Unifying Biichi Complementation Constructions

Seth Fogarty!, Orna Kupferman?, Moshe Y. Vardi!, and
Thomas Wilke?

1 Department of Computer Science, Rice University
2 School of Computer Science and Engineering, Hebrew University of Jerusalem
3 Imstitut fiir Informatik, Christian- Albrechts-Universitit zu Kiel

—— Abstract

Complementation of Biichi automata, required for checking automata containment, is of major
theoretical and practical interest in formal verification. We consider two recent approaches to
complementation. The first is the rank-based approach of Kupferman and Vardi, which operates
over a DAG that embodies all runs of the automaton. This approach is based on the observation
that the vertices of this DAG can be ranked in a certain way, termed an odd ranking, iff all runs
are rejecting. The second is the slice-based approach of Kéhler and Wilke. This approach tracks
levels of “split trees” — run trees in which only essential information about the history of each
run is maintained. While the slice-based construction is conceptually simple, the complementing
automata it generates are exponentially larger than those of the recent rank-based construction
of Schewe, and it suffers from the difficulty of symbolically encoding levels of split trees.

In this work we reformulate the slice-based approach in terms of run DAGs and preorders over
states. In doing so, we begin to draw parallels between the rank-based and slice-based approaches.
Through deeper analysis of the slice-based approach, we strongly restrict the nondeterminism it
generates. We are then able to employ the slice-based approach to provide a new odd ranking,
called a retrospective ranking, that is different from the one provided by Kupferman and Vardi.
This new ranking allows us to construct a deterministic-in-the-limit rank-based automaton with
a highly restricted transition function. Further, by phrasing the slice-based approach in terms of
ranks, our approach affords a simple symbolic encoding and achieves Schewe’s tight bound.

1998 ACM Subject Classification F.1.1 Automata; D.2.4 Formal Methods
Keywords and phrases Biichi automata, complementation, ranks, determinism in the limit

Digital Object Identifier 10.4230/LIPIcs.CSL.2011.248

1 Introduction

The complementation problem for nondeterministic automata is central to the automata-
theoretic approach to formal verification [22]. To test that the language of an automaton
A is contained in the language of a second automaton B, check that the intersection of A
with an automaton that complements B is empty. In model checking, the automaton A4
corresponds to the system, and the automaton B corresponds to a property [22]. While it is
easy to complement properties given as temporal logic formulas, complementation of prop-
erties given as automata is not simple. Indeed, a word w is rejected by a nondeterministic
automaton A if all runs of A on w reject the word. Thus, the complementary automaton

Acknowledgments The authors are grateful to Yoad Lustig for his extensive help in analyzing the
original slice-based construction. Work supported in part by NSF grants CCF-0728882, and CNS-
1049862, by BSF grant 9800096, and by gift from Intel. Proofs and additional material available at
http://www.cs.rice.edu/~vardi/papers/cslliirj.pdf

@@@@ © S. Fogarty, O. Kupferman, M.Y. Vardi, and Th. Wilke;

licensed under Creative Commons License NC-ND
Computer Science Logic 2011 (CSL’11).
Editor: Marc Bezem; pp. 248-263

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2011.248
http://www.cs.rice.edu/~vardi/papers/csl11rj.pdf
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Seth Fogarty, Orna Kupferman, Moshe Y. Vardi, and Thomas Wilke

has to consider all possible runs, and complementation has the flavor of determinization.
Representing liveness, fairness, or termination properties requires automata that recognize
languages of infinite words. Most commonly considered are nondeterministic Biichi au-
tomata, in which some of the states are designated as accepting, and a run is accepting if
it visits accepting states infinitely often [2]. For automata on finite words, determinization,
and hence also complementation, is done via the subset construction [15]. For Biichi au-
tomata the subset construction is not sufficient, and optimal complementation constructions
are more complicated [11].

Efforts to develop simple complementation constructions for Biichi automata started
early in the 60s, motivated by decision problems of second-order logics. Biichi suggested a
complementation construction for nondeterministic Biichi automata that involved a Ramsey-
based combinatorial argument and a doubly-exponential blow-up in the state space [2]. Thus,
complementing an automaton with n states resulted in an automaton with 927t
[19], Sistla et al. suggested an improved implementation of Biichi’s construction, with only
20(n?) states, which is still not optimal. Only in [16] Safra introduced a determinization
construction, based on Safra trees, which also enabled a 2°("1°€") complementation con-
struction, matching a lower bound described by Michel [11]. A careful analysis of the exact
blow-up in Safra’s and Michel’s bounds, however, reveals an exponential gap in the constants
hiding in the O() notations: while the upper bound on the number of states in the comple-
mentary automaton constructed by Safra is n?", Michel’s lower bound involves only an n!
blow up, which is roughly (n/e)”. In addition, Safra’s construction has been resistant to
optimal implementations [1], which has to do with the complicated combinatorial structure
of its states and transitions, which can not be encoded symbolically.

states. In

The use of complementation in practice has led to a resurgent interest in the exact
blow-up that complementation involves and the feasibility of a symbolic complementation
construction. In 2001, Kupferman and Vardi suggested a new analysis of runs of Biichi
automata that led to a simpler complementation construction [10]. In this analysis, one
considers a DAG that embodies all the runs of an automaton A on a given word w. It is
shown in [10] that the nodes of this DAG can be mapped to ranks, where the rank of a node
essentially indicates the progress made towards a suffix of the run with no accepting states.
Further, all the runs of A on w are rejecting iff there is a bounded odd ranking of the DAG:
one in which the maximal rank is bounded, ranks along paths do not increase, paths become
trapped in odd ranks, and nodes associated with accepting states are not assigned an odd
rank. Consequently, complementation can circumvent Safra’s determinization construction
along with the complicated data structure of Safra trees, and can instead be based on an
automaton that guesses an odd ranking. The state space of such an automaton is based
on annotating states in subsets with the guessed ranks. Beyond the fact that the rank-
based construction can be implemented symbolically [20], it gave rise to a sequence of works
improving both the blow-up it involves and its implementation in practice. The most notable
improvements are the introduction of tight rankings [5] and Schewe’s improved cut-point
construction [17]. These improvements tightened the (6n)™ upper bound of [10] to (0.76n)™.
Together with recent work on a tighter lower bound [23], the gap between the upper and
lower bound is now a quadratic term. Addressing practical concerns, Doyen and Raskin
have introduced a useful subsumption technique for the rank-based approach [4].

