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—— Abstract

Assignment between two parties in a two-sided matching market has been one of the central
questions studied in economics, due to its extensive applications, focusing on different solution
concepts with different objectives. One of the most important and well-studied ones is that of
stability, proposed by Gale and Shapley [8], which captures fairness condition in a model where
every individual in the market has a preference of the other side. When the preferences have indif-
ferences (i.e., ties), a stable outcome need not be Pareto efficient, causing a loss in efficiency. The
solution concept Pareto stability, which requires both stability and Pareto efficiency, offers a re-
finement of the solution concept stability in the sense that it captures both fairness and efficiency.

We study the algorithmic question of computing a Pareto stable assignment in a many-to-
many matching market model, where both sides of the market can have multiunit capacities
(i.e., demands) and can be matched with multiple partners given the capacity constraints. We
provide an algorithm to efficiently construct an assignment that is simultaneously stable and
Pareto efficient; our result immediately implies the existence of a Pareto stable assignment for
this model.

1998 ACM Subject Classification F.2.0 [Analysis of Algorithms and Problem Complexity] Gen-
eral

Keywords and phrases Algorithm, stable matching, Pareto efficiency

Digital Object ldentifier 10.4230/LIPIcs.STACS.2012.384

1 Introduction

Two-sided matching markets have been extensively studied since the seminal work of Gale and
Shapley on stable marriage [8], where there are a set of men and women, each with a strict
preference ranking over members of the other side. A matching between the men and women
is stable if there is no man-woman pair who both strictly prefer each other to their current
partners. The concept of stability captures fairness condition for market participants and
has had enormous influence on the design of real world matching markets [18]. The original
marriage model, as well as many of its generalizations, have been thoroughly investigated.
A practical reality of matching markets is ties, or indifferences: Agents may not be able
to strictly rank their prospective partners, i.e., they might be indifferent among some of them.
The introduction of ties into preference lists dramatically changes the properties and structure
of the set of stable matchings. For instance, man or woman-optimal stable matchings are no
longer well-defined [19], and stable matchings need not all have the same cardinality. The
problem of finding a maximum cardinality stable matching becomes NP-hard [11, 16], and
much work has focused on finding approximation solutions [13, 17]. In addition, arguably
more importantly, stability no longer guarantees Pareto efficiency (roughly speaking, Pareto
efficiency means that no other feasible solution exists that improves some agent without
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hurting everyone else)!, an observation that has received much attention in the economics
literature (e.g., [2, 22, 6, 1, 7]). In particular, as Erdil and Ergin [6] demonstrate, simply
using a matching returned by the Gale-Shapley deferred acceptance algorithm can cause
quite a severe loss in efficiency.

To capture both fairness and efficiency, Sotomayor [22] suggests Pareto stability (i.e.,
both stable and Pareto efficient) as a natural solution concept for matching markets in the
presence of indifferences. A natural question is then whether such a matching always exists,
and how to find one efficiently. Note that the presence of ties in the preference lists cannot
be addressed by the standard trick of introducing small perturbations: If ties are broken
arbitrarily, the set of stable matchings with respect to the new strict preferences can be
strictly smaller than the set of stable matchings with respect to the original preferences with
ties — that is, artificial tiebreaking does not preserve the set of stable matchings in the
original problem, thus, may not generate a Pareto efficient matching.

This question has recently been addressed by Erdil and Ergin [6, 7] for the many-to-one
matching model, where one side of the market can have multi-unit capacity. The authors
showed an algorithm to find a Pareto stable assignment, when an agent’s preference over
subsets of neighbors is the natural partial order derived from preferences over individual
neighbors. In recent years, there are a growing number of instances of many-to-many
matching markets, such as online labor markets, course assignments, and the UK medical
intern markets, where agents on both sides might want to transact with multiple agents from
the other side. In course assignments, for instance, students may register for multiple courses
and have preferences over them; on the other hand, courses may have implicit preferences
over students according to their, e.g., years of study, majors.

The generalization to multi-unit demand on both sides is nontrivial: The many-to-many
stable matching problem behaves rather differently from the many-to-one and one-to-one
models in terms of the properties and structure of the set of solutions [19, 5, 21, 22]. In this
paper, we study Pareto stability with indifference for many-to-many matching, by considering
the natural generalization of the Erdil and Ergin model to many-to-many market: What
happens when agents have the same preference model over subsets of acceptable partners as
in [6, 7], but agents on both sides can have capacities greater than one? Our main result is
the following:

Theorem. For many-to-many matching markets with indifferences, a Pareto stable assign-
ment always exists and can be computed in polynomial time.

