
23rd International Conference on
Rewriting Techniques and
Applications

RTA’12, May 30–June 1, 2012, Nagoya, Japan

Edited by

Ashish Tiwari

LIPIcs – Vo l . 15 – RTA’12 www.dagstuh l .de/ l ip i c s

Editor
Ashish Tiwari
Computer Science Laboratory
SRI International
Menlo Park
CA 94025, United States
ashish.tiwari@sri.com

ACM Classification 1998
D.1 Programming Techniques, D.2 Software Engineering, D.3 Programming Languages, F.1 Computation
by Abstract Devices, F.2 Analysis of Algorithms and Problem Complexity, F.3 Logics and Meanings of
Programs, F.4 Mathematical Logic and Formal Languages, I.1 Symbolic and Algebraic Manipulation, I.2
Artificial Intelligence

ISBN 978-3-939897-38-5

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-939897-38-5.

Publication date
May, 2012

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at .

License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
license: http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.
Noncommercial: The work may not be used for commercial purposes.
No derivation: It is not allowed to alter or transform this work.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.RTA.2012.i

ISBN 978-3-939897-38-5 ISSN 1868-8969 http://www.dagstuhl.de/lipics

iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Susanne Albers (Humboldt University Berlin)
Chris Hankin (Imperial College London)
Deepak Kapur (University of New Mexico)
Michael Mitzenmacher (Harvard University)
Madhavan Mukund (Chennai Mathematical Institute)
Wolfgang Thomas (RWTH Aachen)
Vinay V. (Chennai Mathematical Institute)
Pascal Weil (Chair, University Bordeaux)
Reinhard Wilhelm (Saarland University, Schloss Dagstuhl)

ISSN 1868-8969

www.dagstuhl.de/lipics

RTA’12

Contents

Preface vii

Conference Organization ix

External Reviewers xi

Author Index xiii

Invited Talks

Computational Real Algebraic Geometry in Practice
Hirokazu Anai . 1

Rho-Calculi for Computation and Logic
Claude Kirchner . 2

Dictionary-Based Tree Compression
Sebastian Maneth1 . 5

Regular Papers

An Abstract Factorization Theorem for Explicit Substitutions
Beniamino Accattoli . 6

On the Invariance of the Unitary Cost Model for Head Reduction
Beniamino Accattoli and Ugo Dal Lago . 22

A Term Rewriting System for Kuratowski’s Closure-Complement Problem
Osama Al-Hassani, Quratul-ain Mahesar, Claudio Sacerdoti Coen,
and Volker Sorge . 38

Term Rewriting Systems as Topological Dynamical Systems
Søren Bjerg Andersen and Jakob Grue Simonsen . 53

Infinitary Term Graph Rewriting is Simple, Sound and Complete
Patrick Bahr . 69

Axiomatic Sharing-via-Labelling
Thibaut Balabonski . 85

On the Decidability Status of Reachability and Coverability in
Graph Transformation Systems

Nathalie Bertrand, Giorgio Delzanno, Barbara König, Arnaud Sangnier,
and Jan Stückrath . 101

Normalisation for Dynamic Pattern Calculi
Eduardo Bonelli, Delia Kesner, Carlos Lombardi, and Alejandro Ríos 117

1 The author’s present address is: Institut für Informatik, Universität Leipzig, Johannisgasse 26, D-04103
Leipzig, Germany

23rd International Conference on Rewriting Techniques and Applications (RTA’12).
Editor: A. Tiwari

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

vi Contents

A Semantic Proof that Reducibility Candidates entail Cut Elimination
Denis Cousineau and Olivier Hermant . 133

One-context Unification with STG-Compressed Terms is in NP
Carles Creus, Adrià Gascón, and Guillem Godoy . 149

Deciding Confluence of Ground Term Rewrite Systems in Cubic Time
Bertram Felgenhauer . 165

Polynomial Interpretations for Higher-Order Rewriting
Carsten Fuhs and Cynthia Kop . 176

On Soundness Conditions for Unraveling Deterministic Conditional Rewrite Systems
Karl Gmeiner, Bernhard Gramlich, and Felix Schernhammer . 193

Reinterpreting Compression in Infinitary Rewriting
Jeroen Ketema . 209

Finite Models vs Tree Automata in Safety Verification
Alexei Lisitsa . 225

Triangulation in Rewriting
Vincent van Oostrom and Hans Zantema . 240

Turing-Completeness of Polymorphic Stream Equation Systems
Christian Sattler and Florent Balestrieri . 256

Matching of Compressed Patterns with Character-Variables
M. Schmidt-Schauss . 272

Meaningless Sets in Infinitary Combinatory Logic
Paula Severi and Fer-Jan de Vries . 288

A Rewriting Framework for Activities Subject to Regulations
Max Kanovich, Tajana Ban Kirigin, Vivek Nigam, Andre Scedrov, Carolyn Talcott,
and Ranko Perovic . 305

Semantic Evaluation, Intersection Types and Complexity of Simply Typed Lambda
Calculus

Kazushige Terui . 323

On the Formalization of Termination Techniques based on Multiset Orderings
René Thiemann, Guillaume Allais, and Julian Nagele . 339

Preface

The 23rd International Conference on Rewriting Techniques and Applications (RTA 2012)
was held from May 28 to June 2, 2012, in Nagoya, Japan. This proceedings volume contains
the contributed papers and extended abstracts of invited talks presented at the conference.

RTA is the major forum for the presentation of research on all aspects of rewriting.
Previous RTA conferences were held in Dijon (1985), Bordeaux (1987), Chapel Hill (1989),
Como (1991), Montreal (1993), Kaiserslautern (1995), Rutgers (1996), Sitges (1997), Tsukuba
(1998), Trento (1999), Norwich (2000), Utrecht (2001), Copenhagen (2002), Valencia (2003),
Aachen (2004), Nara (2005), Seattle (2006), Paris (2007), Hagenberg/Linz (2008), Brasilia
(2009), Edinburgh (2010), and Novi Sad (2011). RTA 2012 received 46 submissions (45 regular
research papers and 1 system description), with contributing authors from 18 countries. We
thank the authors of submitted papers for considering RTA for publishing their work.

The program committee consisted of 21 members from 8 countries. Each submitted paper
was reviewed by at least 3 members of the Program Committee, with the help of 69 external
reviewers (who provided a total of 74 reviews). After intense discussions and debates, a total
of 22 regular research papers were accepted for publication. We thank all the members of
the program committee, as well as all external reviewers for their hard work and critical
comments.

On behalf of the Program Committee, we are happy to present the best paper award to
Kazushige Terui for the paper “Semantic evaluation, intersection types and complexity of
simply typed lambda calculus”. In addition to the contributed papers, the RTA program also
consisted of three invited talks: “Computational Real Algebraic Geometry in Practice” by
Hirokazu Anai, “Rho-calculi for computation and logic” by Claude Kirchner, and “Dictionary-
Based Tree Compression” by Sebastian Maneth. We thank the invited speakers for enriching
the conference with their talks and participation.

The entire reviewing process–consisting of paper submission, review assignments, elec-
tronic Program Committee discussion, and preparation of the proceedings–was handled
seamlessly by Andrei Voronkov’s Easychair system. We thank Andrei Voronkov and the
Easychair team for creating this invaluable tool and making it freely available.

Workshops associated with RTA 2012 included the Annual Meeting of the IFIP Working
Group 1.6 on Term Rewriting, 1st International Workshop on Confluence (IWC 2012), 21st
International Workshop on Functional and (Constraint) Logic Programming (WFLP 2012),
6th International Workshop on Higher-Order Rewriting (HOR 2012), and 1st International
Workshop on Trends in Tree Automata and Tree Transducers (TTATT 2012). We thank the
workshop organizers for enriching the technical program.

Many people helped make RTA 2012 a success. Our special thanks to Masahiko Sakai for
doing an excellent job as the chair of the organizing committee. The organizing committee,
consisting of Masahiko Sakai, Aart Middeldorp, Keiichirou Kusakari, Naoki Nishida and Nao
Hirokawa, along with the rest of the local organization team, provided invaluable help in
ensuring the success of the event.

The proceedings of RTA 2012 is being published as a volume in the LIPIcs series under
a Creative Commons license, with free online access to all, and with authors retaining
rights over their contributions. We wish to thank the editorial board of LIPIcs for agreeing
to publish the current proceedings. Our special thanks to Marc Herbstritt from Schloss
Dagstuhl, Leibniz Center for Informatics, for his very helpful and prompt support during
production of the LIPIcs proceedings. We gratefully acknowledge his help and the help of
23rd International Conference on Rewriting Techniques and Applications (RTA’12).
Editor: A. Tiwari

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

viii Preface

the entire team in the LIPIcs editorial office.
We acknowledge the finanicial support we received from our sponsors: the Kayamori

Foundation of Informational Science Advancement, Support Center for Advanced Telecom-
munications Technology Research Foundation, and and the Research Foundation for the
Electrotechnology of Chubu. We are also grateful to the Nagoya Convention and Visitors
Bureau for helping in making local arrangements for the banquet, excursion, and local travel.
Finally, we also thank the Nagoya University and the Computer Science Laboratory at SRI
International for supporting us in our efforts to organize RTA 2012.

Ashish Tiwari
Menlo Park CA, April 2012

Conference Organization

Program Chair

Ashish Tiwari SRI International

Conference Chair

Masahiko Sakai Graduate School of Infomation Science, Nagoya University

Program Committee

Andreas Abel LMU Munich
Zena Ariola University of Oregon
Paolo Baldan Dipartimento di Matematica Pura e Applicata, Universita’ di

Padova
Ahmed Bouajjani LIAFA, University of Paris 7 (Paris Diderot)
Evelyne Contejean LRI, CNRS, Univ Paris-Sud, Orsay
Irène Anne Durand LaBRI Universit Bordeaux 1
Jörg Endrullis Vrije Universiteit Amsterdam
Silvio Ghilardi Dipartimento di Scienze dell Informazione, Universita degli Studi

di Milano
Guillem Godoy Universitat Politècnica de Catalunya (UPC)
Nao Hirokawa Japan Advanced Institute of Science and Technology
Deepak Kapur University of New Mexico
Jordi Levy IIIA - CSIC
Paul-André Melliès University of Paris 7
Pierre-Etienne Moreau INRIA-LORIA Nancy
Joachim Niehren INRIA Lille
Grigore Rosu University of Illinois at Urbana-Champaign
Albert Rubio Universitat Politècnica de Catalunya
Masahiko Sakai Graduate School of Infomation Science, Nagoya University
Carolyn Talcott SRI International
René Thiemann University of Innsbruck
Ashish Tiwari SRI International

Steering Committee

Salvador Lucas (Chair) Valencia, Spain
Frederic Blanqui INRIA, China
Ian Mackie Palaiseau
Georg Moser (Publicity Chair) Innsbruck, Austria
Joachim Niehren INRIA Lille
Masahiko Sakai Nagoya, Japan

RTA Web Page

http://rewriting.loria.fr/rta/

23rd International Conference on Rewriting Techniques and Applications (RTA’12).
Editor: A. Tiwari

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

External Reviewers

Aubrun, Nathalie
Avanzini, Martin

Bagan, Guillaume
Bahr, Patrick
Bonfante, Guillaume

Chiba, Yuki
Ciobaca, Stefan
Cirstea, Horatiu
Corradini, Andrea
Cortier, Veronique
Courcelle, Bruno
Curien, Pierre-Louis

Damiani, Ferruccio
Danvy, Olivier
David, Claire
De Vries, Fer-Jan
Delaune, Stephanie
Diekert, Volker
Downen, Paul

Escobar, Santiago

Felgenhauer, Bertram
Fleury, Emmanuel

Gaboardi, Marco
Gadducci, Fabio
Gascon, Adria
Genet, Thomas
Grygiel, Katarzyna

Hanus, Michael
Heindel, Tobias
Hermant, Olivier
Holik, Lukas
Houtmann, Clement
Hoyrup, Mathieu

Kahrs, Stefan
Kesner, Delia
Koprowski, Adam
Kusakari, Keiichirou

Leroy, Xavier
Loader, Ralph
Lohrey, Markus

Meredith, Patrick
Mertens, Eric
Meseguer, Jose
Mitsuhashi, Ichiro
Moore, Brandon Michael
Moser, Georg

Nakata, Keiko
Ndione, Antoine
Nishida, Naoki

Ogawa, Mizuhito

Petit, Barbara

Ringeissen, Christophe
Roux, Cody

Salvati, Sylvain
Sambin, Giovanni
Sato, Haruhiko
Schmitz, Sylvain
Sebastian, Tom
Senizergues, Geraud
Serbanuta, Traian
Simonsen, Jakob Grue
Stefanescu, Andrei
Sternagel, Christian

Touili, Tayssir

van Raamsdonk, Femke
Villaret, Mateu

Winkler, Sarah

Yuen, Shoji

Zantema, Hans

23rd International Conference on Rewriting Techniques and Applications (RTA’12).
Editor: A. Tiwari

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

Author Index

Accattoli, Beniamino, 6, 22
Al-Hassani, Osama, 38
Allais, Guillaume, 321
Anai, Hirokazu, 1
Andersen, Søren Bjerg, 53

