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Abstract
Does there exist any sequent calculus such that it is a subclassical logic and it becomes classical
logic when the exchange rules are added? The first contribution of this paper is answering
this question for infinitary Peano arithmetic. This paper defines infinitary Peano arithmetic
with non-commutative sequents, called non-commutative infinitary Peano arithmetic, so that
the system becomes equivalent to Peano arithmetic with the omega-rule if the the exchange rule
is added to this system. This system is unique among other non-commutative systems, since all
the logical connectives have standard meaning and specifically the commutativity for conjunction
and disjunction is derivable. This paper shows that the provability in non-commutative infinitary
Peano arithmetic is equivalent to Heyting arithmetic with the recursive omega rule and the law of
excluded middle for Sigma-0-1 formulas. Thus, non-commutative infinitary Peano arithmetic is
shown to be a subclassical logic. The cut elimination theorem in this system is also proved. The
second contribution of this paper is introducing infinitary Peano arithmetic having antecedent-
grouping and no right exchange rules. The first contribution of this paper is achieved through
this system. This system is obtained from the positive fragment of infinitary Peano arithmetic
without the exchange rules by extending it from a positive fragment to a full system, preserving
its 1-backtracking game semantics. This paper shows that this system is equivalent to both non-
commutative infinitary Peano arithmetic, and Heyting arithmetic with the recursive omega rule
and the Sigma-0-1 excluded middle.
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1 Introduction

Substructural logics, which are logical systems without some of the contraction rule, the
weakening rule, and the exchange rule, have been actively studied in both mathematical
logic and computer science. For example, linear logic, which is a logical system without the
contraction rule or the weakening rule is successful [9].

Does there exist any sequent calculus such that it is a subclassical logic and it becomes
classical logic when the exchange rules are added? The first contribution of this paper
is answering this question for infinitary Peano arithmetic. This paper defines infinitary
Peano arithmetic with non-commutative sequents, called non-commutative infinitary Peano
arithmetic, so that the system becomes equivalent to Peano arithmetic with the omega-
rules if the exchange rules are added to this system. This paper shows that the provability
in non-commutative infinitary Peano arithmetic is equivalent to Heyting arithmetic with
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the recursive omega rules and the law of excluded middle for Σ0
1 formulas. Thus, non-

commutative infinitary Peano arithmetic is shown to be a subclassical logic.
Arithmetic without the exchange rule has not been studied yet. For infinitary arithmetic

without the exchange rules, only its positive fragment was investigated in [4, 6, 2]. For a full
system without the exchange rules, only the classical sequent calculus without the exchange
rules is studied [13].

The second contribution of this paper is introducing infinitary Peano arithmetic having
antecedent-grouping and no right exchange rules. The first contribution is achieved through
this system. This system is obtained from the positive fragment of infinitary Peano arith-
metic without the exchange rules by extending it from a positive fragment to a full system,
preserving its 1-backtracking game semantics. This paper shows that this system is equiva-
lent to both non-commutative infinitary Peano arithmetic, and Heyting arithmetic with the
recursive omega rules and the Σ0

1 excluded middle.
This paper will define non-commutative infinitary Peano arithmetic NCIPA as well as

the arithmetic IPA− having antecedent-grouping and no right exchange rules, and prove (1)
NCIPA becomes equivalent to Peano arithmetic IPA with the ω-rules when the exchange
rules are added to the system, (2) NCIPA is equivalent to Heyting arithmetic with the
recursive ω-rules, called IHA, and the law EM1 of excluded middle for Σ0

1 formulas, (3)
the cut elimination theorem in NCIPA, (4) the cut elimination theorem in IPA−, and (5)
translations between NCIPA and IPA−.

IPA− was inspired by 1-backtracking game semantics [5, 8]. [4] proved correspondence
between its positive fragment and 1-backtracking game, by which a winning strategy corre-
sponds to a proof. [2] also defined a sound and complete semantics for the fragment using
interactive realizers.

IPA− in this paper is a full system obtained from the positive fragment by adding
implication. IPA− is described by using a sequent Γ ` ∆ with antecedent-grouping where
formulas in the antecedent Γ are grouped and structural rules can be used only inside a
group. We can also use the weakening rule and the contraction rule in the succedent ∆, but
cannot use the exchange rule.

EM1 is the principle ∀x1 . . . xn(A ∨ ¬A) for a Σ0
1 formula A. This principle gives logical

systems between intuitionistic logic and classical logic, which have been studied actively,
in particular, for hidden algorithms in their proofs [1, 3, 11] and for their relation with
continuation-passing style programs [7].

We design NCIPA from IPA− so that it is based on ordinary sequents without antecedent-
grouping, and the grouping information is represented by the length of a sequence of formu-
las. The translations between NCIPA and IPA− will be defined so that they map the length
of a sequence of formulas and the grouping information into each other. The equivalence
between NCIPA and IHA+EM1 is proved from the translations between NCIPA and IPA−,
and the equivalence between IPA− and IHA + EM1.

The implication from provability in IHA+EM1 to provability in IPA− is proved by using
the cut elimination theorem in IPA−.

The implication from provability in IPA− to provability in IHA+EM1 is proved by using
flag formulas. A flag formula is a Π0

1 formula and is defined for each formula in the succedent
when its proof is given. Given a proof of Γ ` A1, . . . , An, if the flag formula Fi of Ai is true,
then every succedent in the proof is of length more than or equal to i. Flag formulas enable
us to find the minimum length of the succedents in a proof even if the proof is infinite. The
key idea is case analysis by a flag formula, which we can use since EM1 proves Fi ∨ ¬Fi.

