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—— Abstract

We are interested in the following problem: given a tree automaton A and an incomplete tree
description P, does a tree T exist such that T is accepted by A and consistent with P? A tree
description is a tree-like structure which provides incomplete information about the shape of T'.
We show that this problem can be solved in polynomial time as long as A and the set of possible
arrangements that can be forced by P are fixed. We show how our result is related to an open
problem in the theory of incomplete XML information.
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1 Introduction

In [2] and [9], the authors study the problem of incomplete data in relational databases, and
classify the complexity of various computational problems associated with incompleteness,
like consistency. These results have become very influential, and are now used for many
practical applications with integration and exchange in relational databases [1, 8, 12].

But what about databases with more structure than a relational database, for example,
XML documents [14]? Unlike a relational database, which is just a collection of tables,
an XML document is ordered in a tree-like fashion. There has been some early work on
incomplete information in XML [3, 10]. The paper [4] aims to provide a classification of
problems associated with incompleteness for XML documents, like [2] and [9] did for relational
databases.

Elements that can appear in XML documents are defined with DTDs [14]. A DTD
(document type definition) is a set of declarations (a kind of a grammar) that define which
elements may appear in an XML document, and how they are related. For example, consider
a DTD for a database which describes the structure of employment in a company. Such a
company might form a group; the description of each group might start with a name or not,
followed by a description of a leader or not, followed by descriptions of persons employed
in this group and smaller groups which are parts of the given group. The description of a
leader consists of a description of a person. The description of a person consist of a name.
The XML document below would be consistent with that DTD.
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Trees in trees

<!DOCTYPE company [...]>
<company>
<group>

<name>Example Co.</name>

<leader>
<person><name>Smith</name></person>
</leader>

<group>
<name>sales</name>
<leader>

<person><name>Baker</name></person>
</leader>

<person><name>Jones</name></person>
</group>

<group>
<name>research</name>
<person><name>Black</name></person>
<person><name>White</name></person>
</group>

</group>

</company>

An incomplete description of such a document might, for example, state that our document
X contains four distinct nodes Ny, No, N3, Ny such that Ny is the root, N5 is a child of
N1, N3 is a descendant of Ny, Ny is a descendant of Ny, and N3 is a group and Ny is a
person. The document above is consistent with this incomplete description (take Nj to be

the description of the company, Ns to be the main group, N3 to be the research group, and
N4 to be Black).

person

Note that this information is incomplete on several levels. It is possible that there are
nodes about which we have no information at all (open world assumption). We don’t know
how many levels are between Ny and N3. In the assignment above, Ny (Black) was a child of
N3 (research), although it was not explicitly stated in the description. In general, it would
be also possible that Ny could be a descendant of Ny—although our DTD forbids this, since
a person cannot contain a group as a descendant.

[4] considers several types of such incomplete tree descriptions; we are interested in
incomplete DOM-trees which enforce the mapping from the incomplete tree description to
the tree to be injective, i.e., N, we know that is not equal to Ny or N3. Four azes are allowed
to appear in the incomplete description: next sibling, sibling, child, descendant.

One of the problems investigated by [4] is the following:

» Problem 1.1. Let D be a fixed DTD. Given an incomplete tree description ¢, is there an
XML document X which is consistent with both D and t?
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Theorem 5.28 from [4] shows that this consistency problem is in PTIME for incomplete
tree descriptions which do not use the descendant axis (only child, sibling, and next sibling).
The case whether we can extend the result to also allow tree descriptions using this relation
has been left open. Even the case where the tree description allows the descendant relation
only on the topmost level and the shape of the descendant trees was completely fixed was an
open question.

In this paper, we show how to solve this special case, and then show a polynomial
algorithm for almost solving Problem 1.1. We say “almost”, because there is a subtle
difference between our and [4] understanding of when a tree is consistent with an incomplete
description. However, we believe that our definition is also well motivated: although there
are trees matching a given description according to [4] and not matching according to us,
they are quite unnatural.

