
A semantic approach to illative combinatory logic∗

Łukasz Czajka

University of Warsaw
Institute of Informatics
lukaszczz@gmail.com

Abstract
This work introduces the theory of illative combinatory algebras, which is closely related to
systems of illative combinatory logic. We thus provide a semantic interpretation for a formal
framework in which both logic and computation may be expressed in a unified manner. Systems
of illative combinatory logic consist of combinatory logic extended with constants and rules of
inference intended to capture logical notions. Our theory does not correspond strictly to any
traditional system, but draws inspiration from many. It differs from them in that it couples the
notion of truth with the notion of equality between terms, which enables the use of logical for-
mulas in conditional expressions. We give a consistency proof for first-order illative combinatory
algebras. A complete embedding of classical predicate logic into our theory is also provided. The
translation is very direct and natural.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases Illative combinatory logic, term rewriting, first-order logic

Digital Object Identifier 10.4230/LIPIcs.CSL.2011.174

1 Introduction

When in the early 1930s Curry and Church invented their systems of, respectively, combinatory
logic [4] and lambda calculus [3], they intended them to be foundational systems on which
logic and mathematics could be based. These systems were soon shown to be inconsistent
by Kleene and Rosser [9]. As a result, Church abandoned his program of basing logic
on lambda-calculus. Curry, however, persisted in his aims. He and his followers tried to
formulate various systems weaker than the original system of Curry in the hope of obtaining
ones that would be consistent, but still strong enough to interpret traditional logic. Today,
the basic part of Curry’s theory is known as combinatory logic, the systems additionally
incorporating logical constants as illative combinatory logic. The search for strong and
consistent theories proved to be elusive. Only after more than half a century since the
first publications of Church and Curry, several systems were proven complete for minimal
first-order intuitionistic logic in [2], [5], [6], and for PREDλ→ in [5]. See [11] for a historical
overview of illative combinatory logic.

The tradition of the Curry school has been formalist, with emphasis on constructive
proof-theoretic methods (cf. [11]). In this work we propose a semantic interpretation for
various illative constants. In contrast to traditional systems, the meaning of these constants is
given by appropriately extending the equality relation. We attempt to give a model-theoretic
style semantics. As potential models we study illative combinatory algebras. These are
combinatory algebras with additional elements corresponding to illative constants. One
important constant which is present in our theory, but usually absent from illative systems,

∗ Partly supported by MNiSW grant N N206 355836.

© Łukasz Czajka;
licensed under Creative Commons License NC-ND

Computer Science Logic 2011 (CSL’11).
Editor: Marc Bezem; pp. 174–188

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2011.174
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Łukasz Czajka 175

is the conditional Cond. It acts as a connector between logic and computation, allowing to
choose between two branches in a (generalized) program depending on the truth value of
a quantified formula. Furthermore, formulas themselves are nothing else than generalized
programs, and may contain S and K.

Our formalization is very natural and straightforward. What is non-obvious here is that
it is actually correct. Modifying sligthly our axioms in seemingly harmless ways leads to
inconsistent theories. In the presence of unrestricted abstraction and fixed points of arbitrary
elements it is far from obvious how to formulate a consistent logical system.

Very closely related to our theory are applicative theories of Feferman (see [7]), which
form the basis of his systems of explicit mathematics. These systems were intended to
provide a foundation for constructive mathematics. Applicative theories are, however, usually
based on partial logic. In terms of methods employed perhaps the total applicative theories
with non-constructive µ-operator (see [8]) come even closer to our theory than does illative
combinatory logic. Indeed, the key idea in the proofs leading to the central Corollary 42 is
essentially analogous to that in the proof from the appendix of [8], where similar techniques
are used in a much less general context. The author did not know about [8] until after having
written down the proof in full.

Our consistency proof for first-order illative combinatory algebras is based on a non-trivial
construction of a term model. We show how to extend any left-linear applicative term
rewriting system satisfying some mild additional conditions into a term rewriting system
whose associated quotient algebra is a first-order illative combinatory algebra. The extension
is constructed by transfinitely iterating a process of expanding the term rewriting system with
rules implementing quantification, until a fixpoint is reached. This bears some resemblance
to transfinite truth definitions as used by Kripke (cf. [10]), which were also the inspiration
for the three-valued semantics of logic programming. The details, however, are much more
complicated.

The outline of the rest of this paper is as follows. Section 2 contains the definition of first-
order illative combinatory algebras. In Section 3 we define a translation from first-order logic
to illative language and prove its soundness. Section 4 introduces the class of functional term
rewriting systems and recapitulates some known results from the theory of term rewriting.
Section 5 contains the details of the term model construction. In Section 6 we use the result
of Section 5 to prove completeness of the translation from Section 3.

2 Illative combinatory algebras

In this section we introduce the central concept of this work – illative combinatory algebras.
Basic familiarity with ordinary combinatory logic is assumed.

I Definition 1. An applicative algebra A is a tuple 〈ω, ·, υ〉 where:
(1) ω is a set of combinators
(2) · : ω × ω → ω is the application function
(3) υ ⊆ ω is the set of undefined combinators
We call δ = ω \ υ the set of defined combinators. By ω(A), υ(A) we denote respectively the
ω and υ components of A, by δ(A) we denote ω(A) \ υ(A).

In expressions involving the application function we customarily omit parentheses and
adopt the convention of association to the left, i.e. M ·X · Y · Z stands for ((M ·X) · Y) · Z.
We will also sometimes omit the dots. We adopt the convention of referring to the elements
of an algebra as combinators.

