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Abstract
We present a distance-agnostic approach to quantitative verification. Taking as input an unspec-
ified distance on system traces, or executions, we develop a game-based framework which allows
us to define a spectrum of different interesting system distances corresponding to the given trace
distance. Thus we extend the classic linear-time–branching-time spectrum to a quantitative set-
ting, parametrized by trace distance. We also provide fixed-point characterizations of all system
distances, and we prove a general transfer principle which allows us to transfer counterexamples
from the qualitative to the quantitative setting, showing that all system distances are mutually
topologically inequivalent.
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1 Introduction

For rigorous design and verification of embedded systems, both qualitative and quantitative
information and constraints have to be taken into account [16,18,20]. This applies to the
models considered, to the properties one wishes to be satisfied, and to the verification itself.
Hence the question asked in quantitative verification is not “Does the system satisfy the
requirements?”, but rather “To which extent does the system satisfy the requirements?”
Standard qualitative verification techniques are inherently fragile: either the requirements
are satisfied, or they are not, regardless of how close the actual system might come to the
specification. To overcome this lack of robustness, notions of distance between systems are
essential.

As pointed out in [16], qualitative and quantitative aspects of verification should be treated
orthogonally in any theory of quantitative verification (of course they can hardly be separated
in practice, but that is not of our concern here). The formalism we propose in this paper
addresses this orthogonality by modeling qualitative aspects using standard labeled transition
systems and expressing the quantitative aspects using trace distances, or distances on system
executions. Based on these ingredients, we develop a comprehensive theory of system
distances which generalizes the standard linear-time–branching-time spectrum [12,13, 24] to
a quantitative setting, see Figure 1.

Similarly to [3], our theory relies on Ehrenfeucht-Fraïssé games and allows for a more
refined analysis of systems. More precisely, our parametrized framework forms a hierarchy of
games, for each trace distance used in its instantiation. In the quantitative setting, using
games with real-valued outcomes, as opposed to discrete games, effectively allows us obtain
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Figure 1 Parts of the quantitative linear-time–branching-time spectrum. The nodes are the
different system distances introduced in this paper, and an edge d1 −→ d2 indicates that d1(s, t) ≥
d2(s, t) for all states s, t, and that d1 and d2 are topologically inequivalent.

a continuous verdict on the relationship between systems, and hence to detect the difference
between minor and major discrepancies between systems.

Indeed the view of this paper is that in a theory of quantitative verification, the quantitative
aspects should be treated just as much as an input to a verification problem as the qualitative
aspects are. Hence it is of limited use to develop a theory pertaining only to some specific
quantitative measures like the ones in [1, 2, 4, 10,17,22, 23] and other papers which all treat
only a few specific ways of measuring distances; any theory of quantitative verification should
work just as well regardless of the way the engineers decide to measure differences between
system executions.

We take as input a labeled transition system and a trace distance; both are unspecified
except for some general characteristic properties. Based on this information and using the
theory of quantitative games, we lift most of the linear-time–branching-time spectrum of
van Glabbeek [24] to the quantitative setting, while the rest may be obtained in a similar
way using minor additional conditions as described in [3]. We show that all the distinct
equivalences in van Glabbeek’s spectrum correspond to topologically inequivalent distances
in the quantitative setting.

As our framework is independent of the chosen trace distance, we are essentially adding
a second, quantitative, dimension to the linear-time–branching-time spectrum. In this
terminology, the first dimension is the qualitative one which concerns the different linear and
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branching ways of specifying qualitative constraints, and the second dimension bridges the
gap between the trivial van-Glabbeek spectrum in which everything is equivalent, and the
discrete spectrum in which everything is fragile.

The authors wish to thank Luca Aceto for some insightful comments on a previous version
of this paper. Note that due to space constraints, some proofs had to be omitted.

2 Traces, Trace Distances, and Transition Systems

In this paper, the set N of natural numbers includes 0; the set of positive natural numbers is
denoted by N+. For a finite non-empty sequence a = (a0, . . . , an), we write last(a) = an and
len(a) = n+1 for the length of a; for an infinite sequence a we let len(a) =∞. Concatenation
of finite sequences a and b is denoted a · b. We denote by ak = (ak, ak+1, . . . ) and ai the
k-shift, and ith element respectively, of a (finite or infinite) sequence, and by ε the empty
sequence.

