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Abstract
We present two recursive techniques to construct compressed sensing schemes that can be “de-
coded" in sub-linear time. The first technique is based on the well studied code composition
method called code concatenation where the “outer" code has strong list recoverability proper-
ties. This technique uses only one level of recursion and critically uses the power of list recovery.
The second recursive technique is conceptually similar, and has multiple recursion levels. The
following compressed sensing results are obtained using these techniques:

(Strongly explicit efficiently decodable `1/`1 compressed sensing matrices) We present a strongly
explicit (“for all") compressed sensing measurement matrix with O(d2 log2 n) measurements
that can output near-optimal d-sparse approximations in time poly(d logn).
(Near-optimal efficiently decodable `1/`1 compressed sensing matrices for non-negative sig-
nals) We present two randomized constructions of (“for all") compressed sensing matrices with
near optimal number of measurements: O(d logn log logd n) and Om,s(d1+1/s logn(log(m) n)s),
respectively, for any integer parameters s,m ≥ 1. Both of these constructions can output near
optimal d-sparse approximations for non-negative signals in time poly(d logn).

To the best of our knowledge, none of the results are dominated by existing results in the liter-
ature.
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1 Introduction

Compressed sensing [4,7] is a sparse recovery problem that has seen a surge in recent research
activity due to a wide variety of practical applications [8]. (The literature is vast: we will
only refer to the very closely related work in this paper. The reader is referred to the
survey [8] and the references therein for more details.) Compressed sensing (CS) has two
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components. The combinatorial part is to design a t×N measurement matrix M (where
typically t� N) such that, given the “measurements" Mx of any signal x ∈ RNone needs to
recover a sparse approximation of x. More precisely the algorithmic task is as follows. Given
the measurements y = Mx+ ν which was contaminated with a noise vector ν, the `p/`p CS
problem is to compute a vector x̂ ∈ RN (ideally x̂ is d-sparse or O(d)-sparse, i.e. having at
most d or O(d) non-zero entries for some parameter 1 ≤ d � N) such that the following
conditions holds: ‖x− x̂‖p ≤ C · ‖x− x∗d‖p +C ′ · ‖ν‖p, where x∗d is the vector x with all but
its d highest-magnitude components zeroed out. In the above C ≥ 1 is the approximation
factor. Ideally, we would like to achieve C = 1 + ε for any ε > 0. The noise dependency C ′
should also be as small as possible. Typically, we consider p = 1 in the “for all" case (i.e. the
same matrix has to work for every signal) and p = 2 in the “for each" case (i.e. a distribution
on matrices that works with high probability for each signal). This paper will concentrate
on the `1/`1 for all problem.

The primary objective in compressed sensing is to minimize the number of measurements
t. It is known that t = Θ(d log(N/d)) measurements are both necessary and sufficient [3].
The second objective is to “decode" (i.e. compute x̂ given y = Mx) efficiently. It was shown
recently that for the `1/`1 for all problem, decoding can be done in time O(N logN) while
still attaining the optimal O(d log(N/d)) number of measurements [14].

While near linear time decoding is fairly efficient, it is natural to wonder whether one could
decode in sub-linear time. In particular, can we achieve decoding with time poly(d, logN)?
Note that when d is small, then poly(d, logN) could be an exponential improvement over
Õ(N). Given the wide applicability of compressed sensing, this is an interesting theoretical
question in itself. In particular, compressed sensing is directly related to data streaming [16],
where poly(d, logN)-time decoding is crucial.

For the `1/`1 for all problem, sublinear time decoding for compressed sensing has been
considered by Gilbert et al. [9]. They achieve a poly(t) time decoding with a sub-optimal
t = O(d logcN) number of measurements (where c ≥ 4 is some absolute constant). Their
result has a few more shortcomings: (i) their measurement matrix M is randomized; and (ii)
measurement noise was not handled. Indyk and Ruzic [14] overcome these drawbacks but
they can only obtain near-linear time decoding. Very recently, Porat and Strauss [19] obtain
the optimal number of measurements with sub-linear decoding time. However, the decoding
time is always polynomial in N .

Our Results. We have three results for the sub-linear time decodable `1/`1 for all
problem. (We clarify that without the sub-linear time decoding aspect, better results
especially w.r.t. the number of measurements are known.) The first result is a CS matrix that
uses t = O(d2 log2N) measurements. This is an improvement over [9] only for d = o(log2N).
However, our scheme has a couple of advantages: (i) the matrixM is strongly explicit (i.e. any
entry in the matrix can be computed in poly(logN) time) and (ii) it can handle measurement
noise. Our construction and decoding schemes are arguably much simpler: the matrix is the
classic group testing matrix based on Reed-Solomon codes [15].

