
Minimum Fill-in of Sparse Graphs: Kernelization
and Approximation∗

Fedor V. Fomin1, Geevarghese Philip2, and Yngve Villanger1

1 Department of Informatics, University of Bergen, N-5020 Bergen, Norway.
{fomin|yngvev}@ii.uib.no

2 The Institute of Mathematical Sciences, C.I.T Campus, Taramani, Chennai
600 113, India. gphilip@imsc.res.in

Abstract
The Minimum Fill-in problem is to decide if a graph can be triangulated by adding at most
k edges. The problem has important applications in numerical algebra, in particular in sparse
matrix computations. We develop kernelization algorithms for the problem on several classes
of sparse graphs. We obtain linear kernels on planar graphs, and kernels of size O(k3/2) in
graphs excluding some fixed graph as a minor and in graphs of bounded degeneracy. As a
byproduct of our results, we obtain approximation algorithms with approximation ratios O(log k)
on planar graphs and O(

√
k log k) on H-minor-free graphs. These results significantly improve

the previously known kernelization and approximation results for Minimum Fill-in on sparse
graphs.

1998 ACM Subject Classification G.2.2 Graph Theory — Graph Algorithms

Keywords and phrases Minimum Fill-In, Approximation, Kernelization, Sparse graphs

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2011.164

1 Introduction

A graph is chordal (or triangulated) if every cycle of length at least four has a chord, i.e.
an edge between nonadjacent vertices of the cycle. In the Minimum Fill-in problem (also
known as Minimum Triangulation and Chordal Graph Completion) the task is to
check if at most k edges can be added to a graph such that the resulting graph is chordal.
That is

Minimum Fill-in
Input: A graph G = (V,E) and a non-negative integer k.
Question: Is there F ⊆ [V]2, |F | ≤ k, such that graph H = (V,E ∪ F) is
chordal?

This is a classical computational problem motivated by, and named after, a fundamental
issue arising in sparse matrix computations. During Gaussian eliminations of large sparse
matrices, new non-zero elements — called fill — can replace original zeros, thus increasing
storage requirements, the time needed for the elimination, and the time needed to solve
the system after the elimination. The problem of finding the right elimination ordering

∗ The research of Fedor V. Fomin was supported by the European Research Council (ERC) grant “Rigorous
Theory of Preprocessing”, reference 267959. The research of Yngve Villanger was supported by the
Research Council of Norway.

© Fedor V. Fomin, Geevarghese Philip, and Yngve Villanger;
licensed under Creative Commons License NC-ND

31st Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011).
Editors: Supratik Chakraborty, Amit Kumar; pp. 164–175

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.164
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

F. V. Fomin, G. Philip, and Y. Villanger 165

minimizing the amount of fill elements can be expressed as the Minimum Fill-in problem on
graphs [21]. Besides sparse matrix computations, applications of Minimum Fill-in can be
found in database management, artificial intelligence, and the theory of Bayesian statistics.
The survey of Heggernes [15] gives an overview of techniques and applications of minimum
and minimal triangulations.

Unfortunately, the problem is notoriously difficult to analyze from the algorithmic
perspective. Minimum Fill-in (under the name Chordal Graph Completion) was one
of the 12 open problems presented at the end of the first edition of Garey and Johnson’s
book [13] and it was proved to be NP-complete by Yannakakis [26]. Due to its importance the
problem has been studied intensively, and many heuristics, without performance guarantees,
have been developed [18, 21].

Very few approximation and FPT algorithms for Minimum Fill-in are known. Chung
and Mumford [8] proved that every planar, and more generally, H-minor-free, n-vertex
graph has a fill-in with O(n logn) edges, thus yielding an O(n logn)-approximation on
these classes of graphs. Agrawal et al. [1] gave an algorithm with the approximation ratio
O(m1.25 log3.5 n/k +

√
m log3.5 n/k0.25), where m is the number of edges and n the number

of vertices in the input graph. For graphs of degree at most d, they obtained a better
approximation factor O((nd+ k)

√
d log4 n)/k). Natanzon et al. [17] provided another type

of approximation algorithms for Minimum Fill-in. For an input graph with a minimum
fill-in of size k, their algorithm produces a fill-in of size at most 8k2 , i.e., within a factor
of 8k of optimal. For graphs with maximum degree d, they gave another approximation
algorithm achieving the ratio O(d2.5 log4 (kd)). Kaplan et al. proved that Minimum Fill-in
is fixed parameter tractable (FPT) for the parameter k by giving an algorithm which runs
in O(k616k + k2mn) time [16]. Following this, faster FPT algorithms were devised for the
problem, with running times that have smaller constants in the base of the exponent [6, 7].
Very recently, the first and third authors of this paper developed a subexponential FPT
algorithm for the problem which runs in O(2O(

√
k log k) + k2nm) time [12].