However, we prefer to work with theoretically more pure notions, rather than XML
documents. Thus, instead of XML, we deal with binary trees with vertices labelled by
elements of alphabet ¥, and instead of DTDs we deal with finite automata. The second
change makes our results more general (each DTD corresponds to a finite automaton, but
automata are more general than DTDs); another generalization is that we don’t use the
specific four axes listed above, but rather allow them to be defined using a regular expression.
Still, we need to choose the axes from a fixed language £ to obtain good algorithmic results.
Our generalization from XML to generic trees also allows us to use our results for hierarchical
data other than XML documents; for example, we could want to know whether a correct
program in some programming language (or, more generally, a word in a context free language)
exists that includes given keywords and symbols in given structural relationships; or whether
there is an evolution of a branching process which exhibits given behaviors.

The paper is structured as follows. In Section 2 we provide the definitions required
to understand the problem. In Section 3 we show how to solve the special case above in
polynomial time (Theorem 3.2). This is used to explain techniques which are then used in
Section 4 to solve the general problem for any tree descriptions (Theorem 4.3). In section 5
we show how to translate [4]’s problem from the XML world to the world of automata over
binary trees, and point out the subtle difference that could not be solved with our methods.

For completeness, in Section 6 we show that the assumptions about the fixed size of
automaton and the fixed set of languages cannot be lifted from Theorems 3.2 and 4.3. The
problems become NP complete without these assumptions.

2 Preliminaries

An unlabeled tree is a finite 7 C {0, 1}* such that whenever uw € 7, also u € 7. The empty
word € is the root of the tree, w0 and wl are the children of w, and w € 7 is a leaf iff
w0, wl & 7.

For a tree 7, by port(7) we denote the set of € {0,1}* such that x ¢ 7 and all proper
prefixes of x are in 7. In other words, port(7) is the set of x such that 7 U {x} is also a tree.
The elements of port(7) are called ports; this name emphasizes our open world assumption —
we don’t treat these locations as places where the tree ends, but rather as variables: the tree
can be extended (“grown”) in arbitrary way from each port. In other words, our trees are
similar to contexts used in the algebraic theory of trees ([5]), except that ports appear in
every applicable location, not in a single one.

A tree over ¥ is a function T : 7 — 3, where 7 is an unlabeled tree. By port(T) we
denote port(dom(T)).
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Let T and U be two trees over 3. We say that T' is an extension of U (T C U) iff for
each u € dom(U) we have u € dom(T") and T'(u) = U(u). We say that U is a full subtree of
T at offset w iff for each u we have that u € dom(U) iff wu € dom(T), and U(u) = T'(wu).
We say that U is an inner subtree of T at offset w iff an extension of U is a full subtree of T’
at offset w. If Uy,Us, ..., U, are inner subtrees of T" at offsets wy, ws, ..., wy respectively,
we say that they are disjoint inner subtrees of T iff they share no common node, i.e., the
sets w;dom(U;) are disjoint.

A (nondeterministic tree) automaton is a tuple A = (3,Q,qz,d), where ¢o € Q and
0CYXQXxQXQ.

Let T be a tree over X, and A = (X, @, qr,9) be an automaton. A run of A over T is a
tree p over @ such that:

dom(p) = dom(T") U port(T),
For each w € dom(T') we have (T'(w), p(w), p(w0), p(wl)) € 0.

A run is accepting iff p(e) = q;. We say that a tree T is accepted by A iff there is an
accepting run of A on T'. Sets of all trees accepted by some automaton A are called regular
languages of trees, and can be equivalently defined using different kinds of automata, logic,
algebra, etc.

