
Surface Split Decompositions and Subgraph
Isomorphism in Graphs on Surfaces
Paul Bonsma1

1 Humboldt University Berlin, Computer Science Department, Unter den
Linden 6, 10099 Berlin, Germany.
bonsma@informatik.hu-berlin.de.

Abstract
The Subgraph Isomorphism problem asks, given a host graph G on n vertices and a pattern graph
P on k vertices, whether G contains a subgraph isomorphic to P . The restriction of this problem
to planar graphs has often been considered. After a sequence of improvements, the current best
algorithm for planar graphs is a linear time algorithm by Dorn (STACS ’10), with complexity
2O(k) ·O(n).

We generalize this result, by giving an algorithm of the same complexity for graphs that can
be embedded in surfaces of bounded genus. In addition, we simplify the algorithm and analysis.
The key to these improvements is the introduction of surface split decompositions for bounded
genus graphs, which generalize sphere cut decompositions for planar graphs. We extend the
algorithm for the problem of counting and generating all subgraphs isomorphic to P , even for
the case where P is disconnected. This answers an open question by Eppstein (JGAA’99).

1998 ACM Subject Classification F.2.2 Computations on discrete structures, G.2.2 Graph al-
gorithms

Keywords and phrases Analysis of algorithms, parameterized algorithms, graphs on surfaces,
subgraph isomorphism, dynamic programming, branch decompositions, counting problems

Digital Object Identifier 10.4230/LIPIcs.STACS.2012.531

1 Introduction

The Subgraph Isomorphism problem asks, given a host graph G on n vertices and a pattern
graph P on k vertices, whether G contains a subgraph isomorphic to P . This is a well-
studied problem that generalizes many other important problems, such as finding cliques,
determining the girth, finding complete bipartite subgraphs, and finding a Hamilton path
or cycle. See Eppstein [15] for a survey on previous results for this problem and its many
applications. This problem is NP-complete in general, even for planar graphs. However, in
many cases P can be considered to be a small fixed graph. In that case, a trivial polynomial
time algorithm of complexity nO(k) exists. For general graphs, nothing better is known.
When restricting G to be planar, this can be improved significantly: Eppstein [15] gave a
linear time algorithm for Planar Subgraph Isomorphism for any fixed graph P on k vertices.
This seems best possible. However to judge the practicality of such an algorithm, the
dependency of the complexity on the value k is also essential. Hence we view the problem as
a parameterized problem with parameter k. (See [14, 20] for background on parameterized
algorithms.) Using this refined viewpoint, the complexity of Eppstein’s algorithm [15] is
2O(k log k) · O(n). This improved on previous algorithms for Planar Subgraph Isomorphism
by Plehn and Voigt [21] of complexity 2O(k log k) · nO(

√
k), and Alon et al. [3], of complexity

2O(k) · nO(
√

k). Finally, Dorn [11] improved the previous results and gave an algorithm of
© Paul Bonsma;
licensed under Creative Commons License NC-ND

29th Symposium on Theoretical Aspects of Computer Science (STACS’12).
Editors: Christoph Dürr, Thomas Wilke; pp. 531–542

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2012.531
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

532 Surface Split Decompositions and Subgraph Isomorphism in Graphs on Surfaces

complexity 2O(k) · O(n). Eppstein [16] also considered graphs of bounded genus, which
generalize planar graphs. In [16], an algorithm for Subgraph Isomorphism in bounded genus
graphs is given, with complexity 2O(k log k) · O(n). In addition, Eppstein [16] considered
the even more general graph class of apex-minor free graphs, and gave an f(k) · O(n) time
algorithm, where f(k) is a rapidly growing function of k. Subsequent results of Demaine
and Hajiaghayi [7] imply that this complexity can be improved to f(k) = 2O(k log k). The
aforementioned results by Eppstein [15, 16] in fact hold for the more general counting version
of the problem, where the number of subgraphs of G that are isomorphic to P should be
computed. In addition, in the case P is connected, he gave an algorithm for listing all of
these subgraphs in time 2O(k log k) ·O(n)+z ·kO(1), where z is the number of such subgraphs.

New results In this paper, we give an algorithm of complexity 2O(k) · O(n) for the
counting version of Subgraph Isomorphism, for the case where G has bounded genus. This
generalizes the result for planar graphs in [11] and improves the complexity of the bounded
genus result in [16]. In addition, we give an algorithm that lists all z subgraphs isomorphic to
P in in time 2O(k) ·O(n)+z ·kO(1). This also holds for the case where P is disconnected, and
therefore answers an open question from Eppstein [15]. This is made possible by developing
a simpler method for counting disconnected subgraphs. Our results hold for graphs of
bounded non-orientable genus as well. For simplicity, we describe the orientable case only,
and discuss the non-orientable case in the full version of this paper [5]. We also remark that
our algorithm can easily be modified to count induced subgraphs [5].

Related research There are many examples of problems that can be solved faster on
planar graphs and generalizations such as bounded genus graphs and H-minor free graphs.
For instance, for the aforementioned graph classes, many parameterized problems can be
solved in subexponential time 2O(