A function d : X × X → R≥0 ∪ {∞} on a set X is called a hemimetric if d(x, x) = 0
and d(x, y) + d(y, z) ≥ d(x, z) for all x, y, z ∈ X. If d is such that d(x, y) = 0 implies
x = y for all x, y ∈ X, it is called a quasimetric. Two hemimetrics d1 and d2 on a set X
are said to be topologically equivalent if the topologies on X generated by the open balls
Bi(x; r) = {y ∈ X | di(x, y) < r}, for i = 1, 2, x ∈ X, and r > 0, coincide. Topological
equivalence hence preserves topological notions such as convergence of sequences: If a
sequence (xj) of points in X converges in one hemimetric, then it also converges in the
other. As a consequence, topological equivalence of d1 and d2 implies that for all x, y ∈ X,
d1(x, y) = 0 if and only if d2(x, y) = 0.

Topological equivalence is the weakest of the common notions of equivalence for metrics;
it does not preserve metric properties such as distances or angles. We are hence mainly
interested in topological equivalence as a tool for showing negative properties; we will later
prove a number of results on topological inequivalence of metrics which imply that any other
reasonable metric equivalence also fails for these cases.

Throughout this paper we fix a set K of labels, and we let K∞ = K∗ ∪Kω denote the set
of finite and infinite traces (i.e. sequences) in K. A hemimetric dT : K∞×K∞ → R≥0∪{∞}
is called a trace distance if len(σ) 6= len(τ) implies dT (σ, τ) =∞. (Note that we hence apply
the asymmetric view on distances as e.g. in [4].)

A labeled transition system (LTS) is a pair (S, T ) consisting of states S and transitions
T ⊆ S ×K× S. We often write s x−→ t to signify that (s, x, t) ∈ T . Given e = (s, x, t) ∈ T ,
we write src(e) = s, tgt(e) = t for the source and target of e. For a (finite or infinite) path π
in a LTS we denote by tr(π) ∈ K∞ the trace induced by π. For s ∈ S we denote by Pa(s)
the set of (finite or infinite) paths from s and by Tr(s) = {tr(π) | π ∈ Pa(s)} the set of traces
from s.

2.1 Examples of Trace Distances
We show here a number of trace distances with which our quantitative framework can be
instantiated. Note that each such distance gives rise to its own linear-time–branching-time
spectrum in the quantitative dimension.

Most of the trace distances one finds in the literature are defined by giving a distance on
labels in K and a method to combine these distances on individual symbols to a distance on
traces. Three general methods are used for this combination:

the point-wise trace distance: PWλ(d)(σ, τ) = supj λjd(σj , τj);
the accumulating trace distance: ACCλ(d)(σ, τ) =

∑
j λ

jd(σj , τj);
the limit-average trace distance: AVG(d)(σ, τ) = lim infj 1

j+1
∑j
i=0d(σi, τi).

FSTTCS 2011
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Here λ is a discounting factor with 0 < λ ≤ 1, and we assume that the involved traces have
equal length; otherwise any trace distance has value ∞. Note that all trace distances are
parametrized by the label distance d. The point-wise distance thus measures the (discounted)
greatest individual symbol distance in the traces, whereas accumulating and limit-average
distance accumulate these individual distances along the traces.

If the label distance d onK is the discrete distance given by ddisc(x, x) = 0 and ddisc(x, y) =
∞ for x 6= y, then all trace distances above agree, for any λ. This defines the discrete trace
distance dTdisc = PWλ(ddisc) = ACCλ(ddisc) = AVG(ddisc) given by dTdisc(σ, τ) = 0 if σj = τj
for all j, and ∞ otherwise. We will show below that for the discrete trace distance, our
quantitative linear-time–branching-time spectrum specializes to the qualitative one of [24].

If one lets d(x, x) = 0 and d(x, y) = 1 for x 6= y instead, then ACC1(d) is Hamming
distance [14] for finite traces, and ACCλ(d) with λ < 1 and AVG(d) are two sensible ways to
define Hamming distance also for infinite traces. PW1(d) is topologically equivalent to the
discrete distance — PW1(d)(σ, τ) = 1 if and only if dTdisc(σ, τ) =∞.

Point-wise and accumulating distances (for concrete instances of label distances d and
concrete instantiations of K) have been studied in a number of papers [1, 2, 4, 10,17,22,23].
PW1(d) is the point-wise distance from [4,6,10,17,22], and PWλ(d) for λ < 1 is the discounted
distance from [4, 5]. Accumulating distance ACCλ(d) has been studied in [10, 17, 22], and
AVG(d) e.g. in [1,2]. Both ACCλ(d) and AVG(d) are well-known from the theory of discounted
and mean-payoff games [9, 25].

