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Abstract
We prove that for the class of sets of words indexed by countable scattered linear orderings, there is
an equivalence between definability in first-order logic, star-free expressions with marked product,
and recognizability by finite aperiodic semigroups which satisfy the equation xωx−ω = xπ.
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1 Introduction

One of the fundamental results in formal language theory is the equivalence between automata
on finite words, rational expressions, recognizability by finite semigroups, and definability in
monadic second-order logic (see e.g. [26]). This has been specified by Schützenberger [25],
McNaughton and Papert [13], which show equivalence between counter-free automata, star-
free expressions, recognizability by finite aperiodic semigroups, and definability in first-order
logic.

These results have been extended to many classes of structures like infinite words [6, 14],
bi-infinite words [10, 15], transfinite words [7, 1], traces, trees, pictures...

In [5], Bruyère and Carton introduce automata and rational expressions for words indexed
by linear orderings. These notions unify naturally previously defined notions for finite words,
left- and right-infinite words, bi-infinite words, and ordinal words. The question to know
whether the above equivalence results hold in this setting has been addressed in several
papers since then. Up to now, most results hold when one restricts to sets of words indexed
by countable scattered orderings; recall that a linear ordering is scattered if it does not
contain any dense sub-ordering. For this class of sets, the paper [5] already proves that a
Kleene-like theorem holds. The works [23, 22] introduce a notion of �-semigroup and show
equivalence between recognizability by finite �-semigroups and rational expressions. Finally
[2] shows equivalence between rational expressions and monadic second-order logic.

Let us now consider the extension of Schützenberger-McNaughton-Papert results for sets
of words indexed by countable scattered orderings. Bedon and Rispal [3] prove equivalence
between star-free expressions and recognizability by finite aperiodic �-semigroups. From
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their work it is possible to obtain a characterization of star-free expressions in terms of FO
definability in structures where one can quantify over elements and cuts of the underlying
ordering. However it seems natural to consider the more classical logical framework (used
e.g. in [2]) where the domain of the structure consists only of elements of the ordering, and
ask for a characterization of FO-definable sets. For many classes of words (such as words
indexed by ω, Z, an ordinal, or R [20]), the equivalence between star-free expressions with
FO logic is a relatively simple generalization of McNaughton-Papert proof. Let us try to
explain why this is not the case here. A crucial point in the proof that star-free sets are
FO-definable is the possibility to define in FO the product L = L1 · L2 of two FO-definable
sets L1 and L2. Intuitively, this can be done by expressing (with a FO sentence) that w ∈ L
iff there exists some position x in w such that the prefix of w which corresponds to positions
before x belongs to L1, and the remaining suffix of w belongs to L2. The existence of x is
ensured by the fact that the underlying ordering is complete. We cannot use this idea when
considering any countable scattered ordering.

In this paper we characterize FO-definable sets in terms of rational expressions and
recognizability by semigroups. For rational expressions, we consider the class of star-free
marked sets, which is a variant of the class of star-free sets where one uses the marked
product instead of the classical product. The operation of marked product has already
been studied extensively, in particular in connection with the hierarchy of concatenation
[19, Sect 7.1]. For the algebraic side, this corresponds to the class of sets which can be
recognized by a �-semigroup which is finite and aperiodic, and satisfies the additional equation
xωx−ω = xπ. As an immediate corollary of this characterization, we prove that it is decidable
whether a rational set of words indexed by countable scattered orderings is star-free marked
or, equivalently, FO-definable. We obtain as a byproduct that marked products are less
expressive than usual products for linear ordering whereas they have the same expressive
power for finite words.

Let us mention partial results for the class of words indexed by any linear ordering. The
paper [4] introduces a new rational operation of shuffle of sets which allows to deal with dense
orderings, and extends the Kleene-like theorem proved in [5] to sets of words indexed by all
linear orderings. The work [2] shows that rational sets are definable in MSO logic, but not
the converse (for instance, it is shown that the class of scattered orderings is MSO-definable
but not rational). The decidability of FO can also be obtained with automata through linear
temporal logic which is equivalent on linear orderings [9].

The paper is organized as follows. Definitions and useful results concerning linear
orderings, rational sets, logic, and semigroups are recalled respectively in Sections 2, 3, 4
and 5. Section 6 states and gives a sketch of the proof of the main result.

2 Words on scattered linear orderings

2.1 Scattered linear orderings
This section recalls basic definitions on linear orderings but the reader is referred to [24] for
a complete introduction. Hausdorff’s characterization of countable scattered linear orderings
is given and words indexed by linear orderings are introduced.

A linear ordering (J,<) is a total ordering. A cut of a linear ordering J is a pair (K,L)
of intervals such that J = K ∪ L and such that for any k ∈ K and l ∈ L, k < l. The set of
all cuts of the ordering J is denoted by Ĵ . This set Ĵ can be linearly ordered by the relation
defined by c1 < c2 if and only if K1 ( K2 for any cuts c1 = (K1, L1) and c2 = (K2, L2). This
linear ordering can be extended to J ∪ Ĵ by setting j < c1 whenever j ∈ K1 for any j ∈ J .
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A gap of an ordering J is a cut (K,L) such that K 6= ∅, L 6= ∅, K has no last element
and L has no first element. An ordering J is complete if it has no gap. For example, the
linear ordering of the real numbers R is complete, whereas the linear ordering of the rational
numbers Q is not.