1.1 Algorithmic Ideas

The algorithm of Erdil and Ergin [6, 7] for the many-to-one matching model depends on
two observations: First, an assignment has a Pareto improvement (i.e., another assignment
where no one gets worse off and at least one agent gets better off) only if the assignment
graph does have an augmenting path or cycle (formal definitions refer to Section 2). Second,
more critically, any Pareto improvement to a stable assignment preserves stability. These
observations immediately imply an algorithm to find a Pareto stable assignment: Starting
from any stable assignment, keep making Pareto improvements by eliminating augmenting

1 For example, there are two men m1, ma and two women w1, w2, where my strictly prefers wy to ws, but
all others are indifferent amongst their possible partners. The matching (m1,w2), (m2,w1) is stable, but
not Pareto efficient since m1 can be reassigned to w; and ma to wa without making anyone worse off.
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paths and cycles until none remain, and the resulting matching will be both stable and
Pareto efficient.

In the many-to-many setting, however, while the first property still holds, we observe
that the second critical property fails: A Pareto improvement to a stable assignment need
not preserve stability, as the following example shows.

» Example 1 (Pareto improvement does not preserve stability). Consider the example in the
following figure, where mo and wo have capacity two each and other agents all have unit
capacity. Preferences are specified next to each node, e.g., mo is indifferent between wy and
wy and prefer both of them to ws.

= B @

w] = we > w3 @v@ mi = Mg = M3 @‘@
w2 (g (ws) m2 3 (ws)

It can be seen that the assignment on the left is stable, and the assignment on the right is a
Pareto improvement where wo strictly improves her assignment and no one gets worse off.
Howewver, the assignment on the right is unstable as mo and we would like to match with
each other rather than ws and mg respectively, i.e., it is a blocking pair.

Since Pareto improvements need not preserve stability, all previous approaches (e.g., [6, 7,
4]) computing a Pareto stable assignment in variant models fail. Further, even the existence
of a Pareto stable assignment in the many-to-many setting is unclear. We will give an explicit
algorithm to compute a Pareto stable assignment, which implies the existence immediately.
The above example already shows that the approach of starting with an arbitrary stable
assignment and making Pareto improvements will not work, since this need not preserve
stability. Further, for the given stable assignment in the above example (left), there is only
one Pareto improvement (right); thus, the problem cannot be solved by a careful selection of
Pareto improvements.

Instead of using a stability preserving Pareto improvement approach, our algorithm
builds on the idea of Roth and Vande Vate [20], who provide an alternative to the deferred
acceptance algorithm to compute a stable (one-to-one) matching. Their algorithm can be
interpreted as follows: Assume that all women are present at the beginning, and men ‘arrive’
one by one. We start with the empty matching. When a new man m arrives, match him to
a most preferred woman w with whom he forms a blocking pair, if any; if this woman was
already matched to a man m’, set m’ free and consider him as the next arriving man; the
algorithm runs iteratively until all men have arrived. Since every woman who changes her
partner in this process gets a strict improvement and no woman ever becomes worse off, the
algorithm terminates; the final matching is stable, since by construction the matching at
every man'’s arrival is stable.

Our algorithm, like [20], assumes all women are available and considers men one by one
(precisely, increases their capacities unit by unit). When the capacity of a man is increased
by one, we do a sequence of reassignments to guarantee stability (with respect to the current
considered capacities). Further, we ensure that no woman ever becomes worse off, and that
some woman strictly improves her assignment in each phase. The algorithm hence will
eventually terminate and lead to a stable matching; it remains to consider Pareto efficiency.
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An important idea in our algorithm to derive Pareto efficiency is that in the process of
reassignments, no augmenting cycles have ever been introduced in the matching; but, on
the other hand, we allow the existence of augmenting paths. The key component of our
algorithm is a subroutine for eliminating augmenting paths while preserving stability (and
introducing no augmenting cycles). Having constructed a matching which is stable and
contains no augmenting cycles, we apply the subroutine to eliminate augmenting paths in a
stability preserving fashion, which finally yields a Pareto stable matching.

