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Abstract
Independence between two sets of random variables is a well-known relation in probability theory.
Its origins trace back to Abraham de Moivre’s work in the 18th century. The propositional theory
of this relation was axiomatized by Geiger, Paz, and Pearl.

Sutherland introduced a relation in information flow theory that later became known as “non-
deducibility.” Subsequently, the first two authors generalized this relation from a relation between
two arguments to a relation between two sets of arguments and proved that it is completely de-
scribed by essentially the same axioms as independence in probability theory.

This paper considers a non-interference relation between two groups of concurrent processes
sharing common resources. Two such groups are called non-interfering if, when executed concur-
rently, the only way for them to reach deadlock is for one of the groups to deadlock internally. The
paper shows that a complete axiomatization of this relation is given by the same Geiger-Paz-Pearl
axioms.
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1 Introduction

In this paper, we show that the same logical principles describe independence in three very
different domains: probability, information flow, and concurrency.

1.1 Independence in Probability Theory
In probability theory, two events are called independent if the probability of their intersection
is equal to the product of their probabilities. It is believed [6] that this notion was first
introduced by de Moivre [2, 3]. If A = {a1, . . . , an} and B = {b1, . . . , bm} are two disjoint
sets of random variables with finite ranges of values, then these two sets of variables are called
independent if for any values v1, . . . , vn and any values w1, . . . , wm, events

∧
i≤n(ai = vi) and∧

i≤m(bi = wi) are independent. We denote this relation by A ‖ B. This definition can be
generalized to independence of sets of variables with infinite ranges through the independence
of appropriate σ-algebras.

A complete axiomatization of propositional properties of the independence relation
between two sets of random variables was given by Geiger, Paz, and Pearl1 [8]:

1 The axiom names shown here are ours.
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1. Empty Set: A ‖ ∅,
2. Symmetry: A ‖ B → B ‖ A,
3. Monotonicity: A ‖ B,C → A ‖ B,
4. Exchange: A,B ‖ C → (A ‖ B → A ‖ B,C),
where here and everywhere below A,B means the union of sets A and B. Furthermore,
Studený [14] showed that conditional probabilistic independence does not have a complete
finite axiomatization.

1.2 Independence in Information Flow
Sutherland [15] introduced a relation between two pieces of information, which we will
call “secrets”, that later became known as the “nondeducibility” relation. Two secrets
are in this relation if any possible value of the first secret is consistent with any possible
value of the second secret. More and Naumov [13] generalized this relation to a relation
A ‖ B between two sets of secrets and called it independence: sets of secrets A and B are
independent if each possible combination of the values of secrets in A is consistent with each
possible combination of the values of secrets in B. This relation also satisfies the Empty Set,
Symmetry, Monotonicity, and Exchange axioms given above.

Describing the probabilistic semantics of relation A ‖ B, Geiger, Paz, and Pearl [8]
assumed that sets A and B are disjoint since independence of a variable from itself is not
a very intuitive idea. Under More and Naumov’s semantics of secrets [13], however, A ‖ A
means that all secrets in set A have constant values which are known to everyone. More and
Naumov called such secrets “public knowledge” and considered the relation A ‖ B on sets of
secrets where sets A and B are not necessary disjoint. They introduced a logical system that
consists of the above Empty Set, Symmetry, Monotonicity, and Exchange axioms, as well as
the following additional axiom:
5. Public Knowledge: A ‖ A→ (B ‖ C → A,B ‖ C).
They proved the completeness of this system with respect to a semantics of secrets. By
analyzing their completeness proof, one can easily observe that if sets A and B are assumed
to be disjoint, then the original four-axiom system of Geiger, Paz, and Pearl is complete with
respect to the same semantics of secrets.

Cohen [1] presented a related notion called strong dependence. More recently, Halpern
and O’Neill [9] introduced f -secrecy to reason about multiparty protocols. In our notation, f -
secrecy is a version of the nondeducibility predicate whose left or right side contains a certain
function of the secret rather than the secret itself. More and Naumov also axiomatized a
variation of the independence relation between secrets over graphs [11, 5] and hypergraphs [12].

1.3 Independence in Concurrency Theory

rα: 

rβ: 

Figure 1 Two interfer-
ing processes.

In this paper, we propose a third semantics for the Geiger-Paz-Pearl
axioms of independence. Under this semantics, independence is
interpreted as “non-interference” between two sets of concurrent
processes. Suppose that α and β are two such processes. We say
that these processes interfere if they can deadlock when executed
together. That is, there is a reachable state in which neither process
can make a transition to another state, but at least one of the two
processes can make a transition if the other process is not present.

One of the simplest examples of two such processes α and β is shown in Figure 1. Processes
α and β both have initial states that require no resources and a second state in which the



Sara Miner More, Pavel Naumov, and Benjamin Sapp 445

process requires a resource r.
Suppose that process α makes a transition from the initial state to the second state.

Then the whole system reaches deadlock although process β still would be able to make a
transition in the absence of process α.

r

s

r,sα:

s

t

s,tβ:

t

r

t,rγ:

Figure 2 Three dining philosophers.

In this paper we will study the relation A ‖ B
between two sets of processes A and B. We will
say that a set of processes A interferes with a
set of processes B if these two sets can reach a
deadlocked state where either set A or set B is
not internally deadlocked.

