
A Pumping Lemma for Collapsible Pushdown
Graphs of Level 2∗

Alexander Kartzow

Universität Leipzig, Institut für Informatik
Johannisgasse 26, 04103 Leipzig

Abstract
We present a pumping lemma for the class of collapsible pushdown graphs of level 2. This
pumping lemma even applies to the ε-contractions of level 2 collapsible pushdown graphs. Our
pumping lemma also improves the bounds of Hayashi’s pumping lemma for indexed languages.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases Collapsible pushdown graph, ε-contraction, pumping lemma

Digital Object Identifier 10.4230/LIPIcs.CSL.2011.322

1 Introduction

Recently, generalisations of pushdown systems have gained attention for the verification of
higher-order functional programs. This stems from the fact that collapsible higher-order
pushdown systems generate exactly the same trees as higher-order recursion schemes [6].
Recursion Schemes can be fruitfully applied in the verification of functional programs [11].
The correspondence between collapsible pushdown trees and higher-order recursion schemes
improves a result of Knapik et al. [10] showing that higher-order pushdown systems generate
the same trees as safe higher-order recursion schemes. Safety is a syntactic condition whose
semantical status is still open: it is conjectured that there is a recursion scheme that generates
a tree which is not generated by any safe scheme.1

Also from a model-theoretic point of view, the classes of collapsible and higher-order
pushdown systems are interesting. Carayol and Wöhrle [3] proved that the ε-contractions of
graphs generated by higher-order pushdown systems are exactly the graphs in the Caucal-
hierarchy. Thus, all these graphs have decidable monadic second-order theories. Collapsible
pushdown graphs display a rather different behaviour: even on the second level of the
hierarchy, there is a graph with undecidable monadic second-order theory. Nevertheless, the
first-order model checking on level 2 collapsible pushdown graphs is decidable because all
these graphs are tree-automatic [8]. Recently, Broadbent [2] proved that even first-order
logic is undecidable on the collapsible pushdown graphs of level 3. Moreover, Hague et al. [6]
showed that the modal µ-calculus is decidable on all collapsible pushdown graphs. These
decidability results give collapsible pushdown graphs a unique status among natural classes
of graphs. There is (almost2) no other known natural class of graphs with decidable modal
µ-calculus model checking but undecidable monadic second-order theories.

∗ This research was carried out while the author was working at TU Darmstadt and funded by the DFG
grant OT 147/5-1

1 Recently, Parys [13] showed that the uniform safety conjecture is true: there is a level 2 recursion scheme
which generates a tree that is not generated by any safe level 2 scheme

2 Nested pushdown trees share the same status. But these form in some sense a subclass of collapsible
pushdown graphs (cf. [9])

© Alexander Kartzow;
licensed under Creative Commons License NC-ND

Computer Science Logic 2011 (CSL’11).
Editor: Marc Bezem; pp. 322–336

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2011.322
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Alexander Kartzow 323

Even though (collapsible) pushdown systems generate important classes of graphs, useful
characterisations of their structure are still rare. We [8] showed that the second-level of
the collapsible pushdown graph hierarchy is tree-automatic. Nevertheless, we still miss
techniques for disproving membership in the collapsible pushdown hierarchy. In classical
automata-theory, pumping lemmas form a good tool for disproving membership in languages
defined by finite automata or pushdown systems. On higher levels, similar results are still
missing. The only results in this direction that are known to the author are a pumping lemma
of Hayashi [7] and a shrinking lemma of Gilman [5], both for indexed languages. Since the
class of string-languages accepted by the second level of the collapsible higher-order pushdown
hierarchy is the class of indexed languages, this is a first step towards pumping on higher-order
pushdown systems. Blumensath [1] published an extension of this pumping lemma to all
levels of the higher-order pushdown hierarchy. Unfortunately, there is an irrecoverable error
in his proof (cf. [12]). Thus, the question for pumping lemmas for higher-order pushdown
systems of level at least 3 is still open. Moreover, even for the second level of collapsible
pushdown graphs no pumping lemma was known so far.

In this paper, we close the latter gap. As already mentioned, collapsible pushdown graphs
are tree-automatic, i.e., there is an encoding of configurations in trees such that a (finite
tree-)automaton accepts the encodings of configurations reachable form the initial one. Of
course, the regular pumping lemma applies to this finite automaton. Since accepting runs of
this automaton encode runs of the collapsible pushdown system, the trees obtained by regular
pumping can be turned into runs of the collapsible pushdown system. Thus, the existence of
a large configuration in the collapsible pushdown graph implies the existence of infinitely
many runs. A refinement of this argument yields a pumping lemma for all ε-contractions of
collapsible pushdown graphs of level 2.

1.1 Outline of the paper

In the next section, we recall the standard notion of trees, finite tree-automata and the
pumping lemma for finite tree-automata. At the end of that section we introduce the
general approach how tree-automaticity of the reachability predicate can be turned into a
pumping lemma. In Section 3 we present the notion of level 2 collapsible pushdown graphs.
Furthermore, we recall the main result from [8], i.e., we present an encoding of configurations
of 2-CPG in trees that turns the set of reachable configurations into a regular set of trees.
We also recall what an automaton determining the reachable configurations looks like. In
Section 4 we compute the specific bounds of the pumping lemma for level 2 collapsible
pushdown graphs obtained from our general approach. We then refine this result in Section
5 to ε-contractions of such graphs. In Section 6 we apply our pumping lemma and prove that
certain trees are not ε-contractions of any 2-CPG. Section 7 contains concluding remarks
and points to open questions.

2 A Pumping Lemma for Structures with Automatic Reachability
Relation

A Σ-labelled tree is a function T : D → Σ for a finite set D ⊆ {0, 1}∗ which is closed under
prefixes. For d ∈ D we denote by Td the subtree rooted at d. It is useful to define trees
inductively by describing their left and right subtrees. For this purpose we fix the following
notation. Let T̂ and T ′ be Σ-labelled trees and σ ∈ Σ. Then we write T := σ(T̂ , T ′) for the

CSL’11

324 A Pumping Lemma for Collapsible Pushdown Graphs of Level 2

Σ-labelled tree T with the following three properties

1. T (ε) = σ, 2. T0 = T̂ , and 3. T1 = T ′ .

Finally, let dp(T) := max{|d| : d ∈ dom(T)} + 1 be the depth of T . A straightforward
induction gives a bound on the number of nodes of a tree of a fixed depth.

I Lemma 1. If T is a tree of depth d, then |dom(T)| ≤ 2d − 1.

I Corollary 2. There are at most (|Σ|+ 1)2d−1 many Σ-labelled trees of depth d.

