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Abstract
A key theorem in algorithmic graph-minor theory is a min-max relation between the treewidth of a
graph and its largest grid minor. This min-max relation is a keystone of the Graph Minor Theory
of Robertson and Seymour, which ultimately proves Wagner’s Conjecture about the structure
of minor-closed graph properties. In 2008, Demaine and Hajiaghayi proved a remarkable linear
min-max relation for graphs excluding any fixed minor H: every H-minor-free graph of treewidth
at least cH r has an r × r-grid minor for some constant cH . However, as they pointed out, there
is still a major problem left in this theorem. The problem is that their proof heavily depends
on Graph Minor Theory, most of which lacks explicit bounds and is believed to have very large
bounds. Hence cH is not explicitly given in the paper and therefore this result is usually not
strong enough to derive efficient algorithms.

Motivated by this problem, we give another (relatively short and simple) proof of this result
without using big machinery of Graph Minor Theory. Hence we can give an explicit bound for
cH (an exponential function of a polynomial of |H|). Furthermore, our result gives a constant
w = 2O(r2 log r) such that every graph of treewidth at least w has an r × r-grid minor, which
improves the previously known best bound 2Θ(r5) given by Robertson, Seymour, and Thomas in
1994.
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1 Introduction

One of the deepest and most far-reaching theories of the recent 20 years in the realm of
discrete mathematics and theoretical computer science is Graph Minor Theory developed by
Robertson and Seymour in a series of over 20 papers spanning the last 20 years. The original
goal of this work, now achieved, was to prove Wagner’s Conjecture [26], which can be stated as
follows: every minor-closed graph property (preserved under taking of minors) is characterized
by a finite set of forbidden minors. This theorem has a powerful algorithmic consequence:
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every minor-closed graph property can be decided by a polynomial-time algorithm. This
follows from another important result in Graph Minor Theory which gives a polynomial time
algorithm to test whether or not a given graph has a fixed graph as a minor. One of the most
central concepts, introduced early on, is the notion of treewidth [24]. Treewidth has obtained
immense attention ever since, especially because many NP-hard problems can be handled
efficiently on graphs of bounded treewidth [1]. In fact, all problems that can be defined in
monadic second-order logic are solvable for graphs of bounded treewidth [4]. But perhaps
even more importantly, Graph Minor Theory gives a powerful and vast toolkit of concepts
and ideas to handle graphs and understand their structure. Indeed, a huge body of work has
evolved that applies and extends these ideas in various fields of discrete mathematics and
computer science.

A keystone in the proof of these theorems, and many other theorems, is a grid-minor
theorem [24]: any graph of treewidth at least some f(r) is guaranteed to have the r × r grid
graph as a minor. This gird-minor theorem played a key role for the graph minor algorithm
(c.f., the disjoint paths problem [16, 17, 25, 27, 28]). It also played a key role for some other
deep applications (e.g., [12, 14, 15, 20]).

Such grid-minor theorems have also played a key role for many algorithmic applications,
in particular via the bidimensionality theory (e.g., [5, 6, 7, 9]), including many approximation
algorithms, PTASs, and fixed-parameter algorithms. These include feedback vertex set,
vertex cover, minimum maximal matching, face cover, a series of vertex-removal parameters,
dominating set, edge dominating set, R-dominating set, connected dominating set, connected
edge dominating set, connected R-dominating set, and unweighted TSP tour.

The grid-minor theorem of [24] has been extended, improved, and re-proved by Robertson,
Seymour, and Thomas [29], Reed [22], and Diestel, Jensen, Gorbunov, and Thomassen [11].
The best bound known for general graphs is superexponential: every graph of treewidth more
than 202r5 has an r × r grid minor [29]. We note that as a corollary of our main theorem
in this paper, we improve this bound in Corollary 2. Robertson et al. [29] conjecture that
the bound on f(r) can be improved to a polynomial rΘ(1); the best known lower bound is
Ω(r2 log r).

A linear upper bound has been shown for planar graphs [29] and bounded genus graphs [6].
Recently this min-max relation is also established for graphs excluding any fixed minor H:
every H-minor-free graph of treewidth at least cH r has an r × r grid minor for some
constant cH [8]. This bound leads to many powerful algorithmic results on H-minor-free
graphs [3, 8, 9, 13] that are previously not known.

However, as Demaine and Hajiaghayi pointed out in [8] (also see [10]), there are still
major problems left in this grid-minor theorem for H-minor-free graphs, in particular in
algorithmic graph-minor theory. The biggest problem is how large the constant cH in the
grid-minor theorem for H-minor-free graphs is. In particular, how does it depend on H?
This constant is particularly important because it is in the exponent of the running times of
many algorithms, as mentioned in [8, 10]. The current results (e.g., [8]) heavily depend on
Graph Minor Theory, most of which lacks explicit bounds and is believed to have very large
bounds. Recently, there is a simplified proof of Graph Minor Theory [18], but the bound is
still huge. For this reason, improving the constants, even for special classes of graphs, and
presumably using different approaches from graph minors, is an important theoretical and
practical challenge.