CSL’11

176 A semantic approach to illative combinatory logic

I Definition 2. An illative combinatory algebra (ICA) is an applicative algebra A with
elements T , F , K, S, P , Q, Cond, Aδ which satisfy the following for any X,Y, Z ∈ ω(A):
(1) T 6= F

(2) T, F ∈ δ

(3) K ·X · Y = X

(4) S ·X · Y · Z = X · Z · (Y · Z)

(5)

P · F ·X = T

P ·X · T = T

P · T · F = F

P ·X · Y ∈ υ otherwise

(6)

Cond · T ·X · Y = X

Cond · F ·X · Y = Y

Cond ·X · Y · Z ∈ υ if X /∈ {T, F}

(7)

Q ·X ·X ∈ {T} ∪ υ
Q ·X · Y ∈ {F} ∪ υ for X 6= Y

Q ·X · Y ∈ δ if X,Y ∈ δ

(8)
{
Aδ ·X = T if X ∈ δ
Aδ ·X ∈ {F} ∪ υ if X ∈ υ

We will sometimes write A for Aδ.

I Remark. Intuitively, in an illative combinatory algebra undefined combinators are inter-
preted as meaningless at the object level, but not necessarily completely meaningless. Indeed,
there may be undefined combinators which applied to a defined combinator give a defined
result. The set δ is intuitively interpreted as the universe of discourse. It is intended to
encompass everything we may meaningfully talk about at the object level. In particular, it
includes the truth values T and F . The combinator A stands for a partial predicate which is
true for elements of δ, and false or undefined for elements of υ. This predicate cannot be
defined from the other combinators. The combinator Q is intended to represent a partial
equality predicate.
I Remark. Any illative combinatory algebra satisfies the principle of combinatory abstraction
and has a fixed point combinator. Thus, for every equation of the form

M ·X1 · . . . ·Xn = Φ(M,X1, . . . , Xn)

where Φ(Y,X1, . . . , Xn) is a combination of Y , X1, . . . , Xn and some of the combinators
postulated in the definition of an ICA, there exists a combinator M such that the equation
holds for any combinators X1, . . . , Xn. We will often rely on this fact and define combinators
by such equations. Sometimes we will also use the lambda-notation λxΦ(x) to denote
a combinator M such that MX = Φ(X) for all X ∈ ω. If there can be more than one
combinator satisfying a given equation, then it is tacitly understood that we choose one such
specific combinator and it does not matter which one.
I Remark. Our aim is to make as many combinators belong to δ as possible, since these are
the combinators on which our additional elements are guaranteed to “work”. However, one
cannot get rid of υ altogether because the existence of fixed points of arbitrary combinators
would lead to a contradiction. In fact, it can be easily shown that if M ·X ∈ δ for all X ∈ ω
then M ·X = M · Y for all X,Y ∈ ω.

For brevity, we will mostly omit explicit references to illative combinatory algebras. The
following facts and definitions are to be understood that they are relative to some fixed
illative combinatory algebra.

Łukasz Czajka 177

We use the notation N for λx.PxF , ∧ for λx.λy.N(Px(Ny)), and ∨ for λx.λy.P (Nx)y.
We occasionally adopt infix notation for ∧ and ∨.

It is easy to see that P , N , ∧ and ∨ satisfy the following equations for any X,Y ∈ ω:

PXY = T iff X = F or Y = T

PXY = F iff X = T and Y = F

NX = T iff X = F

NX = F iff X = T

∧XY = T iff X = T and Y = T

∧XY = F iff X = F or Y = F

∨XY = T iff X = T or Y = T

∨XY = F iff X = F and Y = F

I Definition 3. A set of combinators τ ⊆ ω is a type represented by M ∈ ω if the following
conditions hold:
(1) M ·X = T for X ∈ τ
(2) M ·X ∈ {F} ∪ υ for X ∈ ω \ τ

Note that ω and δ are types represented by K ·T and A respectively. We use the notation
b for the type represented by Ab = λx.(QxT) ∨ (QxF).

I Definition 4. Let σ, ρ ⊆ ω. A function space σ ⇒ ρ from σ to ρ is the set of all combinators
M such that M ·X ∈ ρ for X ∈ σ.

We use small Greek letters τ , σ, ρ, ω, etc. both to denote subsets of ω and as parts of
symbols denoting constants or combinators, e.g. in Aτ . In the second case the subscript does
not have a meaning of its own, but only highlights a connection of the symbol with some
set τ , which may even be defined only after introducing the symbol itself. Analogously, we
use subscripts of the form σ → ρ when we intend to highlight a connection to the function
space σ ⇒ ρ. In compound expressions → and ⇒ are assumed to be right-associative. We
adopt the notation σn ⇒ ρ for σ ⇒ . . .⇒ σ ⇒ ρ where σ occurs n times. Analogously, we
use σn → ρ in subscripts.

I Definition 5. A combinator M is τ -total, for τ ⊆ ω, if MX ∈ δ for all X ∈ τ .

I Definition 6. Let τ ⊆ ω. A τ -quantifier is any combinator Πτ such that:

Πτ ·X = T if for all Y ∈ τ we have X · Y = T

Πτ ·X = F if there exists Y ∈ τ such that X · Y = F

Πτ ·X ∈ υ otherwise

We use the notation Στ for λx.N(Πτ (S(KN)x)). A combinator Πδ satisfying the above
equations for τ = δ is a first-order quantifier. We will sometimes write Π instead of Πδ.

It is straightforward to verify that Πτ and Στ satisfy the following for any X ∈ ω:

ΠτX = T iff XY = T for all Y ∈ τ
ΠτX = F iff XY = F for some Y ∈ τ
ΣτX = T iff XY = T for some Y ∈ τ
ΣτX = F iff XY = F for all Y ∈ τ

CSL’11

178 A semantic approach to illative combinatory logic

It is easy to see that if Aτ is a δ-total combinator representing a type τ ⊆ δ, then the
combinator λx.Πδλy.P (Aτy) (xy) is a τ -quantifier. Moreover, if Πτ1 is a τ1-quantifier and
Aτ2 represents a type τ2, then τ1 ⇒ τ2 is a type represented by Aτ1→τ2 = λx.Πτ1λy.Aτ2(xy).

I Definition 7. A first-order illative combinatory algebra (FO-ICA) is an illative combinatory
algebra with signature extended with Πδ, and with the laws from Definition 6 for Πδ added
as axioms.