The cut elimination theorem in NCIPA is proved by the translations between NCIPA
and IPA− and the cut elimination theorem in IPA−.

A potential application of the equivalence results is program extraction with the halting
problem oracle. Since NCIPA and IPA− are equivalent to IHA+EM1 and EM1 corresponds
to the halting problem oracle, we can extract a program with the halting problem oracle

CSL’11



540 Non-Commutative Infinitary Peano Arithmetic

from a proof in NCIPA or IPA−. This program can be interpreted as a learning algorithm,
using 1-backtracking and learning in the limit [7].

Section 2 defines infinitary arithmetic IPA and IHA. Section 3 presents IPA−, and its cut
elimination theorem is proved in Section 4. Section 5 proves the implication from IHA+EM1
to IPA−, and Section 6 proves the other implication from IPA− to IHA + EM1. Section
7 defines NCIPA, and shows the equivalence between NCIPA with the exchange rules and
IPA. Section 8 gives the translations between NCIPA and IPA−, and shows the equivalence
between NCIPA and IHA + EM1. The cut elimination theorem in NCIPA is proved in
Section 9.

2 Infinitary Arithmetic

We define the system IPA. It is Peano arithmetic based on infinitary logic where the inference
rules (∀R) and (∃L) are replaced by the ω-rules with countably many assumptions, and it
does not have induction rules. The induction principles are derivable.
I Definition 2.1 (language). The language of IPA is a first-order language generated from the
following symbols: We have variables x, y, z, . . .. Constants are numerals 0, 1, 2, . . ., denoted
by n,m, i, j, . . ..

Function symbols are denoted by f, g, . . .. We assume that the set of function symbols
is recursive, and the set of functions represented by function symbols is the same as the set
of primitive recursive functions.

Terms are denoted by s, t, . . ..
Predicate symbols are denoted by P,Q, . . .. We assume that the set of predicate symbols

is recursive, and the set of predicates represented by predicate symbols is the same as the set
of primitive recursive predicates. We have 0-ary predicate symbols > and ⊥, which mean
the truth and the falsity respectively.

Formulas are defined by A,B,C, . . . ::= P (t1, . . . , tn)|A∧B|A∨B|A→B|∀xA|∃xA, where
P is a predicate symbol of arity n. We will write ¬A for A→⊥.

A sentence is a closed formula. A sequence A1, . . . , An (n ≥ 0) of sentences is denoted by
Γ,∆,Π,Σ, . . .. |Γ| denotes its length. An denotes A, . . . , A (n times). A[t/x] is the formula
obtained from A by replacing x by t.

Sequents are of the form A1, . . . , An ` B1, . . . , Bm (n,m ≥ 0) where Ai, Bi sentences.
We respect order of sentences in a sequence and a sequent.

IPA is based on infinitary logic where assumptions can be countably many. A proof in
this system is defined as a well-founded recursive tree by inference rules.

We have the following inference rules given in Figure 1. In the rules (Ax R) and (Ax L),
true and false refer to the truth value in the standard model. The rules (∀R) and (∃L)
denote an inference of its conclusion from some recursive function f such that f(m) is the
code of a proof of the m-th assumption, for example, Γ ` ∆, A[m/x] for (∀R).

We give an accurate definition of a proof inductively as follows: d·e is a standard coding
function and dee is a code of a syntactical object e. (1) For an inference rule except (∀R)
or (∃L), (dLe, dSe, P1, . . . , Pn) is a proof of the sequent S if its name is L, its instance is
the inference of S from S1 . . . Sn, and Pi is a proof of Si for 1 ≤ i ≤ n. (2) For an inference
rule among (∀R) and (∃L), (dLe, dSe, f) is a proof of the sequent S if its name is L and its
instance is the inference of S from S1[n/x] (for all n) and f is a recursive function such
that f(n) is the code of a proof of S1[n/x].

We will write Γ `IPA ∆ to denote that the sequent Γ ` ∆ is provable in IPA. We will
also use `T for some other systems T we will introduce later.

We define the system IHA. It is Heyting arithmetic based on infinitary logic where the
inference rules (∀R) and (∃L) are replaced by the recursive ω-rules.

The language is the same as that of IPA except that its sequents are intuitionistic sequents
A1, . . . , An ` B or A1, . . . , An `.
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Γ, A ` ∆ (Ax L) (A a false atomic formula)

Γ ` ∆, A (Ax R) (A a true atomic formula)

Γ ` ∆, A Γ ` ∆, B
Γ ` ∆, A ∧B (∧R) Γ, A ` ∆

Γ, A ∧B ` ∆ (∧L1) Γ, B ` ∆
Γ, A ∧B ` ∆ (∧L2)

Γ ` ∆, A
Γ ` ∆, A ∨B (∨R1) Γ ` ∆, B

Γ ` ∆, A ∨B (∨R2) Γ, A ` ∆ Γ, B ` ∆
Γ, A ∨B ` ∆ (∨L)

Γ, A ` ∆, B
Γ ` ∆, A→B

(→R) Γ ` ∆, A Γ, B ` Σ
Γ, A→B ` ∆,Σ (→L)

Γ ` ∆, A[m/x] (for all m)
Γ ` ∆,∀xA (∀R)

Γ, A[m/x] ` ∆
Γ,∀xA ` ∆ (∀L)

Γ ` ∆, A[m/x]
Γ ` ∆,∃xA (∃R)

Γ, A[m/x] ` ∆ (for all m)
Γ,∃xA ` ∆ (∃L) Γ ` ∆

Γ ` ∆, A (weak R) Γ ` ∆
Γ, A ` ∆ (weak L)

Γ ` ∆, A,A
Γ ` ∆, A (cont R) Γ, A,A ` ∆

Γ, A ` ∆ (cont L)

Γ ` ∆1, B,A,∆2
Γ ` ∆1, A,B,∆2

(exch R) Γ1, B,A,Γ2 ` ∆
Γ1, A,B,Γ2 ` ∆ (exch L)

Figure 1 Inference Rules of IPA

The inference rules are the same as those of IPA except that their sequents are restricted
to intuitionistic sequents.