√
k) · O(n), see e.g. [2, 10, 6, 8]. The theory of bidimen-

sionality [6, 8] easily gives subexponential time algorithms for many problems restricted
to the aforementioned graph classes. However, Subgraph Isomorphism is not one of these,
except for very special cases of P such as paths. An essential ingredient for many of these
algorithmic results on planar graphs, bounded genus graphs and H-minor free graphs is
fast dynamic programming over tree decompositions and branch decompositions. For many
problems (such as for instance Longest Path, Maximum Leaf Tree), the best known dy-
namic programming algorithms for general graphs have a complexity of 2O(w log w) · O(n),
where w is the width of the given decomposition. However, when restricted to sparse graph
classes, a lot of research has been devoted to showing that this can often be improved to
2O(w) ·O(n) [1, 10, 11, 12, 13, 22]. In the case of planar graphs, an essential tool is given by
a special kind of branch decompositions, called sphere cut decompositions. These were intro-
duced by Seymour and Thomas [23], and their algorithmic usefulness was first demonstrated
in 2005 (conference version) by Dorn et al. [13]. Loosely speaking, a branch decomposition
for a graph G consists of a labeled tree T , and every edge e ∈ E(T) partitions the edges of
G into two graphs G1 and G2. In a sphere cut decomposition, for every e ∈ E(T) a simple
closed curve in the plane exists (a noose), that separates the plane into two regions, one
containing G1 and the other containing G2. In the case that a sphere cut decomposition of
width w is given, an improved complexity of 2O(w) ·O(n) can be proved for many dynamic
programming algorithms, by using the fact that solutions can cross the nooses in a limited
number of ways, which can be encoded by non-crossing partitions; see [13, 10].

It is generally believed that many algorithms for planar graphs can be extended to graphs
of bounded genus. However, in the past, making this step has always been an intricate task.
For instance, Dorn et al. [12] consider the Hamilton Cycle problem and related problems on
graphs of bounded genus, and reduce this case to the planar case by cutting the surface a

P. Bonsma 533

number of times along nooses. For the remaining planar case, dynamic programming over
sphere cut decompositions is used, but this is relatively complex because the previous cuts
need to be taken into account. Rué et al. [22] proposed a different dynamic programming
method for graphs on surfaces: they define surface cut decompositions, where two subgraphs
G1 andG2 defined by an edge of the branch decomposition are separated by a limited number
of nooses, which have a limited number of common points. Since in the case of surfaces of
higher genus, the boundary between G1 and G2 may become quite complex, an elaborate
definition is required to characterize this [22]. After a few intermediate steps, the complexity
bounds given in [22] are again based on counting non-crossing partitions.

New techniques and overview of the paper In Section 3 we give a dynamic pro-
gramming algorithm for Subgraph Isomorphism that works for all graphs, when a branch
decomposition is given. However, in order to give a good bound on its complexity, we restrict
to bounded genus graphs and introduce a special kind of branch decomposition. One of the
main contributions of this paper is that we introduce surface split decompositions for graphs
of bounded genus, and a strong but simple technique for bounding the resulting dynamic
programming complexity. This is a type of branch decomposition that directly generalizes
sphere cut decompositions. It allows algorithms and analysis that are significantly simpler
than previous dynamic programming algorithms for bounded genus graphs. In fact, our
algorithm and analysis is even significantly simpler than that of some previous algorithms
for planar graphs (e.g. [11]). Informally, our basic but crucial observation is that for surfaces
of higher genus, it is irrelevant that the two subgraphs G1 and G2 defined by an edge of
the branch decomposition can share a complex boundary; it is only relevant that there are
two disjoint (connected) regions R1 and R2 in the surface such that Gi is drawn in Ri for
i = 1, 2. This is because it is not necessary to consider the number of ways in which partial
solutions can cross the boundary of the regions; we can argue on a higher level by appropri-
ately applying a 2O(k) bound on the total number of bounded genus graphs on k vertices,
which avoids many of the technical challenges that were faced in previous papers for similar
problems [1, 22, 11, 12]. For more details, see Section 4. In a subsequent paper, we will
show how this technique can be applied to various other problems for graphs on surfaces.

In Section 5 we give an algorithm for finding surface split decompositions in linear time,
where the width depends linearly on the graph diameter. For this we generalize a result
by Tamaki [24] and Dorn [11], for finding low width sphere cut decompositions for planar
graphs of bounded diameter. This is then applied in Section 6 to prove our main algorithmic
results. To this end, we start with a standard technique for decomposing embedded graphs
into layers of small branch width (see e.g. [2, 11, 15]). The main innovation in Section 6
is a new, simpler way (compared to [15]) of avoiding double-counting in the case where the
pattern graph P is disconnected, by considering color-coded solutions.

We expect that the notion of surface split decompositions, our algorithm for finding them,
and our technique for bounding the size of corresponding dynamic programming tables will
be a stimulus for the algorithmic research on bounded genus graphs. We believe that it will
enable the generalization of various existing algorithmic results for planar graphs, and that
it should allow for the simplification of various known results for bounded genus graphs,
and more general graphs. We remark that algorithms that are conceptually simpler are not
only convenient for the reader or programmer; often they are also faster in practice. Indeed,
when restricted to planar graphs, the constants in our complexity bound are significantly
smaller than those in the algorithm by Dorn [11]. This is discussed in the full version of this
paper [5]. The proofs and proof details that are omitted because of space constraints can
also be found in [5]. We start by giving definitions in Section 2.

STACS’12

534 Surface Split Decompositions and Subgraph Isomorphism in Graphs on Surfaces

2 Preliminaries

For basic graph theoretical notations not defined here we refer to [9]. The main graphs
that we will consider throughout will be simple, but we will construct auxiliary graphs that
may have parallel edges and loops, i.e. that may be multi-graphs. The distance from u to
v is the length of a shortest path from u to v. The eccentricity of a vertex u ∈ V (G) is
the maximum distance from u to v, over all v ∈ V (G). By d(v) we denote the degree of
v ∈ V (G), which is the number of incident edges. An isomorphism between two simple
graphs G1 and G2 is a bijective function φ : V (G1) → V (G2) such that uv ∈ E(G1) if and
only if φ(u)φ(v) ∈ E(G2). The Subgraph Isomorphism (counting) problem takes as input a
simple (host) graph G and a simple (pattern) graph P . The objective is to compute the
number of subgraphs G′ of G that are isomorphic to P . Such a subgraph G′ is called a
P -isomorph, or isomorph if the graph P is clear.