This definition is a bit different from the usual one (e.g. [6]): in the usual definition, we
would have a set of final states F, and force p(z) € F for each x € port(T"). As mentioned
above, in our intentions (open world assumption) ports are places where the tree can extended
in any way. If we want to make sure that our “incomplete” trees can be extended to trees
which are accepted according to the usual definition, it is enough to assume that each state
of A is productive, i.e., there is an accepting run on some tree which uses this state. Also,
if we want to block some port x so that the tree cannot be extended there and the run p
ends in a final state in this port, it is enough to add one extra character EOT to ¥ and one
extra state ggor to @, and a transition (EOT, ¢, gror, gror) for each ¢ € F. By putting
T(x) = EOT we ensure that p(z) € F and p(z0) = p(z1) = gror, and since there is no
transition with ggoT on top, we can no longer extend the tree at 0 or x1 without losing
acceptance. This allows us to simulate the usual definition with ours.

We will also use trees in their graph theoretical meaning. A rooted tree is a structure
(V,E,vg), where E CV x V and vg € V, such that for each v € V there is exactly one path
from vg to v in the graph (V, E). (This path is trivial for v = vr.) By vE we denote the set
of vertices w € V such that (v,w) € E.

3 Special case

Let A= (%,Q,q1,9) be a fixed automaton on binary trees over alphabet X.

» Problem 3.1. given trees Uy,...,Uy. Decide whether there is a tree T' accepted by A
which includes Uy, ..., Uy as disjoint inner subtrees, and one of the trees appears at offset e.

The assumption that one of the trees appears at offset € is to simplify the presentation
by eliminating some of the special cases connected with the root. If we don’t want such an
assumption, it is enough to add an empty tree to our sequence.

Note that although the trees are disjoint, it is possible that e.g. Uy will be connected to
a port of Us. It is also possible that Us is not directly connected to a port of Us, but there is
a path of vertices in between which do not belong to any U;.

» Theorem 3.2. Assuming that |Q| is fized, the problem 3.1 above can be solved in time
polynomial in |X| and the size of trees Uy,...,Un.
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Proposition 6.1 in Section 6 below shows that the problem becomes NP complete without
the assumption that |Q| is fixed.

We will present the proof of the theorem above in the following way. We will show a
sequence of simpler algorithms; for each of them, we will identify the major problem with
it and show how to fix it. This sequence will converge to a correct algorithm running in
deterministic polynomial time.

We will start with some additional definitions.

3.1 Multiplicity vectors

We call functions f : Q@ — Z multiplicity vectors. For x € Z, we say f > x iff f(q) > x for
all ¢ € Q; f < x is defined similarly. By [q] we denote the multiplicity vector such that
[q](¢) = 1,[q](r) = 0 for r # q. For a set of multiplicity vectors S, by S[g > 0] we denote
{f€S: flqg) >0} If S; and S are sets of multiplicity vectors, S1 +Sa ={f1 + fo: f1 €
Sl,fz S SQ}, and S; — 53 = {f1 — f2 : f1 S Sl,fz S SQ}.

We say that a tree T realizes a multiplicity vector f from ¢ € @ iff f > 0 and there is a
valid run p of A over T such that for each state r, r appears in the ports of T at least f(r)
times (i.e., the cardinality of p=1(r) N port(7T) is at least f(r)), and p(e) = q.

We denote by A(U, g,n) the set of multiplicity vectors f such that f < n and there is a
tree T' O U which realizes f from gq.

» Lemma 3.3. Sets A(U,q,n) can be calculated in time polynomial in |U|, S, and n.

Proof. We start with calculating A((, g, n) for each q.
Define the sequence of sets of multiplicity vectors A;(g,n) as follows:

Ao(g,n) ={f:0<f<n,f<I[q}
Ait1(g,n) is a set of f such that 0 < f < n and there exist f1 € A;(q1,n) and f5 €
A;(g2,n) such that (z,q,q1,¢2) € § and f < f1 + fo.

» Proposition 3.4. If A;(¢,n) = A;11(g,n) for each ¢ € Q, then A(D, q,n) = A;(q,n).

The proof is straightforward. This proposition allows us to calculate A((, g, n) for each ¢
and n inductively.