In this paper we study kernelization algorithms for Minimum Fill-in on different classes
of sparse graphs. Kernelization can be regarded as systematic mathematical investigation of
preprocessing heuristics within the framework of parameterized complexity. In parameterized
complexity each problem instance comes with a parameter k and the parameterized problem
is said to admit a polynomial kernel if there is a polynomial time algorithm (the degree of
polynomial is independent of k), called a kernelization algorithm, that reduces the input
instance down to an instance with size bounded by a polynomial p(k) in k, while preserving
the answer. This reduced instance is called a p(k) kernel for the problem. If p(k) = O(k),
then we call it a linear kernel. For example, for the instance (G, k) of Planar Minimum
Fill-in, where G is a planar graph and k is the parameter, the pair (G′, k′) is a linear kernel
if G′ is planar, the size of G′, i.e., the number of edges and vertices, is O(k), and there is
a fill-in of G with at most k fill edges if and only if there is a fill-in of G′ with at most k′
fill edges. Kernelization has been extensively studied, resulting in polynomial kernels for a
variety of problems. In particular, it has been shown that many problems have polynomial
and linear kernels on planar and other classes of sparse graphs [2, 5, 20].

There are several known polynomial kernels for the Minimum Fill-in problem [16] on
general (not sparse) graphs. The best known kernelization algorithm is due to Natanzon
et al. [17], which for a given instance (G, k) outputs in time O(k2nm) an instance (G′, k′)
such that k′ ≤ k, |V (G′)| ≤ 2k2 + 4k, and (G, k) is a YES instance if and only if (G′, k′) is.
Note that not every kernelization algorithm for fill-in in general graphs produces a sparse
kernel, even if the input is a sparse graph. For example, the algorithm of Natanzon et al. [17],

FSTTCS 2011

166 Minimum Fill-In: Kernelization and Approximation

while reducing the number of vertices in the input graph G, introduces new edges. Thus the
resulting kernel G′ can be very dense. In order to obtain kernels on classes of sparse graphs,
we have to design new kernelization algorithms which preserve the sparsity of the kernel.
Our Results. We provide kernelization algorithms for three important and increasingly
general classes of graphs. For planar graphs, we obtain an O(k) kernel, and for graphs
excluding a fixed graph as a minor and graphs of bounded degeneracy, a kernel of size
O(k3/2). Our reduction rules are easy to implement. Small kernels for sparse graphs can be
used as an argument explaining the successful behavior of several heuristics for sparse matrix
computations. As a byproduct of our results, we obtain an approximation algorithm that,
for an input planar graph with minimum fill-in of size k, produces a fill-in of size O(k log k),
which is within factor O(log k) of optimal. For H-minor-free graphs our kernelization yields
an approximation with the ratio O(

√
k log k).

2 Preliminaries

All graphs in this paper are finite and undirected. In general we follow the graph terminology
of Diestel [9]. For a vertex v in graph G, NG(v) is the set of neighbours of v, and for two
non-adjacent vertices u, v, NG(u, v) ≡ NG(u)∩NG(v). We drop the subscript G where there
is no scope for confusion. For S ⊆ V (G), we use N(S) for the set of neighbours in V (G) \ S
of the vertices in S, and N [S] ≡ N(S) ∪ S. We also use G[S] to denote the subgraph of G
induced by S, and G \ S to denote the subgraph G[V \ S].

The operation of contracting an edge {u, v} of a graph consists of replacing its endpoints
u, v with a single vertex which is adjacent to all the former neighbours of u and v in G. A
graph H is said to be a contraction of a graph G if H can be obtained from G by contracting
zero or more edges of G. Graph H is a minor of G if H is a contraction of some subgraph of
G. A family F of graphs is said to be H-minor free if no graph in F has H as a minor. For
d ∈ N, a graph G is said to be d-degenerate if every subgraph of G has a vertex of degree at
most d. A family F of graphs is said to be of bounded degeneracy if there is some fixed d ∈ N
such that every graph in the family is d-degenerate. Note that all graph properties discussed
in this paper (being chordal, planar, H-minor free, and d-degenerate) are hereditary, i.e., are
closed under taking induced subgraphs.

Minimal Separators. Let u, v be two vertices in a graph G. A set S of vertices of G is said to
be a u, v-separator of G if u and v are in different components in the graph G \ S. The set S
is said to be a minimal u, v-separator if no proper subset of S is a u, v-separator of G. A set
S of vertices of G is said to be a (minimal) separator of G if there exist two vertices u, v in
G such that S is a (minimal) u, v-separator of G.

Let S be a separator of a graph G. A connected component C of G \ S is said to be
associated with S, and is said to be a full component if N(C) = S.

The following proposition is an exercise in [14].

I Proposition 1. A set S of vertices of a graph G is a minimal u, v-separator if and only if
u and v are in different full components of G \ S.

A set S of vertices of a graph G is said to be a clique separator of G if S is a separator of
G, and G[S] is a clique.

Minimal and minimum fill-in. Chordal or triangulated graphs are graphs containing no
induced cycles of length more than three. In other words, every cycle of length at least four
in a chordal graph contains a chord. Let F be a set of edges which, when added to a graph

F. V. Fomin, G. Philip, and Y. Villanger 167

G, makes the resulting graph chordal. Then F is called a fill-in of G, and the edges in F are
called fill edges. A fill-in F of G is said to be minimal if no proper subset of F is a fill-in
of G, and F is a minimum fill-in if no fill-in of G contains fewer edges. Notice that every
minimum fill-in is also minimal, and so to find a minimum fill-in it is sufficient to search the
set of minimal fill-ins.

I Proposition 2. [6] Let G be a graph, and let S be a minimal separator of G such that
G[S] is a complete graph minus one edge, and there is a vertex v in V (G) \ S which is
adjacent to every vertex in S. Then there exists a minimum fill-in of G which contains the
single missing edge in G[S] as a fill-edge.