I Remark. One may wonder why we postulate the existence of Πδ instead of Πω, whose range
of quantification is broader. After all, we could use Π′δ = λx.Πωλy.P (Ay)(xy). However,
Π′δ is not a δ-quantifier. The reason is the existence of undefined combinators and the
fact that they are included in the range of quantification of Πω. For instance, suppose M
is such that M · X = T iff X ∈ δ. One may easily show that there is Y ∈ υ such that
A · Y ∈ υ. Hence, P (AY)(MY) ∈ υ. Moreover, by definitions of A and M there is no Z
such that P (AZ)(MZ) = F . So the last equation in the definition of Πω applies, and we
have Π′δM ∈ υ.

More generally, if Aτ represents a type τ 6= ω, then by an analogous argument we could
prove that Πωλx.P (Aτx)(Mx) ∈ υ for any M ∈ ω such that M · X = T iff X ∈ τ . This
shows that Πω is not particularly interesting, because its range cannot be restricted in a
meaningful way.
I Remark. Logic based on the theory of first-order illative combinatory algebras is, in a
practical sense, more expressive than traditional predicate logic. For example, denote by n
the Church numeral representing n ∈ N. Now we can write a recursive definition of U as
follows:

Un = Cond (Qn 0) (SKK) (λf.Πλx.Σλy.U(Predn)(fxy))

where Pred is the predecessor combinator for Church numerals. By simple induction one can
show:

Un = λf.Πλx1.Σλy1. . . .Πλxn.Σλyn.fx1y1x2y2 . . . xnyn

Now assume that we have a δ-total combinator which represents the type N consisting of
Church numerals, and that all Church numerals are in δ. Theorem 43 implies that the
definition of a FO-ICA may be modified to satisfy these assumptions without sacrificing
any of the results in this paper. Then there exists an N -quantifier ΠN . Now, given a
combinator M , the expression

ΣNλx.UxM

is true iff there exists an alternation of 2n quantifiers such that

Πλx1.Σλy1. . . .Πλxn.Σλyn.Mx1y1 . . . xnyn

is true. To be precise, ΣNλx.UxM will most often be in υ if such an alternation does not
exist.

The power comes from the fact that quantifiers may be freely combined with S and K.
This allows for recursive definitions involving logical operators.

Another important feature of our theory is the presence of the combinator Cond and the
fact that the truth notion at the meta-level is coupled with the notion of equality between
terms. In other words, being true is equivalent to evaluating to a concrete value T , which
may be used in the “program” itself. This is significantly different from simply stating that

Łukasz Czajka 179

some terms are “true” or “derivable” by means of some meta-level definition, but without
providing any possibility of using this information inside the system.

For instance, with our approach one can write recursive definitions of the form:

M = λx.Ψ (Cond (ΠΦ1(x,M)) Φ2(x,M) Φ3(x,M))

and they behave as expected – if ΠΦ1(X,M) is true then the first branch constitutes the
value of MX, if false then the second. What is more, it may happen that we know that
ΠΦ1(X,M) is true regardless of what X is, and we may conclude that M = λx.Ψ (Φ2(x,M)).
The combinator Cond acts as a connector between logic and computation.

3 Translation from first-order to illative theories

In this section we define a natural translation from the language of first-order logic to
illative language and prove its soundness with respect to FO-ICAs. We defer the proof of
completeness to Section 6. Much of the present section contains some fairly obvious but
necessary definitions.

We will be dealing mostly with applicative terms, i.e. terms from languages over signatures
consisting solely of a single binary function symbol · and constants including all the constants
postulated in the definition of a FO-ICA. We denote such a language by L(Σ, V), where Σ
is a set of constants, and V is a set of variables. All terms are assumed to be applicative,
unless qualified with the phrase first-order. We use the symbols t, s, etc. for terms, x, y,
etc. for variables, and M , X, etc. for combinators (elements of an algebra), except that
we use the same symbols for primitive constants and corresponding combinators defined in
Section 2. The intended meaning of a symbol will always be clear from the context.

We use the notation JtKuA for the value of t under variable valuation u in the structure A.
We omit the decorations when obvious from the context or irrelevant. We also adopt the
notation t1[x/t2] for the term t1 with all free occurences of x substituted for t2. Analogously,
we use u[x/M] for the valuation u′ such that u′(y) = u(y) for y 6= x and u′(x) = M .

We define lambda-abstraction at the syntactic level by the standard abstraction algorithm:
λ∗x.x = SKK, λ∗x.t = Kt if x /∈ FV (t), and λ∗x.t1t2 = S(λ∗x.t1)(λ∗x.t2). In what follows
the symbols Ab, ∧, etc. will sometimes stand for terms defined completely analogously to
the corresponding combinators in Section 2, but at the syntactic level using the abstraction
algorithm. We still use these symbols to denote the combinators as well. Again, the intended
meaning will always be clear from the context.

Let A be a FO-ICA, and u a valuation. It is easy to verify that for any terms t1, t2
we have J(λ∗x.t1)t2KuA = Jt1[x/t2]KuA. Also for any term t and any M ∈ ω(A) we have the
identity Jλ∗x.t1KuA ·M = Jt1Ku

′

A where u′ = u[x/M].
We now redefine some standard notions from elementary first-order logic. Subseqently,

we will refer to the original notions by qualifying them with the phrase first-order. The
redefined notions will be qualified with illative, but the qualification will often be dropped.
By an illative theory we mean a set of applicative terms. We say that a FO-ICA A satisfies
a term t under variable valuation u, denoted by A |=u t, if JtKuA = T . We define the notions
of illative semantic consequence (Γ |= t) and illative model (A |= Γ) completely analogously
to standard definitions in first-order logic, but with arbitrary terms in place of formulas and
requiring all structures to be FO-ICAs.

We use the symbol ∆ for a first-order theory, φ, ψ for first-order formulas, |=FO for the
first-order semantic consequence relation.

