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Abstract
This paper studies the decidability and computational complexity of checking probabilistic simu-
lation pre-order between probabilistic pushdown automata (pPDA) and (probabilistic) finite-state
systems. We show that checking classical and combined probabilistic similarity are EXPTIME-
complete in both directions and become polynomial if both the number of control states of the
pPDA and the size of the finite-state system are fixed. These results show that checking probab-
ilistic similarity is as hard as checking similarity in the standard, i.e., non-probabilistic setting.
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1 Introduction

Probabilities are a convenient means to model uncertainty [15, 11] in transition systems.
They are essential for modelling, e.g., randomized algorithms, unreliable and unpredictable
system behaviour, or environmental uncertainties. Discrete-Time Markov Chains (DTMC)
and Markov Decision Processes (MDPs) are popular probabilistic extensions of transition
systems. An important technique in the formal verification of probabilistic systems is se-
mantical equivalence or pre-order checking. Here, one focuses on comparing the behaviour
of a probabilistic system (the “implementation”) with its intended behaviour (the “spe-
cification”). Probabilistic bisimulation [16, 18, 3] and simulation [16, 12, 18, 3] are typical
instances that act as a basis for comparison. For finite-state systems, efficient algorithms
have been established for both notions [6, 1, 2]. An additional interest in checking prob-
abilistic (bi)simulation between two systems is the preservation of temporal logic formulas:
e.g., probabilistic bisimulation equivalence preserves PCTL while probabilistic simulation
equivalence preserves a safety fragment of PCTL [3, 18].

This paper considers probabilistic pushdown automata (pPDA) [7] as implementation
models and Segala’s probabilistic automata [18] as specifications. pPDA are a natural ab-
stract model for probabilistic procedural programs and are equally expressive as recursive
Markov chains [9]. In fact, there are linear-time transformations between these two mod-
els [9]. Whereas the verification of pPDA and recursive Markov chains has been addressed
quite extensively in the literature [8, 13], their use in semantical equivalence checking has
so far been restricted to a study of (strong) probabilistic bisimulation [5]. Probabilistic
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automata [18] are an orthogonal extension of labelled transition systems with probabilities
and subsume both DTMCs and MDPs. They are used as semantical model of probabilistic
process algebras and constitute the core of PIOA, an input/output version that is frequently
used for describing randomized distributed algorithms. In this paper we study the decidab-
ility and complexity of checking (combined) strong simulation pre-order between pPDA and
finite-state probabilistic automata. Our motivation is that system specifications can often
be captured by a finite system, thus for many practical problems it is useful and sufficient to
check if a (possibly infinite) probabilistic system is semantically equivalent to a finite one.

Our approach to tackle the above problem is to attempt to lift techniques for related
problems in the non-probabilistic setting to the probabilistic one. The obvious candidate is
the result by Kučera and Mayr [14] stating that strong simulation pre-order between PDA
and finite-state systems (in both directions) is decidable in EXPTIME. Their proof technique
relies on the EXPTIME-completeness of model checking modal µ-Calculus against PDA.
As model checking PCTL over fully probabilistic PDA is undecidable [4], extending this
approach is however hopeless. Instead, we take an alternative route and extend the method
by Stirling [19, 20] for showing the decidability of bisimulation equivalence over PDA’s. This
extension will be non-trivial as (non-probabilistic) strong simulation pre-order is undecidable
over PDA’s [10]. Our technique enables us to show that probabilistic (combined) simulation
pre-order (in both directions) is in EXPTIME. The problem is decidable in PTIME if both
the number of control states of the pPDA and the size of the finite-state system are fixed. By
exploiting a hardness result in [14], we achieve that the considered problem is EXPTIME-
complete.

2 Preliminaries

2.1 Probabilistic Transition Systems
In this subsection we introduce the notion of probabilistic transition systems (pTS) which
corresponds to “simple probabilistic automata” defined in [18].

I Definition 1 (Probability Distribution). Let S be a countable set. A function µ : S → [0, 1]
is a probability distribution over S if

∑
s∈S µ(s) = 1. We say that µ is finite, if the set

bµc := {s ∈ S | µ(s) > 0} is finite, and µ(s) ∈ Q for all s ∈ S. Let D(S) (resp. Df(S))
denote the set of probability distributions (resp. finite probability distributions) over S.

The definition of probabilistic transition system is given as follows:

I Definition 2 (Probabilistic Transition System). A probabilistic transition system (pTS) T
is a triple (S,A,Ω) where S is a countable set of states, A is a countable set of actions and
Ω ⊆ S ×A×D(S) is a set of transitions. We define the following notations related to T :

derT (s, a) := {µ ∈ D(S) | (s, a, µ) ∈ Ω} for s ∈ S and a ∈ A.
DerT (s) :=

⋃
a∈A

⋃
µ∈derT (s,a)bµc for s ∈ S.

ActT (s) := {a ∈ A | derT (s, a) 6= ∅} for s ∈ S.
We write s a−→n µ ∈ Ω instead of (s, a, µ) ∈ Ω (where ‘n’ stands for “non-combined”). We
omit ‘T ’, ‘Ω’ in the notations above if the context is clear.

