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Abstract
We study the problem of computing pure-strategy Nash equilibria in multiplayer concurrent
games with Büchi-definable objectives. First, when the objectives are Büchi conditions on the
game, we prove that the existence problem can be solved in polynomial time. In a second part,
we extend our technique to objectives defined by deterministic Büchi automata, and prove that
the problem then becomes EXPTIME-complete. We prove PSPACE-completeness for the case
where the Büchi automata are 1-weak.
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1 Introduction

Game theory (especially games played on graphs) is used in computer science as a powerful
framework for modelling interactions in embedded systems [18, 13]. Until recently, more focus
had been put on purely antagonistic situations, where the system should fulfil its specification
however the environment behaves. This situation can be modelled as a two-player game (one
player for the system, and one for the environment), and a winning strategy for the first
player is a good controller for the system. In this purely antagonistic view, the objectives of
both players are opposite: the aim of the second player is to prevent the first player from
achieving her own objective; such games are called zero-sum.

In many cases, however, games are non-zero-sum, especially when they involve more
than two players. Such games appear e.g. in various problems in telecommunications, where
several agents try to send data on a network [10]. Focusing only on winning strategies in this
setting may then be too narrow: winning strategies must be winning against any behaviour
of the other agents, and do not consider the fact that the other agents also have their own
objectives. In the non-zero-sum setting, each player can have a different payoff associated
with an outcome of the game; it is then more interesting to look for equilibria. For instance,
a Nash equilibrium is a behaviour of the agents in which they play rationally, in the sense
that no agent can get a better payoff by unilaterally switching to another strategy [15]. This
corresponds to stable states of the game. Note that Nash equilibria need not exist and are
not necessarily optimal: several equilibria can coexist, possibly with different payoffs.

Our contribution. We focus here on qualitative objectives for the players: such objectives
are ω-regular properties over infinite plays, and a player receives payoff 1 if the property is
fulfilled and 0 otherwise. Our aim is to decide the existence of pure-strategy Nash equilibria in
nondeterministic concurrent games. Being concurrent (instead of the more classical turn-based
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games) and nondeterministic are two important properties of timed games (which are games
played on timed automata [2, 9]), to which we ultimately want to apply our algorithms.

In a first part, we focus on internal Büchi conditions (defined on the game directly) and
show that we can decide the existence of equilibria in polynomial time, which has to be
compared with the NP-completeness of the problem in the case of reachability objectives [8, 3].
This relies on an iterated version of a repellor operator [3]. Roughly speaking, the repellor is
to the computation of Nash equilibria in non-zero-sum games what the attractor is to the
computation of winning states in zero-sum games. The repellor operator we use for Büchi
objectives is a generalisation of the one defined in [3] for reachability objectives, and the
proof techniques are more involved.

Then, using a simulation lemma, we show how to compute Nash equilibria in case the
objectives of the players are given by deterministic Büchi automata. This encompasses many
winning conditions (among which reachability, Büchi, safety, etc.), and we show that deciding
the existence of Nash equilibria with constraints on the payoff is EXPTIME-complete. Under
a certain restriction on the automata (1-weakness), we prove that the complexity reduces to
PSPACE, and we prove PSPACE-hardness for the special case of safety objectives. When the
game is deterministic and the 1-weak Büchi automata defining the winning conditions have
bounded size (this includes safety and reachability objectives), we show that the constrained
existence problem becomes NP-complete. The simulation lemma can also be used to lift our
results to timed games, for which all our problems are EXPTIME-complete.

Related work. Concurrent and, more generally, stochastic games go back to Shapley [17].
However, most research in game theory and economics has focused on games with rewards,
which are either averaged or discounted along an infinite path. In particular, Fink [11]
proved that every discounted stochastic game has a Nash equilibrium in pure strategies,
and Vielle [22] proved the existence of ε-equilibria in randomised strategies for two-player
stochastic games under the average-reward criterion. For two-player concurrent games with
Büchi objectives, the existence of ε-equilibria (in randomised strategies) was proved by
Chatterjee [5]. However, exact Nash equilibria need not exist. An important subclass where
even Nash equilibria in pure strategies exist are turn-based games with Büchi objectives [8].