CSL’11

180 A semantic approach to illative combinatory logic

By a first-order expression we mean a first-order formula or a first-order term. We extend
the notion of first-order valuation to formulas. If A |=u

FO φ then JφKuA = T , otherwise
JφKuA = F .

We assume that in a first-order language the only logical connective is →, the only
quantifier ∀, and there is a constant ⊥ for false. We also assume that we have a new constant
Aς in the illative signature, and the signature contains as constants all symbols (of any arity)
from the corresponding first-order language.

We write Aι for the term λ∗x.(Aςx) ∧ (Aδx) and Πι for λ∗y.Πδλ
∗x.P (Aιx)(yx). We

define Aιn+1→ι inductively as λ∗x.Πιλ
∗y.Aιn→ι(xy), where Aι0→ι = Aι. Analogously, we

define Aιn+1→b as λ∗x.Πιλ
∗y.Aιn→b(xy).

I Definition 8. The illative theory Γ0 constains the terms Πδ (S (KAb)Aι), ΣδAι, Aιn→ι f
for all function symbols f of arity n ≥ 0, and Aιn→b r for all relation symbols r of arity
n > 0.

I Definition 9. We define inductively a translation Ψ as follows.
For first-order terms:
Ψ(x) = x for a variable x
Ψ(f(t1, . . . , tn)) = f ·Ψ(t1) · . . . ·Ψ(tn) for a function symbol f of arity n ≥ 0

For first-order formulas:
Ψ(⊥) = F

Ψ(r(t1, . . . , tn)) = r ·Ψ(t1) · . . . ·Ψ(tn) for a relation symbol r of arity n
Ψ(t1 = t2) = Q ·Ψ(t1) ·Ψ(t2)
Ψ(φ1 → φ2) = P ·Ψ(φ1) ·Ψ(φ2)
Ψ(∀xφ) = Πιλ

∗x.Ψ(φ)

For a first-order theory ∆ we define Ψ(∆) to be the sum of Γ0 and the image ImΨ(∆) of
Ψ on ∆.

The general idea of the soundness proof is to construct for every illative model B of Ψ(∆)
a first-order structure A which satisfies exactly those sentences whose translations are true
in B. Such a structure will obviously be a model of ∆. Hence, any semantic consequence φ
of ∆ will be satisfied by A, so Ψ(φ) will be true in B.

I Definition 10. Let B be an illative model of Γ0. We define ιB to be the set of all
combinators M ∈ ω(B) such that JAιKB ·M = T . The subscript will be dropped when
obvious from the context.

It is easy to see that if B is an illative model of Γ0, then JAιKB is a δ-total combinator
representing the non-empty type ιB ⊆ δ(B). It is also true that in every illative model B
of Γ0 the combinator JΠιKB is a ιB-quantifier.

I Definition 11. A first-order structure A and a FO-ICA B are correspondent if the universe
U of A is a subset of ω(B) and the following conditions hold:

every function symbol f of arity n is interpreted in A by the function

{(X1, . . . , Xn, Y) ∈ Un+1 | JfKB ·X1 · . . . ·Xn = Y }

every relation symbol r of arity n is interpreted in A by the relation

{(X1, . . . , Xn) ∈ Un | JrKB ·X1 · . . . ·Xn = T}

Łukasz Czajka 181

I Lemma 12. Assume B is an illative model of Γ0 and A is a first-order structure with
ιB as the universe. If A and B are correspondent, then JeKuA = JΨ(e)KuB for any first-order
expression e and any valuation u such that Rg(u) ⊆ ιB.

Proof. Simple induction on the complexity of e.
For instance, assume e = ∀xψ and J∀xψKuA = T . Then for every X ∈ ι we have

T = JψKu
′

A = JΨ(ψ)Ku′

B by inductive hypothesis, where u′ = u[x/X]. So for every X ∈ ι we
have Jλ∗x.Ψ(ψ)KuB ·X = JΨ(ψ)Ku′

B = T . Hence, by the fact that JΠιKB is a ι-quantifier in B
we have JΠιλ

∗x.Ψ(ψ)KuB = T .
The other cases are similar. We need the assumption of correspondence in the cases

e = f(t1, . . . , tn) and e = r(t1, . . . , tn). In the second of these Aιn→b r ∈ Γ0 is also needed. J

I Theorem 13. Soundness
Let φ and all formulas in ∆ be closed. If ∆ |=FO φ then Ψ(∆) |= Ψ(φ).

Proof. Suppose ∆ |=FO φ. Because all terms in Ψ(∆) as well as Ψ(φ) are closed by our
construction, it suffices to show that every illative model of Ψ(∆) is an illative model of Ψ(φ).

So assume B is an illative model of Ψ(∆). Since Γ0 ⊆ Ψ(∆) then B is an illative model
of Γ0. Hence, ιB ⊆ δ(B) is a non-empty type represented by JAιKB.

Let A be a first-order structure with universe ι and functions and relations as in Def-
inition 11. Note that it is not immediately obvious that this is well-defined, because the
interpretation of a function symbol f of arity n must be a total function from ιn to ι. However,
this is satisfied because Aιn→ι f ∈ Ψ(∆). Note also that the non-emptiness of ι is necessary
because the universe of a first-order structure is always assumed to be non-empty.

Therefore, by Lemma 12 we may conclude that JψKA = JΨ(ψ)KB for every closed first-
order formula ψ. We have A |=FO ∆, because JψKA = JΨ(ψ)KB = T for ψ ∈ ∆. From
the initial assumption ∆ |=FO φ we may now conclude that A |=FO φ. This implies
JΨ(φ)KB = JφKA = T . Therefore, B |= Ψ(φ). J

4 Functional term rewriting systems

This section defines the class of functional term rewriting systems and briefly recapitulates
some known results from the term rewriting theory for the sake of completeness. Term
rewriting notation and terminology conforms to that from [1].