The following definition illustrates the notion of “combined transitions”, which is originally
introduced by Segala [18] to model stochastic adversaries.

I Definition 3 (Combined Transitions). Let (S,A,Ω) be a pTS. We write s a−→c µ (where
‘c’ stands for “combined”) if there exists a finite or infinite sequence {(µi, di)}i (where
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µi ∈ D(S) and di ∈ R≥0 for every i) such that: (i) s a−→n µi for all i; (ii)
∑
idi = 1; and (iii)

µ(s) =
∑
idi · µi(s) for all s ∈ S.

In this paper, we will also concern the notion of “finiteness” in a pTS.

I Definition 4. A pTS T is locally finite if for all s ∈ S and a ∈ A, der(s, a) is a finite
subset of Df(S). Further T is finite if T is locally finite and both S and A are finite.

2.2 Probabilistic Simulation
In this subsection we introduce the notion of probabilistic simulations which corresponds to
strong simulation and strong probabilistic simulation defined by Segala [18]. Below we fix a
pTS T = (S,A,Ω). The following definition originates from [12].

I Definition 5. [12] Let R ⊆ S × S. The binary relation R ⊆ D(S) × D(S) is defined as
follows: µRν iff there is a weight function w : S × S → [0, 1] such that:

for all s ∈ S,
∑
t∈S w(s, t) = µ(s);

for all t ∈ S,
∑
s∈S w(s, t) = ν(t);

for all (s, t) ∈ S × S, if w(s, t) > 0 then (s, t) ∈ R.
For the sake of simplicity, we write µRν instead of µRν.

In this paper, it is somewhat convenient to consider an equivalent definition of Definition 5.

I Definition 6. Let R ⊆ S×S. The binary relation R ⊆ D(S)×D(S) is defined as follows:
µRν iff there is a weight function w : bµc × bνc → [0, 1] such that:

for all s ∈ bµc,
∑
t∈bνc w(s, t) = µ(s);

for all t ∈ bνc,
∑
s∈bµc w(s, t) = ν(t);

for all (s, t) ∈ bµc × bνc, if w(s, t) > 0 then (s, t) ∈ R.

Then the definition of probabilistic simulation is given as follows, where vn (resp. vc)
corresponds to strong simulation (resp. strong probabilistic simulation) in [18], respectively.

I Definition 7 (κ-Simulation). Let κ ∈ {n, c}. A binary relation R ⊆ S×S is a κ-simulation
iff for all (s, t) ∈ R: (i) Act(s) = Act(t) and (ii) whenever s a−→n µ there is t a−→κ ν such that
µRν. The κ-similarity, denoted vκ, is the union of all κ-simulations.

By definition, one can verify that vκ is a κ-simulation. Below we define approximants of
κ-simulation. We use κ to indicate either ‘n’ or ‘c’.

I Definition 8. The family {vnκ}n∈N0 of approximations of vκ is inductively defined by:
v0
κ= {(s, t) ∈ S × S | Act(s) = Act(t)};

(s, t)∈vn+1
κ iff (s, t)∈v0

κ and whenever s a−→n µ there is t a−→κ ν such that µ vnκ ν.

The following property can be easily proved by induction on n.

I Lemma 9. For any n ∈ N0, vn+1
κ ⊆vnκ and vκ⊆vnκ.

Then the relationship between vκ and {vnκ}n∈N0 is clarified in the following lemma.

I Lemma 10. If the underlying pTS T is locally finite, then s vκ t iff s vnκ t for all n ∈ N0.

Proof. Define vωκ :=
⋂
n∈N0

vnκ. We prove that vωκ=vκ. “vκ⊆vωκ” follows directly from
Lemma 9. For “vωκ⊆vκ”, we prove that vωκ is a κ-simulation. Fix any (s, t)∈vωκ and
a ∈ A. Define R :=

⋃
µ∈derT (s,a)bµc×

⋃
ν∈derT (t,a)bνc. Then R is finite as T is locally finite.

Consider any (s′, t′) ∈ R. If (s′, t′) 6∈vωκ , then there is a minimal N(s′, t′) ∈ N0 such that
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(s′, t′)6∈vN(s′,t′)
κ . Define N = max{N(s′, t′) | (s′, t′) ∈ R\ vωκ} (where max ∅ = 0). Together

with Lemma 9, we have R∩ vNκ = R∩ vωκ . Since s vN+1
κ t, then for any s a−→n µ, there is

t
a−→κ ν such that µ vNκ ν. Then µ(vNκ ∩R)ν. Thus µ vωκ ν by R∩ vNκ = R∩ vωκ . J

In this paper we consider κ-similarity between two separate pTS’s. This is interpreted in
the standard way by taking the disjoint union of the two pTS’s.

2.3 Probabilistic Pushdown Automata
In this subsection we extend the fully probabilistic pushdown automata defined by Kučera
et al [13] to our setting.