1.2 Related Work

There is a vast literature studying various aspects of the original stable marriage model of
Gale and Shapley [8], as well as many of its variants. For a nice review of the very large
economics literature on the subject, see the book by Roth and Sotomayor [19] and the survey
by Roth [18]; for an introduction to algorithmic and computational issues, see, for instance,
the textbook by Gusfield and Irving [9] and the survey by Iwama and Miyazaki [12].

When preferences have indifferences, Irving [14] defined two different notions, weak
stability and strong stability, to capture different levels of stability. These two solution
concepts, while conceptually similar, have rather different properties. The stability considered
in our paper corresponds to weak stability. The computer science literature has largely focused
on, e.g., approximating the maximum cardinality weakly stable matching (e.g., [13, 17]) or
computing strongly stable matchings (e.g. [14, 15, 10, 3]).

Another related work is [4] which also considers Pareto stable solutions in many-to-many
settings; however, in the work of [4], every pair of agents can transact any number of units
(e.g., money transfer) which is very different from the present paper where at most one unit
can be assigned. Specifically, in the model of [4], the stability-preserving and augmenting
path/cycle elimination properties still hold; thus, a Pareto stable solution exists trivially
and the algorithm in Erdil and Ergin [6, 7] can be applied directly. The solution structures,
algorithm ideas and technical details in our paper are all quite different from [6, 7, 4].

2 Preliminaries

In a two-sided marketplace, let M be the set of men and W be the set of women. Throughout
this paper, we will use m € M to denote a man and w € W to denote a woman, and use
x,y,z € MUW to denote any individual agent (man or woman). For each agent x € M UW,
let ¢, € N be his/her capacity, which is the maximum number of agents on the opposite side
that can be matched to x. The presence of capacities allows us to assume, without loss of
generality, that |M| = |W| = n, as dummy agents with ¢, = 0 can be added to the market.

Each man m € M has a preference list P, ranking individual women, denoted by >
and =, where w; > w2 means that the man (strictly) prefers w; to ws, and w; = ws
means that m is indifferent between them. We say m weakly prefers w; to wy if either
wy = wg Or wy = we, denoted by wy = ws. Every two women in P,, are comparable and
the preference is assumed to be transitive. The preference P, gives individual women that
are acceptable to m, and it may only contain a partial list of women (i.e., m does not want
to be matched with any woman that is not on the list). For example, a possible preference
list for m is P, : (w1 = we > w3 = ws): here, m is indifferent between w; and wsy, and
prefers either of them to ws, ws, amongst which m is indifferent; he finds all other partners
unacceptable. The preference list P, for each woman w € W is defined similarly. Let
E ={(m,w) | m € Py,,w € Py} be the set of mutually acceptable pairs. The problem then

387

STACS’'12



388

On Computing Pareto Stable Assignments

can be encoded as a bipartite graph (M, W; E) where every vertex has a capacity and a
preference over its neighbors.

Notice that the preference lists P,, and P, defined above are over individual neighbors.
Since agents can have capacities greater than one, we also need to define preferences over
subsets of neighbors. For this, we adopt the preference model used by Erdil and Ergin [6, 7]
in their work for many-to-one markets — the preference ordering over individuals defines
a natural ranking over subsets of acceptable partners — given a subset S C W and two
women w,w’ ¢ S, m prefers S U {w} to S U {w'} if and only if m prefers w to w’ (it is
allowed that w,w’ = (). In addition, the preference is transitive, i.e., if m prefers S; to So
and S to S3, it prefers S; to S3 as well. The preferences of women are defined similarly.
For example, if P, = (wy > wy > w3 = wy), then m prefers {wy, wa, w3} to {wy,wa, ws},
also m prefers {wy, w3} to {wa} (via {w2, w3} in the middle). Note that this preference over
subsets only constitutes a partial order — specifically, some subsets may not be comparable
— for example, m cannot compare (or equivalently, is indifferent between) the sets {wy, w4}
and {wq, w3}.?

Given the preferences of all agents, our objective is to establish a multi-unit pairing
between men and women, called an assignment (or b-matching). An assignment is denoted
by 1t = (femw)meM wew, Where fipm,, = 1 means that m and w are matched and iy, =0
otherwise. A feasible assignment is one that satisfies the following conditions: Y, ftmw < ¢m
and >, fmw < Cw, and fim, = 1 only if (m, w) € E (i.e., m and w are mutually acceptable).
All assignments considered in this paper are feasible.