For any linear ordering J , we denote by −J the opposite linear ordering that is the set
J equipped with the opposite ordering. For instance, −ω is the linear ordering of negative
integers.

The sum J +K of two linear orderings is the set J ∪K equipped with the ordering <
extending the orderings of J and K by setting j < k for any j ∈ J and k ∈ K. Next, the sum∑
j∈J Kj is the set of all pairs (k, j) such that k ∈ Kj equipped with the ordering defined by

(k1, j1) < (k2, j2) if and only if j1 < j2 or (j1 = j2 and k1 < k2 in Kj1).
A linear ordering J is dense if for any j and k in J such that j < k, there exists an

element i of J such that j < i < k. It is scattered if it contains no dense sub-ordering. The
ordering ω of natural integers and the ordering ζ of relative integers are scattered. More
generally, ordinals are scattered orderings. We denote by N the subclass of finite linear
orderings, O the class of countable ordinals and S the class of countable scattered linear
orderings. The following characterization of scattered linear orderings is due to Hausdorff.

I Theorem 1. [Hausdorff [12]] A countable linear ordering J is scattered if and only if J
belongs to

⋃
α∈O

Vα where the classes Vα are inductively defined by:

1. V0 = {0,1}
2. Vα = {

∑
j∈J

Kj | J ∈ N ∪ {ω,−ω, ζ} and Kj ∈
⋃
β<α

Vβ}.

where 0 and 1 are respectively the orderings with zero and one element.

The rank r(J) of a countable scattered ordering J is defined as the least ordinal α such that
J ∈ Vα.

2.2 Words
Let A be a finite alphabet. A word w = (aj)j∈J indexed by a linear ordering J is a function
from J to A. J is called the length of w. For instance ω is the length of right-infinite words
a0a1 · · · and ζ is the length of bi-infinite words · · · a−1a0a1 · · · .

The sum of linear orderings helps to define the products of words. Let J be a linear
ordering and let (xj)j∈J be words of respective length Kj for any j ∈ J . The word
x =

∏
j∈J xj obtained by concatenation of the words xj with respect to the ordering on J is

of length L =
∑
j∈J Kj . For instance, if for any j ∈ ω, we set xj = aω

j , then x =
∏
j∈ω xj

is the word x = aω
ω of length

∑
j∈ω ω

j = ωω. The sequence (xj)j∈J of words is called a
J-factorization of the word x =

∏
j∈J xj .

We denote by A� the set of all words over A indexed by countable scattered linear
orderings. The rank r(w) of a word w ∈ A�, is, by definition the rank of its length J .

3 Rational sets of words on linear orderings

Bruyère and Carton have introduced rational expressions and automata for words indexed
by countable scattered linear orderings [5]. They have proved that a set of words is described
by a rational expression if and only if it is accepted by some finite automaton. Such a set is
called rational in this paper. This result is an extension of the classical Kleene theorem on
finite words. This section briefly recalls definitions of rational operations. In this paper, we
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will mainly use union and concatenation but the other operations are often useful to denote
sets of words.

Let A be a fixed finite alphabet. We consider the rational operations defined for any
subsets X and Y of A� by :

X + Y = {z | z ∈ X ∪ Y } X · Y = {x · y | x ∈ X, y ∈ Y },
X∗ = {

∏
j∈{1,...,n} xj | n ∈ N , xj ∈ X}, X� = {

∏
j∈J xj | J ∈ S, xj ∈ X},

Xω = {
∏
j∈ω xj | xj ∈ X}, X−ω = {

∏
j∈−ω xj | xj ∈ X},

X] = {
∏
j∈α xj | α ∈ O, xj ∈ X}, X−] = {

∏
j∈−α xj | α ∈ O, xj ∈ X}.

As usual, the dot denoting concatenation is omitted in rational expressions. A marked
product of X and Y is a product of the form XaY for some letter a ∈ A.

The operator � that we have defined above is actually a special case of a more general
binary operator defined in [5]. This binary operator is really needed to capture all rational
sets but it is not used in this paper.

Let us define the main classes of sets that we use in this paper.
The class Rat(A�) of all rational sets over A indexed by countable scattered linear
orderings is the smallest set containing {a} for any a ∈ A, the empty set, and closed under
all rational operations. It is proved in [23] that this class is closed under complementation
and thus under all boolean operations.
The set SF(A�) of star-free sets over A indexed by countable scattered linear orderings is
the smallest set containing {a} for any a ∈ A, the empty set, and closed under product
and all boolean operations.
The set SFM(A�) of star-free marked sets over A indexed by countable scattered linear
orderings is the smallest set containing {a} for any a ∈ A, the empty set, and closed
under marked product and all boolean operations.

It is interesting to note that, for finite words, the corresponding classes SF(A∗) and
SFM(A∗) coincide. Any product KL is indeed equal to a finite union Kε(L) +

∑
a∈AKaLa

where La = a−1L. They do not coincide in our case as it is shown by Example 4. Let us
illustrate these definitions by some examples.

