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Abstract
Formal, symbolic techniques are extremely useful for modelling and analysing security protocols.
They improved our understanding of security protocols, allowed to discover flaws, and also provide
support for protocol design. However, such analyses usually consider that the protocol is executed
in isolation or assume a bounded number of protocol sessions. Hence, no security guarantee is
provided when the protocol is executed in a more complex environment.

In this paper, we study whether password protocols can be safely composed, even when a
same password is reused. More precisely, we present a transformation which maps a password
protocol that is secure for a single protocol session (a decidable problem) to a protocol that is
secure for an unbounded number of sessions. Our result provides an effective strategy to design
secure password protocols: (i) design a protocol intended to be secure for one protocol session;
(ii) apply our transformation and obtain a protocol which is secure for an unbounded number
of sessions. Our technique also applies to compose different password protocols allowing us to
obtain both inter-protocol and inter-session composition.
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1 Introduction

Password-based cryptographic protocols are a prominent means to achieve authentication
or to establish authenticated, shared session keys, e.g. EKE [10], SPEKE [23], or the KOY
protocol [24]. The advantage of such schemes is that they do not rely on a key infrastructure
but only on a shared password, which is often human chosen or at least human memorable.
However, such passwords are generally weak and may be subject to dictionary (also called
guessing) attacks. In an online dictionary attack an adversary tries to execute the protocol
for each possible password. While such attacks are difficult to avoid they can be made
impracticable by limiting the number of password trials or adding a time-out of few seconds
after a wrong password. In an offline guessing attack an adversary interacts with one or
more sessions in a first phase. In a second, offline phase the attacker uses the collected
data to verify each potential password. In this paper we concentrate on the second type
of attacks.

It has been widely acknowledged that security protocol design is extremely error prone
and rigorous security proofs are a necessity. Formal, symbolic models, in the vein of Dolev
and Yao’s seminal work [21], provide effective and often automated methods to find errors or
prove protocols correct. While most of these methods focus on secrecy and authentication,
resistance against offline guessing attacks has been considered in some works [26, 9, 17]. We
will in particular focus on an elegant definition of resistance against offline guessing attacks
by Corin et al. [17] which was introduced in the framework of the applied pi calculus [1] and
for which tool support exists [11, 9].
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Nowadays, state-of-the-art protocol analysis tools are able to analyse a variety of proto-
cols. However, this analysis is generally carried out in isolation, i.e., analysing one protocol
at a time. This is motivated by the fact that in models like the applied pi calculus, se-
curity properties, even if shown in isolation, hold in the presence of an arbitrary (public)
environment. This is similar to universal composition (UC) [14] in computational models.
However, these arbitrary environments are public, in the sense that they don’t have access
to the secrets of the protocol under analysis. This is of course necessary as otherwise a com-
pletely arbitrary environment could simply output all secret cryptographic key material and
trivially break the protocol’s security. While not sharing key material may be a reasonable
hypothesis in some cases it is certainly not the case when we compose the same sessions of a
same protocol or in a situation where the same password is used in different protocols — it is
indeed unreasonable to assume that all users have different passwords for each application.

Our contributions

In this paper we propose a simple protocol transformation which ensures that a same pass-
word can safely be shared between different protocols. More precisely, our results can be
summarized as follows. We use a safe transformation which replaces a weak password w by
h(t, w) where t is some tag and h a hash function. Then, we show how to use this tagging
technique to compose different protocols. Consider n password protocols such that each
protocol resists separately against guessing attacks on w. When we instantiate the tag t to
a unique protocol identifier pid, one for each of the n protocols, we show that the parallel
composition of these tagged protocols resists against guessing attacks on w, where w is the
password shared by each of these protocols. Next we show how to dynamically establish a
session identifier sid. Instantiating the tag t by this session identifier allows us to compose
different sessions of a same protocol. Hence it is sufficient to prove resistance against guess-
ing attacks on a single session of a protocol to conclude that the transformed protocol resists
against guessing attacks for an unbounded number of sessions. These techniques can also be
combined into a tag which consists of both the protocol and session identifier obtaining both
inter-protocol and inter-session composition. One may note that resistance against guessing
attack is generally not the main goal of a protocol, which may be authentication or key
exchange. It follows however from our proofs that trace properties such as authentication
will also be preserved. Detailed proofs of our results can be found in [16].