2.1 Solution Concepts

We will consider the following solution concepts.

» Definition 2 (Stability). We say that a feasible assignment f1 = () is (pairwise) stable if
there is no pair (m,w) € E (called a blocking pair), pimq., = 0, satisfying one of the following
conditions:

Both m and w have leftover capacity;

m has leftover capacity and there is m’, pm = 1, such that w strictly prefers m to m/’;
or w has capacity remaining and there is w’, pme = 1, such that m prefers w to w’;
There are m’ and w’, pi = 1 and iy, = 1, such that m strictly prefers w to w’ and
w strictly prefers m to m/.

Note that both members of a blocking pair are able to improve their assignments respect-
ively by matching with each other (and possibly breaking some of the current assignments). A
stable assignment always exists, and can be found using a variant of Gale-Shapley’s deferred
acceptance algorithm [8] for computing stable matchings (by making ¢, copies for each
individual x € M UW with the same preference list).

We next define Pareto efficiency. Roughly speaking, an assignment is Pareto efficient if
there is no other feasible assignment where no agent is worse off, and at least one agent is
strictly better off. The formal definition is given below.

2 The preference we consider is called responsive preference in economics (see, e.g., [19]). This model of
preferences with multi-unit capacity is both simple, since agents continue to only express preferences
over individuals, and is arguably natural for settings where the benefit from a partner to an agent does
not depend upon the agent’s remaining partners.
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» Definition 3 (Pareto efficiency). Given a feasible assignment p = (fimuw ), let Sy(u) be the
subset of individuals assigned to « in p. We say that u/ = (ul,,,,) is a Pareto improvement of
w if for all z € M UW, x weakly prefers S, (1) to S, (1), and the preference is strict for at
least one agent. An assignment p is called Pareto efficient if it does not have any Pareto
improvement.

Recall from Introduction that when preference lists contain ties, a stable assignment need
not be Pareto efficient. This leads naturally to the concept of Pareto stability [22], which
combines both Pareto efficiency and stability to provide a stronger solution concept to choose
from amongst the set of feasible assignments.

» Definition 4 (Pareto stability). A feasible assignment is Pareto stable if it is both stable
and Pareto efficient.

2.2 Characterization of Pareto Efficiency

Given the connection between matching and network flow, it is not surprising that the
existence of augmenting paths and cycles in an assignment is closely related to whether it
can be improved, i.e., its Pareto efficiency. The main difference in the context of stable
assignment is that nodes have preferences in addition to capacities; thus, augmenting paths
and cycles must improve not just the size of an assignment, but also its quality, as determined
by node preferences. We first define augmenting path and cycle in the context of stable
assignment.

» Definition 5 (Augmenting Path). Given an assignment g = (i), we say that
[m07 W1, M1y ..., Wy, My, w€+l]

is an augmenting path if (i) > fmow < Cmo and - fimw,r; < Cwpyys (1) fmgw, = 1 and
Hmy 1w, = 0 for all k, and (iii) my, weakly prefers w41 to wy and wy, weakly prefers my_1
to my.

The first condition says that the capacities of mg and w41 are not exhausted. The
second condition says that pairs alternatively are not and are in the current assignment p
along the path. The last condition ensures that we are able to get a Pareto improvement by
reassigning matches according to the augmenting path. That is, removing all pairs (myg, wy)
and matching all pairs (my, wi41) give a feasible assignment, which is a Pareto improvement
over £ (where no one is worse off and mg and wy4 are better off).

» Definition 6 (Augmenting Cycle). Given an assignment p = (p;;), we say that
[mla W2, M2y ..., We, My, W1, ml]

is an augmenting cycle if (i) fymyw, = 1 and pim,w,,, = 0 for all k& (where wyy1 = wy) (ii)
my, weakly prefers wyy1 to wy and wy, weakly prefers my_1 to my, and at least one of these
preferences is strict.

Again, we are able to match all pairs (my, wg4+1) and unmatch all pairs (my,wy) in an
augmenting cycle to get a Pareto improvement. For a given assignment, an augmenting path
or cycle can be found easily by a network flow approach.