We briefly recall the notion of a (finite tree-) automaton and the pumping lemma for
these automata.

I Definition 3. A (finite tree-)automaton is a tuple A = (Σ, Q,∆, qI) where Σ is a finite
alphabet, Q a finite set of states with a distinguished symbol ⊥ ∈ Q, ∆ ⊆ Q× Σ×Q×Q a
transition relation and qI ∈ Q the initial state. An accepting run of A on a Σ-labelled tree T
is a map ρ : {0, 1}∗ → Q such that
1. (ρ(d), T (d), ρ(d0), ρ(d1) ∈ ∆ for all d ∈ dom(T) and
2. ρ(ε) = qI and ρ(d) = ⊥ for all d ∈ {0, 1}∗ \ dom(T).

The language accepted by A is L(A) := {T : ∃ accepting run of A on T}.

In order to develop a pumping lemma for structures with automatic reachability relation,
we will use the pumping lemma for regular languages.

I Lemma 4 (see [4]). Let A = (Σ, Q,∆, qI) be an automaton recognising the (tree-)language
L, let T ∈ L and let ρ be an accepting run of A on T . If d ∈ dom(T) with dp(Td) > |Q|,
then there are nodes d ≤ d1 ≤ d2 ∈ dom(T) such that the following holds. If we replace in t
the subtree rooted at d1 by the subtree rooted at d2, the tree T0 resulting from this replacement
satisfies T0 ∈ L. Furthermore, let T1, T2, T3, . . . be the infinite sequence of trees where T1 = T

and Ti+1 arises from Ti by replacing the subtree rooted at d2 in Ti by the subtree rooted at d1
in Ti, then Ti ∈ L for all i ∈ N. Furthermore, for each i ∈ N there is an accepting run ρi on
Ti that coincides with ρ on all positions except for those in the subtree induced by d.

In order to define the notion of an automatic reachability relation, we recall the definition
of the convolution of two Σ-labelled trees T and T ′. This is the tree

T ⊗ T ′ : dom(T) ∪ dom(T ′)→ (Σ ∪ {�})2

(T ⊗ T ′)(d) :=


(T (d), T ′(d)) if d ∈ dom(T) ∩ dom(T ′)
(T (d),�) if d ∈ dom(T) \ dom(T ′)
(�, T ′(d)) if d ∈ dom(T ′) \ dom(T)

where � is a new symbol for padding. The convolution of trees is the standard concept if
one wants to use a finite tree automaton for recognising some relation on trees. We say A
recognises some relation R if L(A) := {T1 ⊗ T2 ⊗ · · · ⊗ Tn : (T1, T2, . . . , Tn) ∈ R}. In this
case we say that R is automatic.

Using the regular pumping lemma, we obtain the following two pumping lemmas for
structures with automatic reachability relation.

I Lemma 5. Let G = (D,`) be some graph such that D is a regular set of trees over the
alphabet Σ. Assume that the reachability relation R on G is recognised by some tree-automaton
with q states. If there starts a finite path p at d ∈ D of length (|Σ|+ 1)2(dp(d)+q) then there
start infinitely many paths at d.

Alexander Kartzow 325

Proof. If p visits some vertex d′ ∈ D twice then there is obviously an infinite path starting
at d and passing d′ infinitely many times.

Otherwise, p passes (|Σ|+ 1)2(dp(d)+q) many different trees. Due to Corollary 2, p passes
some d′ of depth dp(d′) > dp(d) + q. Since dp(d′) − dp(d) > q, we may apply the regular
pumping lemma to d⊗ d′ in such a way that we obtain infinitely many trees d1, d2, . . . such
that (d, di) ∈ R. This means that for each i there is a path from d to di. J

I Lemma 6. Let G = (D,`) be some graph such that D is a regular set of trees over the
alphabet Σ. Assume that the reachability relation R on G is recognised by some tree-automaton
with q states. If |{x ∈ D : (d, x) ∈ R}| > (|Σ|+ 1)2(dp(d)+q) , then {x ∈ D : (d, x) ∈ R} is an
infinite set.

Proof. Assume that |{x ∈ D : (d, x) ∈ R}| > (|Σ|+ 1)2(dp(d)+q) There must be some d′ ∈ D
such that (d, d′) ∈ R and dp(d′) > dp(d) + q. We conclude as in the previous lemma. J

In the rest of this paper, we develop an adaptation of these lemmas to collapsible pushdown
graphs of level 2.

3 Collapsible Pushdown Systems and Graphs

In this section we define our notation of collapsible pushdown systems (of level 2). For a
more detailed introduction, we refer the reader to [6] or [9]. Afterwards, we present those
results from [8] that are relevant for the results of this paper.

3.1 Collapsible Pushdown Stacks of Level 2
First, we provide some terminology concerning stacks of (collapsible) higher-order pushdown
systems. We write Σ∗2 for (Σ∗)∗ and Σ+2 for (Σ+)+. We call an s ∈ Σ∗2 a 2-word.

Let us fix a 2-word s ∈ Σ∗2 which consists of an ordered list w1, w2, . . . , wm ∈ Σ∗.
We separate the words of this list by colons writing s = w1 : w2 : . . . : wm. We write
wdt(s) := m for the width of s and hgt(s) := max{|wi| : 1 ≤ i ≤ m} for the height of s.
For a second word s′ = w′1 : w′2 : . . . : w′n ∈ Σ∗2, we write s : s′ for the concatenation
w1 : w2 : . . . : wm : w′1 : w′2 : . . . : w′n. If w ∈ Σ∗, we write [w] for the 2-word that consists of
a list of one word which is w.

A level 2 collapsible pushdown stack is a special element of (Σ× {1, 2} × N)+2 that is
generated by certain stack operations from an initial stack. We introduce these in the
following definitions. The natural numbers following the stack symbol represent a pointer:
every element in a collapsible pushdown stack has a pointer to some substack and applying
the collapse operation returns the substack to which the topmost symbol of the stack points.
Here, the first number denotes the collapse level. If it is 1 the collapse pointer always points to
the symbol below the topmost symbol and the collapse operations just removes the topmost
symbol. The more interesting case is when the collapse level of the topmost symbol of the
stack s is 2. Then the stack obtained by the collapse contains the first n words of s where n
is the second number in the topmost element of s.

The initial level 1 stack is ⊥1 := (⊥, 1, 0) and the initial level 2 stack is ⊥2 := [⊥1].
Let k ∈ {1, 2} and let s = w1 : w2 : . . . : wn ∈ (Σ× {1, 2} × N)+2 be a 2-word such that

wn = a1a2 . . . am with ai ∈ Σ× {1, 2} × N for all 1 ≤ i ≤ m.