» Proposition 3.5. Let U be a tree such that U; and Us are full subtrees of U at offsets 0
and 1, respectively. Then A(U, g, n) is the set of f such that there exist f; € A(U;, q;,n) for
i = 1,2 such that (U(€),q,q1,q92) € 6 and f < f1 + fo.

Again, the proof is straightforward. This proposition allows us to calculate A(U, q,n) by
induction over subtrees of U. |

3.2 Algorithm |

We start with a strongly non-deterministic algorithm.

1. We guess a permutation of our set of trees: Uyq,,Uqg,,Uds, - ..,Uqy. This specifies the
order of subtrees in our goal tree T'. If U; appears at offset w; in the goal tree T, and w;
is a prefix of w;, then the tree U; will appear before U; in this permutation. If w; and
w; are incomparable, they can be ordered arbitrarily.

2. f:=[q1]. At each stage of our algorithm, f is the multiplicity vector which says how
many occurrences of each state we have in our ports.

3. fori:=1to N:
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4. We guess q € Q.

5. If f(g) =0, then we fail.

6. f=f—-1d

7. f:= f + a, where a is one of the elements of A(Uy,,q, N).
8. We accept.

In our loop, we fill one of our ports in some state ¢ with the tree Uy,. This means we
used one of the ports specified by f(q), but Uy, gives us new ports according to A(Uy,,q, N).
It is enough to use multiplicity vectors f such that f < N because we will only have to use
N states.

3.3 Algorithm Il

Except for Step 1, all the steps of Algorithm I are easy to determinize in polynomial time.
Instead of analyzing one choice, we construct the sets of all possible choices.

1. We guess a permutation of our set of trees, just like in Algorithm I.
2. 8= {larl}
3. fori:=1to N:
4. P =
5. for g € Q do
6. R =5,
7. R := R[q > 0]; // use only vectors which had a port with state ¢
8. R:= R —[q]; // fill this port
9. R:= R+ A(Uy,,q); // we get new states in ports below Uy,
10. P:=PUR;
11. S:=P;
12. We accept.

If in the end we have obtained a non-empty set S, we have won (constructed a tree
which contains our required subtrees). If not, it probably means that we have guessed the
permutation incorrectly.

Now, our goal is to avoid guessing the permutation.

3.4 Algorithm Ill

In Algorithm III we do not guess the permutation. Instead, we do not care if we have used
up a state which we have not obtained yet — i.e., we remove Step 7 from Algorithm II, and
allow our multiplicity vectors to go negative.

At the end of our algorithm we check whether S has an element f > 0. If no, it means
that we had no chance — whatever permutation we would pick in Algorithm IT or Algorithm
I, we would get an empty set at the end. What if S contains a non-negative element? This
does not yet mean that the tree exists, because it is still possible that it was impossible to
do a good ordering. For example, suppose we have two states ¢ and r which are unreachable
from gy, U; is an empty tree, and the tree U realizes [g] from r and Us realizes [r] from g.
Algorithm IIT will accept, even if the trees Us and Usz can only be used in states which are
not reachable from g;.
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3.5 Algorithm IV

Thus, we need to make sure that a correct permutation exists. For this, we use the following
lemma:

» Lemma 3.6. Fori=1...N, let f; € A(U;,q;, N). Then a permutation of trees for the
Algorithm I which generates a positive answer, such that in step 3 for each i we choose to
use state qq, as q and multiplicity vector fq, as a, exists iff the following two conditions are
satisfied:

Euler condition: [qr] +>_(fi — [¢:]) >0
Connectedness: Let G = (V, E) be the graph such that V.= {q; : i € {1...n}}, and
(p,q) € E iff there exists an i such that p = q; and f;(q) > 0. Then there must be a path

from qr to each state in V. edge p — q. Then there must be a path from qr to each state
mnV.

This lemma is a generalization of the classic Euler theorem about a condition for existence
of an Euler path in a graph. Also the proof generalizes the proof of Euler’s result. This
technique is essentially equivalent to Theorem 3.1 from [7] and Proposition 3 from [11].