In an effort to unify Biichi complementation with other operations on automata, Kéhler
and Wilke introduced yet another analysis of runs of nondeterministic Biichi automata [7].
The analysis is based on reduced split trees, which are related to the Miiller-Schupp trees
used for determinization [13]. A reduced split tree is a binary tree whose nodes are sets of

249

CSL’'11

250

Unifying Biichi Complementation Constructions

states as follows: the root is the set of initial states; and given a node associated with a set
of states, its left child is the set of successors that are accepting, while the right child is the
set of successors that are not accepting. In addition, each state of the automaton appears
at most once in each level of the binary tree: if it would appear in more than one set, it
occurs only in the leftmost one. The construction that follows from the analysis, termed
the slice-based construction, is simpler than Safra’s determinization, but its implementation
suffers from similar difficulties: the need to refer to leftmost children requires encoding of a
preorder, and working with reduced split trees makes the transition relation between states
awkward. Thus, as has been the case with Safra’s construction, it is not clear how the slice-
based approach can be implemented symbolically. This is unfortunate, as the slice-based
approach does offer a very clean and intuitive analysis, suggesting that a better construction
is hidden in it.

In this paper we reveal such a hidden, elegant, construction, and we do so by unifying
the rank-based and the slice-based approaches. Before we turn to describe our construction,
let us point to a key conceptual difference between the two approaches. This difference has
made their relation of special interest and challenge. In the rank-based approach, the ranks
assigned to a node bound the visits to accepting states yet to come. Thus, the ranks refer
to the future of the run, making the rank-based approach inherently nondeterministic. In
contrast, in the slice-based approach, the partition of the states of the automaton to the
different sets in the tree is based on previous visits to accepting states. Thus, the partition
refers to the past of the run, and does not depend on its future.

In order to draw parallels between the two approaches, we present a formulation of the
slice-based approach in terms of run DAGs. A careful analysis of the slice-based approach
then enables us to reduce the nondeterminism in the construction. We can then employ
this improved slice-based approach in order to define a particular odd ranking of rejecting
run DAGS, called a retrospective ranking. In addition to revealing the theoretical connections
between the two seemingly different approaches, the new ranks lead to a complementa-
tion construction with a transition function that is smaller and deterministic in the limit:
every accepting run of the automaton is eventually deterministic. This presents the first
deterministic-in-the-limit complementation construction that does not use determinization.
Determinism in the limit is central to verification in probabilistic settings [3] and has proven
useful in experimental results [18]. Phrasing slice-based complementation as an odd ranking
also immediately affords us the improved cut-point of Schewe, the subsumption operation
of Doyen and Raskin, and provides an easy symbolic encoding.

2 Preliminaries

A nondeterministic Biichi automaton on infinite words (NBW) is a tuple A=(3, Q, Q" p, F),
where ¥ is a finite alphabet, @ a finite set of states, Q" C Q a set of initial states, F C Q a
set of accepting states, and p: Q x ¥ — 29 a nondeterministic transition relation. A state
q € Q is deterministic if for every o € ¥ it holds that |p(q, o)| < 1. We lift the function p to
sets R of states in the usual fashion: p(R, o) = quR p(q,0).

A run of an NBW A on a word w = ogoy--- € X is an infinite sequence of states
Po,P1,- - € Q¥ such that py € Q™ and, for every i > 0, we have p;41 € p(p;,0;). A run is
accepting iff p; € F for infinitely many ¢ € IN. A word w € ¢ is accepted by A if there
is an accepting run of A on w. The words accepted by A form the language of A, denoted
by L(A). The complement of L(A), denoted L(A), is ¢ \ L(A). We say an automaton is
deterministic in the limit if every state reachable from an accepting state is deterministic.
Converting A to an equivalent deterministic in the limit automaton involves an exponential

Seth Fogarty, Orna Kupferman, Moshe Y. Vardi, and Thomas Wilke

Figure 1 Left, the NBW A, in which all states are initial. Right, the rejecting run DAG G of A
on w = babaabaaabaaaa - - -. Nodes are superscripted with the prospective ranks of Section 2.

blowup [3, 16]. One can simultaneously complement and determinize in the limit, via co-
determinization into a parity automaton [14], and then converting that parity automaton
to a deterministic-in-the-limit Biichi automaton, with a cost of (n?/e)".
Consider an NBW A and an infinite word w = ogoy---. The runs of A on w can be

arranged in an infinite DAG (directed acyclic graph) G = (V, E), where

V C @ x IN is such that (g,7) € V iff some run p of A on w has p; = q.

E C U5 (@x{i})x(@x{i+1}) iss.t. E((q,i),(q',i+D))iff (q,i) € V and ¢’ € p(q, 04).
The DAG G, called the run DAG of A on w, embodies all possible runs of A on w. We are
primarily concerned with initial paths in G: paths that start in Q™ x {0}. Define a node
(q,1) to be an F-node when ¢ € F, and a path in G to be accepting when it is both initial
and contains infinitely many F-nodes. An accepting path in G corresponds to an accepting
run of A on w. When G contains an accepting path, call G an accepting run DAG, otherwise
call it a rejecting run DAG. We often consider DAGs H that are subgraphs of G. A node u
is a descendant of v in H when wu is reachable from v in H. A node v is finite in H if it has
only finitely many descendants in H. A node v is F'-free in H if it is not an F-node, and
has no descendants in H that are F-nodes. We say a node splits when it has at least two
children, and conversely that two nodes join when they share a common child.

Example 1. In Figure 1 we describe an NBW A that accepts words with finitely many b’s.
On the right is a prefix of the rejecting run DAG of A on w = babaabaaabaaaa - - - .

If an NBW A does not accept a word w, then every run of A on w must eventually cease
visiting accepting states. The notion of rankings, foreshadowed in [9] and introduced in [10],
uses natural numbers to track the progress of each run in the DAG towards this point. A
ranking for a DAG G = (V, E) is a mapping from V to IN, in which no F-node is given an
odd rank, and in which the ranks along all paths do not increase. Formally, a ranking is
a function r: V' — IN such that if u € V is an F-node then r(u) is even; and for every
u,v € V, if (u,v) € E then r(u) > r(v). Since each path starts at a finite rank and ranks
cannot increase, every path eventually becomes trapped in a rank. A ranking is called an
odd ranking if every path becomes trapped in an odd rank. Since F-nodes cannot have odd
ranks, if there is an odd ranking r, then every path in G must stop visiting accepting nodes
when it becomes trapped in its final, odd, rank, and G must be a rejecting DAG.

» Lemma 1. [10] If a run DAG G has an odd ranking, then G is rejecting.

A ranking is bounded by l when its range is {0, ...,l}, and an NBW A is of rank [when for
every w € L(A), the rejecting DAG G has an odd ranking bounded by . If we can prove that

251

CSL’'11

252

Unifying Biichi Complementation Constructions

an NBW A is of rank [, we can use the notion of odd rankings to construct a complementary
automaton. This complementary NBW, denoted AlR7 tracks the levels of the run DAG and
attempts to guess an odd ranking bounded by I. An [-bounded level ranking for an NBW A is
a function f: Q — {0,...,1, L}, such that if ¢ € F then f(q) is even or L. Let R! be the set
of all I-bounded level rankings. The state space of A}, is based on the set of I-bounded level
rankings for A. To define transitions of A%, we need the following notion: for o € ¥ and
f, f' € RY, say that f' follows f under o when for every ¢ € Q and ¢’ € p(q, o), if f(q) # L
then f'(¢') # L and f'(¢') < f(g): i.e. no transition between f and f’ on o increases in
rank. Finally, to ensure that the guessed ranking is an odd ranking, we employ the cut-point
construction of Miyano and Hayashi, which maintains an obligation set of nodes along paths
obliged to visit an odd rank [12]. For a level ranking f, let even(f) = {q| f(q) is even} and
odd(f) = {q | f(q) is odd}.