We define the topmost (k − 1)-word of s as topk(s) :=
{
wn if k = 2
am if k = 1.

CSL’11

326 A Pumping Lemma for Collapsible Pushdown Graphs of Level 2

For top1(s) = (σ, i, j) ∈ Σ× {1, 2} × N, we define the topmost symbol Sym(s) := σ, the
collapse-level of the topmost element CLvl(s) := i, and the collapse-link of the topmost
element CLnk(s) := j.

For s, wn and k as before, σ ∈ Σ\{⊥}, and w′n := a1 . . . am−1, we define the stack operations

popk(s) :=


w1 : w2 : . . . : wn−1 if k = 2, n ≥ 2,
w1 : w2 : . . . : wn−1 : w′n if k = 1,m ≥ 2,
undefined otherwise,

clone2(s) := w1 : w2 : . . . : wn−1 : wn : wn,

pushσ,k(s) :=
{
w1 : w2 : . . . : wn(σ, 2, n− 1) if k=2,
w1 : w2 : . . . : wn(σ, 1,m) if k=1,

collapse(s) :=


w1 : w2 : . . . : wCLnk(s) if CLvl(s) = 2, n ≥ CLnk(s) > 0,
pop1(s) if CLvl(s) = 1,
undefined otherwise.

The set of level 2-operations is OP :=
{

pushσ,1, pushσ,2, clone2,pop1, pop2, collapse
}
. The

set of level 2 stacks, Stck(Σ), is the smallest set that contains ⊥2 and is closed under all
operations from OP.

Note that collapse- and popk-operations are only allowed if the resulting stack is a
nonempty list of nonempty words. This avoids the special treatment of empty words or
stacks. Furthermore, a collapse on level 2 summarises a non-empty sequence of pop2-
operations. For example, starting from ⊥2, we can apply a clone2, a pushσ,2, a clone2, and
finally a collapse. This sequence first creates a level 2 stack that contains 3 words and
then performs the collapse and ends in the initial stack again. This example shows that
clone2-operations are responsible for the fact that collapse-operations on level 2 may remove
more than one word from the stack. Since there is no level 1 clone operation, a collapse of
level 1 always simulates exactly one pop1.

For s, s′ ∈ Stck(Σ), we call s′ a substack of s if there are n1, n2 ∈ N such that
s′ = pop1

n1(pop2
n2(s)). We write s′ ≤ s if s′ is a substack of s.

3.2 Collapsible Pushdown Systems and Collapsible Pushdown Graphs
of Level 2

We introduce collapsible pushdown systems (CPS) and graphs (CPG) which are analogues
of pushdown systems and pushdown graphs using collapsible pushdown stacks instead of
ordinary stacks.

I Definition 7. A collapsible pushdown system is a tuple S = (Σ, Q,∆, q0) where Σ is a
finite stack alphabet with a special symbol ⊥ ∈ Σ, Q a finite set of states, q0 ∈ Q the initial
state, and ∆ ⊆ Q× Σ×Q×OP the transition relation.

For q ∈ Q and s ∈ Stck(Σ) the pair (q, s) is called a configuration. We define labelled trans-
itions on pairs of configurations by setting (q1, s) `δ (q2, t) if there is a δ = (q1, σ, q2, op) ∈ ∆
such that Sym(s) = σ and op(s) = t. The union of these relations is denoted by `:=

⋃
δ∈∆ `δ.

We set C(S) to be the set of all configurations that are reachable from (q0,⊥2) via `-paths.
We call C(S) the set of reachable configurations. The collapsible pushdown graph generated
by S is CPG(S) :=

(
C(S), C(S)2∩ `

)

Alexander Kartzow 327

f

e g i

b d d d h j l

a c c c c c c k

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Figure 1 Example of blocks in a stack. These form a c-blockline.

I Definition 8. Let S be a CPS. A run ρ of S of length n is a function

ρ : {0, 1, 2, . . . , n} → Q× (Σ× {1, 2} × N)∗2 such that ρ(0) ` ρ(1) ` · · · ` ρ(n).

We write len(ρ) := n and call ρ a run from ρ(0) to ρ(n). We say ρ visits a stack s at i if
ρ(i) = (q, s) for some q ∈ Q.

For runs ρ, π of length n and m, respectively, with ρ(n) = π(0), we define the composition
ρ ◦ π of ρ and π in the obvious manner.

I Remark. Note that we do not require runs to start in the initial configuration.

From now on, we consider a fixed set of states Q and a fixed stack alphabet Σ with
bottom-of-stack symbol ⊥.

3.3 Encoding of Configurations as Trees
In [8] we proved that collapsible pushdown graphs are tree-automatic via an encoding function
CEnc. We recall this function in this section. The concept underlying the encoding is that
of blocks and blocklines. A blockline is a list of words that start with the same letter and
a block is a list of words that start with the same two letters. We encode a blockline as
follows. The root is labelled by the first letter of all words; for each block of the blockline, we
add one subtree encoding the corresponding block. We present the details after the formal
introduction of blocks and blocklines. For w ∈ Σ∗ and s = w1 : w2 : . . . : wn ∈ Σ∗2, we write
s′ := w \ s for s′ = [ww1] : [ww2] : . . . : [wwn].

I Definition 9 (γ-block(line)). For Γ some set and γ ∈ Γ, we call b ∈ Γ∗2 a γ-block if
b = [γ] or b = γτ \ s′ for some τ ∈ Γ and s′ ∈ Γ∗2. See Figure 1 for examples of blocks. If
b1, b2, . . . , bn are γ-blocks, then we call b1 : b2 : . . . : bn a γ-blockline.

Note that every stack forms a (⊥, 1, 0)-blockline. Furthermore, every blockline l decom-
poses uniquely as l = b1 : b2 : . . . : bn of maximal blocks bi. Another crucial observation is
that a γ-block b ∈ Γ∗2 \ Γ decomposes as b = γ \ l for some blockline l and we say l is the
induced blockline of b. For b ∈ Γ the induced blockline of [b] is just the empty 2-word.

Now we encode a (σ, n,m)-blockline l in a tree by labelling the root with (σ, n), by
encoding the blockline induced by the first block of l in the left subtree, and by encoding the
rest of the blockline in the right subtree. In order to avoid repetitions, we do not repeat the
symbol (σ, n) in the right subtree, but replace it by the default letter ε.