The following proposition is folklore; for a proof see, e.g., Bodlaender et al.’s recent article
on faster FPT algorithms for the Minimum Fill-In problem [6].

I Proposition 3. Let 〈v1, v2, v3, v4, . . . , vt〉 be a chordless cycle in a graph G, and let F be a
minimal fill-in of G. If {v1, v3} /∈ F , then {v2, v} ∈ F for some v ∈ {v4, . . . , vt}.

I Proposition 4. [23] Let S be a minimal separator of G, let G′ be the graph obtained by
completing S into a clique, and let ES = E(G′) \E(G). Let C1, C2, . . . , Cr be the connected
components of G \ S. Then ES ∪ F is a minimal fill-in of G if and only if F =

⋃r
i=1 Fi,

where Fi is the set of fill edges in a minimal fill-in of G′[N [Ci]].

Parameterized complexity. A parameterized problem Π is a subset of Γ∗ × N for some finite
alphabet Γ. An instance of a parameterized problem is of the form (x, k), where k is called
the parameter. A central notion in parameterized complexity is fixed parameter tractability
(FPT) which means, for a given instance (x, k), solvability in time f(k) · p(|x|), where f is
an arbitrary function of k and p is a polynomial in the input size. We refer to the book of
Downey and Fellows [11] for further reading on Parameterized Complexity.
Kernelization. A kernelization algorithm for a parameterized problem Π ⊆ Γ∗ × N is
an algorithm that given (x, k) ∈ Γ∗ × N outputs in time polynomial in |x| + k a pair
(x′, k′) ∈ Γ∗ × N, called the kernel such that (x, k) ∈ Π if and only if (x′, k′) ∈ Π and
max{k′, |x′|} ≤ g(k), and k′ ≤ k, where g is some computable function. The function g is
referred to as the size of the kernel. If g(k) = O(k), then we say that Π admits a linear
kernel.

The kernels in this paper are obtained by applying a sequence of polynomial time reduction
rules. We use the following notational convention: for each reduction rule, (G, k) denotes
the instance on which the rule is applied, and (G′, k′) denotes the resulting instance. We say
that a rule is safe if (G′, k′) is a YES instance if and only if (G, k) is a YES instance. We
show that each rule is safe. We also show—in most cases—that the resulting graph is in the
same class as G.

The remaining part of the paper is organized as follows. Sections 3, 4, and 5 give kernel
algorithms for planar, d-degenerate, and H-minor free graphs, respectively. All three kernels
use Rule 2 in Section 3, and Rule 6 in Section 4 is used in Section 5 as well. The kernels
obtained are then used in Section 6 to get approximations algorithms for planar and H-minor
free graphs. We conclude and state some open problems in Section 7.

3 A Linear Kernel for Planar Graphs

In this section we show that the planar minimum fill-in problem has a linear kernel. The
kernel is obtained by applying four reduction rules. Rules 1, 2, and 3 are applied exhaustively,

FSTTCS 2011

168 Minimum Fill-In: Kernelization and Approximation

while Rule 4 is only applied if none of the other three can be applied. At the end of this
process, the algorithm either solves the problem (giving either YES or NO as the answer), or
it yields an equivalent instance (G′, k′); k′ ≤ k where G is of size O(k).
I Reduction Rule 1. [24] Let S be a minimal clique separator in G and let C1, . . . , Ct be
the connected components of G \ S. We set G′ to be the disjoint union of the graphs
G1, G2, . . . , Gt, where Gi is isomorphic to G[N [Ci]], 1 ≤ i ≤ t, and set k′ ← k.

By Proposition 4, we have the following lemma.

I Lemma 1. Rule 1 is safe.

Since each of the connected components of graph G′ produced by Rule 1 is an induced
subgraph of G, it follows that if G is planar or d-degenerate, then G′ has the same property.
Our next rule deletes vertices which are not part of any chordless cycle; as we show later
(Theorem 3), a vertex v satisfies the conditions of the rule if and only if it is not part of any
chordless cycle in the graph. This rule can be inferred from previous work due to Tarjan [24]
and Berry et al. [3].
I Reduction Rule 2. For a vertex v of G, let C1, C2, . . . , Ct be the connected components of
G \N [v]. If for every 1 ≤ i ≤ t, the vertex set N(Ci) is a clique in G, then set G′ ← G \ {v},
k′ ← k.

I Lemma 2. Rule 2 is safe.

Proof. Let H be a chordal graph obtained by adding k edges to G. Chordality is a hereditary
property, and thus the graphH ′ = H\{v} is chordal. ButH ′ is a triangulation of G′ = G\{v},
and since it is obtained by adding at most k edges, we have that G′ has a fill-in of size at
most k′ ≤ k.

For the opposite direction, let H ′ be a minimal triangulation obtained from G′ by adding
the set of fill edges F ′, where |F ′| ≤ k′. Then the graph H obtained by adding F ′ to G is
chordal. Indeed, if H was not chordal, it would contain a chordless cycle A of length at least
4 passing through v. Let w be a vertex of A not adjacent to v and let C be the connected
component of G \N [v] containing w. The set S = NG(C) is a clique minimal separator in
G and thus by Proposition 4, we can conclude that in H every path from w to v should
go through some vertex of S. Hence the set S contains at least two non-consecutive (in A)
vertices a and b of A. But S is a clique in G, and thus is a clique in H. Hence, a and b form
a chord in A, which is a contradiction. Therefore, H is chordal. J

In Reduction Rule 2, we only remove a vertex, and thus this rule does not change
hereditary properties of graphs, like being H-minor free. We now state some useful properties
of graphs on which the above reduction rules cannot be applied.