The set of leaves of a tree T is denoted by L(T). A branch decomposition of a graph
G is a tuple (T, µ) consisting of a ternary tree T , and a bijection µ : L(T) → E(G). For
a subset S ⊆ L(T), we will use µ(S) to denote the set of images. Every edge eT ∈ E(T)
defines a middle set mid(eT) ⊆ V (G) in the following way: let T1 ⊆ V (T) and T2 ⊆ V (T)
denote the vertex sets of the two tree components of T −eT . The edge sets µ(L(T)∩T1) and
µ(L(T) ∩ T2) partition the edges of G. By G1 and G2 we denote the respective subgraphs
of G induced by these edge sets. Now mid(eT) is defined as V (G1) ∩ V (G2). The width of
(T, µ) is defined as maxeT∈E(T) |mid(eT)|. A rooted branch decomposition is a tuple (T, µ)
where T is a ternary tree, and a root r ∈ L(T) is identified. In this case, µ is a bijection
from L(T)\{r} to E(G). Note that a rooted branch decomposition can easily be obtained
from a branch decomposition. In the case of a rooted branch decomposition, for e ∈ E(T),
by Te ⊆ V (T) we denote the set of vertices of the component of T − e that does not contain
r. Similar to above, Te defines a subgraph of G, which is denoted by Ge. Since T is ternary,
every edge e ∈ E(T) for which Te is non-trivial (i.e. not a single vertex) has two children;
these are the two edges of Te that are adjacent to e. Observe that if er ∈ E(T) is the edge
incident with r, then Ger

= G.
For an introduction to graphs embedded on surfaces we refer to [19]. Formally, a surface

is a connected compact 2-manifold without boundary. For every integer g ≥ 0, Let Sg denote
a surface that is obtained by adding g handles to a sphere. Hence Sg is an orientable surface
of genus g. For ease of presentation, all surfaces that we consider will be orientable. In the
full version of this paper [5], we discuss the non-orientable case. A region of a surface is a
connected open set. The boundary of a region R consists of all the points that lie in the
closure of R but not in R itself. For a simple curve C ⊆ Sg, all the points in C that are not
the end points are called interior points.

An embedding ψ of a graph G into the surface Sg consists of an injective mapping of the
vertices v of G to points ψ(v) in Sg, and a mapping of edges e = uv of G to a simple curve
ψ(e) in Sg with end points ψ(u) and ψ(v), such that two edges may only intersect in their
end points. To simplify terminology and notation, if ψ is an embedding of a graph G, then
the images ψ(v) and ψ(e) (which are subsets of Sg) for v ∈ V (G) and e ∈ E(G) will also be
called vertices and edges of G, respectively. Let X ⊆ Sg be the union of all vertices and edges
of an embedded graph G. The faces of G are the maximal regions of Sg\X. An embedding
is a 2-cell embedding if every face is homeomorphic to an open disc. For a graph G with
n vertices and m edges, which is 2-cell embedded in Sg with f faces, by Euler’s formula it
holds that n −m + f = 2 − 2g. The boundary of every face F of G defines a closed walk
(vertex sequence) v0, v1, . . . , vk−1, v0 in G in a straightforward way, which will be called the

P. Bonsma 535

facial walk for F . If the length of W is k, then F will be called a k-face.
Given a 2-cell embedding ψ of a graph G in Sg, we can define the following two related

(multi-) graphs, and their 2-cell embeddings in Sg. To construct the dual graph G∗, we draw
one vertex vF in every face F of G. For every edge e ∈ E(G) that is incident with faces F
and F ′, we draw an edge e∗ in G∗ from vF to vF ′ . e∗ is called the dual edge of e and e the
primal edge of e∗. The radial graph RG of G (which is also called the vertex-face incidence
graph) is obtained by starting with the vertex set V (G) (the original vertices), and adding a
vertex vF for every face F of G (the face vertices). For every face F in G with corresponding
facial walk u0, u1, . . . , uk−1, u0, add k edges u0vF , u1vF , . . . , uk−1vF to RG, drawn in the
region F , in the given order around vF .

A combinatorial embedding π of a graph G consists of a cyclic order πv on the incident
edges for every vertex v ∈ V (G). From an embedding of a graph we obtain the corresponding
combinatorial embedding by considering the clockwise order of edges around every vertex.
A map is a connected graph G together with a combinatorial embedding π. The set of all
facial walks and therefore the number of faces of a map can easily be deduced (without
constructing the embedding), so the number of faces f of a map is well-defined. The genus
g of a map G, π is the solution to n − m + f = 2 − 2g, where n = |V (G)|, m = |E(G)|
and f is the number of faces of G, π. The genus of a connected graph G is the minimum g

such that G admits a combinatorial embedding of genus g. Given a map G, π of genus g, a
corresponding 2-cell embedding of G in Sg exists.

3 A dynamic program for counting colorful isomorphs

In this section we give a dynamic programming algorithm for the following generalization
of Subgraph Isomorphism. An instance of the Colorful Subgraph Isomorphism problem
consists of a colored host graph G, and a pattern graph P . The coloring of G is a function
α : V (G) → C, with C = {1, . . . , q}. This encodes a partition of V (G) into q sets. We
remark that this is not required to be a proper vertex coloring, so adjacent vertices may
receive the same color. A subgraph G′ of G is called colorful if for every color x ∈ C, G′
contains a vertex v of color x. (Note that G′ may have more than q vertices.) The objective
is to count the number of colorful P -isomorphs of G. We now present an algorithm for this
problem. (When q = 1, this is the original counting problem.)