I Definition 10. Let s = w1 : w2 : . . . : wn ∈ (Σ× {1, 2} × N)+2 be a (σ, l, k)-blockline. Let
w′i be words such that s = (σ, l, k) \ (w′1 : w′2 : . . . : w′n). Set s′ := w′1 : w′2 : . . . : w′n. As an
abbreviation we write hsi := wh : wh+1 : . . . : wi. Furthermore, let w1 : w2 : . . . : wj be a
maximal block of s. Note that j > 1 implies wj′ = (σ, l, k)(σ′, l′, k′)w′′j′ for all j′ ≤ j, some

CSL’11

328 A Pumping Lemma for Collapsible Pushdown Graphs of Level 2

(c, 2, 1) (e, 1, 3)
(b, 2, 0) (b, 2, 0) (c, 1, 2) (d, 2, 3)
(a, 2, 0) (a, 2, 0) (a, 2, 2) (a, 2, 2) (a, 2, 2)
(⊥, 1, 0) (⊥, 1, 0) (⊥, 1, 0) (⊥, 1, 0) (⊥, 1, 0)

c, 2 e, 1

b, 2 // ε

OO

c, 1 d, 2

OO

a, 2

OO

a, 2 //

OO

ε //

OO

ε

⊥, 1 //

OO

ε

OO

Figure 2 A stack s and its encoding Enc(s): right arrows lead to 1-successors (right successors),
upward arrows lead to 0-successors (left successors).

fixed (σ′, l′, k′) ∈ Σ× {1, 2} × N, and appropriate w′′j′ ∈ Σ∗. For ρ ∈
(
Σ× {1, 2}

)
∪ {ε}, we

define recursively the
(
Σ× {1, 2}

)
∪ {ε}-labelled tree Enc(s, ρ) via

Enc(s, ρ) :=


ρ if |w1| = 1, n = 1
ρ(∅,Enc(2sn, ε)) if |w1| = 1, n > 1
ρ(Enc(1s

′
n, (σ′, l′)), ∅) if j = n, |w1| > 1

ρ(Enc(1s
′
j , (σ′, l′)),Enc(j+1sn, ε)) otherwise.

Enc(s) := Enc(s, (⊥, 1)) is called the (tree-)encoding of the stack s ∈ Stck(Σ).

Figure 2 shows a configuration and its encoding.

I Remark. In this encoding, the first block of a (σ, l, k)-blockline is encoded in a subtree
whose root d is labelled (σ, l). For every node labelled by some element in Σ×{1, 2}, i.e., for
every d ∈ Enc(s) ∩ {0, 1}∗0, we can restore k from the position of d in Enc(s) as follows. If
l = 1 then k = |d|0, i.e., the number of occurrences of 0 in d. This is due to the fact that level
1 links always point to the preceding letter and that we always introduce a left-successor
tree in order to encode letters that are higher in the stack. If l = 2 then

k = |{d′ ∈ dom(Enc(s)) ∩ {0, 1}∗1 : d′ ≤lex d}|,

where ≤lex is the lexicographic order. This is due to the fact that every right-successor
corresponds to the separation of some block from another block further left.

Having defined the encoding of stacks, we define the encoding of configurations.

I Definition 11. For q ∈ Q and s some stack, we define CEnc(q, s) := q(Enc(s), ∅).

The image of CEnc contains only trees of a very specific type. We call this class TEnc.

I Definition 12. Let TEnc be the class of all trees T that satisfy the following conditions.
1. The root of T is labelled by some element of Q (T (ε) ∈ Q).
2. Every element of the form {0, 1}∗0 is labelled by some (σ, l) ∈ Σ × {1, 2}; especially,

T (0) = (⊥, 1) and there are no other occurrences of (⊥, 1) or (⊥, 2).
3. Every element of the form {0, 1}∗1 is labelled by ε.
4. 1 /∈ dom(T), 0 ∈ dom(T).
5. For all t ∈ T , if T (t0) = (σ, 1) then T (t10) 6= (σ, 1).

I Lemma 13 ([8]). The image of CEnc is TEnc.

The following lemma shows that TEnc is a regular set.

Alexander Kartzow 329

I Lemma 14. There is a finite automaton ATEnc with f0(Σ) := 2 + 3|Σ| many states that
recognises TEnc.

Proof. Set ATEnc := (Q ∪ (Σ× {1, 2}) ∪ {ε}, QA,∆A, qI) where QA and ∆A are defined as
follows. Let QA := {⊥, qI} ∪ (Σ× {1, 2}) ∪ {Pσ : σ ∈ Σ}. The states of the form (σ, i) are
used to guess that a node of the tree is labelled by (σ, i) while the states Pσ are used to
prohibit that the left successor of a certain node is labelled by (σ, 1). The transitions ensure
that whenever we guess that d0 is labelled by (σ, 1) then d1 is reached in state Pσ ensuring
that d10 cannot be labelled by (σ, 1). ∆A is defined as follows.

(qI , q, (⊥, 1),⊥) ∈ ∆A for all q ∈ Q,
((σ, i), (σ, i), (τ, 1), Pτ) ∈ ∆A for all σ ∈ Σ, τ ∈ Σ \ {⊥}, i ∈ {1, 2},
((σ, i), (σ, i), (τ, 2), P⊥) ∈ ∆A for all σ ∈ Σ, τ ∈ Σ \ {⊥}, and i ∈ {1, 2},
((σ, i), (σ, i), (τ, j),⊥) ∈ ∆A for all σ ∈ Σ, τ ∈ Σ \ {⊥}, i, j ∈ {1, 2},
((σ, i), (σ, i),⊥, P⊥) ∈ ∆A for all σ ∈ Σ, and i ∈ {1, 2},
((σ, i), (σ, i),⊥,⊥) ∈ ∆A for all σ ∈ Σ, and i ∈ {1, 2},
(Pσ, ε, (τ, 1), Pτ) ∈ ∆A for all σ ∈ Σ and τ ∈ Σ \ {σ,⊥}
(Pσ, ε, (τ, 2), P⊥) ∈ ∆A for all σ ∈ Σ and τ ∈ Σ \ {⊥}
(Pσ, ε, (τ, i),⊥) ∈ ∆A for all σ ∈ Σ and (τ, i) ∈ (Σ× {1, 2}) \ {(σ, 1), (⊥, 1), (⊥, 2)},
(Pσ, ε,⊥, P⊥) ∈ ∆A for all σ ∈ Σ
(Pσ, ε,⊥,⊥) ∈ ∆A for all σ ∈ Σ J

The next lemma is a straightforward observation concerning the depth of the encoding of
a configuration in terms of the width and height of the stack.

I Lemma 15. Given a stack s and a state q, such that (q, s) is reachable from the initial
configuration by some path of length l then dp(CEnc(q, s)) < hgt(s) + wdt(s) ≤ l + 2.

