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Abstract
In this paper, we introduce the semi-stochastic model for dealing with input uncertainty in
optimization problems. This model is a hybrid between the overly pessimistic online model and
the highly optimistic stochastic (or Bayesian) model. In this model, the algorithm can obtain
only limited stochastic information about the future (i.e. about the input distribution)—as the
amount of stochastic information we make available to the algorithm grows from no information
to full information, we interpolate between the online and stochastic models. The central question
in this framework is the trade-off between the performance of an algorithm, and the stochastic
information that it can access. As a first step towards understanding this trade-off, we consider
the ski-rental problem in the semi-stochastic setting. More precisely, given a desired competitive
ratio, we give upper and lower bounds on the amount of stochastic information required by a
deterministic algorithm for the ski-rental problem to achieve that competitive ratio.
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1 Introduction

In many real-world optimization problems, the input to the problem is not known at the
outset, but is revealed slowly during the execution of the optimization algorithm. For
example, in the facility location problem, where the goal is to select a minimum-cost set of
locations for setting up facilities that can serve all clients, the exact set of clients is often not
known in advance. Traditionally, such problems have been modeled by the online framework,
where the algorithm is required to satisfy a (growing) set of constraints, while attempting to
optimize the objective function. For example, in the facility location problem, the algorithm
will need to ensure that at any stage, the facilities set up can serve the client requests received
till that stage, while minimizing the cost of facilities. The performance of online algorithms
is usually measured using the notion of competitive ratio, which is the maximum — taken
over all the possible input sequences — of the ratio of the objective function in the solution
produced by the algorithm to that of the optimal offline solution (i.e. the optimal solution
when the entire input is known in advance).

After an initial period of vibrant research activity in online algorithms (see [1] for a survey),
there has been a slight lull in recent years, partly due to the inherent pessimism of the online
model, which rendered a lot of natural optimization tasks unnecessarily hard. For example,
in the facility location problem, while the exact composition of the clientele is typically not
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known in advance, a rough estimate of the clientele distribution is possible to obtain from e.g.
market surveys. This has motivated the development of the stochastic optimization model
(sometimes called the Bayesian model) in recent times, where the probability distribution over
possible input sequences is known in advance, though the exact input sequence is unknown.
The performance of such online algorithms is typically measured using one of the following
two metrics:

Expectation of ratio (EoR). The expected value of the competitive ratio of the
algorithm when the input is drawn from the worst-case distribution.
Ratio of expectation (RoE). The ratio of the expected value of the objective function
in the algorithmic solution to the expected value of the objective function in the offline
optimal solution, when the input is drawn from the worst-case distribution.

In recent years, algorithms have been developed for stochastic versions of various fun-
damental optimization problems (see related work for some examples). However, in many
situations, the stochastic optimization setting is overly optimistic. For example, in the
facility location problem described above, while it is possible to obtain a rough estimate of
the clientele distribution, such information typically comes from market surveys which are
expensive to conduct. In particular, to obtain fine-grained information, one needs to conduct
surveys using a large sample, thereby incurring significant cost. In essence, there is a cost
associated with obtaining stochastic information about the input for an online optimization
problem, and this cost grows as the algorithm seeks more detailed information about the
distribution from which the input is drawn. In this correspondence, we take a step toward
understanding this trade-off between the performance of an online algorithm and the cost it
needs to pay to obtain stochastic information about the input.

We propose a model for stochastic optimization of online problems based on the following
two-stage game between the algorithm and the adversary. In the first stage, which comprises
multiple rounds, the algorithm gathers stochastic information from the adversary about
the distribution of the input. Each round comprises a query asked by the algorithm about
the input distribution that the adversary answers. The algorithm is adaptive, i.e. it can
choose its next query based on the answers given by the adversary to its previous queries.
However, the maximum number of queries that the algorithm can ask is given in advance —
we call this the query budget of the algorithm. The first stage ends when the algorithm has
exhausted its query budget. The second stage comprises an instance of the online problem
where the adversary now presents the actual input sequence, which must be drawn from
some distribution that is consistent with the stochastic information provided during the first
stage. This allows the algorithm to use the information it acquired in the first stage to guide
its choices. We call this the semi-stochastic model for optimization problems.