Bahr, Patrick, 69
Balabonski, Thibaut, 85
Balestrieri, Florent, 239
Ban Kirigin, Tajana, 287
Bertrand, Nathalie, 101
Bonelli, Eduardo, 117

Cousineau, Denis, 133
Creus, Carles, 149

Dal Lago, Ugo, 22
de Vries, Fer-Jan, 271
Delzanno, Giorgio, 101

Felgenhauer, Bertram, 165
Fuhs, Carsten, 176

Gascón, Adrià, 149
Gmeiner, Karl, 192
Godoy, Guillem, 149
Gramlich, Bernhard, 192

Hermant, Olivier, 133

König, Barbara, 101
Kanovich, Max, 287
Kesner, Delia, 117
Ketema, Jeroen, 208
Kirchner, Claude, 2
Kop, Cynthia, 176

Lisitsa, Alexei, 224
Lombardi, Carlos, 117

Mahesar, Quratul-Ain, 38
Maneth, Sebastian, 5

Nagele, Julian, 321
Nigam, Vivek, 287

Perovic, Ranko, 287

Ríos, Alejandro, 117

Sacerdoti Coen, Claudio, 38
Sangnier, Arnaud, 101
Sattler, Christian, 239
Scedrov, Andre, 287
Schernhammer, Felix, 192
Schmidt-Schauss, Manfred, 255
Severi, Paula, 271
Simonsen, Jakob Grue, 53
Sorge, Volker, 38
Stückrath, Jan, 101

Talcott, Carolyn, 287
Terui, Kazushige, 303
Thiemann, René, 321

van Oostrom, Vincent, 337

Zantema, Hans, 337

23rd International Conference on Rewriting Techniques and Applications (RTA’12).
Editor: A. Tiwari

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

Computational Real Algebraic Geometry in
Practice ∗

Hirokazu Anai1

1 FUJITSU Laboratories Ltd / Kyushu University
4-1-1 Kamikodanaka, Nakahara-ku, Kawasaki 211-8588, Japan
h.anai@kyudai.jp

Abstract
Real algebraic geometry deals with the solution set of (possibly quantified) systems of polynomial
equations and/or inequalities over the real numbers, which arise frequently in science and engin-
eering. Main concern in real algebraic geometry is to determine the properties of the solution sets
such as non-emptiness, dimension and quantifier free description as a semi-algebraic set. Such
tasks are carried out by symbolic and algebraic algorithms: cylindrical algebraic decomposition
(CAD) or quantifier elimination (QE). Various algorithms and deep complexity results about
CAD and QE have been studied during the last several decades (see [1]). Moreover, practically
efficient software systems of QE have been developed and also are applied to many nontrivial
application problems (see [2, 3, 4, 5]). In this talk we explain several algorithms of CAD and QE
together with their engineering applications.

1998 ACM Subject Classification I.1.2 [Symbolic and Algebraic Manipulation] Algorithms –
Algebraic Algorithms

Keywords and phrases real algebraic geometry, quantifier elimination, cylindrical algebraic de-
composition, symbolic optimization

Digital Object Identifier 10.4230/LIPIcs.RTA.2012.1

Category Invited Talk

References
1 B.F. Caviness and J.R. Johnson (Eds.). Quantifier Elimination and Cylindrical Algebraic

Decomposition. New York: Springer-Verlag, 1998.
2 T. Sturm. New Domains for Applied Quantifier Elimination. In Proceedings of the 14th

International Workshop on Computer Algebra (CASC) 2006, pages 295-301, 2006.
3 N. Hyodo, M. Hong, H. Yanami, S. Hara and H. Anai. Solving and visualizing nonlin-

ear parametric constraints in control based on quantifier elimination. Appl. Algebra Eng.
Commun. Comput. 18(6): pp. 497–512, 2007.

4 T. Sturm and A. Tiwari. Verification and synthesis using real quantifier elimination. In
Proceedings of the 36th International Symposium on Symbolic and Algebraic Computation
(ISSAC) 2011, pp. 329–336, 2011.

5 H. Iwane, H. Yanami and H. Anai. A Symbolic-Numeric Approach to Multi-Objective
Optimization in Manufacturing Design. Mathematics in Computer Science 5(3): pp. 315–
334, 2011.

∗ This work was partially supported by Grant-in-Aid for Scientific Research (B) 21340025 and the Global
COE Program "Education-and-Research Hub for Mathematics-for-Industry" (Kyushu University).

© Hirokazu Anai;
licensed under Creative Commons License NC-ND

23rd International Conference on Rewriting Techniques and Applications (RTA’12).
Editor: A. Tiwari; pp. 1–1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

Rho-Calculi for Computation and Logic
Claude Kirchner1

1 Inria
Domaine de Voluceau – Rocquencourt B.P. 105 – 78153 Le Chesnay, France
claude.kirchner@inria.fr

Abstract
The rho-calculi provide enlightening concepts for both computing and reasoning as well as their
combination. They consist in the generalization of lambda-calculus to structures like terms,
propositions or graphs and we will show how their interrelations with deduction provide powerful
frameworks for the next generation of proof assistants.

1998 ACM Subject Classification F.4.1 Mathematical Logic – Lambda calculus and related
systems, I.2.3 Deduction and Theorem Proving, F.4.2 Grammars and Other Rewriting Systems

Keywords and phrases Rewriting calculus, rho-calculus, deduction modulo

Digital Object Identifier 10.4230/LIPIcs.RTA.2012.2

Category Invited Paper

It is reasonable to hope that the relationship between computation and mathematical
logic will be as fruitful in the next century as that between analysis and physics in the
last. The development of this relationship demands a concern for both applications
and for mathematical elegance.

John McCarthy
A Basis for a Mathematical Theory of Computation, 1963

1 Structures for computation

When one wants to caracterize informatics as a science, one main concept is prominent:
computation. When the computation of 2+2 leads to 4, this transformation can be described
and performed in many different ways, for instance using lambda-calculus or using rewriting.
If the structure of the information to be transformed is available, it is well known and
widely used that this may result in a huge difference in the complexity of the computation:
computing with Church numbers in the lambda-calculus is not the most efficient way to
implement arithmetic. Rewriting is one of the universal computational model that allows
the embedding of structures as a first class concept.

These structures can be very simple, yet quite useful, typically when just plain tree syntax
is used. But they can be also quite elaborated, for example when satisfying some theory like
associativity, commutativity, groups, list, arrays, arithmetic, . . .

To handle explicitly structures and fonctions, we defined the rho-calculus [11, 9] (also
called rewriting calculus) and indeed a family of such calculi [12, 10, 23, 2, 18, 22, 1] to
mention just a few. Related calculi should be mentioned like [21, 20].

These calculi, offering a natural integration of structures into the theory of functions
and in particular in lambda-calculus, provide a useful background for rewriting theory,
implementation and applications.

© Claude Kirchner;
licensed under Creative Commons License NC-ND

23rd International Conference on Rewriting Techniques and Applications (RTA’12).
Editor: A. Tiwari; pp. 2–4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

C. Kirchner 3

But they offer also the right background to base the logical integration of computation
into deduction, a deep and non-trivial goal as emphasized by the quote of John McCarthy.

2 Computation for logic

The complementarity of computation and deduction is known and used since the rise of logic.
It has not always been well understood or accepted, like in the now settled controversy about
the use of computations in the proof of the fourth color theorem. A formal treatment of this
combination, called deduction modulo and initiated in [15], allows us to define deduction
systems like the sequent calculus or natural deduction modulo some congruence defined
by a theory implemented by a computational system such as rewriting. The consequences
of reasoning modulo are deep. Typically, cut elimination does no hold for any congruence
but sufficient conditions on the theories can be given [16, 8] allowing one to deal modulo
important theories [17, 14, 19]. The second fondamental consequence is that the deduction
modulo logical systems allow proving exactly the same theorems as when integrating the
modulo part in the theory, but the proof are extremely different. Indeed they can be in some
cases arbitrary shorter as shown in [7, 6].

An interesting point is that the proof terms representing proofs in deduction modulo
are rho-terms [5], thus providing a complete picture of the articulation between structures,
computations and proofs.

3 Next steps

This strong relationship between the rho-calculi and logic opens many research and application
tracks. One is related to the implementation of these concepts to design proof assistants
where the users are freed of the computational steps of the proof they are conducting, in
the lines of the prototypes https://www.rocq.inria.fr/deducteam/Dedukti [3] or http:
//rho.loria.fr/lemuridae.html [4]. The relationship between rho-calculi and rewriting
logic [13] has to be deepened. Challenging open questions like unification and matching in
rho-calculi will lead to better understanding of the automation of reasoning, opening new
trends for implementations and applications. Finally the relationship between computation
and deduction and in particular the relationship with proof complexity is a challenging open
research area.

Acknowledgements I want to thank all the colleagues with whom I have been sharing
these ideas and work on rho-calculi and deduction modulo and in particulier Horatiu Cirstea,
Nachum Dershowitz, Gilles Dowek, Hélène Kirchner and Luigi Liquori for many enlightening
discussions.

References
1 Paolo Baldan, Clara Bertolissi, Horatiu Cirstea, and Claude Kirchner. A rewriting calculus

for cyclic higher-order term graphs. Mathematical Structures in Computer Science, 2006.
2 Clara Bertolissi. The graph rewriting calculus : properties and expressive capabilities. Thèse

de doctorat, Institut National Polytechnique de Lorraine - INPL, Oct 2005.
3 Mathieu Boespflug. Conception d’un noyau de vérification de preuves pour le lambda-Pi-

calcul modulo. PhD thesis, École Polytechnique, Palaiseau, January 2011.
4 Paul Brauner. Fondements et mise-en-oeuvre de la Super Déduction Modulo. Phd thesis,

INPL, Jun 2010.

RTA’12

4 Rho-Calculi for Computation and Logic

5 Paul Brauner, Clément Houtmann, and Claude Kirchner. Principles of superdeduction. In
Luke Ong, editor, Proceedings of LICS, jul 2007.

6 Guillaume Burel. Bonnes démonstrations en déduction modulo. PhD thesis, Université
Henri Poincaré (Nancy 1), 2009.

7 Guillaume Burel. Efficiently simulating higher-order arithmetic by a first-order theory
modulo. Logical Methods in Computer Science, 7(1), 2011.

8 Guillaume Burel and Claude Kirchner. Cut elimination in deduction modulo by abstract
completion. In Sergei Artemov and Anil Nerode, editors, Proc. of the Symposium on Logical
Foundations of Computer Science, Lecture Notes in Computer Science, New-York, USA,
jun 2007. Springer Verlag.

9 Horatiu Cirstea. Rewriting Calculus: Foundations and Applications. PhD thesis, Université
Henri Poincaré - Nancy I, 2000.

10 Horatiu Cirstea, Germain Faure, and Claude Kirchner. A rho-calculus of explicit con-
straint application. In Proceedings of the 5th workshop on rewriting logic and applications.
Electronic Notes in Theoretical Computer Science, 2004.

11 Horatiu Cirstea and Claude Kirchner. The rewriting calculus — Part I and II. Logic
Journal of the Interest Group in Pure and Applied Logics, 9:427–498, May 2001.

12 Horatiu Cirstea, Claude Kirchner, and Luigi Liquori. Matching Power. In Aart Mid-
deldorp, editor, 12th International Conference on Rewriting Techniques and Applications
(RTA’2001), volume 2051 of Lecture Notes in Computer Science, pages 77–92, Utrecht (The
Netherlands), May 2001. Springer. Also available as Technical Report A01-R-201, LORIA,
Nancy (France).

13 Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martí-Oliet, José
Meseguer, and Carolyn L. Talcott, editors. All About Maude - A High-Performance Logical
Framework, How to Specify, Program and Verify Systems in Rewriting Logic, volume 4350
of Lecture Notes in Computer Science. Springer, 2007.

14 Gilles Dowek, Thérèse Hardin, and Claude Kirchner. HOL-λσ an intentional first-order
expression of higher-order logic. Mathematical Structures in Computer Science, 11(1):21–
45, 2001.

15 Gilles Dowek, Thérèse Hardin, and Claude Kirchner. Theorem proving modulo. Journal
of Automated Reasoning, 31(1):33–72, Nov 2003.

16 Gilles Dowek and Benjamin Werner. Proof normalization modulo. The Journal of Symbolic
Logic, 68(4):1289–1316, 2003.

17 Gilles Dowek and Benjamin Werner. Arithmetic as a theory modulo. In Jürgen Giesl,
editor, Term Rewriting and Applications, 16th International Conference, RTA 2005, Nara,
Japan, April 19-21, 2005, Proceedings, volume 3467 of Lecture notes in Computer Science,
pages 423–437, 2005.

18 Germain Faure. Structure et modèles de calcul de réécriture. Thèse de doctorat, Université
Henri Poincaré Nancy, 2007.

19 Olivier Hermant. Resolution is cut-free. Journal of Automated Reasoning, 44(3):245–276,
03 2010.

20 C. Barry Jay and Delia Kesner. First-class patterns. J. Funct. Program., 19(2):191–225,
2009.

21 Jan Willem Klop, Vincent van Oostrom, and Roel C. de Vrijer. Lambda calculus with
patterns. Theor. Comput. Sci., 398(1-3):16–31, 2008.