Our next two results only work for the case when the original signal x is non-negative
(the first result works for arbitrary signals). While the constraint is restrictive, it does hold in
some applications, such as when x is an image pixel vector, or when we address super-imposed
coding problems under multiple-access adder channels [1]. The second result is a randomized
CS scheme for non-negative signals with t = O(d logN log logdN) measurements along with
poly(t) decoding time. However, this result cannot handle measurement noise. The third res-
ult is a randomized CS scheme for non-negative signals with t = O(d1+1/s logN(log(m)N)s),
for any integer parameters s,m ≥ 1 where we have suppressed some terms that depend
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only on s and m and log(m)(·) denotes the log(·) operator applied m times. Though the
number of measurements is worse, this scheme can handle measurement noise and is efficiently
decodable.

All of our CS results obtain an approximation ratio of C = 1 + ε for arbitrary ε > 0, with
the dependence of t on ε matching the best known quadratic guarantee of [14].

Our Techniques. The strongest point of our paper is probably its conceptual simplicity.
There is a generic decoding framework that has been used many times before: e.g.

in [6, 9, 14] for CS and in [13,17] for group testing. The decoding has two main steps. The
first step, called filtering, approximately identifies the locations of the “heavy hitters" in x,
whose omission from the output would likely result in a large approximation factor. The
second step, called estimation, assigns values to these coordinates to obtain x̂. The final CS
matrix is obtained by vertically stacking the filtering and the estimation matrices.

The main insight in sublinear time decodable schemes in this paper (and in [13,17]) is
two-fold. The first observation is that many existing estimation algorithms (e.g., [9, 14,19])
will work in (near) linear time in |S| if given a set S ⊆ [N ] of coordinates which do not miss
too much heavy hitter mass. Thus, to get a sublinear time decoding algorithm, it would be
sufficient to compute S in the filtering stage with |S| = poly(d, logN) in time poly(d, logN).
The second observation is that, by taking advantage of the fact that |S| can be larger than d,
we can design the filtering matrix with about O(d logN) measurements.

The main technical contribution of this paper is in the filtering step.
Let’s start with the O(d1+1/s logN(log(m)N)s) `1/`1 for each result. In this case we use

only one level of recursion. In particular, we use a (n, k)q code1 to “hash" each of the N
coordinates of x into nq “buckets" n times. (In particular, if the ith codeword in the jth
position has a symbol β, where i ∈ [N ], j ∈ [n], β ∈ [q], then the jth copy of xi goes to the
(j, β) bucket.) Then we use another filtering scheme on each of the n chunks of q buckets
corresponding to each position in the codeword. Three things are in our favor: (i) We can
pick q � N , which means we can use a “wasteful" filtering scheme, such as the identity
matrix, on each of n chunks of buckets; (ii) Since x is non-negative it is not too hard to show
that a heavy hitter in x is likely “contained" in a heavy hitter of the hashed-down domain of
size q; (iii) A simple Markov argument shows that if we pick a large enough number of heavy
hitters in the domain of size q, then a lot of non-heavy hitters in x will not suddenly become
heavy hitters in the smaller domain due to collisions with other non-heavy hitters in x. This
implies that in sub-linear time, we can get for each of the n chunks of buckets, a small list of
possible bucket locations that the heavy hitters in x will reside. (A similar construction was
used for group testing by the authors in [17].)

In coding terminology, the remaining problem is the following: for every i ∈ [n], given a
small subset Si ⊆ [q], we want to output all codewords (c1, . . . , cn) such that ci ∈ Si for every
i ∈ [n]. Using a simple Markov argument one can get a similar result with measurement
noise except we’ll need to work with the weaker condition that ci ∈ Si for at least n/2 values
of i ∈ [n]. It turns out that this problem is exactly the problem of list recovery (cf. [10]). The
recent work of Parvaresh and Vardy [18] leads to excellent list recoverable codes that can
perform the task above algorithmically in time poly(n) (which in our setting of parameters
is poly(t)). However, these codes have too large a q for our purposes.

Fortunately, if we recursively combine several families of Parvaresh-Vardy codes (via a
well-known code composition technique called “code concatenation"), then we get codes over

1 I.e., we use a code with N = qk codewords each of which is a vector in [q]n. See Section 2 for more
details on coding terminology/definitions.
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acceptably small q that still have acceptable list recoverability. Typically, code concatenation
is done with two different families of codes while ours does it with the same family.

The O(d logN log logdN) result follows by a different recursive construction which has
multiple recursive levels. (Similar construction was again used for group testing by the
authors in [17].) Here is the main idea behind the construction. Let us consider the simple
case where by a simple hashing we map the N coordinates of x into two domains of size

√
N

each. The way we do this is hashing all coordinate indices that agree in the first logN/2
bits into one bucket (and we similarly do this for the last logN/2 bits). Now recursively
we obtain sub-linear time decodable filtering schemes that work on domains of size

√
N . In

other words, we will get two lists S1 and S2 which will contain the first and second logN/2
bits of the indices of the heavy hitters of x respectively. Note that all the indices of the heavy
hitters are contained in the set S1 × S2. To complete the recursive step, we use a filtering
scheme that can exploit the fact that all the heavy hitters are contained in S1 × S2. (This is
similar to special property of the estimation algorithms mentioned earlier.) For the base case
of the recursion, we can use pretty much any filtering scheme (including the identity matrix).
For the recursive steps, we use a filtering scheme using the ideas outlined in the previous
paragraph but with a random code (which has excellent list recoverability) instead of the
Parvaresh-Vardy type codes. As mentioned earlier this scheme cannot handle measurement
noise. However, this scheme has another nice property: unlike the other construction, this
one allows for a tradeoff between the decoding time and the number of measurement. Other
than the claimed result, one can also obtain sublinear-time decoding (though not as efficient
as poly(t) decoding time) while being within a constant factor of the optimal number of
measurements.