I Example 2. Consider the set X1 ⊆ A� of words w over A = {a, b} such that every position
in w (apart from the last position, if any) admits a next position, and every position (apart
from the first position, if any) admits a previous position. We have

X1 = A� \ [(A�AA�)ωAA� +A�A(A�AA�)−ω].

Moreover (A�AA�)ω = A�AA� \A�A and (A�AA�)−ω = A�AA� \AA�, thus X1 is a star-free
marked set.

I Example 3. Consider the set X2 = (a�aa�)ω(b�bb�)−ω of words w over A = {a, b} which
can be written as w = w1w2 where w1 is non-empty, contains only a and has no last a and
w2 is non-empty, contains only b and has no first b. There is then a gap between w1 and w2.
A star-free marked expression for X2 is

A�aA�bA� \ (A�bA�aA� ∪ a�ab� ∪ a�bb�).

Observe that a� = A� \A�bA� and b� = A� \A�aA�.
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The following example gives a set X3 which seems very close to the set X2 of the previous
example. This set will be star-free but our characterization of SFM(A�) will allow us to
prove that X3 is not a star-free marked set (see Example 17).

I Example 4. Consider the set X3 = (A�AA�)ω(A�AA�)−ω of words w over A = {a, b}
such that the underlying ordering of w contains at least one gap. We have X3 ∈ SF (A�).

4 Logic

Let us recall useful elements of logic, and settle some notations. For more details we refer
e.g. to Thomas’ survey paper [26].

We consider first-order (shortly: FO) logic over relational signatures. As usual, we will
often identify logical symbols with their interpretation. We call FO sentence every FO
formula without free variable.

For every finite alphabet A = {a1, . . . , an} we consider the relational signature LA = {<
,Pa1 , . . . , Pan

} where < denotes a binary predicate symbol and every Pai
denotes a unary

predicate symbol. One can associate to every word w = (aj)j∈J over A (where aj ∈ A for
every j) the LA-structure Mw = (J ;<, (Pa)a∈A) where < is interpreted as the ordering over
J , and Pa(x) holds if and only if ax = a. In order to take into account the case w = ε, which
leads to the structure Mε which has an empty domain, we will allow structures to be empty.

Given an FO sentence ϕ over the signature LA, we define the set Lϕ as the set of words
w ∈ A� such that Mw |= ϕ. This definition extends to the case of FO formulas with free
variables. For every word w = (aj)j∈J over A and every n-tuple b1, . . . , bn of elements of J ,
we define w(b1, . . . , bn) as the word w′ = (a′j)j∈J over the alphabet {0, 1}n × A such that
for every j ∈ J , the last component of a′j equals aj , and for every i ∈ {1, . . . , n}, the i-th
component of a′j equals 1 if and only if j = bi. Now, given a FO formula ϕ(x1, . . . , xn) with
free variables x1, . . . , xn, we define Lϕ as the class of words of the form w(b1, . . . , bn) over
the alphabet {0, 1}n ×A such that Mw |= ϕ(b1, . . . , bn).

We will say that a set X ⊆ A� is FO-definable if there exists an FO-formula ϕ over the
signature LA such that X = Lϕ.

I Example 5. The set X1 of Example 2 is FO definable. We first define the auxiliary
predicate suc(x, y) as x < y ∧ ¬∃z(x < z ∧ z < y). Then X1 is definable by the formula

∀x[(∃y x < y −→ ∃y suc(x, y)) ∧ (∃y y < x −→ ∃y suc(y, x))].

I Example 6. The set X2 of Example 3 can be defined by the FO-formula

∃x Pa(x) ∧ ∃y Pb(y) ∧ ¬∃x∃y(x < y ∧ Pb(x) ∧ Pa(y)) (1)
∧∀x(Pa(x)→ ∃y(y > x ∧ Pa(y))) (2)
∧∀y(Pb(y)→ ∃x(x < y ∧ Pb(x))) (3)

The sub-formula (1) expresses that the word contains some a and some b, and that no a
occurs after some b. The sub-formula (2) (resp. (3)) ensures that there is no last a (resp. no
first b).

5 Algebraic characterization of rational sets

The algebraic objets that we use to characterize FO over countable scattered linear orderings
are semigroups enriched with operations that make them suitable for linear orderings. We
start with the definition of a semigroup.
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A semigroup is a set S equipped with an associative binary product. Since the product is
associative, the product s1 · · · sn of n elements s1, . . . , sn is well-defined. The semigroup S1

is S if S has already a neutral element and it is the semigroup obtained by adding a neutral
element otherwise. An idempotent e of a semigroup is an element such that e2 = e.

5.1 �-semigroups
The product of semigroups is generalized to recognize sets of words indexed by countable
scattered linear orderings. A �-semigroup is a generalization of a usual semigroup. The
product of a sequence indexed by any scattered ordering is defined. For any set S, recall
that S� denotes the set of words over S indexed by any countable scattered linear ordering.

I Definition 7. A �-semigroup is a set S equipped with product π : S� → S which maps
any word of S� to an element of S such that

for any element s of S, π(s) = s;
for any word x of S� and for any factorization x =

∏
j∈J xj where J ∈ S,

π(x) = π(
∏
j∈J

π(xj)).