I Lemma 3. A vertex v in a graph G does not satisfy the conditions of Reduction Rule 2 if
and only if v is part of a chordless cycle in G.

Proof. Let v be a vertex in G which does not satisfy the conditions of Reduction Rule 2. Then
there exists a connected component C of G \N [v] such that N(C) contains two non adjacent
vertices, say x, y ∈ N(v). Let P be a shortest path from x to y in G[C ∪ {x, y}]. Since x
and y are not adjacent, the path P is of length at least two; let P = 〈x = v1, v2, . . . , v` = y〉.
Since P is an induced path, 〈v, x = v1, v2, . . . , v` = y〉 is a chordless cycle containing v.

Conversely, let v = v1, v2, v3, . . . , vr−2, vr−1, vr = v be a chordless cycle in G containing
v, and let C be the connected component of G\N [v] which contains v3 and vr−2. The vertex
set N(C) does not contain the edge {v2, vr−1} and hence is not a clique. J

F. V. Fomin, G. Philip, and Y. Villanger 169

I Lemma 4. Let G be a graph to which Rule 2 cannot be applied, and let F be an edge set
such that H = (V,E ∪ F) is chordal. Then for every vertex v in G, there either exists an
edge {v, x} ∈ F , or an edge {u,w} ∈ F , where u,w ∈ N(v).

Proof. By Lemma 3 it follows that every vertex v in G is part of at least one chordless cycle〈
v = v1, v2, v3, v4, . . . , vt

〉
. By Proposition 3, there is either a fill edge {v, vi} ∈ F or an edge

{v2, vt} ∈ F , for i ∈ {3, . . . , t− 1}. J

I Reduction Rule 3. [6] Let (G, k) be an input instance of Minimum Fill-In. If G has a
minimal separator S such that adding exactly one edge to G[S] turns it into a complete
graph, and there exists a vertex v in V (G) \ S such that all vertices of S are adjacent to v,
then
1. Turn G[S] into a complete graph by adding one edge,
2. Apply Rule 1 on the resulting minimal clique separator, and
3. Reduce k by one.

The correctness of this rule is evident from Proposition 2 and Lemma 1. We now show
that the rule preserves the planarity of the graph. Observe that if the input graph G is
planar, then |S| ≤ 4.

I Claim 1. Reduction Rule 3 preserves the planarity of the graph.

Proof. Let G,S be as in the statement of the rule, and let G′ be the graph obtained by
applying the rule to G. Let {u, v} be the missing edge in G[S]. By Proposition 1, there
are at least two full components, say C1, C2, associated with S in G. Notice that for each
i = 1, 2, there is a uv-path in G with all internal vertices contained in Ci. This implies that
each of the connected components of the output graph G′ is a minor of planar graph G, and
thus is planar. J

I Reduction Rule 4. Let (G, k) be an input instance of Minimum Fill-In, where none of
the Rules 1, 2, and 3 can be applied. If |V (G)| > 6k − 4 then return a trivial NO instance.

I Lemma 5. Reduction Rule 4 is safe.

Proof. Let (G, k) be a YES instance where G = (V,E) is planar and none of the Rules 1, 2,
and 3 can be applied. We now argue that |V | ≤ 6k − 4.

Let F be an edge set such that |F | ≤ k and H = (V,E ∪ F) is chordal, and let VF be the
set of at most 2k vertices that are incident to the edges in F . We then have:

I Claim 2. Each vertex v ∈ V \ VF is adjacent to at least three vertices of VF .

Proof. Since Rule 2 cannot be applied on vertex v it follows that N [v] (V . Let C be a
connected component of G\N [v] and let S = N(C) be the minimal separator of G separating
vertices of C from v. Rules 1 and 3 cannot be applied on S, so the graph G[S] is missing
at least two edges {x1, y1} and {x2, y2}. By finding a shortest path P from xj to yj in
G[C ∪ {xj , yj}] we can create a chordless cycle consisting of P and xj , v, yj for j ∈ {1, 2}.
By Proposition 3 every fill-in of a chordless cycle either adds an edge incident to vertex v
on the chordless cycle or adds a fill edge between its two unique neighbours. By definition
there is no fill edge in F incident to v, and thus both {x1, y1} and {x2, y2} are contained in
F . Two edges have to be incident to at least three vertices, and the claim follows. J

FSTTCS 2011

170 Minimum Fill-In: Kernelization and Approximation

We construct a new graph B = (V,EB) whose edge set EB is a subset of E, such that
{u,w} ∈ EB if and only if {u,w} ∈ E, u ∈ VF , and w 6∈ VF . The graph B is planar since it is
a subgraph of planar graph G, and is bipartite by construction with the two partite sets being
V1 = VF and V2 = V \ VF . As noted before, |V1| ≤ 2k; we now bound |V2|. Let F be the set
of faces in any fixed planar embedding of B. Let s =

∑
f∈F (number of edges on the face f).