I Definition 14. The set of positions of a term t ∈ L(Σ, V) is a set Pos(t) of strings over the
alphabet {0, 1} defined inductively as follows: Pos(t0 ·t1) = {ε}∪{0p | p ∈ Pos(t0)}∪{1p | p ∈
Pos(t1)}, and Pos(x) = ε, where ε is the empty string and x ∈ V . The leftmost position of t
is the position 0i, where 0n for n ∈ N means 0 repeated n times, such that no position of t is
of the form 0j for j > i. For p ∈ Pos(t), the subterm of s at position p, denoted by t|p, is
defined by induction on the length of p: t|ε = t, (t0 · t1)|bq = tb|q. A context C is a term over
L(Σ ∪ {�}, V) with exactly one occurence of �. By C[t] for t ∈ L(Σ, V) we denote the term
C with � replaced by t.

I Definition 15. A rewrite rule, or simply rule, over L(Σ, V) is a pair (l, r) ∈ L(Σ, V) ×
L(Σ, V) such that l is not a variable and Var(r) ⊆ Var(l). Rewrite rules will be written as
l→ r. The term l is called the left side of the rule, r the right side. A rule l→ r is left-linear
if no variable occurs twice in l. A rule l→ r is trivial if l = r. A term rewriting system is a
set of rewrite rules. A term rewriting system is left-linear if each of its rules is left-linear.

Let R be a term rewriting system. The reduction relation →R⊆ L(Σ, V) × L(Σ, V) is
defined as follows:

CSL’11

182 A semantic approach to illative combinatory logic

t→R s iff there exist l→ r ∈ R, a context C and a substitution σ
such that t = C[σl] and s = C[σr].

We sometimes write t→p
R s to indicate at which position the reduction takes place.

We say that a rule l→ r ∈ R applies to t if there exist p ∈ Pos(t) and a substitution σ
such that t|p = σl. We say that a term is in R-normal form if no rule from R applies to it.

I Notation 16. Let→ be a binary relation on terms. We denote by→≡ the reflexive closure
of →, by ∗→ the reflexive transitive closure, and by ∗↔ the reflexive transitive symmetric
closure. We write t→ s to indicate that (t, s) ∈→. Analogously for →≡, ∗→ and ∗↔.

I Definition 17. A position p of a term t ∈ L(Σ, V) is a function position if either p = q0 or
the size of t is 1 and p = ε. A term t ∈ L(Σ, V) is functional if it does not have any variables
at function positions. We use the notation Σf (t) for the set of constants at function positions
in a term t. By H(t) we denote the constant at the leftmost position in a functional term
t. A rule l → r is functional if l is a functional term. A functional term rewriting system
(FTRS) is a term rewriting system over L(Σ, V), such that all rules are functional. We use
the notation Σf (R) for

⋃
l→r∈R Σf (l), and H(R) for {H(l) | l→ r ∈ R}.

I Fact 18. If t is a functional term and s is such that Σf (t) * Σf (s), then there is no
substitution σ and position p such that s|p = σt. Moreover, if s is a functional term and
H(t) /∈ Σf (s), then t does not unify with a non-variable subterm of s.

I Definition 19. A functional term rewriting system R generates an applicative algebra
AR = 〈ω, ·, υ〉 where ω = {[t]R} is the set of equivalence classes of ∗↔R on closed terms, υ is
the set of those [t]R for which there is no t′ in R-normal form such that t ∗↔R t′, and · is
defined by [t1]R·[t2]R = [t1 · t2]R.

I Definition 20. Let l1 → r1 ∈ R1, l2 → r2 ∈ R2, let p be a position such that l1|p is not
a variable. We assume the rules do not share variable names. Let σ be the most general
unifier of l1|p and l2. Then 〈σr1, (σl1)[σr2]p〉 is a critical pair between R1 and R2. A critical
pair is a root critical pair if p = ε. The set of all critical pairs between R1 and R2 is denoted
by Crit(R1, R2), the set of all root critical pairs by Critr(R1, R2), and Criti(R1, R2) is the
set of all non-root critical pairs between R1 and R2. A critical pair 〈u1, u2〉 ∈ Crit(R1, R2)
may be closed if u1 →R2 u2 or u2 →R1 u1.

I Definition 21. R1 is compatible with R2 if
for all 〈u1, u2〉 ∈ Crit(R1, R2) there is u such that u1

∗→R2 u and u2 →≡R1
u,

for all 〈u2, u1〉 ∈ Criti(R2, R1) we have u1 →≡R2
u2.

Two term rewriting systems R1, R2 are compatible if R1 is compatible with R2 or vice versa.

I Fact 22. If R1, R2 are FTRSes such that Σf (R1)∩Σf (R2) = ∅, then they are compatible.

I Definition 23. We say that two relations →1 and →2 commute whenever t ∗→1 t1 and
t
∗→2 t2 implies the existence of s such that t1

∗→2 s and t2
∗→1 s. Two term rewriting systems

R1 and R2 commute if →R1 and →R2 commute.

I Lemma 24. Commutative Union Lemma
If R1 and R2 are confluent and they commute, then R1 ∪R2 is confluent.

The following theorem is a special case of the result from [12]. We do not state it in its
full generality mostly due to lack of space to introduce the necessary concepts.

I Theorem 25. Compatible left-linear term rewriting systems commute.

It follows from Theorem 25 and the Commutative Union Lemma that if R is left-linear
and compatible with itself, then it is confluent.

Łukasz Czajka 183

5 Extensions of standard systems

This section contains the mathematically non-trivial part of this work. We show how to
extend any FTRS satisfying some mild additional conditions into an FTRS that generates a
FO-ICA.

I Definition 26. A functional term rewriting system R is standard if it is left-linear, confluent,
and Σf (R) ∩ {Π, Q,A} = ∅.