The law EM1 of excluded middle for Σ0
1 formulas is defined as the axiom schema

∀x1 . . . xn(A ∨ ¬A) for a Σ0
1 formula A. This is a weaker version of the law of excluded

middle. The system IHA + EM1 strictly includes IHA and is strictly included in IPA.
Note that the identity rule Γ, A ` A is provable. It is shown by induction on A.

3 The system IPA−

We define the logical system IPA− of Peano arithmetic having the recursive ω-rules,
antecedent-grouping, and no right exchange rules.

The language of IPA− is the same as that of IPA except that its sequents are different.
A sequent in IPA− is of the form Γ ` A1, . . . , An where Γ is a sequence of sentences and
n symbols of the symbol −. An example of the sequent is A1,−, A2, A3,−, A4,−, A5, A6 `
B1, B2, B3.

In the sequent Γ0,−,Γ1,−,Γ2, . . . ,−,Γn ` A1, . . . , An where Γi is a sequence of sentences
and does not contain the symbol −, the group Γ0 means an initial group, and the group Γi

corresponds to Ai.
Γ,∆, . . . denote a sequence of both sentences and symbols −. We will write −n for

−, . . . ,− (n times).
We have the following inference rules given in Figure 2
A proof in this system is defined as a well-founded recursive tree in a similar way to IPA.

A proof of a formula A means a proof of the sequent − ` A.
Intuitive meaning of provable sequents is given by using the familiar interpretation of
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Γ, A ` ∆ (Ax L) (A a false atomic formula)

Γ ` ∆, A (Ax R) (A a true atomic formula)

Γ,− ` ∆, A ∧B,A Γ,− ` ∆, A ∧B,B
Γ ` ∆, A ∧B (∧R)

Γ1, A ∧B,Γ2, A ` ∆
Γ1, A ∧B,Γ2 ` ∆ (∧L1) Γ1, A ∧B,Γ2, B ` ∆

Γ1, A ∧B,Γ2 ` ∆ (∧L2)

Γ,− ` ∆, A ∨B,A
Γ ` ∆, A ∨B (∨R1) Γ,− ` ∆, A ∨B,B

Γ ` ∆, A ∨B (∨R2)

Γ1, A ∨B,Γ2, A ` ∆ Γ1, A ∨B,Γ2, B ` ∆
Γ1, A ∨B,Γ2 ` ∆ (∨L)

Γ, A ` ∆, A→B

Γ ` ∆, A→B
(→R1) Γ,− ` ∆, A→B,B

Γ ` ∆, A→B
(→R2)

Γ1, A→B,Γ2,− ` ∆, A Γ1, A→B,Γ2, B ` ∆
Γ1, A→B,Γ2 ` ∆ (→L)

Γ,− ` ∆,∀xA,A[m/x] (for all m)
Γ ` ∆,∀xA (∀R)

Γ1,∀xA,Γ2, A[m/x] ` ∆
Γ1,∀xA,Γ2 ` ∆ (∀L)

Γ,− ` ∆,∃xA,A[m/x]
Γ ` ∆,∃xA (∃R)

Γ1,∃xA,Γ2, A[m/x] ` ∆ (for all m)
Γ1,∃xA,Γ2 ` ∆ (∃L)

Γ ` ∆
Γ,− ` ∆, A (weak R) Γ ` ∆

Γ, A ` ∆ (weak L)

Figure 2 Inference Rules of IPA−

a sequent in the sequent calculus LK in the standard model of numbers as follows: If
Γ0,−,Γ1, . . . ,−,Γn ` A1, . . . , An is provable, then (1) Γ0 ` is true, or (2) Γ0,Γ1, . . . ,Γi ` Ai

is true for some i. Each inference rule is sound by this interpretation. Theorem 6.1 will
provide more information.

If Γ1,−,Π,−,Γ2 ` ∆ is provable, then Γ1,−,Π′,−,Γ2 ` ∆ is provable where Π does
not contain − symbols and Π′ is obtained from Π by exchange, weakening, and contraction.
This will be shown in Proposition 3.5. On the other hand, we cannot use right exchange,
nor left exchange over formulas in different groups.

We explain this system with some examples. In the examples, we assume the identity
lemma Γ1, A,Γ2 ` ∆, A, which will be shown in Lemma 3.4 after the examples.

I Example 3.1. The first example is given in Figure 3, which shows the conjunction of IPA−
is commutative.