22 Luigi Liquori and Bernard P. Serpette. irho: an imperative rewriting calculus. In 6th
Conference on Principles and Practice of Declarative Programming – PPDP’04, pages 167–
178. ACM, 2004.

23 Benjamin Wack. Typage et déduction dans le calcul de réécriture. Thèse de doctorat,
Université Henri Poincaré - Nancy I, October, 7- 2005.

Dictionary-Based Tree Compression
Sebastian Maneth∗1

1 NICTA and University of New South Wales
Sydney, Australia
sebastian.maneth@nicta.com.au

Abstract
Trees are a ubiquitous data structure in computer science. LISP, for instance, was designed
to manipulate nested lists, that is, ordered unranked trees. Already at that time, DAGs were
used to detect common subexpression, a process known as “hash consing.” In a DAG every
distinct subtree is represented only once (but can be referenced many times) and hence it con-
stitutes a dictionary-based compression method for ordered trees. In our compression scenario
we distinguish two kinds of ordered trees: binary and unranked. The latter appear naturally
as representation of XML document structures. We survey these dictionary-based compression
methods for ordered trees:
1. DAGs
2. hybrid DAGs
3. straight-line context-free tree grammars (“SLT grammars”).
We compare the minimal DAG of an unranked tree with the minimal DAG of its binary tree
encoding. The latter is obtained by identifying first children of the unranked tree with left
children of the binary tree, and next-siblings with the right children. For XML document trees,
unranked DAGs are usually smaller than encoded binary DAGs. We show that this holds for
arbitrary unranked trees, on average. We also present the “hybrid DAG”; its size lower-bounds
those of the binary and unranked DAGs.

Finding a smallest SLT grammar for a given tree is NP-complete. We discuss two linear-
time approximation algorithms: BPLEX and TreeRePair. For typical XML document trees,
TreeRePair produces SLT grammars that are only one fourth of the size of the minimal DAG,
and which contain approximately 3% of the edges of the original tree. As far as we know, this
gives rise to the smallest existing pointer-based tree representation.

We show that some basic algorithms can be computed directly on the compressed trees,
without prior decompression. Examples include the execution of different kinds of tree automata,
and the real-time traversal of the original tree. It is even possible to evaluate simple XPath
queries directly on the SLT grammars, using deterministic node-selecting tree automata. In this
way, impressive speed-ups are achieved over existing XPath evaluators, while at the same time
the memory requirement is slashed to only a few percent. For more complex XPath queries that
require nondeterministic node-selecting tree automata, efficient evaluation over SLT grammars
remains a difficult challenge.

1998 ACM Subject Classification E.4 Data Compaction and Compression

Keywords and phrases Tree grammars, tree automata, straight-line programs

Digital Object Identifier 10.4230/LIPIcs.RTA.2012.5

Category Invited Talk

∗ The author’s present address is: Institut für Informatik, Universität Leipzig, Johannisgasse 26, D-04103
Leipzig, Germany

© Sebastian Maneth;
licensed under Creative Commons License NC-ND

23rd International Conference on Rewriting Techniques and Applications (RTA’12).
Editor: A. Tiwari; pp. 5–5

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

An Abstract Factorization Theorem for Explicit
Substitutions
Beniamino Accattoli

INRIA & LIX (École Polytechnique), France
beniamino.accattoli@inria.fr

Abstract
We study a simple form of standardization, here called factorization, for explicit substitutions
calculi, i.e. lambda-calculi where beta-reduction is decomposed in various rules. These calculi,
despite being non-terminating and non-orthogonal, have a key feature: each rule terminates
when considered separately. It is well-known that the study of rewriting properties simplifies in
presence of termination (e.g. confluence reduces to local confluence). This remark is exploited
to develop an abstract theorem deducing factorization from some axioms on local diagrams. The
axioms are simple and easy to check, in particular they do not mention residuals. The abstract
theorem is then applied to some explicit substitution calculi related to Proof-Nets. We show
how to recover standardization by levels, we model both call-by-name and call-by-value calculi
and we characterize linear head reduction via a factorization theorem for a linear calculus of
substitutions.

1998 ACM Subject Classification F.4.1 Mathematical Logic – Lambda calculus and related
systems, F.4.2 Grammars and Other Rewriting Systems

Keywords and phrases λ-calculus, Standardization, Explicit Substitutions, Abstract rewriting,
Diagrammatic reasoning

Digital Object Identifier 10.4230/LIPIcs.RTA.2012.6

Category Regular Research Paper

1 Introduction

Background. The study of the rewriting properties of a system S simplifies considerably if
there cannot be infinite reductions, i.e. if the rewriting relation→S associated to S is strongly
normalizing. The typical example is the study of confluence, which can be reduced to local
confluence in presence of strong normalization, thanks to Newman’s lemma. Unfortunately,
many interesting systems—λ-calculus for instance—do not enjoy strong normalization (SN)1.

There is a special class of non strongly normalizing rewriting systems which is given by
those systems having more than one rewriting rule and s.t. any of their rules is SN when
considered alone; they could be called locally terminating systems. Natural examples are
most λ-calculi where β-reduction is decomposed into a set of more atomic rules. This is
typically done by extending the syntax of λ-calculus with a new term constructor t[x/u]
(sometimes written let x = u in t) denoting a delayed or explicit substitution (ES), and
decomposing the β-rule:

(λx.t) u→β t{x/u}

1 λ-calculus is an orthogonal system, and so confluence of λ-calculus is easy for other reasons. But the
systems we will deal with in this paper are not orthogonal.

© Beniamino Accattoli;
licensed under Creative Commons License NC-ND

23rd International Conference on Rewriting Techniques and Applications (RTA’12).
Editor: A. Tiwari; pp. 6–21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

B. Accattoli 7

into two rules:
(λx.t) u→B t[x/u]→s t{x/u}

In the ES-literature →s is in turn decomposed into a set of rules (see [22] for a survey), but
for the present discussion this is not relevant. Explicit substitutions were introduced to close
the gap between the theory of λ-calculus and implementations [1]. Their rewriting theory has
also been the subject of a lot of research, after Melliès showed the possibility of pathological
behaviors [25].

A similar decomposition of →β arise in many contexts, not necessarily in relation to
implementations and often without explicit reference to ES. Indeed, it can be found in studies
on call-by-value [19], complexity classes [32], linear systems [21], side-effects [20], etc. Usually,
these refined systems are not orthogonal nor strongly normalizing, and their rewriting theory
may be involved.

Local to global, via SN . In locally terminating systems termination of each rule
can sometimes be used to reduce global rewriting properties to a local form, similarly to
how Newman’s lemma reduces confluence to local confluence. The aim of the paper is to
reduce a simple form of standardization for ES-calculi to a local form, using as key ingredient
termination of each single rule.

Termination and confluence concern the existence and the uniqueness of normal forms,
which are the results of a computation. Standardization instead is about how to compute: it
identifies a specific class of reductions to which any other reduction can be transformed by
permuting its steps. It has many important corollaries, in particular it gives a normalizing
strategy for evaluation (see [9]).

Factorization in λ-calculus. It is well-known that in λ-calculus any reduction t→∗β u
can be re-organised so that

t→∗h→∗i u
i.e. by first reducing on the head (→∗h) and then everywhere else (→∗i). Concisely this is
expressed by →∗β= (→h ∪ →i)∗ ⊆→∗h→∗i . This is not exactly the standardization theorem:
it is an easier factorization theorem which can be inferred from standardization [27] or it
can be used to prove it [30, 9]. "Conceptually, the factorisation property means that the
efficient part of a computation can always be separated from its junk" [27]. Applications
of standardization often only require factorization, e.g. the operational characterization of
solvability for λ-calculus ([9]).

At first sight factorization is easy: a two-steps sequence as→i→h can always be permuted,
and the theorem seems to follow from this local permutation property. The swap is indeed
possible, but it is non-linear, i.e. it has the following general form →i→h⊆→+

h→∗i , which
can diagrammatically be represented as:

t −→i u99K

h+
⇒ −→

h
v 99K∗i w

Now, there are two easy abstract lemmas (Lemma 4.2 and 4.3), similar to Newman’s lemma,
which would imply the factorization theorem but only when either the sequence →+

h is
composed of at most one step or →h is strongly normalizing. Unfortunately, neither of these
conditions holds for λ-calculus. Indeed, consider the following diagram (where I = λy.y):

(λx.x x) (I I) −→i (λx.x x) I99K

h

⇒ −→

h
(I I) (I I) 99Kh I (I I) 99Ki I I

RTA’12

8 An abstract factorisation theorem for explicit substitutions

It shows that in general→+
h can have length greater than one2. And there exist→h-divergent

terms, for instance (λx.(x x)) λx.(x x). Therefore, factorization in non-terminating systems
is non-trivial.

The rewriting technique. Let us sketch the idea from which this paper stems. The
decomposition of β into B and s induces head (noted →B◦ and →s◦) and internal (→B• and
→s•) variants of B and s. The new head reduction →◦, given by →◦:=→B◦ ∪ →s◦, is not
strongly normalizing, but now it splits into two strongly normalizing reductions, →B◦ and
→s◦. The internal-head permutation splits into four diagrams (the dotted lines are not
specified on purpose):

t −→B• u99K

∗
⇒ −→

B◦
v 99K∗ w

t −→s• u99K

∗
⇒ −→

s◦
v 99K∗ w

t −→B• u99K

∗
⇒ −→

s◦
v 99K∗ w

t −→s• u99K

∗
⇒ −→

B◦
v 99K∗ w

These diagrams can now be studied one by one using strong normalization of →B◦ and
→s◦, which allows to apply the abstract lemmas (Lemma 4.2 and 4.3, and actually a
new abstract lemma, Lemma 4.4, is also needed). The obtained factorizations can then
easily be glued together, getting the factorization theorem for →◦. Therefore factorization—
surprisingly—turns out to be easier in ES-calculi than in λ-calculus. Actually, in λ-calculus
it is possible to prove factorization using some termination assumptions, by considering
complete developments of given sets of redexes, which are always finite (see [9], Chapter
11.4). However, this technique requires to define complex notions such as residuals and
developments, while our approach circumvents their need.

The main result of the paper is a set of axioms on local diagrams which imply the
factorization theorem. Despite being conceived for ES-calculi the axiomatization does not
rely on any particular feature of such calculi, it is simply formulated in terms of swaps
between reduction relations. Moreover, the axioms are simple and can be checked without
using heavy techniques as positions, labels or underlinings. Last, the theorem follows from
the axioms quite easily, once the right abstract lemmas for postponement have been isolated.

Applications. We developed the abstract result of this paper while studying standardiz-
ation for some λ-calculi related to Linear Logic Proof-Nets. Starting from these graphical
syntaxes, a new at a distance approach to explicit substitutions has recently been proposed
[5]. Distance-calculi are simpler than those of the earlier generation, in particular they have
less rules and they led to new results on λ-calculus [5, 6]. We present various concrete
applications of our abstract theorem to three such ES-calculi:
1. The substitution calculus λsub: the head reduction of λsub corresponds to reduction

at level 0 in Proof-Nets. We prove factorization and show how to iterate it in order to
get a standardization theorem by levels in the style of Linear Logic Proof-Nets.

2. The value substitution calculus λvsub, a call-by-value version of λsub. We factorize
λvsub reduction with respect to weak reduction, which plays the same role as head
reduction in the call-by-name case. We also factorize λvsub reduction with respect to
another scheme, obtained by mixing head and weak reduction. These factorizations have
been used in [8] to give a new characterization of call-by-value solvability.

3. The linear substitution λ-calculus λlsub: it is a a natural refinement of λsub where
explicit substitutions act on one occurrence at the time. It is also a slight variation over

2 It is enough to replace λx.x x with λx.(x x) x in the example to get that also →∗i has length greater
than one

B. Accattoli 9

a calculus proposed by Robin Milner (and related to Bigraphs and Pure Proof-Nets), and
a simplification of the structural calculus λj of [5]. Surprisingly, the reductions by levels
of λsub do not induce factorization nor standardization for λlsub. That approach is then
refined: the proper head reduction of λlsub is head linear reduction, an important notion
having strong connections with Krivine’s abstract machine (KAM) [14], Proof-Nets [23],
Geometry of Interaction [13], Game Semantics [12], Differential λ-calculus [16] and the
translation of λ-calculus into the π-calculus [24]. Ours is the first characterization of
linear head reduction from a rewriting point of view. Moreover, we generalize linear head
reduction into an indexed family of linear reductions, and give a generalized factorization
theorem for λlsub.

Related work. Standardization was first studied axiomatically by Gonthier, Levy and
Melliès in [18], and then further explored by Melliès [26, 28], who also gives axioms for
factorization in [27]. Our approach differs in two main points: 1) his theory is very general
and powerful, but also complex and difficult to apply, while ours, having been designed
around a specific class of systems, is easy to apply, but of course its scope is limited; 2) we
use factorization to prove standardization while he proceeds the other way around.