Our result for general signals follows the list recoverability paradigm above but with
Reed-Solomon codes instead of Parvaresh-Vardy codes. This leads to worse number of
measurements but Reed-Solomon codes have better “distance" properties than Parvaresh-
Vardy codes, which allows us to use the same matrix for both filtering and estimation. This
allows us to have a strongly explicit construction, whereas the O(d1+1/s logN(log(m)N)s)
result is randomized as the estimation step is randomized (while the filtering step is explicit).
The estimation procedure is also extremely simple: just take the median of the measurements
(of a filtered heavy hitter). We do not need the “pursuit" steps as in related prior works.

Even though list recoverable codes have been used to construct good group testing
matrices [5, 13], to the best of our knowledge, this is the first work to explicitly use list
recoverable codes in compressed sensing. Since sufficiently strong list recoverable codes are
known to imply good expanders (cf. [12]), the work of [14] (and related papers) have used
list recovery implicitly. However, the direct use of list recovery in our work leads to better
parameters.

2 Coding Theory Facts

A code of dimension k and block length n over an alphabet Σ is a subset C ⊆ Σn of size |Σ|k.
The rate of such a code equals k/n. Each vector in C is called a codeword. The distance of
C is the minimum number of positions that any two distinct codewords differ in. A code
with dimension k, block length n and distance ∆ over Σ will be compactly referred to as an
(n, k,∆)|Σ|-code (or simply (n, k)|Σ|-code if we do not care about its distance). A code C
over Fq is called a linear code if C is a linear subspace of Fnq . A linear code with dimension
k, block length n and distance ∆ over Fq will be compactly referred to as an [n, k,∆]q- (or
simply [n, k]q-) code.
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A concatenated binary code has an outer code Cout : [q]k1 → [q]n1 over a large alphabet of
size q = 2k2 , and a binary inner code Cin : {0, 1}k2 → {0, 1}n2 . The encoding of a message
in ({0, 1}k2)k1 is natural. First, it is encoded with Cout and then Cin is applied to each of
the outer codeword symbols. The concatenated code is denoted by Cout ◦ Cin.

Let `, L ≥ 1 be integers and let 0 ≤ α ≤ 1. A q-ary code C of block length n is called
(α, `, L)-list recoverable if for every sequence of subsets S1, . . . , Sn ⊆ [q] such that |Si| ≤ ` for
every i ∈ [n], there exists at most L codewords (c1, . . . , cn) such that for at least αn positions
i, ci ∈ Si. A (1, `, L)-list recoverable code will be henceforth referred to as (`, L)-zero error
list recoverable.

We will need the following powerful result due to Parvaresh and Vardy2:

I Theorem 2.1 ( [18]). For all integers s ≥ 1, for all prime powers r and all powers q of r,
every pair of integers 1 < k ≤ n ≤ q, there is an explicit Fr-linear map E : Fkq → Fnqs such
that:
1. The image of E, C ⊆ Fnqs , is a code of minimum distance at least n− k + 1.
2. Provided α > (s + 1)(k/n)s/(s+1)`1/(s+1), C is an (α, `,O((rs)sn`/k))-list recoverable

code. Further, a list recovery algorithm exists that runs in poly((rs)s, q, `) time.

I Corollary 2.2. Let 0 < α ≤ 1 be a real and s, ` ≥ 1 be integers. Then for any prime power q,
there is a strongly explicit Fp linear

(
q, k

def= q
s ·
(
α
2s
)1+1/s · 1

s√
`

)
qs

that is
(
α, `, sO(s)q`/k

)
-list

recoverable in time poly(pss, q, `).

In the above, the s’th “order" Parvaresh-Vardy code will be referred to as the PVs code.
PV1 is the well-known Reed-Solomon codes (RS code for short). For the RS codes, we will
use the following result which has better list recoverability but has a much faster running
time:

I Theorem 2.3 ( [2]). An [n, k]q RS code is an (α, `,
√

2n`/k)-list recoverable provided
α >

√
2k`
n . Further, there is a O(n2`2 log(n`)poly(log q))-time list recovery algorithm.

The next result is folklore.

I Theorem 2.4. Let 0 < α ≤ 1 be a real and let ` ≥ 1 be an integer. Then for integers
q ≥ e6`

α2 and large enough n, the following holds. A random3
(
n, k = αn

2 log q

)
q
code is(

α, `, L
def=
⌈ 2`
α

⌉)
-list recoverable with probability at least 1− 2−Ω(αnL).