Perhaps, Demaine, Hajiaghayi and Kawarabayashi [10] are the first to try to attack this
issue, and they gave explicit bounds for the case of K3,k-minor-free graphs, an important
class of apex-minor-free graphs extending bounded genus graphs. The bounds are not too

STACS’12



280 Treewidth of H-minor-free graphs and its largest grid minor

small but are a vast improvement over previous bounds (in particular, much smaller than
2 ↑ |V (H)|, where 2 ↑ n denotes a tower 222 ...

involving n 2’s).
In this paper, we resolve this issue. More precisely, our main theorem is the following.

I Theorem 1. For any fixed graph H and for any positive integer r, there exists a constant
w = |V (H)|O(|E(H)|) · r satisfying the following. If G does not contain an H-minor but has
treewidth is at least w, then G has an r × r-grid minor. Moreover, there is an algorithm,
whose running time is a polynomial in |V (G)| and w, to output either a tree-decomposition
of width at most w, an r × r-grid minor, or an H-minor in a given graph.

Let us emphasize that, unlike the algorithms using the graph minor theory [8], no huge
function of |H| is involved in the above algorithm.

Furthermore, by setting H as an r× r-grid with r2 vertices and 2r2−2r edges, Theorem 1
implies the following as a corollary, which improves the previously known best bound 202r5

given in [29] for large r.

I Corollary 2. There exists a constant w = 2O(r2 log r) such that every graph of treewidth at
least w has an r × r-grid minor.

To the best of our knowledge, Theorem 1 is the only grid-minor theorem with an explicit
bound other than for planar graphs [29], bounded-genus graphs [6], and K3,k-minor-free
graphs [10]. Our theorem also leads to several algorithms with explicit and improved bounds
on their running time, as mentioned above, in particular via the bidimensionality theory
(e.g., [5, 6, 7, 9]).

In addition, the proof techniques are interesting in their own right, for example, the
path-intertwining technique used in many contexts (see, e.g., [2, 19]), together with some
techniques from Diestel et al. [11].

This paper is organized as follows. In Section 2, we give notations and results that are
needed in this paper. In Section 3, we adapt tools from Diestel et al. [11]. Our key lemmas
are provided in Section 4. Finally in Section 5, we give our main proof of Theorem 1.

2 Preliminaries

In this paper, n and m always mean the number of vertices of a given graph and the
number of edges of a given graph, respectively. For X ⊆ V in a graph G = (V,E), let
NG(X) denote the set of vertices in V \ X that are adjacent to X. For simplicity, for
v ∈ V , NG({v}) is denoted by NG(v). A separation (A,B) is that G = A ∪B, there are no
edges in E(A) ∩ E(B), and moreover both A− B and B − A are nonempty. The order of
the separation (A,B) is |V (A) ∩ V (B)|. An r × r grid is a graph which is isomorphic to
the graph Wr obtained from Cartesian product of paths of length r − 1, with vertex set
V (Wr) = {(i, j) | 1 ≤ i ≤ r, 1 ≤ j ≤ r} in which two vertices (i, j) and (i′, j′) are adjacent if
and only if |i− i′|+ |j − j′| = 1.

A tree decomposition of a graph G is a pair (T,W), where T is a tree and W is a family
{Wt | t ∈ V (T )} of vertex sets Wt ⊆ V (G), such that the following two properties hold:

(1)
⋃

t∈V (T )Wt = V (G), and every edge of G has both ends in some Wt.
(2) If t, t′, t′′ ∈ V (T ) and t′ lies on the path in T between t and t′′, then Wt ∩Wt′′ ⊆Wt′ .

The width of a tree decomposition (T,W) is maxt∈V (T ) |Wt| − 1. The treewidth of a graph G
is the minimum width over all possible tree decompositions of G.
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A linkage P is a set of mutually vertex-disjoint paths in a graph. For two vertex sets
Z1 and Z2, P is a Z1-Z2 linkage if each member is a path from Z1 to Z2. The order of
the linkage, denoted by |P| is the number of paths. In slightly sloppy notation, sometimes
we will identify a linkage P with the subgraph consisting of the paths in P. For a linkage
P = {P1, . . . , Pp} in G, a P-bridge in G is either an edge e ∈ E(G)\E(P) whose endpoints
are both in P , or a subgraph of G consisting of a connected component C of G−P together
with all edges joining C and P . The vertices of a P-bridge B in P ∩B are called attachments
of B, and we say that B is attached to P at these vertices. Given any two subpaths P and
Q contained in the linkage P , we say that they are adjacent if there exists a P-bridge which
intersects with both P and Q.

