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—— Abstract

In the parameterized problem MAXLIN2-AA[k], we are given a system with variables z1,...,x,
consisting of equations of the form [[,.; x; = b, where 2;,b € {—1,1} and I C [n], each equation
has a positive integral weight, and we are to decide whether it is possible to simultaneously satisfy
equations of total weight at least W/2 + k, where W is the total weight of all equations and % is
the parameter (if k& = 0, the possibility is assured). We show that MAXLIN2- A A[k] has a kernel
with at most O(k?logk) variables and can be solved in time 20(F198%) (m )0 This solves an
open problem of Mahajan et al. (2006).

The problem Max-r-LIN2-AA[k,r| is the same as MAXLIN2-AA[k] with two differences:
each equation has at most r variables and r is the second parameter. We prove a theorem
on MaX-r-LIN2-AA[k, r] which implies that MAaX-r-LIN2-A Ak, r] has a kernel with at most
(2k — 1)r variables, improving a number of results including one by Kim and Williams (2010).
The theorem also implies a lower bound on the maximum of a function f: {—1,1}" — R whose
Fourier expansion (which is a multilinear polynomial) is of degree r. We show applicability of
the lower bound by giving a new proof of the Edwards-Erdds bound (each connected graph on n
vertices and m edges has a bipartite subgraph with at least m/24 (n—1)/4 edges) and obtaining
a generalization.
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1 Introduction

1.1 MaxLin2-A A and Max-r-Lin2-A A. While MAXSAT and its special case MAX-r-SAT
have been widely studied in the literature on algorithms and complexity for many years,
MAXLIN2 and its special case MAX-r-LIN2 are less well known, but Hastad [24] succinctly
summarized the importance of these two problems by saying that they are “as basic as
satisfiability.” These problems provide important tools for the study of constraint satisfaction
problems such as MAXSAT and MAX-7-SAT since constraint satisfaction problems can often
be reduced to MAXLIN2 or MAX-r-LIN2, see, e.g., [1, 2, 10, 11, 24, 26]. Accordingly, in the
last decade, MAXLIN2 and MAX-r-LIN2 have attracted significant attention in algorithmics.
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Simultaneously Satisfying Linear Equations

The problem MAXLIN2 can be stated as follows. We are given a system of m equations in
variables 1, ..., z,, where each equation is Hie]_,» xz; =bjand x;,b; € {-1,1},5=1,...,m,
and where each equation is assigned a positive integral weight w;. We are required to find
an assignment of values to the variables in order to maximize the total weight of the satisfied
equations.

Let W be the sum of the weights of all equations in S and let sat(S) be the maximum
total weight of equations that can be satisfied simultaneously. To see that W/2 is a tight
lower bound on sat(S) choose assignments to the variables independently and uniformly at
random. Then W/2 is the expected weight of satisfied equations (as the probability of each
equation being satisfied is 1/2) and thus W/2 is a lower bound; to see the tightness consider
a system consisting of pairs of equations of the form [[,.; 2; = —1, [[;c; s = 1 of the same
weight, for some non-empty sets I C [n]. This leads to the following decision problem:

MAXLIN2-AA

Instance: A system S of equations Hielj x; = bj, where z;,b; € {—1,1},j=1,...,m
and where each equation is assigned a positive integral weight w;; and a nonnegative
integer k.

Question: sat(S) > W/2 + k?

The maximization version of MAXLIN2-AA (maximize k for which the answer is YES), has
been studied in the literature on approximation algorithms, cf. [24, 25]. These two papers
also studied the following important special case of MAXLIN2-AA:

Max-r-LIN2-AA

Instance: A system S of equations Hielj x; = bj, where x;,b; € {-1,1}, |[;| <7,
Jj=1,...,m; equation j is assigned a positive integral weight w;, and a nonnegative
integer k.

Question: sat(S) > W/2 + k?

Hastad [24] proved that, as a maximization problem, MAX-r-LIN2-AA with any fixed
r > 3 (and hence MAXLIN2-AA) cannot be approximated within a constant factor ¢ for
any ¢ > 1 unless P=NP (that is, the problem is not in APX unless P=NP). Hastad and
Venkatesh [25] obtained some approximation algorithms for the two problems. In particular,
they proved that for MAX-r-LIN2-A A there exists a constant ¢ > 1 and a randomized
polynomial-time algorithm that, with probability at least 3/4, outputs an assignment with
an approximation ratio of at most ¢"/m.