Concatenating PV codes with itself recursively m times leads to:

I Corollary 2.5. Let 0 < α ≤ 1 be a real and s,m, ` ≥ 1 be integers. Then the following
holds for large enough n: there exists a

(
n, nR

)
qs-code that is (1− (1−α)m, `, sO(ms)`/R)-list

recoverable where R = 1
s ·
(
α
2s
)1+1/s · 1

s√
`
, and 1

R ≤ q ≤
1
R ·
(

log(m) n+m
)
.

3 Constructions based on one-level code concatenation

We first fix some notations. For any x ∈ Rm, S ⊆ [m], let xS ∈ Rm denote x with everything
outside of S zeroed out. For any positive integer d ≤ m, let Hd(x) denote the set of d largest

2 This statement of the theorem appears in [11].
3 The qk codewords in a random (n, k)q code are independently chosen by assigning each of the n symbols

independently and uniformly at random from [q].
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(or “heaviest") coordinates of x in magnitudes, breaking ties arbitrarily. Note that, when
|S| ≥ d, we have Hd(xS) ⊆ S.

3.1 General signals and Reed-Solomon-based compressed sensing
Our main result in this section is the following:

I Theorem 3.1. For every ε > 0, M = MRS◦ID with c = O(1/ε) is a compressed
sensing measurement matrix with t = O(d2(logdN)2/ε2) measurements which admits a
(d/ε)2poly(logN)-time decoding algorithm that, given a noisy measurement vector y = Mx+ν,
outputs (the non-zero coordinates and values of) a d-sparse approximation x̂ ∈ RN with the
following approximation guarantee: ‖x− x̂‖1 ≤ (1 + ε)‖x− xHd(x)‖1 + 0.4ε

logN ‖ν‖1.

Fix a [n, k, n− k + 1]q-RS code C = {c1, · · · , cqk} ⊂ [q]n, and the identity code IDq : [q]→
{0, 1}q. (IDq(i) is the ith standard basis vector.) Let M = MRS◦ID denote the matrix of the
concatenated code RS ◦ ID defined as follows. The matrix M is a binary matrix with N = qk

columns and t = qn rows. We index each row of M by a pair (p, i) ∈ [n]× [q]. Let Mj denote
the jth column of M , then Mj(p, i) = 1 iff cj(p) = i. We use M to compress signals in RN .
Algorithm 1 is used for decoding. We will choose parameters n, k, q so that the RS code is
(α = 1/2, l = cd, L =

√
2nl/k)-list recoverable. In particular, the parameters q ≥ n > k have

to satisfy 1/2 >
√

2kl/n, or n > 8cdk. Furthermore, we shall also choose c > 2.

Algorithm 1 Decoding algorithm for M = MRS◦ID

1: Input: y ←Mx+ ν, where ν is the noise vector, c > 2 and d is the sparsity parameter
2: // note again that n > 8cdk
3: for each position p ∈ [n] do
4: Let Sp ⊂ [q] denote the set of cd indices i such that the corresponding measurements

y(p, i) are the cd heaviest-magnitude measurements in the set {y(p, i) | i ∈ [q]}.
5: Use the list-recovery algorithm (with the inputs Sp, p ∈ [n]) for the RS code to recover a

set H ⊂ [N ] of ≤ L indices.
6: for each j ∈ H do
7: Let x̂j = median{y(p, i) | cj(p) = i}.
8: Return the top d (in magnitude) x̂j , j ∈ H.

For notational convenience, define D = Hd(x) = Hd(x). Before presenting the two main
steps of the analysis, we need a simple auxiliary lemma.

I Lemma 3.2. Let δ = k/n. Consider an arbitrary index j ∈ [N ]. There is a subset P ⊂ [n]
of positions satisfying the following: (a) |P | ≥ 7(1− δd)n/8 ≥ 3n/4, and (b) for every p ∈ P ,
we have |y(p, cj(p))− xj | ≤ 10

n ‖ν‖1 + 8
cd‖x− xD‖1.

Proof. The RS code has relative distance> 1−δ. Hence, every two codewords have at most δn
positions with the same symbols. In particular, there is a set P ′ of at least n−dδn = (1−δd)n
positions satisfying the following: for every p ∈ P ′, cj(p) 6= cj′(p),∀j′ ∈ D \ {j}.

Next, because for every j′ ∈ [N ] \ (D ∪ {j}) the codeword cj′ shares at most δn positions
with cj , the triangle inequality implies

∑
p∈P ′ |y(p, cj(p))− xj | ≤ ‖ν‖1 + δn‖x− xD‖1. Since

|P ′| ≥ (1− δd)n, by Markov inequality there is a subset P ⊂ P ′ of at least |P | ≥ 7
8 (1− δd)n

positions such that, for every p ∈ P

|y(p, cj(p))− xj | ≤
8(‖ν‖1 + δn‖x− xD‖1)

(1− δd)n ≤ 10
n
‖ν‖1 + 8

cd
‖x− xD‖1.
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The inequality 7(1 − δd)n/8 ≥ 3n/4 follows from our assumptions that n > 4ckd and
c > 2. J

I Lemma 3.3. Consider an arbitrary j ∈ D such that |xj | > 10‖x−xD‖1
cd + 18‖ν‖1

n . Then,
cj(p) ∈ Sp for at least αn = n/2 different positions p ∈ [n] (where Sp is as defined in Step 4).