The complexity of Nash equilibria in games played on graphs was first addressed in [8, 19].
In particular, it was shown in [19] that the existence of a Nash equilibrium with a constraint
on its payoff can be decided in polynomial time for turn-based games with Büchi objectives.
In this paper, we extend this result to concurrent games. It was also shown in [19] that
the same problem is NP-hard for turn-based games with co-Büchi conditions, which implies
hardness for concurrent games with this kind of objectives. For concurrent games with ω-
regular objectives, the decidability of the constrained existence problem w.r.t. pure strategies
was established by Fisman et al. [12], but their algorithm runs in doubly exponential
time, whereas our algorithm for Büchi games runs in polynomial time. Finally, Ummels
and Wojtczak [21] proved that the existence of a Nash equilibrium in pure or randomised
strategies is undecidable for stochastic games with reachability or Büchi objectives, which
justifies our restriction to concurrent games without probabilistic transitions (see [20] for a
similar undecidability result for randomised Nash equilibria in non-stochastic games).
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2 Preliminaries

2.1 Concurrent Games
A transition system is a 2-tuple S = 〈States,Edg〉 where States is a (possibly uncountable) set
of states and Edg ⊆ States×States is the set of transitions. In a transition system S, a path π
is a non-empty sequence (si)0≤i<n (where n ∈ N ∪ {∞}) of states such that (si, si+1) ∈ Edg
for all i < n− 1. The length of π, denoted by |π|, is n− 1. The set of finite paths (also called
histories) of S is denoted by HistS , the set of infinite paths (also called plays) of S is denoted
by PlayS , and PathS = HistS ∪ PlayS is the set of paths of S. Given a path π = (si)0≤i<n
and an integer j < n, the j-th prefix (resp. j-th suffix , j-th state) of π, denoted by π≤j (resp.
π≥j , π=j), is the finite path (si)0≤i<j+1 (resp. (si)j≤i<n, state sj). If π = (si)0≤i<n is a
history, we write last(π) = s|π|.

We consider nondeterministic concurrent games [3], which extend standard concurrent
games [1] with nondeterminism.

I Definition 1. A (nondeterministic) concurrent game is a tuple G = 〈States,Edg,Agt,
Act,Mov,Tab, (LA)A∈Agt〉, where 〈States,Edg〉 is a transition system, Agt is a finite set of
players, Act is a (possibly uncountable) set of actions, and

Mov : States×Agt→ 2Act \ {∅} is a mapping indicating the actions available to a given
player in a given state;
Tab : States × ActAgt → 2Edg \ {∅} associates with a state and an action profile the
resulting set of edges; we require that s = s′ if (s′, s′′) ∈ Tab(s, 〈mA〉A∈Agt);
LA ⊆ Statesω defines the objective for player A ∈ Agt; the payoff for player A is the
function νA : Statesω → {0, 1}, where νA(π) = 1 if π ∈ LA, and νA(π) = 0 otherwise;
we say that player A prefers play π′ over play π, denoted π 4A π′, if νA(π) ≤ νA(π′).

We call a game G finite if its set of states is finite.

Non-determinism naturally appears in timed games, and this is our most important motivation
for investigating this extension of standard concurrent games. We explain in Section 4.3 how
our results apply to timed games.

We say that a move 〈mA〉A∈Agt ∈ ActAgt (which we may write mAgt in the sequel) is legal
at s if mA ∈ Mov(s,A) for all A ∈ Agt. A concurrent game is deterministic if Tab(s,mAgt)
is a singleton for each s ∈ States and each legal move mAgt (at s). A game is turn-based if
for each state the set of allowed moves is a singleton for all but at most one player.

In a nondeterministic concurrent game, whenever we arrive at a state s, the players
(simultaneously) choose a legal move mAgt. Then, one of the transitions in Tab(s,mAgt) is
nondeterministically selected, which results in a new state of the game. In the sequel, we write
HistG , PlayG and PathG for the corresponding set of paths in the underlying transition system
of G. We also write HistG(s), PlayG(s) and PathG(s) for the respective subsets of paths
starting in state s.

I Definition 2. Let G be a concurrent game, and A ∈ Agt. A strategy for A is a mapping
σA : HistG → Act such that σA(π) ∈ Mov(last(π), A) for all π ∈ HistG . A strategy σP for a
coalition P is a tuple of strategies, one for each player in P . We write σP = 〈σA〉A∈P for
such a strategy. A strategy profile is a strategy for the coalition Agt. We write StratPG for
the set of strategies of coalition P (or simply StratBG if P = {B}), and ProfG = StratAgtG .