Proof. We have seen that successors to the right correspond to the separation of different
words of s. More precisely, wdt(s) = |{d ∈ {0, 1}∗{1} : d ∈ CEnc(q, s)}|+ 1. Furthermore,
we have seen that every element d ∈ CEnc(q, s) encodes some word of length |d|0. Thus,
hgt(s) = max{|d|0 : d ∈ CEnc(q, s)}. We immediately conclude that |d| < hgt(s) + wdt(s)
for all d ∈ CEnc(q, s).

The second part of the claim is proved by induction. Note that the initial configuration is
encoded by a tree of depth 2. Any stack operation increases the width or height of the stack
by at most 1 and no operation increases the height and the width at the same time. J

3.4 Milestones
We now recall the concept of milestones from [8]. The milestones of a stack s are those
substacks that every run to s has to pass. Thus, the concept of a milestone forms an essential
key to understanding our pumping arguments in the next section.

I Definition 16 (Milestone). A substack s′ of s = w1 : w2 : . . . : wn is a milestone if
s′ = w1 : w2 : . . . : wi : w′ such that 0 ≤ i < n and wi u wi+1 ≤ w′ ≤ wi+1.3 We denote by
MS(s) the set of milestones of s.

I Lemma 17 ([8]). If s, t,m are stacks with m ∈ MS(t) but m 6≤ s, then every run from s

to t visits m.

3 u is the greatest common prefix operator.

CSL’11

330 A Pumping Lemma for Collapsible Pushdown Graphs of Level 2

I Corollary 18. If ρ is a run from a stack s to a stack t, then ρ visits some stack m ∈ MS(t)
with dp(m) ≤ dp(s) + 1.

Proof. ρ has to pass some common substack u of s and t. It is an easy exercise to show that
pop1 and pop2-operations do not increase the depth of the encoding of a stack. If u ∈ MS(t)
we are done. Otherwise, there is a minimal sequence of level 1 push operations that generate
a milestone m ∈ MS(t) from u. For c := wdt(u), top2(u) < wc−1 u wc where wi denotes
the i-th word of t and top2(m) = wc−1 u wc. Since wc−1 is also the (c − 1)-st word of s,
the height of m is bounded by hgt(s). It is straightforward to show that the encodings of
m and u differ in exactly two nodes. There is some d ∈ dom(Enc(u)) such that Enc(m)
is Enc(u) where we delete the node d1 and add some node d01k101k2 . . . 01kl+1 such that
d01k101k2 . . . 01kl ∈ dom(Enc(u)). This operation increases the depth by at most 1. J

Milestones form an effectively regular set. This stems from the close correspondence
between milestones of a stack s and the elements of CEnc(s) as follows.

I Definition 19. Let c = (q, s) be some configuration. For T := CEnc(c) the encoding of
c, let d ∈ T \ {ε}. Then the left and downward closed tree induced by d is LT (d, T) := T �D
where D := {d′ ∈ T : d′ ≤lex d} \ {ε}. Then we denote by LStck(d, T) the unique stack s′
such that CEnc(q, s′) = LT (d, T). We call LStck(d, T) the left stack induced by d.

I Remark. LStck(d,CEnc(q, s)) is a substack of s for all d ∈ dom(Enc(s)). This observation
follows from the fact that the left stack is induced by a lexicographically downward closed
subset. In fact, LStck(d,Enc(q, s)) is a milestone of s. See [8] for more details.

I Lemma 20. [8] The map given by g : d 7→ LStck(d,CEnc(q, s)) is an order isomorphism
between (dom(CEnc(q, s)) \ {ε},≤lex) and (MS(s),≤).

I Lemma 21. There is an automaton A with 5 states such that for all configurations (q, s)
and (q′,m) the automaton A accepts CEnc(q′,m)⊗ CEnc(q, s) if and only if m ∈ MS(s).

Proof. A has to check that CEnc(q′,m) is a left and downward closed subtree of CEnc(q, s)
(except for the label at the root). The states of A are {qI ,⊥,=, 6=,=∗}. The transition
relation ∆ consists of the following transitions:
1. (qI , (q1, q2),=,⊥) for q1, q2 ∈ Q
2. (=, (X,X),=∗,=) for X ∈ {ε} ∪ (Σ× {1, 2}),
3. (=, (X,X),=,⊥) for X ∈ {ε} ∪ (Σ× {1, 2}),
4. (=, (X,X), 6=,⊥) for X ∈ {ε} ∪ (Σ× {1, 2}),
5. (=, (X,X),=, 6=) for X ∈ {ε} ∪ (Σ× {1, 2}),
6. (=, (X,X),⊥,=) for X ∈ {ε} ∪ (Σ× {1, 2}),
7. (=, (X,X),⊥, 6=) for X ∈ {ε} ∪ (Σ× {1, 2}),
8. (=, (X,X), 6=, 6=) for X ∈ {ε} ∪ (Σ× {1, 2}),
9. (=, (X,X),⊥,⊥) for X ∈ {ε} ∪ (Σ× {1, 2}),

10. (=∗, (X,X),=∗,=∗) for X ∈ {ε} ∪ (Σ× {1, 2}),
11. (=∗, (X,X),=∗,⊥) for X ∈ {ε} ∪ (Σ× {1, 2}),
12. (=∗, (X,X),⊥,=∗) for X ∈ {ε} ∪ (Σ× {1, 2}),
13. (=∗, (X,X),⊥,⊥) for X ∈ {ε} ∪ (Σ× {1, 2}),
14. (6=, (⊥, X),⊥,⊥) for X ∈ {ε} ∪ (Σ× {1, 2}),
15. (6=, (⊥, X), 6=,⊥) for X ∈ {ε} ∪ (Σ× {1, 2}),
16. (6=, (⊥, X),⊥, 6=) for X ∈ {ε} ∪ (Σ× {1, 2}),
17. (6=, (⊥, X), 6=, 6=) for X ∈ {ε} ∪ (Σ× {1, 2}).

J

Alexander Kartzow 331

4 Pumping on Encodings of Configurations

The main result of [8] is that there is an automaton that accepts the encoding of a configuration
if and only if this configuration is reachable from the initial one. This automaton guesses
this run by labelling each node of the encoding with the initial and final state corresponding
to the subrun starting at the corresponding milestone. In the following, we will use variants
of this automaton in order to develop a pumping lemma on collapsible pushdown systems.

I Theorem 22 ([8]). For each collapsible pushdown system S = (Σ, Q,∆, q0), there is a
finite tree automaton A with

f1(Q,Σ) := 2 · (2|Q×Q|)2 · |Q|2 · |Σ× {1, 2}| · |Σ|

many states that accepts a tree CEnc(q, s) if and only if (q, s) ∈ CPG(S), i.e., if there is a
run of S from the initial configuration to (q, s).