Road-map. In Section 2 we fix some terminology and notation. In Section 3 we define
the substitution calculus λsub and use it to introduce our axiomatics. Section 4 recalls and
develops some abstract tools about postponement of reductions. In Section 5 any system
satisfying the axioms is shown to enjoy a factorization theorem. In Section 6 we prove
two factorizations for the value-substitution calculus λvsub. Section 7 introduces the linear
substitution calculus λlsub, factorization with respect to linear head reduction, and then
generalizes linear head reduction. Section 8 concludes.

2 Notations and conventions

We follow a relational approach to abstract rewriting, i.e. we see a rewriting rule → on a set
S as a subset of →⊆ S ×S. Composition of rewriting steps is simple juxtaposition, therefore
→1→2 stands for a sequence like t→1 u→2 v. In the following we use →1→2⊆→3→4 as a
compact notation for a diagram like:

t −→1 u99K

3
⇒ −→

2
v 99K4 w

Composition of rewriting rules has precedence over union, i.e.→1→2 ∪ →3 should be read
as (→1→2)∪ →3. Given a rewriting relation → we note →+ and →∗ the transitive and
transitive-reflexive closure of→, respectively. We will note→◦ and→• the head and internal
variant of a given relation →. Unfortunately, the paper requires a huge number of rewriting
relations.

3 The substitution calculus λsub

The calculus λsub is given by the following syntax for terms:

t, u, s, v, r ::= x | λx.t | t u | t[x/u]

The constructor t[x/u] is called an explicit substitution. Both λx.t and t[x/u] bind x in
t. We use L to note a possibly empty list of explicit substitutions [x1/u1] . . . [xk/uk]. The

RTA’12

10 An abstract factorisation theorem for explicit substitutions

rewriting relation→λsub of λsub is given by the union of rules→dB and→s, which are obtained
as the context closure of following two root rules:

(λx.t)L s 7→dB t[x/s]L t[x/u] 7→s t{x/u}

Rule →dB is the rule labeled B at page 1 but here acting at a distance (which is the reason
for d): the function λx.t and the argument s can interact even if there is L between them.
This is motivated by the close relation between λsub and graphical formalisms as (Pure)
Proof-Nets or λj-dags, see [3, 4]. Morally, →dB (resp. →s) corresponds to the multiplicative
(resp. exponential) reduction of Proof-Nets. With different motivations this rule was also
considered by Curien, Hardin and Lévy in [11].

The substitution calculus may be suspected to be a useless modification of the λ-calculus,
because it has explicit substitutions but it executes them in just one shot. However, in [6]
λsub is the crucial tool in the proofs of some results on λ-calculus for which no other proof is
known. It should be taken as a tool to study λ-calculus rather than implementations.

The reduction relation →λsub of λsub is not SN , since →β⊆→λsub→λsub . However, both
→dB and →s are SN .

I Lemma 3.1 ([6]). The reductions →dB and →s are strongly normalizing and confluent.
Moreover, →λsub is confluent.

The literature on λ-calculus usually factors β reduction with respect to head and internal
reductions. We are going to do the same in λsub, but our notion of head reduction will be
slightly more liberal than the usual one. Head contexts H are defined by:

H ::= [·] | λx.H | H t | H[x/t]

The reductions →dB◦ and →s◦ are defined as the closure by head contexts of 7→dB and 7→s.
Then λsub head reduction is noted →λsub◦ and given by →dB◦ ∪ →s◦.

Our head reduction is a non-deterministic strategy. Consider:

(λx.y[y/I]) u dB ← (λx.(I I)) u →dB (I I)[x/u]

However, a simple case analysis shows that →λsub◦ enjoys the diamond property, which is
just a more abstract way to say that its non-determinism is harmless: it does not affect
reduction lengths and →λsub◦ normalizes weakly iff it normalizes strongly; in fact →λsub◦ can
be considered as a deterministic strategy. In particular, reducing →λsub◦ in an outermost way
recovers a more traditional formulation of head reduction. A motivation for our approach is
that →λsub◦ corresponds exactly to reduction at level 0 in Linear Logic Proof-Nets.

In order to study factorization with respect to head reduction we need to define the
complements of →λsub◦,→dB◦ and →s◦. We define the internal reduction →λsub• as the
union of →dB• and →s•, where →dB•:=→dB \ →dB◦ and →s•:=→s \ →s◦. It is possible to
show that →dB• and →s• can be defined as the closure by internal contexts of 7→dB and 7→s,
where internal contexts I are defined by:

I ::= t C | t [x/C] | H[I]

where C is no matter which context (and the notation H[I] denotes the context obtained
substituting the hole of H with I). The reductions are summarized by the square in Fig. 1.a,
where each coordinate is equal to the union of the row/column it denotes.

The local internal-head permutations are given by the following lemma, proved by
induction on the internal reductions and by means of a substitution lemma (details in [2]):

B. Accattoli 11

a)

→λsub• →λsub◦
→dB →dB• →dB◦
→s →s• →s◦

b)

→• →◦
 • ◦
� �• �◦

Figure 1 Squares of reductions

I Lemma 3.2 (head-internal diagrams). The following swaps hold:
1. →dB•→dB◦⊆→dB◦→dB•.
2. →s•→s◦⊆→s◦→s◦→∗s• ∪ →s◦→∗s•.
3. →s•→dB◦⊆→dB◦→s•.
4. →dB•→s◦⊆→s◦→dB◦→∗dB• ∪ →s◦→∗dB•.

Points 1-3 give swaps for which we can apply some abstract lemmas in the literature,
since →dB◦ and →s◦ are strongly normalizing, and easily get factorization. However, Point 4
introduces a new behaviour: swapping →dB•→s◦ can yield →s◦→dB◦→∗dB•, i.e. a third kind
of reduction (→dB◦) can pop out. Let us give an example:

(x x)[x/(λz.z) y] −→dB• (x x)[x/z[z/y]]99K

s◦
⇒ −→

s◦
((λz.z) y) ((λz.z) y) 99KdB◦ z[z/y] ((λz.z) y) 99KdB• z[z/y] z[z/y]

Note that the diagram can be written as →dB•→s◦⊆→s◦→∗dB. This phenomenon cannot
happen in λ-calculus, where there is only one head and one internal rewriting relation. Other
explicit substitution calculi (e.g. those in Section 6 and 7) present similar (but not identical)
forms of permutations. They can be grouped together under the notion of square factorization
system.

Let us abstract →dB and →s as two reductions and�. Now, the square of reductions
becomes as in Fig. 1.b, where we use the notations →◦:= ◦ ∪�◦, →•:= • ∪�•. Let us
also set →:=→◦ ∪ →•= ∪�.

I Definition 3.3. A square factorization system (SFS) S is given by a set |S| and four
reduction relations (•, ◦,�•,�◦) on |S| s. t. the following conditions hold:
1. Termination: ◦ and �◦ are strongly normalizing.
2. Row-swap 1: • ◦⊆ +

◦ ∗•.
3. Row-swap 2: �•�◦⊆�+

◦�∗•.
4. Diagonal-swap 1: �• ◦⊆ ◦�∗.
5. Diagonal-swap 2: •�◦⊆�◦ ∗.
The names of axioms 2-5 refer to the square table in Fig. 1.b.

Note the presence of �=�◦ ∪�• in axiom 4 and = ◦ ∪ • in axiom 5: the diagonal
swaps are where a third reduction pops out. Interestingly, the axioms are symmetric, i.e.
swapping the roles of � and one still has a SFS.

In Section 5 we prove that any SFS enjoys a factorization theorem, i.e. →∗⊆→∗◦→∗• holds
for any SFS. The important assumption in order to handle the diagonal swaps is that the
anticipated relation (e.g. ◦ in axiom 4) occurs only once in the permuted reduction. Now,
lemmas 3.2 and 3.1 prove that (→dB•,→dB◦,→s•,→s◦) is a SFS, therefore by the abstract
factorization result in Section 5 (Theorem 5.2.2, page 15) it follows:

I Corollary 3.4. →∗λsub
⊆→∗λsub◦→∗λsub•.

RTA’12

12 An abstract factorisation theorem for explicit substitutions

It is natural to wonder if from factorization for λsub one can recover the usual factorization
for λ-calculus. Let us sketch an aswer. To every λsub term t one can associate the λ-
term s(t), which is the normal form with respect to →s and it is easy to show that if
t→λsub t

′ then s(t)→∗β s(t′). Such a projection does not map factorized reductions in λsub
to factorized reduction in λ-calculus, because internal steps may project on head steps .
Consider for instance the reduction t = x[x/I I]→dB• x[x/y[y/I]] = u whose projection is
s(t) = I I →h I = s(u). However, this mismatch arises only if reductions take place inside
explicit substitutions. Now, a reduction ρ in λ-calculus induces a reduction ρ′ in λsub where
every β-step is simulated by a →dB step followed by a →s step, and in ρ′ reductions never
take place inside substitutions. It is possible to show that the factorization of ρ′ gives a
reduction τ with the same properties of ρ′, whose projection is then a factorized reduction in
λ-calculus. But the proof of this fact is left to a longer version of this paper.

We now show how to generalize the factorization theorem for λsub into a standardization
theorem. In terms of Proof-Nets the factorization theorem says that it is always possible to
first reduce at level 0 and then inside arguments of applications and substitutions, which
in Proof-Nets are wrapped into !-boxes. The head factorization can be iterated, getting
standardization by levels in the style of Linear Logic Proof-Nets.

I Definition 3.5 (Boxed contexts). Boxed contexts are indexed by an integer i ∈ N called
the level of the boxed context and defined by:

B0 ::= H Bi+1 ::= t Bi | t[x/Bi] | B0[Bi+1]

The closure with respect to B0—which may be confusing—is used to assign level 1 to
contexts as (λx.t [·])[x/u], for instance. Now, define i→s:= Bi[7→s], i→dB:= Bi[7→dB] and
i→λsub :=

i→s ∪ i→dB. Moreover, define >i→s:= ∪j>i j→s, and similarly for >i→dB and >i→λsub (and
for ≥). According to our definitions we have that →λsub◦=

0→λsub and →λsub•=
>0→λsub . Lemma

3.2 can be generalized as follows:

I Lemma 3.6 (Factorization by levels). The following swaps hold:
1. >i→dB

i→dB⊆ i→dB
>i→dB.

2. >i→s
i→s⊆ i→

+
s
>i→
∗
s.

3. >i→s
i→dB⊆ i→dB

>i→s.
4. >i→dB

i→s⊆ i→
+
s
>i→
∗
dB.

Thus (>i→dB,
i→dB,

>i→s,
i→s) is a SFS and ≥i→λsub=

i→
∗
λsub

>i→
∗
λsub

.

Proof. We prove the first point, the others are proved analogously. If t j→dB u
i→dB v with

j > i then there are two cases. 1) there exists a context Bi s.t. t = Bi[w], u = Bi[w′] and
v = Bi[w′′] with w

i−j→ dB w
′ 0→dB w

′′, which is equivalent to w →dB• w′ →dB◦ w′′. By Lemma
3.2.1 we get w →dB◦→dB• w′′, i.e. w

0→dB
>0→dB w

′′, and so t i→dB
>i→dB v. 2) There is no such

Bi, then the two steps are independent and permute. J

As a corollary we get the standardization theorem by levels for Linear Logic Proof-Nets
[15]. Define the level k of a term u as the maximum k s.t. u = Bk[v] for some v.

I Corollary 3.7 (standardization by levels). If t→∗λsub
u and k is the level of u then t 0→

∗
λsub

1→
∗
λsub

. . .
k−1→
∗
λsub

k→
∗
λsub

u.

B. Accattoli 13

Proof. By definition →∗λsub
=≥0→

∗
λsub

. By lemma 3.6 there exists u0 s.t. t 0→
∗
λsub

u0
>0→
∗
λsub

u.
Then we iterate on u0

>0→
∗
λsub

u, getting that there exists u1 s.t. u0
1→
∗
λsub

u1
>1→
∗
λsub

u, and
so on, until we get t 0→

∗
λsub

u0
1→
∗
λsub

u1 . . .
k−1→
∗
λsub

uk−1
k→
∗
λsub

uk
>k→
∗
λsub

u. Now, consider
uk

>k→
∗
λsub

u. This reduction is empty, otherwise u would have level greater than k, which is
absurd. J

The paper continues as follows: next section introduces some abstract lemmas for
postponements of reductions; Section 5 proves the factorization theorem for SFSs in an
abstract way. Sections 6 and 7 give some more applications of the factorization theorem.

4 An abstract toolbox for postponement

In this section we prove four abstract lemmas about permutation properties, which are used
to prove the abstract factorization theorem in Section 5. Let S be a rewriting system having
three reductions →1, →2, and →3, and for x, y ∈ {1, 2, 3} note →x,y=→x ∪ →y.

Let us recall some rewriting notions from [31]. What we call factorization is a form of
postponement: →2 postpones after →1 if →∗1,2⊆→∗1→∗2. Postponement is equivalent to
commutation. Two reductions →1 and →2 commute iff:

t →∗1 u t →∗1 u

↓∗2 implies ∃w s.t. ↓∗2 ↓∗2
v v →∗1 w

It is easy to show that →2 postpones after →1 iff →1 commutes with 2←. Therefore,
lemmas about commutations can be turned into lemmas about postponement, and conversely.
Commutation/postponement is a generalization of confluence, indeed a reduction → is
confluent iff it commutes with itself (iff ← postpones after →).