Note that we only consider non-randomised (pure) strategies in this paper. Notice also
that strategies are based on the sequences of visited states, and not on the actions played by
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the players. This is a realistic assumption for concurrent systems where different components
interact with each other and each component has a set of internal actions which cannot be
observed by the other components. However, it makes the computation of equilibria harder:
when a deviation from the equilibrium profile occurs, the given sequence of states does not
uniquely determine the player who has deviated. While the main part of the paper focuses
on state-based strategies for Büchi objectives, we show in Section 6 that equilibria in the
action-based setting can be computed more easily, even for parity objectives.

Let G be a game, P a coalition, and σP a strategy for P . A path π = (sj)0≤j≤|π|
is compatible with the strategy σP if, for all k < |π|, there exists a move mAgt such that
(i) mAgt is legal at sk, (ii) mA = σA(π≤k) for all A ∈ P , and (iii). (sk, sk+1) ∈ Tab(sk,mAgt).
We write OutG(σP ) for the set of paths (or outcomes) in G that are compatible with the
strategy σP , and we write OutfG(σP ) (resp. Out∞G (σP )) for the finite (resp. infinite) outcomes,
and OutG(s, σP ), OutfG(s, σP ) and Out∞G (s, σP ) for the respective sets of outcomes that start
in state s. In general there might be several infinite outcomes for a strategy profile from a
given state. However, in the case of deterministic games, any strategy profile has a single
infinite outcome from a given state.

I Example 3. Figure 1 depicts a two-player concurrent game, called the matching-penny
game. A pair 〈a, b〉 represents a move, where Player 1 plays action a and Player 2 plays b.
Starting from state s0, if both players choose the same action, then the game proceeds to s1;
otherwise, the game proceeds to s2. In the matching-penny game, the objective for Player 1
is to visit s1 (which is encoded as L1 = States∗ · {s1} · Statesω), while for Player 2 it is to
visit s2. Figure 2 shows another game (our running example), in which the objective of
Player 1 is to loop in s1 (L1 = States∗ · {s1}ω), whereas the objective for Player 2 is to loop
in s2 (L2 = States∗ · {s2}ω).

s0

s1

s2

〈0, 0〉,
〈1, 1〉

〈0, 1〉, 〈1, 0〉

Figure 1 The matching-penny game

s0 s1 s2

〈0, 0〉

〈1, 0〉

〈0, 0〉

〈0, 1〉

〈0, 0〉

Figure 2 A game with Büchi objectives

2.2 Pseudo-Nash Equilibria

Given a move mAgt and an action m′ for some player B, we write mAgt[B 7→ m′] for the
move nAgt with nA = mA if A 6= B and nB = m′. This is extended to strategies in the natural
way. For non-zero-sum games, several notions of equilibria have been defined, e.g. Nash
equilibria [15], subgame-perfect equilibria [16], and secure equilibria [6]. None of these
notions apply to nondeterministic games. Bouyer et al. have therefore proposed the notion of
pseudo-Nash equilibria [3], which extend standard Nash equilibria to nondeterministic games.

I Definition 4. Let G be a nondeterministic concurrent game with objectives (LA)A∈Agt,
and let s be a state of G. A pseudo-Nash equilibrium of G from s is a pair (σAgt, π) of a
strategy profile σAgt ∈ ProfG and a play π ∈ OutG(s, σAgt) such that π′ 4B π for all players
B ∈ Agt, all strategies σ′ ∈ StratB , and all plays π′ ∈ OutG(s, σAgt[B 7→ σ′]). The outcome
π is then called an optimal play for the strategy profile σAgt.
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For deterministic games, the play π is uniquely determined by σAgt, so that pseudo-Nash
equilibria coincide with Nash equilibria [15]: these are strategy profiles where no player has
an incentive to unilaterally deviate from her strategy.

In the case of nondeterministic games, a strategy profile for an equilibrium may give
rise to several outcomes. The outcome π is then chosen cooperatively by all players: once a
strategy profile is fixed, nondeterminism is resolved by all players choosing one of the possible
outcomes in such a way that each player has no incentive to unilaterally changing her choice
(nor her strategy). To the best of our knowledge, this cannot be encoded by adding an extra
player for resolving the nondeterminism.

I Example 5. Clearly, there is no pure-strategy Nash equilibrium in the game of Figure 1
since a losing player can always improve her payoff by switching her choice. In the game of
Figure 2 (where Player i wants to visit si infinitely often), there are several Nash equilibria:
one with payoff (0, 1), in which both players play action 1 when it is available; another one
with payoff (0, 0), in which Player 1 always plays 0, and Player 2 plays 1 when available.