The latter condition is a generalization of associativity. It states that for any factorization
x =

∏
j∈J xj of some word x ∈ S�, the product of x can be obtained by first computing the

product π(xj) of each word xj to get a word y =
∏
j∈J π(xj) of length J and then computing

the product π(y) of that word y.
Note that a �-semigroup (S, π) is already a semigroup. For any two elements s and t

of S, the finite product π(st) (more precisely, the product of the sequence st of length 2)
is defined. It is merely denoted by st. The generalization of associativity ensures that
r(st) = π(rπ(st)) = π(rst) = π(π(rs)t) = (rs)t for any r, s, t ∈ S.

The set A� equipped with the concatenation is a �-semigroup. All �-semigroups considered
in this paper are either of the form A� for some alphabet A or they are finite. The following
example is a �-semigroup where the underlying set S is finite (these �-semigroups will be
studied in Section 5.2).

I Example 8. The set S = {0, 1} equipped with the product π defined for any u ∈ S�

by π(u) = 0 if u has at least one occurrence of the letter 0, and π(u) = 1 otherwise, is a
�-semigroup.

A sub-�-semigroup T of a �-semigroup S is a subset of S closed under product. Amorphism
of �-semigroup is an application which preserves the product. A function ϕ : S → T is a
morphism from (S, πS) to (T, πT ) if for any word x = (sj)j∈J , one has πT (ϕ(x)) = ϕ(πS(x))
where ϕ(x) = (ϕ(sj))j∈J . A �-semigroup T is a quotient of a �-semigroup S if there exists
an onto morphism from S to T . A �-semigroup T divides S if T is the quotient of a
sub-�-semigroup of S.

5.2 Finite �-semigroups
A �-semigroup (S, π), of course, is said to be finite if S is finite. Even when S is finite, the
function π is not easy to describe because the product of any sequence has to be given. It
turns out that the function π can be described using a semigroup structure on S with two
additional functions from S to S. This gives a finite description of the product π.

It has already been noted that a �-semigroup (S, π) has already a structure of semigroup
since π is defined on words of length 2. Let us define two functions τ : S → S and −τ : S → S.
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The images of these functions are denoted using exponentiation : τ : s 7→ sτ and −τ : s 7→ s−τ .
For any s ∈ S, sτ and s−τ are respectively equal to π(sω) and π(s−ω) where sω = sss · · ·
and s−ω = · · · sss are the two words of length ω and −ω in which s occurs at all positions.

The functions τ and −τ satisfy the following equations. For any s, t ∈ S and for any
integer n, one has s(ts)τ = (st)τ , (sn)τ = sτ , (st)−τs = (ts)−τ and (sn)−τ = s−τ . Equations
for τ follow from the equality between the ω-words (sn)ω and sω and from the equality
between the ω-words (st)ω and s(ts)ω. Equations for −τ follow from similar relations for
words of lengths −ω. Functions satisfying these equations are respectively called compatible
to the right and compatible to the left with S.

Note that these two functions τ and −τ can be defined even when the �-semigroup is
not finite. When the �-semigroup (S, π) is finite, the semigroup structure of S and the
two functions τ and −τ completely describe its product π. This is stated in the following
theorem.

I Theorem 9 ([23, 22]). Let S be a finite semigroup and let τ and −τ be functions respectively
compatible to the right and to the left with S. Then S can be uniquely endowed with a structure
of �-semigroup (S, π) such that sτ = π(sω) and s−τ = π(s−ω).

The previous theorem means that a finite �-semigroup has a finite description. It suffices
to give a semigroup product and two compatible functions to fully characterize the product.

We briefly explain how the product π can be recovered from the semigroup structure and
the compatible functions. The construction of π is based on the next Lemma which follows
directly from Ramsey’s Theorem [21].

Let S be a semigroup. We denote by ϕ the natural morphism from S∗ to S which maps
any finite sequence of elements to their product. Let x = (sj)j∈ω be an ω-word over S. A
ω-factorization of x is ω-sequence (xj)j∈ω of finite words such that x =

∏
j∈ω xj . A right

linked pair of a semigroup S is a pair (s, e) such that se = s and e2 = e.

I Lemma 10. For any ω-word x over a semigroup S, there is an ω-factorization x =
∏
j∈ω xj

and a right linked pair (s, e) such that ϕ(x0) = s and ϕ(xj) = e for any j ≥ 1.

Such a factorization is called a ramseyan factorization, see Theorem 3.2 in [17]. If
x =

∏
j∈ω xj is a ramseyan factorization of x, then π(x) must be equal to seτ since π satisfies

a generalized associativity. The product π is then defined on all words in S� by induction on
their rank. A word of rank α is, indeed, either a finite, or an ω , or a −ω-product of words
of ranks smaller than α.

Note that a given ω-word over S may have several ramseyan factorizations related to
different right linked pairs (s1, e1) and (s2, e2). It turns out that these linked pairs are then
conjugated. There exist elements x, y ∈ S1 such that s1x = s2, e1 = xy and e2 = yx. Since
the function τ is compatible, one has s1e

τ
1 = s1(xy)τ = s1x(yx)τ = s2e

τ
2 .

The functions τ and −τ are usually denoted ω and −ω. This may cause a small confusion
since sω is either an ω-word over S or its product in S but it is always clear from the context
which one is meant.