For example, consider a variation of Dijkstra’s
dining philosopher problem depicted in Figure 2.
It consists of three processes α, β, and γ, rep-
resenting three dining philosophers. Each philo-
sopher has access to two out of three resources
r, s, and t, representing three forks in the din-
ing philosophers problem. Each philosopher can
acquire its two resources in any order, but needs
both of them in order to “eat”. Once a philo-
sopher becomes full, he leaves the table and the
process terminates.2

Let us first consider the concurrent execution
of just two of these processes: α and β. Of course, if process α, for example, acquires resource
s, then process β will need to wait until this resource is released before it will be able to
finish. However, note that in any state of the composition of these two processes, at least one
of the processes can make a transition, until both processes arrive at their respective final
states. Thus, processes α and β do not interfere. We denote this non-interference by α ‖ β.

The situation changes when all three processes are executed concurrently. If process α
acquires resource r, process β acquires resource s, and process γ acquires resource t, then the
system enters a deadlocked state in which none of the processes can make a transition. Yet,
note that each process running alone can make a transition. In fact, any pair of processes
running concurrently can make a transition in the absence of the third process. This means,
for example, that the single process α interferes with the set of processes {β, γ}. In our
notation, this can be expressed as ¬(α ‖ β, γ).

The main technical results of this paper are the soundness and completeness of the
Geiger-Paz-Pearl logical system with respect to the non-interference semantics of concurrent
processes sketched above. The significant implication of these results is that the same non-
trivial set of axioms captures the properties of independence in three very different settings:
probability, information flow, and concurrency.

2 Semantics

In order to prove formal results about process interference, we need to specify a mathematical
model of concurrency. A number of models and formalisms for concurrent systems have been

2 This is the form in which, with five philosophers rather than three, the problem was described by
Hoare [10]. In Dijkstra’s original version, “the life of a philosopher consists of an alternation of thinking
and eating” ([4], p. 131), and, thus, graphs representing philosophers are cyclic.

CSL’11
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developed. Among them are Petri nets, I/O automata, bigraphs, µ-calculus, and process
calculi such as CCS, LOTOS, CADP, and Concurrency Workbench. (See, for example,
Garavel [7], for a more recent review). Most of these were designed to be expressive enough
to capture, at least potentially, reasoning about real-world systems. Since our ultimate goal is
the completeness theorem, the less expressive our definition of concurrency, the stronger our
result. Thus, instead of choosing one of the existing formalisms, we identified the minimal
formalism sufficient for our proof of completeness. Specifically, we have chosen to define a
process as a finite directed acyclic graph in which vertices are labeled by sets of resources.
Figures 1 and 2 above depict examples of such processes. The concurrent execution of several
such processes is captured in Definition 3 on page 447. We assume that concurrent processes
defined using this formalism can also be captured, if needed, in other, richer, languages such
as those mentioned above.

I Definition 1. A process is π = (V,E, q,R, r), where
1. (V,E) is a finite directed acyclic graph (DAG). Vertices (elements of set V ) will also be

called “states” of the process.
2. q ∈ V is a designated “initial” state of the process.
3. R is an arbitrary finite set of “resources” available to the process. Some of these resources

may not actually be used by the process.
4. r is a “resource requirement” function from V to 2R that specifies the resources used in

each state. This function will be assumed to satisfy the following two conditions:
a. r(q) = ∅,
b. if (v, w) ∈ E, then |r(w) \ r(v)| < 2.

There are several aspects of our formalism that we would like to comment on.

r,sα:

r r,sβ:

s r,sγ:

r

s

r,sδ:

Figure 3 DAG α is not specific
enough to be viewed as a process.

Acquiring one resource at a time. Part 4 (b) of
Definition 1 requires each process to acquire no more than
one resource per transition. This is not a real restriction
on the type of processes that we consider, but rather a
restriction on how specific the description of a process
should be. One always can introduce intermediate states
in order to satisfy this requirement. For example, in
Figure 3, instead of DAG α, one should specify DAG
β, DAG γ, or DAG δ. This technical requirement is
used in the proof of soundness of the Monotonicity axiom.
Furthermore, in the conclusion, we will give an explicit
example demonstrating that the Monotonicity axiom is
false without this requirement.
Initial state. We assume that each process has a unique
initial state. Additionally, we disallow processes which re-
quire resources in initial states so that each set of processes
can be started concurrently. These are very technical lim-
itations. If either condition is not satisfied, an artificial
new initial state can always be added in order to satisfy
it.
Resources at sink state. One might argue that, since all of our processes are finite DAGs,
it is natural to assume that all processes must release all resources once they reach a sink
state. We agree that this is a reasonable assumption to consider. However, our more general
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approach will allow us to treat the concurrent execution of any set of several processes as a
single process.3

Acyclic graphs. By representing a process as a finite DAG, we exclude from consideration
any process that can run forever or that terminates after a number of steps which was
unknown a priori. Considering such processes would create a whole new set of questions
about fairness, livelock, etc. that would shift focus away from the deadlock interference that
we consider in this paper. This certainly could be a direction for future work.
Resource multiplicity. Although our formalism does not allow for multiple copies of the
same resource, one may still capture such processes by introducing distinct copies of these
resources and additional states of the process for different combinations of them, as is done
in the example in Figure 6 in the conclusion.
Resource production. Some models of concurrency, such as Petri nets, assume that
processes not only “acquire” resources, but also “produce” new resources or additional copies
of a resource not previously available in the system. Such processes are outside of the scope
of this work, because the Monotonicity axiom does not hold for them.