In this paper, we study several decision problems related to the existence of pseudo-
Nash equilibria. The existence problem consists in deciding the existence of a pseudo-Nash
equilibrium in a given state of a game. Since several pseudo-Nash equilibria may coexist,
it is also interesting to decide whether there is one with a given payoff (0 or 1) for some of
the players; this is the constrained existence problem. Finally, the verification problem asks
whether a given payoff function (totally defined over Agt) is the payoff of some pseudo-Nash
equilibrium. Notice that the first and third problems are trivially logspace-reducible to the
second one.

3 Internal Büchi Objectives

In this section, we fix a nondeterministic concurrent game G = 〈States,Edg,Agt,Act,
Mov,Tab, (LA)A∈Agt〉, where the objectives are internal Büchi conditions given by a set
ΩA ⊆ States of target states for each player A ∈ Agt. The corresponding objective for
player A is the set LA = {π ∈ Statesω | π=j ∈ ΩA for infinitely many j ∈ N}.

3.1 Characterising Equilibria Using Fixpoints
In [3], pseudo-Nash equilibria are characterised for qualitative reachability objectives using
a fixpoint computation called the repellor. This was the counter-part of the attractor in
non-zero-sum games for computing equilibria. In this section, we extend the repellor to
handle internal Büchi objectives.

Suspect players. Let e = (s, s′) be an edge. Given a move mAgt, we define the set of
suspect players for e as the set

Susp(e,mAgt) = {B ∈ Agt | ∃m′ ∈ Mov(s,B) such that e ∈ Tab(s,mAgt[B 7→ m′])}.

Intuitively, Player B ∈ Agt is a suspect for edge e and if she can unilaterally change her
action to trigger edge e. Notice that if e ∈ Tab(s,mAgt), then Susp(e,mAgt) = Agt.

The iterated (or Büchi) repellor. For any n ∈ N and P ⊆ Agt, we define the n-th repellor
set RepnG(P ) as follows. If n = 0, then Rep0

G(P ) = ∅ for any P ⊆ Agt. Now fix n ∈ N, and
assume that repellor sets RepnG(P ) have been defined for any P ⊆ Agt. As the base case for
level n+ 1, we set Repn+1

G (∅) = States. Then, assuming that Repn+1
G (P ′) has been defined
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for all P ′ ( P , we let Repn+1
G (P ) be the largest set fulfilling the following condition: for all

s ∈ Repn+1
G (P ) there exists a legal move mAgt (at s) such that

1. s′ ∈ Repn+1
G (P ∩ SuspG((s, s′),mAgt)) for all s′ ∈ States, and

2. if s′ ∈ ΩA for some player A ∈ P ∩ SuspG((s, s′),mAgt), then
s′ ∈ RepnG(P ∩ SuspG((s, s′),mAgt)).

Given a state s ∈ Repn+1
G (P ), a legal move mAgt that fulfils 1. and 2. is called a secure

move (w.r.t. P and n+ 1); we write Securen+1
G (s, P ) for the set of these moves. Finally,

we define Rep∞G (P ) =
⋃
n≥0 Rep

n(P ). In the following, to improve readability, we will omit
the index G in all the notions we have defined, when the game is clear from the context.

Intuitively, a state s is an element of RepnG(P ) iff at s there is a legal move such that
no player A ∈ P can force to visit her set of target states at least n times by changing her
action. For finite games, it follows that a state s is an element of Rep∞G (P ) iff at s there is a
legal move such that no player A ∈ P can force to visit her set set of target states infinitely
often by changing her action.
I Remark. The repellor defined for reachability objectives in [3] is rather similar to Rep1(P );
it differs only in the second condition, which was “Rep1(P ) ∩ ΩA = ∅ for all A ∈ P” in [3].
This change is required since a play that is losing w.r.t. a Büchi objective might visit a winning
state a finite number of times (whereas this cannot happen for reachability objectives).

I Example 6. In the game of Figure 2, if we assume reachability objectives (state si for
Player i), there is no equilibrium with payoff (0, 0), since Player 1 can enforce a visit to her
winning state. If we assume Büchi objectives, we have seen in Example 5 that there is an
equilibrium with payoff (0, 0). Table 1 displays the values of the iterated repellors in this game,
for all possible sets of players. These results were obtained with our prototype implementation
of our algorithms, available at http://www.lsv.ens-cachan.fr/Software/praline/.