Proof. Let δ = k/n, and let P be the set of positions satisfying the properties stated in
Lemma 3.2. Then, for each p ∈ P ,

|y(p, cj(p))| ≥ |xj | − |y(p, cj(p))− xj | >
10‖x− xD‖1

cd
+ 18‖ν‖1

n
− 10

n
‖ν‖1 −

8
cd
‖x− xD‖1

≥ 8
cdn
‖ν‖1 + 2

cd
‖x− xD‖1. (1)

Next, for every position p ∈ [n], let ν(p) = [ν(p, 1), · · · , ν(p, q)] denote the restriction of the
noise vector ν on to the q coordinates within position p. Since ‖ν‖1 =

∑n
p=1 ‖ν(p)‖1, by

Markov inequality there must be a set P ′ of at least 3n/4 positions such that ‖ν(p)‖1 ≤
4‖ν‖1/n for every p ∈ P ′. Let P̄ = P ∩ P ′. Then, |P̄ | ≥ n/2 = αn. We will prove that
cj(p) ∈ Sp for every p ∈ P̄ , which would then complete the proof of the lemma.

Fix a position p ∈ P̄ . Let y(p) = [y(p, 1), · · · , y(p, q)] be the subvector of y restricted to
position p. For each i ∈ [q], define Di = {j ∈ D | cj(p) = i}. By the triangle inequality and
the fact that p ∈ P ′,

∑
i∈Sp
|y(p, i)−

∑
j∈Di

xj | ≤ ‖ν(p)‖1 +‖x−xD‖1 ≤ 4
n‖ν‖1 +‖x−xD‖1.

Noting that |Sp| = cd, by Markov inequality again there is a subset S′ ⊂ Sp of size cd/2
satisfying |y(p, i)−

∑
j∈Di

xj | ≤ 8
cdn‖ν‖1 + 2

cd‖x−xD‖1 for every i ∈ S′. Because
∑
i |Di| ≤ d

and cd/2 > d, there must be at least one i′ ∈ S′ for which Di′ = ∅. Hence,

min
i∈Sp

|y(p, i)| ≤ |y(p, i′)| = |y(p, i′)−
∑
j∈Di

xj | ≤
8
cdn
‖ν‖1 + 2

cd
‖x− xD‖1. (2)

From (1) and (2), and the fact that Sp contains the d largest coordinates in magnitudes of
y(p), we conclude that i ∈ Sp as desired. J

We next prove that all the median estimates are pretty good.

I Lemma 3.4. For any j ∈ [N ], |xj − x̂j | ≤ 10
n ‖ν‖1 + 8

cd‖x− xD‖1.

Proof. Let δ = k/n, and let P be the set of positions satisfying the properties stated in
Lemma 3.2. This means for |P | ≥ 3n/4 > n/2 of the positions we know the values y(p, cj(p))
are within ±

( 10
n ‖ν‖1 + 8

cd‖x− xD‖1
)
of xj . Thus, so is the median x̂j of the y(p, cj(p)). J

We are now ready to prove the main result.

I Theorem 3.5. With parameter c = 18/ε, Algorithm 1 runs in time poly(d logn) and
outputs a d-sparse vector x̂ satisfying ‖x− x̂‖1 ≤ (1 + ε)‖x− xD‖1 + (28d/n)‖ν‖1, where D
is the set of k highest-magnitude coordinates of x.

Proof. The total “extra mass" we get, relative to the best ‖x − xD‖1, comes from the
estimation error mass and the total mass of the small magnitude coordinates in D. It is not
hard to see that

‖x− x̂‖1 ≤ ‖x− xD‖1 + d

(
18‖ν‖1
n

+ 10‖x− xD‖1
cd

)
+ d

(
10
n
‖ν‖1 + 8

cd
‖x− xD‖1

)
= (1 + 18/c)‖x− xD‖1 + (28d/n)‖ν‖1.

J
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We next choose the parameters to minimize the number of measurements t of the matrix
M . The following is not best possible (we can reduce it by a log log factor). Choose n = q,
k = n/(4cd) = εn/(72d). For N ≤ qk, we need logN ≤ ε

72dq log q. Thus, we can pick
n = q = O

(
d
ε logdN

)
. The total number of measurements is t = nq = O(d

2

ε2 (logdN)2).
Finally, we analyze the run time of the algorithm. The following steps dominate

the running time of the other steps: (i) The first for loop, which takes O(nq log q) =
O(d

2

ε2 poly(logdN)); (ii) Step 8 (the list recovery step), which by Theorem 2.3 takes
O(l2n2 lognlpoly(log q)) = d2/ε2poly(logN) time and (iii) the second for loop which takes
O(Lq) = O(d2/ε logdN) time. Thus, the overall running time is d2/ε2poly(logN), as desired.
This completes the proof of Theorem 3.1.