I Definition 11 (Probabilistic Pushdown Automata). A probabilistic pushdown automaton
(pPDA) is a quadruple (Q,Γ, L,∆) where: Q is a finite set of control states; Γ is a finite set
of stack symbols; L is a finite set of labels; ∆ ⊆ (Q× Γ)× L×Df(Q× Γ∗) is a finite set of
transition rules. Instead of (pX, a, µ) ∈ ∆ (where p ∈ Q,X ∈ Γ) we write pX

a
� µ ∈ ∆,

and omit ‘∆’ if it is clear from the context.

Semantics of pPDA Let P = (Q,Γ, L,∆) be a pPDA. For any µ ∈ D(Q × Γ∗) and γ ∈ Γ∗,
the distribution µγ ∈ D(Q× Γ∗) is defined as follows: for any pα ∈ Q× Γ∗,

µγ(pα) =
{
µ(pβ) if α = βγ for some (unique) β ∈ Γ∗

0 otherwise

Then the pPDA P induces a locally finite pTS (S,A,Ω) with S = Q × Γ∗, A = L and
Ω = {pXγ a−→n µγ | pX

a
� µ ∈ ∆, γ ∈ Γ∗}. Here elements of the state set Q× Γ∗ are called

“configurations”. Note that pβγ a−→κ µ with β ∈ Γ+ iff pβ a−→κ µ
′ and µ = µ′γ for some µ′.

In this paper, we study the decidability and complexity of the following decision problems:
given a configuration pα of a pPDA P and a state f of a finite pTS F , decide whether
pα vκ f and whether f vκ pα, where κ ∈ {n, c}. We prove that both of these problems are
EXPTIME-complete.

3 Extended Stack Symbols

In this section we adopt and extend the method by Colin Stirling for PDA’s, which is called
“extended stack symbols” [19, 20], to our setting. Based on extended stack symbols, Stirling
presented a tableaux proof system that decides the bisimilarity between two PDA’s. Here
we establish extended stack symbols for probabilistic simulation. Then in Section 4 we
present a tableaux proof system demonstrating the EXPTIME-decidability of probabilistic
simulation between pPDA and a finite pTS. Our extended stack symbols will take a different
form from Stirling’s.

Below we fix a pPDA P = (Q,Γ, L,∆) and a finite pTS F = (F,A,Ω). For any sets
X ,Y, we denote Π[X ,Y] := X × Y ∪ Y × X .

I Definition 12 (Extended Stack Symbol). An extended stack symbol U is a function from
Q to 2F . The set of all extended stack symbols is denoted by E .

Intuitively, an extended stack symbol represents the behaviour of configurations with more
symbols on the stack and maps this to corresponding states in F . We now extend pPDA P

by setting its stack symbol set to Γ ∪ E . In the extension of P we do not modify ∆, thus a
configuration pUα with U ∈ E has no outgoing transitions.
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Let us compare Stirling’s extended symbols with ours. In [19, 20], an extended stack
symbol U is a function that maps a control state p to a configuration qα ∈ Q × Γ∗. Then
the semantics is rather straightforward: the extended configuration pU behaves exactly as
qα. However in our setting, U is much more syntactical: qU can be deemed as the set of all
f ∈ F such that f v qα (or qα v f , which depends on the context) for some α ∈ Γ+. For
example, consider pXα (where p ∈ Q, X ∈ Γ) and f ∈ F . If pXα v f then we expect that
pXU v f where U(q) := {g ∈ F | qα v g}, for arbitrary q ∈ Q. Analoguously if f v pXα

then we expect that f v pXU , where U(q) := {g ∈ F | g v qα} for arbitrary q ∈ Q. In this
way we reduce pXα to pXU with shorter length, which is the key to make the contruction
of our tableaux trees finite. Note that to talk about “pXU v f” or “f v pXU” we need to
extend simulation preorders to extended stack symbols, which will be captured by “extended
κ-simulations”. First we define extended configurations concerned in this paper.

I Definition 13 (Extended Configuration). Define C := Q× (Γ∗ · (E + ε)) and Ce := Q× E .

C is the set of extended configurations of concern: we only consider extended configurations
that contain at most one extended stack symbol at the end of the configuration. Note that
C\Ce = Q× (ε+ Γ+ · (E+ ε)) is the set of all configurations where the extended stack symbol
(if it occurs) is guarded by a non-empty sequence of (normal) stack symbols.

I Definition 14 (Extended κ-Simulation). Define
Re := {(qU, f) ∈ Ce × F | f ∈ U(q)} ∪ {(f, qU) ∈ F × Ce | f ∈ U(q)}

A relation R ⊆ Π[C, F ] is an extended κ-simulation iff for all (s, t) ∈ R
if (s, t) ∈ Π[Ce, F ] then (s, t) ∈ Re; and
if (s, t) ∈ Π[C\Ce, F ] then Act(s) = Act(t) and whenever s a−→n µ there is t a−→κ ν such
that µRν.

The extended κ-similarity, denoted �κ, is the union of all extended κ-simulations.

Next we extend simulation approximants to extended stack symbols.

I Definition 15. The family {�nκ}n∈N0 is inductively defined as follows:
�0
κ:= {(s, t) ∈ Π[C\Ce, F ] | Act(s) = Act(t)} ∪ Re;
�n+1
κ := {(s, t) ∈ Π[C\Ce, F ] | Act(s) = Act(t) and (∀s a−→n µ)(∃t a−→κ ν).(µ �nκ ν)} ∪ Re.