The problem MAXLIN2-AA was first studied in the context of parameterized com-
plexity by Mahajan et al. [28] who naturally took k as the parameter!. We will denote
this parameterized problem by MAXLIN2-AA[k]. Despite some progress [10, 11, 22|, the
complexity of MAXLIN2-AA[k] has remained prominently open in the research area of
“parameterizing above guaranteed bounds” that has attracted much recent attention (cf.
[1, 7, 10, 11, 22, 26, 28]) and that still poses well-known and longstanding open problems
(e.g., how difficult is it to determine if a planar graph has an independent set of size at
least (n/4) + k7). One can parameterize MAX-r-LIN2-A A by k for any fixed r (denoted by
Max-r-LiN2-AA[k]) or by both k and 7 (denoted by MaX-r-LiN2-AA[k, r])2.

1 We provide basic definitions on parameterized algorithms and complexity in Subsection 1.4 below.

2 While in the preceding literature only MAXLIN2-A A[k] was considered, we introduce and study MAX-
r-LIN2-A Ak, r] in the spirit of Multivariate Algorithmics as outlined by Fellows [18] and Niedermeier
30].
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Define the excess for 29 = (29,...,2%) € {—1,1}" over S to be

m
es(z?) = E ¢ H x9, where ¢; = w;b;.
j=1 i€l

Note that eg(2°) is the total weight of equations satisfied by 2 minus the total weight of

Y. The maximum possible value of e5(x°) is the mazimum excess

equations falsified by x
of S. Hastad and Venkatesh [25] initiated the study of the excess of a system of equations
and further research on the topic was carried out by Crowston et al. [11] who concentrated
on MAXLIN2-AA. In this paper, we study the maximum excess for MAX-r-LIN2-A A. Note
that the excess is a pseudo-boolean function [9], i.e., a function that maps {—1,1}" to the

set of reals.

1.2 Main Results and Structure of the Paper. Roughly speaking, a kernelization is a
polynomial-time algorithm that transforms every instance Z of the parameterized decision
problem under consideration into an equivalent instance (called a kernel) Z' of the same
problem such that both the size of Z’ and the value of its parameter are bounded from
above by a function in the parameter of Z only.

Hereafter, O(1) will denote an arbitrary absolute constant.

The main results of this paper are Theorems 6 and 9 outlined below. In 2006 Mahajan
et al. [28] introduced MAXLIN2-AA[k] and asked what is its complexity. We answer this
question in Theorem 6 by showing that MAXLIN2-AA[k] admits a kernel with at most
O(k*logk) variables. Note that, in our kernel, only the number of variables is bounded
from above by a polynomial in k. For the number of equations, we obtain an upper bound
exponential in k. These two results imply that MAXLIN2- A A[k] admits a kernel and, hence,
is fixed-parameter tractable (see Section 1.4). The proof of Theorem 6 is based on the main
result in [11] and on a new algorithm for MAXLIN2-A A[k] of complexity n?*(nm)°1). We
also prove that MAXLIN2-A A[k] can be solved in time 20198 %) (1)) (Corollary 7).

The other main result of this paper, Theorem 9, gives a sharp lower bound on the
maximum excess for MAX-r-LIN2-AA as follows. Let S be an irreducible system (i.e., a
system that cannot be reduced using Rule 1 or 2 defined below) and suppose that each
equation contains at most r variables. Let n > (k — 1)r + 1 and let wpi, be the minimum
weight of an equation of S. Then, in time m©®), we can find an assignment z° to variables
of S such that eg(z°) > k - wnin.

In Section 2, we give some reduction rules for MAX-r-LIN2-A A, describe an algorithm
‘H introduced by Crowston et al. [11] and give some properties of the maximum excess,
irreducible systems and Algorithm . In Section 3, we prove Theorem 6 and Corollary 7.
A key tool in our proof of Theorem 9 is a lemma on sum-free subsets in a set of vectors
from F%. The lemma and Theorem 9 are proved in Section 4. We prove several corollaries of
Theorem 9 in Section 5. The corollaries are on parameterized and approximation algorithms
as well as on lower bounds for the maxima of pseudo-boolean functions and their applications
in graph theory. Our results on parameterized algorithms improve a number of previously
known results including those of Kim and Williams [26]. In Section 6, we discuss some recent
results and open problems.