» Definition 2. For an NBW A = (%,Q,Q™, p, F) and | € IN, define A}, to be the NBW
(B, RE X 29, (f ™ 0y, pr, R' x {0}), where

fi"(q) =1 for each ¢ € Q™, L otherwise.
{f", p(O,0)\ odd(f")y | f' follows f under o} if O # 0,

i) = {{<fo even(f')) | f' follows f under o} i£0=0.

By [10], for every [€ IN, the NBW A% accepts only words rejected by A — exactly all
words for which there exists an odd ranking with maximal rank [. In addition, [10] proves
that for every rejecting run DAG there exists a bounded odd ranking. Below we sketch the
derivation of this ranking. Given a rejecting run DAG G, we inductively define a sequence
of subgraphs by eliminating nodes that cannot be part of accepting runs. At odd steps we
remove finite nodes, while in even steps we remove nodes that are F-free. Formally, define
a sequence of subgraphs as follows:

Go=G.
Goit1 = Go; \ {v | v is finite in Go;}.
GQH.Q = G2i+1 \{’U | v is F-free in G21’+1}.

It is shown in [6, 10] that only m = 2|@Q \ F| steps are necessary to remove all nodes
from a rejecting run DAG: G,, is empty. Nodes can be ranked by the last graph in which
they appear: for every node u € G, the prospective rank of u is the index ¢ such that u € G;
but u € G;+1. The prospective ranking of G assigns every node its prospective rank. Paths
through G cannot increase in prospective rank, and no F-node can be given an odd rank:
thus the prospective ranking abides by the requirements for rankings. We call these rankings
prospective because the rank of a node depends solely on its descendants. By [10], if G is a
rejecting run DAG, then the prospective ranking of GG is an odd ranking bounded by m. By
the above, we thus have the following.

» Theorem 3. [10] For every NBW A, it holds that L(A}y) = L(A).

Ezxample 2. In Figure 1, nodes for states s and ¢ are finite in Gg. Without these nodes,
r-nodes are F-free in G1. Similarly, g-nodes are finite in G5, and p-nodes are F-free in G3.

Karmarkar and Chakraborty derive both theoretical and practical benefits from exploit-
ing properties of this prospective ranking: they demonstrated an unambiguous complemen-
tary automaton that, for certain classes of problems, is exponentially smaller than A% [8].

Tight Rankings: For an odd ranking r and I € IN, let maz_ rank(r,l) be the maximum
rank that r assigns a vertex on level [of the run DAG. We say that r is tight ! if there exists

! This definition of tightness is weaker that of [5], but does not affect the resulting bounds.

Seth Fogarty, Orna Kupferman, Moshe Y. Vardi, and Thomas Wilke

an ¢ € IN such that, for every level [> i, all odd ranks below maz_rank(r,l) appear on
level I. Tt is shown in [5] that the retrospective ranking is tight. This observation suggests
two improvements to A%. First, we can postpone, in an unbounded manner, the level in
which it starts to guess the level ranking. Until this point, A% may use sets of states to
deterministically track only the levels of the run DAG, with no attempt to guess the ranks.
Second, after this point, A% can restrict attention to tight level rankings — ones in which
all the odd ranks below the maximal rank appear. Formally, say a level ranking f with a
maximum rank mr = max{f(q) | ¢ € Q, f(q) # L} is tight when, for every odd i < mr,
there exists a ¢ € @ such that f(g) = i. Let R} be the subset of R™ that contains only tight
level rankings. The size of R} is at most (0.76n)™ [5]. Including the cost of the cut-point
construction, this reduces the state space of A% to (0.96n)".

3 Analyzing DAGs With Profiles

In this section we present an alternate formulation of the slice-based complementation con-
struction of Kéhler and Wilke [7]. Whereas Kéhler and Wilke approached the problem
through reduced split trees, we derive the slice-based construction directly from an analysis
of the run DAG. This analysis proceeds by pruning G in two steps: the first removes edges,
and the second removes vertices.

Profiles: Consider a run DAG G = (V, E). Let I: V — {0,1} be such that I((g,%)) = 1
if ¢ € F and I((q,%)) = 0 otherwise. Thus, [labels F-nodes by 1 and all other nodes by
0. The profile of a path in G is the sequence of labels of nodes in the path. The profile
of a node is then the lexicographically maximal profile of all initial paths to that node.
Formally, let < be the lexicographic ordering on {0,1}* U {0,1}*. The profile of a finite
path b = vg,v1,...,v, in G, written hy, is I(vg)l(v1) - - - I(vy,), and the profile of an infinite
path b = wvg,v1,... is hy = l(v9)l(v1)---. Finally, the profile of a node v, written h,, is
the lexicographically maximal element of {h; | b is an initial path to v}. The lexicographic
order of profiles induces a preorder over nodes.

We define the sequence of preorders <; over the nodes on each level of the run DAG as
follows. For every two nodes u and v on a level i, we have that u <; v if hy < h,, and u ~; v
if h, = h,. For convenience, we conflate nodes on the ith level of the run DAG with their
states when employing this preorder, and say g <; r when (q,7) <; (r,4). Note that ~; is an
equivalence relation. Since the final element of a node’s profile is 1 iff the node is an F-node,
all nodes in an equivalence class must agree on membership in F. We call an equivalence
class an F-class when all its members are F-nodes, and a non-F-class when none of its
members is an F-node. We now use profiles in order to remove from G edges that are not
on lexicographically maximal paths. Let G’ be the subgraph of G obtained by removing all
edges (u,v) for which there is another edge (u’, v) such that u <, u'. Formally, G’ = (V, E’)
where E' = E'\ {(u,v) | there exists u’ € V such that (/,v) € E and u <), u'}.

» Lemma 4. For every two nodes u and v, if (u,v) € E’, then h, € {h,0,h,1}.

Proof. Assume by way of contradiction that h, & {h,0,h,1}. Recall that h, is the lexico-
graphically maximal element of {h; | b is an initial path to v}. Thus our assumption entails
an initial path b to v so that hy > h,1. Let v’ be bj|: the node on the same level of G as
u. Since b is a path to v, it holds that (u’,v) € E. Further, since hy > hy 1, it must be that
hy > hy. By definition of E’, the presence of (u',v) where h, > h, precludes the edge
(u,v) from being in E/ — a contradiction. <

253

CSL’'11

254

Unifying Biichi Complementation Constructions

Note that while it is possible for two nodes with different profiles to share a child in G,
Lemma 4 precludes this possibility in G’. If two nodes join in G’, they must have the same
profile and be in the same equivalence class. We can thus conflate nodes and equivalence
classes, and for every edge (u,v) € E’, consider [v] to be the child of [u]. Lemma 4 then
entails that the class [u] can have at most two children: the class of F-nodes with profile
h,1, and the class of non-F-nodes with profile h,,0. We call the first class the F-child of [u],
and the second class the non-F-child of [u].