3.2 Non-negative signals
Our main result of this section is as follows:

I Theorem 3.6. For every ε > 0, and s,m ≥ 1 there is a strongly explicit compressed sensing
scheme with t = (sm)O(s) ·

(
d
ε

)1+1/s · (log(m)N +m)s measurements and poly(t) decoding
time that on input a signal x ∈ RN≥0 and measurement vector ν ∈ Rt outputs a vector x̂ ∈ RN
that is d-sparse with the following approximation guarantee:

‖x− x̂‖1 ≤ (1 + ε)‖x− xHd(x)‖1 + O(ε) · log(m+1)N

logN · ‖ν‖1.

Estimation Algorithm. We will use the following estimation result by Porat and Strauss [19].
Our contribution is the filtering matrix.

I Theorem 3.7 ( [19]). Let N ≥ d ≥ 1 be integers and ε > 0 be a real. Then there exists a
random t×N matrix M with the following properties: (i) t = O

(
d
ε2 · log(N/d)

)
; and (ii) Let

S ⊆ [N ], x ∈ RN and ν ∈ Rt. Then there exists a |S| · (log(N/d)/ε)O(1) time algorithm that
given a noisy measurement Mx+ ν, outputs a vector x′ ∈ RN with at most O(d) non-zero
entries such that ‖x′ − xHd(x)‖1 ≤ (1 + ε) · (‖x− xHd(x)‖1 + ‖xHd(x)\S‖1) + c·ε

log(N/d) · ‖ν‖1,
where c ≥ 1 is some absolute constant.

From list recovery to compressed sensing

I Theorem 3.8. Let d ≥ 1 be an integer and c ≥ 1 be a real. Let `, L ≥ 1 be integers. Then
the following holds for any q ≥ `, where q is a power of 2. Let Cout be an (n1, k1)q-code
that is (1/2, `, L)-list recoverable. Let Cin be an (n2, k2

def= log q)2 code with the following
property. For any vector z ∈ Rq≥0 and measurement noise µ ∈ Rn2 , given the measurement
outcome MCinz + µ, there is a Tin(n2, q)-time algorithm that outputs at most ` coordinates
of z containing the set

{
i ∈ [q] | zi ≥ γ · ‖z − zHd(z)‖1 + δ · ‖µ‖1

}
, where γ, δ > 0. Then the

matrix M def= MCout◦Cin has the following properties:
(i) M is t×N matrix, where t = n1n2 and N = qk1 .
(ii) For any x ∈ RN≥0 and ν ∈ Rt, consider the noisy measurement vector y = Mx+ν ∈ Rt≥0.

There exists a set H ⊆ [N ] with |H| ≤ L such that{
i ∈ [N ] | xi ≥ γ · ‖xT ‖1 + 2δ · ‖ν‖1

n1

}
⊆ H, (3)

where T = [N ] \Hd(x).
(iii) If Cout can be list recovered in time Tout(n1, q), then given y, the set H from part (ii)

can be computed in time n1 · Tin(n2, q) + Tout(n1, q).
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Proof. Property (i) follows from the properties of concatenated codes. In the rest of the
proof, we will prove (ii) and (iii) together by outlining an algorithm to compute the set H.

For notational convenience, let the codewords in Cout be denoted by {c1, . . . , cN}. We
will associate the ith coordinate of x with ci.For any j ∈ [n1], let µj ∈ Rn2 be the projection
of ν to the positions in [t] corresponding to the outer codeword position j. Note that
‖ν‖=

∑
j∈[n1] ‖µj‖1. Thus by a Markov argument, there exists a subset U ⊆ [n1] with

|U | ≥ n1/2 such that for every j ∈ U , ‖µj‖1 ≤ 2‖ν‖1
n1

. Fix an outer codeword position j ∈ U .
For any i ∈ [N ], let ci(j) ∈ [q] denote the jth symbol in the codeword ci. Now define the
vector z = (z1, . . . , zq) such that for any β ∈ [q], zβ =

∑
i∈[N ]:ci(j)=β xi. By the assumption in

the Theorem statement and the upper bound on ‖µj‖1, we know that in time Tin(n2, q) we can
compute a set Sj of size at most ` such that

{
β ∈ [q] | zβ ≥ γ · ‖z − zHd(z)‖1 + 2δ · ‖ν‖1

n1

}
⊆

Sj . Before we proceed we claim that

‖xT ‖1 ≥ ‖z − zHd(z)‖1. (4)

Indeed, the above follows from the subsequent argument. Let H ′ = {ci(j)|i ∈ Hd(x)}. Now
note that ‖xT ‖1 ≥ ‖z − zH′‖1 ≥ ‖z − zHd(z)‖1, where the first inequality follows from the
definitions of z and H ′ while the second inequality follows from the definition of Hd(z) and
the fact that |H ′| ≤ d.