I Definition 2. For any process π = (V,E, q,R, r) and any state v ∈ V , we say that π is
“alive” in v if there is w ∈ V such that (v, w) ∈ E.

In other words, π is alive in v if v is not a sink of the directed acyclic graph (V,E). If π is
alive in v, we will write Alivev(π).

For any π = (V,E, q,R, r), by State(π) we mean the set of all vertices V . By StateR(π)
we mean the set of all vertices of directed graph (V,E) reachable from the process’ initial
state q. By Trans(π) we mean the set of transitions E. By Res(π) we mean the set of
resources R. By a family of processes {πi}i∈I we mean any multiset of processes. That is,
we allow some of the processes in the family to be equal.

The following is a key definition of this paper that formally captures the notion of
concurrent execution of a family of processes.

I Definition 3. For any family of processes {πi}i∈I , such that πi = (Vi, Ei, qi, Ri, ri), the
product of these processes

∏
i∈I πi is a tuple π = (V,E, q,R, r), such that

1. V is a set of all tuples 〈vi〉i∈I ∈
∏

i∈I Vi, where ri(vi) ∩ rj(vj) = ∅ for all i, j ∈ I such
that i 6= j,

2. E is the set of all pairs (〈vi〉i∈I , 〈wi〉i∈I) ∈ V × V such that there is i0 ∈ I for which
(vi0 , wi0) ∈ Ei0 and vi = wi for each i 6= i0,

3. q = 〈qi〉i∈I ,
4. R =

⋃
i∈I Ri,

5. r(〈vi〉i∈I) =
⋃

i∈I r(vi).
Note the similarity between this definition and the Cartesian product of finite automata. A
technical difference is in the fact that we disallow the simultaneous transitions of multiple
processes. However, such simultaneous transitions can always be represented by a series of
single transitions executed consecutively.

If set I is empty, then, as follows from the above definition, V consists of a single element
– the 0-length tuple. We will denote this tuple by ?. The process which is the product of an
empty family of processes will be denoted by ε. Thus, ? ∈ State(ε). If I = {i1, . . . , in}, then

3 Even if the original processes release all resources in sink states, the concurrent execution of such
processes may have sinks (deadlock states) in which some resources are not released.

CSL’11
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we may informally denote
∏

i∈I πi by πi1 × · · · × πin . However, since formally an element of∏
i∈I πi is a function on I, the product is a commutative and associative operation.

I Theorem 4. For any family of processes {πi}i∈I , the tuple
∏

i∈I πi is a process. J

I Definition 5. A family of processes {πi}i∈I is called “non-interfering” if for any 〈vi〉i∈I ∈
StateR(

∏
i∈I πi),

(∃i ∈ I Alivevi
(πi))→ Alive〈vi〉i∈I

(∏
i∈I

πi

)
.

I Definition 6. For any set I, the set of formulas Φ(I) is defined recursively: (i) ⊥ ∈ Φ(I),
(ii) (A ‖ B) ∈ Φ(I), where A and B are two disjoint subsets of I, (iii) φ→ ψ ∈ Φ(I), where
φ, ψ ∈ Φ(I).

I Definition 7. For any family of processes P = {πi}i∈I and any formula φ ∈ Φ(I), we
define the binary relation P � φ as follows:
1. P 2 ⊥,
2. P � φ→ ψ if and only if P 2 φ or P � ψ,
3. P � A ‖ B if and only if the two-element family of processes {

∏
a∈A πa,

∏
b∈B πb} is

non-interfering.

See Section 6.3 for a discussion of an n-ary version of the predicate A ‖ B.

3 Axioms

I Definition 8. The logic of concurrency, in addition to propositional tautologies and the
Modus Ponens inference rule, consists of the following axioms:
1. Empty Set: A ‖ ∅,
2. Symmetry: A ‖ B → B ‖ A,
3. Monotonicity: A ‖ B,C → A ‖ B,
4. Exchange: A,B ‖ C → (A ‖ B → A ‖ B,C).
We use notation X ` φ to denote that formula φ is provable in our logical system using the
set of additional axioms X.

4 Soundness

The proof of soundness of the Geiger-Paz-Pearl axioms with respect to the non-interference
semantics is not trivial. We state the soundness of each axiom as a separate theorem.

I Theorem 9 (Empty Set). No process α interferes with process ε.

Proof. Consider any state 〈a, ?〉 ∈ StateR (α× ε) such that Alivea(α) or Alive?(ε). Note
that ? is the only state of process ε and, thus, Alive?(ε) is false. Hence, Alivea(α). Thus,
there is a′ ∈ StateR(α) such that (a, a′) ∈ Trans(α). Hence, (〈a, ?〉, 〈a′, ?〉) ∈ Trans(α× ε).
Therefore, Alive〈a,?〉(α× ε). J

I Theorem 10 (Symmetry). If process α does not interfere with process β, then process β
does not interfere with process α.

Proof. Consider any 〈b, a〉 ∈ StateR(β × α) such that Aliveb(β) or Alivea(α). By the
assumption of the theorem, Alive〈a,b〉(α× β). Since the product is a commutative operation,
Alive〈b,a〉(β × α). J
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Next, we will prove the soundness of the Monotonicity axiom. It will be more convenient
to prove the soundness of a slightly more general statement: A,B ‖ C,D → A ‖ C.