Dynamic programming table Let (T, µ) be a rooted branch decomposition of G. For
every edge e ∈ E(T), we will form a dynamic programming table Te. Informally, this table
will store information about all possible subgraphs of the graph Ge, on at most k vertices.
Firstly, we distinguish between non-isomorphic subgraphs. Furthermore, subgraphs of Ge

that are isomorphic but intersect differently with the ‘boundary’ mid(e) of Ge are also
considered distinct. Finally, we keep track of the set of colors that appear in these subgraphs.
Two subgraphs of Ge are only considered equivalent if they match in all three regards. In
that case, there will be a single entry in the table that represents both subgraphs. We now
define this formally.

Let H be a graph, and let γ be a mapping from mid(e) to V (H)∪{nil}, which is injective
on V (H). To be precise, every vertex of V (H) occurs at most once as a γ-image, but multiple
vertices may be mapped to nil. Furthermore, let A ⊆ {1, . . . , q}. For such a tuple (H, γ,A),
a subgraph G′ of Ge is called an (H, γ,A)-subgraph if the following two properties hold.

There is an isomorphism φ : V (G′)→ V (H) with γ(v) = φ(v) for all v ∈ mid(e)∩V (G′),
and γ(v) = nil for all v ∈ mid(e)\V (G′).
For all colors x ∈ C: x ∈ A if and only if G′ contains a vertex of color x.

STACS’12

536 Surface Split Decompositions and Subgraph Isomorphism in Graphs on Surfaces

For e ∈ E(T), the dynamic programming table Te will now contain entries (H, γ,A, η), where
H, γ and A are as defined above, and η is a non-negative integer. The idea is that such a
table entry indicates that Ge contains exactly η non-equivalent (H, γ,A)-subgraphs. Table
entries (H1, γ1, A1, η1) and (H2, γ2, A2, η2) are equivalent if the following properties hold.

There is an isomorphism φ : V (H1) → V (H2) such that for all v ∈ mid(e), either
γ1(v) = γ2(v) = nil, or φ(γ1(v)) = γ2(v) holds.
A1 = A2.

Observe that the above definition satisfies the following property: a subgraphG′ ofGe is both
an (H1, γ1, A1)-subgraph and an (H2, γ2, A2)-subgraph if and only if (H1, γ1, A1, η1) and
(H2, γ2, A2, η2) are equivalent. Therefore, when two entries (H1, γ1, A1, η1) and (H2, γ2, A2, η2)
are equivalent, we can merge them by replacing them with the single entry (H1, γ1, A1, η1 +
η2). We say that the table Te is k-correct if

for every tuple (H, γ,A), Te contains an entry (H, γ,A, η) if and only if Ge contains
exactly η ≥ 1 graphs G′ with |V (G′)| ≤ k that are (H, γ,A)-subgraphs, and
Te contains no pairs of equivalent entries.

Dynamic programming update step Let e ∈ E(T) be an edge with children f

and g. We will now show how a k-correct table Te for e can be obtained from k-correct
tables Tf and Tg for f and g, respectively. We define two entries (Hf , γf , Af , ηf) ∈ Tf and
(Hg, γg, Ag, ηg) ∈ Tg to be compatible if for all v ∈ mid(f)∩mid(g), it holds that γf (v) = nil
if and only if γg(v) = nil. We now show how to combine two such compatible entries into
an entry (He, γe, Ae, ηe):

For all v ∈ mid(f) ∩mid(g) with γf (v) 6= nil (and thus γg(v) 6= nil): identify the vertex
γf (v) of Hf with the vertex γg(v) of Hg, and call the new vertex ν(v). This gives the
graph He.
For all v ∈ mid(e): If v ∈ mid(f)\mid(g) then set γe(v) = γf (v). If v ∈ mid(g)\mid(f)
then set γe(v) = γg(v). If v ∈ mid(g) ∩mid(f) then set γe(v) = ν(v). By definition of
mid(e), this covers all cases and thus defines the function γe.
Set Ae = Af ∪Ag.
Set ηe := ηf · ηg.

It can be verified that if there are ηf (Hf , γf , Af)-subgraphs in Gf , and ηg (Hg, γg, Ag)-
subgraphs in Gg, then there are ηf · ηg (He, γe, Ae)-subgraphs in Ge that are the result of
combining graphs of the former two types in every possible combination. However, there
may also be (He, γe, Ae)-subgraphs of Ge that are the result of combining different types of
subgraphs of Gf and Gg. Therefore, merging entries is required as well.

Assuming that we have k-correct tables Tf and Tg for f and g respectively, we construct
a k-correct table Te for e as follows: We start with an empty table Te. Then we consider
every pair of compatible entries from Tf and Tg, and combine them as described above. For
every such combination, this yields a possible entry (H, γ,A, η) for Te. In case that H has
more than k vertices, we ignore this possible entry. Otherwise, we check whether Te already
contains an equivalent entry (H ′, γ′, A′, η′). If so, we merge the two entries. If not, we add
the entry (T, γ,A, η) to the table Te. Then we continue with the next pair of compatible
entries from Tf and Tg. This yields the following lemma.

I Lemma 1. Let (T, µ) be a rooted branch decomposition for a colored graph G, and k be an
integer. Let e ∈ E(T) be an edge with children f and g, for which k-correct tables Tf and
Tg are given. Then the table Te that is constructed with the above dynamic programming
update step is k-correct for e. The construction takes time X3 · f(k) · kO(1), where f(k) is
the complexity of deciding whether two entries are equivalent, and X is an upper bound on
the size of a k-correct table.

P. Bonsma 537

This update step is the core of the following dynamic programming algorithm: First,
for every edge e ∈ E(T) that has no children, Ge consists of a single edge, so it is trivial
to construct a k-correct table Te. For every edge e ∈ E(T) with two children f and g, we
compute a k-correct table Te using the dynamic programming update step. After computing
k-correct tables for all edges of T , we inspect the table Ter

where er is the root edge of (T, µ).
Since Ger = G, mid(er) = ∅. Therefore, Ter contains at most one entry (H, γ,A, η) such
that H is isomorphic to P and A = {1, . . . , q}. If there is such an entry (H, γ,A, η), we
return η, and otherwise we return 0. The correctness of this procedure follows from the
definitions. Combined with Lemma 1 this gives the following theorem. Note that a branch
decomposition (T, µ) of a graph on m edges has |E(T)| ∈ O(m).