I Definition 27. The term rewriting system PROP is defined by the following rules:

K · x · y → x (1)
S · x · y · z → x · z · (y · z) (2)
P · F · x → T (3)
P · x · T → T (4)
P · T · F → F (5)
P · x · y → P · x · y (6)

Cond · T · x · y → x (7)
Cond · F · x · y → y (8)
Cond · x · y · z → Cond · x · y · z (9)

I Lemma 28. The term rewriting system PROP is standard.

Proof. There are only the following root critical pairs, all of which satisfy the requirements
of compatibility.

The pair 〈T, P · F · x〉 between rules (3) and (6). We have P · F · x→ T by rule (3).
The root critical pairs between rules (6) and (3), (4) and (6), (6) and (4), (5) and (6),
(6) and (5), (7) and (9), (9) and (7), (8) and (9), (9) and (8) are dealt with completely
analogously to the above one.
The trivial critical pair 〈T, T 〉 between rules (3) and (4) or (4) and (3).

J

Note that it follows directly from Lemma 28, Theorem 25 and the Commutative Union
Lemma that R ∪ PROP is standard.

I Definition 29. A term t is R-standard if it is a closed term in R ∪ PROP-normal form
such that Σf (t) ⊆ Σf (R ∪ PROP).

For the rest of this section we assume a fixed standard functional term rewriting system
R compatible with PROP, and a fixed family TI = {Ti | i ∈ I} of sets of R-standard terms,
where I is some arbitrary index set.

I Definition 30. The term rewriting system RI is defined by the following rules:

Π · x → Π · x
Q · x · y → Q · x · y
A · x → A · x

ATi · ti → T

ATi · x → ATi · x

for all i ∈ I and all terms ti ∈ Ti, where ATi are new symbols not present in Σf (R) ∪
Σf (PROP) ∪ {Π, Q,A}.

CSL’11

184 A semantic approach to illative combinatory logic

It is easy to see that every R-standard term is in RI -normal form.

I Definition 31. The term rewriting system RII is defined by the following rules:

Q · t · t → T

Q · t1 · t2 → F

A · t → T

ATi · ti → F

for all i ∈ I and all closed terms t, t1, t2, ti in R∪PROP∪RI -normal form, such that t1 6= t2
and ti /∈ Ti.

Below we use the notation R0 for R ∪ PROP ∪RI ∪RII .

I Lemma 32. The term rewriting system R0 is left-linear and confluent.

Proof. It is evident that R0 is left-linear. Notice that R ∪ PROP ∪RI is confluent because
R ∪ PROP and RI are compatible by Fact 22 and the fact that R ∪ PROP is standard.

We now prove that RII is confluent. It is evident from Definition 31 that there are no
root critical pairs. For two rules to form a non-root critical pair the left side of one of the
rules has to unify with a proper subterm of the left side of the other rule. Because all left
sides are closed terms, this is equivalent to the situation when the left side of one rule is
equal to a proper subterm of another. It follows directly from definitions that all proper
subterms of left sides of rules are in R ∪ PROP ∪ RI -normal form. However, no left side
of a rule is in R ∪ PROP ∪RI -normal form because the corresponding trivial rule from RI
applies. This implies that there are no critical pairs.

We show that R ∪ PROP ∪RI is compatible with RII . Because R ∪ PROP is standard,
then by Fact 22 we need to consider only critical pairs between RI and RII . It is evident
that all such pairs are root critical pairs between a trivial rule from RI and a rule from RII .
They may be closed by simply applying the rule from RII . J

I Definition 33. For an ordinal α > 0, define Rα as the sum of
⋃
β<αRβ and the rules:

Π · t→ T for all closed terms t such that for any closed term s in R0-normal form there
is an ordinal β < α for which t · s ∗→Rβ T .
Π · t→ F for all closed terms t such that there is a closed term s in R0-normal form and
an ordinal β < α for which t · s ∗→Rβ F .

A simple cardinality argument shows that there exists the least ordinal ζ such that
Rζ =

⋃
α<ζ Rα. We sometimes write RTIζ for Rζ when TI is not obvious from the context.

I Lemma 34. For α ≥ 0, a term t is in R∪PROP∪RI-normal form iff it is in Rα-normal
form.

Proof. If a rule from Rα \ (R ∪ PROP ∪RI), e.g. Q · s · s → T , applies to t, then the
corresponding trivial rule, e.g. Q · x · x→ Q · x · x, from RI also applies. The other direction
of the equivalence follows from the fact that R ∪ PROP ∪RI ⊆ Rα. J

I Lemma 35. If l→ r ∈ RI ∪RII and p 6= ε is such that l|p is not a variable, then σl|p is
in Rα-normal form for any substitution σ.

Proof. We show that σl|p is in R ∪PROP ∪RI -normal form. If l→ r ∈ RI then l = ATi · ti
where ti is an R-standard term. Hence ti is in R∪PROP∪RI -normal form. Because p 6= ε and
ti is closed, this implies that σl|p = l|p is in R∪PROP∪RI -normal form as well. Analogously,

Łukasz Czajka 185

if l→ r ∈ RII then the fact that σl|p = l|p is a closed term in R ∪ PROP ∪RI -normal form
follows directly from Definition 31 and from p 6= ε.

Therefore, an application of Lemma 34 establishes our claim. J

I Lemma 36. If t is in R ∪ PROP-normal form and Σf (t) ⊆ Σf (R ∪ PROP), then t is in
Rα-normal form.

Proof. From H(RI ∪RII)∩Σf (R∪PROP) = ∅ and Fact 18 it follows that t is in R0-normal
form. Lemma 34 implies that it is also in Rα-normal form. J

I Notation 37. We use Sα for Rα \
⋃
β<αRβ , →≤α for →Rα , and →=α for →Sα .

We will now prove a series of lemmas which together imply that Rα and Rβ commute for
all α, β ≤ ζ, and therefore Rζ is confluent. The key idea in the proofs of these lemmas could
be summarized by the following two diagrams.