I Theorem 11 (Monotonicity). For all processes α, β, γ, δ, if process α×β does not interfere
with process γ × δ, then process α does not interfere with process γ.

Proof. Assume that process α× β does not interfere with process γ × δ and consider any
state

〈a, c〉 ∈ StateR(α× γ) (1)

such that Alivea(α) or Alivec(γ). Without loss of generality, we will assume Alivea(α).
Thus, there is a′ ∈ State(α) such that (a, a′) ∈ Trans(α).

We need to show that Alive〈a,c〉 (α× γ). Indeed, assume that process α× γ is deadlocked
in state 〈a, c〉. Since (a, a′) ∈ Trans(α), we must conclude that there is some resource
ρ0 ∈ r(a) \ r(a′) such that ρ0 ∈ r(c). By Definition 1, |r(a′) \ r(a)| < 2 and, hence,
r(a′) \ r(a) = {ρ0}.

Let b0 and d0 be the initial states of processes β and δ, respectively. Assumption (1)
implies that 〈a, b0, c, d0〉 ∈ StateR(α× β × γ × δ). Let process α× β × γ × δ transition from
state 〈a, b0, c, d0〉 until it reaches a deadlock state u ∈ StateR(α×β× γ× δ). Since processes
α and γ are themselves deadlocked in state 〈a, c〉, all transitions from 〈a, b0, c, d0〉 to u must
have been made by processes β and δ. Thus, u = 〈a, b, c, d〉 for some b ∈ StateR(β) and
d ∈ StateR(δ). In other words,

〈a, b, c, d〉 ∈ StateR(α× β × γ × δ)

and

¬Alive〈a,b,c,d〉(α× β × γ × δ). (2)

The first of the above statements, by Definition 3, implies that (r(a) ∪ r(c)) ∩ r(b) = ∅.
Recall that r(a′) \ r(a) = {ρ0} ⊆ r(c). Thus,

r(a′) ∩ r(b) = ((r(a′) \ r(a)) ∪ (r(a′) ∩ r(a))) ∩ r(b) ⊆ (r(c) ∪ r(a)) ∩ r(b) = ∅.

Hence 〈a′, b〉 ∈ State(α × β). Recall that (a, a′) ∈ Trans(α). Thus, Alive〈a,b〉(α × β).
By the assumption of the theorem, process α × β does not interfere with process γ × δ.
Hence, Alive〈〈a,b〉,〈c,d〉〉((α× β)× (γ × δ)). Due to the associativity of the product operation,
Alive〈a,b,c,d〉(α× β × γ × δ), which contradicts (2). J

I Theorem 12 (Exchange). For all processes α, β, γ, if process α× β does not interfere with
process γ and process α does not interfere with process β, then process α does not interfere
with process β × γ.

Proof. Assume that process α× β does not interfere with process γ and process α does not
interfere with process β. Consider any 〈a, 〈b, c〉〉 ∈ StateR(α× (β × γ)). We need to prove
that Alive〈a,〈b,c〉〉(α× (β × γ)) if either Alivea(α) or Alive〈b,c〉(β × γ). Let us consider these
two cases separately.
Case I. If Alivea(α), then Alive〈a,b〉(α× β), since process α does not interfere with process
β. Thus, Alive〈〈a,b〉,c〉((α× β)× γ)), because process α× β does not interfere with process
γ. Therefore, since the product operation is associative, Alive〈a,〈b,c〉〉(α× (β × γ)).
Case II. If Alive〈b,c〉(β × γ), then there is 〈b′, c′〉 ∈ State(β × γ) such that (〈b, c〉, 〈b′, c′〉) ∈
Trans(β × γ) and either b′ = b or c′ = c. Again, we need to consider two separate cases.

CSL’11
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First, assume that b′ = b. Hence, Alivec(γ). Thus, Alive〈〈a,b〉,c〉((α× β)× γ)), because
process α× β does not interfere with process γ. Therefore, since product is an associative
operation, Alive〈a,〈b,c〉〉(α× (β × γ)).

Finally, suppose that c′ = c. Hence, Aliveb(β). Thus, Alive〈a,b〉(α× β), because process
α does not interfere with process β. Hence, Alive〈〈a,b〉,c〉((α × β) × γ)), because process
α× β does not interfere with process γ. Therefore, since product is an associative operation,
Alive〈a,〈b,c〉〉(α× (β × γ)). J

5 Completeness

In this section we will prove the completeness of the Geiger-Paz-Pearl axioms with respect
to non-interference semantics. This result is stated in Theorem 25. We start, however, with
a sequence of lemmas in which we assume a fixed finite index set I and a fixed maximal
consistent set of formulas X ⊆ Φ(I).

5.1 Critical Sets
I Definition 13. A set C ⊆ I is called critical if there is a disjoint partition C1 t C2 of C,
called a “critical partition”, such that
1. X 0 C1 ‖ C2,
2. X ` C1 ∩D ‖ C2 ∩D, for any D ( C.

I Lemma 14. Any critical partition is a non-trivial partition.

Proof. It will be sufficient to prove that for any set A, we have X ` A ‖ ∅ and X ` ∅ ‖ A.
The first statement is an instance of Empty Set axiom, the second statement follows from
Empty Set and Symmetry axioms. J

I Lemma 15. X 0 A ‖ B, for any non-trivial (but not necessarily critical) partition A tB
of a critical set C.