Proof. We try to build the tree in an arbitrary way, filling up ports with our trees whenever
the state matches. If we end up with all trees used, we are done. Otherwise, there is some
tree U from ry which cannot be inserted because all ports of type rg have been already used.
We can assume that ry was already used as a connecting state in our construction; otherwise,
there would be no connection between the used and unused trees, which means that the
connectedness condition is not satisfied. We construct a sequence of states rg,71,72,...,"m
and of unused trees U;,,U;,, ..., such that ¢;, = ri41 and f;, (%) > 0, until we no longer can
find an unused tree U;,, with f; () > 0. This construction must end in the state r,,, = ro;
if it ended in any other state, it would violate the Euler condition (the state r,, would be
used in the root more times that it would be produced in a port). We find the place in our
.., U;, there. We
continue this operation until all trees are used. <

construction where rq is used for connection, and insert the trees U;

m—17"

Algorithm III checked for the Euler condition, but we have to modify it to also check
for connectedness. This can be done by choosing the (connected) graph G, or even better,
guessing the spanning tree of G. Since V C @ and |Q)| is fixed, we have a fixed number of
possible spanning trees. Thus, we modify Algorithm III in the following way:

1. We start by guessing a rooted tree 7 = (V, E, qr). (A fixed number of possible guesses.)

2. Now, for each edge e € E we guess i., the index of the tree which is forced to realize
this edge. (Thus, we have N IVI=1 possible guesses, which again is polynomial.)

3. We execute Algorithm III, except that in step 5, if i = i(,, 4,) for some e € F, then we
use only ¢1 as ¢, and in general we can only use states from V; and in step 9 we restrict
A(tq,,q,n) to multiplicity vectors f such that f(g2) > 0.

Algorithm IV is correct and works in deterministic polynomial time (when guesses are
replaced by looping over the whole subset).
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4 Incomplete tree descriptions

In this section we generalize the results from the section below to a case where we can force
the trees U; to appear in the result tree in a specific pattern.

As in the previous section, let A = (2, Q, gz, 9) be a fixed tree automaton over X. Also
let let £ be a finite set of regular (word) languages over {0, 1}.

An incomplete tree description, or a pattern for short, is a P = (VF, EF py,C, L),
where:

(VP EP pg) is a rooted tree,
C: VP — P(X) assigns a set of possible elements of alphabet to each subpattern,
L : EY — L assigns one of the languages in £ to each edge of our tree.

For p € V¥ P[p] is the subpattern obtained from P by moving the root py to p and
restricting V7 to vertices accessible from p.

» Definition 4.1. A tree T matches an incomplete tree description P iff T'(¢) € ¢(P), and
for each p € poET, a tree U, matching P[p] is an inner subtree of T' at offset w,, # ¢, and
they are disjoint inner subtrees.

» Problem 4.2. Given an incomplete tree description P, is there a tree T accepted by A
which matches P?

Note that the set of trees which matches a given incomplete description P is a regular
language of trees; and an intersection of two regular languages is also a regular language.
However, an automaton recognizing trees consistent with P would be of size exponential in
|P|, so such a view is not practical for us.

» Theorem 4.3. Let A and L be fized. Problem 4.2 is solvable in time polynomial in the
size of P.

Propositions 6.1 and 6.2 in Section 6 below show that the problem becomes NP complete
without the assumption that A4 and L are fixed, respectively.

Note that the Problem 3.1 is the special case of Problem 4.2 where £ = {0,1, (0 + 1)*}
and (0 + 1)* is only allowed to appear at edges starting in py (not counting some minor
differences regarding the root of the result tree).

Proof. For words u,v € {0,1}*, we say that u = v iff for each two words ¢,w € {0,1}* and
each L € £ we have tuw € L iff tvw € L. It is well known that the relation = has a finite
index. Let M be the set of equivalence classes of =; let [w] € M be the equivalence class of a
word w € {0,1}*. M is equipped with a concatenation operation given by [w1][ws] = [wiws).
Fora L € L, let [L] = {[w] : w € L}; note that for each m € M either m C L or m is disjoint
with L. The set M is called the syntactic monoid of L (see e.g. [13]; although syntactic
monoids are more commonly known for single languages, our extension of this notion to a
finite family of languages is quite obvious).