Table 1 Computing the repellor sets in the game of Figure 2

P Rep0(P ) Rep1(P ) Rep2(P ) Rep∞(P ) = Rep3(P )

∅ ∅ {s0, s1, s2} {s0, s1, s2} {s0, s1, s2}

{A1} ∅ {s1, s2} {s0, s1, s2} {s0, s1, s2}

{A2} ∅ {s0} {s0} {s0}

{A1, A2} ∅ ∅ {s0} {s0}

I Lemma 7. The repellor and the secure moves satisfy the following properties:

If P ′ ⊆ P ⊆ Agt, then Repn(P ) ⊆ Repn(P ′) for all n ∈ N.
Repn(P ) ⊆ Repn+1(P ) for all P ⊆ Agt and n ∈ N.
Securen(s, P ) ⊆ Securen+1(s, P ) for all P ⊆ Agt, n ∈ N and s ∈ States.

We define the n-th repellor transition system Sn(P ) = 〈States,Edgn〉 by (s, s′) ∈ Edgn
iff there exists mAgt ∈ Securen(s, P ) such that (s, s′) ∈ Tab(s,mAgt). Note in particular
that any s ∈ Repn(P ) has an outgoing transition in Sn(P ). We also define the limit repellor
transition system S∞(P ) = 〈States,

⋃
n≥0 Edgn〉. The following lemma bounds the number

of iteration steps required to reach Rep∞(P ).

I Lemma 8. Let G be a a finite game, P ⊆ Agt, and let ` be the length of the longest acyclic
path in G. Then Repn(P ) = Rep∞(P ) for all n ≥ ` · |P |.

http://www.lsv.ens-cachan.fr/Software/praline/
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The correctness of the iterated repellor for finite games is stated in the next proposition.

I Proposition 9. Let G be a finite game, P ⊆ Agt, and let ρ ∈ Play(s) be a play that
visits

⋃
B∈P ΩB only finitely often. Then ρ is a path in S∞(P ) if and only if there exists

σAgt ∈ Prof such that ρ ∈ Out(s, σAgt) and ρ′ does not visit ΩB infinitely often for all plays ρ′
that can arise when some player B ∈ P changes her strategy, i.e. ρ′ ∈ Out(s, σAgt[B 7→ σ′])
for some B ∈ P and some σ′ ∈ StratB.

We can deduce from this proposition that if ρ is an infinite path from state s in S∞(P )
that visits ΩA infinitely often if and only if A /∈ P , then there is a pseudo Nash equilibrium
from s with optimal play ρ.

I Corollary 10. Let G be a finite game, s ∈ States, and ν : Agt → {0, 1}. There exists a
pseudo-Nash equilibrium in G with payoff ν if and only if there exists an infinite path ρ in
S∞(ν−1(0)) with payoff νA(ρ) = ν(A) for all A ∈ Agt.

3.2 Application to Solving the Three Problems
We use the previous characterisation for analysing the complexity of the various decision
problems that we have defined in Section 2.2.

I Theorem 11. The verification, existence and constrained existence problems for finite
games with internal Büchi objectives are PTIME-complete.

The lower bounds are simple adaptations of the PTIME-hardness of the circuit value
problem. We now focus on the PTIME upper bounds, and prove it for the constrained
existence problem (which implies the same upper bound for the other two problems).

We first use the equivalence given in Proposition 9 to get a set-based characterisation
of (pseudo-)Nash equilibria. We fix a set of winning players W ⊆ Agt and a set of losing
players L ⊆ Agt, and we fix an initial state s. Given a transition system 〈S,E〉 and a set of
players P , we say that they satisfy condition (‡) if the following properties are fulfilled:

(1) ΩA ∩ S = ∅ if and only if A ∈ P ;
(2) L ⊆ P and P ∩W = ∅;
(3) 〈S,E〉 is strongly connected;

(4) 〈S,E〉 ⊆ S∞(P );
(5) S is reachable from s in S∞(P ).

The following is then a corollary to Proposition 9.

I Corollary 12 (Set-based characterisation). A pair (〈S,E〉, P ) satisfies condition (‡) iff
there is an infinite path ρ in S∞(P ) from s that, from some point onwards, stays in 〈S,E〉.
In particular, ρ is losing for all players in L. Moreover, if (〈S,E〉, P ) satisfies (‡), then there
exists an infinite path ρ in S∞(P ) from s with the same property that visits all states of S
infinitely often (and is thus winning for all players in W ).