Since B is bipartite, each face has at least four sides, and so s ≥ 4|F|. Since each edge of B
lies on at most two faces in the embedding, it is counted at most twice in this process, and
so s ≤ 2|EB |. Thus 4|F| ≤ 2|EB |. From this and the well-known Euler’s formula for planar
graphs applied to B (namely, |V | − |EB |+ |F| ≥ 2; observe that B may not be a connected
graph) we get |EB | ≤ 2|V | − 4 = 2(|V1|+ |V2|)− 4. By Claim 2 each vertex in V2 has degree
at least 3 in B, and so EB ≥ 3|V2|. Combining these we get |V2| ≤ 2|V1| − 4 = 4k − 4, and
so |V | = |V1|+ |V2| ≤ 6k − 4. J

We now argue that all executions of the rules can be performed in polynomial time. By
Proposition 4, a minimal clique separator is a clique separator in every minimal triangulation
of the given graph. A minimal triangulation can be constructed in O(nm) time [22] and
the minimal separators of the triangulation which are also cliques in G can be enumerated
in O(nm) time [4]. As a consequence Rule 1 can be executed in polynomial time. For the
remaining three rules it is not hard to see that we can check, find an instance, and execute
the rule in polynomial time.

The rules are applied exhaustively in the order they are described. Rule 1 is globally
applied at most n − 1 times, since all minimal clique separators we split on, even across
connected components, are the so called “non-crossing” minimal separators in the initial graph,
and a graph on n vertices has at most n− 1 pairwise non-crossing minimal separators [19].
Each time Rule 1 is applied, at most n connected components are created, and each of them
contains at most n vertices. Thus, Rule 2 is applied at most O(n3) times. Rule 3 is applied
at most k times as one fill edges is added each time, and finally Rule 4 is applied only once.
Thus we get

I Theorem 6. Minimum Fill-In has a planar kernel of size O(k) in planar graphs.

4 An O(k3/2) kernel for d-degenerate graphs

We now describe two reduction rules for d-degenerate graphs. The second among these is in
fact an algorithm which specifies how to apply Rule 2 and the first rule of this section in
tandem. Given a problem instance (G, k) where G is a d-degenerate graph, the second rule
outputs an equivalent instance (G′, k′) such that k′ ≤ k and |V (G′)| = O(k3/2). However,
these rules do not guarantee that the resulting graph G′ is d-degenerate. We will later show
how to obtain an equivalent d-degenerate graph from G′ while keeping the size bounded by
O(k3/2).

The next reduction rule says that if two non-adjacent vertices in an d-degenerate graph
G have many common neighbours, then the missing edge between the two vertices belongs
to every small fill-in of G.

I Reduction Rule 5. Let (G, k) be an instance where G is d-degenerate. Let u,w be two
non-adjacent vertices in G, and let b = |N(u,w)|. If (b/2)(b − 1 − 2d) > k, then set
G′ ← (V (G), E(G) ∪ {{u,w}}), k′ ← k − 1.

I Lemma 7. Rule 5 is safe.

F. V. Fomin, G. Philip, and Y. Villanger 171

Algorithm 1 Reduction Rule 6 for d-degenerate graphs.
1: procedure Rule6(G, k) . G is assumed to be d-degenerate.
2: while (Rule 2 applies to (G, k) and the vertex u) do
3: G← G \ {u}
4: F ′0 = ∅
5: for (each nonadjacent pair x, y ∈ V (G)) do
6: if (Rule 5 applies to (G, k) and the non-adjacent vertices x, y) then
7: F ′0 = F ′0 ∪ {{x, y}}
8: G′ ← (V (G), E(G) ∪ F ′0), k′ ← k − |F ′0|
9: D0 = ∅
10: while (Rule 2 applies to (G′, k′) and the vertex u) do
11: G′ ← G′ \ {u},D0 = D0 ∪ {u}
12: F0 = E(G′) ∩ F ′0
13: if k′ < 0 or |V (G′)| > 2k + k(2

√
k + 2d+ 1) then

14: return a trivial NO instance.
15: else
16: return (G′, k′)

Proof. Let F be a fill-in of G of size at most k. We claim that {u,w} ∈ F . For, if
{u,w} /∈ F , then let H be the chordal graph obtained by adding the edges in F to the
graph G. Since u and w are non-adjacent in H, there exists an u,w-separator in H,
and every minimal u,w-separator in H contains all the vertices in N(u,w). Since H is
chordal, every minimal separator in H is a clique [10], and so the vertex set N(u,w)
induces a clique in H. Hence the subgraph H[N(u,w)] contains (b − 1)b/2 edges, where
b = |N(u,w)|. Since G is d-degenerate, the subgraph G[N(u,w)] contains at most db edges.
Thus |F | ≥ (b− 1)b/2− db = (b/2)(b− 1− 2d) > k, a contradiction, and so {u,w} ∈ F . It
immediately follows that F \ {{u,w}} is a fill-in of G′ of size at most k − 1.

Conversely, if G′ has a fill-in F ′ of size at most k − 1, then F ′ ∪ {{u,w}} is a fill-in of G
of size at most k. J

I Reduction Rule 6. Let (G, k) be an instance where G is d-degenerate. Set (G′, k′) to be
the instance output by Algorithm 1.

I Lemma 8. Rule 6 is safe.