As in stochastic optimization, the performance of an algorithm in the semi-stochastic
model can be measured using either the EoR or the RoE metrics. However, we need to be
careful about how we define a worst-case distribution. The performance of the algorithm for
a fixed distribution over the input space is defined as its competitive ratio for the worst-case
sequence of (truthful) answers given by the adversary to the queries asked by the algorithm
in the first stage. In other words, given a fixed distribution over the inputs that the adversary
knows but the algorithm does not, one can visualize the first stage as a game where the
algorithm aims to minimize its expected competitive ratio (which is measured using either
the EoR or the RoE metric) and the adversary aims to maximize it. The overall performance
of the algorithm is the worst-case performance over all distributions over the input space,
where the performance for a fixed distribution is as described above.

The semi-stochastic model may be viewed as a hybrid between the pessimistic online
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model and the optimistic stochastic model. In particular, if the algorithm has zero query
budget, then we obtain the online model, while if the query budget is infinite, then we get
the stochastic model. The goal of introducing this model is to study the trade-off between
the query budget given to an online algorithm and its performance. As described earlier, a
large query budget typically implies a large cost of obtaining such fine-grained information
about the input distribution and might not be useful unless it improves the performance of
the algorithm significantly.

It is instructive at this point to compare the semi-stochastic model to the well-known
computational learning paradigm. The goal in computational learning is to learn a hypothesis
class (i.e. a subspace of some fixed space) given the labeling of a few sample points from this
space (i.e. whether each point is in the subspace or not). Typically, one is interested in the
trade-off between the size of the sample and the accuracy of the guessed hypothesis. At a
high level, one may interpret the semi-stochastic model as an extension of the computational
learning paradigm to optimization problems. Here, our goal is to learn the input distribution
to an optimization problem for the purpose of designing an algorithm with small competitive
ratio while minimizing the amount of information about the distribution that we explicitly
ask for in the form of queries.

It is important to note that we have not specified the exact nature of queries that the
adversary is allowed to ask in the first stage. In principle, a particular instantiation of our
model might allow for extremely powerful queries thereby letting a semi-stochastic algorithm
gain more information about the input distribution than a corresponding stochastic algorithm
that has access to the input distribution via a computationally bounded process, e.g. a
polynomial number of samples. However, we expect that in most interesting instantiations of
the semi-stochastic model, including the one that we will consider in this paper, the algorithm
will be limited to some class of computationally bounded queries, i.e. queries that can be
answered (to the desired accuracy) using polynomial amount of information regarding the
input distribution.

1.1 An application: The ski-rental problem
Perhaps the most fundamental of online problems, the ski-rental problem is defined as follows.
Suppose one wants to go skiing, but does not know the exact number of days that she would
like to ski. Given this uncertainty, she needs to decide every morning whether she would like
to buy a pair of skis that cost b for the entire season, or rent skis for the day paying 1. Overall,
she would like to minimize her expenditure. The ski-rental problem (or its slight variants)
have been used to solve various online problems, e.g. TCP acknowledgement, Bahncard
problem, etc [14]. It is well-known that the ski-rental problem has a simple 2-competitive
deterministic algorithm, and this is optimal for deterministic algorithms. Karlin et al [15]
showed that the competitive ratio can be improved to e

e−1 in expectation, if the online
algorithm is allowed to be randomized, and that this is optimal for randomized algorithms.

In this paper, we analyze the ski-rental problem in the semi-stochastic model as a first step
towards investigating more complicated online problems. First, we note that if we employ
the RoE performance metric in this problem, then we encounter the following difficulty. The
adversary can create a distribution where an arbitrarily small probability mass is at x 6= 0
and all the remaining probability mass is at 0. (Unless otherwise stated, x will represent
the duration of skiing which is the only input parameter for the ski-rental problem.) Then,
in any reasonable query model, the algorithm will require an unbounded query budget to
achieve any RoE value less than the trivial 2. We therefore focus on the EoR metric; in the
remainder of the paper, the competitive ratio of an algorithm in the semi-stochastic model
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will refer to the EoR metric. Further, as is standard in the literature (see e.g. [14]), we
consider a continuous version of this problem. This allows us, in particular, to scale the
price of the skis and assume wlog that b = 1—we adopt this convention from now on. The
input is represented by a probability density function p(x) such that

∫∞
0 p(x)d(x) = 1. Any

deterministic strategy for this problem is parameterized by the value k ≥ 0 such that skis
are rented as long as x < k and bought at x = k. We denote this strategy by S(k), and its
competitive ratio is given by

r(k) :=
{ ∫ k

0 p(x)dx+ (1 + k)
∫∞
k

p(x)
min{x,1}dx if k ≤ 1∫ 1

0 p(x)dx+
∫ k

1 xp(x)dx+ (1 + k)
∫∞
k
p(x)dx if k > 1.