Related Work

In recent years, compositional reasoning has received a lot of attention. Datta et al. [19]
provide a general strategy whereas our composition result identifies a specific class of pro-
tocols that can be composed. In [22, 5, 18], some criteria are given to ensure that parallel
and in some works sequential composition is safe. In [6] the issue of composition of sessions
of a same protocol is addressed using a transformation similar to the one considered in this
paper. None of these works considers password protocols and resistance to guessing attacks.
Composition of different password protocols (but not of sessions of the same protocol) using
a protocol identifier tag was shown in [20]. In this paper we generalize these results to allow
composition of sessions of a same protocol. Moreover, the composition theorem given in [20]
only applies to two protocols (and cannot be iterated). This shortcoming was overseen by
the authors of [20] and we adapt their result to apply to an arbitrary number of protocols
in parallel.

In computational models, Boyko et al. [13] presented a security model for password-based
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key-exchange based on simulation proofs, ensuring security in case of composition. A more
generic solution was proposed by Canetti et al. [15] who propose a protocol based on KOY,
which is secure in the UC model [14]. This work has been extended to active adversaries [4],
group key exchange [3] and to define distributed public-key cryptography from passwords
in e.g. [2]. A main difference between works in the UC model and our work (besides the
obvious differences between symbolic and computational models) is that in the UC model
designers generally apply an “ad-hoc recipe” (often using “magical” session identifiers given
by the framework) and show that one session of a protocol fulfills the given requirements.
The UC theorem then ensures composition, i.e., composition follows from the strong security
definition which has to be proven. In our work we make explicit the construction of session
identifiers in our transformation and prove that a generic protocol transformation can be
used to achieve composition. Note, however, that despite this difference, both approaches
share many essential ideas.

Finally, we may note that tagging is a well known technique. We have already mentioned
its use to achieve some forms of composition [6, 18]. Other forms of tagging were used to
ensure termination of a verification procedure [12], safely bound the length of messages [7]
or obtain decidability for the verification of some classes of protocols [27].

2 Modeling Protocols

In this section, we recall the cryptographic process calculus defined in [20] for describing
protocols. This calculus is a simplified version of the applied pi calculus [1]. In particular
we only consider one channel, which is public (i.e. under the control of the attacker) and
we only consider finite processes, i.e. processes without replication.

2.1 Messages

A protocol consists of some agents communicating on a network. The messages sent by the
agents are modelled using an abstract term algebra. For this, we assume an infinite set of
names N , for representing keys, data values, nonces, and names of agents, and we assume
a signature Σ, i.e. a finite set of function symbols such as senc and sdec, each with an arity.
Given a signature Σ and an infinite set of variables X , we denote by T (Σ) (resp. T (Σ,X ))
the set of ground terms (resp. terms) over Σ∪N (resp. Σ∪N ∪X ). We write fn(M) (resp.
fv(M)) for the set of names (resp. variables) that occur in the term M . A substitution σ is
a mapping from a finite subset of X called its domain and written dom(σ) to T (Σ,X ). The
application of a substitution σ to a term T is written Tσ. We also allow replacement of names
by terms: the term M{N/n} is the term obtained from M after replacing any occurrence of
the name n by the term N (assuming that n does not occur in N). We sometimes abbreviate
the sequence of terms t1, . . . , tn by t̃ and write {t̃/x̃} for {t1/x1, . . .

tn /xn}.

To model algebraic properties of cryptographic primitives, we define an equational theory
by a finite set E of equations U = V with U, V ∈ T (Σ,X ) such that U, V do not contain
names. We define =E to be the smallest equivalence relation on terms, that contains E and
that is closed under application of function symbols and substitutions of terms for variables.

I Example 1. Consider the signature Σ = {sdec, senc, 〈 〉, proj1, proj2, exp}. The function
symbols sdec, senc, 〈 〉 and exp of arity 2 represent respectively symmetric encryption and
decryption, pairing as well as exponentiation. Functions proj1 and proj2 of arity 1 model
projection of the first and the second component of a pair. As an example that will be useful
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for modelling the SPEKE protocol [23], we consider the equational theory E, defined by the
following equations:

sdec(senc(x, y), y) = x proji(〈x1, x2〉) = xi (i ∈ {1, 2})
senc(sdec(x, y), y) = x exp(exp(x, y), z) = exp(exp(x, z), y)

Let T1 = senc(proj2(〈a, b〉), k) and T2 = senc(b, k). We have that the terms T1 and T2 are
equal modulo E, written T1 =E T2, while obviously the syntactic equality T1 = T2 does not
hold.