The following lemma characterizes the relation between stable assignment and augmenting
path and cycle (its proof is the same as the one for many-to-one matching market [6]).

» Lemma 7. A feasible assignment is Pareto efficient if and only if it has no augmenting
path or cycle.
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3 Algorithm

In this section, we will give an efficient algorithm to compute a Pareto stable assignment.
By the above characterization Lemma 7, it suffices to find a stable assignment without
containing any augmenting path and cycle. We will apply the idea of the Roth and Vande
Vate algorithm [20] that computes a stable one-to-one matching as the high level structure
of our algorithm: Initially all individuals are available; women are with full capacities and
men are with null capacity. We increase capacities of men unit by unit, and do a number of
reassignments in the process. In the course of the algorithm, the current assignment always
has the following invariants (with respect to the current capacities):

Stability preserving: it is always stable.

No augmenting cycle: it does not contain any augmenting cycle.

Women improving: the assignments of all women do not get worse off and overall
keep improving (this implies that the algorithm always terminates).

Why do we need to maintain the invariant that the algorithm contains no augmenting
cycles, whereas it is allowed to have augmenting paths? Observe that the reason that a
Pareto improvement may not preserve stability is that the path or cycle corresponding to the
Pareto improvement contains a matched pair (m, w) where both m and w are also matched to
a less preferred agent, say w’ and m’. When the match (m, w) is removed in the reassignment
process of the augmenting path/cycle, even though m and w could receive better partners
in the path or cycle, they will prefer to be matched to each other instead of w’ and m’
respectively. For augmenting path, however, we can always start reassignment from one side
of the path (say, the man), and stop proceeding along the path when we reach such a woman
w (then (m/,w) is unmatched and the process restarts). In this stability-preserving process,
a woman becomes strictly better off. However, for the pair (m,w) in an augmenting cycle,
we would need to release both (m’, w) and (m,w’) to preserve stability. That is, we would no
longer have the monotonically improving property for women’s assignments, which is critical
to the analysis of the algorithm.

The high-level structure of the algorithm is described below:

PARETO-STABLE-ALG

1. Initialization
there are no assigned edges (i.e., p =0) between M and W
all women have their full capacities available
let d = (dm)mem be a virtual capacity vector of men; initially d., = 0 for
me M
2. While there is m € M such that d.,, < cm
run INCREASE-CAp(d)
3. While there is an augmenting path P
run ELIMINATE-PATH(P)

4. Return the final assignment

Note that in the algorithm, p = (ttmw)mem,wew and (dp,)menm are global variables in
both subroutines. The first subroutine, INCREASE-CAP, increases the virtual capacity of a
man by one and does a number of reassignments to ensure the three invariants listed above
(in particular, it guarantees that the assignment is stable for the increased virtual capacity
vector). The second subroutine, ELIMINATE-PATH, eliminates all possible augmenting paths
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to derive a Pareto efficient assignment in a stability preserving fashion. The two subroutines
are not completely independent: We may call the second subroutine in the process of the
first one, and vice versa. After all augmenting paths have been eliminated, by Lemma 7, the
returned assignment is Pareto stable.

While the algorithm may look a bit complicated as the two subroutines may call each
other, the fact that no women ever get worse off in the process implies a simple, but critical,
structure of the algorithm: we iteratively do a sequence of reassignments to improve women'’s
assignments while preserving stability and containing no augmenting cycle. If at any moment
in the algorithm a woman’s assignment gets strictly improved, no matter at which stage the
algorithm is, we terminate that thread immediately and go to Step (2) of the main algorithm
to repeat the process given the current virtual capacity vector d. Such monotonically
improving property is crucial to the analysis of the algorithm.

We will describe the two subroutines in detail in the following subsections. (All discussions
are with respect to the considered virtual capacity vector.) In the algorithm, for any
(augmenting) cycle C' and a pair (m,w) € C, we use C'\ {(m,w)} to denote the path by
removing pair (m,w) from C.

3.1 Subroutine One: Capacity Increment

The first subroutine that increases virtual capacities of the men is the following.