Let P be an incomplete tree description, and N = |P)|.

We will need to extend our definition of multiplicity vectors to take the elements of
M into account together with states. An extended multiplicity vector (EMV) is a
function f : Q@ x M — Z. We say that a tree T realizes an EMV f from ¢ € Q iff
there is a valid run p of A over T such that p(e) = ¢, and for each r € Q and m € M,
|p=1(r) Nport(T) N'm| > f(r,m). We define all operations on EMVs and sets of EMVs in
the same way as for multiplicity vectors.
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If fis an EMV and m € M we denote by mf the EMV such that mf(qg,m;) =
Lommma=m, (@ m2)-

For p € Vp and a state ¢ € @, we denote by A(p,q,n) the set of EMVs f such that
0 < f < n, and there is a tree U which matches P[p] and realizes f from g.

Now, it is enough to show that A(pg,q,n) # 0. Thus, all we need is the following lemma:

» Lemma 4.4. The set A(p,q,n), where n < N, can be calculated in polynomial time for
each p € Vp.

Thus, to check whether a tree accepted by A and matching P exists, it is enough to check
whether A(po, qr,0) # 0. <

To prove 4.4 we will need one more technical lemma:

» Lemma 4.5. Let g € Q and v € . Let set A°(z,q,n) be the set of EMVs f which are
realized from q by a tree which has x in its root, and 0 < f < n. The set A°(x,q,n) (where
n < N) can then be calculated in polynomial time.

Proof. Let AJ(x,q,n) be the set of EMVs which can be realized by a tree which has z in its
root and ports in both of its children.

Let A}, (2,q,n) be the set of EMVs f such that either f € Af(z,q,n), or the following
conditions are satisfied for some EMVs fy and f, states qo,q1 € @, and letters zg, 1 € X:

f<fot+hi
fo € [01A% (0, g0, n)
f1 € 1AL (z1,q1,n)
0<f<n

It is straightforward to check that the sequence A9 (z,q,n) is increasing for each z, g, n,
and its limit is A%(z, ¢, n). <

Proof of Lemma 4.4. We prove the lemma by induction over subpatterns. Let n’ = n+|pEp|.
From inductive hypothesis we can calculate the A(p’,r,n) for each p’ € pEp and each r € Q.

LA=0

. for each rooted tree 7 = (V7, E7,v7) such that V™ C @ x M and v = (g, [¢]):

. for each assignment « : ET — pEp U {p}:

B = U:L’EC(P) Ao(x, q, n/)

Restricty (B, (¢, [€]), )

For each p’ € pEp:

For each (r,m) € Q x [L(p,p )] NVT:

A:=mAp,r,n')
Restrictq (A, (r,m),p’)
let B:=B—[(r,m)]+A

Let A:=AU{feB:0< f<n}

. return A

©ONSM R WNR

e
N = o

Restricty (B, (¢, m),p) is defined as follows:

1. For each ((q1,m1), (g2, m2)) € a~*(p):
2. if (q1,m1) # (g,m) then B := 0
3. B := B[(QQ,mz) >0
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This algorithm is based on a idea which is very similar to that of Algorithm IV. The
differences is that it takes the syntactic monoid M into account, and calculates the EMV
instead of non-emptiness. <

5 Application to XML

In this section, we compare the problem solved in Theorem 4.3 to the open question from
[4]: is it possible to remove the condition of |*-freeness from Theorem 5.287 In other words,
for a fixed DTD D, and an incomplete DOM-tree t, is it possible to find out whether there
exists an XML document X which satisfies D and is consistent with ¢, in time polynomial in
size of t7

It is beyond scope of this paper to include the full definition of XML documents, DTDs,
and incomplete DOM trees, thus we just give examples and list the important differences:

= XML documents are trees, but they are unranked trees (with a sibling ordering), not
binary ones. However, we can use the standard encoding of unranked trees in binary
trees: if a vertex v of the unranked tree is assigned w in our binary tree, then the first
child of v (if any) is assigned w0, and the next sibling of v (if any) is assigned w1. This
allows us to convert any unranked tree (or, more accurately, an unranked forest) to a
binary tree, and vice versa. The following picture shows the XML document from the
introduction, represented as a binary tree.