To represent the knowledge of an attacker (who may have observed a sequence of mes-
sages M1, . . . ,M`), we use the concept of frame. A frame φ = νñ.σ consists of a finite
set ñ ⊆ N of restricted names (those unknown to the attacker), and a substitution σ of the
form {M1/z1 , . . . ,

M`/z`
} where eachMi is a ground term. The variables zi enable an attacker

to refer to each Mi. The domain of the frame φ, written dom(φ), is dom(σ) = {z1, . . . , z`}.
Given a frame φ that represents the information available to an attacker, and an equa-

tional theory E on Σ, we may ask whether a given ground term M may be deduced from φ.
This relation is written φ `E M and is formally defined below.

I Definition 2 (deduction). LetM be a ground term and φ = νñ.σ be a frame. We have that
M is deducible from φ, denoted νñ.σ `E M , if and only if there exists a term N ∈ T (Σ,X )
such that fn(N) ∩ ñ = ∅ and Nσ =E M . N is called a recipe of the term M .

Intuitively, the set of deducible messages is obtained from the messages Mi in φ, the
names that are not restricted in φ, and closed under equality modulo E and application of
function symbols.

I Example 3. Consider the theory E given in Example 1. Let φ = νb, k.{senc(b,k)/z1 ,
k/z2}.

We have that φ `E k, φ `E b and φ `E a. Indeed z2, sdec(z1, z2) and a are recipes of the
terms k, b and a respectively.

Two frames are considered equivalent when the attacker cannot detect the difference
between the two situations they represent, that is, his ability to distinguish whether two
recipes M,N produce the same term does not depend on the frame. Formally,

I Definition 4 (static equivalence). We say that two frames φ1 = νñ.σ1 and φ2 = νñ.σ2 are
statically equivalent, φ1 ≈E φ2, when dom(φ1) = dom(φ2), and for all terms M,N such that
fn(M,N) ∩ ñ = ∅, we have that: Mσ1 =E Nσ1 if, and only if, Mσ2 =E Nσ2.

Static equivalence is useful to model the notion of security we consider in this paper,
namely resistance against guessing attacks. To resist against a guessing attack, the protocol
must be designed such that the attacker cannot decide on the basis of the data collected
whether his current guess of the password is the actual password or not. Assume φ = νw̃.φ′

is the frame representing the information gained by the attacker by eavesdropping one or
more sessions and let w̃ be the sequence of weak passwords. The frame φ is resistant to
guessing attacks if the attacker cannot distinguish between a situation in which he guesses
the correct passwords w̃ and a situation in which he guesses incorrect ones, say w̃′.

I Definition 5 (frame resistant to guessing attacks). The frame νw̃.φ′ is resistant to guessing
attacks against the sequence of names w̃ if νw̃.φ′ ≈ νw̃.νw̃′.φ′{w̃′

/w̃} where w̃′ is a sequence
of fresh names.
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This definition was proposed in [17, 9]. A slightly simpler formulation requiring φ′ ≈
φ′{w̃′

/w̃} (without the name restrictions) was shown equivalent in [20] and will be used in
this paper.

I Example 6. Consider the following protocol where h is a unary function symbol modelling
a hash function (no equation on h):

A→ B : senc(n,w) B→ A : senc(h(n), w)

An interesting problem arises if the shared key w is a weak secret, i.e. vulnerable to brute-
force off-line testing. Indeed, the frame representing the knowledge of the attacker at the
end of a normal execution of this protocol is φ = νw.φ′ = νw.νn.{senc(n,w)/z1 ,

M/z2} where:

M = senc(h(sdec(senc(n,w), w)), w) =E senc(h(n), w).

The frame φ is not resistant to guessing attacks against the password w. Indeed, the test
h(sdec(z1, w)) ?= sdec(z2, w) is a witness of the non-equivalence φ′ 6≈E φ

′{w′
/w}.

2.2 Protocol Language and Semantics
Syntax

The grammar for processes is given below. One has plain processes P,Q,R and extended
processes A,B,C that allow the use of active substitutions and restrictions.