1.3 Corollaries of Theorem 9. The following results have been obtained for MAX-r-LIN2-
AATK] when r is fixed and for MAX-r-LIN2-AA[k, r]. Gutin et al. [22] proved that MAX-7r-
LIN2-AA[k] is fixed-parameter tractable and, moreover, has a kernel with n < m = O(k?).
This kernel is, in fact, a kernel of MAX-r-LIN2-A Ak, r] with n < m = O(9"k?). This kernel
for MAX-7-LIN2- AA[k] was improved by Crowston et al. [11], with respect to the number of
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variables, to n = O(klogk). For MaX-r-LIN2-A A[k], Kim and Williams [26] were the first
to obtain a kernel with a linear number of variables, i.e., n = O(k). This kernel is, in fact, a
kernel with n < r(r + 1)k for MAX-r-LIN2-AA[k, r]. In this paper, we obtain a kernel with
n < (2k —1)r for MAX-r-LIN2-AA[k,r]. As an easy consequence of this result we show that
the maximization problem MAX-r-LIN2-AA is in APX if restricted to m = O(n) and the
weight of each equation is bounded by a constant. This is in the sharp contrast with the
fact mentioned above that for each r > 3, MAX-r-LIN2-AA is not in APX.

Fourier analysis of pseudo-boolean functions, i.e., functions f: {—1,1}" — R, has been
used in many areas of computer science (cf. [1, 11, 31]). In Fourier analysis, the Boolean
domain is often assumed to be {—1,1}" rather than more usual {0,1}" and we will follow
this assumption in our paper. Here we use the following well-known and easy to prove fact
(see, e.g., [31]): each function f: {—1,1}" — R can be uniquely written as

f@)=F0)+ > f) e (1)

IeF icl

where F C {I: 0 #1C [n]}, [n] = {1,2,...,n} and f(I) are non-zero reals. Formula (1)
is the Fourier expansion of f and f (I) are the Fourier coefficients of f. The right hand side
of (1) is a polynomial and the degree max{|I|: I € F} of this polynomial will be called the
degree of f. Let A be a (0, 1)-matrix with n rows and |F| columns and with entries a;; such
that a;; = 1 if and only if term j in (1) contains ;.

In Section 5, we obtain the following lower bound on the maximum of a pseudo-boolean
function f of degree r:

max f(z) > f(0) + (rankA +r — 1)/r] - min{| f(I)| : I € F}, (2)

where rank A is the rank of A over Fy. (Note that since rank A does not depend on the order
of the columns in A, we may order the terms in (1) arbitrarily.)

To demonstrate the combinatorial usefulness of (2), we apply it to obtain a short proof of

the well-known lower bound of Edwards-Erdés on the maximum size of a bipartite subgraph
in a graph (the MAX CuUT problem). Erdés [16] conjectured and Edwards [15] proved that
every connected graph with n vertices and m edges has a bipartite subgraph with at least
m/2+ (n —1)/4 edges. For short graph-theoretical proofs, see, e.g., Bollobds and Scott (7]
and Erdés et al. [17]. We consider the BALANCED SUBGRAPH problem [3] that generalizes
MaAxX CuT and show that our proof of the Edwards-Erd6s bound can be easily extended
to BALANCED SUBGRAPH. By contrast, the graph-theoretical proofs of the Edwards-Erdés
bound do not seem to be easily extendable to BALANCED SUBGRAPH.
1.4 Parameterized Complexity and (Bi)kernelization. A parameterized problem is a
subset L C ¥* x N over a finite alphabet . L is fized-parameter tractable (FPT, for short)
if membership of an instance (z,k) in ©* x N can be decided in time f(k)|z|°(M), where f is
a function of the parameter k only. If membership can be decided in time |2|°/(¥) then L
belongs to the parameterized complexity class XP. It is known that FPT is a proper subset
of XP [14]. Analogs of NP are provided by the classes of parameterized problems of the
W]t] Hierarchy giving the tower: FPT C W[1] C W[2] C --- C XP. For the definition of the
classes W[t], see, e.g., [14, 19].