= In [4], the question is whether a tree consistent with a given DTD exists. Essentially, for
each type of a node, a DTD (document type definition) gives a regular expression which
describes which sequences of node types can be allowed as children of a node of given
type. For example, we can use the following DTD to define valid company descriptions:

<!ELEMENT company (group)>

<!ELEMENT group (name? leader? (group|person)*)>
<!ELEMENT leader (person)>

<!ELEMENT person (name)>

<!ELEMENT name (#PCDATA)>
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In our results, we use tree automata instead of DTDs. Our result is more general, since
tree automata can verify whether a tree is consistent with a DTD, but not the other way
around — tree automata are more powerful. Properties such as if a group has a leader and
only one subgroup, then this subgroup cannot have a leader cannot be easily described
with a DTD, but can be described with an automaton.

= Incomplete DOM-trees allow using markings: in terms of patterns, each subpattern can
have marking which forces it to appear in a specific location, which is one of the following:
root, leaf, first child, last child. These markings can be easily checked by extending the
automaton A and the alphabet X, or by enforcing EOT on the applicable child, so our
result covers this.

= Subpatterns are allowed to have only one of the following relations to their bigger nodes:
next sibling, younger sibling, child, descendant. This corresponds to picking a language 1,
1*, 01*, 0(0 4+ 1)*, respectively, as L(p,p’). Thus, our result again generalizes the XML
case.

= The last difference cannot be easily solved with our means. In case of [4], a tree T is
considered to match pattern P if there is an injective mapping ¢ from Vp to vertices

of T such that for each edge (p1,p2) € Ep we have ¢(p2) = ¢(p1)v where v € L(p1, p2).

There is a subtle difference with our definition. Consider again the pattern from the
introduction (on the left), and the following tree (on the right):

Ny
person

Is the tree to the right consistent with the pattern on the left? According to the definition
from [4], yes (¢(v) is the node of the tree which is labelled with the same N; as v).
According to our definition, no: the inner subtree which matches the subpattern rooted
at Ny would have to include N4, which means that it would not be disjoint with the
inner subtree which matches the subpattern N4. This is the only case where there is a
difference: if N, is below N3, above Ny, between Ny and N3, or below N but not above
N3, then the tree matches the description according to both definitions.

In general the situation can be more complicated (there could be long sequences of
descendants which the definition from [4] would allow to interleave in arbitrary ways). We
don’t see how to use inductive reasoning to exactly solve the case from [4]. However, we
think that it is not natural to interleave vertices which correspond to different subpatterns,
and for this reason both definitions are motivated equally well.
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6 Hardness results

In this section we show that the assumptions about the fixed size of () and £ cannot be
removed from Theorems 3.2 and 4.3.

» Proposition 6.1. Without assumption that |@] is fixed, Problem 1 is NP complete, even in
the word case, and when all tress U; contain only one letter.

This has been essentially proven in [4]; we provide a short proof for completeness.