Proof. By Rule 2 it is safe to delete vertex u in Line 3. Let e1, e2, . . . , e|F ′
0| be the set of

edges in F ′0. By Rule 5 it is safe to add edge e1 to G and decrement k. Let our induction
hypothesis be that it is safe to add edges e1, e2, . . . , ei−1 to G and reduce k by i−1, and let us
argue that it is also safe to add edges e1, e2, . . . , ei and reduce k by i. Let ki−1 = k − (i− 1).
Edge ei = {x, y} was added to F ′0 because (b/2)(b − 1 − 2d) > k where b = |NG(x, y)|. In
the extreme case, all the edges e1, e2, . . . , ei−1 are added between vertices in NG(x, y), but
(b/2)(b− 1− 2d)− (i− 1) > k − (i− 1) = ki−1 and thus it is safe to add edge ei as well and
reduce ki−1 by 1. We can now conclude that (G′, k′) in Line 8 is a YES instance if and only
if (G, k) is. Finally by the safeness of Rule 2, instance (G′, k′) in Line 13 is a YES instance if
and only if (G, k) is.

It remains to argue that we can safely return a trivial NO instance if |V (G′)| > 2k +
k(2
√
k + 2d + 1), where G′ is the graph in Line 13. Let us assume that (G′, k′) is a YES

instance and let F be a set of edges such that H = (V (G′), E(G′) ∪ F) is chordal and

FSTTCS 2011

172 Minimum Fill-In: Kernelization and Approximation

|F | ≤ k′. Let VF be the set of vertices incident to edges of F , and let VF0 be the set of
vertices incident to edges of F0. Notice that |VF |+ |VF0 | ≤ 2k as (G′, k′) is a YES instance.
By Line 10 in Algorithm 1, Rule 2 is applied exhaustively, and thus by Lemma 4 every vertex
of V (G′)\ (VF ∪VF0) is contained in NG′(x, y) for some edge {x, y} ∈ F . In particular, notice
that NG′(x, y)\ (VF ∪VF0) ⊆ NG(x, y). Since G′ is reduced with respect to Rule 5 (See Line 6
of Algorithm 1), |NG(x, y)| = b < 2

√
k+2d+1. To see this we notice that a clique on b vertices

contains b(b−1)/2 edges while G[NG(x, y)] contains at most db edges. Thus if b ≥ 2
√
k+2d+1

then b(b−1)/2−db = b/2(b−1−2d) ≥ ((2
√
k+2d+1)/2)(2

√
k) > k which is a contradiction

to {x, y} 6∈ F ′0. Summing up we have that |V (G′)| ≤ |VF ∪ VF0 | +
∑
{x,y}∈F |NG(x, y)| ≤

2k + k(2
√
k + 2d+ 1). J

Observe that Rule 5 — which is applicable only when the input graph is d-degenerate —
adds an edge to the graph. The graph resulting from applying Rule 6 — which adds the
edge set F ′0 found by applying Rule 5 — may thus not be d-degenerate. The graph output
by Rule 6 can be modified to become d-degenerate while preserving the bound on its size,
and this gives an O(k3/2) kernel for Minimum Fill-In in d-degenerate graphs:

I Theorem 9. Minimum Fill-In has a d-degenerate kernel of size O(k3/2) in d-degenerate
graphs.

Proof. Since a 1-degenerate graph is a forest, and every forest has a fill-in of size zero —
since the forest is chordal — we can assume without loss of generality that d ≥ 2. Let (G, k)
be an instance of Minimum Fill-In where G is a d-degenerate graph. The kernelization
algorithm applies Reduction Rule 6 – Algorithm 1 – to (G, k) to obtain an equivalent instance
(G′, k′). If (G′, k′) is the trivial NO instance returned by Line 14, then it is d-degenerate and
its size is a constant, and the kernelization algorithm returns (G′, k′) itself as the kernel.

Now let (G′, k′) be a non-trivial instance returned by Line 16. Observe that G′ is obtained
from G by (i) deleting some vertices – Line 3, – (ii) adding edges F ′0 – Line 6, – and (iii)
deleting vertices D0 – Line 11. Edge set F0 is defined in Line 12 as the set of edges in F ′0
with both endpoints in V (G′).

The kernelization algorithm constructs a new graph G′′ from G′ by doing the following
for each edge {u, v} ∈ F0 : remove {u, v}, add two new vertices auv, buv, and make both
these vertices adjacent to both u and v. The algorithm returns (G′′, k′′) as the kernel, where
k′′ = k′ + |F0|. Let G1 be the graph G′ where edge set F0 is removed.

To see that (G′′, k′′) satisfies all the requirements, note that G1 is d-degenerate by the
hereditary property of d-degenerate graphs, and G′ = (V (G′), E(G1) ∪ F0). The graph G′′
is d-degenerate since it can be obtained from G1 by adding a sequence of vertices, each
of degree two. Since each edge in F0 corresponds to two new vertices in G′′, |V (G′′)| =
|V (G1)|+ 2|F0| ≤ 4k + k(2

√
k + 2d+ 1).

It remains to argue that (G′, k′) is a YES instance if and only if (G′′, k′′) is. If (G′, k′) is
a YES instance, then let F ′ be a fill-in of G′ of size at most k′, and let H ′ be the chordal
graph obtained by adding the edges in F ′ to G′. Let F ′′ = F0 ∪ F ′, and let H ′′ be the graph
obtained by adding the edges in F ′′ to the graph G′′. Observe that H ′′ can be obtained from
the chordal graph H ′ by adding a sequence of vertices of degree two each, each of which
is adjacent to the two end-points of some edge in F0. It follows that H ′′ is chordal — any
potential chordless cycle in H ′′ has to contain one of these new vertices, but every cycle
passing through such a vertex has the respective edge in F0 as a chord. Thus F ′′ is a fill-in
of G′′ of size at most |F0|+ k′ = k′′.