Thus, (4) (and the fact that x is a non-negative signal) implies that for every i ∈ [N ]
such that xi ≥ γ · ‖xT ‖1 + 2δ‖ν‖1/n1, zci(j) ≥ xi ≥ γ · ‖z − zHd(z)‖1 + 2δ · ‖ν‖1/n1. In other
words, ci(j) ∈ Sj . As the choice of j was arbitrary, it holds that for every i ∈ [N ] such
that xi ≥ γ · ‖xT ‖1 + 2δ‖ν‖1/n1, ci(j) ∈ Sj for every j ∈ U . Recall that since |Sj | ≤ `

for every j ∈ U , |U | ≥ n1/2 and as Cout is (1/2, `, L)-list recoverable in time Tout(n1, q)
one can compute a set H ⊆ [N ] of size at most L such that every i ∈ [N ] such that
xi ≥ γ · ‖xT ‖1 + 2δ · ‖ν‖1/n1 satisfies i ∈ H. This completes the proof of (ii). Further, (iii)
just follows from the description of the algorithm above to compute H. J

Specific Instantiations. The “identity" code ID(q) : [q]→ {0, 1}q is often used as an inner
code. Here, ID(i) for any i ∈ [q] is the q-bit vector that is set to 1 in position i and is zero
otherwise. (The proofs are deferred to the full version.)

I Lemma 3.9. Let d ≥ 1 be an integer and c ≥ 1 be a real. Let q ≥ 2(c+ 1)d be an integer.
Then for any vector x ∈ Rq≥0 and measurement noise µ ∈ Rq, given the outcome MID(q)x+µ,

there is an O(q log(cd)) time algorithm that outputs ` def= 2(c+ 1)d coordinates of x such that
it contains the set T def=

{
i ∈ [q] | xi ≥ 1

cd · ‖x− xHd(x)‖1 + 2
(c+1)d · ‖µ‖1

}
.

Random CS construction. Applying Theorem 3.8 with the outer code from Theorem 2.4 as
Cout (with q being a power of 2) and the code from Lemma 3.9 as Cin implies the following
result (which we will use in Section 4):

I Corollary 3.10. Let N ≥ d ≥ 1 be integers and ε > 0 be a real. Then there exists a
random t × N matrix M with the following properties: (i) t = O

(
d
ε · logN

)
; and (ii) Let

S ⊆ [N ], x ∈ RN≥0 and ν ∈ Rt. Then there exists a Õ(|S| · t) time algorithm that given
a noisy measurement Mx + ν, outputs a subset H ⊆ [N ] with |H| ≤ O(d/ε) such that
S ∩

{
i ∈ [N ] | xi ≥ ε

d · ‖x− xHd(x)‖1 + ε
d·logN · ‖ν‖1

}
⊆ H.

Explicit CS construction. Applying Theorem 3.8 with the outer code from Corollary 2.5
(with q being a power of 2) and the inner code from Lemma 3.9 implies the following result:
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I Corollary 3.11. Let n ≥ d ≥ 1 and s,m ≥ 1 be integers and ε > 0 be reals. Then there
exists an explicit t×N matrix M with the following properties:

t ≤ (sm)O(s) ·
(
d
ε

)1+1/s · (log(m)N +m)s
Let x ∈ RN≥0 and ν ∈ Rt. Then there exists a poly(t) time algorithm that given a
noisy measurement Mx + ν, outputs a subset H ⊆ [N ] with |H| ≤ such that H ⊇{
i ∈ [N ]|xi ≥ ε

d · ‖x− xHd(x)‖1 + ε·log(m+1) N
d·logN · ‖ν‖1

}
.

The above (instantiated with Cout = PVs and Cin = ID) with Theorem 3.7 proves
Theorem 3.6.

4 Recursive construction with multiple recursion levels

Our main result of this section is the following:

I Theorem 4.1. For every ε > 0, there is a randomized compressed sensing scheme with
t = O(d/ε2 logN log logdN) measurements and poly(t) decoding time that on input a signal
x ∈ RN≥0 outputs a vector x̂ ∈ RN that is d-sparse with the following approximation guarantee:

‖x− x̂‖1 ≤ (1 + ε)‖x− xHd(x)‖1.

The main technical result to prove the above theorem is the following result:

I Theorem 4.2. Let n ≥ d ≥ 1 be integers. Assume for every i ≥ d, there is a t(i) × i
matrix Mi with the following property. For any subset S ⊆ [i], vector z ∈ Ri≥0 and given the
outcome vector Miz, there is a d(|S|, i)-time algorithm that outputs at most ` coordinates of
z containing the set

{i ∈ S | zi ≥ γ · ‖z − zHd(z)‖1}, (5)

where γ > 0. Let 1 ≤ a ≤ logn and 1 ≤ b ≤ logn/a be integers. Then there exists a ta,b × n
matrix Ma,b that has the following property. Given any x ∈ Rn≥0, from the measurement
vector Ma,bx, in time Da,b, one can compute a set H with |H| ≤ ` such that

H ⊇ {i ∈ [n] | xi ≥ γ · ‖x− xHd(x)‖1}, (6)

where

ta,b =
dlogb( log n

a )e−1∑
j=0

bj · t
(

bj√
n
)

(7)

and

Da,b =
dlogb( log n

a )e−2∑
j=0

bj · d
(
`b, bj√

n
)

+ logn
a
· d(2a, 2a). (8)

Finally, if the family of matrices {Mi}i≥d is (strongly) explicit then so is Ma,b.