Proof. The problem is in NP because the witness must be polynomial. We reduce the
problem of CNF-SAT satisfiability to Problem 1. Let ¢ = C1 ACa A ... A C,, be a CNF
formula, with variables x1, ..., x,,. Our language will be ¥ = {x,C1,...,C,}. For each z;
our automaton contains two paths, one for x; and one for —z;; on each path we accept a letter
corresponding to all clauses that are satisfied by choosing given literal. Tree U; asks whether
C; appears anywhere in the resulting word. The following picture shows the automaton
used to decide whether a formula ¢ = C; A Cy A C5 is satisfiable, where C; = z1 V 9,
Cy = -z V g, and C3 = x1 V s,

Ch

<

Note that we could get a more straightforward reduction from the Hamiltonian circuit
problem if we could say that the result tree T is covered by U;s completely. After a small
modification, our technique allows to solve Problems 3.1 and 4.2 even in this case (or in the
case where we have a subset A C Y and labels from A are only allowed to appear when
explicitly requested by the description).

Also note that we could encode the reduction from the proof of Proposition 6.1 in a two
letter alphabet, but then the trees (or word) U; need to be longer. Restricting to both an
alphabet of fixed size and trees U; of size 1 again yields a polynomial algorithm (which is
similar to one given in Lemma 3.3, but we count the number of occurrences of each label,
not each state; a similar problem has been solved in [11]).

» Proposition 6.2. Without assumption that £ is fixed, Problem 2 is NP complete, even for
a very simple (fixed) automaton (|o| = 1,|Q| = 2, || = 2), and incomplete tree descriptions
of depth 2 (i.e., consisting just of a root and its direct subpatterns).

Proof. Our automaton says that the tree consists of a single path. Thus, we have X =
{a},Q ={ar,an'},0 = {(a,q1,491,9~), (a,q1, 9N, 1)}

Again, the problem is in NP because the witness must be polynomial, and we prove
hardness by reducing CNF satisfiability. Let ¢ = C1 ACy A ... A C, be a CNF formula, with
variables z1,...,%,. Let D; be the set of sequences of m bits S such that C; is satisfied
when z; is satisfied iff S; = 1. The subpattern F; says there is a vertex labeled with a at
position D;{0 + 1}*; this regular language can be defined in polynomial size (if defined as a
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regular expression or a DFA; the syntactic monoid is of exponential size, though). Since the
tree must have only one path, all D; parts much correspond to the same word, which means
that all C; are satisfiable simultaneously. <

We don’t know whether the problem is already NP complete for a trivial automaton.
However, if we use the injective definition of consistence with an incomplete description
from [4], and a trivial automaton, then the problem is again NP complete in the word case.
Indeed, we can reduce the 3-CNF satisfiability problem: for each of the m variables we have
a subpattern p;, and L(pg,p;) = 1™ + 19™*% putting the tree matching the subpattern at
offset 1™ means that x; is false, and offset 1° %% means that z; is true. Then, for each clause
we add additional subpatterns to respective p;’s, so that if the three variables have been
given the only assignment which does not satisfy the clause, we have to fit three different
offsets into two slots (choosing any other assignment gives us more space). Note that the
syntactic monoid M — even the one which recognizes all languages L at once — is still of
polynomial size in this case.

7 Conclusion

We have shown how to determine in polynomial time whether there exists a tree which is
accepted by the given automaton A and is consistent with given incomplete description P,
assuming that both the automaton A and the set of possible axes in P are fixed. This brings
us closer to a complete understanding of the consistence problem for XML documents [4]
and other hierarchical data. Although our goal was to improve the results of [4], we had to
use another definition of when a tree matches a incomplete description in order to make
our method work. Our definition differs in just one subtle detail — while the original one
allowed several branches of the incomplete description to be mixed together and appear as a
single branch in the result tree, our does not allow that — they can become a single branch,
but the tree matching one of the subpatterns must completely precede the tree matching
other subpatterns, no mixing is allowed. We believe that such mixing is not natural, so our
result is also interesting. Still, the original consistency problem, for the original definition,
remains open.

One of techniques we have been using is Lemma 3.6, which is essentially the classical Euler
theorem about existence of Euler path, generalized to the case where an “edge” can have
many endpoints. This technique has been also used recently in [11] (and also less recently in
[7]). We believe that it is worth investigating whether this method has more applications for
various kinds of branching structures in automata theory and computer science in general.
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