Conversely, let (G′′, k′′) be a YES instance. Observe that for each {u, v} ∈ F0, the
vertex set S = {u, v} satisfies all the conditions of Proposition 2 in G′′ — S is a minimal

F. V. Fomin, G. Philip, and Y. Villanger 173

auv, buv-separator (using the notation of the proof of Theorem 9), G′′[S] is missing the one
edge which will make it a clique, and the vertex auv ∈ V (G′′) \ S is adjacent to every vertex
in S. So there exists a minimum fill-in F ′′ of G′′ such that F0 ⊆ F ′′, and |F ′′| ≤ k′′. Let H ′′
be the chordal graph obtained by adding the edges in F ′′ to the graph G′′, and let H ′ be the
graph obtained by deleting all the vertices {auv, buv | {u, v} ∈ F0 from H ′′. Then H ′ can be
obtained by adding the edges in F ′ = F ′′ \ F0 to G′ , and H ′ is chordal by the hereditary
property of chordality. Thus F ′ is a fill-in of G′ of size at most k′. J

5 An O(k3/2) kernel for H-minor free graphs

It is known [25] that every H-minor free graph is d-degenerate for d ≤ αh
√

log h, where
h = |V (H)| and α > 0 is a constant. As we have already shown in Section 4, the application
of Rules 2, 5, and 6 on d-degenerate graphs results in an equivalent instance (G′, k′) where
G′ has O(k3/2) vertices. However, this G′ is not necessarily H-minor free or d-degenerate.
In Theorem 9, we show how to transform G′ into a d-degenerate graph without significantly
increasing its size. We employ a somewhat more involved transformation to convert G′ to an
H-minor free problem instance on O(k3/2) vertices:

I Theorem 10. [?]1 Let H be a fixed graph. Minimum Fill-In has an H-minor free kernel
of size O(k3/2) in H-minor free graphs.

6 Approximation

As a byproduct of our kernelization algorithms, we obtain improved approximation algorithms
for the Minimum Fill-In problem on planar and H-minor free graphs. We need the following
result of Chung and Mumford [8].

I Proposition 5. [8] Let H be a fixed graph, and let G be an n vertex graph that is H-minor
free. Then there is a triangulation HT of G such that |E(HT)| = O(n logn), and such a
triangulation can be found in polynomial time.

Together with our improved kernels, this result yields approximate solutions for Minimum
Fill-In, with ratio O(

√
k log k) for H-minor-free graphs, and with ratio O(log k) for planar

graphs.

I Theorem 11. Let k be the minimum size of a fill-in of a graph G. There is a polynomial
time algorithm which computes a fill-in of G of size O(k log k) if G is planar and of size
O(k3/2 log k) if G is H-minor free for some fixed graph H.

Proof. Let G be a planar graph. For each k ∈ {1, 2, . . . , n2}, in this order, we run the
algorithm of Theorem 6 on (G, k), and compute the maximum value k? of the parameter k
for which the algorithm gives us a NO answer. This guarantees that there is no fill-in of G of
size k∗. We then run the same algorithm on the instance (G, k? + 1) to obtain a planar kernel
G′ on at most 6(k? + 1) vertices. Using Proposition 5, we obtain a fill-in of G′ with at most
c(k? + 1) log (k? + 1) edges, for some constant c. By making use of standard backtracking,
the solution for G′ can be transformed into a fill-in of G with O(k log k) fill edges.

The arguments when G is an H-minor free graph are almost identical to the planar case.
The only difference is that we use Theorem 10 instead, which provides us with an H-minor
free kernel of size O(k3/2). J

1 Proofs of results labelled with a ? have been deferred to a longer version of the paper.

FSTTCS 2011

174 Minimum Fill-In: Kernelization and Approximation

7 Conclusion and Open Questions

In this paper we obtained new algorithms for Minimum Fill-In on several sparse classes of
graphs. Specifically, we obtained a linear kernel for the problem on planar graphs and kernels
of size O(k3/2) in H-minor free graphs and in graphs of bounded degeneracy. Using these
kernels, we obtained approximation algorithms with ratios O(log k) for planar graphs, and
O(
√
k log k) for H-minor free graphs. These results significantly improve known kernelization

and approximation results for this problem. We note that for any g ∈ N, the same set of
reduction rules and essentially the same argument as for the planar case shows that Minimum
Fill-In has a kernel of size O(k) in graphs of genus at most g. We conclude with a number
of open questions.

Minimum Fill-in on general graphs is NP-complete [26]. However, it is a very old open
question if the problem is NP-complete on planar graphs [8]. It turns out that Minimum
Fill-in is NP-complete on bipartite 2-degenerate graphs.

I Theorem 12. [?] The Minimum Fill-In problem is NP -complete on bipartite 2-degenerate
graphs.

The complexity of the problem on planar and on H-minor free graphs is still open. From
the approximation perspective, we leave the possibility of obtaining an o(log k)-approximation
on planar graphs as an open problem.

From the perspective of kernelization, it would be very interesting to find out if there is a
linear kernel for Minimum Fill-in on H-minor free graphs. We also were not able to find
any evidence that the existence of an O(k/ log k) kernel on planar graphs would contradict
any complexity assumption. Can it be that the problem has a sublinear kernel?