INCREASE-CAP(d)
Pick an arbitrary man m with dm < cm
Let dm < dm +1, i.e., increase the virtual capacity of m by one

Let S={w | (m,w) is a blocking pair}

1

2

3

4. Let T={we S | m prefers w > w’' for any w' € S}
5. If T=10 (i.e., there is no blocking pair), return
6

Otherwise
a. If there exists w € T such that adding match (m,w) does not introduce any
augmenting cycle
pick such a woman w’
add match (m,w’)
b. Otherwise
pick an arbitrary w’' € T
let C be a potential augmenting cycle by adding (m,w’)

C m,w’
let P = [m Ailmw )} w’:| be the path from m to w’ through C\ {(m,w’)}

run ELIMINATE-PATH(P)
c. If w (defined either in Step (6.a) or (6.b)) is over-matched (i.e.,
matched to more than c¢,s neighbors)
let m' be a least preferred man matched to w’ where deleting (m’,w’)
does not introduce an augmenting cycle
delete match (m’,w’)
let d, < d, —1
return
d. Otherwise, return

When the virtual capacity of m is increased by one, there might be some blocking pairs,
among which the subroutine tries to match m to one that he prefers most (w’ € T in the
above description). However, this could introduce potential augmenting cycles (Step 6(b)).
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Instead of matching m and w’ directly, the subroutine considers a potential augmenting cycle
C incurred by (m,w’) and tries to do reassignments according the other path from m to
w’ along the cycle. Finally, if w’ is over-matched, then we delete one of her least preferred
assignments without incurring any augmenting cycles and delete the virtual capacity of that
man by one. This guarantees that the assignment remains stable, and the assignment of w’
strictly improves.

The existence of m’ in Step 6(c) is guaranteed by the following lemma.

» Lemma 8. Given a stable assignment without augmenting cycles, for any woman w let
S C M be the subset of men matched to w to whom w is least preferred. Then there is m € S
such that deleting match (m,w) does not introduce any augmenting cycle.

3.2 Subroutine Two: Augmenting Path Elimination

Consider any given stable assignment, assume that there is an augmenting path P =
[mo, w1, m1, ..., we, Mg, wet1], where (m;,w;) is in the assignment and (m;, w;y1) is not.
Note that it is possible that an individual z (either a man or a woman) or a pair (z,y)
appears more than once in P. In this subsection, when we refer to an individual x € P or a
pair (x,y) € P, we denote the corresponding one at that position of P.

Before describing the subroutine, we will first consider a truncation process, which deletes
some pairs in a given augmenting path according to different appearances of the same agent
and will will be used in the subroutine.

3.2.1 Truncation.

For a given augmenting path P, we consider the following truncation function.

TRUNC-PATH(P)

1. while one of the following "if" conditions holds

If there is m such that P = [...,m,wi,...,w2,m,...] and m weakly prefers
w1 to we

truncate P =1[...,m, SR TIPS R
If there is w such that P = [...,w,m,...,m2,w,...] and w weakly prefers
mo to my

truncate P =[...,w, R

2. Return path P

It can be seen that if TRUNC-PATH(P) is executed, by the rules of the truncation, no
pair (z,y) can appear more than once after truncation. However, it is still possible that
an individual appears more than once (e.g., when m strictly prefers ws to w;, we do not
truncate the two occurrences of m). The truncation process is necessary in our algorithm; in
particular, it is important to the analysis of termination of the algorithm.

We have the following observation.

» Lemma 9. For any given augmenting path P, TRUNC-PATH(P) returns an augmenting

path as well.

3.2.2 Elimination.

We next describe the subroutine to eliminate augmenting paths while preserving the three
invariants listed at the beginning of the section. Note that for any augmenting path, its one
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side must be a man and the other side must be a woman. The subroutine starts from the
man side and considers pairs one by one. Hence, for any man-woman pair in the path, the
objective is to match them; and for any woman-man pair in the path, the objective is to
unmatch them.