Before proceeding further, we need to define our query model, i.e. the allowed set of
queries that the algorithm can ask the adversary in the first stage. We consider the setting
where each query is a quantile query, i.e. the algorithm gives a value 0 < y < 1, and the
adversary in response gives a number ` such that

∫ `
0 p(x)dx = y. Note that after the algorithm

has asked a set of q queries, it can partition [0,∞) into a set of q+1 non-overlapping intervals
such that the probability mass in each interval is known but the distribution within an
interval is unknown to the algorithm. If the algorithm asks a large number of queries, then
these intervals are fine-grained and therefore the algorithm has detailed information about the
input distribution whereas if its query budget is small, then it obtains a very coarse-grained
description of this distribution.

Note that the existence of the e
e−1 -competitive randomized algorithm implies that for

any input distribution, there exists a deterministic strategy S(k) that achieves a competitive
ratio of e

e−1 . If not, then the corresponding distribution can be used with Yao’s minimax
principle [23] to prove a randomized lower bound greater than e

e−1 contradicting the algorithm
of Karlin et al. Our goal, in this paper, is to determine the minimum query budget of a
deterministic semi-stochastic algorithm that has a competitive ratio of e

e−1 + ε for any ε > 0.
(Of course, we are interested in small fractions ε, since there is an online deterministic strategy
that has a competitive ratio of 2.) To this end, we prove the two following theorems.

I Theorem 1 (Lower Bound). There exists a universal constant C > 0 such that for any
constant ε ∈

(
0, e−2

4(e−1)

]
,1 if the algorithm has a quota of q < C

ε queries in the first stage,
then for any deterministic strategy S(k) chosen in the second stage, there exists an input
distribution D that has the following properties:

The distribution D has the same quantiles as those provided by the adversary in the first
stage.
The expected competitive ratio of the algorithm S(k) for input distribution D is greater
than e

e−1 + ε.

I Theorem 2 (Upper Bound). For any ε > 0, there is a polynomial-time deterministic
algorithm with query budget O

( 1
ε3/2

)
that has a competitive ratio of e

e−1 + ε.
We find the lower bound somewhat surprising. Note that for most input distributions, an
algorithm needs to know only some parts of the distribution in detail, but can do with
more coarse-grained information about the other parts. Therefore, it is conceivable that an

1 The range of ε in the theorem can be increased from
[
0, e−2

4(e−1)

]
to
[
0, α(e−2)

e−1

]
for any α < 1 with the

only change being in the value of the constant C. At α = 1, the lower bound must fail since there exists
a 2-competitive deterministic online algorithm. Thus, limα→0 C =∞. Since we are primarily interested
in the asymptotic behavior of the lower bound for small ε, and to maintain simplicity of notation, we
consider the representative value of α = 1/4 in the rest of the paper.
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adaptive algorithm recognizes which parts of the distribution it needs to query in greater
detail and therefore makes do with less than polynomial in 1/ε queries overall. However,
our lower bound proves that even when the algorithm is adaptive, it still requires a large
(polynomial in 1/ε) number of queries to pinpoint — up to an accuracy of ε — the parts of
the input distribution that are more critical.