I Remark. In [8], we did non state the explicit bound on the number of states. This bound
is extracted as follows. A guesses at each node d ∈ CEnc(q, s) states q1, q2 such that there is
a run from (q1,LStck(d,CEnc(q, s))) to some configuration (q2, t) where the definition of t
depends on whether d is in the rightmost branch.

Let t′ be the block encoded in the subtree rooted at d. If d is in the rightmost path,
then t = LStck(d,CEnc(q, s)) \ t′.4 At all other positions t = (LStck(d,CEnc(q, s)) \ t′) :
top2(LStck(d,CEnc(q, s))). Thus, we obtain a factor 2 for keeping track of the rightmost
branch. Furthermore, in order to verify the guesses q1, q2 at each node d, A stores the values
of Sym(LStck(d,CEnc(q, s))), CLvl(LStck(d,CEnc(q, s))), Sym(pop1(LStck(d,CEnc(q, s))))
and the existence of loops and returns starting at LStck(d,CEnc(q, s)). A loop starting in a
stack s is a run from (q1, s) to (q2, s) for q1, q2 ∈ Q that does not visit substacks of pop2(s)
and a return is a run from (q1, s) to (q2, pop2(s)) that does not visit any substack of pop2(s)
before its final configuration. At each node d, the automaton A has to keep track of the sets

{(q1, q2) : ∃ a loop from (q1, t) to (q2, t)} and
{(q1, q2) : ∃ a return from (q1, t) to (q2, pop2(t))}

where t = LStck(d,CEnc(q, s)).

I Corollary 23. For each collapsible pushdown system S = (Σ, Q,∆, q0), there is a fi-
nite tree automaton AS such that AS accepts a tree T if and only if there is some con-
figuration c such that T = CEnc(c) and c is contained in CPG(S). Moreover, AS has
f2(Σ, Q) := f0(Σ) · f1(Q,Σ) many states.

Proof. A is the product of the automaton from Theorem 22 and that from Lemma 14. J

In fact, every run from the initial configuration to some configuration c induces an
accepting run of A on CEnc(c). There is a close correspondence between the states of the run
of A at positions d ∈ CEnc(c) and the states in which the run to c visits LStck(d,CEnc(c)).
We state this correspondence in the following lemma.

I Lemma 24 ([8]). For each stack t and each state q ∈ Q there is a state qq,t of AS such
that the following holds. Given an arbitrary configuration c = (q, s) such that t ∈ MS(s),

4 s1 \ s2 is an abbreviation for pop2(s1) : (top2(s1) \ s2).

CSL’11

332 A Pumping Lemma for Collapsible Pushdown Graphs of Level 2

there is a run ρ from the initial configuration to c that passes t in state q for the last time if
and only if there is an accepting run ρAS of AS on CEnc(c) such that ρAS (d) = qq,t for d
the unique node such that t = LStck(d,CEnc(c)).

In analogy to the general pumping lemma 5, we now prove a specific pumping lemma
for collapsible pushdown graphs. In order to obtain better bounds, we do not use the
automaticity of the reachability predicate. Instead, we use reachability only restricted to
pairs (q1, s1), (q2, s2) where s1 is a milestone of s2.

I Theorem 25. Let S = (Σ, Q,∆, q0) be a CPS. Let ρ0 be a run from the initial configuration
to some configuration c with len(ρ0) = l. If ρ is a run starting at c of length

len(ρ) > f3(Q,Σ, l) := |Q| · (2|Σ|+ 1)2l+2+f2(Q,Σ)

then there are infinitely many runs starting at c.

Proof. If there are i < j ≤ len(ρ) such that ρ(i) = ρ(j) then πi := ρ�[0,i] ◦(ρ�[i,j])i ◦ρ�[j,len(ρ)]
is an infinite sequence of runs starting at c.

Otherwise, the run visits more configurations than there are configurations whose encoding
has depth at most l + 2 + f2(Q,Σ). Thus, there is some i ≤ len(ρ) such that

dp(CEnc(ρ(i))) > l + 2 + f2(Q,Σ)

Set (q, s) := ρ(i). Due to Lemma 15, dp(CEnc(c)) < l + 2. Due to Corollary 18, there
is a maximal 0 ≤ j < i such that ρ(j) = (q̂,m) for some milestone m ∈ MS(s) and some
state q̂ ∈ Q such that dp(CEnc(q̂,m)) ≤ l + 2. Since m is a milestone of s, there is some
node dm ∈ CEnc(q, s) such that LStck(dm,CEnc(q, s)) = m. This implies that the left and
downward closed subtree induced by dm is Enc(m).

Using Lemma 24, q̂ and m define a state qq̂,m of A such that there is an accepting run of
A on CEnc(q, s) that labels dm with qq̂,m.

Note that LT (dm,CEnc(q, s)) is a tree of depth at most l+ 2. Hence, CEnc(q, s) contain
a subtree of depth greater than f2(Q,Σ) that does not intersect with LT (dm,CEnc(q, s)).
Since f2(Q,Σ) is a bound on the number of states of A, Lemma 4 gives an infinite set of
configurations (q, s1), (q, s2), . . . , (q, si), . . . that are accepted by A. Since the pumping does
not affect LT (dm,CEnc(q, s)), we have LT (dm,CEnc(q, s)) = LT (dm,CEnc(q, s1)) = · · · =
LT (dm,CEnc(q, si)) = . . . and the accepting run of A on CEnc(q, si) labels d by qq̂,m. Using
Lemma 24, we conclude that for each 1 ≤ i there is a run πi from the initial configuration
to (q, si) passing (q̂,m) at position ki. Recall that ρ(j) = (q̂,m). Thus, the composition
ρ�[0,j] ◦ πi�[ki,len(πi)] is a run from c to (q, si). Hence, we constructed infinitely many runs
starting at configuration c. J

5 ε-Contractions of Collapsible Pushdown Graphs of Level 2

In this section we lift the pumping lemma from the previous section to ε-contractions of
collapsible pushdown systems. Let G be a graph with labelled edges where the labels come
from the set Γ ∪ {ε}. The ε-contraction of G is then the graph G/ε that consists of the
vertices of G where v and v′ are connected by a γ-labelled edge (for γ ∈ Γ) if there is a path
from v to v′ in G such that all edges of this path are labelled by ε except for the last edge,
which is labelled by γ. We denote by `γ the relation induced by the γ-labelled edges in the
ε-contraction. From now on, we consider the transitions of a collapsible pushdown system to
be labelled with elements from some finite set Γ ∪ {ε}.