I Theorem 2. Let (T, µ) be a rooted branch decomposition of a colored graph G with m

edges. In time X3 · f(k) · kO(1) · O(m), it can be computed how many colorful subgraphs of
G are isomorphic to a given graph P on k vertices, where f(k) is the complexity of deciding
whether two entries are equivalent, and X is an upper bound on the size of a k-correct table.

The above theorem applies to general graphs, for which an appropriate bound for X can
be given (this way we would match Eppstein’s result [15]). However, to obtain the desired
improved complexity, we consider bounded genus graphs and introduce surface split decom-
positions in the next section. In the case that an embedding π of G of bounded genus is
given, and (T, µ) is a surface split decomposition, we give a good upper bound for X.

4 Surface split decompositions and a bound for the table size

In this section, we introduce surface split decompositions for graphs embedded in Sg, and
demonstrate their usefulness. For graphs of genus 0 (planar graphs), the following definition
is an alternative way to define sphere cut decompositions.

I Definition 3. Let G be a graph embedded in Sg. A branch decomposition (T, µ) of G
is called a surface split decomposition if for every e ∈ E(T) and corresponding subgraphs
G1 and G2 of G, there are disjoint regions R1 ⊆ Sg and R2 ⊆ Sg such that for i = 1, 2, all
vertices and edges of Gi are drawn entirely in the closure of Ri.

Observe that this definition implies that all vertices in mid(e) lie on the boundary of the
closure of R1 and on the boundary of the closure of R2, so the closures are not disjoint (if
mid(e) 6= ∅). We stress that it is crucial that R1 and R2 are connected open sets. If not, then
firstly the above definition is not a generalization of sphere cut decompositions, but more
importantly, the proof of Lemma 5 below fails. Even if the boundaries of the regions R1 and
R2 are the same, this boundary is not necessarily a simple curve if g ≥ 1. It may even be
quite complex [22], but this does not matter. The definition easily extends to maps G, π of
genus g: (T, µ) is a surface split decomposition of G, π if it is a surface split decomposition
for any embedding of G in Sg that corresponds to the combinatorial embedding π.

Let (T, µ) be a surface split decomposition for a map G, π. We now give a bound on
the size of a k-correct table. We will use a bound on the number of different graphs on n
vertices, embedded in a surface of genus g. To be precise, we will consider simple, connected
graphs G, that come with a combinatorial embedding π. Such a pair G, π is called a simple
map. In addition, a tuple (u, v) of vertices is given such that uv ∈ E(G). This is the
root. Such a combination G, π, (u, v) is called a simple rooted map. Two simple rooted maps
G, π, (u, v) and G′, π′, (u′, v′) are equivalent if there is an isomorphism φ : V (G) → V (G′)
with φ(u) = u′, φ(v) = v′, and that maps facial walks of G to facial walks of G′. In case

STACS’12

538 Surface Split Decompositions and Subgraph Isomorphism in Graphs on Surfaces

an edge labeling is given for both simple rooted maps, we also require that φ maps edges to
edges of the same label. To bound the number of simple rooted maps, we apply a result by
Bender and Canfield [4], which implies the following bound.

I Theorem 4. There are 2O(n) · nO(g) simple rooted maps of genus at most g on at most n
vertices.

I Lemma 5. Let G, π be a simple map of genus at most g, for which a coloring with q

colors and a surface split decomposition (T, µ) of width w are given. Let k be an integer.
For e ∈ E(T), let Te be a k-correct table. Then |Te| ∈ 2q · 2w · 2O(k) · kO(g).

Proof sketch: For all entries (H, γ,A, η) ∈ Te where H has at most k vertices, we will encode
H and γ by a simple rooted map H ′, π′, (u, v) on at most k + 1 vertices, together with a
0/1-labeling λ of a subset of the edges of H ′, and a 0/1-labeling ρ of the vertices in mid(e).
This means that any two non-equivalent entries (H, γ,A, η) and (H ′, γ′, A′, η′) either have
A 6= A′, or yield a different labeling ρ, or yield non-equivalent rooted maps.

We use the following auxiliary graph. Since (T, µ) is a surface split decomposition, there
are disjoint regions R1 and R2 in Sg, such that Ge lies in the closure of R1, and mid(e) lies on
the boundary of both R1 and R2. Thus we can extend Ge by drawing a vertex u in R2, and
drawing edges in the closure of R2 from u to every vertex in mid(e), while maintaining an
embedding in Sg. Number the vertices of mid(e) v1, . . . , vt, corresponding to the clockwise
order of edges around u.

Now we show how to construct the encoding H ′, π′, ρ, λ for an entry (H, γ,A, η) ∈ Te.
Firstly, for all vertices v ∈ mid(e), set ρ(v) = 0 if and only if γ(v) = nil. The graph H ′ is
constructed as follows. Since Te is k-correct, H corresponds to a subgraph of Ge, so H can
also be drawn in the closure of R1, such that all vertices that are γ-images are drawn on
the boundary of R1. Start with such an embedding. Next, add the vertex u, and edges uvi

for every vi ∈ mid(e) with γ(vi) 6= nil. Draw these as described in the previous paragraph.
This yields a simple graph embedded in Sg, on at most k + 1 vertices. However, it may not
be connected. Add edges between different components until the graph is connected. This
yields H ′. Clearly, drawing these new edges can be done while maintaining an embedding.
Hence H ′ is embedded in Sg, and the corresponding combinatorial embedding π′ has genus
at most g. To obtain a rooted map, choose i to be the lowest index such that ρ(vi) = 1. Then
the tuple (u, vi) is chosen as the root of H ′, π′. That is, v = vi. A bridge of a connected
graph G is an edge e ∈ E(G) such that G − e is disconnected. For all bridges e ∈ E(H ′),
we set λ(e) = 1 if e ∈ E(H), and λ(e) = 0 otherwise. It can now be verified that the rooted
edge labeled map H ′, π′, (u, v), λ, function ρ and set A encode the entry; informally, when
knowing H ′, π′, (u, v), λ and ρ, we can reconstruct H and γ.