Now, we present some known results on mesh and treewidth, which will be used in the
next section. For an integer α, we call a set X ⊆ V (G) α-connected in G if |X| ≥ α and for
all subsets Y,Z ⊆ X with |Y | = |Z| ≤ α, there are |Y | mutually vertex-disjoint paths in G
from Y to Z. Note that the sets Y and Z are not required to be disjoint. If X = V (G), then
we say G is α-connected. An α-connected set X is externally α-connected if, in addition, the
required paths do not contain any vertex in X except their endpoints. Following [11], let us
call a separation (A,B) a premesh if all the edges with both end vertices in V (A) ∩ V (B) lie
in A, and A contains a tree T with the following properties:
1. T has maximum degree at most three;
2. every vertex of A ∩B lies in T and has degree at most two in T ; and
3. T has a leaf in A ∩B.
A premesh (A,B) is called an α-mesh if V (A ∩B) is externally α-connected in B, and the
graph G = A ∪B is said to have this premesh or α-mesh.

Among useful lemmas on the α-mesh, Diestel et al. [11] proved the following lemmas.

I Lemma 3. Let G be a graph and let β ≥ α ≥ 1 be integers. If G has no α-mesh of order
β, then G has treewidth < α+ β − 1.

I Lemma 4. Let β ≥ 2 be an integer. Let T be a tree of maximum degree ≤ 3 and X ⊆ V (T )
be a vertex set with |X| ≥ β. Then T has an edge set F ⊆ E(G) such that every component
of T − F has at least β vertices and at most 2β − 2 vertices in X, except that one such
component may have fewer vertices in X.

3 Finding good linkages

In this section, we show that graphs with large treewidth have a pair of linkages with some
good properties. Such linkages will be used to construct a grid-minor or an H-minor in
Sections 4 and 5. The following lemma is obtained from the arguments in [11], but we
describe the proof for completeness.

I Lemma 5. For a graph H with h vertices and for integers k, p′, there exists an integer
w = (kh)O(|E(H)|) · p′ satisfying the following. If a graph G has treewidth at least w, then
either G contains an H-minor or two linkages P and Q such that

(C1) |P| ≥ p′ and |Q| ≥ 3k2|P|,
(C2) each path in Q hits all but at most |P|/3k2 paths in P, and
(C3) P is a Z1-Z2 linkage for some Z1, Z2 ⊆ V (G) such that for each edge e ∈ E(P),

(P ∪Q)− e has no Z1-Z2 linkage.

Proof. Let c = 3k2h2 and let α = c2|E(H)|−1p′. We show that w = (2h + 2)α is a desired
integer.
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Suppose that G has treewidth at least w. By Lemma 3, there is an α-mesh of order
at least (2h + 1)(α − 1). Let T ⊆ A be a tree associated with the premesh (A,B). Let
X = V (A ∩ B) ⊆ V (T ). By Lemma 4, T has at least h disjoint subtrees each containing
at least h vertices of X. Let A1, . . . , Ah be the vertex sets of these subtrees. Then by the
definition of k-mesh, B contains a set Pij of k mutually vertex-disjoint paths between Ai

and Aj that have no inner vertices in A.
Let us identify the index set {0, 1, . . . , h− 1} and the vertex set of H, and let us impose

a linear ordering on the index pairs ij by fixing a bijection f : {ij | 1 ≤ i < j ≤ h} to
{0, . . . ,

(
h
2
)
− 1} such that f(ij) < |E(H)| if and only if ij ∈ E(H). Let l∗ ≤

(
h
2
)
be a

maximum integer such that for all 0 ≤ l < l∗ and all i, j, there exist sets P l
ij satisfying the

following conditions.

1. P l
ij is a set of mutually vertex-disjoint paths from Ai to Aj in B that hit A only in their

end points.
2. If f(ij) < l, then P l

ij has exactly one path Pij , and Pij does not meet any paths in P l
st

with ij 6= st.
3. If f(ij) = l, then |P l

ij | = α/c2l.
4. If f(ij) > l, then |P l

ij | = α/c2l+1.
5. If l = f(st) < f(ij), then for every edge e ∈ E(P l

ij) \ E(P l
st), there are no k/c2l+1

vertex-disjoint paths from Ai to Aj in the graph (P l
ij ∪ P l

st)− e.

If l∗ ≥ |E(H)|, then we are done since there is an H-minor. Hence we may assume that
l∗ < |E(H)|.

We shall first prove that l∗ > 0. Let st = f−1(0) and put P0
st := Pst. For any ij with

f(ij) > 0, let Fij ⊆ E(Pij)\E(P0
st) be a maximal edge set such that there are still α/c

vertex-disjoint paths from Ai to Aj in (Pij ∪P0
st)−Fij , and define P0

ij as such a set of paths.
Then it is easy to see that P0

ij satisfies the above conditions. This proves that l∗ > 0.
Since l∗ > 0, by the maximality of l∗, the above five conditions are satisfied for l < l∗ but

cannot be satisfied for l = l∗. Let st = f−1(l∗−1). We claim that there is no path P ∈ P l∗−1
st

such that P avoids a set Lij of some |P l∗−1
ij |/c paths in P l∗−1

ij for all ij with f(ij) ≥ l∗.
Suppose such a path P exists. Let s′t′ := f−1(l∗) and define P l∗