Note that in the above characterisation, P is uniquely determined by the set S; hence we
write P (S) = {A ∈ Agt | S ∩ ΩA = ∅}, and we say that 〈S,E〉 satisfies condition (‡) if
(〈S,E〉, P (S)) does. Our aim is to compute in polynomial time all maximal pairs 〈S,E〉 that
satisfy condition (‡). As a prerequisite, we assume that we can compute S∞(P ) in polynomial
time whenever P ⊆ Agt is given. This can be proved using similar arguments as in [4]. Now,
we define a recursive operator SSG (SolveSubGame) by setting SSG (〈S,E〉) = {〈S,E〉} if
〈S,E〉 ⊆ S∞(P (S)) and 〈S,E〉 is strongly connected, and

SSG (〈S,E〉) =
⋃

〈S′,E′〉∈SCC(〈S,E〉)

SSG(〈S′, E′〉 ∩ S∞(P (S′)))
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in all other cases. Here, SCC(〈S,E〉) denotes the set of strongly connected components of
〈S,E〉 (which can be computed in linear time). Finally, we define

Sol(L,W ) = SSG
(
〈States \

⋃
A∈L

ΩA,Edg〉
)
∩ {〈S,E〉 | P (S) ∩W = ∅} .

I Lemma 13. If 〈S,E〉 ∈ Sol(L,W ) and S is reachable from s in S∞(P (S)), then it satisfies
condition (‡). Conversely, if 〈S,E〉 satisfies condition (‡), then there exists 〈S′, E′〉 ∈
Sol(L,W ) such that 〈S,E〉 ⊆ 〈S′, E′〉.

I Lemma 14. The set Sol(L,W ) can be computed in polynomial time.

The PTIME upper bound of Theorem 11 follows from the above analysis.

I Remark. This result may seem surprising since we know that the problem is NP-complete
for reachability objectives, even in turn-based games [8, 3]. Intuitively, the problem is harder
for reachability objectives because whether a play satisfies or not a reachability objective
is not only determined by its behaviour in the strongly connected component in which it
settles but on all visited states.

4 Game Simulations

Our aim is to transfer our results for internal Büchi objectives to larger classes of objectives.
A useful tool is the notion of game simulation, which we develop now.

4.1 Definition and General Properties

We already gave a definition of game simulation in [3], which was tailored to games with
reachability objectives; we extend this notion to games with arbitrary qualitative objectives.

I Definition 15. Consider two games G = 〈States,Edg,Agt,Act,Mov,Tab, (LA)A∈Agt〉
and G′ = 〈States′,Edg′,Agt,Act′,Mov′,Tab′, (L′A)A∈Agt〉 with the same set Agt of players.
A relation / ⊆ States× States′ is a game simulation if s / s′ implies that for each move mAgt
in G there exists a move m′Agt in G′ such that

1. for each t′ ∈ States′ there exists t ∈ States with t / t′ and
Susp((s′, t′),m′Agt) ⊆ Susp((s, t),mAgt), and

2. for each (s, t) ∈ Tab(s,mAgt) there exists (s′, t′) ∈ Tab′(s′,m′Agt) with t / t′.

If / is a game simulation, we say that G′ simulates G. Finally, a game simulation / is
winning-preserving from (s0, s

′
0) ∈ States×States′ if for all ρ ∈ PlayG(s0) and ρ′ ∈ PlayG′(s′0)

with ρ / ρ′ (i.e. ρ=i / ρ
′
=i for all i ∈ N) it holds that ρ ∈ LA iff ρ′ ∈ L′A for all A ∈ Agt.

I Proposition 16. Game simulation is transitive.

I Proposition 17. Assume G and G′ are games. Fix two states s and s′ in G and G′
respectively, and assume that / is a winning-preserving game simulation from (s, s′). If
there exists a pseudo-Nash equilibrium (σAgt, ρ) of G from s, then there exists a pseudo-Nash
equilibrium (σ′Agt, ρ′) of G′ from s′ with ρ / ρ′. In particular, ρ and ρ′ have the same payoff.
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4.2 Product of a Game with Deterministic Büchi Automata
We use the results on game simulation to study objectives that are defined by deterministic
Büchi automata. A deterministic Büchi automaton A over alphabet Σ is a tuple 〈Q,Σ, δ,
q0, R〉, where Q is a finite set of states, Σ is the input alphabet, δ : Q×Σ→ Q is the transition
function, q0 ∈ Q is the initial state, and R ⊆ Q is the set of repeated states. We assume
that the reader is familiar with Büchi automata, and we write L(A) ⊆ Σω for the language
accepted by A.