ELIMINATE-PATH(P)

1. Assume P = [m™,wi,mi,...,w"]

2. Let e= (m",w1) be the first pair on path P
3. while e # ()

e If ¢ is not a match (i.e., e = (m,w))

if adding match (m,w) does not introduce an augmenting cycle

a. add match (m,w)

b. if w is not over-matched, return

c. if w strictly prefers m to a current partmers
let m’ be a least preferred man matched to w where deleting (m’,w)
does not introduce an augmenting cycle (by Lemma 8, such m' exists)
delete match (m’,w)
let dpy < dpyr — 1
return to Step 2 of the main algorithm PARETO-STABLE-ALG to run
INCREASE-CAP

d. else let e be the next pair after (m,w) in P

otherwise
e. let C = [m,wi,ml,...,wy, my,w,m] be such a potential cycle if adding
(m, w)
C )
f. expand P = |m™,...,m,w} OMlmw)} my,w,...,w*
C )
g. truncate P = [m*, ..., TRUNC-PATH (m7 w Clm,w)} my,w,..., w*)}

h. let e be the first pair returned by the TRUNC-PATH
e If ¢ is a match (i.e., e= (w,m))
if deleting match (w,m) does not introduce an augmenting cycle
i. delete match (w,m)
j. let e be the next pair after (w,m) in P
otherwise
k. run the above Steps (e,f,g,h)
(switching the notations of m and w (except m™ and w™*))

The subroutine tries to add and delete matches one by one along pairs in the path
P. If the current considered pair is a man-woman pair (i.e., e = (m,w)), the subroutines
matches them if it does not introduce any augmenting cycle. If the assignment of w is strictly

improved (i.e., the condition in Step (3.b) or (3.c) is satisfied), the subroutine terminates.

Note that at this point the subroutine may not completely eliminate the augmenting path,
however, the overall assignment of the woman gets strictly improved and the process restarts
at the capacity increment stage. If matching m and w will introduce a potential augmenting
cycle, instead of adding the match directly, the subroutine takes a “detour" and considers
the other path from m to w along the cycle and expands it to the path P (Step 3(f); by the
following Lemma 10, it is a valid expansion). Then the subroutine will do a truncation from
m to the end of the path P and restarts the process by considering the first pair returned
by the truncation (its first individual must be m). The subroutine performs similarly if the
considered pair is a woman-man pair.
We first establish the following observations.

» Lemma 10. The expansion of path P in Step (3.f) is a well-defined augmenting path.
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We have the following key claim, which implies that the subroutine always terminates.

» Lemma 11 (Main). The subroutine ELIMINATE-PATH(P) terminates in finite number of
steps for any augmenting path P.

3.3 Analysis of the Algorithm

Again, the high level structure of the algorithm is to increase capacities of men and eliminate
augmenting paths. While the algorithm may look involved, as the virtual capacity is not
always monotonically increasing (e.g., in Step 6(c) of INCREASE-CAP and Step 3(c) of
ELIMINATE-PATH, we actually need to reduce the virtual capacities) and two subroutines
may call each other, there is a simple, but crucial, idea behind the algorithm: the assignments
of women keep improving (this is the exact reason that we do not want to introduce any
augmenting cycle in the course of the algorithm). Therefore, at any moment of the algorithm,
if a woman’s assignment gets improved (e.g., Step 6(c) of INCREASE-CAP and Step 3(b), 3(c)
of ELIMINATE-PATH), the algorithm will abandon the current subroutine and restart the
whole process (i.e., capacity increment and augmenting path elimination) starting from the
current virtual capacity vector. Since every woman can improve her assignment at most
n? times (as her capacity is at most n and every unit capacity can be improved at most n
times), the whole algorithm will terminate.

It is easy to see that the three invariants listed at the beginning of the section are
maintained in the course of the algorithm. Indeed, the last two (no augmenting cycle and
women not worse off) hold trivially as they are guaranteed by the algorithm itself. For
stability, in the subroutine INCREASE-CAP, when increasing the virtual capacity of m by
one, we try to match m with a most preferred woman w where (m,w) forms a blocking
pair. If w is not over-matched, then the resulting assignment is still stable. Otherwise, we
delete a match (m’/,w) where m’ is a least preferred man matched to w and reduce the
virtual capacity of m’ by one (Step (6.c) of INCREASE-CAP); this implies that the resulting
assignment is still stable with respect to the new capacity vector. For the second subroutine
ELIMINATE-PATH, stability comes from the definition of augmenting path and the fact that
when we delete a match (w,m), we know that m must be a least preferred man matched
to w and w was over-matched (otherwise, when we add the match right before (w,m), the
assignment of w gets strictly improved and the subroutine will run Step (3.b) or (3.c) to
terminate). Therefore, the final returned assignment is stable.