Proof. We will construct the final matrix Ma,b recursively. In particular, let such a matrix in
the recursion with N columns be denoted by Ma,b(N). Note that the final matrix is Ma,b =
Ma,b(n). (For notational convenience, we will define Da,b(N) and ta,b(N) to be the decoding
time for and the number of rows in Ma,b(N)respectively). Next, we define the recursion. If
N ≤ 2a, then set Ma,b(N) = MN . Note that in this case, ta,b(N) = t(N). Further, we will
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use the given algorithm in the base case, which implies that Da,b(N) = d(N,N). It is easy
to check that both (7) and (8) are satisfied. Finally since MN satisfies (5), Ma,b(N) satisfies
(6).

Now consider the case when N > 2a. For i ∈ [b], define M(i) to be the ta,b( b
√
N) × N

matrix whose kth column (for k ∈ [N ]) is identical to the mth column in Ma,b( b
√
N) where

m is the ith chunk of 1
b logn bits in k (e think of k and m as their respective binary

representations). Define Ma,b(N) to be the stacking of M(1),M(2), . . . ,M(b) and MN . First,
we verify that (7) holds. To this end note that

ta,b(N) = b · ta,b(
b
√
N) + t(N). (9)

In particular, (by induction) all the M(i) contribute b ·
∑⌈logb

(
log b√

N
a

)⌉
−1

j=0 bj · t
(

bj√
b
√
N
)

=∑dlogb( log N
a )e−1

j=1 bj · t
(

bj√
N
)
rows. Since MN adds another t(N) rows, Ma,b(N) indeed

satisfies (7).
Finally, we consider the decoding of Ma,b(N). The decoding algorithm is natural: we

run the decoding algorithm for Ma,b( b
√
N) (that is guaranteed by induction) on the part of

the outcome vector corresponding to each of the M(i) (i ∈ [b]) to compute sets Si with the
following guarantee.

Let z(i) (for i ∈ [b]) be defined as follows. For any 0 ≤ j ≤ b
√
N − 1, the jth entry of z(i)

is the sum of the xk’s where the ith chunk of logn/b bits in k is the same as j (where we
think of k and j as logn-bit and logn/b-bit vectors respectively). By induction, when the
decoding algorithm for Ma,b( b

√
N) is run on M(i)z(i), then it outputs a set Si with |Si| ≤ `

such that {j ∈ [ b
√
N ] | z(i)

j ≥ γ · ‖z(i) − z(i)
Hd(z(i))‖1} ⊆ Si. Finally, we run the algorithm for

MN on MNx given the set S def= S1 × S2 × · · · × Sb to obtain a set H with |H| ≤ `. To
show that H satisfies (6), we need to show that {j ∈ [N ] | xj ≥ γ · ‖x− xHd(x)‖1} ⊆ S. In
particular, we need to show that for any j ∈ [N ] with xj ≥ γ · ‖x − xHd(x)‖1, ji ∈ Si for
every i ∈ [ b

√
N ], where ji denotes the ith chunk of logn/b bits in j (where we think of j as a

logN -bit vector). To this end, we first note that using the same argument as in Theorem 3.8,
we have ‖x−xHd(x)‖1 ≥ ‖z(i)−z(i)

Hd(z(i))‖1. Since x is a non-negative signal (and the definition
of z(i)), it is easy to see that if xj ≥ γ · ‖x−xHd(x)‖1, then z

(i)
ji
≥ γ · ‖z(i)− z(i)

Hd(z(i))‖1, which
in turn implies ji ∈ Si, as desired.

To complete the proof, we need to verify that this algorithm takes time as claimed in (8).
Note that Da,b(N) = b ·Da,b( b

√
N) + t(`b, N). The rest of the proof of (8) is similar to that

of (7). Finally, the claim on explicitness follows from the construction. J

Applying Theorem 4.2 to Corollary 3.10, we obtain

I Corollary 4.3. Let N ≥ d ≥ 1 be integers and ε > 0 be a real. Then there exists a random
t×N matrix M with the following properties: (i) t = O

(
d
ε · logN log logdN

)
; and (ii) Let

x ∈ RN≥0. Then there exists a poly(t) time algorithm that given a measurement Mx, outputs
a subset H ⊆ [N ] with |H| ≤ O(d/ε) such that H ⊇

{
i ∈ [N ]|xi ≥ ε

d · ‖x− xHd(x)‖1
}
.

The above (with the Mi family following from the construction in Theorem 3.8 instantiated
with a random code as Cout and the identity code as the inner code) with Theorem 3.7
implies Theorem 4.1.
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