Given a pair L, L’ of parameterized problems, a bikernelization from L to L’ is a polynomial-
time algorithm that maps an instance (z, k) to an instance (2’, k') (the bikernel) such that
(i) (x,k) € L if and only if (2/,k") € L', (ii) k" < f(k), and (iii) |2'| < g(k) for some
functions f and g. The function g(k) is called the size of the bikernel. The notion of a
bikernelization was introduced in [1], where it was observed that a parameterized problem
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L is fixed-parameter tractable if and only if it is decidable and admits a bikernelization
to a parameterized problem L’. A kernelization of a parameterized problem L is simply a
bikernelization from L to itself; the bikernel is the kernel, and g(k) is the size of the kernel.
Due to the importance of polynomial-time kernelization algorithms in applied multivariate
algorithmics, low degree polynomial size kernels and bikernels are of considerable interest,
and the subject has developed substantial theoretical depth, cf. [1, 4, 5, 6, 13, 19, 20, 21, 22].

The case of several parameters kq,...,k; can be reduced to the one parameter case by
setting k = ki + - - - + ki, see, e.g., [13].

2 Maximum Excess, Irreducible Systems and Algorithm

Recall that an instance of MAXLIN2-AA consists of a system S of equations Hielj x; =b;

j € [m], where O # I; C [n], b; € {-1,1}, ; € {—1,1}. An equation [Lics, #: = b; has an
integral positive weight w;. Recall that the excess for 20 = (29,...,2%) € {—1,1}" over S
is eg(20) = Z;nzl ¢ Hielj x¥, where ¢; = w;b;. The excess eg(z°) is the total weight of
equations satisfied by 2 minus the total weight of equations falsified by #°. The maximum
possible value of 5(2°) is the maximum excess of S.

» Remark 1. Observe that the answer to MAXLIN2-AA is YEs if and only if the maximum
excess is at least 2k.

» Remark 2. The excess es(x) is a pseudo-boolean function and its Fourier expression is
es(z) = Z;nzl ¢ Hielj x;. Moreover, observe that every pseudo-boolean function f(x) =
doreF f(I) [I;c; zi (where f(0) = 0) is the excess over the system [Licizi = b1, I € F,
where by = 1 if f(I) > 0 and by = —1 if f(I) < 0, with weights |f(I)|. Thus, studying the
maximum excess over a MAXLIN2- A A-system (with real weights) is equivalent to studying
the maximum of a pseudo-boolean function.

Consider two reduction rules for MAXLIN2 studied in [22]. Rule 1 was studied before in
[25].

» Reduction Rule 1. If we have, for a subset I of [n], an equation [],.; z; = b} with weight
wf, and an equation [],.; z; = b} with weight wY, then we replace this pair by one of these
equations with weight w} + w/ if b, = b/ and, otherwise, by the equation whose weight is
bigger, modifying its new weight to be the difference of the two old ones. If the resulting
weight is 0, we delete the equation from the system.

Hereafter, rank A will denote the rank of A over F.

» Reduction Rule 2. Let A be the matrix over Fy corresponding to the set of equations
in S, such that a;; = 1 if ¢ € I; and 0, otherwise. Let ¢ = rankA and suppose columns
at,...,a' of A are linearly independent. Then delete all variables not in {x;,, ..., z;, } from
the equations of S.

» Lemma 1. [22] Let S" be obtained from S by Rule 1 or 2. Then the mazimum excess
of S’ is equal to the mazimum excess of S. Moreover, S’ can be obtained from S in time
polynomial in n and m.

If we cannot change a weighted system S using Rules 1 and 2, we call it irreducible.

» Lemma 2. Let S’ be a system obtained from S by first applying Rule 1 as long as possible
and then Rule 2 as long as possible. Then S’ is irreducible.
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Proof. Let S* denote the system obtained from S by applying Rule 1 as long as possible.
Without loss of generality, assume that x1 & {z;,,...,z;,} (see the description of Rule 2)
and thus Rule 2 removes x; from S*. To prove the lemma it suffices to show that after z;
removal no pair of equations has the same left hand side. Suppose that there is a pair of
equations in S* which has the same left hand side after x; removal; let [, ;, 2; = 0’ and
[I;c;» xi = b" be such equations and let I’ = I” U {1}. Then the entries of the first column
of A, a', corresponding to the pair of equations are 1 and 0, but in all the other columns of
A the entries corresponding to the the pair of equations are either 1,1 or 0,0. Thus, a' is

independent from all the other columns of A, a contradiction. <

Let S be an irreducible system of MAXLIN2-AA. Consider the following algorithm in-
troduced in [11]. We assume that, in the beginning, no equation or variable in S is marked.

ALGORITHM H

While the system S is nonempty do the following:

1. Choose an equation [[,.;z; = b and mark a variable x; such that [ € I.

il
2. Mark this equation and delete it from the system.