1.2 Our Techniques
Our algorithm for proving the upper bound obtains a set of equi-spaced quantiles in the first
stage by asking the corresponding queries. Once it has obtained these quantiles, it assumes an
arbitrary density function on each of the inter-quantile intervals, and computes the optimal
deterministic algorithm for this assumed input distribution. We would then need to claim
that no matter how much the actual density function in each inter-quantile interval differs
from the assumed one, the performance of the algorithm does not degrade significantly. It
turns out that for most natural choices of the assumed density function in each interval, this
claim does not hold, i.e. the adversary can change the input distribution while not changing
any of the quantiles to degrade the competitive ratio of the algorithm significantly. However,
our crucial observation is that the claim would hold if the value of k in the deterministic
strategy is large enough, i.e. the adversary can significantly degrade the performance of the
algorithm only if it selects a small value of k. To make the algorithm robust to this possibility,
our algorithm deliberately chooses a large enough value of k that might be sub-optimal for
the assumed distribution. To prove that the sub-optimality arising from this choice of k can
be absorbed in our competitive ratio, we show for any input distribution, there always exists
a large enough value of k that is almost optimal.

Interestingly, our proof of the lower bound is somewhat related to the problem we
highlighted above. Namely, it is established by making the adversary answer all the queries
of the algorithm according to a certain distribution that penalizes strategies that buy skis
later, forcing the algorithm to choose a strategy that buys relatively early. Next, we show
that in this case, unless the algorithm is able to pinpoint the distribution beyond k (where
the algorithm’s chosen strategy is S(k)) up to accuracy O(ε), the adversary can always
modify the distribution to make the algorithm suffer a large competitive ratio, while retaining
compatibility with the stochastic information provided earlier to the algorithm.

1.3 Related Work
The term stochastic optimization has been used to mean various algorithmic models in the
literature. As described above, we use it to imply that the algorithm knows the distribution
of the input but not the input itself. Various optimization problems have been studied in this
model previously, including facility location [19], network design problems [20, 9], secretary-
type problems [2, 17, 16, 18], matching [10, 8, 5, 3], packing and covering problems [6, 7, 11],
etc. Another closely related model where significant progress has been reported in recent
years is two-stage stochastic optimization with recourse (see [21] for a survey). Here, the
algorithm has a choice of buying resources at a lower cost with only stochastic knowledge
of the input, or at a higher cost with knowledge of the actual input. Various other models
that lie between the online model and the stochastic model have also been considered in the
literature, especially for online problems with multiple inputs. Among these, the two most
important models are perhaps the i.i.d. from unknown distribution model where each input is
drawn independently and identically from a distribution that is not known to the algorithm,
and the random permutation model where the input sequence is a random permutation on
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an adversarially chosen input set. In the ski-rental problem, there is only one input, and
therefore, these multi-input models are not relevant.

A class of problems that have some similarity with the questions that we are exploring
are multi-armed bandit (MAB) problems (see e.g. [4]). These problems model the classical
“exploration-vs-exploitation” trade-off in decision problems. The particular variant of this
problem that is most similar to our problem is the budgeted learning problem [12, 13], where a
budgeted exploration phase is followed by an exploitation phase. However, the typical setup in
these problems is that one has to choose from multiple options, each of which has an unknown
associated reward, and the algorithm needs to explore the options within a stipulated budget
so that it can maximize revenue (or minimize regret) later in the exploitation phase. On the
other hand, our model pertains to optimization problems, and the goal of the exploration
phase is to gain sufficient knowledge about the input space for optimizing the objective
function in the exploitation phase.

1.4 Roadmap

In section 2, we prove the lower bound on the query complexity of the ski-rental problem
in the semi-stochastic model (Theorem 1); the corresponding upper bound (Theorem 2)
appears in section 3. Finally, in section 4, we give some directions for future work on the
semi-stochastic model.

2 A Lower Bound on the Competitive Ratio of Semi-Stochastic
Algorithms for the Ski-rental Problem

In this section, our goal is to prove Theorem 1, i.e. to give a lower bound on the number
of queries that any semi-stochastic algorithm needs to ask in order to have an expected
competitive ratio of at most e

e−1 + ε. As earlier, we will assume wlog that the cost of buying
skis is 1, and S(k) will represent the deterministic strategy that rents skis until the duration
of skiing x reaches k, at which point skis are bought.