By using lexicographic ordering we can derive the preorder for each level ¢ +1 of the run
DAG solely from the preorder for the previous level i. To determine the relation between two
nodes, we need only know the relation between the parents of those nodes, and whether the
nodes are F'-nodes. Formally, we have the following.

» Lemma 5. For all nodes u,v on level i, and nodes uv',v" where E'(u,u’) and E'(v,v"):
If u <; v, then v’ <;4 1 0.
Ifu ~; v and either both v’ and v’ are F-nodes, or neither are F-nodes, thenu' =11 v'.
If u ~; v and V' is an F-node while v’ is not, then u' <;11 v'.

Proof. If u <; v, then h, < h, and, by Lemma 4, we know that h,, € {h,0, h, 1} must be
smaller than h, € {h,0, h,1}, implying that v’ <;11 v'. If u =; v, we have three sub-cases.
If v’ is an F-node and v’ is not, then h, = h,0 = h,0 < hyl = hy, and u’ <;41 v'. If both
v’ and v’ are F-nodes, then h, = h,1 = h,1 = h,, and v’ =~; v'. Finally, if neither are
F-nodes, then hy, = h,0 = h,0 = hy and v’ ~; v'. <

We now demonstrate that by keeping only edges associated with lexicographically max-
imal profiles, G’ captures an accepting path from G.

» Lemma 6. G’ has an accepting path iff G has an accepting path.

Proof. In one direction, if G’ has an accepting path, then its superset G has the same path.

In the other direction, assume G has an accepting path. Consider the set P of accepting
paths in G. We prove that there is a lexicographically maximal element 7 € P. To begin,
we construct an infinite sequence, Py, Py, ..., of subsets of P such that the elements of P;
are lexicographically maximal in the first ¢ +1 positions. If P contains paths starting in
an F-node, then Py = {b|b e P, by is an F-node} is all elements beginning in F-nodes.
Otherwise Py = P. Inductively, if P; contains an element b such that b;y; is an F-node,
then P,y = {b| b€ P;, byy1 is an F-node}. Otherwise P, = P;. For convenience, define
the predecessor of P; to be P if i = 0, and P;_; otherwise. Note that since G has an
accepting path, P is non-empty. Further, every set P; is not equal to its predecessor P’ only
when there is a path in P’ with an F-node in the ith position. In this case, that path is in
P;. Thus every P; is non-empty.

First, we prove that there is a path m € ()5, P;. Consider the sequence Uy, Uy, Us, ...
where U; is the set of nodes that occur at position i in runs in P;. Formally, U; =
{u|ueqG, be P, u=>b;}. Each node in U;;; has a parent in U;, although it may not

have a child in U; 2. We can thus connect the nodes in J,. 4 U; to their parents, forming a

i>0
sub-DAG of G. As every P; is non-empty, every U; is non-err>1pty, and this DAG has infinitely
many nodes. Since each node has at most n children, by Koiiig’s Lemma there is an initial
path 7 through this DAG, and thus through G. We now show by induction that = € P; for
every i. As a base case, 7 € P. Inductively, assume 7 is in the predecessor P’ of P;. The set
P, is either P’, in which case m € P;, or the set {b|b € P’, b; is an F-node}. In this latter
case, as U; consists only of F-nodes, the node m; must be an F-node. and 7 € P;.

Seth Fogarty, Orna Kupferman, Moshe Y. Vardi, and Thomas Wilke

Second, having established that there must be an element 7 € (1,5, P, we prove 7
is lexicographically maximal in P. Assume by way of contradiction that there exists an
accepting path 7’ so that h, > h,. Let k be the first point where h,. differs from h,.
At this point, it must be that 7 is not an F node, while 7} is an F node. However,
7' is an accepting path that shares a profile with 7 up until this point. As 7 is in the
predecessor P’ of P, it must also be that 7’ is in P’. By definition, P, then would be
{b|be P, by isan F-node}. This would imply 7w € Py, a contradiction.

Finally, we demonstrate that every edge in 7w occurs in G'. Assume by way of contradic-
tion that some edge (m;, m;11) is in E but not in E’. This implies there is a node u on level
i such that (u,m;41) is in F and m; <; u. Since u € G, there is an initial path b to u. Thus,
the path b, u, m;11, ;12 ... is an accepting path in G. This path is lexicographically larger
than 7, contradicting the second claim above. Hence, 7 is an accepting path in G’. |

In the next stage, we remove from G’ finite nodes. Let G’ = G’ \ {v | v is finite in G'}.
Note there may be nodes that are not finite in G, but are finite in G’. It is not hard to see
that G may have infinitely many F-nodes and still not contain a path with infinitely many
F-nodes. Indeed, G may have infinitely many paths each with finitely many F-nodes. We
now show that the transition from G via G’ to G removes this possibility, and the presence
of infinitely many F-nodes in G” does imply a path with infinitely many F-nodes.

» Lemma 7. G has an accepting path iff G" has infinitely many F-nodes.

Proof. If G has an accepting path, then by Lemma 6 G’ contains an accepting path. Every
node in this path is infinite in G’, and thus this path is preserved in G”. This path contains
infinitely many F-nodes, and thus G” contains infinitely many F-nodes.

In the other direction, we consider the DAG over equivalence classes induced by G”.
Given a node u in G, recall that its equivalence class in G” contains all states v such that
v € G" and h, = h,. Given two equivalence classes U and V, recall that V is a child of
U when there are w € U, v € V, and E”(u,v). As mentioned above, once we have pruned
edges not in G’, two nodes of different classes cannot join. Thus this DAG is a tree. Further,
as every node u in G” is infinite and has a child, its equivalence class must also have a child.
Thus the DAG of classes in G” is a leafless tree. The width of this tree must monotonically
increase and is bounded by n. It follows that at some level j the tree reaches a stable width.
We call this level j the stabilization level of G.

After the stabilization level, each class U has exactly one child: as noted above, U cannot
have zero children, and if U had two children the width of the tree would increase. Therefore,
we identify each equivalence class on level j of G' with its unique branch of children in G”,
which we term its pipe. These pipes form a partition of nodes in G” after j. Every node
in these pipes has an ancestor, or it would not be in the DAG, and has a child, or it would
not be infinite and in G”. Therefore each node is part of an infinite path in this pipe.
Thus, the pipe with infinitely many F-classes contains only accepting paths. These paths
are accepting in GG, which subsumes G”'. <

In the proof above we demonstrated there is a stabilization level j at which the number
of equivalence classes in G” stabilized, and discussed the pipes of G”: the single chain of
descendants from each equivalence class on the stabilization level j of G”.

Ezample 3. Figure 2 displays G” for the example of Figure 1. Edges removed from G’ are
dotted: at levels 1 and 3. When both r and s transition to ¢, they have the same profile and
both edges remain. All but the first g-node are finite in G’. The stabilization level is 0.