All distances above were obtained from distances on individual symbols in K. A trace
distance for which this is not the case is the maximum-lead distance from [15,22] defined for
K ⊆ Σ×R. Writing x ∈ K as x = (x`, xw), it is given by

dT±(σ, τ) =
{

supj
∣∣∑j

i=0 σ
w
i −

∑j
i=0 τ

w
i

∣∣ if σ`j = τ `j for all j,
∞ otherwise.

As a last example of a trace distance we mention the Cantor distance given by dTC(σ, τ) =
(1 + inf{j | σj 6= τj})−1. Cantor distance hence measures the (inverse) length of the common
prefix of the sequences and has been used for verification e.g. in [7]. Both Hamming and
Cantor distance have applications in information theory and pattern matching.

We will return to our example trace distances in Section 5.2 to show how our framework
may be applied to yield concrete formulations of distances in the linear-time–branching-time
spectrum relative to these.

3 Quantitative Ehrenfeucht-Fraïssé Games

To lift the linear-time–branching-time spectrum to the quantitative setting, we define below
a quantitative Ehrenfeucht-Fraïssé game [8, 11] on a given LTS (S, T ) which is similar to the
game hierarchy in [3] and the well-known bisimulation game of [21]. The intuition of the
game is as follows: The two players, with Player 1 starting the game, alternate to choose
transitions, or moves, in T , starting with transitions from given start states s and t and
continuing their choices from the targets of the transitions chosen in the previous step. At
each of his turns, Player 1 also makes a choice whether to choose a transition from the target
of his own previous choice, or from the target of his opponent’s previous choice (to “switch
paths”). We use a switch counter to keep track of how often Player 1 has chosen to switch
paths. Player 2 has then to respond with a transition from the remaining target. This
game is played for an infinite number of rounds, or until one player runs out of choices, thus
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building two finite or infinite paths. The value of the game is then the trace distance of the
traces of these two paths.

A Player-1 configuration of the game is a tuple (π, ρ,m) ∈ Tn × Tn × N, for n ∈ N,
such that for all i ∈ {0, . . . , n − 2}, either src(πi+1) = tgt(πi) and src(ρi+1) = tgt(ρi), or
src(πi+1) = tgt(ρi) and src(ρi+1) = tgt(πi). Similarly, a Player-2 configuration is a tuple
(π, ρ,m) ∈ Tn+1 × Tn ×N such that for all i ∈ {0, . . . , n− 2}, either src(πi+1) = tgt(πi) and
src(ρi+1) = tgt(ρi), or src(πi+1) = tgt(ρi) and src(ρi+1) = tgt(πi); and src(πn) = tgt(πn−1)
or src(πn) = tgt(ρn−1). The set of all Player-i configurations is denoted Confi.

Intuitively, the configuration (π, ρ,m) keeps track of the history of the game; π stores
the choices of Player 1, ρ the choices of Player 2, and m is the switch counter. Hence π
and ρ are sequences of transitions in T which can be arranged by suitable swapping to form
two paths (π̄,ρ̄). How exactly these sequences are constructed is determined by a pair of
strategies which specify for each player which edge to play from any configuration.

A Player-1 strategy is hence a partial mapping θ1 : Conf1 → T × N such that for all
(π, ρ,m) ∈ Conf1 for which θ1(π, ρ,m) = (e′,m′) is defined,

src(e′) = tgt(last(π)) and m′ = m or m′ = m+ 1, or
src(e′) = tgt(last(ρ)) and m′ = m+ 1.

A Player-2 strategy is a partial mapping θ2 : Conf2 → T ×N such that for all (π · e, ρ,m) ∈
Conf2 for which θ2(π · e, ρ,m) = (e′,m′) is defined, m′ = m, and src(e′) = tgt(last(ρ)) if
src(e) = tgt(last(π)), src(e′) = tgt(last(π)) if src(e) = tgt(last(ρ)). The sets of Player-1 and
Player-2 strategies are denoted Θ1 and Θ2. Note that we only allow Player 1 to switch paths
if he also increases the switch counter.

We can now define what it means to update a configuration according to a strategy: For
θ1 ∈ Θ1 and (π, ρ,m) ∈ Conf1, updθ1(π, ρ,m) is defined if θ1(π, ρ,m) = (e′,m′) is defined,
and then updθ1(π, ρ,m) = (π · e′, ρ,m′). Similarly, for θ2 ∈ Θ2 and (π · e, ρ,m) ∈ Conf2,
updθ2(π · e, ρ,m) is defined if θ2(π · e, ρ,m) = (e′,m′) is defined, and then updθ2(π · e, ρ,m) =
(π · e, ρ · e′,m′).