Consider a probability distribution D0 on the input given by the following density function
for 0 ≤ x ≤ 1: D0(x) =

(
e
e−1

)
xe−x. In addition, we have a probability mass of 1

e−1 at
x = +∞.2 For any 0 ≤ δ < 1, consider the distribution Dδ created by scaling the density
function of D0 by 1− δ in the range 0 ≤ x ≤ 1, and shifting the surplus probability mass
of δ

(
e−2
e−1

)
to +∞ . The density function for this distribution in the range 0 ≤ x ≤ 1 is

given by Dδ(x) = (1− δ)
(

e
e−1

)
xe−x. In addition, there is a probability mass of 1+(e−2)δ

e−1
at x = +∞. The next lemma lower bounds the expected competitive ratio of deterministic
strategies for distribution Dδ.

I Lemma 3. For any k ≥ 0 and 0 ≤ δ < 1, the expected competitive ratio of strategy
S(k) where the input has distribution Dδ is e

e−1 + δ
(
k − 1

e−1

)
if 0 ≤ k ≤ 1 and at least

e
e−1 + δk(1− 1

e−1 ) if k > 1.

2 We can use Dirac delta function [22] to define the density function at x = +∞ in a mathematically
precise manner, but we will ignore this technicality throughout the paper and assume a probability
mass of 1

e−1 at x = +∞.
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Proof. For 0 ≤ k ≤ 1, the expected competitive ratio of strategy S(k) is

e(1− δ)
e− 1

(∫ k

0
xe−xdx+

∫ 1

k

(1 + k)e−xdx
)

+
(

1 + k

e− 1

)
(1+δ(e−2)) = e

e− 1+δ
(
k − 1

e− 1

)
.

On the other hand, if k > 1, then the expected competitive ratio of strategy S(k) is∫ 1

0

e(1− δ)
e− 1 xe−xdx+

(
1 + k

e− 1

)
(1 + δ(e− 2)) ≥ e

e− 1 + δk

(
1− 1

e− 1

)
. J

This lemma implies that as δ grows, the distribution Dδ favors strategies S(k) for small
values of k by making their expected competitive ratio less than e

e−1 , while making the
expected competitive ratio of strategies S(k) with large values of k worse. This property of
distribution Dδ will be crucial in our lower bound construction.

We are now ready to prove our lower bound. We will use the following fact.
I Fact 1. For any t ≥ 0 and 0 ≤ ∆ ≤ 1,

∫ t+∆
t

(
x
t − 1

)
e−xdx ≥ e−t

t ∆2.

Proof. We have∫ t+∆

t

(x
t
− 1
)
e−xdx = e−t

t

(
1− e−∆(1 + ∆)

)
≥ e−t

t
(1− (1−∆)(1 + ∆)) = e−t

t
∆2. J

Proof of Theorem 1. In the first round, for any query asked by the algorithm, the adversary
returns the corresponding quantile of the distribution Dδ for some δ whose value (that will
depend only on ε) we will fix later. This partitions the entire input interval [0,∞) into
contiguous non-overlapping intervals with the quantiles representing the boundaries between
adjacent intervals. Let these quantiles be y0 = 0, y1, . . . , yq, where yi ≤ yi+1 for each i.
Note that for each interval [yi, yi+1], the algorithm knows the probability that the input is
contained in it, though it does not know the exact distribution.

For notational convenience, we assume wlog that the strategy S(k) chosen by the algorithm
satisfies k = ys for some 0 ≤ s ≤ q.3 Based on the values of yis and the choice of k, the
adversary chooses the actual distribution D of the input. This distribution is obtained from
Dδ by concentrating the entire probability mass in each interval (yi, yi+1) where i ≥ s, at a
value y+

i that is infinitesimally close to (but greater than) yi, while leaving the probability
distribution of x < ys and that of x = +∞ unchanged. Formally, the input distribution D is
given by the following density function, where yq+1 is any finite value that is greater than
max{1, yq}:

D(x) =


∫ yi+1

y+
i

Dδ(x)dx for each x = y+
i , where s ≤ i ≤ q

Dδ(x) if x ≤ ys or x = +∞
0 otherwise.