I Example 11. Consider again the �-semigroup S = {0, 1} of Example 8. Its semigroup
structure is {0, 1} with the usual multiplication (11 = 1 and 00 = 01 = 10 = 0). The
compatible functions ω and −ω are defined by 0ω = 0−ω = 0 and 1ω = 1−ω = 1.

I Example 12. The set S = {0, 1} equipped with the product π defined for any u ∈ S� by
π(u) = 1 if only 1 occurs in u and if the length of u is an ordinal and π(u) = 0 otherwise, is
a �-semigroup. Its semigroup structure is again {0, 1} with the usual multiplication but the
compatible functions ω and −ω defined by 0ω = 0−ω = 1−ω = 0 and 1ω = 1.
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Since any element s of a finite semigroup has a power sn which is an idempotent and
since (sn)ω = sω, it suffices to give the values of eω when e is an idempotent to completely
describe the function ω. The same applies to the function −ω.

5.3 Recognizability
It is well known that rational sets of finite words are exactly those recognized by finite
semigroups (see e.g. [18]). This result can be generalized for words indexed by countable
scattered linear orderings.

Let S and T be two �-semigroups. The �-semigroup T recognizes a subset X of S if and
only if there exists a morphism ϕ : S → T and a subset P ⊆ T such that X = ϕ−1(P ).

The following theorem states that finite �-semigroups are equivalent to rational expressions
and automata for words indexed by countable scattered orderings.

I Theorem 13 ([23]). A set X ⊆ A� is rational if and only if it is recognized by a finite
�-semigroup.

It is also proved in [23] that any rational set X of words over countable scattered linear
orderings has a syntactic �-semigroup. This is a smallest �-semigroup recognizing X in a
strong way. Not only it is the smallest in cardinality but it also divides any other �-semigroup
recognizing X. As in the case of finite words, this syntactic �-semigroup can be obtained by
quotienting any �-semigroup recognizing X by the relation that identifies elements which
cannot be distinguished by contexts (intuitively, contexts are terms which involve ω and
−ω−products, and with a hole in it).

The following example shows how the �-semigroup introduced in Example 12 can be used
to recognize the set of words of ordinal length.

I Example 14. Consider the �-semigroup S defined in Example 12 and the morphism
ϕ : A� → S defined by ϕ(a) = 1 for any a ∈ A. The set of words with countable ordinal
length is recognizable since it is equal to ϕ−1({1}). It will be shown after Theorem 21 that
this set is not FO-definable. This is a variant of Tarski’s result (see [24, Theorem 13.13])
that the class of well-orderings is not elementary.

We give below some examples of morphisms from A� into finite �-semigroups that
recognize subsets of A� that have been already encountered in Examples 2, 3 and 4. It can be
checked that, in each example, the given �-semigroup is actually the syntactic �-semigroup
of the set it recognizes. For each �-semigroup, we give the D-classes structure.

∗
e t

s
∗

f

∗ 0

Figure 1 D-classes structure of �-semigroup of Example 15

I Example 15. The set X1 of Example 2 is recognized by the �-semigroup S1 = {0, e, t, s, f}
whose product is defined by ts = e2 = e, et = tf = t, se = fs = s, st = f2 = f , eω = t,
e−ω = s, fω = f−ω = f and any other product is equal to 0. Define the morphism
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ϕ1 : A� → S1 by ϕ1(a) = ϕ1(b) = e. Observe that ϕ−1
1 (e) is the set of words which have a

first and a last element, and ϕ−1
1 (f) is the set of words which have neither a first nor a last

element. We have X1 = ϕ−1
1 (S1 \ {0}).

∗
e
∗

f

∗
g

∗
h

s

∗ 0

Figure 2 D-classes structure of �-semigroup of Example 16

I Example 16. The setX2 of Example 3 is recognized by the �-semigroup S2 = {0, e, f, g, h, s}
whose product is defined by e2 = fe = e−ω = e, f2 = ef = eω = fω = f−ω = f ,
g2 = gh = gω = g, h2 = hg = hω = g−ω = h−ω = h, fh = es = fs = sg = sh = s, and any
other product is equal to 0. Define the morphism ϕ2 : A� → S2 by ϕ2(a) = e and ϕ2(b) = g.
We have X2 = ϕ−1

2 (s). It will be seen after Theorem 21 that X2 is FO-definable.

∗
e
∗

f

∗
g s

∗ 0

Figure 3 D-classes structure of �-semigroup of Example 17

I Example 17. The set X3 of Example 4 is recognized by the �-semigroup S3 = {0, e, f, g, s}
whose product is defined by e2 = fe = eg = e, f2 = ef = es = eω = fω = f , g2 = ge =
se = e−ω = g−ω = g, gs = sf = gf = gω = f−ω = s and any other product is equal to
0. Define the morphism ϕ3 : A� → S3 by ϕ3(a) = ϕ3(b) = e. We have X3 = ϕ−1

3 (0). Our
characterization of FO-definability (Theorem 21) will imply that X3 is not FO-definable.

5.4 Equivalence between rational sets, �-semigroups, and logic
The equivalence between rational expressions, �-semigroups and logic was proved in [23, 22, 2].
The logical side involves Monadic Second-Order (shortly: MSO) logic. Recall that MSO logic
is an extension of first-order logic that allows to quantify over elements as well as subsets of
the domain of the structure. The notion of MSO-definable set extends in a natural way the
one of FO-definable set. For more details about MSO logic we refer e.g. to [11, 26].