3. Replace every equation [[; ., z; = b" in the system containing x; by [[;c;ap i = 00,
where ITAI' is the symmetric difference of I and I’ (the weight of the equation is unchanged).

4. Apply Reduction Rule 1 to the system.

The mazimum H-excess of S is the maximum possible total weight of equations marked
by H for S taken over all possible choices in Step 1 of H. The following lemma proved by
Crowston et al. [11] indicates the potential power of H.

» Lemma 3. Let S be an irreducible system. Then the maximum excess of S equals its
maximum H-excess. Furthermore, for any set of equations marked by Algorithm H, in
polynomial time, we can find an assignment of excess at least the total weight of marked
equations.

3 MaxLin2-AA

The following two theorems provide a basis for proving Theorem 6, the main result of this
section.

» Theorem 4. There exists an n**(nm)°W -time algorithm for MAXLIN2-AA [k] that re-
turns an assignment of excess of at least 2k if one exists, and returns NO otherwise.

Proof. Suppose we have an instance £ of MAXLIN2-A A[k] that is reduced by Rules 1 and
2, and that the maximum excess of L is at least 2k. Let A be the matrix introduced in
Rule 2. Pick n equations eq, ..., e, such that their rows in A are linearly independent. An
assignment of excess at least 2k must either satisfy one of these equations, or falsify them
all. If they are all falsified, then the system of equations €1, ..., &,, where each ¢; is e; with
the changed right hand side, has a unique solution, an assignment of values to z1,...,z,.
If this assignment does not give excess at least 2k for £, then any assignment that leads to
excess at least 2k must satisfy at least one of ey, ...,e,. Thus, by Lemma 3, algorithm #
can mark one of these equations and achieve an excess of at least 2k.

This gives us the following depth-bounded search tree. At each node N of the tree,
reduce the system by Rules 1 and 2, and let n’ be the number of variables in the reduced
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system. Then find n’ equations eq,...,e, corresponding to linearly independent vectors.
Find an assignment of values to x1,...,x, that falsifies all of eq,...,e, . Check whether
this assignment achieves excess of at least 2k — w™*, where w* is total weight of equations
marked by H in all predecessors of N. If it does, then return the assignment and stop
the algorithm. Otherwise, split into n’ branches. In the ¢’th branch, run an iteration of
‘H marking equation e;. Then repeat this algorithm for each new node. Whenever the
total weight of marked equations is at least 2k, return the suitable assignment. Clearly, the
algorithm will terminate without an assignment if the maximum excess of L is less than 2k.

All the operations at each node take time (nm)°(), and there are less than n2#+1
in the search tree. Therefore this algorithm takes time n2*(nm)°(). |

nodes

» Theorem 5. [11] Let S be an irreducible system of MAXLIN2-AA [k] and let k > 2. If
E<m<on/(k=1) _ 2, then the maximum excess of S is at least k. Moreover, we can find
an assignment with excess of at least k in time m©@™).

» Theorem 6. The problem MAXLIN2-AA k] has a kernel with at most O(k?logk) vari-
ables.

Proof. Let £ be an instance of MAXLIN2-AA[k] and let S be the system of £ with m
equations and n variables. We may assume that S is irreducible. Let the parameter k be
an arbitrary positive integer.

If m < 2k then n < 2k = O(k%logk). If 2k < m < 2%/(k=1) _ 2 then, by Theorem 5
and Remark 1, the answer to £ is YES and the corresponding assignment can be found in
polynomial time. If m > n?* then, by Theorem 4, we can solve £ in polynomial time.

Finally we consider the case 27/(2¥=1) — 1 < m < n?* — 1. Hence, n?¢ > 27/(k-1)
Therefore, 4k? > 2 +n/logn > v/n and n < (2k)*. Hence, n < 4k%logn < 4k?log(16k*) =
O(k?logk).