There are at most 2w possibilities for ρ, at most 2q possibilities for A, at most 2O(k) ·kO(g)

simple rooted maps on at most k+1 vertices of genus at most g (Theorem 4), and at most 2k

possible labelings λ (since a graph on k+ 1 vertices contains at most k bridges.) Therefore,
the number of entries in a k-correct table is bounded by 2q · 2w · 2O(k) · kO(g). �

Using the isomorphism testing algorithm for graphs of bounded genus by Miller [18] or
Grohe [17], we can test in time kO(g) whether two entries are equivalent. Combining this
fact with Theorem 2 and Lemma 5 gives the following theorem.

I Theorem 6. Let G, π be a simple map with m edges of genus at most g, for which a
coloring with q colors and a surface split decomposition (T, µ) of width w are given. Let P
be a graph on k vertices. In time 8q · 8w · 2O(k) · kO(g) ·O(m), it can be computed how many
colorful subgraphs of G are isomorphic to P .

P. Bonsma 539

5 Constructing surface split decompositions

Tamaki [24] gave a linear time algorithm for constructing a branch decomposition of width
2d + 1 of a graph G embedded in the sphere, when a vertex r ∈ V (G) of eccentricity d is
given. Dorn [11] gave a different presentation of the construction and showed that it yields
in fact a sphere cut decomposition. We now generalize this result to surfaces of higher genus.

I Theorem 7. Let G, π be a map of genus at most g, for which a vertex r ∈ V (G) of
eccentricity d is given. In linear time, a surface split decomposition (T, µ) of G of width at
most (2g + 1)(4d+ 3)/2 can be constructed.

Before we construct the surface split decomposition (T, µ), we will construct a number
of auxiliary graphs. The objective of the first stage of the construction is to construct
a tree T ∗, such that for every e ∈ E(G), there is a unique vertex of T ∗ associated with
e. This can be thought of as the function µ, from a subset of V (T ∗) to E(G). We will
show in Lemmas 8 and 9 below that this T ∗ is already ‘almost’ the desired surface split
decomposition. However, T ∗ will not yet be ternary (though it will have maximum degree
3), and the vertices that are associated with edges of G are not necessarily leaves. This is
subsequently addressed in the second stage of the construction.

For the first stage, we start by modifying the graph G as follows: for every edge e = uv,
add two extra parallel edges between u and v, one on either side of e (while maintaining a
combinatorial embedding). This ensures that all original edges of G are incident with two
2-faces, and that every vertex has degree at least 3. Denote the resulting embedded graph
by G′. The edges in E(G′) ∩ E(G) are called original edges, and edges in E(G′)\E(G) are
called new edges. Now construct RG′ , the radial graph of G′. Let TS be a BFS spanning tree
of RG′ , rooted at a vertex r ∈ V (RG′)∩V (G) of eccentricity d. Choose T ∗ to be a spanning
tree of the dual graph of RG′ , such that for all edges e∗ ∈ E(T ∗), the corresponding primal
edge e is not in TS . Using Euler’s formula it can be shown that there are now 2g edges of
RG′ that are neither in TS , nor are their dual edges in T ∗. Add all of these edges to TS ,
to obtain the graph T+

S . This completes the first stage of the construction of a surface split
decomposition.

We remark that there is a trivial bijection between the faces of RG′ and the edges of
G′, and a trivial bijection between the vertices of T ∗ and the faces of RG′ , and therefore a
resulting bijection from V (T ∗) to E(G′). Below, we refer to these bijections when speaking
of ‘the set of edges of G′ or faces of RG′ that corresponds to a subset of V (T ∗)’. The subgraph
of G′ that corresponds to a set T1 ⊆ V (T ∗) is the subgraph of G′ induced by the edges that
correspond to T1. For an edge eT ∈ E(T ∗), let T1 and T2 be the vertex sets of the two
components of T ∗ − eT . Informally, by joining the faces of RG′ that correspond to the
vertices in T1 and T2, we can construct regions R(T1) and R(T2) that satisfy the following
two properties.

I Lemma 8. For an edge eT ∈ E(T ∗), let T1 and T2 be the vertex sets of the two components
of T ∗−eT , and let G′1 and G′2 be the subgraphs of G′ that correspond to T1 and T2 respectively.
For every such edge eT , there exist disjoint regions R(T1) ⊆ Sg and R(T2) ⊆ Sg, such that
for i = 1, 2, all vertices and edges of Gi are drawn entirely in the closure of Ri.

I Lemma 9. For an edge eT ∈ E(T ∗), let T1 be the vertex set of one of the components of
T ∗ − eT , and let G′1 be the subgraph of G′ that corresponds to T1. For every such edge eT ,
there are at most (2g + 1)(4d+ 3)/2 vertices of G′1 that lie on the boundary of R(T1).