A pair of states (s, t) ∈ S × S and a pair of strategies (θ1, θ2) ∈ Θ1 × Θ2 induc-
tively determine a sequence (πj , ρj ,mj) of configurations given by (π0, ρ0,m0) = (s, t, 0),
(π2j+1, ρ2j+1,m2j+1) = updθ1(π2j , ρ2j ,m2j) and (π2j , ρ2j ,m2j) = updθ2(π2j−1, ρ2j−1,m2j−1);
the sequence is understood to finish as soon as one of the updates is undefined.

The configurations in this sequence satisfy πj v πj+1, ρj v ρj+1 for all j, where v
denotes prefix ordering, hence the limits π = lim−→πj , ρ = lim−→ ρj exist (as potentially infinite
paths). By our conditions on configurations, the pair (π, ρ) in turn determines a pair (π̄, ρ̄)
of paths in S, as follows:

(π̄1, ρ̄1) =
{

(π1, ρ1) if src(π1) = s

(ρ1, π1) if src(π1) = t
(π̄j , ρ̄j) =

{
(πj , ρj) if src(πj) = tgt(π̄j−1)
(ρj , πj) if src(πj) = tgt(ρ̄j−1)

The outcome of the game when played from (s, t) according to a strategy pair (θ1, θ2)
is out(θ1, θ2)(s, t) = (π̄, ρ̄), and its utility is util(θ1, θ2)(s, t) = dT (tr(out(θ1, θ2)(s, t))) =
dT (tr(π̄), tr(ρ̄)), where dT is given as a parameter to the game. The objective of Player 1 in
the game is to maximize utility, whereas Player 2 wants to minimize it. Hence we define the
value of the game from (s, t) to be

v(s, t) = sup
θ1∈Θ1

inf
θ2∈Θ2

util(θ1, θ2)(s, t).

For a given subset Θ′1 ⊆ Θ1 we will write

v(Θ′1)(s, t) = sup
θ1∈Θ′

1

inf
θ2∈Θ2

util(θ1, θ2)(s, t),

FSTTCS 2011
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and if we need to emphasize dependency of the value on the given trace distance, we write
v(dT ,Θ′1). The following lemma states the immediate fact that if Player 1 has fewer strategies
available, the game value decreases.

I Lemma 1. For all Θ′1 ⊆ Θ′′1 ⊆ Θ1 and all s, t ∈ S, v(Θ′1)(s, t) ≤ v(Θ′′1)(s, t).

In the following we will need two technical conditions on strategies and on trace dis-
tances. We say that a strategy θ1 ∈ Θ1 is uniform if it holds for all configurations
(π, ρ,m), (π, ρ′,m), (π′, ρ,m) ∈ Conf1 that whenever θ1(π, ρ,m) = (e′,m′) is defined,

if src(e′) = tgt(π), then also θ1(π, ρ′,m) is defined, and
if src(e′) = tgt(ρ), then also θ1(π′, ρ,m) is defined.

Uniformity of strategies is used to combine paths built from different starting states in the
proof of Proposition 2 below. A subset Θ′1 ⊆ Θ1 is uniform if all strategies in Θ′1 are uniform;
the concrete strategy subsets we will consider in later sections will all be uniform.

We say that a trace distance dT is well-behaved if supθ1∈Θ1 infθ2∈Θ2 util(θ1, θ2)(s, t) =
infθ2∈Θ2 supθ1∈Θ1 util(θ1, θ2)(s, t) for all s, t ∈ S. This assumption is related to determinacy
of the quantitative path-building game, asserting that each pair of states has a value, and
ultimately to determinacy of Gale-Steward games [19]. Note that if it holds, then so does
the same equation with Θ1 replaced by any subset Θ′1 ⊆ Θ1.

We finish this section by showing that under certain conditions, the game value is
a distance, and that results concerning inequalities in the qualitative dimension can be
transfered to topological inequivalences in the quantitative setting. Say that a Player-1
strategy θ1 ∈ Θ1 is non-switching if it holds for all (π, ρ,m) for which θ1(π, ρ,m) = (e′,m′) is
defined that m = m′, and let Θ0

1 be the set of non-switching Player-1 strategies. The following
proposition shows that for any uniform strategy subset which contains all non-switching
strategies and any well-behaved trace distance, the value of our quantitative game is a
hemimetric.

I Proposition 2. If Θ′1 ⊆ Θ1 is uniform and Θ0
1 ⊆ Θ′1, and if dT is well-behaved, then v(Θ′1)

is a hemimetric on S.