255

CSL’'11

256

Unifying Biichi Complementation Constructions

{a,t} o {p,7, 5}

{t} »a{r,s} »a{a} >4 {p}

(i}o
b
" 3 {r} =1 {a,t} =1 {p}
¢ N\
°f a: o s e {rs} =2 {a 1} =2 ()
0 Aol EY 0 ‘===“1
C]? '-“ﬁ";; (7% ‘:‘j";; {t} =3 {r} =3 {q} >s {p}
a
o 4 |o]r

O

Figure 2 The run DAG G”, where dotted edges were removed from G and dotted states were
removed from G’. Nodes are superscripted with their I-labels. Bold lines denote the pipes of G”'.
The lexicographic order of equivalence classes for each level of G’ is to the right.

Complementing With Profiles: We now complement A by constructing an NBW, Ag,
that employs Lemma 7 to determine if a word is in L(A). This construction is a reformulation
of the slice-based approach of [7] in the framework of run DAGs. The NBW Ag tracks the
levels of G’ and guesses which nodes are finite in G’ and therefore do not occur in G”. To
track G’, the automaton Ag stores at each point in time a set S of states that occurs on each
level. The sets S are labeled with a guess of which nodes are finite and which are infinite.
States that are guessed to be infinite, and thus correspond to nodes in G”, are labeled T,
and states that are guessed to be finite, and omitted from G”, are labeled L. In order to
track the edges of G’, and thus maintain this labeling, Ag needs to know the lexicographic
order of nodes. Thus Ag also maintains the preorder =<; over states on the corresponding
level of the run DAG. To enforce that states labeled L are indeed finite, Ag employs the
cut-point construction of Miyano and Hayashi [12], keeping an “obligation set” of states
currently being verified as finite. Finally, to ensure the word is rejected, Ag must enforce
that there are finitely many F-nodes in G”. To do so, S4 uses a bit b to guess the level from
which no more F-nodes appear in G”. After this point, all F-nodes must be labeled L.
Before we define Ag, we formalize preordered subsets and operations over them. For a
set @ of states, define Q = {(5,=<)|S C Q and = is a preorder over S} to be the set of
preordered subsets of @. Let (S, <) be an element in Q. When considering the successors
of a state, we want to consider edges that remain in G’. For every state ¢ € S and o € X,
define pis <y(q,0) = {r € p(q,0) | for every ¢’ € S, if r € p(¢/, o) then ¢’ < q}. Now define
the o-successor of (S, =) as the tuple (p(S,), ='), where for every q,7 € S, ¢’ € p(s,<y(q,0),
and 7" € p(g <y (r,0):
If ¢ < r, then ¢’ <’ o/
If ¢ = r and either both 7/ € F and ¢’ € F, or both 7’/ ¢ F and ¢’ € F, then ¢’ &' 1.
If ¢ ~ r and one of ¢’ and 7/, say 7/, is in F' while the other, ¢/, is not, then ¢’ <’ 7.
We now define Ag. The states of Ag are tuples (S, <, A, 0,b) where: (S,<) € Q is
preordered subset of @Q; A: S — {T, L} is a labeling indicating which states are guessed to
be finite (L) or infinite (T), O C S is the obligation set, and b € {0,1} is a bit indicating
whether we have seen the last F-node in G”. To transition between states of A,, say that
t = (5, =, XN, 0"b) follows t = (S, =, \,0,b) under ¢ when:
(1) (S7,=') is the o-successor of (S, <).
(2) X is such that for every ¢ € S:
If AM(q) = T, then there exists r € p(g <)(q, o) such that X'(r) =T,

Seth Fogarty, Orna Kupferman, Moshe Y. Vardi, and Thomas Wilke

If AM(q¢) = L, then for every r € p(g,<)(q,0), it holds that \'(r) = L.

(3) O = {quo pis,=) (4, 0) 0 #10,
{glqe S and N(q)=1} O=0.
(4) v > 0.
We want to ensure that runs of Ag reach a suffix where all F-nodes are labeled finite. Given
a state of Ag (S, =X, A, 0,b), say that X is F-free if for every ¢ € SN F we have A(q) = L.

» Definition 8. For an NBW A = (3,Q, Q™, p, F), let Ag be the NBW (X, Qs, Q% pg, Fs),
where:
Qs = {(S,=<,X,0,b) | if b =1 then X is F-free},
m={Q™, =2,)\,0,0) |forall g,r € Q™, g < riff g¢ F orr € F},
ps(t,o) = {t' | t' follows t under o}, and
Fs={(S,=,\,0,1)}.

» Theorem 9. For every NBW A, it holds that L(As) = L(A).

The proof of correctness for Theorem 9 is straightforward and based on correlating runs
of Ag with G and its subgraphs. If n=]|Q)|, the number of preordered subsets is roughly
(0.53n)™ [21]. As there are 2" labelings, and a further 2" obligation sets, the state space of
A is at most (2n)™. The slice-based automaton obtained in [7] coincides with Ag, modulo
the details of labeling states and the cut-point construction. Whereas the correctness proof
in [7] is given by means of reduced split trees, here we proceed directly on the run DAG.

4 Retrospection

Consider an NBW A. So far, we presented two complementation constructions for A,
generating the NBWs A% and Ag. In this section we present a third construction, generating
an NBW that combines the benefits of the two constructions above. Both constructions refer
to the run DAG of A. In the rank-based approach applied in A%, the ranks assigned to a
node bound the visits in accepting states yet to come. Thus, the ranks refer to the future,
making A% inherently nondeterministic. On the other hand, the NBW Ag refers to both
the past, using profiles to prune edges from G, as well as to the future, by keeping in G”
only nodes that are infinite in G’. Guessing which nodes are infinite and labeling them T
inherently introduces nondeterminism into the automaton.

Our first goal in the combined construction is to reduce this latter nondeterminism.
Recall that a labeling is F-free if all the states in F' are labeled L. Observe that the fewer
labels of L (finite nodes) we have, the more difficult it is for a labeling to be F-free and,
consequently, the more difficult it is for a run of Ag to proceed to the F-free suffix in which
b = 1. It is therefore safe for Ag to underestimate which nodes to label L, as long as the
requirement to reach an F-free suffix is maintained. We use this observation in order to
introduce a purely retrospective construction.