Proof. Suppose X ` A ‖ B and let C1 tC2 be a critical partition of C. By the Monotonicity
and Symmetry axioms, X ` A ∩ C ‖ B ∩ C. Thus,

X ` A ∩ C1, A ∩ C2 ‖ B ∩ C1, B ∩ C2. (3)

Since A t B is a non-trivial partition of C, sets A and B are both non-empty. Thus,
A ( C and B ( C. Hence, by the definition of a critical set, X ` A ∩ C1 ‖ A ∩ C2 and
X ` B ∩ C1 ‖ B ∩ C2.

Note that A ∩ C is not empty since A tB is a non-trivial partition of C. Thus, either
A ∩ C1 or A ∩ C2 is not empty. Without loss of generality, assume that A ∩ C1 6= ∅. From
(3) and our earlier observation that X ` A ∩ C1 ‖ A ∩ C2, the Exchange axiom yields

X ` A ∩ C1 ‖ A ∩ C2, B ∩ C1, B ∩ C2.

By the Symmetry axiom,

X ` A ∩ C2, B ∩ C1, B ∩ C2 ‖ A ∩ C1. (4)

The assumption A ∩ C1 6= ∅ implies that (A ∩ C2) ∪ (B ∩ C1) ∪ (B ∩ C2) ( C. Hence,
by the definition of a critical set, X ` B ∩ C1 ‖ A ∩ C2, B ∩ C2. By Symmetry axiom,
X ` A∩C2, B ∩C2 ‖ B ∩C1. From (4) and the above statement, using the Exchange axiom,
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X ` A ∩C2, B ∩C2 ‖ A ∩C1, B ∩C1. Since A tB is a partition of C, we can conclude that
X ` C2 ‖ C1. By the Symmetry axiom, X ` C1 ‖ C2, which contradicts the assumption that
C1 t C2 is a critical partition.

J

I Lemma 16. For any two disjoint subsets A,B ⊆ I, if X 0 A ‖ B, then there is a critical
partition C1 t C2, such that C1 ⊆ A and C2 ⊆ B.

Proof. Consider the partial order � on set 2A × 2B such that (E1, E2) � (F1, F2) if and
only if E1 ⊆ F1 and E2 ⊆ F2. Define E = {(E1, E2) ∈ 2A × 2B | X 0 E1 ‖ E2}. Note that
(A,B) ∈ E , because X 0 A ‖ B. Thus, E is a non-empty finite set. Take (C1, C2) to be a
minimal element of set E with respect to partial order �. J

5.2 Critical Set at a Dinner Table

< C,[i] >

< C,[i+1] >

< C,[i] >, < C,[i+1] >φd:

talk

left

right

eat rest

C

Figure 4 Critical set process φC
d .

For each critical set C = {c1, . . . , cn}, we formally define the family of “dining philosophers”
processes PC = {φC

d }d∈C = {(V,E, q,RC , rC
d )}d∈C , shown in Figure 4, as follows

1. V = {talk, left, right, eat, rest},
2. set E consists of edges (talk, left), (talk, right), (left, eat), (right, eat), (eat, rest),
3. q = talk,
4. RC = {C} × Zn, or the set of all congruence classes in Zn labeled with the critical set

C. We will need this label later to distinguish resources of processes corresponding to
different critical sets.

5. If d = ci, then rC
d (talk) = rC

d (rest) = ∅, rC
d (left) = {(C, [i])}, rC

d (right) = {(C, [i+ 1])},
and rC

d (eat) = {(C, [i]), (C, [i+ 1])}.

I Lemma 17. For any D ⊆ C,

〈left〉d∈D ∈ StateR

(∏
d∈D

φC
d

)
.

Proof. Starting from the initial state 〈talk〉d∈D, each of the processes {φC
d }d∈D can make a

transition into state left. J

I Lemma 18. For any D ⊆ C,

Alive〈left〉d∈D

(∏
d∈D

φC
d

)
iff D 6= C.
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Proof. (⇒): Suppose D = C and consider 〈left〉c∈C , a state of process
∏

c∈C φ
C
c . In this

state no process can make a transition because all resources are already held.
(⇐): Let D 6= C. Thus, there are more resources than processes. By the Pigeonhole Principle,
if not all processes are in rest states, than at least one process has both of its resources
available and, thus, can make a transition. J

I Lemma 19. For any critical set C and any two disjoint subsets A,B ⊆ C, process
∏

a∈A φ
C
a

and process
∏

b∈B φ
C
b interfere if and only if A tB is a non-trivial partition of C.

Proof. (⇒): Suppose that AtB is not a non-trivial partition of C. Thus, either A∪B ( C

or one of sets A and B is empty. In both of these cases, we need to prove that processes∏
a∈A φ

C
a and

∏
b∈B φ

C
b do not interfere.

Case I. Suppose that A ∪B ( C. Consider any state

〈sa, sb〉 ∈ StateR

(∏
a∈A

φC
a ×

∏
b∈B

φC
b

)
,

such that Alivesa
(
∏

a∈A φ
C
a ) or Alivesb

(
∏

b∈B φ
C
b ). Thus, 〈sa, sb〉 is not the state in which

all φ-processes are already in state rest.
Since A ∪B ( C, there are more resources than φ-processes in the product

∏
a∈A φ

C
a ×∏

b∈B φ
C
b . Thus, by the Pigeonhole Principle and since not all φ-processes are in rest states,

at least one process has both of its resources available and, thus, can make a transition.
Therefore,

Alive〈sa,sb〉

(∏
a∈A

φC
a ×

∏
b∈B

φC
b

)
.