Fix a game G = 〈States,Edg,Agt,Act,Mov,Tab, (LB)B∈Agt〉 and a player A ∈ Agt,
and assume that LA = L(A) for a deterministic Büchi automaton A = 〈Q,States, δ, q0, R〉
over States. We show how to compute pseudo-Nash equilibria in G by building a product
of G with A and computing the pseudo-Nash equilibria in the resulting game.

We define the product of the game G with the automaton A as the game G n A =
〈States′,Edg′,Agt,Act,Mov′,Tab′, (L′B)B∈Agt〉, where:

States′ = States×Q;
Edg′ = {((s, q), (s′, q′)) | (s, s′) ∈ Edg and δ(q, s) = q′};
Mov′((s, q), Ai) = Mov(s,Ai) for every Ai ∈ Agt;
Tab′((s, q),mAgt) = {((s, q), (s′, q′)) | (s, s′) ∈ Tab(s,mAgt) and δ(q, s) = q′};
if B = A, then L′B is the internal Büchi objective given by the set Ω = States × R;
otherwise, L′B = π−1(LB), where π is the natural projection from States′ to States and
its extension to plays (i.e. π((s0, q0)(s1, q1) . . . ) = s0s1 . . . ).

I Remark. Note that, if LB is defined by an internal Büchi condition, then so is L′B .

I Lemma 18. G nA simulates G, and vice versa. Furthermore, in both cases we can exhibit
a game-simulation that is winning-preserving from (s, (s, q0)) for all s ∈ States.

Assume that for each player Ai ∈ Agt the objective in G is given by a deterministic Büchi
automaton Ai. We use the transitivity of game simulation to build a product of G with each
of the automata Ai, namely G′ = G nA1 n · · ·nAn (we assume that n is left-associative).
Each player Ai ∈ Agt has an internal Büchi objective in G′, which we denote by Ωi.

I Corollary 19. Let s ∈ States and ν : Agt → {0, 1}. There is a pseudo-Nash equilibrium
in G from s with payoff ν if and only if there is a pseudo-Nash equilibrium in G′ from
(s, q01, . . . , q0n) with payoff ν, where q0i is the initial state of Ai.

4.3 Application to Timed Games
We now apply the game-simulation approach to the computation of pseudo-Nash equilibria
in timed games. Given a timed game G with internal Büchi objectives, the corresponding
(exponential-size) region game RG as defined in [4] simulates G and is simulated by G
while preserving winning conditions (the proof for reachability objectives in [4] can be
easily extended to our framework). Pseudo-Nash equilibria of G can thus be computed
on the finite game RG . If the objectives of the players are defined by deterministic Büchi
automata (Ai)Ai∈Agt, we can compute the product RG nA1 n · · ·nAn with corresponding
internal Büchi objectives (Ωi)Ai∈Agt, as defined in the previous subsection. This product
has size exponential in the size of G and in the number of players. We can then apply
the algorithm developed in Section 3.2, yielding an EXPTIME upper bound for deciding the
verification, existence, and constrained existence problems in timed games. Finally we get
EXPTIME-hardness for internal Büchi objectives by applying the reduction in [4, Prop. 20]
(replace all accepting sink states by repeated states).
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I Theorem 20. The verification, existence, and constrained existence problems are EXPTIME-
complete both for timed games with internal Büchi objectives and for timed games with
objectives defined by deterministic Büchi automata.

5 Büchi-Definable Objectives

The characterisation of Corollary 19 gives a procedure to compute pseudo-Nash equilibria in
games with objectives defined by deterministic Büchi automata (one automaton per player).
The algorithm runs in time exponential in the number of players since we have to build
the product with all the deterministic Büchi automata defining the objective of a player.
We prove that our problems are EXPTIME-hard by encoding two-player countdown games [14]
into multiplayer games. Each bit of the countdown will be managed by a different player,
who is in charge of checking that this bit is correctly updated at each transition.

I Theorem 21. The verification, existence, and constrained existence problems for finite
games with objectives defined by deterministic Büchi automata are EXPTIME-complete.

We now prove that when the deterministic Büchi automata defining the objectives are
1-weak (i.e. when all strongly connected components of the transition graph consist of just one
state), all our three problems can be solved in PSPACE. In particular, this result applies to
safety (and reachability) objectives, which can be defined by 1-weak automata. Our algorithm
is based on a procedure that, given parameters (P, n, q), computes the set of states s such
that in the product game (s, q) ∈ Repn(P ). The procedure computes the repellor as a
fixpoint, calling itself recursively on instances (P ′, n′, q′), where either P ′ ( P , n′ < n, or
q′ is a successor of q. The maximal number of nested calls is |P |+ n+

∑
i∈Agt `i, where `i is

the length of the longest acyclic path in Ai. According to Lemma 8, n can be bounded by a
polynomial. The whole computation thus runs in polynomial space.