Note that by construction, the quantiles y1, y2, . . . , yq hold for distribution D as well.
First, note that the expected competitive ratio of strategy S(ys) for distribution Dδ is

at most as much as that for distribution D. Further, the difference between these expected

3 If the algorithm chooses ys < k < ys+1 for some s, then the adversary uses the same distribution as
that for k = ys except that the probability mass in the interval (ys, ys+1) is concentrated at x+ rather
than at y+

s . Clearly, the expected competitive ratio of the algorithm for this input distribution is worse
than the expected competitive ratio for the corresponding input distribution if the algorithm had chosen
k = ys.
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competitive ratios is only due to the difference in the probability density function in the
range ys < x ≤ 1. Let yr be the maximum value of yi that is less than 1. The difference in
the expected competitive ratios is then given by

(1− δ)
(

e

e− 1

)(r−1∑
i=s

(1 + ys)
∫ yi+1

yi

(
1
yi
− 1
x

)
xe−xdx+

∫ 1

yr

(
1
yi
− 1
x

)
xe−xdx

)

= e(1− δ)
e− 1

q∑
i=s

∫ zi+1

zi

(
x

zi
− 1
)
e−xdx, (1)

where zi = min(yi, 1).
We now have two cases. First, suppose ys > e

2(e−1) . Then, the expected competitive ratio
of strategy S(ys) when the input has distribution D is at least the expected competitive ratio
when the input has distribution Dδ, which in turn is greater than e

e−1 + e−2
2(e−1)δ by Lemma 3.

Now, let δ = 2(e−1)
e−2 ε; then the ratio is greater than e

e−1 + ε.
The other case is when ys ≤ e

2(e−1) . Then, equation (1) and Lemma 3 imply that the
expected competitive ratio of strategy S(ys) when the input has distribution D is at least

e

e− 1 + δ

(
ys −

1
e− 1

)
+ e(1− δ)

e− 1

q∑
i=s

∫ zi+1

zi

(
x

zi
− 1
)
e−xdx

≥ e

e− 1 −
δ

e− 1 + e(1− δ)
e− 1

q∑
i=s

e−zi

zi
∆2
i , where ∆i := zi+1 − zi ≥ 0

≥ e

e− 1 −
2ε
e− 2 + 1

2(e− 1)

q∑
i=s

∆2
i

≥ e

e− 1 −
2ε
e− 2 + 1

2(e− 1)
(
∑q
i=s ∆i)

2

q − s

≥ e

e− 1 −
2ε
e− 2 + (e− 2)2ε

8(e− 1)3C
.

The first inequality follows from Fact 1; the second one from zi ≤ 1 and δ = 2(e−1)
e−2 ε; the

third one from 1− δ ≥ 1/2 since ε ≤ e−2
4(e−1) ; the fourth one from the fact that for any set of

l numbers d1, . . . , dl,
∑l
i=1 d

2
i ≥

(∑l

i=1
di
)2

l ; and the fifth one from
∑q
i=s ∆i ≥ e−2

2(e−1) since

ys ≤ e
2(e−1) , and from q − s ≤ q ≤ C/ε. Finally, we choose C < 1

8e

(
e−2
e−1

)3
to ensure that

the above competitive ratio is greater than e
e−1 + ε. J

3 A Semi-stochastic Algorithm for the Ski-rental Problem

In this section, we will prove Theorem 2 by giving an algorithm that asks O
( 1
ε3/2

)
quantile

queries in the first stage, and then chooses a deterministic strategy (based on the quantiles
revealed in the first stage) that has an expected competitive ratio of e

e−1 + ε. We describe
the algorithm with a parameter δ that we will fix later. As mentioned in the introduction,
we will assume wlog that the cost of buying skis is 1. Recall that any deterministic strategy
can be described by a single parameter k which represents the strategy of renting skis until
the duration of skiing x reaches k. At that point, skis are bought. As earlier, we denote this
strategy by S(k).
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In the first stage, the algorithm asks 1/δ − 1 queries for quantiles δ, 2δ, . . . , 1− δ. This
partitions the input space [0,∞) into a set of 1/δ contiguous, non-overlapping intervals,
each of which has a probability mass of δ.
The algorithm now assumes that the probability mass of each interval described above is
concentrated at the right boundary of the interval, i.e. at its maximum value. For the
last interval, this corresponds to assuming that there is δ mass of the input distribution
at infinity.
With the above assumption about the distribution, the algorithm outputs the deterministic
strategy S(k) that minimizes the expected competitive ratio subject to the constraint
that δ1/3 ≤ k ≤ 1. The only possible values of k are the values of the quantiles that are
in the above range and δ1/3. Therefore, k can be found in time polynomial in 1/δ.