Case II. If one of sets A and B is empty, then the desired property follows from Theorem 9.
(⇐): Consider state 〈〈left〉a∈A, 〈left〉b∈B〉. By Lemma 17,

〈〈left〉a∈A, 〈left〉b∈B〉 ∈ StateR

(∏
a∈A

φC
a ×

∏
b∈B

φC
b

)
.

By Lemma 18, however,

Alive〈left〉a∈A

(∏
a∈A

φC
a

)
, Alive〈left〉b∈B

(∏
b∈B

φC
b

)

and

¬Alive〈〈left〉a∈A,〈left〉b∈B〉

(∏
a∈A

φC
a ×

∏
b∈B

φC
b

)
.

Therefore, processes
∏

a∈A φ
C
a and

∏
b∈B φ

C
b interfere. J

I Lemma 20. For any two disjoint subsets A,B ⊆ C, if X ` A ‖ B, then processes
∏

a∈A φ
C
a

and
∏

b∈B φ
C
b do not interfere.

Proof. Suppose that processes
∏

a∈A φ
C
a and

∏
b∈B π

C
b interfere. Thus, by Lemma 19, sets

A and B form a non-trivial disjoint partition of set C. Hence, by Lemma 15, X 0 A ‖ B. J

I Lemma 21. For any two families of processes {αj}j∈J and {βj}j∈J such that sets Res(αj1×
βj1) and Res(αj2 × βj2) are disjoint for any j1 6= j2, processes

∏
j∈J αj and

∏
j∈J βj are

non-interfering if and only if processes αj and βj are non-interfering for each j ∈ J .
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Proof. (⇒): Suppose that there is some j0 such that processes αj0 and βj0 interfere. Thus,
there is a state 〈a, b〉 ∈ StateR(αj0 × βj0) such that ¬Alive〈a,b〉(αj0 × βj0) and either
Alivea(αj0) or Aliveb(βj0). Without loss of generality, we will assume that Alivea(αj0).

Let 〈qj〉j∈J be the initial state of process
∏

j∈J(αj × βj). Define

q′j =
{
〈a, b〉 if j = j0,
qj otherwise.

Since 〈a, b〉 ∈ StateR(αj0 × βj0), we can conclude that 〈q′j〉j∈J ∈ StateR(
∏

j∈J(αj × βj)).
Let process

∏
j∈J(αj × βj) start at state 〈q′j〉j∈J and run until it reaches a state 〈q′′j 〉j∈J ∈

StateR(
∏

j∈J (αj ×βj)) such that ¬Alive〈q′′
j
〉j∈J

(
∏

j∈J (αj ×βj)). Let q′′j = 〈a′′j , b′′j 〉. Because
the product is a commutative and associative operation,

¬Alive〈〈a′′
j
〉j∈J ,〈b′′

j
〉j∈J 〉

∏
j∈J

αj

×
∏

j∈J

βj

 (5)

Since ¬Alive〈a,b〉(αj0 × βj0), we can claim that 〈a′′j0
, b′′j0
〉 = q′′j0

= q′j0
= 〈a, b〉. Recall

now our assumption that Alivea(αj0). Thus, Alivea′′
j0

(αj0). Since, by the assumption of the
lemma, any process αj , where j 6= j0, does not share resources with with process αj0 , we
can conclude Alive〈a′′

j
〉j∈J

(
∏

j∈J αj). This, in conjunction with (5), implies that processes∏
j∈J αj and

∏
j∈J βj interfere.

(⇐): Suppose that processes
∏

j∈J αj and
∏

j∈J βj interfere. Thus, there is a state

〈〈aj〉j∈J , 〈bi〉j∈J〉 ∈ StateR

∏
j∈J

αj

×
∏

j∈J

βj


such that

¬Alive〈〈aj〉j∈J ,〈bj〉j∈J 〉

∏
j∈J

αj

×
∏

j∈J

βj

 (6)

but either Alive〈aj〉j∈J
(
∏

j∈J αj) or Alive〈bj〉j∈J
(
∏

j∈J βj). Without loss of generality, assume
that Alive〈aj〉j∈J

(
∏

j∈J αj). Thus, there is an j0 ∈ J such that Aliveaj0
(αj0). Hence,

Alive〈aj0 ,bj0 〉(αj0 × βj0), because, by the assumption of the lemma, processes αj0 and βj0 do
not interfere. Thus, there is a state 〈a′, b′〉 such that (〈aj0 , bj0〉, 〈a′, b′〉) ∈ Trans(αj0 × βj0).
Since, by the assumption of the lemma, process αj0 × βj0 does not share resources with any
process αj × βj such that j 6= j0, the same transition is available to process

∏
j∈J(αj × βj).

Thus, Alive〈〈aj ,bj〉〉j∈J
(
∏

j∈J(αj × βj)). Due to the commutativity and associativity of the
product, Alive〈〈aj〉j∈J ,〈bj〉j∈J 〉

(
(
∏

j∈J αj)× (
∏

j∈J βj)
)
, which contradicts (6). J

I Definition 22. P =
{∏

C3i φ
C
i

}
i∈I

, where the product is computed over all critical subsets
C of I that contain i.