s′t′ := Ls′t′ . Let P l∗

st := {P}
and P l∗

ij := P l∗−1
ij for f(ij) < l∗ − 1. For each ij with f(ij) > l∗, let Fij ⊆ E(Lij)\E(Ll∗

s′t′)
be a maximal edge set such that there are still |P l∗−1

ij |/c2 vertex-disjoint paths from Ai to
Aj in (Lij ∪ Ll∗

s′t′)− Fij and define P l∗

ij as such a set of paths. Then these would give rise to
a family of sets P l∗

ij , a contradiction to the maximality of l∗.
Thus for every path P ∈ P l∗−1

st , P must intersect all but at most |P l∗−1
ij |/c− 1 paths in

P l∗−1
ij for some ij with f(ij) ≥ l∗. By the pigeonhole principle, there are at least |P l∗−1

st |/
(

h
2
)

paths (letting these paths Q) in P l∗−1
st each of which intersects all but |P l∗−1

ij |/c− 1 paths in
P l∗−1

ij for some ij with f(ij) ≥ l∗ (letting such a set P l∗−1
ij be P).

Then, we have |Q| ≥ |P l∗−1
st |/

(
h
2
)
≥ α/(c2l∗h2) and |P| = α/c2l∗+1, which implies that

|P| ≥ p′ and |Q| ≥ 3k2|P|. Furthermore, by the definitions of P and Q and by condition 5,
we obtain the following:
1. each path in Q meets all but at most |P|/c ≤ |P|/3k2 paths in P, and
2. P is a Z1-Z2 linkage for some Z1 ⊆ Ai and Z2 ⊆ Aj such that for each edge e ∈ E(P),

(P ∪Q)− e has no Z1-Z2 linkage.
This completes the proof of Lemma 5. J

Later, we will use this lemma in which h = k. The next lemma is a key lemma in this
section. Its proof is inspired by [11].
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I Lemma 6. Suppose that k, p′,P, and Q satisfy the conditions (C1)-(C3) in Lemma 5, and
G = P ∪ Q. Each path Pj ∈ P has vertices pj,1, pj,2, . . . , pj,2k which appear in this order
from Z1 to Z2 such that the following holds:

(C4) For all j, let ith segment of Pj be the subpath of Pj between pj,i and pj,i+1, and let
ith interval of P be the union of the ith segment of Pj. Then, for each i, there is a
subset Qi ⊆ Q with |Qi| ≥ (k − 2)|P| such that each path in Qi intersects all but at
most |P|/3k2 paths of P only in their ith segments.

Proof. Let p = |P|. Since each path in Q hits all but at most p/3k2 paths, and |Q| ≥ 3k2p,
we may assume that P1 intersects at least (1− 1/3k2)3k2p ≥ 2k2p paths in Q.

Walk along P1 from one end vertex until encountered kp paths in Q, then pick up
e1 ∈ E(P1) −

⋃
Q∈QE(Q). Then walk along P1 until encountered another kp paths in Q,

then pick up e2 ∈ E(P1)−
⋃

Q∈QE(Q), and so on. Hence we pick up such edges e1, e2, . . . , e2k.
By our assumption and Menger’s theorem, there exists a vertex set of size at most p− 1

separating Z1 and Z2 in G− ei for each i. Clearly each path Pj contains exactly one vertex
in this cut for 2 ≤ j ≤ p. Let {p2,i, p3,i, . . . , p2k,i} be the set of vertices consisting of the
cut in G− ei such that Pj contains pj,i for 2 ≤ j ≤ p and 1 ≤ i ≤ 2k. We may define p1,i

as one of the end vertices of ei. Let us define the segment Pj [i, i+ 1] which is the subpath
of Pj between pj,i and pj,i+1, for j = 1, . . . , p and for i = 1, . . . , 2k − 1. Note that some of
Pj [i, i+ 1] could be a single vertex. The vertex set {p1,i, . . . , pp,i} divides P into two parts
PRi and PLi such that PRi is a linkage from Z1 to {p1,i, . . . , pp,i}, and PLi is a linkage from
Z2 to {p1,i, . . . , pp,i}, respectively. Let us remind that at least kp paths in Q hit P1[i, i+ 1]
for each i.

Recall that the ith interval is defined by
⋃p

j=1 Pj [i, i+ 1]. We claim that at least (k− 2)p
of the kp paths in Q encountered on P1[i, i+ 1] do not leave the ith interval. Since there is
no path from Z1 to Z2 in G − {p1,i, . . . , pp,i}, at most p paths of the kp paths in Q leave
for PRi − {p1,i, . . . , pp,i} through {p1,i, . . . , pp,i}. Similarly, at most p paths of the kp paths
in Q leave for PLi+1 − {p1,i+1, . . . , pp,i+1} through {p1,i+1, . . . , pp,i+1}. Therefore, at least
(k− 2)p of the kp paths in Q encountered on P1[i, i+ 1] do not leave the ith interval. Hence,
at least (k − 2)p paths in Q stay strictly inside the ith interval.