The following theorem is an extension of the classical theorem of Büchi [6] which states
that, for finite words, MSO exactly defines rational sets of words.

I Theorem 18 ([23, 22, 2]). Let A be a finite alphabet, and let X ⊆ A� be a set of words
indexed by countable scattered linear orderings. Then the following properties are equivalent:
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1. X is rational;
2. X is recognizable by a finite �-semigroup;
3. X is MSO-definable.

Bedon and Rispal [3] extended Schützenberger’ theorem [25] to the class of sets of words
indexed by countable scattered linear orderings. In order to state their result, we recall the
definitions of an aperiodic semigroup and of an aperiodic �-semigroup.
I Proposition 19. ([17, Annex A,Prop. 2.9]) Let S be a finite semigroup. The following
conditions are equivalent.
1. There exists an integer n such that sn+1 = sn for any s ∈ S;
2. every group in S is trivial;
3. Each H-class is trivial.
A semigroup S satisfying these conditions is called aperiodic.

Note that if sn+1 = sn, then sm+1 = sm for any m ≥ n. If a finite semigroup S is
aperiodic, then sn+1 = sn for any s ∈ S and for any large enough integer n. Such an
integer is traditionally denoted by ω in semigroup theory but we will denote it π. This
symbol π is also used for the product of the �-semigroup but this will not lead to ambiguous
interpretations in the sequel. A �-semigroup S is said to be aperiodic whenever its semigroup
structure is an aperiodic semigroup. This definition allows us to state the characterization of
star-free sets due to Bedon and Rispal.

I Theorem 20 ([3]). Let A be a finite alphabet, and let X ⊆ A� be a set of words indexed
by countable scattered linear orderings. Then the following properties are equivalent:
1. X is star-free;
2. X is recognizable by a �-semigroup which is finite and aperiodic;
3. X can be defined by FO over the cuts.

In the previous theorem, “defined by FO over the cuts” means that X is defined by a
first order formula with quantification over positions of the words, (that is, elements of its
length) but also over cuts of its length. This is not, strictly speaking, FO since the cuts are
not part of the structureMw of a word w. The last statement is not given in [3] but the
equivalence between star-freeness and FO over the cuts is not difficult. In this paper, we
give the equivalence between marked star-freeness and FO (without the cuts). The proof
carries easily over star-freeness and the cuts.

For sets of finite words, McNaughton-Papert theorem [13] states that star-free sets coincide
with FO-definable sets. For sets of words indexed by countable scattered linear orderings,
one can prove that FO-definable sets are star-free (see Proposition 23), but the converse
does not hold anymore. For instance, it is easy to check that the set X = {aω} is star-free,
but it can be shown that X is not FO-definable (this comes from the fact that the ordering
ω is undistinguishable from any ordering of the form ω + ζ × α in FO logic, see e.g. [24,
Proposition 6.12]). In the next section we provide a characterization of FO-definable sets.

6 Main result

We finally come to the main result of the paper, characterization of FO for words over
countable scattered linear orderings

I Theorem 21. Let A be a finite alphabet, and let X ⊆ A� be a set of words indexed by
countable scattered linear orderings. Then the following properties are equivalent:
1. X is a star-free marked set;
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2. X is FO-definable;
3. X is recognizable by a finite aperiodic �-semigroup satisfying the equation xωx−ω = xπ;
4. the syntactic �-semigroup of X is finite, aperiodic and satisfies the equation xωx−ω = xπ.

In the sequel, a finite aperiodic �-semigroup satisfying the equation xωx−ω = xπ is called
an FO-semigroup. The theorem is illustrated by the following examples.

The set X1 of Example 2 is star-free marked, FO-definable (see Example 5) and the
�-semigroup provided in Example 15 is a FO-semigroup. Similarly, the set X2 of Example 3 is
star-free marked, FO-definable (see Example 6) and the �-semigroup provided in Example 16
is a FO-semigroup. On the other hand, the set X3 of Example 4 is star-free but its syntactic �-
semigroup given in Example 17 is not a FO-semigroup. Indeed we have eωe−ω = fg = 0 6= eπ

since eπ = e. Thus X3 is not a star-free marked set, and is not FO-definable.
Theorem 21 yields an effective procedure to test whether a rational set X ⊆ A� is star-free

marked. Indeed Theorem 18 allows to compute effectively the finite syntactic �−semigroup of
X, from which one can decide whether S is aperiodic and satisfies the equation xωx−ω = xπ.

I Corollary 22. Let X ⊆ A� be a rational set of words indexed by countable scattered linear
orderings. Then it is decidable whether X is FO-definable.

The proof of Theorem 21 is organized as follows. Section 6.1 proves the equivalence
between (1) and (2). This is a straightforward generalization of the case of sets of finite
words. In Proposition 24 we prove that (1) implies (3); it is again a rather easy extension
of the case of finite words. The most difficult part is to prove that (3) implies (1), namely
that sets recognizable by FO-semigroups are star-free marked sets. The proof is long and
technically involved. It relies on the study of the structure of D-classes of a FO-semigroup
which recognizes the set. In Section 6.2.2 we give the general structure of the proof, but
details are omitted.