Π · t =α//

=β ��

Π · t′

≤β
{{w

w
w

w
w

T

because t · s =α//

≤γ
∗

��

t′ · s

∗

≤γ
||y

y
y

y
y

T

by IH, for γ < β, all s

Π · t

=α ��

=β// T

F

implies t · s

≤δ
∗

��

≤γ
∗

// T

F

for δ < α, γ < β, some s

We adopt the notation →∗α for →Rα\R0 when α > 0, and →∗0 for →=0. In the following,
whenever we write a reduction sequence of the form t0

∗→∗α1 t1
∗→∗α2 . . .

∗→∗αn tn we tacitly
assume that there exists α ≤ ζ such that each αi for i = 1, . . . , n is either 0 or α, and there
is no j ∈ {1, . . . , n− 1} such that αj = αj+1. It is easy to see that every reduction t ∗→≤α s
can be represented by a reduction sequence in this form.

I Lemma 38. If R0 and Rα \R0 commute, then so do R0 and Rα.

Proof. Let t ∗→=0 t1 and t = s0
∗→∗α1 s1

∗→∗α2 . . .
∗→∗αn sn = t2 for some n ≥ 1 and

α1, . . . , αn ∈ {0, α}. The proof proceeds by simple induction on n. J

I Lemma 39. For all α ≤ ζ the term rewriting systems R0 and Rα \R0 commute.

Proof. We use transfinite induction on α to show that R0 is compatible with Rα \ R0 =⋃
0<β≤α Sβ .
Let 〈u1, u2〉 ∈ Crit(R0, Sβ) for some 0 < β ≤ α. Because R ∪ PROP is standard and

Π /∈ Σf (R ∪ PROP), the critical pair must be between a rule from RI ∪RII and a rule from
Sβ . Therefore, we have rules l1 → r1 ∈ RI ∪ RII , l2 → r2 ∈ Sβ , a substitution σ, and a
position p such that u1 = σr1, u2 = (σl1)[σr2]p, σl1|p = σl2, and p is such that l1|p is not a
variable. If p = ε then l1 = r1 by definition of RI and RII , and we have u1 →≤β u2. The
case p 6= ε is impossible by Lemma 35.

Now let 〈u2, u1〉 ∈ Criti(Sβ , R0) for some 0 < β ≤ α. We have u2 ∈ {T, F}. There are
terms t, t′ and a context C such that u1 = Π · C[t′], t→=0 t

′ and Π · C[t]→ε
=β u2. Assume

u2 = T . The proof for u2 = F is analogous. So let s be a term in R0-normal form. We have
C[t] · s ∗→≤γ T for some γ < β. But we may invoke the inductive hypothesis to conclude that
R0 and Rγ \ R0 commute. So by Lemma 38 we obtain that R0 and Rγ commute as well.
Hence C[t′] · s ∗→≤γ T , because C[t] · s ∗→≤γ T , C[t] · s→=0 C[t′] · s and T is in R0-normal
form. But s was an arbitrary term in R0-normal form, so we obtain u1 = Π · C[t′]→=δ T

for some 0 < δ ≤ β. J

CSL’11

186 A semantic approach to illative combinatory logic

I Lemma 40. If Rα \R0 and Rβ \R0 commute then so do Rα and Rβ.

Proof. The proof may be easily reconstructed from the following diagram. J

t

∗α1

∗

��

∗β1

∗ // u1

∗α1

∗

���
�
� ∗β2

∗ // . . .
∗βm

∗ // t2

∗α1

∗

���
�
�

s1

∗α2

∗

��

∗β1

∗ //___ r0
∗β2

∗ //___ . . .
∗βm

∗ //___ r1

by IH

∗α2

∗

���
�
�

...

∗αn

∗

��

...

∗αn

∗

���
�
�

t1 ∗β1

∗ //___
∗β2

∗ //___ . . .
∗βm

∗ //___ r2

by IH

I Lemma 41. For α′, β′ ≤ ζ the term rewriting systems Rα′ \R0 and Rβ′ \R0 commute.

Proof. We use induction on pairs 〈α′, β′〉 of indices of Rα′ , Rβ′ ordered lexicographically.
Let 〈u2, u1〉 ∈ Criti(Sβ , Sα) for some 0 < α ≤ α′, 0 < β ≤ β′. The term u2 is a constant.

There are terms t, t′ and a context C such that t→ε
=α t

′, u1 = Π ·C[t′], and Π ·C[t]→ε
=β u2.

Assume u2 = F . There is a term s in R0-normal form such that C[t]·s ∗→≤γ F for some γ < β.
By the inductive hypothesis Rα \ R0 and Rγ \ R0 commute. Therefore, by Lemma 40 we
may conclude that →≤α and →≤γ commute. Hence C[t′] · s ∗→≤γ F , because C[t] · s ∗→≤γ F ,
C[t] · s →=α C[t′] · s and F is in Rα-normal form. Therefore, u1 = Π · C[t′] →≤β F = u2.
The argument for u2 = T is analogous.

Now let 〈u1, u2〉 ∈ Crit(Sα, Sβ) for some α ≤ α′, β ≤ β′. The case when 〈u1, u2〉 is a
non-root critical pair is analogous to the case we have just considered. If 〈u1, u2〉 is a root
critical pair, then both u1, u2 ∈ {T, F}, and we need to show that u1 = u2. It may happen
otherwise only when there is a term t such that Π · t→=α u1, Π · t→=β u2. Without loss of
generality assume u1 = T , u2 = F . So there is a closed term s in R0-normal form such that
t · s ∗→≤δ T and t · s ∗→≤γ F for some δ < α, γ < β. The inductive hypothesis and Lemma 40
imply that →≤δ and →≤γ commute, which gives a contradiction.

We have thus shown that Rα′ \ R0 and Rβ′ \ R0 are compatible, so they commute by
left-linearity and Theorem 25. J

I Corollary 42. The term rewriting system Rζ has the Church-Rosser property.