The first lemma proves postponement from a semi-local hypothesis, i.e. from a swap of
→∗2 and →1 (and not of →2 and →1). Afterwards, we show two different local conditions
for the semi-local hypothesis. This and the lemma which will follow are standard, we prove
them explicitely only to help the unacquainted reader.

I Lemma 4.1 (Semi-local condition for postponement). If →∗2→1⊆→∗1→∗2 then →∗1,2⊆→∗1→∗2.

Proof. By induction on the number k of →1 steps in τ : t →∗1,2 u. The case k = 0 is
trivial. Let k > 0. Then if τ is not of the form of the statement it has the following form:
t→∗1→+

2→1→∗1,2 u. Using the hypothesis we get: t→∗1→∗1→∗2→∗1,2 u. The i.h. on →∗2→∗1,2
gives: t→∗1→∗1→∗1→∗2 u and we conclude. J

The first local condition is that →2→1⊆→1→∗2. Note that one step of →1 on the left
becomes one step of →1 on the right. The right part can also be replaced by →1→∗2 ∪ →∗2,
but not by →∗1→∗2, otherwise the inductive argument does not work and it is not difficult to
build a counter-example (see [9]).

I Lemma 4.2 (Local condition for postponement). If →2→1⊆→1→∗2 then →∗2→1⊆→1→∗2
and so →∗1,2⊆→∗1→∗2.

Proof. We prove the first consequence, the second one follows from the first and Lemma
4.1. By induction on k, where t →k

2→1 u. The case k = 0 is trivial. Let k > 0. Then
t →k−1

2 →2→1 u and applying the hypothesis to the suffix we get t →k−1
2 →1→∗2 u. We

conclude applying the i.h. to the prefix →k−1
2 →1. J

RTA’12

14 An abstract factorisation theorem for explicit substitutions

In order to get a factorization theorem for SFSs we have to deal with permutations
of the form →2→1⊆→1→1→∗2, given for instance by Lemma 3.2.2. These commutations
are harmless if →1 is strongly normalizing, as next lemma shows. The lemma has been
independently proved by Geser in his Ph.D. thesis [17] and by Di Cosmo and Piperno in [10],
where it is presented for commutation, and it is here adapted to postponement. It can be
seen as a generalization of Newman’s lemma.

I Lemma 4.3 (Geser-Di Cosmo-Piperno’s lemma, adapted). If →2→1⊆→+
1→∗2 and →1 is

strongly normalizing then →∗2→+
1 ⊆→+

1→∗2, and so →∗1,2⊆→∗1→∗2.

Proof. We prove the first consequence, the second one follows from the first and Lemma
4.1. Let τ : t →k

2→h
1 u. By induction3 on the pair (η(t), k), where η(t) is the length of

the maximal →1 reduction from t, ordered lexicographically. The case k = 0 is trivial,
then let k > 0. Now, if τ =→k−1

2 →2→1→h−1
1 then by applying the first hypothesis to the

central subesequence we get τ ⊆→k−1
2 →+

1→∗2→h−1
1 . The measure of the prefix →k−1

2 →+
1 is

(η(t), k − 1) hence by i.h. we get τ ⊆→+
1→∗2→∗2→h−1

1 . For the suffix →∗2→∗2→h−1
1 it is the

first component of the measure which decreases, since its starting term is obtained through a
→+

1 -reduction from t, so one can apply the i.h. and get τ ⊆→+
1→+

1→∗2. J

The last abstract lemma we need is the one for the diagonal swaps, which has to
take into account the phenomenon of a third reduction popping out in the right part, i.e.
permutations of the form →2→1⊆→1→∗2,3 (given for instance by Lemma 3.2.4). We prove a
sort of generalization of Lemma 4.2 to this setting. This lemma is the key for the abstract
factorization theorem of next section. It is an original contribution of the paper.

I Lemma 4.4. If
1. →2→1⊆→1→∗2,3 and
2. →2→3⊆→+

3→∗2 and
3. →3 is strongly normalizing
then →∗2→∗1⊆→∗1,3→∗2.

Proof. First of all note that the second and third hypothesis allow to apply Lemma 4.3 and
get →∗2,3⊆→∗3→∗2, let us call this fact property (#). The proof is by induction on (h, k),
where →k

2→h
1 , ordered lexicographically. If k = 0 or h = 0 it is trivial. If k > 0 and h > 0

then applying the first hypothesis to the central part of τ :→k−1
2 →2→1→h−1

1 we get:

τ ⊆→k−1
2 →1→∗2,3→h−1

1 ⊆(#)→k−1
2 →1→∗3→∗2→h−1

1

Then by applying the i.h. to the prefix →k−1
2 →1 we get:

τ ⊆→∗1,3 →∗2→∗3→∗2︸ ︷︷ ︸
→∗

2,3

→h−1
1 ⊆(#) →∗1,3→∗3︸ ︷︷ ︸

→∗
1,3

→∗2→h−1
1 ⊆→∗1,3→∗2→h−1

1

Now by applying the i.h. to the suffix→∗2→h−1
1 we conclude with τ ⊆ →∗1,3→∗1,3︸ ︷︷ ︸

→∗
1,3

→∗2⊆→∗1,3→∗2

J

3 For the sake of simplicity the proof implicitly assumes that S is a finitely branching rewriting system.
This assumption can be dropped by replacing the induction on η(t) with an induction on the well-founded
order on the elements of S induced by →1 (because of strong normalization). We learned this from
Roberto Di Cosmo.

B. Accattoli 15

5 Abstract Standardization

In this section we prove that any square factorization system enjoys a factorization theorem.
Let us recall the definition from Section 3.
I Definition. A square factorization system (SFS) S is given by a set |S| and four
reduction relations (•, ◦,�•,�◦) on |S| s. t. the following conditions hold (remember
that := ◦ ∪ •, �:=�◦ ∪�•, →◦:= ◦ ∪�◦, →•:= • ∪�• and →:= ∪�):
1. Termination: ◦ and �◦ are strongly normalizing.
2. Row-swap 1: • ◦⊆ +

◦ ∗•.
3. Row-swap 2: �•�◦⊆�+

◦�∗•.
4. Diagonal-swap 1: �• ◦⊆ ◦�∗.
5. Diagonal-swap 2: •�◦⊆�◦ ∗.

The proof relies on the abstract lemmas of the previous sections and is simple. We just
lift the local permutations demanded to a SFS to sequences of steps (Points 1.a, 1.b, 2.a, 2.b
below) and then glue them together (Points 1.c and 2.c).

I Lemma 5.1 (Induced permutations of •∗ and ◦∗). Let S = { •, ◦,�•�◦} be a square
factorization system. The following inclusions hold:

1) Swap of �∗• and →∗◦: 2) Swap of ∗• and →∗◦:
a) Diagonal: �∗• ∗◦⊆→∗◦�∗•. a) Diagonal: ∗•�∗◦⊆→∗◦ ∗•.
b) Row: �∗•�∗◦⊆�∗◦�∗•. b) Row: ∗• ∗◦⊆ ∗◦ ∗•.
c) Diagonal + Row: �∗•→∗◦⊆→∗◦�∗•. c) Diagonal + Row: ∗•→∗◦⊆→∗◦ ∗•.

Proof. 1.a) Conditions 4 (�• ◦⊆ ◦�∗), 3 (�•�◦⊆�+
◦�∗•) and 1 (◦ is strongly

normalizing) for SFS satisfy the hypothesis of Lemma 4.4 (with→1= ◦, →2=�•, →3=�◦,
→2,3= (�• ∪ �◦) =� and →1,3= (�◦ ∪ ◦) =→◦). Hence, we get that �∗• ∗◦ is
included in →∗◦�∗•.
1.b) Conditions 1 (�◦ is strongly normalizing) and 3 (�•�◦⊆�+

◦�∗•) for SFS satisfy the
hypothesis of Lemma 4.3 (with →1=�◦, →2=�•). Hence, we get (�◦ ∪�•)∗ ⊆�∗◦�∗•.
We conclude, since �∗•�∗◦ is included in (�◦ ∪�•)∗ and thus in �∗◦�∗•.
1.c) From 1.a and 1.b we get �∗• ◦⊆→∗◦�∗• and �∗•�◦⊆�∗◦�∗•, hence �∗•→◦⊆→∗◦�∗•.
By Lemma 4.1 we get (→◦ ∪�•)∗ ⊆→∗◦�∗• and we conclude, since �∗•→∗◦⊆ (→◦ ∪�•)∗.
2.a) Conditions 5 (•�◦⊆�◦ ∗), 2 (• ◦⊆ +

◦ ∗•) and 1 (�◦ is strongly normalizing)
for SFS satisfy the hypothesis of Lemma 4.4 (with →1=�◦, →2= •, →3= ◦, →2,3= (•
∪ ◦) = and →1,3= (�◦ ∪ ◦) =→◦). Hence, we get that ∗•�∗◦ is included in →∗◦ ∗•.
2.b) Conditions 1 (◦ is strongly normalizing) and 2 (• ◦⊆ +

◦ ∗•) for SFS satisfy the
hypothesis of Lemma 4.3 (with →1= ◦, →2= •). Hence, we get (◦ ∪ •)∗ ⊆ ∗◦ ∗•.
We conclude, since ∗• ∗◦ is included in (◦ ∪ •)∗ and thus in ∗◦ ∗•.
2.c) From 2.a and 2.b we get ∗•�◦⊆→∗◦ ∗• and ∗• ◦⊆ ∗◦ ∗•, hence ∗•→◦⊆→∗◦ ∗•. By
Lemma 4.1 we get (→◦ ∪ •)∗ ⊆→∗◦ ∗• and we conclude, since ∗•→∗◦⊆ (→◦ ∪ •)∗. J

It is now easy to conclude.

I Theorem 5.2. Let S = { •, ◦,�•�◦} be a square factorization system. Then:
1. Swap of • and ◦∗: →•→∗◦⊆→∗◦→∗•.
2. Factorization: →∗⊆→∗◦→∗•.

Proof. 1. From points 1.c and 2.c of Lemma 5.1 we get�•→∗◦⊆→∗◦�∗• and •→∗◦⊆→∗◦ ∗•,
hence →•→∗◦⊆→∗◦→∗•.

RTA’12

16 An abstract factorisation theorem for explicit substitutions

2. By induction on the length k of →∗. The case k = 0 is trivial, then let k > 0. By i.h.
we get →→k−1⊆→→∗◦→∗•. If the first step is a →◦ step then there is nothing to prove.
Otherwise, by the previous point we get →•→∗◦→∗•⊆→∗◦→∗•→∗• and conclude.

J

All SFSs in the paper are composed of four rules. But some substitution calculi have
many rules, in particular a set of rules for substitutions. To apply the theorem is enough
to identify this set with �, and to split each rule accordingly. Similarly, there can also be
various rules for creating substitutions, whose union would be . The axioms for a SFS are
symmetric, so the choice between � or for one or the other set does not really matter.

6 The value-substitution calculus λvsub

The value-substitution calculus λvsub has the same syntax as λsub, but we distinguish the
syntactic category of values:

v = x | λx.t
The rewriting relation →λvsub is defined as the union of →dB (defined as before) and →vs,
which is the context closure of:

t[x/vL] 7→vs t{x/v}L

Remark rule 7→vs: there is no typo, in the left-hand side L is inside [x/vL] and in the right-
hand side it is outside {x/v}. A detailed account of the value-substitution calculus, which is
confluent, can be found in [8]. For λvsub we are going to prove two different factorization
theorems, both based on the following property.

I Lemma 6.1 ([8]). →dB and →vs are strongly normalizing and confluent.

The first factorization scheme for →λvsub is given by weak reduction (i.e. reductions out of
lambdas) and non-weak reductions, playing for λvsub the role of head and internal reductions
for λsub. Weak contexts are contexts whose hole is not under an abstraction:

W ::= [·] |W t | t W |W [x/t] | t[x/W]

Weak reduction ⇀◦ is defined as the union of ⇀dB◦ and ⇀vs◦, which are obtained as the
closure by weak contexts of 7→dB and 7→vs. Note that the reductions ⇀vs◦ and ⇀dB◦ are
strongly normalizing because their unrestricted versions are. Weak reduction ⇀◦ has the
diamond property [8].

In order to obtain a square factorization system we need to define the complements
of ⇀◦,⇀dB◦ and ⇀vs◦. We define ⇀• as the union of ⇀dB•:=→dB \ ⇀dB◦ and ⇀vs•:=→vs
\ ⇀vs◦, which are easily seen to be also definable via non-weak contexts, given by
W ::= λx.C |W [W]. Two examples:

(λx.t)[x/v[y/u]] s ⇀vs◦ (λx.t){x/v}[y/u] s t λx.(s[x/v]) ⇀vs• t λx.(s{x/v})

The following theorem is proved by means of a substitution lemma and an induction on
the rewriting relations (details in [2]).

I Theorem 6.2 (weak factorization). The following inclusions hold:
1. Row 1: ⇀dB•⇀dB◦⊆⇀dB◦⇀dB• ∪⇀dB◦⇀dB◦.
2. Row 2: ⇀vs•⇀vs◦⊆⇀vs◦⇀∗vs•.