Next we show a powerful transfer principle which allows us to generalize counterexamples
regarding the equivalences in the qualitative linear-time–branching-time spectrum [24] to the
qualitative setting. We will make use of this principle later to show that all distances we
introduce are topologically inequivalent.

I Theorem 3 (Transfer principle). Assume the LTS (S, T ) to be finitely branching and
dT to be a well-behaved quasimetric, and let Θ′1,Θ′′1 ⊆ Θ1. If there exist s, t ∈ S for
which v(dTdisc,Θ′1)(s, t) = 0 and v(dTdisc,Θ′′1)(s, t) = ∞, then v(dT ,Θ′1) and v(dT ,Θ′′1) are
topologically inequivalent.

Proof. By v(dTdisc,Θ′1)(s, t) = 0, and as (S, T ) is finitely branching, we know that for any
θ1 ∈ Θ′1 there exists θ2 ∈ Θ2 for which (π̄, ρ̄) = out(θ1, θ2)(s, t) satisfy tr(π̄) = tr(ρ̄), hence
also v(dT ,Θ′1)(s, t) = 0. Conversely, and as dT is a quasimetric, v(dT ,Θ′′1)(s, t) = 0 would
imply that also v(dTdisc,Θ′′1)(s, t) = 0, hence we must have v(dT ,Θ′′1)(s, t) 6= 0, entailing
topological inequivalence. J

4 The Distance Spectrum

In this section we introduce the distances depicted in Figure 1 and show their mutual
relationship. Note again that the results obtained here are independent of the particular
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trace distance considered; in the terminology of the introduction we are developing a linear-
time–branching-time spectrum at every point of the quantitative dimension. In order to
capture the remaining equivalences in the original spectrum [24], we may easily adopt the
approach from [3] which imposes one of three extra conditions which Player 1 may choose to
invoke and thereby terminate the game.

Let (S, T ⊆ S ×K× S) be a LTS and dT : K∞ ×K∞ → R≥0 ∪ {∞} a trace distance.

4.1 Branching Distances
If the switching counter in the game introduced in Section 3 is unbounded, Player 1 can
choose at any move whether to prolong the previous choice or to switch paths, hence this
resembles the bisimulation game [21].

I Definition 4. The bisimulation distance between s and t is dbisim(s, t) = v(s, t).

Note again that bisimulation distance, and indeed all distances defined in this section,
are parametrized by the trace distance dT .

I Theorem 5. For dT = dTdisc the discrete trace distance, dbisimdisc (s, t) = 0 iff s and t are
bisimilar.

Proof. By discreteness of dTdisc, we have dbisimdisc (s, t) = 0 if and only if it holds that for all
θ1 ∈ Θ1 there exists θ2 ∈ Θ2 for which util(θ1, θ2)(s, t) = 0. Hence for each reachable Player-1
configuration (π, ρ,m) with θ1(π, ρ,m) = (e′,m′), we have θ2(π · e′, ρ,m′) = (e′′,m′) with
tr(e′) = tr(e′′), i.e. Player 2 matches the labels chosen by Player 1 precisely, implying that s
and t are bisimilar. The proof of the other direction is trivial. J

We can restrict the strategies available to Player 1 by allowing only a pre-defined finite
number of switches:

Θk-sim
1 = {θ1 ∈ Θ1 | if θ1(π, ρ,m) = (e′,m′) is defined, then m′ ≤ k − 1}

In the so-defined k-nested simulation game, Player 1 is only allowed to switch paths k − 1
times during the game. Note that Θ1-sim

1 = Θ0
1 is the set of non-switching strategies.

I Definition 6. The k-nested simulation distance from s to t, for k ∈ N+, is dk-sim(s, t) =
v(Θk-sim

1 )(s, t). The k-nested simulation equivalence distance between s and t is dk-sim-eq(s, t) =
max(v(Θk-sim

1 )(s, t), v(Θk-sim
1 )(t, s)).

I Theorem 7. For dT = dTdisc the discrete trace distance,
dk-simdisc (s, t) = 0 iff there is a k-nested simulation from s to t,
dk-sim-eq
disc (s, t) = 0 iff there is a k-nested simulation equivalence between s and t.

Especially, d1-sim
disc corresponds to the usual simulation preorder, and d2-sim

disc to nested
simulation. Similarly, d1-sim-eq

disc is similarity, and d2-sim-eq
disc is nested similarity. The proof is

similar to the one of Theorem 5.

I Theorem 8. For all k, ` ∈ N+ with k < ` and all s, t ∈ S,

dk-sim-eq(s, t) ≤ d`-sim(s, t) ≤ d`-sim-eq(s, t) ≤ dbisim(s, t).