P,Q,R := plain processes
0 null process
P | Q parallel composition
in(x).P message input
out(M).P message output
if M = N then P else Q conditional

A,B,C := extended processes
P plain processes
A | B parallel composition
νn.A restriction
{M/x} active substitution

As usual, names and variables have scopes, which are delimited by restrictions and inputs.
We write fv(A), bv(A), fn(A), bn(A) for the sets of free and bound variables (resp. names).
Moreover, we consider processes such that bn(A) ∩ fn(A) = ∅, bv(A) ∩ fv(A) = ∅, and each
name and variable is bound at most once in A. An extended process is closed if all free
variables are in the domain of an active substitution. An instance of an extended process is
a process obtained by a bijective renaming of its bound names and variables. We observe
that given processes A and B, there always exist instances A′ and B′ of A, respectively B,
such that the process A′ | B′ will respect the disjointness conditions on names and variables.

I Example 7. We illustrate our syntax with the SPEKE protocol (see [23] for a complete
description).

A → B : M1 = exp(w, ra)
B → A : M2 = exp(w, rb)
A → B : M3 = senc(ca, exp(exp(w, rb), ra))
B → A : M4 = senc(〈ca, cb〉, exp(exp(w, ra), rb))
A → B : M5 = senc(cb, exp(exp(w, rb), ra))

The goal of this protocol is to mutually authenticate A and B with respect to each other,
provided that they share an initial secret w. This is done by a simple Diffie-Hellman exchange
from a shared secret w, creating a common key exp(exp(w, ra), rb) =E exp(exp(w, rb), ra),
followed by a challenge-response transaction. The data ra, ca (resp. rb, cb) are nonces that
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are freshly generated by A (resp. B). In our calculus, we model one session of the protocol
as νw.(A | B):

A = νra, ca.out(exp(w, ra)).in(x1). B = νrb, cb.in(y1).out(exp(w, rb)).
out(senc(ca, ka)).in(x2). in(y2).out(senc(〈sdec(y2, kb), cb〉, kb)).
out(senc(proj2(sdec(x2, ka)), ka)) in(y3). if sdec(y3, kb) = cb then P else 0.

where ka = exp(x1, ra), kb = exp(y1, rb), and P models an application that is executed
when B has been successfully authenticated.

An evaluation context is an extended process with a hole instead of an extended process.
Given an extended process A we denote by φ(A) the frame obtained by replacing any
embedded plain processes in it with 0.

Semantics

We here only give an informal account of the semantics and refer the reader to [20] for the
complete definition. We consider a basic structural equivalence, denoted ≡, which includes
for instance A | B ≡ B | A, A | 0 ≡ A and νn1, n2.A ≡ νn2, n1.A. In particular, using
structural equivalence, every extended process A can be rewritten to consist of a substitution
and a plain process with some restricted names, i.e.,

A ≡ νñ.({M1/z1} | . . . | {Mk/zk
} | P ).

Moreover, any frame can be rewritten as νn.σ matching the notion of frame introduced in
Section 2.1.

Labelled operational semantics is the smallest relation A
`−→ A′ between extended pro-

cesses which is closed under structural equivalence (≡), application of evaluation context,
and a few usual rules for input, output and conditional where ` is a label of one of the
following forms:

a label in(M), where M is a ground term such that φ(A) `E M ;
a label out(M), where M is a ground term, which corresponds to an output of M and
which adds an active substitution {M/z} in A′;
a label τ corresponding to a silent action (the evaluation of a conditional).

We denote by → the relation
{ `−→ | ` ∈ {in(M), out(M), τ}, M ∈ T (Σ)

}
and by →∗ its re-

flexive and transitive closure. Note that these semantics take the viewpoint that the attacker
controls the entire network. Any message is sent to the attacker (who may or not forward it
to the intended recipient) and the processes do not have any means to communicate directly.

I Example 8. We illustrate our semantics with the SPEKE protocol presented in Example 7.
The derivation below represents a normal execution of the protocol. For simplicity of this
example we suppose that fv(P ) = ∅.

νw.(A | B)
out(exp(w,ra))−−−−−−−−−→ νw, ra, ca.(in(x1).out(senc(ca, ka)).in(x2). . . . | {M1/z1} | B)
in(exp(w,ra))−−−−−−−−→ νw, ra, ca, rb, cb.(in(x1).out(senc(ca, ka)).in(x2). . . . | {M1/z1} | B′)
→∗ νw, ra, ca, rb, cb.({M1/z1 ,

M2/z2 ,
M3/z3 ,

M4/z4 ,
M5/z5} | P )

where B′ represents the remaining actions of B in which y1 is replaced by exp(w, ra), and
M1, . . . ,M5 are defined in Example 7. The first step is an output of M1 performed by A.
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The active substitution {M1/z1} allows the environment (i.e. the attacker) to access the
message M1 via the handle z1. The handle z1 is important since the environment cannot
itself describe the term that was output, except by referring to it using z1. Since M1 is
accessible to the environment via z1, the next input action can be triggered: we have that
νw, ra, ca.{M1/z1} `E exp(w, ra) using the the recipe z1.