Thus, the cuts {p1,i, . . . , pp,i} for 1 ≤ i ≤ 2k − 1 will break the elements of P into 2k
intervals. Moreover, each interval contains at least (k − 2)p paths in Q that stay strictly in
the interval. These paths form the set Qi. This completes the proof. J

4 Main Lemmas

Suppose that P and Q are linkages satisfying the conditions (C1)-(C4) in Lemmas 5 and 6,
and let G = P ∪Q and p = |P|. For each i = 1, . . . , 2k, define G′i to be the induced subgraph
of G in the ith interval. We say that an index set X ⊆ {1, 2, . . . , p} is good in G′i if it satisfies
the following: for any subsets Y1, Y2 ⊆ X with |Y1| = |Y2| = 2r, there are 2r mutually
vertex-disjoint paths from {pj,i | j ∈ Y1} to {pj,i+1 | j ∈ Y2} in G′i.

Our first lemma in this section is the following.

I Lemma 7. Let r and k be integers, and set p′ = 400k2r. Suppose that P and Q are
linkages that satisfy conditions (C1)-(C4) in Lemmas 5 and 6, and let p = |P|. For each i,
there is a good set Xi in G′i with |Xi| ≥ 3p/4. Moreover, |Xi−1 ∩Xi ∩Xi+1| ≥ 100k2r for
i = 2, . . . , 2k − 1.

Proof. Define X = {j | Pj ∈ P hits at least 2r paths of Qi}. Then, by simple counting
argument, we have |X| ≥ 3p/4, because (p− p/3k2)(k − 2)p > (k − 2)p(3p/4) + 2r(p/4).
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284 Treewidth of H-minor-free graphs and its largest grid minor

Assume that X is not a good set in G′i. Then, for some subsets Y1, Y2 ⊆ X with |Y1| =
|Y2| = 2r, there is a separation (A,B) of order at most 2r−1 in G′i with {pj,i | j ∈ Y1} ⊆ V (A)
and {pj,i+1 | j ∈ Y2} ⊆ V (B). We now consider ZA := {j | V (Pj) ∩ V (A − B) 6= ∅} and
ZB := {j | V (Pj) ∩ V (B −A) 6= ∅}. Since Pj ∈ P hits at least 2r > |V (A) ∩ V (B)| paths of
Qi for each j ∈ X and moreover each path in Q intersects at least (1− 1/3k2)p ≥ 3p/4 paths
of P, both |ZA| and |ZB | are at least 3p/4. Since |ZA ∩ ZB | ≤ |V (A) ∩ V (B)| ≤ 2r − 1, we
have |ZA ∪ ZB | = |ZA|+ |ZB | − |ZA ∩ ZB | > p, which is a contradiction.

Since |Xi| ≥ 3p/4 for each i, we have |Xi−1 ∩Xi ∩Xi+1| ≥ p− 3 · (p/4) ≥ 100k2r. J

We say that a leaf of a connected graph is a vertex of degree one, and a K1,k-minor (or a k-
star-minor) is a connected subgraph with at least k leaves. For a linkage P ′ = {P ′1, . . . , P ′|P′|}
in a graph G, a K1,k-minor S in G is said to be attached to P ′ if every leaf of S is contained
in P ′, and |V (S) ∩ V (P ′j)| = 1 holds whenever V (P ′j) contains a leaf of S.

The next lemma is the key lemma in our proof. It roughly says that one can either find
an r × r-grid minor in G′i or else, given a good set X in G′i, construct a minor of a “star-like
graph” with at least k leaves in X. This gives us a K1,k-minor with some condition in G′i.
This lemma allows us to “weave” the paths in P and construct a Kk-minor. Some idea in
our proof can be found in [2].

I Lemma 8. For each i, we have the following. Let r, k, p,P, Q, and G′i be as above, and
let X be a good set in G′i with |X| ≥ 100k2r. Then, either
1. G′i has an r × r-grid minor, or
2. there exist Y1, Y2 ⊆ X with |Y1| = |Y2| = k such that G′i has a linkage P ′ from {pj,i | j ∈

Y1} to {pj,i+1 | j ∈ Y2} and a K1,k-minor S′ attached to P ′.

Proof. Since we only consider the ith interval of P, we omit the index i in this proof for
simplicity if no confusion may arise. That is, we denote Pj [i, i + 1] and G′i by Pj and G′,
respectively.

Let PX =
⋃

j∈X Pj be the linkage that consists of the paths corresponding to X. Since X
is a good set in G′, we shall only focus on the unique connected component of G′ containing
PX . For our convenience, let us assume that G′ itself is such a unique component.

Let Y be the set of connected components of G′ − PX . We consider the auxiliary graph
G∗ with the vertex set X ∪ Y such that there exists an edge connecting j ∈ X and y ∈ Y
if a PX -bridge y has attachments in Pj , and there exists an edge connecting j1, j2 ∈ X if
G′ has an edge connecting Pj1 and Pj2 . We note that G∗ is connected, since we assume the
connectivity of G′.