Since S is irreducible, m < 2™ and thus we have obtained the desired kernel. |

» Corollary 7. The problem MAXLIN2-AA [k] can be solved in time 20108 %) ()0,

Proof. Let £ be an instance of MAXLIN2-AA[k]. By Theorem 6, in time (nm)°™) either
we solve £ or we obtain a kernel with at most O(k?log k) variables. In the second case, we
can solve the reduced system (kernel) by the algorithm of Theorem 4 in time [O(k? log k)]
= [O(k? log k)m]P() = 20(klogk);nO(1) " Thus, the total time is 20108 %) (1) O), <

4 Max-r-Lin2-AA

In order to prove Theorem 9, we will need the following lemma on vectors in Fy. Let M be
a set of m vectors in F§ and let A be a m X n-matrix in which the vectors of M are rows.
Using Gaussian elimination on A one can find a maximum size linearly independent subset
of M in polynomial time [27]. Let K and M be sets of vectors in F§ such that K C M. We
say K is M -sum-free if no sum of two or more distinct vectors in K is equal to a vector in
M. Observe that K is M-sum-free if and only if K is linearly independent and no sum of
vectors in K is equal to a vector in M\ K.

» Lemma 8. Let M be a set of vectors in FY such that M contains a basis of F3. Suppose
that each vector of M contains at most v non-zero coordinates. If k > 1 is an integer and
n>r(k—1)+1, then in time |M|°M), we can find a subset K of M of k vectors such that
K is M-sum-free.
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Proof. Let 1 = (1,...,1) be the vector in F} in which every coordinate is 1. Note that
1 ¢ M. By our assumption M contains a basis of F§ and we may find such a basis in
polynomial time (using Gaussian elimination, see above). We may write 1 as a sum of some
vectors of this basis B. This implies that 1 can be expressed as follows: 1 = v;+va+- - -+,
where {v1,...,vs} C B and vy,...,vs are linearly independent, and we can find such an
expression in polynomial time.

For each v € M\{vy,...,vs}, consider the set S, = {v,v1,...,vs}. In polynomial time,
we may check whether S, is linearly independent. Consider two cases:

Case 1: S, is linearly independent for each v € M\{vy,...,vs}. Then {vy,...,vs} is M-
sum-free (here we also use the fact that {v,...,vs} is linearly independent). Since each
v; has at most r positive coordinates, we have sr > n > r(k — 1). Hence, s > k — 1
implying that s > k. Thus, {v1,..., v} is the required set K.

Case 2: S, is linearly dependent for some v € M\{vy,...,vs}. Then we can find (in poly-
nomial time) I C [s] such that v = ), ; v;. Thus, we have a shorter expression for 1:
1=v]+vh+ -+, where {v],...,v.} = {v} U{v; : i ¢ I'}. Note that {v],...,v.}
is linearly independent.

Since s < n and Case 2 produces a shorter expression for 1, after at most n iterations of
Case 2 we will arrive at Case 1. <

Now we can prove the main result of this section.

» Theorem 9. Let S be an irreducible system and suppose that each equation contains at
most 1 variables. Let n > (k — 1)r + 1 and let wpin be the minimum weight of an equation
of S. Then, in time mCP®, we can find an assignment x° to variables of S such that
es(2%) > k - wmin.

Proof. Consider a set M of vectors in F§ corresponding to equations in S as follows: for
each equation [[,.; z; = bin S, define a vector v = (v1,...,v,) € M, where v; = 1if i € I
and v; = 0, otherwise.

As S is reduced by Rule 2 we have that M contains a basis for F§, and each vector
contains at most r non-zero coordinates and n > (k —1)r + 1. Therefore, using Lemma 8 we
can find an M-sum-free set K of k vectors. Let {e;,,...,ej } be the corresponding set of
equations. Run Algorithm 7, choosing at Step 1 an equation of S from {e;,,...,e;, } each
time, and let S’ be the resulting system. Algorithm #H will run for % iterations of the while
loop as no equation from {e;,,...,e;, } will be deleted before it has been marked.

Indeed, suppose that this is not true. Then for some e;, and some other equation e in S,
after applying Algorithm H for at most [ — 1 iterations e; and e contain the same variables.
Thus, there are vectors v; € K and v € M and a pair of nonintersecting subsets K’ and
K" of K\ {v,v;} such that v; + 3 ou=v+3 cpnu. Thus, v =v; 4+ > /i pxn
contradicting the definition of K.