In the remaining, we will focus our attention on password-based protocols.

I Definition 9 (`-party password protocol specification). An `-party password protocol spe-
cification P is a process such that:

P = νw.(νm̃1.P1 | . . . | νm̃`.P`)

where each Pi is a closed plain processes. The processes νm̃i.Pi are called the roles of P.

The process νw.(A | B) described in Example 7 is a 2-party password protocol specification
with roles A and B. The notion of security we will mainly concentrate on is resistance
against guessing attacks.

I Definition 10 (process resistant to guessing attacks). Let A be an extended, closed process
and w̃ ⊆ bn(A). We say that a process A is resistant to guessing attacks against w̃ if, for
every process B such that A →∗ B, we have that the frame φ(B) is resistant to guessing
attacks against w̃.

3 Composition Results for Password-based Protocols

In this section, we present several composition results that hold for an arbitrary equational
theory E. The only requirement we have is that there exists a function symbol h, which is
a free symbol in E, i.e. h does not occur in any equation in E. Intuitively, h models a hash
function.

3.1 Disjoint State
First, we note that, as usual, composition preserves security properties as soon as protocols
have disjoint states, i.e., they do not share any restricted names. Intuitively, this is due to
the fact that when other protocols do not share any secrets of the analyzed protocol, then
the attacker can completely simulate all messages sent by these other protocols. This has
been formally shown in [20].

I Theorem 11. [20] Let A1, . . . , Ak be k extended processes such that for all i, we have
that Ai is resistant to guessing attack against wi. We have that A1 | · · · | Ak is resistant to
guessing attack against w1, . . . , wk.

3.2 Joint State
As soon as two protocols share a restricted name, e.g. a password, composition does not
necessarily preserve security properties (see [20] for an example). We will use a tagging
technique to avoid confusion between messages that come from different protocols. More
precisely we will tag each occurrence of a password. Intuitively, we consider protocols that
are well-tagged w.r.t. a secret w: all occurrences of w are of the form h(t, w) for some tag t.
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Composing protocols

When each process is well-tagged with a different tag, it can be shown that the processes
can be safely composed. One may think of these tags as protocol identifiers, which uniquely
identify which protocol is executed, and avoid messages from different protocols to interfere
with each other.

I Theorem 12. Let α1, . . . , αk be k distinct names, and νw.A1, . . . , νw.Ak be k processes
such that αi 6∈ bn(Ai) for any i ∈ {1, . . . , k}. If each νw.Ai is resistant to guessing attack
against w then the process νw.(A1{h(α1,w)/w} | · · · | Ak{h(αk,w)/w}) is resistant to guessing
attack against w.

Actually, this result is a small adaptation from [20] (the result was shown for k = 2 only).
This result can also be seen as a consequence of Proposition 15 and Lemma 16 (stated in
Section 4) and a theorem showing that adding tags preserves resistance against guessing
attacks (this last theorem is stated and proved in [20]).

The previous result is useful to compose distinct protocols. However, when we want to
compose different sessions from the same protocol, we cannot assume that participants share
a distinct tag for each possible session. In the following, we define a way to dynamically
establish such a session tag.

Composing sessions from the same protocol

We now define a protocol transformation which establishes a dynamic tag that will guaran-
tee composition. To establish such a tag that serves as a session identifier all participants
generate a fresh nonce, that is sent to all other participants. This is similar to the estab-
lishment of session identifiers proposed by Barak [8]. The sequence of these nonces is then
used to tag the password. Note that an active attacker may interfere with this initialization
phase and may intercept and replace some of the nonces. However, since each participant
generates a fresh nonce, these tags are indeed distinct for each session. This transformation
is formally defined as follows.