I Example 3.2. The next example shows how this system respects the order of formulas.
We have three provable sequents

−, A,−, B ` A,⊥,
−, A,−, B ` ⊥, A,
−, A,−, B ` ⊥, B.
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−, A ∧B,−, B ` B ∧A,B (Id)

−, A ∧B,− ` B ∧A,B (∧L2) −, A ∧B,−, A ` B ∧A,A (Id)

−, A ∧B,− ` B ∧A,A (∧L1)

−, A ∧B ` B ∧A (∧R)

Figure 3 Example 3.1

On the other hand the sequent

−, A,−, B ` B,⊥

is not provable. The first sequent is provable since the initial and the first groups give the
assumption A, which proves the first formula A. The second sequent is provable since the
initial, the first, and the second groups give the assumptions A,B, which prove the second
formula A. The third sequent is provable similarly to the second sequent, since the initial,
the first, and the second groups give the assumptions A,B, which prove the second formula
B. Formally the first sequent is proved by

−, A ` A (Id)

−, A,− ` A,⊥ (weak R)

−, A,−, B ` A,⊥ (weak L)

and the second and the third sequents are proved by (Id).
On the other hand, the fourth sequent is not provable, since we have neither of the

following cases: (1) the initial group is empty, which proves the contradiction, nor (2) the
initial and the first groups give the assumption A, which proves the first formula B, nor
(3) the initial, the first, and the second groups give the assumptions A,B, which prove the
second formula ⊥.
I Example 3.3. Suppose P be a predicate symbol. Let A(x) = ∃yP (x, y). The following is
a proof of an instance ∀x(A(x) ∨ ¬A(x)) of EM1.

.... πm

−,−, P (n,m) ` A(n) ∨ ¬A(n),¬A(n) (for all m)
−,−, A(n) ` A(n) ∨ ¬A(n),¬A(n)
−,− ` A(n) ∨ ¬A(n),¬A(n)

− ` A(n) ∨ ¬A(n) (for all n)
− ` ∀x(A(x) ∨ ¬A(x))

If P (n,m) is false, the proof πm is the axiom (Ax L). If P (n,m) is true, the proof πm

is:

−,−,− ` A(n) ∨ ¬A(n), A(n), P (n,m)
(Ax R)

−,− ` A(n) ∨ ¬A(n), A(n)
− ` A(n) ∨ ¬A(n)

−,− ` A(n) ∨ ¬A(n),¬A(n)
(weak R)

−,−, P (n,m) ` A(n) ∨ ¬A(n),¬A(n)
(weak L)

Remark that A∨¬A is not provable for a Π0
2 formula because this system does not have

exchange rules.
We will explain game theoretic semantics in a general way first. Backtracking is a feature

we may add to any formal game G between two players, E (Eloise) and A (Abelard), defining
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Γ1, B→ C, Γ2, B,− ` ∆, B→ C, B
(Id)

Γ1, B→ C, Γ2, B, C,− ` ∆, B→ C, C
(Id)

Γ1, B→ C, Γ2, B, C ` ∆, B→ C
(→R2)

Γ1, B→ C, Γ2, B ` ∆, B→ C
(→L)

Γ1, B→ C, Γ2 ` ∆, B→ C
(→R1)

Figure 4 Proof of Lemma 3.4

a new game bck(G). Informally, for a while a play on bck(G) runs like a play in G. However,
in addition to the moves of G, Player E (Eloise) can make a new kind of move, called
backtracking. We imagine that each new position of the play p is added to some stack.
Using backtracking, E can move back to some previous position p of the play, provided p
is recorded in the stack, erase all positions of the stack coming after p in the stack, and
eventually perform an ordinary move from p (this new move is added to the stack).

In some cases, E has no recursive winning strategies over G, but some recursive winning
strategies if we allow her to backtrack (i.e. E has some recursive winning strategy over
bck(G)). “Backtracking” allows E to win more games using recursive winning strategies.
The intuitive reason is that, in bck(G), E is not forced to provide a winning move at once,
but she can find this winning move after several attempts, by trial-and-error.

Backtracking defines a new method for unwinding proofs. Assume that A is any
implication-free arithmetical formula, and call TA the Tarski game for A. Then E has
a recursive winning strategy over TA if and only if A is intuitionistically provable. In con-
trast, E has recursive winning strategy over bck(TA) if and only if A has a classical proof
using only EM1.

Assume the players play Ai at i-the stage. Then the stack of the plays is represented
by A1, A2, . . . , An. This stack can be simulated by the sequent A1, A2, . . . , An, if the se-
quent calculus does not have the exchange rules and it respects the order of formulas. The
weakening rules give backtracking, since it changes A1, A2, . . . , An, B to A1, A2, . . . , An. Fol-
lowing this idea, for the positive fragment of IPA−, [4] showed that it has 1-backtracking
game semantics, and a proof in the system corresponds to a winning strategy in the game.
Kobayashi [10] and the authors of this paper are preparing to show that IPA− has a nice
game theoretic semantics with 1-backtracking.

We will present several properties of IPA−.

I Lemma 3.4. The following is derivable.

Γ1, A,Γ2 ` ∆, A (Id)

This lemma is shown by induction on A in a standard way. We explain only the impli-
cation case A = B→ C, which is proved in Figure 4.

]−Γ denotes the number of the symbol − in Γ. (Γ)0 is defined to be Γ if Γ does not
contain −. (Γ,−,Π)0 is defined to be Γ if Γ does not contain −.

We will show some structural rules are admissible in this system. In the antecedent, we
can use weakening by (weak L2), and contraction by (cont L). In the same group in the
antecedent, we can also use exchange by (exch L).

I Proposition 3.5. (1) The following are derivable.

Γ1, A,Γ2 ` ∆ (Ax L2) (A a false atomic formula)

Γ ` ∆1, A,∆2
(Ax R2) (A a true atomic formula)
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(2) The following are admissible.