B. Accattoli 17

3. Diagonal 1: ⇀vs•⇀dB◦⊆⇀dB◦⇀vs◦ ∪⇀dB◦⇀vs•.
4. Diagonal 2: ⇀dB•⇀vs◦⊆⇀vs◦⇀∗dB•.
Thus (⇀dB•,⇀dB◦,⇀vs•,⇀vs◦) is a SFS and →∗λvsub

=⇀∗◦⇀∗•.

We invite the reader to compare the diagrams of λsub (Lemma 3.2) and λvsub (Theorem
6.2): they are similar and yet different, despite both are SFS.

At this point we could iterate the factorization as for λsub, but we prefer to show another
factorization scheme obtained by combining head reduction and weak reduction in a new
interesting way. The following grammar defines stratified-weak contexts SW :

SW ::= W | SW t | λx.SW | SW [t/x]

Note that equivalently SW ::= H[W]. Stratified-weak reduction ⇁◦ is defined as the union
of ⇁dB◦ and ⇁vs◦ the closures by stratified-weak contexts 7→dB and 7→vs. Stratified-weak
reduction ⇁◦ has the diamond property [8]. We also need the complements of ⇁◦,⇁dB◦
and ⇁vs◦. Let us set: ⇁•:=→ \ ⇁◦, ⇁dB•:=→dB \ ⇁dB◦ and ⇁vs•:=→vs \ ⇁vs◦. Two
examples:

λx.(s[x/v]) ⇁vs◦ λx.(s{x/v}) t[y/λx.(s[x/v])] ⇁vs• t[y/λx.(s{x/v})]

The following theorem is proved by means of a substitution lemma and by induction on
the rewriting relations (details in [2]).

I Theorem 6.3 (stratified-weak factorization). The following inclusions hold:
1. Row 1: ⇁dB•⇁dB◦⊆⇁dB◦⇁dB• ∪⇁dB◦⇁dB◦.
2. Row 2: ⇁vs•⇁vs◦⊆⇁vs◦⇁∗vs• ∪⇁vs◦⇁vs◦⇁∗vs•.
3. Diagonal 1: ⇁vs•⇁dB◦⊆⇁dB◦⇁vs• ∪⇁dB◦⇁vs◦.
4. Diagonal 2: ⇁dB•⇁vs◦⊆⇁vs◦⇁dB◦⇁∗dB• ∪⇁vs◦⇁∗dB•.
Thus (⇁dB•,⇁dB◦,⇁vs•,⇁vs◦) is a SFS and →∗λvsub

=⇁∗◦⇁∗•.

Note that once again the permutations are different from the previous cases, and yet
caught by the axioms for a SFS. The two factorization theorems for λvsub have been used in
[8] to give a new operational characterization of call-by-value solvability.

7 The linear substitution calculus λlsub

In this section we apply the factorization theorem to a finer calculus of explicit substitutions,
the linear substitution calculus λlsub, a slight variation over a calculus introduced by Robin
Milner in [29], which can also be seen as a simplification of the structural λ-calculus λj [5].
The linear substitution calculus has the the same syntax as λsub. The rewriting rules of λlsub
are →dB (defined as before), →ls and →gc, which are defined as the context closures of:

C[x][x/u] 7→ls C[u][x/u] t[x/u] 7→gc t if x /∈ fv(t)

Rule 7→ls uses contexts: whenever we write C[x][x/u] we implicitly assume that C does not
capture x, despite the fact that in general (for instance in the context closure of the rules)
contexts may capture variables. We also note →λlsub=→dB ∪ →ls ∪ →gc. Note that λlsub
is obtained from λsub by decomposing the substitution rule in two more atomic rules. The
difference between λlsub and the original calculus of Milner [29] is rule →dB, which is not at
a distance in Milner’s calculus (i.e. it has the form of the B-rule in the introducion).

The linear substitution calculus enjoys all properties demanded to explicit substitution
calculi, obtained by easy adaptations of the proofs for λj in [5]. In particular, it is confluent
and preserves β-strong normalization. We will use the following property:

RTA’12

18 An abstract factorisation theorem for explicit substitutions

I Lemma 7.1. →dB, →ls, →gc are strongly normalizing and confluent.

Another important property is that garbage collection can be postponed.

I Lemma 7.2. Let →¬gc be →dB ∪ →ls, i.e. the complement of →gc with respect to →λlsub .
1. Local postponement of garbage collection: →gc→¬gc⊆→¬gc→∗gc.
2. Postponement of garbage collection: →∗λlsub

⊆→∗¬gc→∗gc.

Proof. 1) By induction on →gc. 2) It follows from the previous point and Lemma 4.2. J

Interestingly, if one defines head reduction as for λsub, i.e. as the closure by head contexts
of the root rewriting rules, the factorization theorem does not hold. Consider this reduction:

x[x/y[y/z]][z/u]→ls x[x/z[y/z]][z/u]→ls x[x/u[y/z]][z/u]

the first step has box level 1, while the second has box level 0, but they cannot be permuted4.
As we will see later, the notion of level of the linear substitution calculus is more subtle.

In λlsub it is possible to reformulate what in the Linear Logic literature is called linear
head reduction [23], and to prove factorization of →¬gc with respect to it. Note that in a
→ls step contexts are involved twice: to close the rule and to select the variable occurrence
to substitute for. For a head linear →ls step both contexts have to be head.

I Definition 7.3 (head linear reduction). Head linear reduction (◦ is defined as the
union of (dB◦:= H[7→dB] and (ls◦:= H[(̂ls], where (̂ls is given by:

H[x][x/u] (̂ls H[u][x/u]

Internal linear reduction(• is defined as the union of(dB•:=→dB \(dB◦ and(ls•:=→ls
\(ls◦. Two examples:

(y y)[y/z](ls◦ (z y)[y/z] (y y)[y/z](ls• (y z)[y/z]

With these definitions we get the following theorem, proved at the end of the section:

I Theorem 7.4. ((dB•,(dB◦,(ls•,(ls◦) is a SFS for →¬gc, and so →∗¬gc⊆(
∗
◦(
∗
•.

To our knowledge this is the first result formally proving factorization with respect to
linear head reduction. We recall that head linear reduction can be seen as an abstraction of
Krivine’s abstract machine [14]. Therefore, when β-reduction is decomposed in more atomic
rules, the factorization theorem becomes a method to derive abstract machines.

The relation between head linear reduction and the head reduction of λ-calculus has been
studied in depth in [7].

It is possible to generalize head linear reduction (◦ into a family { i
(}i∈N of reductions

by levels, in which (◦ corresponds to
0
(. We still use contexts to define the level of a step,

but the notion of level used here differs from the one used for λsub: the index counts the
arguments of applications only. Contexts whose hole is inside a substitution are noted H∞.
Leveled contexts are defined as follows:

H0 ::= H Hi+1 ::= t Hi | H0[Hi+1] H∞ ::= t [x/C] | Hi[H∞]

4 A note for Proof-Nets experts: this phenomenon is at first sight surprising, but it is not due to our
formalism and we are not the firsts to point it out: working at the same time with small-steps rules
(as in λlsub) and freely permutating contraction with !-boxes (which is implicit using terms) breaks
standardization by levels also in a traditional Proof-Nets syntax, see Tranquilli’s thesis [33], p. 133.

B. Accattoli 19

In order to define linear reduction by levels we fix some conventions. We will need to sum
indexes, and for ∞ we use the equalities ∞+ i =∞ and ∞+∞ =∞. Moreover, we note
N∞ = N ∪ {∞} and consider i <∞ for all i ∈ N.

I Definition 7.5. The linear reduction
i
(is the union of

i
(dB and

i
(ls, defined as follows.

For i ∈ N∞ the reduction
i
(dB is the closure by Hi-contexts of 7→dB. The case of →ls is a

bit more complex. Let j7→ls be defined by the rule:

Hj [x][x/u] j7→ls Hj [u][x/u]

Then define
i
(ls:= Hl[

j7→ls], where i = l + j. Define also
>i
(ls:= ∪j>i

j
(ls and similarly for

>i
(dB,

>i
(and for ≥. Some examples of

i
(ls reductions:

(y y)[y/z]
0
(ls (z y)[y/z] (y y)[y/z]

1
(ls (y z)[y/z] y[y/z[z/s]]

∞
(ls y[y/s[z/s]]

(x (y y)[y/z])
2
(ls (x (y z)[y/z]) (x (y y)[y/z])[z/s]

∞
(ls (x (y y)[y/s])[z/s]

Note that when t
i
(ls s then exists Hi s.t. t = Hi[x]

i
(ls Hi[u] with respect to some

substitution [x/u] in Hi.
The following lemma gives a detailled analysis of leveled diagrams for the linear substitu-

tion calculus. It is proved by an analysis of diagrams relying on some technical lemmas on
leveled contexts (details in [2]).

I Lemma 7.6. Let i < j <∞. Then:
1) Row 1a:

j
(dB

i
(dB⊆

i
(dB

j
(dB ∪

i
(dB

∞
(dB. 4) Diagonal 1a:

j
(ls

i
(dB⊆

i
(dB

j
(ls ∪

i
(dB

∞
(ls.

2) Row 1b:
∞
(dB

i
(dB⊆

i
(dB

∞
(dB. 5) Diagonal 1b:

∞
(ls

i
(dB⊆

i
(dB

∞
(ls.

3) Row 2a:
j
(ls

i
(ls⊆

i
(ls

j
(ls. 6) Diagonal 2a:

j
(dB

i
(ls⊆

i
(ls

j
(dB.

7) Row 2b:
∞
(ls

i
(ls⊆

i
(ls

∞
(ls ∪

i
(ls

i+k
(ls

∞
(ls ∪

i
(ls

∞
(ls

∞
(ls, with k ∈ N.

8) Diagonal 2b:
∞
(dB

i
(ls⊆

i
(ls

∞
(dB ∪

i
(ls

i+k
(dB

∞
(dB ∪

i
(ls

∞
(dB

∞
(dB, with k ∈ N.

The lemma implies factorization by levels analogous to the one of λsub (but with respect
to different leveled reductions).

I Corollary 7.7 (Factorization by levels). (
>i
(dB,

i
(dB,

>i
(ls,

i
(ls) is a SFS for every i ∈ N,

and so
≥i
(∗ ⊆ i

(∗ >i(∗.

Proof. The first axiom (termination) follows from Lemma 7.1. The second from points 1
and 2 of Lemma 7.6. The third form points 3 and 7. The fourth from points 4 and 5. The
fifth from points 6 and 8. J

We can now easily prove Theorem 7.4, just note that ((dB•,(dB◦,(ls•,(ls◦) is nothing
but (

>0
(dB,

0
(dB,

>0
(ls,

0
(ls). We conclude with a standardization theorem. Define the linear

level of a term t as the maximum i ∈ N s.t. t = Hi[u] for some u.

I Theorem 7.8 (Standardization by levels). Let t→∗λlsub
u and k is the linear level of u. Then

t
0
(∗ 1

(∗ . . .
k−1
(∗ k

(∗ ∞(∗ →∗gc u.

RTA’12

20 An abstract factorisation theorem for explicit substitutions

Proof. Remark that
∞
(and →gc cannot change the linear level of a term and that t

i
(v

for i finite implies that both t and v have linear level at least i. From Lem. 7.2.2 we get
that there exists v s.t. t →∗¬gc v →∗gc u. By the remark v has linear level k, the same of
u. By iterating the use of Corollary 7.7 as in the proof of Corollary 3.7 we factor →∗¬gc as

t
0
(∗ 1

(∗ . . .
k−1
(∗ k

(∗ >k(∗ v. Now, consider
>k
(∗. By the remark

>k
(∗ has to be a

∞
(∗

sequence and so we conclude. J

Theorem 7.8 provides a sharp decomposition of λlsub-reductions. It is easy to prove
that

j
(has the diamond property, for every j ∈ N. However, the theorem can certainly be

strengthened, as it says nothing about
∞
((which does not enjoy the diamond property),

whose analysis requires further factorizations, left to future work.

8 Conclusions

We presented an abstract factorization theorem for explicit substitution (ES) calculi, with
applications to ES-calculi related to Proof-Nets. The abstract technique is simple. The
theorem is applied more than once to every calculus, getting different factorizations, showing
the flexibility of the abstract approach. It captures both call-by-name and call-by-value
dynamics. We are convinced that the theorem applies to many other calculi, not related to
Proof-Nets, despite this verification is left to future work.

We believe that our study of linear head reduction is a contribution: our presentation is
simpler than the usual one [14], and the lack of a rewriting characterization for this important
notion was a hole in the literature. A more detailed study of the linear substitution calculus,
by means of residuals and permutation equivalence is an interesting research direction. It
is also interesting to find other rewriting properties which can take advantage of the local
termination nature of explicit substitution calculi.

Acknowledgements I want to thank Delia Kesner for many discussions on the subject and
for her encouragement to try to publish this work. I also want to thank Flavio C. de Moura,
Luca Paolini, Paul-André Melliès, Willem Heijltjes, and the anonymous referees.