6.1 First-order logic vs star-free marked sets
In this section we state equivalence between star-free marked expressions and FO-definability.
I Proposition 23. Let A be a finite alphabet, and let X ⊆ A� be a set of words indexed by
countable scattered linear orderings. The set X is a star-free marked set if and only if X is
definable in first-order logic.

Proof. (sketch) The proof is a straightforward generalization of the proof of McNaughton-
Papert Theorem given in [26, Theorem 4.4].

The “only if" part is proved by induction on a star-free marked expression denoting X.
For the converse, consider a first-order formula ϕ(x1, . . . , xn) with quantifier-depth m,

and assume (without loss of generality) that ϕ holds only if x1 < x2 · · · < xn. Then one
can prove by induction on m (using Ehrenfeucht-Fraïssé games) that ϕ is equivalent to a
disjunction of formulas of the form

ψ0 ∧ Pa1(x1) ∧ ψ1 ∧ · · · ∧ Pan(xn) ∧ ψn

where all formulas ψi have quantifier depth m, and for every 1 ≤ i ≤ n − 1 (respectively
i = 0, i = n), ψi is a formula where all quantifiers are relativized to the interval (xi, xi+1),
except for ψ0 (respectively ψn) for which all quantifiers are relativized to elements less than
x0 (respectively greater than xn).

Now assume that X is FO-definable by a sentence ψ. Assume first that ψ is of the form
∃xϕ(x). Then using the above result, ψ is equivalent to a disjunction of formulas of the form
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∃x(ψ0 ∧Pai(x)∧ψ1). Each such formula defines a star-free marked set, thus X ∈ SFM(A�).
In case ψ has the form ∀xϕ(x), we use the equivalence ψ ≡ ¬∃x¬ϕ(x). J

6.2 FO-semigroups vs star-free marked sets
6.2.1 From star-free marked sets to FO-semigroups
I Proposition 24. Let A be a finite alphabet, and let X ⊆ A� be a set of words indexed by
countable scattered linear orderings. If X is a star-free marked set then X is recognizable by
a FO-semigroup.

The proof is very close to the one given in [16] for the case of sets of finite words. It goes
by induction on a star-free marked expression denoting the set X. Here we have to show, in
addition, that a �-semigroup S which recognizes X satisfies the equation xωx−ω = xπ.

For every set X ⊆ A� recognizable by a finite aperiodic �-semigroup S, we define
i(X) as the least integer n such that for every x ∈ A� and every context C, we have
C(xn+1) ∈ X ⇔ C(xn) ∈ X (let us recall that a context is, intuitively, a term with a hole in
it).

Proof. The proof goes by induction on a star-free marked expression denoting X.
The cases when X = ∅, and X = {a} with a ∈ A, are easy.
Assume now that X1 and X2 are star-free marked sets which are recognized by the FO-

semigroup S1 and S2, respectively. The proof that the sets Y1 = X1 +X2 and Y2 = A� \X1
are recognizable by a FO-semigroup is easy. They are both recognized by the �-semigroup
S1 × S2 with the component-wise product. This �-semigroup is obviously a FO-semigroup.

Let us prove that every set X ⊆ A� of the form X = X1aX2 with a ∈ A, is recognizable
by a FO-semigroup.

Let S be a finite �-semigroup which recognizes X, and let ϕ : A� → S be the associated
morphism. Let us show that S is aperiodic with i(X) ≤ i(X1) + i(X2) + 1. This amounts
to show that for all words u, v, w ∈ A� and every integer n ≥ i(X1) + i(X2) + 1, one has
uvnw ∈ X if and only if uvn+1w ∈ X. It is actually sufficient to prove that if uvnw ∈ X,
then uvn+1w ∈ X since the finiteness of S implies that there always exists an integer p ≥ 1
such that for n large enough, one has uvnw ∈ X if and only if uvn+pw ∈ X. Assume first that
uvnw ∈ X. By definition of X there exists z1 ∈ X1 and z2 ∈ X2 such that uvnw = z1az2.
We consider several cases:

if uvnw′ = z1 for some prefix w′ of w, then it follows from our hypothesis on X1 and the
fact that n ≥ i(X1) that uvn+1w′ ∈ X1, thus uvn+1w ∈ X.
The case when u′vnw = z2 for some suffix u′ of u is similar to the previous case.
Assume now that z1 = uvn1v1 and z2 = v2v

n2w with v1av2 = v and n1 + n2 + 1 = n.
By hypothesis we have n1 + n2 + 1 ≥ i(X1) + i(X2) + 1, thus either n1 ≥ i(X1), or
n2 ≥ i(X2). If n1 ≥ i(X1) then it follows from our hypothesis on X1 that uvn1+1v1 ∈ X1,
which yields uvn+1w ∈ X. The case when n2 ≥ i(X2) is similar.

Let us now prove that xωx−ω = xπ for every x ∈ S. This amounts to show that for all
words u, v, w ∈ A�, there exists an integer n > i(X) such that uvωv−ωw ∈ X if and only if
uvnw ∈ X. The case v = ε is trivial. We suppose now that v 6= ε.