Γ1,>,Γ2 ` ∆
Γ1,Γ2 ` ∆ (>E) Γ1,−,Γ2,−,Γ3 ` ∆1, A,A,∆2

Γ1,−,Γ2,Γ3 ` ∆1, A,∆2
(cont R) (]−Γ3 = |∆2|, ]−Γ2 = 0)

Γ1,−,Γ2 ` ∆1,⊥,∆2
Γ1,Γ2 ` ∆1,∆2

(⊥E) (]−Γ2 = |∆2|)
Γ1,Γ2 ` ∆

Γ1, A,Γ2 ` ∆ (weak L2)

Γ1,Γ2 ` ∆1,∆2
Γ1,−,Γ2 ` ∆1, A,∆2

(weak R2) (]−Γ2 = |∆2|, (Γ2)0 = φ)

Γ ` ∆
Π,Γ ` Σ,∆ (weak R3) (]−Π = |Σ|)

Γ1,−, A,Γ2 ` ∆
Γ1, A,−,Γ2 ` ∆ (move) Γ1, A,Γ2, A,Γ3 ` ∆

Γ1, A,Γ2,Γ3 ` ∆ (cont L) Γ1, A,B,Γ2 ` ∆
Γ1, B,A,Γ2 ` ∆ (exch L)

4 Cut Elimination in IPA−

We will show the cut elimination theorem for IPA−.
I Definition 4.1. We define the cut rule:

Γ1,− ` Γ2, A ∆1, A,Σ1 ` ∆2,Σ2
Γ1,∆1,Σ1 ` Γ2,∆2,Σ2

(cut)

where ]−Σ1 = |Σ2|.
We have the cut elimination theorem in IPA−.

I Theorem 4.2 (Cut Elimination). If Γ ` ∆ is provable in IPA− with the cut rule, then it is
provable in IPA−.

In order to prove this theorem, we use the following rule:

Γ1,− ` Γ2, A Γ1, A,∆1 ` Γ2,∆2
Γ1,∆1 ` Γ2,∆2

(cut2)

In the next lemma we will prove the rule (cut2) can be eliminated.
I Lemma 4.3. (1) If we have a proof

.... π1
Γ1,−,Π1 ` Γ2, A,Π2

in IPA− where ]−Γ1 = |Γ2|, and the proof π2

....
Γ1, A,∆i

1 ` Γ2,∆i
2 (i ∈ I)

Γ1, A,∆1 ` Γ2,∆2
(Rule)

in IPA− where (Rule) is a logical rule which introduces the formula A, and we have proofs
.... π

i
3

Γ1,∆i
1 ` Γ2,∆i

2

for i ∈ I in IPA−, then Γ1,∆1,Π1 ` Γ2,∆2,Π2 is provable in IPA−.
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(2) If we have a proof
.... π1

Γ1,− ` Γ2, A

.... π2
Γ1, A,∆1 ` Γ2,∆2

Γ1,∆1 ` Γ2,∆2
(cut2)

in IPA− with the rule (cut2) and the subproofs π1 and π2 do not contain the rule (cut2),
then the conclusion Γ1,∆1 ` Γ2,∆2 is provable in IPA−.
|π| denotes the height of the proof π. We can prove (1) and (2) simultaneously by

induction on (A, |π1|+ |π2|). For each step, we will first show (1) and use (1) to show (2).

5 From IHA + EM1 to IPA−

This section proves the implication from IHA+EM1 to IPA−. We will use the cut elimination
theorem for the proof.
I Proposition 5.1. (1) If Γ ` ∆ is provable in IHA, then −|Π|+|∆|,Γ ` Π,∆ is provable in
IPA− for any Π.

(2) If Γ ` A is provable in IHA, then −,Γ ` A is provable in IPA−.
The proof idea is simulating each inference rule of IHA by inference rules of IPA−. One

difference is that a logical rule in IPA− has a redundant principal formula. For example,
the right conjunction rule in IPA− is

Γ,− ` ∆, A ∧B,A Γ,− ` ∆, A ∧B,B
Γ ` ∆, A ∧B (∧R)

and on the other hand the right conjunction rule in IHA is

Γ ` A Γ ` B
Γ ` A ∧B (∧R)

This difference is covered by putting A ∧ B by (weak R2) in Proposition 3.5. The other
difference is the existence of −, which is handled by moving − by (move) in Proposition 3.5.
I Theorem 5.2. If Γ,EM1 ` A is provable in IHA, then −,Γ ` A is provable in IPA−.

Proof. By Proposition 5.1 (2), −,Γ,EM1 ` A is provable in IPA−.
We can show − ` EM1 in IPA− in a similar way to Example 3.3. By (cut) we have

−,Γ ` A in IPA− with (cut). By Theorem 4.2, we have −,Γ ` A in IPA−. 2

6 From IPA− to IHA + EM1

This section proves the direction from IPA− to IHA + EM1.
In order to discuss proofs in infinitary logic, we will have to formalize proofs in codes

and discuss some recursive functions from proofs to proofs. However, for space limitation,
we will not describe those codes in details.

Since it is well known that the cut elimination theorem holds for IHA [12], we will use
the following cut rule in IHA:

Γ ` A Π, A ` Σ
Γ,Π ` Σ (cut)

In our proof, we will use the idea of flag formulas. A flag formula Fi is a Π0
1 formula and

is assigned to each formula Ai in a sequent Γ ` A1, . . . , An when its proof is given. Given a



Makoto Tatsuta and Stefano Berardi 547

proof of Γ ` A1, . . . , An, if Fi is true, then the proof does not include any sequent with its
succedent of length less than i.