We will now analyze the expected competitive ratio of this strategy S(k). We will use the
following fact.
I Fact 2. For any 0 ≤ a ≤ 1, 1 + 1

(1+a)e1−a−1 ≤
e
e−1 (1 + a2).

Proof. We have

1+ 1
(1 + a)e1−a − 1 = e(1− (1 + a)e−α)

((1 + a)e1−a − 1)(e− 1) + e

e− 1 ≤
e

e− 1
(
2− (1 + a)e−a

)
≤ e

e− 1(1+a2).

The penultimate step follows from that fact that ((1 + a)e1−a − 1) ≥ 1 for 0 ≤ a ≤ 1, while
the last step follows from the fact that for any z, e−z ≥ 1− z. J

The next theorem is crucial.

I Theorem 4. For any distribution over the input, the best deterministic strategy S(k)
subject to the constraint that α ≤ k ≤ 1 for some fixed 0 ≤ α ≤ 1 has an expected competitive
ratio of at most e

e−1 (1 + α2).

Proof. Let the worst-case input distribution for an algorithm that selects the best strategy in
the above range (i.e. the input distribution for which the competitive ratio of the algorithm is
the worst) be called the nemesis distribution. Our goal is to construct a nemesis distribution
and show that the expected competitive ratio of the algorithm is at most e

e−1 (1 + α2) for
this distribution.

Let P : [0,∞)→ [0, 1] be the probability density function corresponding to the nemesis
distribution. Our first claim is that the nemesis distribution has no probability mass in
the range [0, α], i.e.

∫ α
0 P(x)dx = 0. Suppose not; then, let

∫ α
0 P(x)dx = δ > 0. Let the

expected competitive ratio of the algorithm for this input be r. Since the strategy S(γ) for
any γ ≥ α is optimal for the probability mass of δ in the range [0, α], it follows that

δ +
∫ γ

α

P(x)dx+ (1 + γ)
∫ 1

γ

P(x)
x

dx+ (1 + γ)
∫ ∞

1
P(x)dx ≥ r

for all α ≤ γ ≤ 1. Now, consider an alternative distribution which is identical to the previous
distribution, except that this probability mass of δ is shifted from the range [0, α] to the
range [1,∞] (the exact change in the density function can be arbitrary as long as the above
property is satisfied). Now, for any strategy S(γ) satisfying α ≤ γ ≤ 1 that the algorithm
can produce, the competitive ratio is∫ γ

α

P(x)dx+ (1 + γ)
∫ 1

γ

P(x)
x

dx+ (1 + γ)
∫ ∞

1
P(x)dx+ (1 + γ)δ

>

∫ γ

α

P(x)dx+ (1 + γ)
∫ 1

γ

P(x)
x

dx+ (1 + γ)
∫ ∞

1
P(x)dx+ δ

≥ r.
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This contradicts the definition of a nemesis distribution; hence
∫ α

0 P(x)dx = 0.
Let P∞ =

∫∞
1 P(x)dx. Then the expected competitive ratio of strategy S(γ) (where

α ≤ γ ≤ 1) can be thought of as a function of γ,

r(γ) =
∫ γ

α

P(x)dx+ (1 + γ)
∫ 1

γ

P(x)
x

dx+ (1 + γ)P∞.

It follows from standard arguments (see e.g. [15, 14]) that for a nemesis distribution, r(γ)
must be invariant of γ. Let r′(γ) = dr

dγ and r′′(γ) = d2r
dγ2 . Then,

r′(γ) =
∫ 1

γ

P(x)
x

dx− P(γ)
γ

+ P∞, and

r′′(γ) = −P(γ)
γ
− P

′(γ)
γ

+ P(γ)
γ2 ,

where P ′(γ) = dP
dγ . For the invariance property to hold, r′′(γ) = r′(γ) = 0, which gives

P(γ) = P∞γe1−γ . Then, the overall probability mass is given by∫ ∞
0
P(x)dx = eP∞

∫ 1

α

xe−xdx+P∞ = −eP∞
(2
e
− (1 + α)e−α

)
+P∞ = P∞

(
(1 + α)e1−α − 1

)
.