Thus, by Lemma 3, we are done. |

» Remark 3. To see that the inequality n > r(k — 1) + 1 in the theorem is best possible
assume that n = r(k — 1) and consider a partition of [n] into & — 1 subsets Ny, ..., Ny_1,
each of size r. Let S be the system consisting of subsystems S;, ¢ € [k — 1], such that a
subsystem S; is comprised of equations [[,.;#; = —1 of weight 1 for every I such that
0 # 1 C N;. Now assume without loss of generality that N; = [r]. Observe that the
assignment (z1,...,2,) = (1,...,1) falsifies all equations of S; but by setting z; = —1 for
any j € [r] we satisfy the equation z; = —1 and turn the remaining equations into pairs
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of the form J[,.;z; = —1 and []
maximum excess of S is k — 1.

serTi = 1. Thus, the maximum excess of S; is 1 and the
» Remark 4. It is easy to check that Theorem 9 holds when the weights of equations in S
are real numbers, not necessarily integers.

5 Applications of Theorem 9

» Theorem 10. The problem MAX-r-LIN2-AA[k,r| has a kernel with at most (2k — 1)r
variables.

Proof. Let T be the system of an instance of MAX-r-LIN2-AA[k,r]. After applying Rules
1 and 2 to T as long as possible, we obtain a new system S which is irreducible. Let n
be the number of variables in S and observe that the number of variables in an equation
in S is bounded by r (as in T). If n > (2k — 1)r + 1, then, by Theorem 9 and Remark 1,
S is a YEs-instance of MAX-r-LIN2-AA[k,r] and, hence, by Lemma 1, S and T are both
YEs-instances of MAX-r-LIN2-AA[k,7]. Otherwise n < (2k — 1)r and since S is irreducible
the number m of equations in S is less than 2". Thus, we have the required kernel. |

» Corollary 11. The mazimization problem MAX-r-LIN2-AA is in APX if restricted to
m = O(n) and the weight of each equation bounded by a fixed constant.

Proof. It follows from Theorem 9 and Remark 1 that the answer to MAX-r-LIN2-AA | as a
decision problem, is YES as long as 2k < |(n 4 r — 1)/r]. This implies approximation ratio
at most W/(2|(n +r —1)/r]) which is bounded by a constant provided m = O(n) and the
weight of each equation is bounded by a constant (then W = O(n)). <

The (parameterized) Boolean Max-r-Constraint Satisfaction Problem (MAx-r-CSP) gen-
eralizes MAXLIN2-AA[k,r] as follows: We are given a set ® of Boolean functions, each
involving at most r variables, and a collection F of m Boolean functions, each f € F being
a member of ®, and each acting on some subset of the n Boolean variables z1,zs,..., T,
(each x; € {—1,1}). We are to decide whether there is a truth assignment to the n variables
such that the total number of satisfied functions is at least F + k, where E is the average
value of the number of satisfied functions. The parameters are k and r.

Using a bikernelization algorithm described in [1, 11] and our new kernel result, it easy to
see that MAX-r-CSP with parameters k and 7 admits a bikernel with at most (k27! —1)r
variables. This result improves the corresponding result of Kim and Williams [26] (n <
kr(r+1)27).

The following result is essentially a corollary of Theorem 9 and Remark 4.

» Theorem 12. Let

fa@)=F0)+ > f@) ] (3)

IeF iel

be a pseudo-boolean function of degree r. Then
max f(z) > f(0) + |(rankA + 7 —1)/r] -min{| f(I)| : I € F}, (4)

where A is a (0,1)-matriz with entries a;; such that a;; = 1 if and only if term j in (3)
contains x; and rankA is the rank of A over Fa. One can find an assignment of values to x
satisfying (4) in time (n|F])°™).
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Proof. By Remark 2 the function f(z) — f(0) = Yrer F(I) [I;c; : is the excess over the
system [[,c;; = by, I € F, where by = +1 if f(I) > 0 and by = —1 if f(I) < 0, with
weights | f(I)|. Clearly, Rule 1 will not change the system. Using Rule 2 we can replace the
system by an equivalent one (by Lemma 1) with rankA variables. By Lemma 2, the new
system is irreducible and we can now apply Theorem 9. By this theorem, Remark 2 and
Remark 4, max, f(z) > f(0) + k* min{|f(I)| : I € F}, where k* is the maximum value of k
satisfying rankA > (k — 1)r + 1. It remains to observe that k* = [(rankA +r —1)/r]. <«

To give a new proof of the Edwards-Erd6s bound, we need the following well-known and
easy-to-prove fact [8]. For a graph G = (V, E), an incidence matrix is a (0, 1)-matrix with
entries me ., € € E, v € V such that m., =1 if and only if v is incident to e.