In order to prove the theorem, we need the minimum length of the succedents in the
sequents in a given proof. Even if a proof is given, we cannot effectively find the minimum
length since a proof may be infinite. The idea is using a set of Π0

1 formulas to describe
the minimum length. When F1, . . . , Fm are true and Fm+1, . . . , Fn are false, we know the
minimum length is m. The point is that we can effectively assign these Π0

1 formulas even
for an infinite proof.

For example, for the proof

−, A ` A (Ax R)

−, A,− ` A,⊥ (weak R)

−, A,−, B ` A,⊥ (weak L)

where A and B are true atomic formulas. Let F1 and F2 be the flag formulas for A and ⊥
respectively. We will define F1 to be true and F2 to be false, which means the minimum
length is 1.

We will explain how to define flag formulas by example. The first example is a proof
ending with the rule (∧R):

.... π1
Γ,− ` ∆, A ∧B,A

.... π2
Γ,− ` ∆, A ∧B,B

Γ ` ∆, A ∧B (∧R)

Let the minimum length be m and the minimum length for πi be mi for i = 1, 2. Let the flag
formulas for the proof be F1, . . . , Fn, and the flag formulas for πi be F i

1, . . . , F
i
n for i = 1, 2.

We can calculate m by m = min(m1,m2), but we do it by using flag formulas instead. We
define Fj = F 1

j ∧ F 2
j for j = 1, . . . , n.

The second example is a proof ending with the rule (∀R):
.... πk

Γ,− ` ∆,∀xA,A[k/x] (for all k)
Γ ` ∆,∀xA (∀R)

Let the minimum length be m and the minimum length for πk be mk. Let the flag formulas
for the proof be F1, . . . , Fn, and the flag formulas for πk be F k

1 , . . . , F
k
n . We cannot effectively

calculate m = mink(mk), but we can do it by flag formulas. We define Fj = ∀xF x
j for

j = 1, . . . , n, which informally means the infinite conjunction F 1
j ∧F 2

j ∧ . . .. Note that Fj is
also a Π0

1 formula when F k
j (k = 0, 1, 2, . . .) are Π0

1.

I Theorem 6.1. There exists a recursive function such that if IPA− proves the sequent
Γ0,−,Γ1,−,Γ2, . . . ,−,Γn ` A1, A2, . . . , An where n ≥ 1 and Γi does not contain any −
symbol, then the function computes the codes of Π0

1 formulas F1, . . . , Fn and the codes
of proofs of the following in IHA + EM1 from the code of the proof of the sequent
Γ0,−,Γ1,−,Γ2, . . . ,−,Γn ` A1, A2, . . . , An:

(1) ¬F1,Γ0 `,
(2) Fi,¬Fi+1,Γ0, . . . ,Γi ` Ai (1 ≤ i < n),
(3) Fn,Γ0, . . . ,Γn ` An.

I Theorem 6.2. If IPA− proves Γ0,−,Γ1 ` A, then IHA + EM1 proves Γ0,Γ1 ` A.
Proof. By Theorem 6.1 with n = 1, there exists the Π0

1 formula F1 such that IHA+EM1
proves (1) ¬F1,Γ0 `, and (2) F1,Γ0,Γ1 ` A. By weakening and (∨L), we get ¬F1 ∨
F1,Γ0,Γ1 ` A. We have EM1 ` ¬F1 ∨ F1. Hence, by the cut rule, we have the claim. 2
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Γ1, A,Γ2 ` ∆ (Ax L) (A a false atomic formula)

Γ ` ∆1, A,∆2
(Ax R) (A a true atomic formula)

Γ,> ` ∆, A ∧B,A Γ,> ` ∆, A ∧B,B
Γ ` ∆, A ∧B (∧R)

Γ1, A ∧B,Γ2, A ` ∆, D,D
Γ1, A ∧B,Γ2 ` ∆, D (∧L1) Γ1, A ∧B,Γ2, B ` ∆, D,D

Γ1, A ∧B,Γ2 ` ∆, D (∧L2)

Γ,> ` ∆, A ∨B,A
Γ ` ∆, A ∨B (∨R1) Γ,> ` ∆, A ∨B,B

Γ ` ∆, A ∨B (∨R2)

Γ1, A ∨B,Γ2, A ` ∆, D,D Γ1, A ∨B,Γ2, B ` ∆, D,D
Γ1, A ∨B,Γ2 ` ∆, D (∨L)

Γ, A ` ∆, A→B,A→B

Γ ` ∆, A→B
(→R1) Γ,> ` ∆, A→B,B

Γ ` ∆, A→B
(→R2)

Γ1, A→B,Γ2,> ` ∆, D,A Γ1, A→B,Γ2, B ` ∆, D,D
Γ1, A→B,Γ2 ` ∆, D (→L)

Γ,> ` ∆,∀xA,A[m/x] (∀m)
Γ ` ∆,∀xA (∀R)

Γ1,∀xA,Γ2, A[m/x] ` ∆, D,D
Γ1,∀xA,Γ2 ` ∆, D (∀L)

Γ,> ` ∆,∃xA,A[m/x]
Γ ` ∆,∃xA (∃R)

Γ1,∃xA,Γ2, A[m/x] ` ∆, D,D (∀m)
Γ1,∃xA,Γ2 ` ∆, D (∃L)

Γ ` ∆
Γ, A ` ∆, B (sweak) >,Γ ` ∆

Γ ` ∆ (>E) Γ ` ⊥,∆
Γ ` ∆ (⊥E)

Figure 5 Inference Rules of NCIPA

7 Non-Commutative Infinitary Peano Arithmetic

We define non-commutative infinitary Peano arithmetic NCIPA. In the next section we will
prove that NCIPA is a subsystem of IPA essentially equivalent to IPA−.