By similar proofs for vκ, we have the following two lemmas:

I Lemma 16. For any n ∈ N0, �n+1
κ ⊆�nκ and �κ⊆�nκ.

I Lemma 17. For any (s, t) ∈ Π[C, F ], s �κ t iff s �nκ t for all n ∈ N0.

The following theorem clarifies the relation between �κ and vκ.

I Theorem 18. For any (s, t) ∈ Π[Q× Γ∗, F ], s �κ t iff s vκ t.

Proof. It can be shown by induction on n that s �nκ t iff s vnκ t for all n ∈ N0. Then the
result follows from Lemma 10 and Lemma 17. J

Theorem 18 allows us to decide �κ instead of vκ.

4 Tableaux Proof System

In this section we demonstrate the EXPTIME-decidability of κ-similarity through a tableaux
proof system. Below we fix a pPDA P = (Q,Γ, L,∆) and a finite pTS F = (F,A,Ω). We
use p, q to range over Q, X,Y to range over Γ, a to range over A ∪ L, f, g to range over F ,
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U to range over E , and α, β, γ to range over Γ∗ · (E + ε). We extend P with extended stack
symbols as described in Section 3.

Due to Theorem 18, the decision problem for κ-similarity can be reformulated and sim-
plified as follows: Given a pair (s, t) ∈ Π[Q × Γ, F ], decide if s �κ t. We only consider
elements in Q× Γ since for any pXα ∈ Q× Γ∗, we can always add a new control state pinit

and a new stack symbol Xinit and augment ∆ with the set {pinitXinit
a
� µα | pX

a
� µ}, so

that pinitXinit mimics pXα.

The Tableaux System We use tableaux to solve this problem along the lines of [19, 20]. A
tableaux is a goal-directed proof system that consists of a set of goals Goals and a set RULE
of rules which is essentially a decidable subset of Goals × Pf(Goals), where Pf(Goals) is the
set of finite subsets of Goals. Graphically, a rule (goal, {goal1, . . . , goaln}) ∈ RULE can be
viewed as a proof step:

goal
goal1 . . . goaln

where goal is what currently is to be proved and goal1 . . . goaln are the subgoals what it
reduces to. Each rule is backward sound: in this instance if all goali are true then so is goal.
An application of a rule (goal, {goal1, . . . , goaln}) to a goal goal is to make all the subgoals
goal1 . . . goaln children of goal. Then a tableaux tree is a proof tree built from a specified
goal (the root of the tree) and repeated application of rules. The leaves of a tableaux tree are
divided into terminal and nonterminal leaves. Terminal leaves are divided into successful
and unsuccessful leaves. A tableaux tree is successful iff it is finite and all its leaves are
successful.

Below we formulate our tableaux proof system. Given a (ordinary) rooted tree T , we
define V (T ) to be the set of vertices of T , and lf(T ) ⊆ V (T ) to be the set of leaves of T .

I Definition 19 (Goals). Define Goals := Π[C, F ]. A goal (pα, f) ∈ Goals (resp. (f, pα) ∈
Goals) is also written as pα � f (resp. f � pα), which corresponds to the proof analogue of
pα �κ f (resp. f �κ pα). Below we define the notion of basic successfulness of goals:
A goal s � t is basically successful iff: A goal s � t is basically unsuccessful iff:
1. s � t = pU � f such that f ∈ U(p); or 1. s � t = pU � f such that f 6∈ U(p); or
2. s � t = f � pU such that f ∈ U(p); or 2. s � t = f � pU such that f 6∈ U(p); or
3. (s, t) ∈ Π[C\Ce, F ] and Act(s) = Act(t) = ∅. 3. (s, t) ∈ Π[C\Ce, F ] and Act(s) 6= Act(t).

I Definition 20 (Proof Tree). A proof tree is a pair (T,L) for which T is a (possibly infinite)
rooted tree and L : V (T )→ Goals is a labeling function. Denote L(T ) be the range of L. A
leaf v ∈ lf(T ) is successful iff either L(v) is basically successful, or there is v′ ∈ V (T ) such
that v′ 6= v, v′ lies on the path from the root of T to v and L(v′) = L(v). A leaf v ∈ lf(T )
is unsuccessful iff L(v) is basically unsuccessful. A leaf v ∈ lf(T ) is terminal if either v is
successful or unsuccessful; otherwise it is non-terminal.

Note that if v with L(v) = (s, t) is non-terminal, then (s, t) ∈ Π[C\Ce, F ] and Act(s) =
Act(t) 6= ∅. Below we define rules in our tableaux system. There are two kinds of rules in
our tableaux system: UNF (Unfolding) and RED (Reduction).

I Definition 21 (Rules). UNFκ ⊆ Goals× Pf(Goals) is defined by: (s � t,G) ∈ UNFκ iff
s � t ∈ Π[Q× (Γ · (E + ε)), F ] and Act(s) = Act(t) 6= ∅;
G ⊆ Der(s)×Der(t) and for any s a−→n µ, there is t a−→κ ν such that µGν.