I Definition 13 (transformation P). Let P = νw.(νm̃1.P1 | . . . | νm̃`.P`) be a password
protocol specification. Let n1, . . . , n` be fresh names and {xji | 1 6 i, j 6 `} be a set of fresh
variables. We define the protocol specification P = νw.(νm̃1, n1.P1 | . . . | νm̃`, n`.P`) as
follows:

Pi = in(x1
i ). . . . in(xi−1

i ).out(ni).in(xi+1
i ).in(x`i).Pi{h(tagi,w)/w}

where tagi = 〈x1
i , 〈. . . 〈x

`−1
i , x`i〉〉〉 and xii = ni.

We can now state our composition result for sessions of a same protocol: if a protocol
resists against guessing attacks on w then any number of instances of the transformed
protocol will also resist to guessing attacks on w.

I Theorem 14. Let P = νw.(νm̃1, P1 | . . . | νm̃`.P`) be a password protocol specification
that is resistant to guessing attacks against w. Let P ′ be such that P = νw.P ′, and P ′1, . . .P ′p
be p instances of P ′. Then we have that νw.(P ′1 | . . . | P ′p) is resistant to guessing attacks
against w.

Discussion

Note that it is possible to combine these two ways of tagging. Applying successively the
two previous theorems we obtain that a tag of the form h(〈n1, . . . , n`〉, h(α,w)) allows to
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safely compose different sessions of a same protocol, and also sessions of other protocols.
It would also be easy to adapt the proofs to directly show that a simpler tag of the form
h(〈α, 〈n1, . . . , n`〉〉, w) could be used.

The notion of security we consider is resistance to guessing attacks. While generally
resistance against guessing attacks is indeed a necessary condition to ensure security prop-
erties, this property is not a goal in itself. However, the way we prove our composition
results allows us also to ensure that those protocols can be safely composed w.r.t. more
classical trace-based security properties such as secrecy or authentication.

Finally, we note that our composition result yields a simple design methodology. It
is sufficient to design a protocol which is secure for a single session. After applying the
above protocol transformation we conclude that the transformed protocol is secure for an
arbitrary number of sessions. Note that even though our protocol language does not include
replication, our composition results for sessions ensure security for an unbounded number
of sessions. Indeed, as any attack requires only a finite number of sessions, any attack on a
transformed protocol which is secure for a single instance would yield a contradiction. As
deciding resistance to guessing attacks is decidable for a bounded number of sessions (for a
large class of equational theories) [9] our result can also be seen as a new decidability result
for an unbounded number of sessions on a class of tagged protocols.

4 Proof of our main result

The goal of this section is to give an overview of the proof of Theorem 14. This proof is
done in 4 main steps.

Step 1

Assume, by contradiction, that P = νw.(P ′1 | . . . | P ′p) admits a guessing attack on w. Hence
there exists an attack derivation P →∗ Q for some process Q such that φ(Q) is not resistant
to a guessing attack against w.

Thanks to our transformation, we know that each role involved in P has to execute its
preamble, i.e., the preliminary nonce exchange of our transformation, at the end of which it
computes a tag. Let t1, . . . , tk be the distinct tags that are computed during this derivation.
Then, we group together roles (i.e. a process) that computed the same tag in order to
retrieve a situation that is similar to when we use static tags. We note that the tags are
constructed such that each group contains at most one instance of each role of P. Our aim
is to show that an attack already exists on one of these groups, and so the attack is not due
to composition. However, one difficulty comes from the fact that once the preambles have
been executed, the tags that have been computed by the different roles may share some
names in addition to w.

Step 2

The fact that some names are shared between the processes we would like to separate in order
to retrieve the disjoint case significantly complicates the situation. Indeed, if composition
still works, it is due to the fact that names shared among differently tagged processes only
occur at particular positions. To get rid of shared names, we show that we can mimic a
derivation by another derivation where tags t1, . . . , tk are replaced by constants c1, . . . , ck and
different password are used (w1, . . . , wk instead of w). We denote by δwi,w the replacement
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{w/w1} . . . {w/wk
}, by δwi,h(ci,wi) the replacement {h(c1,w1)/w1} . . . {h(ck,wk)/wk

} and by δci,ti

the replacement {t1/c1} . . . {tk/ck
}.

I Proposition 15. Let t1, . . . , tk be distinct ground terms modulo E and c1, . . . , ck, w1, . . . , wk
be distinct fresh names. Let νñ.A be an extended process such that bn(A) = ∅, w 6∈ fn(A),
and A =E A

′δwi,h(ci,wi) for some A′ such that c1, . . . , ck 6∈ fn(A′). Moreover, we assume that
w,w1, . . . , wk, c1, . . . , ck 6∈ ñ.