Since
∫∞

0 P(x)dx = 1, it follows that P∞ = 1
(1+α)e1−α−1 . Therefore, the probability density

function for the nemesis distribution is

P(x) =
{

0 if x < α(
1

(1+α)e1−α−1

)
xe1−x if α ≤ x ≤ 1.

There is also a probability mass of 1
(1+α)e1−α−1 in the range [1,∞]; the exact density function

in this range is inconsequential.
Note that by our derivation, the expected competitive ratio of any strategy in the range

[α, 1] is identical; hence, the expected competitive ratio of the strategy S(k) chosen by the
algorithm is given by (we calculate the competitive ratio of S(1))

1− P∞ + 2P∞ = 1 + P∞ = 1 + 1
(1 + α)e1−α − 1 ≤

e

e− 1(1 + α2),

by Fact 2. J

We now use this theorem to obtain a bound on the competitive ratio of the algorithm
given above.

I Theorem 5. The competitive ratio of the algorithm given above is at most e
e−1 + 2e−1

e−1 δ
2/3.

Proof. Consider a game between the algorithm and an adversary where the adversary needs
to initially present the quantiles queried by the algorithm, then the algorithm outputs a
strategy S(k) according to the description above, and finally the adversary reveals the actual
distribution that is consistent with the quantiles it displayed initially. The goal of the
adversary is to maximize the expected competitive ratio of the algorithm for the distribution
that she reveals at the end. In the last step, the adversary has freedom to define any
probability density function in the interval between every pair of adjacent quantiles as long
as the total probability mass in any such interval is δ. We consider the options available
to the adversary in the three ranges [0, k], [k, 1] and [1,∞). The actual probability density
function in the first and last of these ranges does not change the expected competitive ratio

F S T T C S 2 0 1 1
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of the strategy S(k). However, in the range [k, 1], the adversary would move the entire
probability mass in each individual interval to the quantile at its left boundary, thereby
maximally increasing the expected competitive ratio of S(k). This would decrease the cost
of the optimal offline solution to the maximum extent while not changing the cost of the
algorithmic solution. The net effect of these changes is that the actual input distribution has
a δ probability mass at k instead of at 1. Thus, the difference of the expected competitive
ratio of strategy S(k) for the actual input distribution and that for the assumed distribution
is at most δ

( 1+k
k − (1 + k)

)
≤ δ

k ≤ δ
2/3 since k ≥ δ1/3. By the above theorem, the expected

competitive ratio of strategy S(k) for the assumed distribution is at most e
e−1 (1 + δ2/3).

Therefore, the competitive ratio of the algorithm for the actual input distribution is at most
e
e−1 + 2e−1

e−1 δ
2/3. J

Finally, we note that Theorem 2 follows from the above theorem by replacing δ with[(
e−1
2e−1

)
ε
]3/2

.

4 Conclusion and Future Work

In this paper, we introduced a new model for online optimization problems that we call the
semi-stochastic model. This framework offers a hybrid between the excessively pessimistic
online model and the overly optimistic stochastic model. As a first step towards understanding
optimization problems in this setting, we presented an algorithm for the ski-rental problem
that gives a trade-off between the amount of stochastic information available to the algorithm
and its performance. Perhaps more surprisingly, we also gave a lower bound on the query
complexity for algorithms in this model that loosely matches the upper bound. Our lower
bound holds for the powerful class of adaptive algorithms.

This initial result opens up the possibility of studying a plethora of online problems in
the semi-stochastic model. Our model does not impose any restriction on the type of queries
that the algorithm is allowed to ask of the adversary. So, it would be interesting to consider
other query models as well. For example, as discussed in the introduction, in certain (e.g.
computational learning) situations, natural queries might correspond to sampling inputs.

A somewhat different direction of future research would be to investigate the robustness
of stochastic algorithms. One interpretation of our semi-stochastic algorithms is that they
are robust to changes in the input distribution modulo the satisfaction of a set of parameters
(corresponding to the answers given to the queries). Following up in this direction, it would
be interesting to investigate the sensitivity of known stochastic algorithms to changes in
the input distribution, and if they turn out to be sensitive, to design algorithms that are
robust to such changes. The ultimate goal in this direction of research would be to obtain
algorithms that degrade gracefully with changes in the input distribution, with the best
stochastic algorithm and the best online algorithm being the two ends of the spectrum.
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