REDκ ⊆ Goals× Pf(Goals) is defined as REDa
κ ∪ REDb

κ, where
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(s � t,G) ∈ REDa
κ iff s � t = pXα � f such that

Act(pX) = Act(f) 6= ∅ and α ∈ Γ+ · (E + ε); and
G = {pXU � f} ∪ {qα � g | q ∈ Q, g ∈ U(q)} for some U ∈ E .

(s � t,G) ∈ REDb
κ iff s � t = f � pXα such that

Act(f) = Act(pX) 6= ∅ and α ∈ Γ+ · (E + ε); and
G = {f � pXU} ∪ {g � qα | q ∈ Q, g ∈ U(q)} for some U ∈ E .

We denote RULEκ := UNFκ ∪ REDκ

Intuitively, a rule of UNFκ expands a goal s � t one-step further (cf. Lemma 25) and a rule
of REDκ reduce a goal pXα � f (resp. f � pXα) to pXU � f (resp. f � pXU) together
with all information at α encoded in U . Here we use ‘a’ to indicate the case s � t ∈ C × F
and ‘b′ to indicate the case s � t ∈ F × C; we will continue using this in the sequel.

The following definition illustrates the application of rules.

I Definition 22 (Rule Application). Suppose B = (T,L) be a proof tree, v ∈ lf(T ) and
(gl,G) ∈ RULEκ such that v is non-terminal and L(v) = gl. The proof tree (T ′,L′) after the
application of (gl,G) at v, denoted Bv[gl,G], is defined as follows: T ′ = T∪{(v, v′)|v′ ∈ V new}
and L′ = L ∪ Lnew, where V new ∩ V (T ) = ∅ and Lnew a bijection from V new to G.

Then the set of tableaux trees which is closed under rule application is defined as follows.

I Definition 23 (Tableaux Trees). Let s � t ∈ Π[C, F ]. The set of tableaux trees rooted at
s � t, denoted Tab[s � t], is the smallest set satisfying the following conditions:

The proof tree with only a single root labeled with s � t belongs to Tab[s � t].
If B = (T,L) ∈ Tab[s � t], then Bv[gl,G] ∈ Tab[s � t] for all v ∈ lf(T ), (gl,G) ∈ RULEκ
such that v is non-terminal and L(v) = gl.
If there is an infinite sequence {(Tn,Ln)}n∈N0 with each (Tn,Ln) ∈ Tab[s � t] such that
Tn ⊆ Tn+1 and Ln ⊆ Ln+1 for all n, then (

⋃
n Tn,

⋃
n Ln) ∈ Tab[s � t].

The tableaux trees have the following finiteness property which can be proved inductively
from Definition 23.

I Lemma 24. For each α ∈ Γ∗, we define Suffix(α) := {α′ | α′ is a suffix of α} (here ε is a
suffix of any α ∈ Γ∗). Let Suffix :=

⋃
{Suffix(α) | ∃q ∈ Q∃pX

a
� µ ∈ ∆.(qα ∈ bµc)}. Define

Ga
∗ = {pβα � f | β ∈ Γ ∪ Suffix, α ∈ E ∪ {ε}, p ∈ Q, f ∈ F}
Gb
∗ = {f � pβα | β ∈ Γ ∪ Suffix, α ∈ E ∪ {ε}, p ∈ Q, f ∈ F}

Then if s � t ∈ Ga
∗ , then for any (T,L) ∈ Tab[s � t], L(T ) ⊆ Ga

∗ . Analoguously if s � t ∈ Gb
∗ ,

then for any (T,L) ∈ Tab[s � t], L(T ) ⊆ Gb
∗ .

Below we prove that rules of UNFκ and REDκ are backward sound.

I Lemma 25. Let (s � t,G) ∈ UNFκ. If s′ �nκ t′ for all s′ � t′ ∈ G, then s �n+1
κ t.

Proof. Directly from Definition 15 and Definition 21. J

I Lemma 26. Let (pXα � f, {pXU � f} ∪ Ga
α,U ) ∈ REDa

κ where

Ga
α,U := {qα � g | q ∈ Q, g ∈ U(q)}.

If pXU �n+1
κ f and qα �nκ g for all qα � g ∈ Ga

α,U , then pXα �n+1
κ f .
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Proof. We prove by induction on n that for all pγα � f ∈ Goals with γ ∈ Γ+ it holds that
for any U ∈ E , if pγU �n+1

κ f and qα �nκ g for all qα � g ∈ Ga
α,U , then pγα �n+1

κ f .
Base Step: n = 0. Since pγU �1

κ f , for any pγ
a−→n µ, there is f a−→κ ν such that

µU �0
κ ν. Let w : bµUc × bνc → [0, 1] be a weight function for µU �0

κ ν (cf. Definition 6).
We define a weight function w′ : bµαc × bνc → [0, 1] by: w′(qβα, g) = w(qβU, g) for all
qβ ∈ bµc (note that β ∈ Γ∗) and g ∈ bνc. We prove that w′ is a weight function for
µα �0

κ ν. The first two conditions in Definition 6 are straightforward to verify. For the
third condition, suppose w′(qβα, g) > 0 with qβ ∈ bµc. Then w(qβU, g) > 0 and hence
qβU �0