Alexander Kartzow 333

We first prove a slight variation of Theorem 22. Then we show that in every finitely
branching ε-contraction of some CPS the stack size of connected configurations cannot differ
too much. Finally, we develop the analogue of Theorem 25 for ε-contractions of CPG.

I Lemma 26. For each collapsible pushdown system S = (Σ, Q,∆, q0) and each subset
∆′ ⊆ ∆, there is a finite tree automaton A∆′ with f4 := 2 · f1(Q,Σ) many states that accepts
a tree CEnc(q′, t)⊗ CEnc(q, s) for t ∈ MS(s) if and only if there is a run ρ from the initial
configuration to (q, s) passing t at position i for the last time such that ρ(i) = (q′, t) and
ρ�[i,len(ρ)] only uses transitions from ∆′.

Proof. The automaton nondeterministically guesses the rightmost path of CEnc(q′, t). After
this path, i.e. on dom(CEnc(q, s)) \ dom(CEnc(q′, t)) and at the lexicographically greatest
node of dom(CEnc(q′, t)), it simulates the automaton A from Theorem 22 but with respect to
the transition relation ∆′. Along the rightmost path of CEnc(q′, t) (except for the maximal
node of this path), it simulates A in guessing final states for the corresponding subtrees. But
it keeps the initial state fixed to q′. Thus, the automaton looks for runs to (q, s) that only
use transitions from ∆′, but it is forced to pass t′ in state q′. J

I Corollary 27. For each collapsible pushdown system S = (Σ, Q,∆, q0) and each subset
∆′ ⊆ ∆, there is a finite tree automaton A with

f5(Q,Σ) := 5 · f0(Σ) · f0(Σ) · f4(Q,Σ)

many states that accepts a tree T if and only if T = CEnc(q′, t) ⊗ CEnc(q, s) for some
configurations (q′, t), (q, s) such that t ∈ MS(s) and such that there is a run ρ from the initial
configuration to (q, s) passing t at position i for the last time such that ρ(i) = (q′, t) and
ρ�[i,len(ρ)] only uses transitions from ∆′.

Proof. T has to consists of two components, each one from TEnc. Taking a product of two
adaptations of the Automaton from Lemma 14 we can check that T = CEnc(q′, t)⊗CEnc(q, s)
for some configurations (q′, t) and (q, s). Furthermore, taking the product with the automaton
from Lemma 21, we can ensure that t ∈ MS(s). Finally, taking the product with the
automaton from Lemma 26 yields the automaton A. J

Completely analogously to the proof of Theorem 25 we now derive a bound of the size
of stacks of configurations connected by an edge in a finitely branching ε-contraction of
collapsible pushdown graphs.

I Lemma 28. For each transition δ ∈ ∆ there is an automaton Aδ with 10 states that
accepts CEnc(q, s)⊗ CEnc(q′, s′) if and only if (q, s) `δ (q′, s′).

The proof of this lemma can be found in the long version of this article. It is obtained by
explicit construction of the automaton informally described in [8].

I Corollary 29. For each collapsible pushdown system S = (Σ, Q,∆, q0) and each transition
δ ∈ ∆, there is a finite tree automaton with f7(Σ) := 10f0(Σ) · f0(Σ) states that accepts a
tree T , if and only if T = CEnc(q, s)⊗ CEnc(q′, s′) and (q, s) `δ (q′, s′).

Proof. T has to consists of two components, each one from TEnc. Taking a product of two
adaptations of the Automaton from Lemma 14 (one for each component) and of Aδ from the
previous lemma does the job. J

We now give a bound on the branching degree of ε-contractions of collapsible pushdown
graphs.

CSL’11

334 A Pumping Lemma for Collapsible Pushdown Graphs of Level 2

I Lemma 30. Let S be some collapsible pushdown system with stack alphabet Σ and state
set Q. Set G := CPG(S)/ε. If there are configurations c′, c ∈ G such that G |= c′ `γ c and

dp(CEnc(c)) > 1 + dp(CEnc(c′)) + f7(Σ) · f5(Q,Σ)

then G is infinitely branching.

Proof. Assume that c′ `γ c in G. Let ∆′ ⊆ ∆ be the ε-labelled transitions of the CPS
S generating G. Let A′ denote the automaton of Corollary 27 with respect to S and ∆′.
Furthermore, let Aγ denote the automaton of Corollary 29. There is an automaton Â that
accepts a tree T if and only if T = CEnc(q1, s1)⊗ CEnc(q2, s2)⊗ CEnc(q3, s3) such that
1. s1 ∈ MS(s2),
2. (q1, s1) ∈ CPG(S),
3. there is a run from (q1, s1) to (q2, s2) that only uses transitions from ∆′, and
4. (q2, s2) `γ (q3, s3).
A is basically a product of A′ and Aγ . Thus, this automaton can be realised with f7(Σ) ·
f5(Q,Σ) many states.

Fix a run ρ witnessing that c′ `γ c in G. Writing (q, s) := c and ĉ := ρ(len(ρ) − 1),
Corollary 18 gives us a milestone m such that for some qm ∈ Q the automaton A accepts
CEnc(qm,m)⊗ CEnc(ĉ)⊗ CEnc(c). Furthermore,

dp(CEnc(c)) > dp(CEnc(qm,m)) + f7(Σ) · f5(Q,Σ).

Thus, we can apply the regular pumping argument to some subtree of CEnc(qm,m) ⊗
CEnc(ĉ) ⊗ CEnc(c) where the first component is undefined. This yields infinitely many
configurations c1, c2, c3, . . . such that (qm,m) `γ cj for each j ∈ N. Since ρ�[0,i] is an ε-path
from c′ to (qm,m), this implies c′ `γ cj for each j ∈ N in G. Hence, `γ in G is infinitely
branching at c′. J

I Corollary 31. Let G be the ε-contraction of some collapsible pushdown system with stack
alphabet Σ and state set Q. If G is finitely branching and if a path of length n connects the
initial configuration with c ∈ G, then

dp(CEnc(c)) ≤ 2 + n (1 + f7(Σ) · f5(Q,Σ))

The proof is by induction using the previous lemma. The straightforward adaptation of
Theorem 25 yields the following pumping lemma for ε-contractions of collapsible pushdown
graphs of level 2.

I Theorem 32. Let S = (Σ, Q,∆, q0) be a CPS. Let G := CPG(S)/ε be finitely branching.
Let ρ0 be a path from the initial configuration to some configuration c of length l in G.