For a run DAG G, say that a level k is an F'-finite level of G when all F-nodes after level
k (i.e. on a level k' where k' > k) are finite in G’. By Lemma 7, G is rejecting iff there is a
level after which G” has no F-nodes. As finite nodes in G’ are removed from G”, we have:

» Corollary 10. A run DAG G is rejecting iff it has an F-finite level.
Retrospective Labeling: The labeling function A used in the construction of Ag labels

nodes by {T, L}, with L standing for “finite” and T standing for “infinite”. In this section
we introduce a variant of A that again maps nodes to {T, L} except that now T stands for

257

CSL’'11

258

Unifying Biichi Complementation Constructions

“unrestricted”, allowing us to underestimate which nodes to label 1. To capture the relaxed
requirements on labelings, say that a labeling \ is legal when every -labeled node is finite
in G’. This enables the automaton to track the labeling and its effect on F-nodes only after
it guesses that an F-finite level k has been reached: all nodes at or before level k (i.e. on a
level k" where k' < k) are unrestricted, whereas F-nodes after level k and their descendants
are required to be finite. The only nondeterminism in the automaton lies in guessing when
the F-finite level has been reached. This reduces the branching degree of the automaton to
2, and renders it deterministic in the limit.

The suggested new labeling is parametrized by the F-finite level k. The labeling * is
defined inductively over the levels of G. Let S; be the set of nodes on level ¢ of G. For i > 0,
the function A\¥: S; — {T, L} is defined as follows:

If i <k, then for every u € S; we define *(u) = T.
If ¢ > k, then for every u € S;:
If u is an F-node, then \¥(u) = L.
Otherwise, \¥(u) = A*(v), for a node v where E'(v,u).
For A to be well defined when i > k and u is not an F-node, we need to show that A*(u)
does not depend on the choice of the node v where E’(v,u) holds. By Lemma 4, all parents
of a node in G’ belong to the same equivalence class. Therefore, it suffices to prove that all
nodes in the same class share a label: for all nodes u and v, if v’ /| u then A (u) = X*(u/).
The proof proceeds by an induction on ¢ = |u|. Consider two nodes v and «’ on level 7 where
u' =; u. As a base case, if i < k, then v and v’ are labeled T. For ¢ > k, if u is an
F-node, then v/ is also an F-node and \¥(u) = A*(v/) = L. Finally, if u and u’ are both
non-F-nodes, recall that all parents of u are in the same equivalence class V. As u =; o/,
Lemma 4 implies that all parents of u’ are also in V' By the induction hypothesis, all nodes
in V share a label, and thus A*(u) = A*(u’).

» Lemma 11. For a run DAG G and k € IN, the labeling N is legal iff k is an F-finite level
for G.

Proof. If A\ is legal, then every L-labeled node is finite in G’. Every F-node after level k is
labeled L, and thus k is an F-finite level for G. If A\¥ is not legal, then there is a L-labeled
node u that is infinite in G’. Every ancestor of u is also infinite. Let u’ be the earliest
ancestor of u (possibly u itself) so that A¥(u’) = L. Observe that only nodes after level k
can be |-labeled, and so ' is on a level 7 > k. It must be that u’ is an F-node: otherwise
it would inherit its parents’ label, and by assumption the parents of u’ are T-labeled. Thus,
u’ is an F-node after level k that is infinite in G’, and k is not an F-finite level for G. <

» Corollary 12. A run DAG G is rejecting iff, for some k, the labeling * is legal.

From Labelings to Rankings: In this section we derive an odd ranking for G from the
function A*, thus unifying the retrospective analysis behind * with the rank-based analysis
of [10]. Consider again the DAG G’ and the function A*. Recall that every equivalence class
U has at most two child equivalence classes, one F-class and one non-F-class. Past the
F-finite level k, only non-F-classes can be labeled T. Hence, after level k, every T-labeled
equivalence class U can only have a one child that is T-labeled. For every class U on level
k, we consider this possibly infinite sequence of T-labeled non-F-children. The odd ranking
we are going to define, termed the retrospective ranking, gives these sequences of T-labeled
children odd ranks. The 1-labeled classes, which lie between these sequences of T-labeled
classes, are assigned even ranks. The ranks increase in inverse lexicographic order, i.e. the
maximal T-labeled class in a level is given rank 1. As with *, the retrospective ranking is

Seth Fogarty, Orna Kupferman, Moshe Y. Vardi, and Thomas Wilke

parametrized by k. The primary insight that allows this ranking is that there is no need to
distinguish between two adjacent |-labeled classes. Formally, we have the following.

» Definition 13 (k-retrospective ranking). Consider a run DAG G, k € IN, and a labeling
Ao G — {T,L}. Let m = 2|Q \ F|. For a node u on level i of G, let a(u) be the number
of T-labeled classes lexicographically larger than u; a(u) = |[{[v] | A¥(v) = T and u <; v}|.
The k-retrospective ranking of G is the function r*: V' — {0..m} defined for every node u
on level ¢ as follows.

m if 1 <k,
r*(u) = < 2a(u) if i >k and A\¥(u) = 1,
2a(u) +1 ifi >k and \¥(u) =T.

Note that r* is tight. As defined in Section 2, a ranking is tight if there exists an i € IN
such that, for every level [> 4, all odd ranks below max_ rank(r,l) appear on level [. For
r¥ this level is k + 1, after which each T-labeled class is given the odd rank greater by two
than the rank of the next lexicographically larger T-labeled class.

» Lemma 14. For every k € IN, the following hold:
(1) If u <y o' then r¥(u) > r*(u').
(2) If (u,v) € E', then v*(u) > r*(v).

Proof. As both claims are trivial when u is at or before level k, assume w is on level i > k.
To prove the first claim, note that a(u) > «a(u'): every class, T-labeled or not, that is
larger than « must also be larger than u. If a(u) > a(u’), then (1) follows immediately.
Otherwise a(u) = a(u'), which implies that *(u') = L: otherwise [u'] would be a T-
labeled equivalence class larger than u, but not larger than itself. Thus r*(u’) = 2(u), and
r¥(u) € {2a(u), 2a(u)+1} is at least r¥(u’).

As a step towards proving the second claim, we show that a(u) > a(v). Consider every
T-labeled class [v'] where v <;41 v'. The class [v'] must have a T-labeled parent [u/]. Since
v <11 v, the contrapositive of Lemma 5, part 1, entails that v <; u’. By the definition
of A¥, the class [u/] can only have one T-labeled child class: [v]. We have thus established
that for every T-labeled class larger than v, there is a unique T-labeled class larger than u,
and can conclude that a(u) > a(v). We now show by contradiction that r¥(u) > r*(v). For
r#(u) < r¥(v), it must be that a(u) = a(v), that r¥(u) = 2a(u), and that r*(v) = 2a(u) +1.
In this case, \¥(u) = L and A*(v) = T. Since a L-labeled node cannot have a T-labeled
child in G’, this is impossible. <

When £ is an F-finite level of G, the k-retrospective ranking is a bounded odd ranking.
» Lemma 15. For a run DAG G and k € IN, the function r*
Further, if the labeling * is legal then r* is an odd ranking.

is a ranking bounded by m.

Proof. There are three requirements for r* to be a ranking bounded by m:

(1) Every F-node must have an even rank. At or before level k, every node has even rank
m. After k only T-labeled nodes are given odd ranks, and every F-node is labeled L.