I Theorem 43. Let R be a standard FTRS compatible with PROP, and TI = {Ti | i ∈ T}
be a family of sets of R-standard terms. The applicative algebra ARζ generated by RTIζ is a
FO-ICA such that for each i ∈ I the set {[t]Rζ | t ∈ Ti} is a type represented by [ATi]Rζ which
is a δ-total combinator. Furthermore, if t1, t2 ∈ L(Σ) are in R∪PROP-normal form, t1 6= t2,
and Σf (t1),Σf (t2) ⊆ Σf (R ∪ PROP), then [t1]Rζ , [t2]Rζ ∈ δ(ARζ) and [t1]Rζ 6= [t2]Rζ .

Proof. First, we check that ARζ is a first-order illative combinatory algebra. To save on
notation we use the same symbols for terms and corresponding abstraction classes in ARζ .

The axioms T 6= F and T, F ∈ δ(ARζ) follow from the Church-Rosser property of Rζ and
the fact that T and F are in Rζ-normal form.
The axioms (3)-(6) in Definition 2 follow directly from the definition of PROP.
The axioms (7) and (8) follow directly from the definitions of RI , RII and from Lemma 34,
which is needed to prove that A ·X ∈ {F} ∪ υ for X ∈ υ.

Łukasz Czajka 187

The axioms for Π follow from the Church-Rosser property of Rζ , Lemma 34 and the fact
that Rζ =

⋃
α<ζ Rα.

The fact that each set {[t]Rζ | t ∈ Ti} is a type represented by [ATi]Rζ which is a δ-total
combinator follows directly from Lemma 34 and the definitions of RI and RII . Finally, the
last claim follows from Lemma 36 and the Church-Rosser property of Rζ . J

6 Completeness of the first-order translation

In this section we prove completeness of the translation introduced in Section 3. We work
under the same assumptions and definitions as in Section 3.

I Theorem 44. Completeness
Let φ and all formulas in ∆ be closed. If Ψ(∆) |= Ψ(φ) then ∆ |=FO φ.

Proof. Suppose Ψ(∆) |= Ψ(φ). Let A be a first-order model of ∆.
We construct a functional term rewriting system R as follows. The signature of R consists

of all elements of the universe of A, all relation and function symbols from LFO and the
constants T , F . We assume the relation and function symbols are different from T , F , P ,
Q, etc. For every n-ary relation rA on A, which interprets a relation symbol r, the rule
r · a1 · . . . · an → T belongs to R for exactly those a1, . . . , an for which rA(a1, . . . , an) holds,
the rule r · a1 · . . . · an → F when rA(a1, . . . , an) does not hold. For every n-ary function
fA on A, which interprets a function symbol f , the rule f · a1 · . . . · an → b belongs to R if
fA(a1, . . . , an) = b. Nothing else belongs to R.

It is straightforward to verify that R is standard and compatible with PROP. By ς we
denote the universe of A. Let B be the applicative algebra generated by R{ς}ζ . For convenience
we use the same symbols for terms and corresponding abstraction classes. Analogously for
sets of terms. By Theorem 43 the algebra B is a FO-ICA with a δ-total combinator Aς
representing ς, and we have ς ⊆ δ(B). Note that ς = ιB, where ιB is the type represented by
Aι = λx.(Aςx) ∧ (Aδx), as in Definition 10.

It is easy to check that B is an illative model of Γ0, and that A and B are correspondent
in the sense of Definition 11. Hence by Lemma 12 we may conclude that JψKA = JΨ(ψ)KB
for any closed first-order formula ψ. This implies that B |= ImΨ(∆). Therefore B |= Ψ(∆),
and consequently B |= Ψ(φ), which implies A |=FO φ, because JφKA = JΨ(φ)KB. J

References

1 Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge University
Press, 1999.

2 Henk Barendregt, Martin W. Bunder, and Wil Dekkers. Systems of illative combinatory
logic complete for first-order propositional and predicate calculus. Journal of Symbolic
Logic, 58(3):769–788, 1993.

3 Alonzo Church. A set of postulates for the foundation of logic I. Annals of Mathematics,
ser. 2, 33:346–366, 1932.

4 Haskell B. Curry. Grundlagen der kombinatorischen Logik. American Journal of Mathe-
matics, 52:509–536, 789–834, 1930.

5 Wil Dekkers, Martin W. Bunder, and Henk Barendregt. Completeness of the propositions-
as-types interpretation of intuitionistic logic into illative combinatory logic. Journal of
Symbolic Logic, 63(3):869–890, 1998.

CSL’11

188 A semantic approach to illative combinatory logic

6 Wil Dekkers, Martin W. Bunder, and Henk Barendregt. Completeness of two systems of
illative combinatory logic for first-order propositional and predicate calculus. Archive for
Mathematical Logic, 37(5-6):327–341, 1998.

7 Gerhard Jäger, Reinhard Kahle, and Thomas Strahm. On applicative theories. In A. Can-
tini, E. Casari, and P. Minari, editors, Logic and Foundation of Mathematics, pages 88–92.
Kluwer Academic Publishers, 1999.

8 Gerhard Jäger and Thomas Strahm. Totality in applicative theories. Annals of Pure and
Applied Logic, 74(2):105–120, 1995.

9 Stephen C. Kleene and J. Barkley Rosser. The inconsistency of certain formal logics. Annals
of Mathematics, 36:630–636, 1935.

10 Saul A. Kripke. Outline of a theory of truth. Journal of Philosophy, 72(19):690–716, 1975.
11 Jonathan P. Seldin. The logic of Church and Curry. In Dov M. Gabbay and John Woods,

editors, Logic from Russell to Church, volume 5 of Handbook of the History of Logic, pages
819–873. North-Holland, 2009.

12 Yoshihito Toyama. Commutativity of term rewriting systems. In K. Fuchi and L. Kott,
editors, Programming of Future Generation Computers II, pages 393–407. North-Holland,
1988.

	Introduction
	Illative combinatory algebras
	Translation from first-order to illative theories
	Functional term rewriting systems
	Extensions of standard systems
	Completeness of the first-order translation