I Theorem 22. The verification, existence, and constrained existence problems are in PSPACE
for finite games with objectives defined by 1-weak deterministic Büchi automata.

The matching lower bound holds already for the special case of safety objectives.

I Proposition 23. The verification, existence, and constrained existence problems are
PSPACE-hard for finite games with safety objectives.

Proof. The hardness proof for the verification (and for the constrained existence) problem is
by a reduction from QSAT: for every closed quantified Boolean formula φ in conjunctive prenex
normal form, we construct a game G(φ) with initial state s1 and safety objectives such that
G(φ) has a pseudo-Nash equilibrium with payoff (0, . . . , 0) from s1 iff the formula is true. Let
φ = ∃x1∀x2 . . . Qnxn C1 ∧C2 ∧ · · · ∧Cm, where each clause Cj is a disjunction of literals over
the variables x1, . . . , xn; we identify Cj with the set of literals occurring in it. Then the game
G(φ) is played by players 0, 1, . . . ,m. The set of states is {s1, x1,¬x1, . . . , sn, xn,¬xn, sn+1},
and there are transitions from si to xi and ¬xi, and from xi and ¬xi to si+1; additionally,
there is a transition from sn+1 back to sn+1. If i is odd, then the state si is controlled by
player 0; otherwise, the game proceeds nondeterministically from si to either xi or ¬xi (see
Figure 3). Player 0 loses every play of the game, i.e. L0 = ∅, whereas for j > 0 player j’s
objective is to avoid the set of literals occurring in the clause Cj , i.e. Lj = (States \ Cj)ω.
It is easy to see that φ is true iff there is a strategy for player 0 such that all outcomes are
losing for all players.

To prove hardness of the existence problem, it suffices to add two states s0 and s′0 to the
game G(φ): from s0, the game proceeds nondeterministically to either s′0 or s1, and we add
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¬x1

s2

x2

¬x2

s3

x3

¬x3

s4

x4

¬x4

s5 . . . sn+1

Figure 3 Reducing from QSAT

a transition from s′0 back to s′0. Finally, the objective of player 0 is the set L0 = {s0, s
′
0}ω.

It follows that there is a pseudo-Nash equilibrium from s0 (with the optimal play leading
to s′0) iff there is a pseudo-Nash equilibrium from s1 with payoff (0, . . . , 0). J

Note that the hardness proof requires nondeterminism. For deterministic games we can
solve the problem by guessing the set of losing players and an (ultimately-periodic) path
in the corresponding repellor transition system. We then have to check that all possible
deviations fall in some repellor set. The best algorithm we could get for this check runs in
time O(|States|2 · |Agt| · |Tab|log(maxi |Qi|)), which is only polynomial when the size of the
Büchi automata is bounded.

I Theorem 24. The verification, existence, and constrained existence problems are in NP
for finite deterministic games with objectives defined by 1-weak deterministic Büchi automata
of bounded size.

The matching lower bound holds again for the special case of safety objectives since
no nondeterministic transitions arise in the construction used for proving Proposition 23
when we reduce from SAT (except for the existence problem, where we require a different
construction).

I Proposition 25. The verification, existence and constrained existence problems are NP-hard
for finite deterministic games with safety objectives.

6 Discussion

In this paper we focused on Büchi objectives. The natural next step is to go to parity objectives,
which can encode arbitrary ω-regular objectives. In the turn-based case, the constrained
existence problem becomes NP-complete for parity (or even co-Büchi) objectives [19]. In fact,
we can get the same upper bound in deterministic concurrent games under the assumption
that strategies can observe actions.

I Theorem 26. The constrained existence problem is in NP for finite deterministic concurrent
games with parity objectives if we assume that strategies can observe actions.

In Section 2, we mentioned that making actions unobservable by players is a relevant
modelling assumption, but that it makes the computation of equilibria harder. This claim is
justified by the following result, which is obtained by a reduction from the strategy problem
for generalised parity games [7].

I Proposition 27. The verification, existence and constrained existence problems are coNP-
hard for finite deterministic concurrent games with parity objectives. In particular, unless
NP = coNP, these problems do not belong to NP.
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A natural question is whether the repellor techniques that we develop can be used to
handle imperfect information in a more general sense than just state-based vs. action-based
strategies. This is one of our directions for future work.
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