The language is defined to be the same as that of IPA. The inference rules are given by
Figure 5. The rule (sweak) means symmetric weakening. A proof in this system is defined
as a well-founded recursive tree in a similar way to IPA.

Intuitive meaning of provable sequents is given by using the familiar interpretation of
a sequent in the sequent calculus LK in the standard model of numbers as follows: If
Π, A1, . . . , An ` B1, . . . , Bn is provable, then (1) Π ` is true, or (2) Π, A1, . . . , Ai ` Bi is
true for some i. If A1, . . . , An ` C1, . . . , Cm, B1, . . . , Bn is provable, then (1) ` Ci is true for
some i, or (2) A1, . . . , Ai ` Bi is true for some i.

This system is obtained from IPA− by coding grouping information by the length of a
sequence of formulas. We explain it by example.

I Example 7.1. The sequent

A1,−, A2, A3,−, A4,−, A5, A6 ` B1, B2, B3
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A ∧B,>, B ` B ∧A,B,B (Id)

A ∧B,> ` B ∧A,B (∧L2) A ∧B,>, A ` B ∧A,A,A (Id)

A ∧B,> ` B ∧A,A (∧L1)

A ∧B ` B ∧A (∧R)

Figure 6 Example 7.2

in IPA− is coded by the sequent

A1,>, A2, A3,>, A4,>, A5, A6 ` B1, B1, B1, B2, B2, B3, B3, B3

in NCIPA. The atomic formula > is used for separating groups. The group >, A5, A6
corresponds to B3, B3, B3. The group >, A4 corresponds to B2, B2. The group >, A2, A3
corresponds to B1, B1, B1. We can decode this information by counting formulas from the
right to the left on both sides. This decoding may not be unique, but it is unique up to the
provability in IPA−. This translation is formally defined in Definition 8.4.

We explain this system by the same examples as those in Section 3. In the examples, we
assume the identity lemma Γ1, A,Γ2 ` ∆, A, which will be shown as Lemma 7.4 after the
examples.
I Example 7.2. The first example in Figure 6 shows the conjunction of NCIPA is commu-
tative.
I Example 7.3. The next example shows how this system respects the order of formulas.
We have three provable sequents

A,B ` A,⊥,
A,B ` ⊥, A,
A,B ` ⊥, B.

On the other hand the sequent

A,B ` B,⊥

is not provable. The first sequent is provable since A ` A is true. The second sequent
is provable since A,B ` A is true. The third sequent is provable since A,B ` B is true.
Formally the first sequent is proved by

A ` A (Id)

A,B ` A,⊥ (sweak)

and the second and the third sequents are proved by (Id). On the other hand, the fourth
sequent is not provable, since A ` B is not true and A,B ` ⊥ is not true.
I Lemma 7.4. The following is derivable.

Γ1, A,Γ2 ` ∆, A (Id)

This lemma is shown by induction on A in a similar way to Lemma 3.4.
Remark. (1) (⊥E) is necessary for making a binary left logical rule for the empty

succedent admissible. It is used in the proof of Proposition 8.6. For example, the following
is admissible.

Γ1, A ∨B,Γ2, A ` Γ1, A ∨B,Γ2, B `
Γ1, A ∨B,Γ2 `

(∨L)
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(2) (>E) is necessary since ` > ∨ ⊥,⊥ would not be provable otherwise, though it is
indeed provable by

> ` > ∨ ⊥,> (Ax R)

` > ∨ ⊥ (∨R1)

> ` > ∨ ⊥,⊥ (sweak)

` > ∨ ⊥,⊥ (>E)

I Proposition 7.5. The following are admissible.

Γ1,Γ2 ` ∆1,∆2
Γ1, A,Γ2 ` ∆1, B,∆2

(sweak2) (|Γ2| = |∆2|)

Γ1, A,A,Γ2 ` ∆1, B,B,∆2
Γ1, A,Γ2 ` ∆1, B,∆2

(scont) (|Γ2| = |∆2|)

Γ1,Γ2 ` ∆
Γ1, A,Γ2 ` ∆ (weak L) Γ ` ∆

Γ ` ⊥,∆ (⊥I) Γ1,>,Γ2 ` ∆
Γ1, A,Γ2 ` ∆ (replace L)

Γ ` ∆1, A,A,∆2
Γ ` ∆1, A,∆2

(cont R) Γ1,>, A,Γ2 ` ∆1, B,B,∆2
Γ1, A,Γ2 ` ∆1, B,∆2

(>E2) (|Γ2| = |∆2|)

We define the system NCIPA+EX as the system NCIPA with the following inference
rules (exch L) and (exch R).

Γ ` ∆1, A,B,∆2
Γ ` ∆1, B,A,∆2

(exch R) Γ1, A,B,Γ2 ` ∆
Γ1, B,A,Γ2 ` ∆ (exch L)

When the exchange rules are added to NCIPA, the coding information is lost and it
becomes equivalent to IPA.
I Theorem 7.6. Γ ` ∆ is provable in NCIPA+EX if and only if Γ ` ∆ is provable in IPA.