(2) For every (u,v) € E, it must hold that v*(u) > r¥(v). If u is at or before level k, then
it has the maximal rank of m. If u is after level k, we consider two cases: edges in
E’, and edges in E \ E’. For edges in E’, this follows from Lemma 14 (2). For edges
(u,v) € E\ E', we know there exists a u’ where u <, v’ and (v’,v) € E’. By Lemma
14, % (u) > rF(u’) > r*(v).

259

CSL’'11

260

Unifying Biichi Complementation Constructions

{a:t} =0 {p, 7, s}
{r} =1 {a,t} =1 {p}
{r,s} =2 {a,t} =2 {p}

{t} =5 {r} =s {a} »s {p}

{t} »a{r,s} =i {q} >4 {p}

®;| @:

Figure 3 The run pDAG G’, where 0 is an F-finite level. The labels of A° and ranks in r°
are displayed as superscripts and subscripts, respectively. The bold lines display the sequences of
T-labeled classes in G’. The lexicographic order of states is repeated on the right.

(3) The rank is bounded by m. No F-node can be T-labeled. Thus the maximum number
of T-labeled classes on every level is |@ \ F|. The largest possible rank is given to a
node smaller than all T-labeled classes, which must be be a F-node and 1-labeled.
Thus this node is given a rank of at most m = 2|Q \ F.

It remains to show that if A\¥ is legal, then r” is an odd ranking. Consider an infinite
path wug,u1,... in G. We demonstrate that for every i > k such that r¥(u;) is an even
rank e, there exists i’ > i such that r*(uy) # e. Since a path cannot increase in rank, this
implies r*(uy) < e. To do so, define the sequence U;, U;41, ..., of sets of nodes inductively
as follows. Let U; = {v | r*(v) = e}. For every j > i, let U; 41 = {v | v/ € U;, (v',v) € E'}.
As r*(v) is even only when \¢(v) = L, if A* is legal then every node given an even rank
(such as e) must be finite in G’. Therefore every element of U; is finite in G’, and thus at
some i/ > i, the set Uy is empty. Since Uy is empty, to establish that r*(u;) # e, it is
sufficient to prove that for every j, if r*(u;) = e, then u; € Uj.

To show that r*(u;) = e entails u; € U;, we prove a stronger claim: for every j > i and
v on level 7, if u; <; v and r*(v) = e, then v € U;. We proceed by induction over j. For the
base case of j = i, this follows from the definition of U;. For the inductive step, take a node
v on level j +1 where r*(v) = e and uj;1 <j+1 v. We consider two cases. If r¥(u;i1) # e
then the path from u; to w;i1 entails that r*(u;11) < e, and this case of the subclaim
follows from Lemma 14 (1). Otherwise, it holds that r*(u;41) = e, and thus r*(u;) = e.
Let v' and v’ be nodes on level j so that (v/,uj41) € E' and (v/,v) € E'. As ujqy1 <41 0,
the contrapositive of Lemma 5, part 1, entails that v’ <; v'. Further, since (v/,uj41) € E’
and (uj,uj41) € E, we know u; <; v/. By transitivity we can thus conclude that u; <; v/,
which along with Lemma 14 (1) entails r*(u/) = e > r*(v'). As (v/,v) € E, Lemma 14 (2)
entails that r*(v') > r¥(v) = e. Thus r*(v') = e, and by the inductive hypothesis v’ € U;.
As E'(v',v) holds, by definition v € Uj41, and our subclaim is proven. |

The ranking of Definition 13 is termed retrospective as it relies on the relative lexico-
graphic order of equivalence classes; this order is determined purely by the history of nodes
in the run DAG, not by looking forward to see which descendants are infinite or F-free in
some subgraph of G.

Ezample 4. Figure 3 displays A and the O-retrospective ranking of our running example.
In the prospective ranking (Figure 2), the nodes for state ¢ on levels 1 and 2 are given rank
0, like other t-nodes. In the absence of a path forcing this, their retrospective rank is 2.

Seth Fogarty, Orna Kupferman, Moshe Y. Vardi, and Thomas Wilke

We are now ready to define a new construction, generating an NBW A, which combines
the benefits of the previous two constructions. The automaton Ay, guesses the F-finite level
k, and uses level rankings to check if the k-retrospective ranking is an odd ranking. We
partition the operation of Ay into two stages. Until the level k, the NBW A is in the
first stage, where it deterministically tracks preordered subsets. After level k, the NBW
Ar moves to the second stage, where it tracks ranks. This stage is also deterministic.
Consequently, the only nondeterminism in Ay, is indeed the guess of k. Before defining Aj,
we need some definitions and notations.

Recall that Q denotes the set of preordered subsets of @, and R the set of tight level
rankings bounded by m. We distinguish between three types of transitions of Ay : transitions
within the first stage, transitions from the first stage to the second, and transitions within
the second stage. The first type of transition is similar to the one taken in Ag, by means of
the o-successor relation between preordered subsets. Below we explain in detail the other
two types of transitions. Recall that in the retrospective ranking r¥, each class in G’ labeled
T by A* is given a unique odd rank. Thus the rank of a node u depends on the number of
T-labeled classes larger than it, denoted a(u).

We begin with transitions where Aj, moves between the stages: from a preordered subset
(S, <) to a level ranking. On level k + 1, a node is labeled T iff it is an non-F-node. Thus
for every ¢ € S, let 8(q) = |[{[v] | v € S\ F,u < v}| be the number of non-F-classes larger
than ¢. We now define torank: Q — R. Let torank((S, <)) be the tight level ranking f
where for every ¢:

L ifqg& s,
f(a) =< 26(q) ifge SNF,
208(q) +1 ifqge S\ F.

We now turn to transitions within the second stage, between level rankings. The rank
of a node v is inherited from its predecessor v in G’. However, * may label a finite
class T. If a T-labeled class larger than « has no children, then a(u) > a(v). In this
case the rank of v decreases. Given a level ranking f, for every ¢ € Q where f(q) # L,
let v(q) = {f(d) | ¢ € Q, f(d)isodd, f(¢') < f(g)}| be the number of odd ranks in the
range of f lower than f(g). We define the function tighten: R™ — R7'. Let tighten(f)
be the tight level ranking f’ where for every q:

L if f(q) =1,
(@)= 4279 if f(q) # L and g € F,
2v(g) +1 if f(q) # L and ¢ & F.

Note that if f is tight, then f’ = f, and that while tighten may merge two even ranks, it
cannot merge two odd ranks.

For a level ranking f, letter o € X, and ¢’ € Q, let pred(¢’,o, f) ={q | f(¢) # L, ¢ €
p(q,0)} be the predecessors of ¢’ given a non-L rank by f. The lowest ranked element in
this set corresponds to the predecessor in G with the maximal profile. With two exceptions,
¢’ will inherit this lowest rank. First, tighten might shift the rank down. Second, if ¢’ is in
F, it cannot be given an odd rank. For n € IN, let |n]epen be: n when n is even; and n—1
when n is odd. Define the o-successor of f to be tighten(f’) where for every ¢’ € Q:

1 if pred(q, o, f) = 0,
f(d) = Imin({f(q) | ¢ € pred(q’, 0, f)})]even if pred(q’,o, f) # 0 and ¢’ € F,
min({f(q) | ¢ € pred(¢, o, f)}) if pred(q’,o,f) #0 and ¢ ¢ F.