If there is a path ρ starting in c such that

len(ρ) > f6(Q,Σ, l) := |Q| · (2|Σ|+ 1)2L+K

for L := 2 + l (1 + f7(Σ) · f5(Q,Σ))
and for K := 1 + f7(Σ) · f5(Q,Σ)

then there are infinitely many paths in G starting at c.

Proof. There may be i < j such that ρ(i) = ρ(j) and we can iterate ρ�[i,j] arbitrarily many
times. Otherwise, due to the length of ρ, there is some i such that

dp(CEnc(ρ(i))) > L+K ≥ dp(CEnc(ρ(0))) +K.

Analogous to the proof of Lemma 30, pumping yields runs ρ1, ρ2, . . . starting at c and ending
in pairwise different configurations of G. J

Alexander Kartzow 335

Using the same bounds, the second general pumping lemma 6 has a collapsible pushdown
version:

I Theorem 33. Let S = (Σ, Q,∆, q0) be a CPS. Let G := CPG(S)/ε be finitely branching.
Let ρ0 be a path from the initial configuration to some configuration c of length l in G.

If there are more than f6(Q,Σ, l) many configurations reachable from c then there are
infinitely many paths in G starting at c.

Again, one of the configurations reachable form c must be encoded by a tree of depth
dp(CEnc(ρ(i))) > dp(CEnc(ρ(0))) +K and we may apply the pumping argument from the
previous proof.
I Remark. There is some function f8 such that f6(Q,Σ, l) ≤ 22f8(Q,Σ)·l .

6 Applications

I Corollary 34. Let S be some CPS and G := CPG(S)/ε. It is decidable whether G is finite.

We can also use the pumping lemma in order to prove that certain graphs are not
ε-contractions of CPG.

I Example 35. Let ϕ : N→ N be an unbounded monotone function. The tree

T =
{

0i−11j ∈ {0, 1}∗ : j ≤ 22ϕ(i)·i
+ 1
}

(with left and right successor relation) is not the ε-contraction of any CPG of level 2.
Heading for a contradiction, assume there was such a CPS S. Choose k ∈ N such that

ϕ(k) ≥ f8(Q,Σ). Thus, 22ϕ(k)·k ≥ f6(Q,Σ, k) whence we may apply Theorem 32 to the path
connecting 0k−11 with 0k−11ϕ(k)k+1 and obtain infinitely many paths starting in 0k−11. But
this contradicts the definition of T .

Using the second pumping lemma, one proves analogously that the tree

T = {0n : n ∈ N} ∪ {0n1 : n ∈ N} ∪
{

0i−11j : j ≤ 22ϕ(i)·i
+ 1
}

is not the ε-contraction of any CPS of level 2.

7 Conclusions

To our knowledge, we presented the first pumping lemma for collapsible pushdown graphs of
level 2. Moreover, the result also improves Hayashi’s pumping lemma for indexed languages
[7]. An analysis of his proof shows that his pumping lemma applies to runs of level 2
pushdown systems that have length three-fold exponential in the size of the pushdown system.
Our lemma already applies to runs that have length doubly exponential in the size of the
system.

Unfortunately, our approach does not extend directly to higher levels of the collapsible
pushdown hierarchy. Higher levels are not tree-automatic. But perhaps it is possible to
represent the reachability relations of higher-order collapsible pushdown graphs by other
types of automata for which pumping lemmas exist. These could then be turned into pumping
lemmas for higher-order collapsible pushdown graphs. Another approach towards pumping
on higher-order graphs stems from the the technical tools of milestones and loops developed
in [8]. It is an interesting question whether these notions can be adapted to higher levels in
order to obtain pumping lemmas for all higher-order (collapsible) pushdown graphs.

CSL’11

336 A Pumping Lemma for Collapsible Pushdown Graphs of Level 2

Acknowledgments

I thank the anonymous referees for their very useful comments.

References
1 A. Blumensath. On the structure of graphs in the Caucal hierarchy. Theoretical Computer

Science, 400:19–45, 2008.
2 C. H. Broadbent. Private communication. September 2010.
3 A. Carayol and S. Wöhrle. The Caucal hierarchy of infinite graphs in terms of logic and

higher-order pushdown automata. In Proceedings of the 23rd Conference on Foundations
of Software Technology and Theoretical Computer Science, FSTTCS 2003, volume 2914 of
LNCS, pages 112–123. Springer, 2003.

4 H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison,
and M. Tommasi. Tree automata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr/tata, 2007. release October, 12th 2007.

5 Robert H. Gilman. A shrinking lemma for indexed languages. Theor. Comput. Sci.,
163(1&2):277–281, 1996.

6 M. Hague, A. S. Murawski, C-H. L. Ong, and O. Serre. Collapsible pushdown automata
and recursion schemes. In LICS ’08: Proceedings of the 2008 23rd Annual IEEE Symposium
on Logic in Computer Science, pages 452–461, 2008.

7 Takeshi Hayashi. On derivation trees of indexed grammars. Publ. RIMS, Kyoto Univ.,
9:61–92, 1973.

8 A. Kartzow. Collapsible pushdown graphs of level 2 are tree-automatic. In STACS 10,
volume 5 of LIPIcs, pages 501–512. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2010.

9 A. Kartzow. First-Order Model Checking On Generalisations of Pushdown Graphs. PhD
thesis, Technische Universität Darmstadt, 2011. Unpublished, submitted in December 2010.

10 T. Knapik, D. Niwinski, and P. Urzyczyn. Higher-order pushdown trees are easy. In
FOSSACS’02, volume 2303 of LNCS, pages 205–222. Springer, 2002.

11 Naoki Kobayashi. Types and higher-order recursion schemes for verification of higher-order
programs. SIGPLAN Not., 44:416–428, January 2009.

12 Pawel Parys. The pumping lemma is incorrect? unpublished, June 2010.
13 Pawel Parys. Collapse Operation Increases Expressive Power of Deterministic Higher Order

Pushdown Automata. In Thomas Schwentick and Christoph Dürr, editors, 28th Interna-
tional Symposium on Theoretical Aspects of Computer Science (STACS 2011), volume 9 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 603–614, Dagstuhl, Ger-
many, 2011. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

	Introduction
	Outline of the paper

	A Pumping Lemma for Structures with Automatic Reachability Relation
	Collapsible Pushdown Systems and Graphs
	Collapsible Pushdown Stacks of Level 2
	Collapsible Pushdown Systems and Collapsible Pushdown Graphs of Level 2
	Encoding of Configurations as Trees
	Milestones

	Pumping on Encodings of Configurations
	-Contractions of Collapsible Pushdown Graphs of Level 2
	Applications
	Conclusions