Proof sketch: We use that the boundary of a region R(T1) is a subgraph of RG′ , and contains
at most 2g+ 1 edges that are not in TS . This holds because one of these edges is the primal

STACS’12

540 Surface Split Decompositions and Subgraph Isomorphism in Graphs on Surfaces

edge of eT , and the other edges are edges of E(T+
S)\E(TS), of which there are at most 2g

(which can be shown using Euler’s formula). Secondly, one can show that the maximum
length of a path in TS is 4d+ 2. Hence the boundary of the region R(T1) contains at most
(2g + 1)(4d + 3) edges. This number may be divided by 2 since RG′ is bipartite and only
half of its vertices are vertices of G′. �

At this point, T ∗ is already close to a low-width surface split decomposition of G. It
remains to make it into a ternary tree, of which only the leaves correspond to original
edges of G′. This is easily done with elementary operations. The reason is that, because
of the parallel edges that were added to G′, a vertex vd ∈ V (T ∗) has degree at most 2 if it
corresponds to an original edge of G′, and degree at most 3 otherwise. We omit the details
of this final stage of the proof of Theorem 7.

6 Summary of the algorithm for bounded genus graphs

In this section we show how to combine the ingredients of the previous sections to obtain
our main results; we present an algorithm for counting the number of subgraphs isomorphic
to P in a graph G of bounded genus, and an algorithm for listing all of them. Without
loss of generality, we may assume that G is connected. Throughout this section we use the
following notations. We choose an arbitrary vertex r ∈ V (G). Let d be the eccentricity of
r. For i = 0, . . . , d, define Li ⊆ V (G) to be the set of vertices at distance i of r. We call
such a set a layer. Let Gj

i = G[Li ∪ Li+1 ∪ . . . ∪ Lj]. The following property easily follows
from Theorem 7 using a standard argument, see e.g. [15, 11].

I Lemma 10. Let G, π be a map of genus g, with a vertex r of eccentricity d, and subgraphs
Gj

i as defined above. For i, j with 0 ≤ i ≤ j ≤ d, a surface split decomposition of Gj
i of width

at most (2g + 1)(4j − 4i+ 7)/2 can be constructed in time O(n′ +m′), where n′ = |V (Gj
i)|

and m′ = |E(Gj
i)| .

We now present a novel algorithm for counting the number of P -isomorphs in G, even
for the case where P is disconnected. Let c be the number of components of P , which are
denoted by P 1, . . . , P c. For S ⊆ {1, . . . , c}, denote by PS the subgraph of P induced by the
components with labels in S. Formally, PS = P [∪i∈SV (P i)]. For every Gj

i , we consider the
following coloring, which uses the color set {1, . . . , j− i+ 1}: the vertices of layer Lx are all
colored with color x− i+ 1. For 0 ≤ i ≤ j ≤ d with j − i < k and S ⊆ {1, . . . , c}, we define
DPCj

i (S) to be the number of colorful subgraphs of Gj
i that are isomorphic to PS . In other

words, this is the number of PS-isomorphs that use all layers of Gj
i . Combining Lemma 10

with Theorem 6 yields the following proposition.

I Proposition 11. Let G, π be a connected simple map of genus at most g, let P be a graph
on k vertices with c components, and let DPCj

i (S) and Gj
i be as defined above. For given i,

j with 0 ≤ i ≤ j ≤ d and j − i < k, and given set S ⊆ {1, . . . , c}, DPCj
i (S) can be computed

in time 2O(gk) ·O(n′ +m′), where n′ = |V (Gj
i)| and m′ = |E(Gj

i)|.

For j ∈ {0, . . . , d}, we define DPTj(S) to be the number of subgraphs of Gj
0 that are

isomorphic to PS . Note that these are not required to be colorful. In particular, if S = ∅,
then we define DPTj(S) = 1. To avoid the discussion of trivial cases, we simply define
DPCj

i (S) = 0 if i < 0, and DPTj(S) = 0 if j < 0. It can be shown that the following
recursion for computing DPTj(S) is correct.

P. Bonsma 541

I Lemma 12. For every j ∈ {0, . . . , d} and S ⊆ {1, . . . , c}, it holds that DPTj(S) =
DPTj−1(S)+

∑
DPTj−x−1(S1) ·DPCj

j−x+1(S2), where the summation is over all partitions
of S into S1 and S2 with S2 6= ∅, and all x ∈ {1, . . . , k}.

I Theorem 13. Let G, π be a simple map with m edges, of genus at most g, and let P be a
(possibly disconnected) graph on k vertices. In time 2O(gk) ·O(m), the number of subgraphs
of G that are isomorphic to P can be computed.

Proof: In the first stage of the algorithm, we compute DPCj
i (S) for every i, j with 0 ≤ i ≤

j ≤ d and j − i < k, and every S ⊆ {1, . . . , c}. There are 2c choices of S, so computing
DPCj

i for one choice of i and j and all possible choices of S takes time 2c ·2O(gk) ·O(n′+m′),
where n′ = |V (Gj

i)| and m′ = |E(Gj
i)| (Proposition 11). Since every vertex and every edge

of G appears in Gj
i for at most O(k2) choices of i and j, this yields a total complexity

of 2c · 2O(gk) · k2 · O(n + m) ⊆ 2O(gk) · O(m) for the first stage. (G is connected, so n ∈
O(m).) The second stage of the algorithm uses the recursion from Lemma 12 for computing
DPTj(S) for every j ∈ {0, . . . , d} and S ⊆ {1, . . . , c}. One can show that this takes time
3c · O(k) · O(d) ⊆ 3c · O(k) · O(n) ⊆ 2O(k) · O(m). Finally, the algorithm returns the value
of DPTd({1, . . . , c}), which is the total number of P -isomorphs of Gd

0 = G. �

I Corollary 14. Let g be a constant. Let G, π be a simple map with m edges, of genus at
most g, and let P be a (possibly disconnected) graph on k vertices. In time 2O(k) ·O(n), the
number of subgraphs of G that are isomorphic to P can be computed.