κ g. If β 6= ε then by Definition 15 Act(qβ) = Act(g) and we have qβα �0
κ g. If β = ε

then g ∈ U(q) and we have qα � g ∈ Ga
α,U ; thus qα �0

κ g. In either case qβα �0
κ g. So

w′ is a weight function for µα �0
κ ν. Also from pγU �1

κ f we have Act(pγα) = Act(f). So
pγα �1

κ f .
Inductive Step: Suppose pγU �n+2

κ f and qα �n+1
κ g for all qα � g ∈ Ga

α,U . We
prove that pγα �n+2

κ f . Since pγU �n+2
κ f , for any pγ a−→n µ, there is f a−→κ ν such that

µU �n+1
κ ν. Consider any (qβU, g) ∈�n+1

κ with β ∈ Γ∗: if β = ε then qβα �n+1
κ g since

qα � g ∈ Ga
α,U ; if β ∈ Γ+ then we have qβα �n+1

κ g by induction hypothesis. So by the
same construction of weight function in the base step we have µα �n+1

κ ν. Also we have
Act(pγα) = Act(f). Thus pγα �n+2

κ f . J

Similarly we can prove the following analogue to Lemma 26.

I Lemma 27. Let (f � pXα, {f � pXU} ∪ Gb
α,U ) ∈ REDb

κ where

Gb
α,U := {g � qα | q ∈ Q, g ∈ U(q)}.

If f �n+1
κ pXU and g �nκ qα for all g � qα ∈ Gb

α,U , then f �n+1
κ pXα.

Based on Lemma 25 through Lemma 27, we obtain the soundness of our tableaux system:

I Proposition 28. If there is a successful tableaux tree rooted at s � t, then s �κ t.

Proof. We only prove the case when s � t ∈ C × F , the other case is similar. The proof
is by contraposition. Let p0α0 � f0 = s � t. Suppose (T,L) is a successful tableaux tree
rooted at p0α0 � f0 however p0α0 6�κf0. Then by Lemma 17, there is n0 ∈ N0 such that
p0α0 �n0

κ f0 however p0α0 6�n0+1
κ f0. Note that we have (p0α0, f0) ∈�0

κ or otherwise the goal
p0α0 � f0 would be unsuccessful. By the backward soundness of UNFκ and REDκ, if the
rule applied to p0α0 � f0 belongs to UNFκ, then there is a child p1α1 � f1 of p0α0 � f0
such that p1α1 6�n0

κ f1; and if the rule applied to p0α0 � f0 belongs to REDa
κ, then either

pXU 6�n0+1
κ f or p′α 6�n0

κ f
′ for some p′α � f ′ ∈ Ga

α,U with corresponding X, U and α. In
either case there is a child p1α1 � f1 of p0α0 � f0 such that p1α1 6�n0+1

κ f1. Let n1 ∈ N0 such
that p1α1 6�n1+1

κ f1 and p1α1 �n1
κ f1. Then n1 ≤ n0. In this way we can recursively construct

a finite sequence {(piαi � fi, ni)}1≤i≤k such that piαi 6�ni+1
κ fi and piαi �ni

κ fi, and the last
goal pkαk � fk is a successful leaf. Since pkαk 6�nk+1

κ fk, pkαk�κfk cannot be basically
successful. So the only possibility is that there is j < k such that pkαk � fk = pjαj � fj .
Consider the step from pk−1αk−1 � fk−1 to pkαk � fk:

if the step is due to UNFκ, then nk < nk−1 ≤ nj ;
if the step is due to REDa

κ and pkαk � fk ∈ Ga
α,U with corresponding α and U , then

nk < nk−1 ≤ nj ;
if the step is due to REDa

κ and pkαk � fk = pXU � f with corresponding X and U ,
then pk−1αk−1 � fk−1 6= pXU � f and so j < k − 1. Then from j to j + 1 the rule is a
UNFκ which implies nj+1 < nj , hence nk < nj .
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Thus in either case nk < nj . But then we have pkαk 6�nk+1
κ fk and pkαk �

nj
κ fk. Contradic-

tion. J

To show the completeness of the tableaux, we first prove a useful lemma below.

I Lemma 29. Suppose pXα �κ f and U be an extended symbol such that U(q) := {g ∈ F |
qα �κ g} for all q ∈ Q. Then pXU �κ f .

Proof. We prove that R := {(qβU, g) | q ∈ Q, β ∈ Γ∗, qβα �κ g} is an extended κ-
simulation. Consider any (qβU, g) ∈ R. If β = ε, then qα �κ g and thus g ∈ U(q); then
(qU, g) ∈ Re. On the other hand, suppose that β ∈ Γ+. Then Act(qβU) = Act(qβα) =
Act(g). Further for any qβ a−→n µ, by qβα �κ g there is g a−→κ ν such that µα �κ ν. We
prove that µURν. By µα �κ ν, there is a weight function w : bµαc×bνc → [0, 1] for µα and
ν. We construct a function w′ : bµUc × bνc → [0, 1] by: w′(q′γU, g′) = w(q′γα, g′) for all
q′γ ∈ bµc and g′ ∈ bνc (note that γ ∈ Γ∗). Then we show that w′ is a weight function for µU
and ν. The first two conditions in Definition 6 are straightforward to verify. For the third
condition, consider any q′γ ∈ bµc and g′ ∈ bνc: if w′(q′γU, g′) > 0, then w(q′γα, g′) > 0 and
hence q′γα �κ g′; then by definition we obtain that (q′γU, g′) ∈ R. Thus R is an extended
κ-simulation. J

Similarly, we can obtain the following lemma:

I Lemma 30. Suppose f �κ pXα and U be an extended symbol such that U(q) := {g ∈ F |
g �κ qα} for all q ∈ Q. Then f �κ pXU .