Let B be such that νw.νñ.(Aδci,tiδwi,w) `−→ B. Moreover, when ` = in(M̃) we assume
that w1, . . . , wk, c1, . . . , ck 6∈ fn(M̃). Then there exists extended processes B, B′, and labels
`0, `′ such that:

B ≡ νw.νñ.(Bδci,tiδwi,w) with bn(B) = ∅ and w 6∈ fn(B), ` = `0δci,tiδwi,w, and
B =E B

′δwi,h(ci,wi) with c1, . . . , ck 6∈ fn(B′), `0 =E `
′δwi,h(ci,wi), and

νw1 . . . νwk.νñ.A
`0−→ νw1 . . . νwk.νñ.B.

This proposition shows how to map an execution of P ≡ νn1 . . . νnkνw.(A1δci,tiδwi,w |
· · · | Akδci,tiδwi,w) (same password) to an execution of νn1νw1.A1 | · · · | νnkνwk.Ak (differ-
ent password) by maintaining a strong connection between these two derivations. Intuitively,
the process Ajδci,tiδwi,w contains the roles in P that computed the tag tj in the attack de-
rivation.

Note that, except for w, a name that is shared between Ajδci,tiδwi,w and Aj′δci,tiδwi,w

(j 6= j′) necessarily occurs in a tag position in one of the process. Now that tags have been
replaced by some constants, and the password w has been replaced by different passwords
according to the tag, the processes Aj and Aj′ do not share any name.

This proposition is actually sufficient to establish that security properties, like authen-
tication, are preserved by composition. However, to establish resistant against guessing
attacks, we need more.

Step 3

We show that if a frame, obtained by executing several protocols that share a same password
and that are tagged with terms ti, is vulnerable to guessing attacks then the frame obtained
by the corresponding execution of the protocols with different passwords and tagged with
constants ci is also vulnerable to guessing attacks.

I Lemma 16. Let t1, . . . , tk be distinct ground terms modulo E. Let c1, . . . , ck, w1, . . . , wk be
distinct fresh names, and φ = νñ.σ be a frame such that c1, . . . , ck, w1, . . . , wk 6∈ ñ, and σ =E
σ0δwi,h(ci,wi) for some substitution σ0. Let w be a fresh name, and ψ = νñ.(σδci,tiδwi,w).
For each 1 6 i 6 k, we also assume that νw.ψ ` ti.

If νw̃.φ is resistant to guessing attacks against w̃ = {w1, . . . , wk}, then νw.ψ is resistant
to guessing attacks against w.

The proof of the lemma is technical because mapping all wi’s on the same password can
introduce additional equalities between terms. However, each occurrence of the password
is tagged, and the purpose of this design is to avoid the introduction of equalities between
terms. Again, the lemma holds because the frames are well-tagged.

Thanks to Proposition 15 and Lemma 16 we obtain a guessing attack on the process
νn1νw1.A1 | · · · | νnkνwk.Ak against w1, . . . , wk.
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Step 4

Applying Theorem 11 (combination for disjoint state protocols), we conclude that there is
a guessing attack on νniνwi.Ai for some i ∈ {1, . . . , k}. Then, it remains to show that the
attack also works on the original protocol, i.e. the non-tagged version of the protocol. This
is a direct application of Theorem 2 in [20]. This leads us to a contradiction since we have
assumed that P is resistant to guessing attacks against w.

5 Conclusion

In this paper we propose a transformation for password protocols based on a simple tag-
ging mechanism. This transformation ensures that security is preserved when protocols are
composed with other protocols which may use the same password. We show that when
protocols are tagged using a simple protocol identifier, we are able to compose different pro-
tocols. Computing a dynamic session identifier allows one to also compose different sessions
of a same protocol. Hence, it is sufficient to prove that a protocol is secure for one session
in order to conclude security under composition.

Currently, as stated, our composition results allow to preserve resistance against offline
guessing attacks. As already discussed it also follows from our proofs that trace properties
would be preserved. Formalizing for instance preservation of authentication should be a
rather straightforward extension. A more ambitious direction for future work would be the
composition of more general, indistinguishability properties, expressed in terms of observa-
tional equivalence. We also plan to investigate sufficient conditions to ensure composition
of protocols in the vein of [25] avoiding to change existing protocols.
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