The system NCIPA is a subclassical logic.
I Theorem 7.7. Γ ` A is provable in NCIPA if and only if Γ,EM1 ` A is provable in IHA.

We will complete the proof of this theorem in Section 8.

8 Translations between NCIPA and IPA−

This section gives translations between NCIPA and IPA− in both directions and proves that
they preserve provability. By using these translations, we will prove the equivalence theorem
between NCIPA and IHA + EM1.

First, we give a translation from NCIPA to IPA−. To translate Γ ` ∆, we insert the same
number of − symbols as |∆| into Γ by adding a single − symbol in front of each formula
from the right. For example, the sequent A1, A2, A3, A4 ` B1, B2 in NCIPA is translated
into the sequent A1, A2,−, A3,−, A4 ` B1, B2 in IPA−.
I Definition 8.1 (Translation from NCIPA to IPA−). We translate a sequent Γ ` ∆
in NCIPA into the sequent Γ−|∆| ` ∆ in IPA−, where (Γ0, A1, A2, . . . , An)−n is de-
fined as Γ0,−, A1,−, A2, . . . ,−, An and (A1, A2, . . . , Am)−n (m < n) is defined as
−n−m,−, A1,−, A2, . . . ,−, Am.
I Example 8.2. The NCIPA-proof of A ∧ B ` B ∧ A in Example 7.2 is translated into the
IPA−-proof given in Figure 7.
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−, A ∧B,−,>,−, B ` B ∧A, B, B
(Id)

−, A ∧B,−,>, B ` B ∧A, B
(cont R)

−, A ∧B,−,> ` B ∧A, B
(∧L2)

−, A ∧B,− ` B ∧A, B
(>E)

−, A ∧B,−,>,−, A ` B ∧A, A, A
(Id)

−, A ∧B,−,>, A ` B ∧A, A
(cont R)

−, A ∧B,−,> ` B ∧A, A
(∧L1)

−, A ∧B,− ` B ∧A, A
(>E)

−, A ∧B ` B ∧A
(∧R)

Figure 7 Example for NCIPA to IPA−

>, A ∧B,>, B ` B ∧A,B ∧A,B,B (Id)

>, A ∧B,> ` B ∧A,B ∧A,B (∧L2) >, A ∧B,>, A ` B ∧A,B ∧A,A,A (Id)

>, A ∧B,> ` B ∧A,B ∧A,A (∧L1)

>, A ∧B ` B ∧A,B ∧A (∧R)

Figure 8 Example for IPA− to NCIPA

I Proposition 8.3. Γ `NCIPA ∆ implies Γ−|∆| `IPA− ∆.
This is proved by induction on the proof.
Next, we define a translation from IPA− to NCIPA. To translate Γ ` ∆, we replace −

by > in Γ, and the succedent is produced from ∆ by multiplying the i-th formula by ni + 1
when the i-th group in Γ has ni formulas. An example is given in Example 7.1. An denotes
A, . . . , A (n times).
I Definition 8.4 (Translation from IPA− to NCIPA). We translate a sequent Γ ` ∆ in IPA−
into the sequent Γ> ` ∆Γ in NCIPA, where Γ> is defined as Γ0,>,Γ1,>,Γ2, . . . ,>,Γn and
(A1, . . . , An)Γ is defined as A|Γ1|+1

1 , A
|Γ2|+1
2 , . . . , A

|Γn|+1
n if Γ is Γ0,−,Γ1,−,Γ2, . . . ,−,Γn and

Γi does not contain −.
I Example 8.5. The IPA−-proof of −, A ∧B ` B ∧ A in Example 3.1 is translated into the
NCIPA-proof given in Figure 8.
I Proposition 8.6. Γ `IPA− ∆ implies Γ> `NCIPA ∆Γ.

This is proved by induction on the proof.
Proof of Theorem 7.7. From the left-hand side to the right-hand side.
By Proposition 8.3, we have Γ−1 `IPA− A. By Theorem 6.2, we have Γ,EM1 `IHA A.
From the right-hand side to the left-hand side.
By Theorem 5.2, we have −,Γ `IPA− A. By Proposition 8.6, we get >,Γ `NCIPA

A|Γ|+1. By (>E) and (cont R) in Proposition 7.5, Γ `NCIPA A. 2

9 Cut Elimination for NCIPA

In this section, we will prove the cut elimination theorem for NCIPA.
I Definition 9.1. We give the cut rule in the system NCIPA.

Γ1,> ` Γ2, A ∆1, A,Σ1 ` ∆2,⊥,Σ2
Γ1,∆1,Σ1 ` Γ2,∆2,Σ2

(cut)

where |Π1| = |Π2|, |∆1| = |∆2|, |Σ1| = |Σ2|.
We can eliminate the cut rule in NCIPA.

I Theorem 9.2 (Cut Elimination). If Γ ` ∆ is provable in NCIPA with the rule (cut), then
Γ ` ∆ is provable in NCIPA.
This theorem is proved by using the cut elimination theorem for IPA− and the next propo-
sition.
I Proposition 9.3 (NCIPA to IPA− to NCIPA). (Γ−|∆|)> `NCIPA ∆Γ−|∆| iff Γ `NCIPA ∆.
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10 Concluding Remarks

We showed that by removing the exchange rules, Peano arithmetic with the ω-rules becomes
Heyting arithmetic with the recursive ω-rules and the Σ0

1 excluded middle. The equivalence
is an open question when the system is Peano arithmetic without the ω-rules.

Future work would be to investigate the computational content of the subclassical sys-
tems IPA− and NCIPA.
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