By the rule of the algorithm PARETO-STABLE-ALG, when it terminates there is no
augmenting path. By the invariant that there is no augmenting cycle, we know that the
returned assignment is Pareto efficient. We conclude with the following result.

» Theorem 12. The algorithm PARETO-STABLE-ALG computes a Pareto stable assignment
in polynomial time.

Acknowledgements

I am grateful for Arpita Ghosh for many valuable discussions and suggestions, and also thank
for the anonymous reviewers for their helpful comments.

—— References

1  A. Abdulkadiroglu, P. Pathak, A. E. Roth, Strategy-Proofness versus Efficiency in Matching
with Indifferences: Redesigning the NYC High School Match, American Economic Review,
V.99(5), 1954-1978, 2009.




N. Chen

10

11

12

13

14

15

16

17

18

19

20

21

22

A. Abdulkadiroglu, T. Sonmez. School Choice: A Mechanism Design Approach, American
Economic Review, V.93(3), 729-747, 2003.

N. Chen, A. Ghosh, Strongly Stable Assignment, ESA 2010, 147-158.

N. Chen, A. Ghosh, A Market Clearing Solution for Social Lending, IJCAI 2011, 152-157.

F. Echenique, J. Oviedo, A Theory of Stability in Many-to-Many Matching Markets, Theoretical
Economics. V.1(2), 233-273, 2006.

A. Erdil, H. Ergin, What’s the Matter with Tie-breaking? Improving Efficiency in School
Choice, American Economic Review, V.98(3), 669-689, 2008.

A. Erdil, H. Ergin, Two-Sided Matching with Indifferences, working paper.

D. Gale, L. S. Shapley, College Admissions and the Stability of Marriage, American Mathem-
atical Monthly, V.69, 9-15, 1962.

D. Gusfield, R. W. Irving, The Stable Marriage Problem: Structure and Algorithms, MIT
Press, 1989.

T. Kavitha, K. Mehlhorn, D. Michail, K. E. Paluch, Strongly Stable Matchings in Time O(nm)
and Extension to the Hospitals-Residents Problem, ACM Transactions on Algorithms, V.3(2),
2007.

K. Iwama, D. Manlove, S. Miyazaki, Y. Morita, Stable Marriage with Incomplete Lists and
Ties, ICALP 1999, 443-452.

K. Iwama, S. Miyazaki, Stable Marriage with Ties and Incomplete Lists, Encyclopedia of
Algorithms, 2008.

K. Iwama, S. Miyazaki, N. Yamauchi, A 1.875-Approzximation Algorithm for the Stable Marriage
Problem, SODA 2007, 288-297.

R. W. Irving, Stable Marriage and Indifference, Discrete Applied Mathematics, V.48, 261-272,
1994.

D. F. Manlove, Stable Marriage with Ties and Unacceptable Partners, Technical Report
TR-1999-29, University of Glasgow, 1999.

D. F. Manlove, R. W. Irving, K. Iwama, S. Miyazaki, Y. Morita, Hard Variants of Stable
Marriage, Theoretical Computer Science, V.276(1-2), 261-279, 2002.

E. McDermid, A 3/2-Approzimation Algorithm for General Stable Marriage, ICALP 2009,
689-700.

A. E. Roth, Deferred Acceptance Algorithms: History, Theory, Practice, and Open Questions,
International Journal of Game Theory, 537-569, 2008.

A. E. Roth, M. Sotomayor, Two-Sided Matching: A Study in Game-Theoretic Modeling and
Analysis, Cambridge University Press, 1992.

A. Roth, J. Vande Vate, Random Paths to Stability in Two-Sided Matching, Econometrica,
V.58, 1475-1480, 1990.

M. Sotomayor, Three Remarks on the Many-to-Many Stable Matching Problem, Mathematical
Social Sciences, V.38(1), 55-70, 1999.

M. Sotomayor, The Pareto-Stability Concept is a Natural Solution Concept for Discrete
Matching Markets with Indifferences, International Journal of Game Theory, 2010.

395

STACS’'12



	Introduction
	Algorithmic Ideas
	Related Work

	Preliminaries
	Solution Concepts
	Characterization of Pareto Efficiency

	Algorithm
	Subroutine One: Capacity Increment
	Subroutine Two: Augmenting Path Elimination
	Truncation.
	Elimination.

	Analysis of the Algorithm