Then the completeness of the tableaux system is as follows:

I Proposition 31. Let s � t ∈ Ga
∗ ∪ Gb

∗ . If s �κ t then there is a successful tableaux tree
rooted at s � t.

Proof. We only prove the case when s � t ∈ Ga
∗ , the other case is similar. Define

Tab′[s � t] := {(T,L) ∈ Tab[s � t] | T is finite and s′ �κ t′ for all s′ � t′ ∈ L(T )}

Below we recursively construct a sequence {Bn}n with each Bn ∈ Tab′[s � t].
Initially B0 is the tableaux tree which contains only a fixed root labeled with s � t.

Then suppose Bn ∈ Tab′[s � t] is constructed. If all leaves s′ � t′ of Bn are terminal (and
successful since s′ �κ t′), then the construction is ended. Otherwise, we fix arbitrarily a
non-terminal leaf v of Bn and the construction of Bn+1 is divided into two cases below:
1. L(v) = pXα � f with α ∈ E ∪ {ε}. Then Bn+1 = Bnv [L(v),G] with

G = {(qβ, g) ∈ Der(pXα)×Der(f) | qβ �κ g}.
2. L(v) = pXα � f with α ∈ Γ+ · (E + ε). Then Bn+1 = Bnv [L(v),G] with

G = {pXU � f} ∪ Ga
α,U

where U is defined by: U(q) = {g ∈ F | qα �κ g} for all q ∈ Q. Following Lemma 29,
we obtain pXU �κ f .

Then in either case Bn+1 ∈ Tab′[s � t]. The construction of {Bn}n ends in finitely many
steps. This is shown by contraposition. Suppose this is not the case. Denote Bn = (Tn,Ln)
and B = (

⋃
n Tn,

⋃
n Ln). Then B is an infinite finitely-branching proof tree. Thus by

König’s Lemma there is an infinite path in B. However, by Lemma 24 on such infinite path
there must be v, v′ with v 6= v′ such that L(v) = L(v′). By Definition 20, either v or v′ is
successful, thus the construction should end at v or v′. Contradiction. Then the tableaux
tree Bl which is the last element of {Bn}n is a successful tableaux tree. J
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Below we illustrate our main result, where we use a refinement technique to achieve the
EXPTIME-upperbound. We define |P | (resp. |F|) to be the integrated size of Q,Γ, L,∆
(resp. F,A,Ω).

I Theorem 32. The problem whether s �κ t for a given (s, t) ∈ Π[Q× Γ, F ] is decidable in
O(H(|P |, |F|) · 8|F ||Q|) time where H is a fixed multivariate polynomial. Thus, if |Q| and
|F | are fixed, then the problem can be decided in PTIME.

Proof. We assume that s � t ∈ (Q × Γ) × F and κ = c, the other cases are similar. We
present a refinement algorithm to decide if s �c t. Formally, we construct a finite decreasing
sequence of sets of goals {Gn}n where the last element Gm is expected to contain all the
correct goals in Ga

∗ . The construction is as follows: Initially G0 = Ga
∗ . Then Gn+1 ⊆ Ga

∗
is constructed from Gn as follows: s � t ∈ Gn+1 iff either s � t is basically successful,
or s � t ∈ Gn and there is (s � t,G) ∈ RULEc such that G ⊆ Gn. Here note that
|Ga
∗ | = O(|P |3|F |2|F ||Q|).
The computation from Gn to Gn+1 can be done in O(H ′(|P |, |F|) ·4|F ||Q|) time where H ′

is a fixed multivariate polynomial. Given s � t ∈ Gn, we can check whether s � t ∈ Gn+1 as
follows: If s � t = pXα � f with α ∈ Γ+ · (E + ε), we check if {pXU � f} ∪ Ga

α,U ⊆ Gn for
some U ∈ E . If s � t = pXα � f with α ∈ E ∪ {ε}, we check if for any pXα a−→n µ, there
is f a−→c ν such that µGnν; this can be checked by checking if the following linear inequality
system (with variables {xν}ν∈der(f,a) and {y(s′,t′)}(s′,t′)∈bµc×F ) has a solution:∑

ν∈der(f,a) xν = 1, and xν ≥ 0 for all ν ∈ der(f, a).∑
t′∈F y(s′,t′) = µ(s′) for all s′ ∈ bµc.∑
s′∈bµc y(s′,t′) =

∑
ν∈der(f,a) xν · ν(t′) for all t′ ∈ F .

y(s′,t′) ≥ 0 for all (s′, t′) ∈ bµc × F , and y(s′,t′) = 0 for all (s′, t′) 6∈ Gn.
This can be solved in polynomial time in |P | and |F| [17].