I Lemma 23. For any disjoint subsets A ⊆ I and B ⊆ I, X ` A ‖ B if and only if
P � A ‖ B.

Proof. (⇒): Let P 2 A ‖ B. Thus, processes
∏

a∈A

∏
C3a φ

C
a and

∏
b∈B

∏
C3b φ

C
b in-

terfere. Hence, since the product operation is commutative and associative, processes∏
C∈C

∏
a∈A∩C φ

C
a and

∏
C∈C

∏
b∈B∩C φ

C
b interfere, where C is the set of all critical subsets

of set I.
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For any two different critical sets C1 and C2, the set of resources available to pro-
cess

∏
a∈A∩C1

φC1
a is ∪aR

C1 = {C1} × Z|C1| and the set of resources available to process∏
b∈B∩C2

φC2
b is ∪bR

C2 = {C2}×Z|C2|. These two sets of resources are disjoint since C1 6= C2.
By Lemma 21, there must be a critical set C0 ∈ C such that processes

∏
a∈A∩C0

φC0
a and∏

b∈B∩C0
φC0

b interfere. Hence, by Lemma 20, X 0 A ∩ C0 ‖ B ∩ C0. By the Monotonicity
axiom, X 0 A∩C0 ‖ B. By the Symmetry axiom, X 0 B ‖ A∩C0. Again by the Monotonicity
axiom, X 0 B ‖ A. By the Symmetry axiom, X 0 A ‖ B, which is a contradiction.
(⇐): Let X 0 A ‖ B. By Lemma 16, there is a critical set C such that (A∩C)t (B ∩C) is a
critical partition of C. By Lemma 14, partition (A∩C)t (B ∩C) is a non-trivial partition of
the critical set C. Thus, by Lemma 19, processes

∏
a∈A∩C φ

C
a and

∏
b∈B∩C φ

C
b interfere. By

Lemma 21, processes
∏

C∈C
∏

a∈A∩C φ
C
a and

∏
C∈C

∏
b∈B∩C φ

C
b interfere. Since the product

is a commutative and associative operation, processes
∏

a∈A

∏
C3a φ

C
a and

∏
b∈B

∏
C3b φ

C
b

interfere. Therefore, P 2 A ‖ B. J

I Lemma 24. For any ψ ∈ Φ(I), X ` ψ if and only if P � ψ.

Proof. We use induction on structural complexity of formula ψ. The base case follows from
Lemma 23, and the inductive case, after taking into account Definition 7, is straightforward.

J

I Theorem 25 (completeness). For any φ, if 0 φ, then there is a family of processes
P = {πi}i∈I such that P 2 φ.

Proof. Assume that 0 φ. Let I be the (finite) set of all indices used in formula φ and X be
a maximal consistent subset of Φ(I) that contains formula ¬φ. By Lemma 24, P 2 φ. J

6 Conclusions

6.1 The Monotonicity Axiom, Revisited
We will show that the Monotonicity axiom is not sound if the acquire one resource at a time
condition is removed from Definition 1. Indeed, consider three “processes” specified by the
DAGs in Figure 5. It will be sufficient to show that processes α and β × γ do not interfere,
but processes α and β do interfere.

I Theorem 26. Processes α and β × γ do not interfere.

Proof. Consider any state 〈a, 〈b, c〉〉 ∈ StateR(α×(β×γ)) and assume that ¬Alive〈a,〈b,c〉〉(α×
(β × γ)). We need to show that ¬Alivea(α) and ¬Alive〈b,c〉(β × γ). Indeed, notice that the
graph of process α× (β×γ) has only two sinks, thus the tuple 〈a, 〈b, c〉〉 has only two possible
values.
Case I: 〈a, 〈b, c〉〉 = 〈2, 〈3, 2〉〉. Note that ¬Alive2(α) and ¬Alive〈3,2〉(β × γ).
Case 2: 〈a, 〈b, c〉〉 = 〈2, 〈1, 2〉〉. Note again that ¬Alive2(α) and ¬Alive〈1,2〉(β × γ). J

I Theorem 27. Processes α and β interfere.

Proof. Consider state 〈2, 1〉 ∈ StateR(α × β) and notice that ¬Alive〈2,1〉(α × β), but
Alive1(β). J



Sara Miner More, Pavel Naumov, and Benjamin Sapp 455

6.2 The Public Knowledge Axiom

rα:

r,sβ:

sγ:

1 2

1 2 3

1 2

Figure 5Monotonicity “counter-
example.”

In Definition 6, we assumed that for A ‖ B to be a valid
formula, sets A and B must be disjoint. In the case of
independence of secrets, More and Naumov [13] did not
make this assumption. They noticed that A ‖ A implies
that each secret in set A has a constant and, thus, “publicly
known” value. This led to an additional Public Knowledge
axiom for independence:

A ‖ A→ (B ‖ C → A,B ‖ C). (7)

This Public Knowledge axiom, together with the Empty
Set, Symmetry, Monotonicity, and Exchange axioms, forms
a sound and complete system for the independence of
secrets in information flow.