Acknowledgements.

We thank our anonymous reviewers for pointing out a way to reduce the constant factor
in Reduction Rule 4 from 22 to 6 with a simpler proof of Lemma 5, and for many other
comments which helped in improving the presentation. F. V. Fomin acknowledges the support
of the European Research Council (ERC) via grant “Rigorous Theory of Preprocessing”,
reference 267959.

References

1 A. Agrawal, P. N. Klein, and R. Ravi. Cutting down on fill using nested dissection: provably
good elimination orderings. Graph Theory and Sparse Matrix Computation, 56:31–55, 1993.

2 J. Alber, M. R. Fellows, and R. Niedermeier. Polynomial-time data reduction for dominat-
ing set. Journal of the ACM, 51(3):363–384, 2004.

3 A. Berry, J. P. Bordat, P. Heggernes, G. Simonet, and Y. Villanger. A wide-range algorithm
for minimal triangulation from an arbitrary ordering. Journal of Algorithms, 58(1):33–66,
2006.

4 J. R. S. Blair and B. W. Peyton. An introduction to chordal graphs and clique trees. In
Graph Theory and Sparse Matrix Computations, pages 1–30. Springer, 1993. IMA Volumes
in Mathematics and its Applications, Vol. 56.

5 H. Bodlaender, F. V. Fomin, D. Lokshtanov, E. Penninkx, S. Saurabh, and D. M. Thilikos.
(Meta) Kernelization. In FOCS 2009, pages 629–638. IEEE, 2009.

F. V. Fomin, G. Philip, and Y. Villanger 175

6 H. Bodlaender, P. Heggernes, and Y. Villanger. Faster parameterized algorithms for min-
imum fill-in. Algorithmica, pages 1–22, 2010. Available online. DOI:10.1007/s00453-010-
9421-1.

7 L. Cai. Fixed-parameter tractability of graph modification problems for hereditary proper-
ties. Inf. Process. Lett., 58(4):171–176, 1996.

8 F. R. K. Chung and D. Mumford. Chordal completions of planar graphs. J. Comb. Theory,
Ser. B, 62(1):96–106, 1994.

9 R. Diestel. Graph Theory. Springer-Verlag, Heidelberg, third edition, 2005.
10 G. A. Dirac. On rigid circuit graphs. Abh. Math. Sem. Univ. Hamburg, 25:71–76, 1961.
11 R. G. Downey and M. R. Fellows. Parameterized complexity. Springer-Verlag, New York,

1999.
12 F. V. Fomin and Y. Villanger. Subexponential parameterized algorithm for minimum fill-in.

Accepted at the ACM-SIAM Symposium on Discrete Algorithms (SODA 2012)., 2012.
13 M. R. Garey and D. S. Johnson. Computers and Intractability, A Guide to the Theory of

NP-Completeness. W.H. Freeman and Company, New York, 1979.
14 M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, New

York, 1980.
15 P. Heggernes. Minimal triangulations of graphs: A survey. Discrete Mathematics,

306(3):297–317, 2006.
16 H. Kaplan, R. Shamir, and R. E. Tarjan. Tractability of parameterized completion problems

on chordal, strongly chordal, and proper interval graphs. SIAM J. Comput., 28:1906–1922,
May 1999.

17 A. Natanzon, R. Shamir, and R. Sharan. A polynomial approximation algorithm for the
minimum fill-in problem. SIAM J. Comput., 30:1067–1079, October 2000.

18 T. Ohtsuki, L. K. Cheung, and T. Fujisawa. Minimal triangulation of a graph and optimal
pivoting ordering in a sparse matrix. J. Math. Anal. Appl., 54:622–633, 1976.

19 A. Parra and P. Scheffler. Characterizations and algorithmic applications of chordal graph
embeddings. Discrete Applied Mathematics, 79(1-3):171–188, 1997.

20 G. Philip, V. Raman, and S. Sikdar. Solving dominating set in larger classes of graphs: Fpt
algorithms and polynomial kernels. In ESA 2009, volume 5757 of Lecture Notes in Comput.
Sci., pages 694–705. Springer, 2009.

21 D. J. Rose. A graph-theoretic study of the numerical solution of sparse positive definite
systems of linear equations. In R. C. Read, editor, Graph Theory and Computing, pages
183–217. Academic Press, New York, 1972.

22 D. J. Rose, R. E. Tarjan, and G. S. Lueker. Algorithmic aspects of vertex elimination on
graphs. SIAM J. Comput., 5:266–283, 1976.

23 Kloks. T., D. Kratsch, and J. Spinrad. On treewidth and minimum fill-in of asteroidal
triple-free graphs. Theor. Comput. Sci., 175(2):309–335, 1997.

24 R. E. Tarjan. Decomposition by Clique Separators. Discrete Mathematics, 55:221–232,
1985.

25 A. Thomason. The extremal function for complete minors. Journal of Combinatorial
Theory, Series B, 81(2):318 – 338, 2001.

26 M. Yannakakis. Computing the minimum fill-in is NP-complete. SIAM J. Alg. Disc. Meth.,
2:77–79, 1981.

FSTTCS 2011

	Introduction
	Preliminaries
	A Linear Kernel for Planar Graphs
	An O(k3/2) kernel for d-degenerate graphs
	An O(k3/2) kernel for H-minor free graphs
	Approximation
	Conclusion and Open Questions