If the trace distance dT is a well-behaved quasimetric and the LTS (S, T ) is finitely branching,
then all distances above are topologically inequivalent.

FSTTCS 2011
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Proof. The first part of the theorem follows from Θk-sim-eq
1 ⊆ Θ`-sim

1 ⊆ Θ`-sim-eq
1 ⊆ Θ1 and

Lemma 1. Topological inequivalence follows from Theorem 3 and the fact that for the
discrete relations corresponding to the distances above (obtained by letting dT = dTdisc), the
inequalities are strict [24]. J

As a variation of k-nested simulation, we can consider strategies which allow Player 1
to switch paths k times during the game, but after the last switch, he may only pose one
transition as a challenge, to which Player 2 must answer, and then the game finishes:

Θk-rsim
1 = {θ1 ∈ Θ1 | if θ1(π, ρ,m) is defined, then m ≤ k − 1}

I Definition 9. The k-nested ready simulation distance from s to t, for k ∈ N+, is
dk-rsim(s, t) = v(Θk-rsim

1 )(s, t). The k-nested ready simulation equivalence distance between s
and t is dk-rsim-eq(s, t) = max(v1(Θk-rsim

1 )(s, t), v1(Θk-rsim
1 )(t, s)).

For the discrete case, only k = 1 seems to have been considered; the proof is again similar
to the one of Theorem 5.

I Theorem 10. For dT = dTdisc the discrete trace distance,
d1-rsim
disc (s, t) = 0 iff there is a ready simulation from s to t,
d1-rsim-eq
disc (s, t) = 0 iff s and t are ready simulation equivalent.

The next theorem finishes our work on the right half of Figure 1; its proof is similar to
the one of Theorem 8.

I Theorem 11. For all k, ` ∈ N+ with k < ` and all s, t ∈ S,

dk-sim(s, t) ≤ dk-rsim(s, t) ≤ d`-sim(s, t), dk-sim-eq(s, t) ≤ dk-rsim-eq(s, t) ≤ d`-sim-eq(s, t).

Additionally, dk-rsim and dk-sim-eq are incomparable, and also dk-rsim-eq and d(k+1)-sim are
incomparable. If the trace distance dT is a well-behaved quasimetric and the LTS (S, T ) is
finitely branching, then all distances above are topologically inequivalent.

4.2 Linear Distances
Above we have introduced the distances in the right half of the quantitative linear-time–
branching-time spectrum in Figure 1 and shown the relations claimed in the diagram. To
develop the left half, we need the notion of blind strategies. For any subset Θ′1 ⊆ Θ1 we
define the set of blind Θ′1-strategies by

Θ̃′1 = {θ1 ∈ Θ′1 | ∀π, ρ, ρ′,m : θ1(π, ρ,m) = θ1(π, ρ′,m),
or θ1(π, ρ,m) = (e,m + 1) and tgt(last(ρ)) 6= tgt(last(ρ′))}.

Hence in such a blind strategy, either the edge chosen by Player 1 does not depend on the
choices of Player 2, or the switch counter is increased, in which case the Player-1 choice only
depends on the target of the last choice of Player 2. Now we can define, for s, t ∈ S and
k ∈ N+,

the ∞-nested trace equivalence distance: d∞-trace-eq(s, t) = v1(Θ̃1)(s, t),
the k-nested trace distance: dk-trace(s, t) = v1(Θ̃k-sim

1 )(s, t),
the k-nested trace equivalence distance:

dk-trace-eq(s, t) = max(v1(Θ̃k-sim
1 )(s, t), v1(Θ̃k-sim

1 )(t, s)),
the k-nested ready distance: dk-ready(s, t) = v1(Θ̃k-rsim

1 )(s, t), and
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the k-nested ready equivalence distance:
dk-ready-eq(s, t) = max(v1(Θ̃k-rsim

1 )(s, t), v1(Θ̃k-rsim
1 )(t, s)).

Using the discrete trace distance, we recover the following standard relations [24].

I Theorem 12. For dT = dTdisc the discrete trace distance and s, t ∈ S we have
d1-trace
disc (s, t) = 0 iff there is a trace inclusion from s to t,
d1-trace-eq
disc (s, t) = 0 iff s and t are trace equivalent,
d2-trace
disc (s, t) = 0 iff there is a possible-futures inclusion from s to t,
d2-trace-eq
disc (s, t) = 0 iff s and t are possible-futures equivalent,
d1-ready
disc (s, t) = 0 iff there is a readiness inclusion from s to t,
d1-ready-eq
disc (s, t) = 0 iff s and t are ready equivalent.