» Lemma 13. The rank over Fy of an incidence matriz M of a connected graph equals

V|- 1.
» Theorem 14. Let G = (V, E) be a connected graph with n vertices and m edges. Then G
contains a bipartite subgraph with at least 5 + ”T_l edges. Such a subgraph can be found in

polynomial time.

Proof. Let V = {vy,vs,...,u,tand let ¢: V — {—1,1} be a 2-coloring of G. Observe that
the maximum number of edges in a bipartite subgraph of G equals the maximum number
of properly colored edges (i.e., edges whose end-vertices received different colors) over all 2-
colorings of G. For an edge e = v;v; € E consider the following function f.(z) = 1(1—z;z;),
where x; = ¢(v;) and z; = ¢(v;) and observe that f.(xz) =1 if e is properly colored by ¢ and
fe(x) = 0, otherwise. Thus, f(x) = Y. p fe(x) is the number of properly colored edges for c.
We have f(z) = 2—% Y cp @iz;. By Theorem 12, max, f(z) > m/2+|(rankA+2—1)/2] /2.

2 2
Observe that matrix A in this bound is an incidence matrix of G and, thus, by Lemma 13
rankA = n — 1. Hence, max, f(z) > 2 + 12| > 2 4 =L a5 required. <

This theorem can be extended to the BALANCED SUBGRAPH problem [3], where we are
given a graph G = (V, E) in which each edge is labeled either by = or by # and we are
asked to find a 2-coloring of V' such that the maximum number of edges is satisfied; an edge
labeled by = (#, resp.) is satisfied if and only if the colors of its end-vertices are the same
(different, resp.).

» Theorem 15. Let G = (V, E) be a connected graph with n vertices and m edges labeled by
either = or #. There is a 2-coloring of V' that satisfies at least 75 + ”T_l edges of G. Such
a 2-coloring can be found in polynomial time.

Proof. Let V' = {vy,ve,...,v,} and let ¢ : V — {—1,1} be a 2-coloring of G. Let
zp = c(vp), p € [n]. For an edge v;v; € E we set s;; = 1 if v;v; is labeled by # and
si; = —1 if vv; is labeled by =. Then the function %vajeE
number of edges satisfied by c¢. The rest of the proof is similar to that in the previous

(1 — sjjx;xj) counts the

theorem. |

6 Open Problems

The kernels obtained in Theorems 6 and 10 are not of polynomial size as the number of
equations in the kernels is not bounded by a polynomial in the parameter(s). The existence
of polynomial-size kernels for MAXLIN2-A A[k] and MAX-r-LIN2-A Ak, 7] remains an open
question.
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Perhaps the kernel obtained in Theorem 6 or the algorithm of Corollary 7 can be improved
if we find a structural characterization of irreducible systems for which the maximum excess
is less than 2k. Such a characterization can be of interest by itself.

Let F' be a CNF formula with clauses C, ..., C,, of sizes r1, ..., . Since the probability
of C; being satisfied by a random assignment is 1 — 27", the expected (average) number of
satisfied clauses is E = " | (1 —27"). It is natural to consider the following parameterized
problem MAXSAT-AA[k]: decide whether there is a truth assignment that satisfies at least
E+k clauses. When there is a constant r such that |C;| < r foreach i =1,...,m, MAXSAT-
AA[E] is denoted by MAX-r-SAT-AA[k]. Mahajan et al. [28] asked what is the complexity
of MAX-r-SAT-AAk] and Alon et al. [1] proved that it is fixed-parameter tractable [1]. It
would be interesting to determine the complexity® of MAXSAT-AA[k].

In a graph G = (V, E), a bisection (X,Y’) is a partition of V into sets X and Y such
that | X| < |Y] < |X| + 1. The size of (X,Y) is the number of edges between X and Y. In
Max BISECTION, we are given a graph G with n > 2 vertices and m edges and asked to
find a bisection of maximum size. It is not hard to see that [m/2] is a tight lower bound
on the maximum size of a bisection of G. Gutin and Yeo [23] proved that MAX BISECTION
parameterized above [m/2] has a kernel with O(k?) vertices and O(k?) edges. Gutin and
Yeo [23] also showed that [2(27”_11] is another tight lower bound on the maximum size of a
bisection of G. Clearly, (%1 < [m/2]. Gutin and Yeo [23] left it as an open problem
to determine the complexity of MAX BISECTION parameterized above [%1

Finally, the entire area of parameterizing above or below tight guaranteed bounds offers
many challenging open problems in parameterized complexity.
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