261

CSL’'11

262

Unifying Biichi Complementation Constructions

» Definition 16. For an NBW A = (3, Q, Q™" p, F), let Az be the NBW
(3, QU (RI x 29),Q", pr,, R x {0}), where
n = {{Q™,=")} where <™ is such that for all ¢,7 € Q"", g < riff¢q¢ Forr € F.
pr(S,0) = {S'} U{(torank(S’), M}, where &’ is the o-successor of S.
pr((f, 0y,0) = {(f', 0y} where f’ is the o-successor of f

,_ {p(o, o)\ odd(f') if O #1,
and O’ =
even(f") if O =190.

Theorem 17 follows from Lemmas 1 and 15 and Corollary 12.
» Theorem 17. For every NBW A, it holds that L(AL) = L(A).

Analysis: Like the tight-ranking construction in Section 2, the automaton A operates
in two stages. In both, the second stage is the set of tight level rankings and obligation
sets. The tight-ranking construction uses sets of states in the first stage, and is bounded
by the size of the second stage: (0.96n)™ [5]. The automaton Az replaces the first stage
with preordered subsets. As the number of preordered subsets is O((-%5)") ~ (0.53n)"
[21], the size of A remains bounded by (0.96n)™. This can be improved to (0.76n)™: see
below. Further, Ay has a very restricted transition relation: states in the first stage only

guess whether to remain in the first stage or move to the second, and have nondeterminism

of degree 2. States in the second stage are deterministic. Thus the transition relation is
linear in the number of states and size of the alphabet, and A;, is deterministic in the limit.

5 Discussion

We have unified the slice-based and rank-based approaches by phrasing the former in the lan-
guage of run DAGs. This enables us to define and exploit a retrospective ranking, providing a
deterministic-in-the-limit complementation construction that does not employ determiniza-
tion. Experiments show that the more deterministic automata are, the better they perform
in practice [18]. By avoiding determinization, we reduce the cost of such a construction from
(n?/e)"™ to (0.76n)™ [14]. In addition, our transition generates a transition relation that is
linear in the number of states and size of the alphabet. Schewe demonstrated how to achieve
a similar linear bound on the transition relation, but the resulting relation is larger and is
not deterministic in the limit [17].

The use of level rankings affords several improvements from existing research on the
rank-based approach. First, the cut-point construction of Miyano and Hayashi [12] can be
improved. Schewe’s construction only checks one even rank at a time, reducing the size
of the state space to (0.76n)", only an n? factor from the lower bound [17]. As Schewe’s
approach does not alter the progression of the level rankings, it could be applied directly
to the second stage of Definition 16. The resulting construction inherits the asymptotic
state-space complexity of [17]. Second, symbolically encoding a preorder is complicated.
In contrast, ranks are easily encoded, and the transition between ranks is nearly trivial to
implement in SMV [20]. By changing the states in first stage of Ay, from preordered subsets
to simple subsets, and guessing the appropriate transition to the second stage, we obtain a
symbolic representation while maintaining determinism in the limit. This approach sacrifices
the linear-sized transition relation, but this is less important in a symbolic encoding. Finally,
the subsumption relations of Doyen and Raskin [4] could be applied to the second stage of
the automaton, while it is unclear if it could be applied at all to the slice-based construction.

From a broader perspective, we find it very interesting that the prospective and retrospec-
tive approaches are so strongly related. Odd rankings seem to be inherently “prospective,”

Seth Fogarty, Orna Kupferman, Moshe Y. Vardi, and Thomas Wilke

depending on the descendants of nodes in the run DAG. By investigating the slice-based
approach, we are able to pinpoint the dependency on the future to a single component:
the F-free level. This suggests it may be possible to use odd rankings for determinization,
automata with other accepting conditions, and automata on infinite trees.

—— References

1

10

11

12

13

14

15

16

17

18

19

20
21

22
23

C.S. Althoff, W. Thomas, and N. Wallmaier. Observations on determinization of Biichi
automata. T'CS, 363(2):224-233, 2006.

J.R. Biichi. On a decision method in restricted second order arithmetic. In ICLMPS, 1962.
C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification. J. ACM,
42:857-907, 1995.

L. Doyen and J.-F. Raskin. Antichains for the automata-based approach to model-checking.
In LMCS, 5(1), 2009.

E. Friedgut, O. Kupferman, and M.Y. Vardi. Biichi complementation made tighter. In
FCS, 17(4):851-867, 2006.

S. Gurumurthy, O. Kupferman, F. Somenzi, and M.Y. Vardi. On complementing nonde-
terministic Biichi automata. In CHARME, 96-110, 2003.

D. Kéhler and Th. Wilke. Complementation, disambiguation, and determinization of Biichi
automata unified. In ICALP, 724-735, 2008.

H. Karmarkar and S. Chakraborty. On minimal odd rankings for Biichi complementation.
In ATVA, 228-243, 2009.

N. Klarlund. Progress Measures and finite arguments for infinite computations. PhD thesis,
Cornell University, 1990.

O. Kupferman and M.Y. Vardi. Weak alternating automata are not that weak. In TOCL,
2(2):408-429, 2001.

M. Michel. Complementation is more difficult with automata on infinite words. CNET,
Paris, 1988.

S. Miyano and T. Hayashi. Alternating finite automata on w-words. In TCS, 1984.

D.E. Muller and P.E. Schupp. Simulating alternating tree automata by nondeterministic
automata: New results and new proofs of theorems of Rabin, McNaughton and Safra. In
TCS, 141:69-107, 1995.

N. Piterman. From nondeterministic Biichi and Streett automata to deterministic parity
automata. In LICS, 255264, 2006.

M.O. Rabin and D. Scott. Finite automata and their decision problems. In IBM JRD,
3:115-125, 1959.

S. Safra. On the complexity of w-automata. In FOCS, 319-327, 1988.

S. Schewe. Biichi complementation made tight. In STACS, 661-672, 2009.

R. Sebastiani and S. Tonetta. “More deterministic” vs. “smaller" Biichi automata for
efficient LTL model checking. In CHARME, 126-140, 2003.

A P. Sistla, M.Y. Vardi, and P. Wolper. The complementation problem for Biichi automata
with applications to temporal logic. In T'CS, 49:217-237, 1987.

D. Tabakov and M.Y. Vardi. Model checking Biichi specifications. In LATA, 2007.

M.Y. Vardi. Expected properties of set partitions. Research report, The Weizmann Institute
of Science, 1980.

M.Y. Vardi. Automata-theoretic model checking revisited. In VMCAI, 137-150, 2007.

Q. Yan. Lower bounds for complementation of w-automata via the full automata technique.
In ICALP, 589-600, 2006.

263

CSL’'11

	Introduction
	Preliminaries
	Analyzing DAGs With Profiles
	Retrospection
	Discussion