References
1 M. Abadi, L. Cardelli, P. L. Curien, and J. J. Levy. Explicit substitutions. Journal of

Functional Programming, 1:31–46, 1991.
2 B. Accattoli. An abstract factorisation theorem for explicit substitutions (extended version).

available at https://sites.google.com/site/beniaminoaccattoli/tech-report.pdf.
3 B. Accattoli. Jumping around the box: graphical and operational studies on Lambda Cal-

culus and Linear Logic. Ph.D. Thesis, Università di Roma La Sapienza, 2011.
4 B. Accattoli and S. Guerrini. Jumping boxes. representing λ-calculus boxes by jumps. In

CSL, volume 5771 of LNCS, pages 55–70. Springer, 2009.
5 B. Accattoli and D. Kesner. The structural λ-calculus. In Computer Science Logic (CSL),

volume 6247 of Lecture Notes in Computer Science, pages 381–395. Springer, 2010.
6 B. Accattoli and D. Kesner. The permutative -calculus. In LPAR, pages 23–36, 2012.
7 B. Accattoli and U. Dal Lago. On the invariance of the unitary cost model for head

reduction. Accepted at RTA 2012.
8 B. Accattoli and L. Paolini. Call-by-value solvability, revisited. Accepted to FLOPS 2012,

available at https://sites.google.com/site/beniaminoaccattoli/solvability.pdf.

B. Accattoli 21

9 H. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-Holland, Amster-
dam, revised edition, 1984. (First edition, 1981).

10 R. Di Cosmo and A. Piperno. Expanding extensional polymorphism. In TLCA, pages
139–153, 1995.

11 Pierre-Louis Curien, Thérèse Hardin, and Jean-Jacques Lévy. Confluence properties of
weak and strong calculi of explicit substitutions. J. ACM, 43(2):362–397, 1996.

12 V. Danos, H. Herbelin, and L. Regnier. Game semantics & abstract machines. In LICS,
pages 394–405, 1996.

13 V. Danos and L. Regnier. Reversible, irreversible and optimal lambda-machines. Electr.
Notes Theor. Comput. Sci., 3, 1996.

14 V. Danos and L. Regnier. Head linear reduction. Technical report, 2004.
15 D. de Carvalho, M. Pagani, and L. Tortora de Falco. A semantic measure of the execution

time in linear logic. TCS, Special issue Girard’s Festschrift, 412(20):1884–1902, 2011.
16 T. Ehrhard and L. Regnier. Böhm trees, krivine’s machine and the taylor expansion of

lambda-terms. In CiE, pages 186–197, 2006.
17 A. Geser. Relative Termination. Ph.d. thesis, Fakultät fürMathematik und Informatik,

Universität Passau, Germany, 1990.
18 Georges Gonthier, Jean-Jacques Lévy, and Paul-André Melliès. An abstract standardisation

theorem. In LICS, pages 72–81, 1992.
19 H. Herbelin and S. Zimmermann. An operational account of call-by-value minimal and

classical lambda-calculus in "natural deduction" form. In TLCA, pages 142–156, 2009.
20 R. E. Møgelberg J. Egger and A. Simpson. Enriching an effect calculus with linear types.

In CSL, pages 240–254, 2009.
21 D. N. Turner J. Maraist, M. Odersky and P. Wadler. Call-by-name, call-by-value, call-by-

need and the linear lambda calculus. Theor. Comput. Sci., 228(1-2):175–210, 1999.
22 D. Kesner. The theory of calculi with explicit substitutions revisited. In CSL, pages 238–

252, 2007.
23 G. Mascari and M. Pedicini. Head linear reduction and pure proof net extraction. Theor.

Comput. Sci., 135(1):111–137, 1994.
24 D. Mazza. Pi et lambda. Une étude sur la traduction des lambda-termes dans le pi-calcul.

Memoire de DEA (in french), 2003.
25 P.-A. Melliès. Typed lambda-calculi with explicit substitutions may not terminate. In

TLCA, pages 328–334, 1995.
26 P.-A. Melliès. Description axiomatique des systèmes de réécriture. Phd thesis, Université

Paris VII, 1996.
27 P.-A. Melliès. A factorisation theorem in rewriting theory. In Category Theory and Com-

puter Science, pages 49–68, 1997.
28 P.-A. Melliès. Axiomatic rewriting theory I: A diagrammatic standardization theorem. In

Processes, Terms and Cycles, pages 554–638, 2005.
29 R. Milner. Local bigraphs and confluence: Two conjectures: (extended abstract). Electr.

Notes Theor. Comput. Sci., 175(3):65–73, 2007.
30 M. Takahashi. Parallel reductions in lambda-calculus. Inf. Comput., 118(1):120–127, 1995.
31 Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical Computer

Science. Cambridge University Press, 2003.
32 K. Terui. Light affine lambda calculus and polynomial time strong normalization. Arch.

Math. Log., 46(3-4):253–280, 2007.
33 P. Tranquilli. Nets Between Determinism and Nondeterminism. Ph.d. thesis, Università

degli Studi Roma Tre/Université Paris Diderot (Paris 7), 2009.

RTA’12

On the Invariance of the Unitary Cost Model for
Head Reduction∗

Beniamino Accattoli1 and Ugo Dal Lago2

1 INRIA & LIX (École Polytechnique)
beniamino.accattoli@inria.fr

2 Università di Bologna & INRIA
dallago@cs.unibo.it

Abstract
The λ-calculus is a widely accepted computational model of higher-order functional programs,
yet there is not any direct and universally accepted cost model for it. As a consequence, the
computational difficulty of reducing λ-terms to their normal form is typically studied by reasoning
on concrete implementation algorithms. In this paper, we show that when head reduction is the
underlying dynamics, the unitary cost model is indeed invariant. This improves on known results,
which only deal with weak (call-by-value or call-by-name) reduction. Invariance is proved by way
of a linear calculus of explicit substitutions, which allows to nicely decompose any head reduction
step in the λ-calculus into more elementary substitution steps, thus making the combinatorics
of head-reduction easier to reason about. The technique is also a promising tool to attack what
we see as the main open problem, namely understanding for which normalizing strategies the
unitary cost model is invariant, if any.

1998 ACM Subject Classification F.4.1 Mathematical Logic – Lambda calculus and related
systems, F.4.2 Grammars and Other Rewriting Systems

Keywords and phrases lambda calculus, cost models, explicit substitutions, implicit computa-
tional complexity

Digital Object Identifier 10.4230/LIPIcs.RTA.2012.22

Category Regular Research Paper

1 Introduction

Giving an estimate of the amount of time T needed to execute a program is a natural
refinement of the termination problem, which only requires to decide whether T is either
finite or infinite. The shift from termination to complexity analysis brings more informative
outcomes at the price of an increased difficulty. In particular, complexity analysis depends
much on the chosen computational model. Is it possible to express such estimates in a
way which is independent from the specific machine the program is run on? An answer to
this question can be given following computational complexity, which classifies algorithms
(and functions) based on the amount of time (or space) they consume when executed by
any abstract device endowed with a reasonable cost model, depending on the size of input.
When can a cost model be considered reasonable? The answer lies in the so-called invariance
thesis [23]: any time cost model is reasonable if it is polynomially related to the (standard)
one of Turing machines.

∗ This work was partially supported by the ARC INRIA project “ETERNAL”.

© Beniamino Accattoli and Ugo Dal Lago;
licensed under Creative Commons License NC-ND

23rd International Conference on Rewriting Techniques and Applications (RTA’12).
Editor: A. Tiwari; pp. 22–37

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

B. Accattoli and U. Dal Lago 23

If programs are expressed as rewrite systems (e.g. as first-order TRSs), an abstract but
effective way to execute programs, rewriting itself, is always available. As a consequence,
a natural time cost model turns out to be derivational complexity, namely the (maximum)
number of rewrite steps which can possibly be performed from the given term. A rewriting
step, however, may not be an atomic operation, so derivational complexity is not by definition
invariant. For first-order TRSs, however, derivational complexity has been recently shown
to be an invariant cost model, by way of term graph rewriting [12, 8, 9].

The case of λ-calculus is definitely more delicate: if β-reduction is weak, i.e., if it cannot
take place in the scope of λ-abstractions, one can see λ-calculus as a TRS and get invariance
by way of the already cited results [11], or by other means [21]. But if one needs to reduce
“under lambdas” because the final term needs to be in normal form (e.g., when performing
type checking in dependent type theories), no invariance results are known at the time of
writing.

In this paper we give a partial solution to this problem, by showing that the unitary
cost model is indeed invariant for the λ-calculus endowed with head reduction, in which
reduction can take place in the scope of λ-abstractions, but can only be performed in head
position. Our proof technique consists in implementing head reduction in a calculus of
explicit substitutions.

Explicit substitutions were introduced to close the gap between the theory of λ-calculus
and implementations [1]. Their rewriting theory has also been studied in depth, after Melliès
showed the possibility of pathological behaviors [15]. Starting from graphical syntaxes, a
new at a distance approach to explicit substitutions has recently been proposed [6]. The
new formalisms are simpler than those of the earlier generation, and another thread of
applications — to which this paper belongs — also started: new results on λ-calculus have
been proved by means of explicit substitutions [6, 7].

In this paper we use the linear-substitution calculus Λ[·], a slight variation over a calculus
of explicit substitutions introduced by Robin Milner [17]. The variation is inspired by the
structural λ-calculus [6]. We study in detail the relation between λ-calculus head reduction
and linear head reduction [14], the head reduction of Λ[·], and prove that the latter is at most
quadratically longer than the former. This is proved without any termination assumption,
by a detailed rewriting analysis.

To get the Invariance Theorem, however, other ingredients are required:
1. The Subterm Property. Linear head reduction has a property not enjoyed by head β-

reduction: linear substitutions along a reduction t(∗ u duplicate subterms of t only. It
easily follows that (-steps can be simulated by Turing machines in time polynomial in
the size of t and the length of (∗. This is explained in Section 3.

2. Compact representations. Explicit substitutions, decomposing β-reduction into more
atomic steps, allow to take advantage of sharing and thus provide compact represent-
ations of terms, avoiding the exponential blowups of term size happening in plain λ-
calculus. Is it reasonable to use these compact representations of λ-terms? We answer
affirmatively, by exhibiting a dynamic programming algorithm for checking equality of
terms with explicit substitutions modulo unfolding, and proving it to work in polynomial
time in the size of the involved compact representations. This is the topic of Section 5.

3. Head simulation of Turing machines. We also provide the simulation of Turing machines
by λ-terms. We give a new encoding of Turing machines, since the known ones do not
work with head β-reduction, and prove it induces a polynomial overhead. Some details
of the encoding are given in Section 6.

We emphasize the result for head β-reduction, but our technical detour also proves invariance

RTA’12

24 On the Invariance of the Unitary Cost Model for Head Reduction

for linear head reduction. To our knowledge, we are the first ones to use the fine granularity
of explicit substitutions for complexity analysis. Many calculi with bounded complexity (e.g.
[22]) use let-constructs, an avatar of explicit substitutions, but they do not take advantage
of the refined dynamics, as they always use big-steps substitution rules.

To conclude, we strongly believe that the main contribution of this paper lies in the
technique rather than in the invariance result. Indeed, the main open problem in this area,
namely the invariance of the unitary cost model for any normalizing strategy remains open
but, as we argue in Section 4, seems now within reach.

An extended version of this paper with more detailed proofs is available [4].

2 λ-Calculus and Cost Models: an Informal Account

Consider the pure, untyped, λ-calculus. Terms can be variables, abstractions or applications
and computation is modeled by β-reduction. Once a reduction strategy is fixed, one could be
tempted to make time and reduction steps to correspond: firing a β-redex requires one time
instant (or, equivalently, a finite number of time instants) and thus the number of reduction
steps to normal form could be seen as a measure of its time complexity. This would be
very convenient, since reasoning on the complexity of normalization could be done this way
directly on λ-terms. However, doing so one could in principle risk to be too optimistic about
the complexity of obtaining the normal form of a term t, given t as an input. This section
will articulate on this issue by giving some examples and pointers to the relevant literature.

Consider the sequence of λ-terms defined as follows, by induction on a natural number
n (where u is the lambda term yxx): t0 = u and for every n ∈ N, tn+1 = (λx.tn)u. tn
has size linear in n, and tn rewrites to its normal form rn in exactly n steps, following a
leftmost-outermost strategy:

t0 ≡ u ≡ r0;
t1 → yuu ≡ yr0r0 ≡ r1;
t2 → (λx.t0)(yuu) ≡ (λx.u)r1 → yr1r1 ≡ r2;
...

For every n, however, rn+1 contains two copies of rn, hence the size of rn is exponential
in n. As a consequence, if we stick to the leftmost-outermost strategy and if we insist on
normal forms to be represented explicitly, without taking advantage of sharing, the unitary
cost model is not invariant: in a linear number of β-steps we reach an object which cannot
even be written down in polynomial time.

One may wonder whether this problem is due to the specific, inefficient, adopted strategy.
However, it is quite easy to rebuild a sequence of terms exhibiting the same behavior along
an innermost strategy: if s = λy.yxx, define v0 to be just λx.s, for every n ∈ N, vn+1 to be
λx.vns, and consider vn(λx.x). Actually, there are invariant cost-models for the λ-calculus
even if one wants to obtain the normal form in an explicit, linear format, like the difference
cost model [10]. But they pay a price for that: they do not attribute a constant weight to
each reduction step. Then, another natural question arises: is it that the gap between the
unitary cost model and the real complexity of reducing terms is only due to a representation
problem? In other words, could we take advantage of a shared representation of terms, even
if only to encode λ-terms (and normal forms in particular) in a compact way?