We say that a K1,t-minor S′ in G∗ with t leaves is a good K1,t-minor if all leaves are in
X and |V (S′) ∩X| ≤ 3t. We take disjoint subgraphs S1, . . . , Sl in G∗ such that Si is a good
K1,ti-minor with ti ≥ 3 for i = 1, . . . , l, and

the total number of leaves
∑l

i=1 ti is as large as possible.

We show the following claim.

I Claim 9. If
∑l

i=1 ti ≥ 3k, then there is a K1,k-minor S∗ in G∗ such that all the leaves of
S∗ are in X.

Proof. For any two subgraphs Si, Sj with ti, tj leaves, respectively, if there is a path between
Si and Sj , then we can obtain a K1,ti+tj−2-minor whose all leaves are in X. Note that
ti + tj − 2 > ti and ti + tj − 2 > tj .

Having proved this, we just greedily construct a star-minor such that all the leaves of
the star-minor are in X. At the first step, we pick up one graph Si ∈ {S1, . . . , Sl}. Then
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Figure 1 A connected component of G∗ − S

we find a path between Si and {S1, . . . , Sl} \ {Si}. Such a path must exist because G∗ is
connected. Suppose that the path connects Si and Sj with i 6= j. Then we merge Si and Sj

as above to obtain a K1,ti+tj−2-minor with all the leaves in X. Next, we find a path between
the K1,ti+tj−2-minor and {S1, . . . , Sl} \ {Si, Sj}, and we repeat this process until the end.

By the above remark, in each iteration, we get a star-minor with more leaves (in X) than
the star-minor in the previous iteration. In fact, since the total number of leaves

∑l
i=1 ti

is at least 3k at the beginning, in the final iteration, we get a star-minor with at least∑l
i=1(ti − 2) ≥ k leaves in X. Note that we use the assumption ti ≥ 3 in this inequality.

This completes the proof of Claim 9. J

We note that if there is a K1,k-minor S∗ in G∗ such that all the leaves are in X, then we
have the second conclusion of Lemma 8, in which P ′ = PX and S′ is a minimal subgraph
corresponding to S∗. Hence, in what follows, we assume that

∑l
i=1 ti < 3k. By the definition

of a good K1,t-minor, this implies that |V (S) ∩X| < 9k for S :=
⋃l

i=1 Si. Now we show the
following.

I Claim 10. Let S =
⋃l

i=1 Si. As shown in Figure 1, each connected component of G∗ − S
consists of a path P , a vertex set Y ′ ⊆ Y − V (S), and edges between V (P ) and Y ′ such that
for every y ∈ Y ′, either

NG∗(y) ∩ V (P ) consists of one vertex, or
NG∗(y)∩V (P ) consists of two vertices v1, v2 with either v1v2 ∈ E(P ) or v1v3, v3v2 ∈ E(P )
for some v3 ∈ V (P ) ∩ Y .

Furthermore, each internal vertex of P is not adjacent to S, and each vertex in Y ′ adjacent
to an internal vertex of P is not adjacent to S.

Proof. Let C be a connected component of G∗ − S. If |V (C) ∩X| ≤ 2, then the claim is
obvious, because each vertex y ∈ Y is not adjacent to a vertex in Y by the definition of G∗.

Suppose that |V (C) ∩X| ≥ 3. By our choice of {S1, . . . , Sl}, we observe that
each vertex y ∈ V (C) ∩ Y is adjacent to at most two vertices in V (C), and
if a vertex y ∈ V (C) ∩ Y is adjacent to two vertices in V (C), then y is not adjacent to S.

Again, we note that each vertex y ∈ Y is not adjacent to a vertex in Y . While C contains a
vertex y ∈ V (C) ∩ Y that is adjacent to two vertices v1, v2 in V (C), we remove y (together
with edges yv1 and yv2) and add an edge v1v2. Then, the obtained graph C ′ contains vertices
in Y of degree one and vertices in X.

If there exists a vertex x ∈ V (C ′) ∩X adjacent to three vertices in V (C ′) ∩X, then by
adding this K1,3-minor to S, we obtain a new set of star-minors with more total number of
leaves, which contradicts the choice of S. Hence, the subgraph of C ′ induced by V (C ′) ∩X
forms a path or a cycle with multiple edges. Let x1, x2, . . . , xq be vertices of V (C ′) ∩X that
appear along this path (or cycle) in this order.

If xj is adjacent to a vertex v in S for some j = 2, 3, . . . , q − 1, then we can increase
the total number of leaves of S by adding a K1,3-minor whose leaves are xj−1, xj+1, and v.
Therefore, xj is not adjacent to S for j = 2, 3, . . . , q − 1. Similarly, if there exists a vertex
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y ∈ V (C ′)∩ Y that is adjacent to xj for some j = 2, 3, . . . , q− 1, then y is not adjacent to S.
Note that, by this argument, we can also see that the subgraph of C ′ induced by V (C ′) ∩X
is not a cycle but a path, because G∗ is connected.

