathcal{A}}\left(a_{1}, \ldots, a_{n}\right)=b$. Nothing else belongs to R.

It is straightforward to verify that R is standard and compatible with PROP. By ς we denote the universe of \mathcal{A}. Let \mathcal{B} be the applicative algebra generated by $R_{\zeta}^{\{\varsigma\}}$. For convenience we use the same symbols for terms and corresponding abstraction classes. Analogously for sets of terms. By Theorem 43 the algebra \mathcal{B} is a FO-ICA with a δ-total combinator A_{ς} representing ς, and we have $\varsigma \subseteq \delta(\mathcal{B})$. Note that $\varsigma=\iota_{\mathcal{B}}$, where $\iota_{\mathcal{B}}$ is the type represented by $A_{\iota}=\lambda x \cdot\left(A_{\varsigma} x\right) \wedge\left(A_{\delta} x\right)$, as in Definition 10.

It is easy to check that \mathcal{B} is an illative model of Γ_{0}, and that \mathcal{A} and \mathcal{B} are correspondent in the sense of Definition 11. Hence by Lemma 12 we may conclude that $\llbracket \psi \rrbracket_{\mathcal{A}}=\llbracket \Psi(\psi) \rrbracket_{\mathcal{B}}$ for any closed first-order formula ψ. This implies that $\mathcal{B} \models \operatorname{Im}_{\Psi}(\Delta)$. Therefore $\mathcal{B} \models \Psi(\Delta)$, and consequently $\mathcal{B} \models \Psi(\phi)$, which implies $\mathcal{A} \models_{F O} \phi$, because $\llbracket \phi \rrbracket_{\mathcal{A}}=\llbracket \Psi(\phi) \rrbracket_{\mathcal{B}}$.

References

1 Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge University Press, 1999.
2 Henk Barendregt, Martin W. Bunder, and Wil Dekkers. Systems of illative combinatory logic complete for first-order propositional and predicate calculus. Journal of Symbolic Logic, 58(3):769-788, 1993.
3 Alonzo Church. A set of postulates for the foundation of logic I. Annals of Mathematics, ser. 2, 33:346-366, 1932.
4 Haskell B. Curry. Grundlagen der kombinatorischen Logik. American Journal of Mathematics, 52:509-536, 789-834, 1930.
5 Wil Dekkers, Martin W. Bunder, and Henk Barendregt. Completeness of the propositions-as-types interpretation of intuitionistic logic into illative combinatory logic. Journal of Symbolic Logic, 63(3):869-890, 1998.

6 Wil Dekkers, Martin W. Bunder, and Henk Barendregt. Completeness of two systems of illative combinatory logic for first-order propositional and predicate calculus. Archive for Mathematical Logic, 37(5-6):327-341, 1998.
7 Gerhard Jäger, Reinhard Kahle, and Thomas Strahm. On applicative theories. In A. Cantini, E. Casari, and P. Minari, editors, Logic and Foundation of Mathematics, pages 88-92. Kluwer Academic Publishers, 1999.
8 Gerhard Jäger and Thomas Strahm. Totality in applicative theories. Annals of Pure and Applied Logic, 74(2):105-120, 1995.
9 Stephen C. Kleene and J. Barkley Rosser. The inconsistency of certain formal logics. Annals of Mathematics, 36:630-636, 1935.
10 Saul A. Kripke. Outline of a theory of truth. Journal of Philosophy, 72(19):690-716, 1975.
11 Jonathan P. Seldin. The logic of Church and Curry. In Dov M. Gabbay and John Woods, editors, Logic from Russell to Church, volume 5 of Handbook of the History of Logic, pages 819-873. North-Holland, 2009.
12 Yoshihito Toyama. Commutativity of term rewriting systems. In K. Fuchi and L. Kott, editors, Programming of Future Generation Computers II, pages 393-407. North-Holland, 1988.

[^0]: * Partly supported by MNiSW grant N N206 355836.