Since Gn+1 ⊆ Gn there is m ≤ |Ga
∗ | such that Gm+1 = Gm. We show that for any

s � t ∈ Ga
∗ , s �c t iff s � t ∈ Gm. Suppose s �c t. Let (T,L) ∈ Tab′[s � t] be the tableaux

tree constructed in the proof of Proposition 31. It follows by induction on n that L(T ) ⊆ Gn
for all n ∈ N0. Thus s � t ∈ Gm. Suppose now that s � t ∈ Gm. Since for any s′ � t′ ∈ Gm
which is not basically successful, there is (s′ � t′,G) ∈ RULEc such that G ⊆ Gm. Thus we
can iteratively apply rules to the root s � t and form a successful tableaux tree similar to
the construction in the proof of Proposition 31. Thus, s �c t by Proposition 28. J

I Remark. The major difference between our tableaux proof system and Colin Stirling’s [19,
20] is at the RED (Reduction) rules: here we need to tackle extended stack symbols in our
setting, which is different from Stirling’s version. Another difference is that we are able to
derive a primitive upperbound by a refinement technique, which is not feasible in [19, 20].

5 EXPTIME-Hardness

In this section we show that deciding vκ is EXPTIME-hard, whenever κ = n or κ = c.
We prove this by providing a rather straightforward reduction from the non-probabilistic
EXTPIME-hardness result obtained in [14]. Our main efforts lie in the treatment of the
additional “Act(s) = Act(t)” condition in Definition 7 which is not involved in the definition
of non-probabilistic simulation preorder. First we define a variation of vκ.

I Definition 33. Let T = (S,A,Ω) be a pTS. Define 4κ to be the union of all binary
relations R ⊆ S × S such that for any (s, t) ∈ R, whenever s a−→n µ there is t a−→κ ν with
µRν.
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In other words, 4κ is defined in a similar way of �κ, however without the “Act(s) = Act(t)”
requirement. Then we embed non-probabilistic transition systems into pTS’s.

I Definition 34. A distribution µ is Dirac if |bµc| = 1. The Dirac distribution µ with
bµc = {s} is also written as δ[s]. A pTS (S,A,Ω) is Dirac if µ is dirac for any (s, a, µ) ∈ Ω.
A pPDA (Q,Γ, L,∆) is Dirac if µ is Dirac for any pX

a
� µ ∈ ∆.

Note that a Dirac pPDA induces a Dirac pTS. Dirac pTS’s correspond to labeled transition
systems without probability. It is easy to see that 4n is the non-probabilistic simulation
preorder over labeled transition systems. By [14], deciding 4n is EXPTIME-hard between
Dirac pPDA and finite Dirac pTS in both direction. Below we reduce 4κ to vκ under Dirac
pTS’s. The following proposition allows us to focus solely on the case κ = n.

I Proposition 35. If the underlying pTS T = (S,A,Ω) is Dirac, then 4n=4c and vn=vc.

Now we reduce 4n between a Dirac pPDA P = (Q,Γ, L,∆) and a Dirac finite pTS F =
(F,A,Ω), to vn between a Dirac pPDA (Q′,Γ′, L,∆′) and a Dirac finite pTS (F ′, A,Ω′).
The reduction is as follows:
1. Q′ = Q ∪ {p⊥} and F ′ = F ∪ {f⊥} where p⊥ 6∈ Q and f⊥ 6∈ F .
2. Γ′ = Γ ∪ {Z⊥} where Z⊥ 6∈ Γ is a new bottom stack symbol.
3. ∆′ = ∆ ∪ {(pX, a, δ[p⊥]) | p ∈ Q,X ∈ Γ′, a ∈ L ∪A}
4. Ω′ = Ω ∪ {(f, a, δ[f⊥]) | f ∈ F, a ∈ L ∪A}.
It is not hard to prove that for all pα ∈ Q × Γ∗ and f ∈ F , pα 4n f (resp. f 4n pα) iff
pαZ⊥ vn f (resp. f vn pαZ⊥). Thus deciding vn between Dirac pPDA’s and Dirac finite
pTS’s is EXPTIME-hard. Then:

I Theorem 36. Deciding vn and vc between probabilistic pushdown automata and finite
probabilistic transition systems in both directions is EXPTIME-complete.

6 Conclusion

We have shown that deciding probabilistic simulation preorder between a probabilistic
pushdown automata (Q,Γ, L,∆) and a finite probabilistic transition system (F,A,Ω) is
EXPTIME-complete. This result holds for both directions. Further if |Q| and |F | are
fixed, then the problem is decidable in polynomial time. These results extend their non-
probabilistic counterparts in [14]. We obtain these results by extending Colin Stirling’s
method [19, 20] which is originally used to demonstrate the decidability of bisimulation over
pushdown automata. Our extension is nontrivial and has a different form from the original
one. A future direction is to explore if this method can be extended to weak semantical
equivalences such as weak probabilistic bisimulation or weak probabilistic simulation [3, 18].
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