Although Geiger, Paz, and Pearl [8] assumed that sets
A and B were disjoint, this assumption is not important
in their work. Indeed, it is easy to see that A ‖ A, under probability semantics, means that
each variable in set A is constant almost everywhere. This means that the Public Knowledge
axiom is also valid under the probability semantics. Finally, a review of the Geiger-Paz-Pearl
completeness proof shows that a similar argument can be made in this more general setting
if the Public Knowledge axiom is added to the system.

The case of concurrency semantics, however, is less straightforward. It depends on exactly
what it means when the same process appears on both sides of A ‖ B. If v ∈ A ∩B, then
one option is to assume that different occurrences of v refer to the same instance of a process.
The other option is to assume that they refer to two different instances of the process. The
former option requires them to have the same DAG and to be in the same states at any given
time. The latter means that they have the same DAG, but could be in different states at
any given time.

Under the first interpretation, A ‖ A implies that each of processes in A cannot require
any resources in reachable states, since otherwise both copies of the process would need to
acquire the same resource. If the set of processes A does not require any resources in any of
its reachable states, then it cannot affect interference between the other processes. Thus,
the Public Knowledge axiom is sound. Moreover, the proof in this paper can be modified to
show that the logical system formed by Empty Set, Symmetry, Monotonicity, Exchange, and
Public Knowledge is complete under this interpretation.

Under the second interpretation, however, the Public Knowledge axiom is not sound.
Indeed, consider the three processes α, β, and γ that have access to three resources r, s,
and t. Each of the processes needs any two out of the three resources in order to terminate.
Formally, all three of these processes have the same cube-shaped DAG, which is depicted
in Figure 6. In some sense, this is a modified version of the Dining Philosopher’s problem,
where each of the philosophers α, β, and γ can use any two out of the three forks on the
table.

Note that formula β ‖ γ is true, because there are more resources than processes, thus, by
the Pigeonhole Principle, at any state of β × γ, either all processes have already terminated
or one of the them has enough resources available to make a transition. For the same reason,
formula α ‖ α is also true as long as α on the left-hand-side and α on the right-hand-side
refer to to two different instances of α.
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Finally, formula α, β ‖ γ is false, because if processes α, β, and γ, respectively, acquire
resources r, s, and t, then the system deadlocks. Therefore, the Public Knowledge axiom (7)
is not sound if A, B, and C represent processes α, β, and γ.

6.3 An n-ary Non-interference Relation

r

s

r,s

t

r,t

s,t

Figure 6 Cube DAG.

In this paper, we considered the non-interference
relation A ‖ B between two sets of process. This
binary relation can be generalized naturally to the
n-ary relation A1 ‖ A2 ‖ · · · ‖ An between n sets
of processes by changing part 4 of Definition 7 to
4. P � A1 ‖ A2 ‖ · · · ‖ An if and only if the

n-element family of processes {
∏

a∈Ai
πa}i≤n

is non-interfering.
It turns out, however, that the n-ary non-
interference relation can be expressed through
the binary non-interference relation studied in this paper. For example, in the case where
n = 3, the following result holds:

I Theorem 28. For any family of processes P = {πi}i∈I and any subsets A, B, and C of
set I,

P � (A ‖ B ‖ C)⇐⇒ (A ‖ B,C) ∧ (B ‖ C).

Proof. In the following proof, we let α denote
∏

i∈A πi, β denote
∏

i∈B πi, and γ denote∏
i∈C πi.

(⇒) : First, assume that P 2 A ‖ B,C. Thus, there is a state 〈a, b, c〉 ∈ StateR(α× β × γ)
such that ¬Alive〈a,b,c〉(α × β × γ), but either Alivea(α) or Alive〈b,c〉(β × γ). The latter
implies that either Aliveb(β) or Alivec(γ). Hence, we can conclude that at least one of the
following three statements is true: Alivea(α), Aliveb(β), or Alivec(γ). By the assumption
P � A ‖ B ‖ C, we can conclude that Alive〈a,b,c〉(α× β × γ), which is a contradiction.

Second, suppose that P 2 B ‖ C. Thus, there is a state 〈b, c〉 ∈ StateR(β × γ) such that
¬Alive〈b,c〉(β× γ), but either Aliveb(β) or Alivec(γ). Let a0 be the initial state of process α.
Thus, 〈a0, b, c〉 ∈ StateR(α×β×γ). Let process α×β×γ make as many transitions as possible
from state 〈a0, b, c〉 until it reaches a state 〈a′, b′, c′〉 such that ¬Alive〈a′,b′,c′〉(α × β × γ).
Note that ¬Alive〈b,c〉(β × γ) implies that b′ = b and c′ = c. Thus, ¬Alive〈a′,b,c〉(α× β × γ).
However, we proved earlier that Aliveb(β) or Alivec(γ). This contradicts our assumption
that P � A ‖ B ‖ C.
(⇐) : Let P 2 A ‖ B ‖ C. Thus, there is a state 〈a, b, c〉 ∈ StateR(α × β × γ) such that
¬Alive〈a,b,c〉(α× β × γ), but Alivea(α), Aliveb(β), or Alivec(γ).

If Alivea(α), then, by the assumption P � A ‖ B,C, we can conclude that Alive〈a,b,c〉(α×
β × γ), which is a contradiction.

If Aliveb(β) or Alivec(γ), then Alive〈b,c〉(β × γ), by the assumption that P � B ‖ C.
Thus, because P � A ‖ B,C, we have Alive〈a,b,c〉(α× β × γ), which is a contradiction. J
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