(Here we used m ∈ O(n + g) = O(n).) Since the above algorithm is a rather simple
algorithm that uses only additions and multiplications for the counting, it can be extended
to an algorithm for listing all isomorphs. We sketch how this can be done for the second
stage of the algorithm. We first run the above counting algorithm and compute all values
DPTj(S) and DPCj

i (S). Next, we apply a backtracking stage where we recursively mark
the combinations of i, j and S that contribute to the total number of isomorphs. In a
third stage, we apply the counting algorithm again, but instead of computing the values
for DPTj(S) and DPCj

i (S), we compute a list of all corresponding subgraphs of G for all
combinations of i, j and S that actually contribute to the total number of isomorphs. The
steps of the algorithm where lists are constructed can then be attributed to the construction
of the final list of P -isomorphs, and thus their complexity can be bounded by zkO(1), where
z is the number of P -isomorphs. All other steps can be done with the same complexity as
the counting algorithm. This yields:

I Theorem 15. Let G, π be a simple map with m edges, of genus at most g, and let P be a
(possibly disconnected) graph on k vertices. In time 2O(gk) ·O(m) + zkO(1), all subgraphs of
G that are isomorphic to P can be generated, where z is the number of such subgraphs.

Acknowledgement The author would like to thank Frederic Dorn for the introduction to
the subject and the many inspiring discussions.

References
1 I. Adler, F. Dorn, F. Fomin, I. Sau, and D. Thilikos. Fast minor testing in planar graphs.

In ESA ’10, volume 6346 of LNCS, pages 97–109. Springer, Berlin, 2010.
2 J. Alber, H. Fernau, and R. Niedermeier. Parameterized complexity: exponential speed-up

for planar graph problems. J. Algorithms, 52(1):26–56, 2004.
3 N. Alon, R. Yuster, and U. Zwick. Color-coding. J. ACM, 42(4):844–856, 1995.

STACS’12

542 Surface Split Decompositions and Subgraph Isomorphism in Graphs on Surfaces

4 E. A. Bender and E. R. Canfield. The asymptotic number of rooted maps on a surface. J.
Combin. Theory Ser. A, 43(2):244–257, 1986.

5 P. Bonsma. Surface split decompositions and subgraph isomorphism in graphs on surfaces.
eprint arXiv:1109.4554, 2011.

6 E. D. Demaine, F. V. Fomin, M. Hajiaghayi, and D. M. Thilikos. Subexponential paramet-
erized algorithms on bounded-genus graphs and H-minor-free graphs. J. ACM, 52(6):866–
893, 2005.

7 E. D. Demaine and M. Hajiaghayi. Equivalence of local treewidth and linear local treewidth
and its algorithmic applications. In SODA ’04, pages 840–849. SIAM, Philadelphia, PA,
USA, 2004.

8 E. D. Demaine and M. Hajiaghayi. The bidimensionality theory and its algorithmic applic-
ations. Comput. J., 51(3):292–302, 2008.

9 R. Diestel. Graph theory, volume 173 of Graduate Texts in Mathematics. Springer, Heidel-
berg, fourth edition, 2010.

10 F. Dorn. Designing subexponential algorithms: problems, techniques and structures. PhD
thesis, University of Bergen, Norway, 2007.

11 F. Dorn. Planar subgraph isomorphism revisited. In STACS ’10, volume 5 of LIPIcs, pages
263–274. Dagstuhl Publishing, Dagstuhl, Germany, 2010.

12 F. Dorn, F. V. Fomin, and D. M. Thilikos. Fast subexponential algorithm for non-local
problems on graphs of bounded genus. In Algorithm theory—SWAT ’06, volume 4059 of
LNCS, pages 172–183. Springer, Berlin, 2006.

13 F. Dorn, E. Penninkx, H. L. Bodlaender, and F. V. Fomin. Efficient exact algorithms on
planar graphs: exploiting sphere cut decompositions. Algorithmica, 58(3):790–810, 2010.

14 R. G. Downey and M. R. Fellows. Parameterized complexity. Springer-Verlag, New York,
1999.

15 D. Eppstein. Subgraph isomorphism in planar graphs and related problems. J. Graph
Algorithms Appl., 3(3):1–27, 1999.

16 D. Eppstein. Diameter and treewidth in minor-closed graph families. Algorithmica, 27(3-
4):275–291, 2000.

17 M. Grohe. Isomorphism testing for embeddable graphs through definability. In STOC’00,
pages 63–72. ACM, New York, 2000.

18 G. Miller. Isomorphism testing for graphs of bounded genus. In STOC’80, pages 225–235.
ACM, New York, 1980.

19 B. Mohar and C. Thomassen. Graphs on surfaces. Johns Hopkins Studies in the Mathem-
atical Sciences. Johns Hopkins University Press, Baltimore, MD, 2001.

20 R. Niedermeier. Invitation to fixed-parameter algorithms, volume 31 of Oxford Lecture
Series in Mathematics and its Applications. Oxford University Press, Oxford, 2006.

21 J. Plehn and B. Voigt. Finding minimally weighted subgraphs. In WG ’90, volume 484 of
LNCS, pages 18–29. Springer, Berlin, 1991.

22 J. Rué, I. Sau, and D. Thilikos. Dynamic programming for graphs on surfaces. In ICALP
’10, volume 6198 of LNCS, pages 372–383. Springer Berlin / Heidelberg, 2010.

23 P. D. Seymour and R. Thomas. Call routing and the ratcatcher. Combinatorica, 14(2):217–
241, 1994.

24 H. Tamaki. A linear time heuristic for the branch-decomposition of planar graphs. In ESA
’03, volume 2832 of LNCS, pages 765–775. Springer Berlin / Heidelberg, 2003.

	Introduction
	Preliminaries
	A dynamic program for counting colorful isomorphs
	Surface split decompositions and a bound for the table size
	Constructing surface split decompositions
	Summary of the algorithm for bounded genus graphs