The following theorem entails all relations in the left side of Figure 1; the right-to-left
arrows follow from the strategy set inclusions Θ̃′1 ⊆ Θ′1 for any Θ′1 ⊆ Θ1 and Lemma 1. As
with Theorems 8 and 11, the theorem follows by strategy set inclusion, Theorem 3, and
corresponding results for the discrete relations.

I Theorem 13. For all k, ` ∈ N+ with k < ` and s, t ∈ S,

dk-trace-eq(s, t) ≤ d`-trace(s, t) ≤ d`-trace-eq(s, t) ≤ d∞-trace-eq(s, t),
dk-trace(s, t) ≤ dk-ready(s, t) ≤ d`-trace(s, t),
dk-trace-eq(s, t) ≤ dk-ready-eq(s, t) ≤ d`-trace-eq(s, t).

Additionally, dk-ready and dk-trace-eq are incomparable, and also dk-ready-eq and d(k+1)-trace

are incomparable. If the trace distance dT is a well-behaved quasimetric and the LTS (S, T )
is finitely branching, then all distances above are topologically inequivalent.

5 Recursive Characterizations

Now we turn our attention to an important special case in which the given trace distance has
a specific recursive characterization; we show that, in this case, all distances in the spectrum
can be characterized as least fixed points. We will see in Section 5.2 that this can be applied
to all examples of trace distances mentioned in Section 2.1. Note that all theorems require
the LTS in question to be finitely branching; this is a standard assumption which goes back
to [21] and is also necessary in our case.

5.1 Fixed-Point Characterizations
Let L be a complete lattice with order v and bottom and top elements ⊥, >. Let f :
K
∞ × K∞ → L, g : L → R≥0 ∪ {∞}, F : K × K × L → L such that dT = g ◦ f , g is

monotone, F (x, y, ·) : L→ L is monotone for all x, y ∈ K, and

f(σ, τ) =


F (σ0, τ0, f(σ1, τ1)) if σ, τ 6= ε,

> if σ = ε, τ 6= ε or σ 6= ε, τ = ε,

⊥ if σ = τ = ε

(1)

for all σ, τ ∈ K∞.
We hence assume that dT has a recursive characterization (using F ) on top of an arbitrary

lattice L which we introduce between K∞ and R≥0 ∪ {∞} to serve as a memory.
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I Theorem 14. The endofunction I on (N+ ∪ {∞})× {1, 2} → LS×S defined by

I(hm,p)(s, t) =



max


sup
s

x−→s′

inf
t

y−→t′
F (x, y, hm,1(s′, t′))

sup
t

y−→t′
inf
s

x−→s′

F (x, y, hm−1,2(s′, t′))
if m ≥ 2, p = 1

sup
s

x−→s′

inf
t

y−→t′
F (x, y, hm,1(s′, t′)) if m = 1, p = 1

max


sup
t

y−→t′
inf
s

x−→s′

F (x, y, hm,2(s′, t′))

sup
s

x−→s′

inf
t

y−→t′
F (x, y, hm−1,1(s′, t′))

if m ≥ 2, p = 2

sup
t

y−→t′
inf

st
x−→s′

F (x, y, hm,2(s′, t′)) if m = 1, p = 2

has a least fixed point h∗ : (N+ ∪ {∞}) × {1, 2} → LS×S, and if the LTS (S, T ) is finitely
branching, then dk-sim = g ◦ h∗k,1, dk-sim-eq = g ◦max(h∗k,1, h∗k,2) for all k ∈ N+ ∪ {∞}.

Hence I iterates the function h over the branching structure of (S, T ), computing all
nested branching distances at the same time. Note the specialization of this to simulation
distance, where we have the following fixed-point equation, using h∗1,1 = h1-sim:

h1-sim(s, t) = sup
s

x−→s′

inf
t

y−→t′
F (x, y, h1-sim(s′, t′))

An equally compact expression may be derived for bisimulation distance, and similar theorems
for all the other distances in the quantitative linear-time–branching-time spectrum can also
be derived.

The fixed-point characterizations above immediately lead to iterative algorithms for
computing the respective distances: to compute e.g. simulation distance, we can initialize
h1-sim(s, t) = 0 for all states s, t ∈ S and then iteratively apply the above equality. This
assumes the LTS (S, T ) to be finitely branching and uses Kleene’s fixed-point theorem and
continuity of F . Note however that this computation is only guaranteed to converge to
simulation distance in finitely many steps in case the lattice LS×S is finite.