Since each vertex y ∈ Y is not adjacent to a vertex in Y , the original component C is
obtained from C ′ by subdividing some edges into two edges. Thus, the claim holds by the
above properties of C ′. J

I Claim 11. Suppose that |V (S) ∩X| < 9k. Then, some connected component of G∗ − S
contains at least 4r + 2k(r + 4) vertices in X.

Proof. Let C be the set of connected components of G∗ − S each containing a vertex in X.
By the choice of S, we can see that following:

for each x ∈ V (S) ∩X, x is adjacent to at most one component of C, and
for each y ∈ V (S) ∩ Y , y is adjacent to no component of C.

This means that |C| ≤ |V (S) ∩X| < 9k, because G∗ is connected. Since |X| ≥ 100k2r >

9k ·(4r+2k(r+4)), at least one connected component of G∗−S contains at least 4r+2k(r+4)
vertices in X. J

By Claims 10 and 11, we can see that G∗ − S contains a long path. The following claim
shows that each subgraph of G′ corresponding to a long path with some condition contains
either an r × r-grid minor or “crossing paths”.

I Claim 12. Suppose that 0, 1, 2, . . . , r + 3 ∈ X appear in a path of G∗ − S in this order,
and suppose also that there exist mutually vertex-disjoint paths R1, . . . , Rr from V (P1) to
V (Pr+2) in G′− (P0∪Pr+3). Then, either G′ contains an r× r-grid minor or there exist two
vertex-disjoint paths P ′ and R′ in G′− (P0∪Pr+3) such that P ′ connects pj1,i and pj2,i+1 for
some j1, j2 ∈ {2, 3, . . . , r + 1}, P ′ does not intersect with V (P1) ∪ V (Pr+2), and R′ connects
V (P1) and V (Pr+2). Furthermore, if such paths P ′ and R′ exist, then G′ − (P0 ∪ Pr+3)
contains a linkage P ′ = {P1, Pr+2, P

′} and a K1,3-minor attached to P ′.

Proof. By the latter half of Claim 10, each of R1, . . . , Rr intersects with P1, P2, . . . , Pr+2
but does not intersect with the subgraph corresponding to S. Let D be the graph obtained
from (

⋃
1≤j≤r+2 Pj) ∪ (

⋃
1≤i≤r Ri) by executing the following procedure: contract P1 to a

single vertex s1, contract Pr+2 to a single vertex t1, add a vertex s2 and edges s2pj,i for
j = 2, 3, . . . , r+ 1, and add a vertex t2 and edges t2pj,i+1 for j = 2, 3, . . . , r+ 1 (see Figure 2).
Then, by a characterization of the existence of 2 vertex-disjoint paths (see [30]), either there
exist a s1-t1 path and a s2-t2 path that are mutually vertex-disjoint, or D contains pairwise
disjoint vertex sets U1, . . . , Uq (q ≥ 0) containing none of {s1, t1, s2, t2} such that

(1) for 1 ≤ i, j ≤ q with i 6= j, ND(Ui) ∩ Uj = ∅,
(2) for 1 ≤ i ≤ q, |ND(Ui)| ≤ 3, and
(3) if D̄ is the graph obtained from D by contracting each component Ui to a single vertex

for each i, then D̄ can be embedded in a plane so that s1, s2, t1 and t2 are on the outer
face boundary in this order.

If there exist a s1-t1 path and a s2-t2 path that are mutually vertex-disjoint, then the
corresponding paths are two vertex-disjoint paths P ′ and R′ in G′ − (P0 ∪ Pr+3) such that
P ′ connects pj1,i and pj2,i+1 for some j1, j2 ∈ {2, 3, . . . , r + 1}, P ′ does not intersect with
V (P1) ∪ V (Pr+2), and R′ connects V (P1) and V (Pr+2). The existence of a K1,3-minor
attached to P ′ = {P1, Pr+2, P

′} is guaranteed by the existence of R′.
Suppose that there exist disjoint vertex sets U1, . . . , Uq (q ≥ 0) as above. By the

construction of D̄ in the condition (3), the paths in D̄ corresponding to P2, . . . , Pr+1 are
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mutually vertex-disjoint except their end points, and the same thing holds for the paths in
D̄ corresponding to R1, . . . , Rr. By the planarity of D̄, these paths form an r× r-grid minor
(see [23]). Since G′ contains D̄ as a minor, we have an r × r-grid minor of G′. J

Figure 2 Construction of D Figure 3 Paths from Pr+1 to Ps−r

Now we are ready to prove Lemma 8. By Claims 10 and 11, G∗−S contains a path contain-
ing at least 4r+ 2k(r+ 4) vertices in X. We may assume that −s, . . . ,−2,−1, 1, 2, . . . , s ∈ X
appear in the path in this order, where s = 2r + k(r + 4). Since X is a good set, there
are 2r mutually vertex-disjoint paths from {pj,i | j ∈ ±{1, 2, . . . , r}} to {pj,i+1 | j ∈
±{s, s− 1, . . . , s− r+ 1}}. By the latter half of Claim 10, this means that G′ contains either
r vertex-disjoint paths from Pr+1 to Ps−r or r vertex-disjoint paths from P−r−1 to P−s+r

that do not intersect with the subgraph corresponding to S. By symmetry, we may assume
that G′ contains r vertex-disjoint paths from Pr+1 to Ps−r that do not intersect with the
subgraph corresponding to S (see Figure 3).