Assume first that uvωv−ωw ∈ X. By definition of X there exists z1 ∈ X1 and z2 ∈ X2
such that uvωv−ωw = z1az2. We consider several cases:

if uvω is a prefix of z1, then it is a strict prefix since az2 cannot be equal to v−ωw. Thus
z1 = uvωv−ωw′ for some prefix w′ of w. It follows from our hypothesis on X1 that for
every n ≥ i(X1) we have uvnw′ ∈ X1, thus uvnw ∈ X.
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the case when z1 is a prefix of uvω is similar.
Note that we have really used here that this is a marked product.

Conversely assume that uvnw ∈ X for some integer n > i(X), and let uvnw = z1az2
with z1 ∈ X1 and z2 ∈ X2. By definition of i(X) we can assume that n ≥ i(X1) + i(X2) + 1.
Let y = uvnw.

If y can be written as y = uvn1w1w2 with n1 ≥ i(X1) and uvn1w1 ∈ X1, then the
induction hypothesis implies that uvωv−ωw1 ∈ X1, hence uvωv−ωw ∈ X.

The case where y can be written as y = u1u2v
n2w with n2 ≥ i(X2) and u2v

n2w ∈ X2 is
similar. J

6.2.2 From FO-semigroups to star-free marked sets
In this section we state the following result, and discuss about its proof.
I Proposition 25. Let A be a finite alphabet, and let X ⊆ A� be a set of words indexed by
countable scattered linear orderings. If X is recognizable by a FO-semigroup then X is a
star-free marked set.

Let us explain the main ingredients of the proof of Proposition 25. The structure of the
proof is similar to the one of the proof of Schützenberger’s theorem given in [16]. The proof
goes by induction on the D-classes of the FO-semigroup recognizing X.

Let us give some details. Assume that X is recognized by the morphism ϕ : A� → S

into a FO-semigroup S. There exists a subset P of S such that X = ϕ−1(P ). Since
X =

⋃
s∈P ϕ

−1(s) and since star-free marked sets are closed under union, it is sufficient to
prove that ϕ−1(s) is a star-free marked set for each s ∈ S.

For every subset P of S, let XP = ϕ−1(P ). In case P is reduced to a singleton set {s},
we simply denote XP as Xs. We shall prove that for every s ∈ S, the set Xs is marked
star-free. This is proved by induction on the integer h(s) = |S| − |S1sS1| where |P | denotes
the cardinality of P .

The following definition is frequently used in the proof. Let X and Y be two subsets
of A� and let D be a D-class of S. We say that Y is a D-approximation of X if

X ⊆ Y ⊆ X ∪ ϕ−1({s | s <J D})

We often use this definition when X = ϕ−1(P ) for some subset P of D.
The main difference with the proof of Schützenberger’s theorem in [16], is that sets of

the form XsXt for s, t ∈ S appear in some rational expressions. Since these products are not
marked, it is necessary to prove that these sets are also star-free marked. To cope with this
problem, we actually prove by induction on k ≥ 0 the following two statements.

(P1) for every s ∈ S, if h(s) ≤ k then Xs is a star-free marked set.
(P2) for all s, t ∈ S, if h(s) ≤ k, h(t) ≤ k and h(st) > k then XsXt is a star-free marked set.

Note that XsXt is contained in Xst. If h(st) ≤ k, the set XsXt can always be replaced in
expressions by Xst, which is already star-free marked by (P1).

We do not discuss the case k = 0 which is easy. Assume now that k > 0. Observe first
that the set {s | h(s) = k} is a union of D-classes. Indeed for all s, t ∈ S, the relation s D t

implies h(s) = h(t). Let D be one of these D-classes and let s0 be an element of D. Let R
and L be the R-class and the L-class of s0, respectively. The main steps of the proof of (P1)
are the following.

1. We show that there exist two star-free marked sets YR and YL which are D-approximations
of XR and XL. Since S is aperiodic, we have {s0} = R ∩ L, and YR ∩ YL is a D-
approximation of Xs0 .
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2. We show that the set Z = ϕ−1({s | s <J D}) is star-free marked set. This gives the
equality Xs0 = (YR ∩ YL) \ Z which shows that Xs0 is star-free marked.

7 Conclusion

Let us mention a few problems that are raised by our work.
We proved that for countable scattered orderings, FO logic captures the class of star-free

marked sets. Which extension of FO does capture the class of star-free sets ? By [2], we know
that this logic is a strict fragment of MSO. It can be shown that the existential fragment of
MSO is not convenient, since for instance even the set {aω} is not definable in this fragment.

In the case of finite words, some subclasses of FO have already been algebraically
characterized. Let us mention, for instance, that FO with two variables, usually called FO2,
correspond to a class of semigroups called DA. It would be interesting to know whether this
is still true for linear orderings.

A lot of results concerning FO over linear orderings are obtained with Ehrenfeucht-Fraïssé
games [24]. Some of them may deserve to be reconsidered using an algebraic approach.

Another interesting question is to remove the hypothesis countable or scattered. Very
recently, the second author, together with Colcombet and Puppis [8], have extended the
algebraic framework, and also the equivalence with MSO logic, to the case of all countable
orderings. Does the characterization of FO still hold in that framework ?
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