5.2 Recursive Characterizations for Example Distances
We show that the considerations in Section 5.1 apply to all the example distances we
introduced in Section 2.1. We apply Theorem 14 to derive fixed-point formulas for corre-
sponding simulation distances, but of course all other distances in the quantitative linear-
time–branching-time spectrum have similar characterizations.

Let d be a hemimetric on K, then for all σ, τ ∈ K∞ and 0 < λ ≤ 1,

ACCλ(d)(σ, τ) =


d(σ0, τ0) + λACCλ(d)(σ1, τ1)) if σ, τ 6= ε,

∞ if σ = ε, τ 6= ε or σ 6= ε, τ = ε,

0 if σ = τ = ε,

hence we can apply the iteration theorems with lattice L = R≥0 ∪ {∞}, g = id the identity
function, and the recursion function F given like the formulas above. Using Theorem 14 we
can e.g. derive the following fixed-point expression for simulation distance:

ACCλ(d)1-sim(s, t) = sup
s

x−→s′

inf
t

y−→t′
(d(x, y) + λACCλ(d)1-sim(s′, t′))
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Similar considerations apply to the point-wise distances, with “+” replaced by “max”.
Incidentally, these are exactly the expressions introduced, in an ad-hoc manner, in [4, 10, 22].

Also note that if S is finite with |S| = n, then undiscounted point-wise distance PW1(d)
can only take on the finitely many values {d(x, y) | (s, x, s′), (t, y, t′) ∈ T}, hence the fixed-
point algorithm given by Kleene’s theorem converges in at most n2 steps. This algorithm is
used in [4,6,17]. For undiscounted accumulating distance ACC1(d), it can be shown [17] that
with D = max{d(x, y) | (s, x, s′), (t, y, t′) ∈ T}, distance is either infinite or bounded above
by 2n2D, hence also here the algorithm either converges in at most 2n2D steps or diverges.

For the limit-average distance AVG(d), we let L = (R≥0 ∪ {∞})N, g(h) = lim infj h(j),
and f(σ, τ)(j) = 1

j+1
∑j
i=0 d(σi, τi) the j-th average. The intuition is that L is used for

“remembering” how long in the traces we have progressed with the computation. With F
given by F (x, y, h)(n) = 1

n+1d(x, y) + n
n+1h(n− 1) it can be shown that (1) holds, giving the

following fixed-point expression for limit-average simulation distance:

h1-sim
n (s, t) = sup

s
x−→s′

inf
t

y−→t′

( 1
n+1d(x, y) + n

n+1h
1-sim
n−1 (s′, t′)

)
For the maximum-lead distance, we let L = (R≥0 ∪ {∞})R, the lattice of mappings

from leads to maximum leads. Using the notation from Section 2.1, we let g(h) = h(0) and
f(σ, τ)(δ) = max(|δ|, supj |δ +

∑j
i=0 σ

w
i −

∑j
i=0 τ

w
j |) the maximum-lead distance between σ

and τ assuming that σ already has a lead of δ over τ . With F (x, y, h)(δ) = max(|δ + x−
y|, h(δ + x − y)) it can be shown that (1) holds, and then the fixed-point expression for
maximum-lead simulation distance becomes the one given in [15]:

h1-sim(δ)(s, t) = sup
s

x−→s′

inf
t

y−→t′
max(|δ + x− y|, h1-sim(s′, t′)(δ + x− y))

It can be shown [15] that for S finite with |S| = n and D = max{d(x, y) | (s, x, s′), (t, y, t′) ∈
T}, the iterative algorithm for computing maximum-lead distance either converges in at
most 2n2D steps or diverges.

Regarding Cantor distance, a useful recursive formulation is f(σ, τ)(n) = f(σ1, τ1)(n+ 1)
if σ0 = τ0 and n otherwise, which iteratively counts the number of matching symbols in σ
and τ . Here we use L = (R≥0 ∪ {∞})N, and g(h) = 1

h(0) ; note that the order on L has to be
reversed for g to be monotone. The fixed-point expression for Cantor simulation distance
becomes

h1-sim
n (s, t) = max(n, sup

s
x−→s′

inf
t

x−→t′
h1-sim
n+1 (s′, t′))

but as the order on L is reversed, the sup now means that Player 1 is trying to minimize this
expression, and Player 2 tries to maximize it. Hence Player 2 tries to find maximal matching
subtrees; the corresponding Cantor simulation equivalence distance between s and t hence is
the inverse of the maximum depth of matching subtrees under s and t.
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