We partition {r + 1, r + 2, . . . , s− r} into k disjoint sets U1, U2, . . . , Uk by setting Ul :=
{l(r + 4) − 3, l(r + 4) − 2, . . . , l(r + 4) + r}. Note that |Ul| = r + 4 for each l. Then, by
the assumption that 1, 2, . . . , s ∈ X appear in this order, there exist r vertex-disjoint paths
from Pl(r+4)−2 to Pl(r+4)+r−1 in G′ − (Pl(r+4)−3 ∪ Pl(r+4)+r) for each l. We now apply
Claim 12 for each Ul. If we can find an r × r-grid minor for some l, then we are done.
Otherwise, by Claim 12, for each l, we can take a linkage P ′l = {Pl(r+4)−2, Pl(r+4)+r−1, P

′
l }

and a K1,3-minor attached to P ′l .
Let P ′ =

⋃
l P ′l . Then, we have k disjoint K1,3-minors attached to P ′. Since the total

number of leaves is 3k, by the same argument as Claim 9, we can construct a K1,k-minor
attached to P ′ that is the second conclusion of Lemma 8. J

5 Main Proof

In this section, we give a proof of Theorem 1. That is, we show that there exists a constant
w = |V (H)|O(|E(H)|) ·r such that every graph with treewidth at least w has either an H-minor
or an r × r-grid minor.

By applying Lemma 5 with k = h = |V (H)| and p′ = 400k2r, we obtain an integer
w = kO(|E(H)|) · r. If the graph G has treewidth at least w, then either G contains an
H-minor or two linkages P and Q satisfying (C1)-(C3). By Lemma 6, the linkage P can be
partitioned into 2k intervals with the condition (C4). By Lemma 7, for each i = 1, 2, . . . , 2k,
there is a good set Xi in G′i such that |Xi| ≥ 3p/4 and |Xi−1 ∩Xi ∩Xi+1| ≥ 100k2r.

For each i = 1, 3, 5, . . . , 2k − 1, we apply Lemma 8 with X = Xi−1 ∩Xi ∩Xi+1 (where
we define X0 = {1, 2 . . . , p}). If an r × r-grid minor is obtained, then we are done. Thus, we
may assume that there exist Y1,i, Y2,i ⊆ Xi−1 ∩Xi ∩Xi+1 with |Y1,i| = |Y2,i| = k such that
G′i has a linkage P ′i from {pj,i | j ∈ Y1,i} to {pj,i+1 | j ∈ Y2,i} and a K1,k-minor S′i attached
to P ′i.
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For i = 2, 4, 6, . . . , 2k − 2, since Y2,i−1, Y1,i+1 ⊆ Xi, there exist k vertex-disjoint paths
from {pj,i | j ∈ Y2,i−1} to {pj,i+1 | j ∈ Y1,i+1} by the definition of good sets. That is, we
can connect P ′i−1 and P ′i+1 in the ith interval. By adding these (k − 1)× k paths to

⋃
i P ′i,

we obtain a linkage P ′ from Y1,1 to Y2,2k−1 and K1,k-minors S′1, S′3, . . . , S′2k−1 attached to
P ′. This graph contains a complete bipartite graph Kk,k as a minor, which implies that it
contains a Kk-minor. Since H is a subgraph of Kk, this completes the proof of the first half
of Theorem 1.

By following the above arguments, Lemmas 6, 7, and 8 can be translated in polynomial
time algorithms by using known algorithms for finding constant number of disjoint paths
between two disjoint sets, for finding a minimum vertex cut, and for solving the 2 paths
problem (e.g. [30, 31, 32]). We note that, in the proof of Lemma 8, we do not have to
maximize the total number of leaves

∑l
i=1 ti at the beginning. This is because, if we cannot

obtain the desired objects in Claims 10, 11, and 12, then we can find a set of star-minors
with more total number of leaves. Hence, we only have to apply these claims, repeatedly.

To translate Lemma 5 to a polynomial time algorithm, it suffices to translate Lemmas 3
and 4 to polynomial time algorithms. Given a tree T and a vertex set X ⊆ V (T ), we can
easily find an edge set F as in Lemma 4 in linear time by a simple greedy algorithm. On the
other hand, we have no polynomial time algorithm to compute either a tree decomposition
of G of width < α+ β − 1 or an α-mesh of order β in G as in Lemma 3. However, by the
arguments in [11] (see also [21, Lemma 3.10]), we can find in polynomial time either a tree
decomposition of G of width < w or h vertex sets A1, . . . , Ah as in the proof of Lemma 5.
Therefore, all the procedures in the proof can be done in polynomial time in n and w. J
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