The literature offers some positive answers to the question above. In particular, the
unitary cost model can be proved to be invariant for both call-by-name and call-by-value

B. Accattoli and U. Dal Lago 25

λ-calculi, as defined by Plotkin [19]. In one way or another, the mentioned results are
based on sharing subterms, either by translating the λ-calculus to a TRS [11] or by going
through abstract machines [21]. Plotkin’s calculi, however, are endowed with weak notions
of reduction, which prevent computation to happen in the scope of a λ-abstraction. And
the proposed approaches crucially rely on that.

The question now becomes the following: is it possible to prove the invariance of the
unitary cost model for some strong notion of reduction? This paper gives a first, positive
answer to this question by proving the number of β-reduction steps to be an invariant cost
model for head reduction, in which one is allowed to reduce in the scope of λ-abstractions,
but evaluation stops on head normal forms.

We are convinced that the exponential blowup in the examples above is, indeed, only due
to the λ-calculus being a very inefficient representation formalism. Following this thesis we
use terms with explicit substitutions as compact representations: our approach, in contrast
to other ones, consists in using sharing (here under the form of explicit substitutions) only
to obtain compactness, and not to design some sort of optimal strategy reducing shared
redexes. Actually, we follow the opposite direction: the leftmost-outermost strategy —
being standard — can be considered as the maximally non-sharing strategy. How much
are we losing limiting ourselves to head reduction? Not so much: in Section 6 we show an
encoding of Turing machines for which the normal form is reached by head-reduction only.
Moreover, from a denotational semantics point of view head-normal forms — and not full
normal forms — are the right notion of result for β-reduction.

The next two sections introduce explicit substitutions and prove that the length of their
head strategy is polynomially related to the length of head β-reduction. In other words, the
switch to compact representations does not affect the cost model in any essential way.

3 Linear Explicit Substitutions

First of all, we introduce the λ-calculus. Its terms are given by the grammar:

t, u, r ::= x | t t | λx.t
and its reduction rule →β is defined as the context closure of (λx.t) u 7→β t{x/u}. Tλ is the
set of all terms of the λ-calculus. We will mainly work with head reduction, instead of full
β-reduction. We define head reduction as follows. Let an head context Ĥ be defined by:

Ĥ ::= [·] | Ĥ t | λx.Ĥ.
Then define head reduction →h as the closure by head contexts of 7→β . Our definition of
head reduction is slightly more liberal than the usual one. Indeed, it is non-deterministic,
for instance:

(λx.I) t h ← (λx.(I I)) t→h I I.

Usually only one of the two redexes would be considered an head redex. However, this
non-determinism is harmless, since one easily proves that →h has the diamond property.
Reducing →h in an outermost way we recover the usual notion of head reduction, so our
approach gains in generality without loosing any property of head reduction. Our notion is
motivated by the corresponding notion of head reduction for explicit substitutions, which is
easier to manage in this more general approach.

The calculus of explicit substitutions we are going to use is a minor variation over a
simple calculus introduced by Milner [17]. The grammar is standard:

t, u, r ::= x | t t | λx.t | t[x/t].

RTA’12

26 On the Invariance of the Unitary Cost Model for Head Reduction

(λx.t)L u 7→dB t[x/u]L
C[x][x/u] 7→ls C[u][x/u]
t[x/u] 7→gc t if x /∈ fv(t)

Figure 1 Λ[·] Rewriting Rules.

The term t[x/u] is an explicit substitution. T is the set of terms with explicit substitutions.
Observe that Tλ ⊂ T . Both constructors λx.t and t[x/u] bind x in t. We note L a possibly
empty list of explicit substitutions [x1/u1] . . . [xk/uk]. Contexts are defined by:

C,D,E, F ::= [·] | C t | t C | λx.C | C[x/t] | t[x/C].

We note C[t] the usual operation of substituting [·] in C possibly capturing free variables of
t. We will often use expressions like C[x][x/u] where it is implicitly assumed that C does
not capture x. The linear-substitution calculus Λ[·] is given by the rewriting rules →dB, →ls
and →gc, defined as the context closures of the rules 7→dB, 7→ls and 7→gc in Figure 1. We
also use the notation →Λ[·]=→dB ∪ →ls ∪ →gc and →s=→ls ∪ →gc. Rule →dB acts at a
distance: the function λx.t and the argument u can interact even if there is L between them.
This is motivated by the close relation between Λ[·] and graphical formalisms as proof-nets
and λj-dags [3, 5], and is also the difference with Milner’s presentation of Λ[·] [17].

The linear-substitution calculus enjoys all properties required to explicit substitutions
calculi, obtained by easy adaptations of the proofs for λj in [6]. Moreover, it is confluent and
preserves β-strong normalization. In particular, →s is a strongly normalizing and confluent
relation.

Given a term t with explicit substitutions, its normal form with respect to→s is a λ-term,
noted t→ , called the unfolding of t and verifying the following equalities:

(t u)→ = t

→

u

→ ; (λx.t)→ = λx.t

→ ; (t[x/u])→ = t

→ {x/u → }.

Another useful property is the so-called full-composition, which states that any explicit
substitution can be reduced to its implicit form independently from the other substitutions
in the term, formally t[x/u] →∗s t{x/u}. Last, Λ[·] simulates λ-calculus (t →β u implies
t →∗Λ[·]

u) and reductions in Λ[·] can be projected on λ-calculus via unfolding (t →Λ[·] u

implies t→ →∗β u

→).
The calculus Λ[·] has a strong relation with proof-nets and linear logic: it can be mapped

to Danos’ and Regnier’s pure proof-nets [20] or to λj-dags [5]. The rule →dB corresponds to
proof-nets multiplicative cut-elimination, →ls to the cut-elimination rule between ! (every
substitution is in a !-box) and contraction, →gc to the cut-elimination rule between ! and
weakening. The case of a cut between ! and dereliction is handled by →ls, as if cut derelic-
tions were always contracted with a weakening.

3.1 Linear Head Reduction, the Subterm Property and Shallow Terms
In this paper, we mainly deal with a specific notion of reduction for Λ[·], called linear head
reduction [14, 13], and related to the representation of λ-calculus into linear logic proof-nets.
In order to define it we need the notion of head context for explicit substitutions.

I Definition 3.1 (head context). Head contexts are defined by the following grammar:

H ::= [·] | H t | λx.H | H[x/t].

B. Accattoli and U. Dal Lago 27

The fundamental property of an head context H is that the hole cannot be duplicated nor
erased. In terms of linear logic proof-nets, the head hole is not contained in any box (since
boxes are associated with the arguments of applications and with explicit substitutions).
We now need to consider a modified version of 7→ls:

H[x][x/u] (̂ls H[u][x/u].

Now, let(dB (resp. (ls) be the closure by head contexts of 7→dB (resp. (̂ls). Last, define
head linear reduction (as (dB ∪ (ls. Please notice that (can reduce under λ, for
instance λy.(H[x][x/u])(ls λy.(H[u][x/u]). Our definition of(gives a non-deterministic
strategy, but its non-determinism is again harmless: a simple case analysis shows that (
has the diamond property.

In [2] it is proved that linear head reduction has the same factorization property enjoyed
by head reduction in λ-calculus: if t →∗Λ[·]

u then t(∗⇒∗, where ⇒ is the complement of
→Λ[·] with respect to ((i.e. ⇒:=→Λ[·] \().

A term u is a box-subterm of a term t (resp. of a context C) if t (resp. C) has a subterm
of the form r u or of the form r[x/u] for some r.
I Remark. By definition of head-contexts, [·] is not a box-subterm of H[·], and there is no
box-subterm of H[·] which has [·] as a subterm.

The following fundamental property of head linear reduction is folklore among specialists,
but to our knowledge it has never appeared in print before.

I Proposition 3.2 (Subterm Property). If t(∗ u and r is a box-subterm of u, then r is a
box-subterm of t.

The aforementioned proposition is a key point in our study of cost models. Linear head
substitution steps duplicate sub-terms, but the Subterm Property guarantees that only sub-
terms of the initial term t are duplicated, and thus each step can be implemented in time
polynomial in the size of t, which is the size of the input, the fundamental parameter for
complexity analysis. This is in sharp contrast with what happens in the λ-calculus, where
the cost of a β-reduction step is not even polynomially related to the size of the initial term.

Proof. Let t(k u. We proceed by induction on k. Suppose that k > 0. Then t(∗ v(u

and by i.h. any box-subterm of v is a box subterm of t, so it is enough to show that any
box-subterm of u is a box-subterm of v. By induction on v(u. The case v = (λx.r)L s(
r[x/s]L is trivial. If v = H[x][x/s](H[s][x/s] by the previous remark the plug of s in H[·]
does not create any new box-subterm, nor modify a box-subterm of H[·]. And obviously
any box-subterm of s is a box-subterm of v. The inductive cases follow from the i.h. and
the previous remark. J

The subterm property does not only allow to bound the cost of implementing any reduc-
tion step, but also to bound the size of intermediate terms:

I Corollary 3.3. There is a polynomial p : N×N→ N such that if t(k u then |u| ≤ p(k, |t|).
Consider a reduction t (∗ u where t is a λ-term. Another consequence of the Subterm
Property is that for every explicit substitution occurring in u, the substituted term is a
λ-term. This is another strong property to be used in the analysis of the next section.

I Definition 3.4 (Shallow Terms). A Λ[·]-term t is shallow if whenever t = C[u[x/r]] then r
is a λ-term.

I Corollary 3.5. Let t be a λ-term and t(∗ u. Then u is shallow.

RTA’12

28 On the Invariance of the Unitary Cost Model for Head Reduction

4 On the Relation Between Λ and Λ[·]

In this section, linear explicit substitutions will be shown to be an efficient way to implement
head reduction. We will proceed by proving three auxiliary results separately:
1. We show that any(-reduction ρ projects via unfolding to a →h-reduction ρ

→ having as
length exactly the number of (dB steps in ρ; this is the topic of Section 4.1;

2. We show the converse relation, i.e. that any →h-reduction ρ can be simulated by a (-
reduction having as many(dB-steps as the the steps in ρ, followed by unfolding; this is
in Section 4.2;

3. We show that in any (-reduction ρ the number of (ls-steps is O(|ρ|2dB) where |ρ|dB is
the number of (dB steps in ρ. By the previous two points, there is a quadratic — and
thus polynomial — relation between→h-reductions and(-reduction from a given term;
all this is explained in Section 4.3.

4.1 Projection of (on →h

The first thing one needs to prove about head-linear reduction is whether it is a sound way
to implement head reduction. This is proved by relatively standard techniques, and requires
the following auxiliary lemma, whose proof is by induction on t→h u:

I Lemma 4.1. Let t ∈ Tλ. If t→h u then t{x/r} →h u{x/r}.

I Lemma 4.2 (Projection of (on →h). Let t ∈ T . If ρ : t (k u then t

→ →n
h u

→ and
n = |ρ|dB ≤ k.

Proof. By induction on k. If k = 0 it is trivial, so let k > 0 and t(n−1 r(u. Let τ be the
reduction t(n−1 r. By i.h. we get t → →m

h r

→ and m = |τ |dB ≤ k − 1. Now consider r(u.
There are two cases. If r(ls u then r → = u

→ , by definition of (·)→ , as the normal form of→s
(which contains (ls). If r(dB u then r = H[(λx.v)L s](H[v[x/s]L] = u. We prove that
r

→ →h u
→ , from which it follows that t → →m+1

h u

→ , where m + 1 = |τ |dB + 1 = |ρ|dB ≤ k. We
go by induction on H. We use the following notation: if t = uL and L = [y1/w1] . . . [ym/wm]
then we write σL for {y1/w1

→ } . . . {ym/wm

→ }, thus we can write t → = u

→

σL. Cases:
H = [·]. Then:

r

→ =((λx.v)L) → s→ = (λx.v →)σL s

→ = (λx.v → σL) s→

→hv

→

σL{x/s

→ } ∗= v

→ {x/s→ }σL = (v[x/s])→ σL = (v[x/s]L)→ = u

→

.

Step (*) holds because x /∈ fv(wi) for i ∈ {1, . . . ,m}.
H = J [y/w]. Then by i.h. and Lemma 4.1 we get r → = (J [(λx.v)L s])→ {y/w → } →h
(J [v[x/s]L])→ {y/w → } = u

→ .
The cases H = J w and H = λy.J follow from the i.h.

J

4.2 Projection of →h on (
Here we map head β-steps to head linear steps followed by unfolding. In other words, we
prove that head-linear reduction is not only a sound, but also a complete way to implement
head reduction. This section is going to be technically more involved than the previous one.
First of all, we show that a single head step can be simulated by a step of (dB followed by
unfolding, which is straightforward:

I Lemma 4.3 (Head Simulation). Let t be a λ-term. If t→h u, then t(dB→∗s u.

B. Accattoli and U. Dal Lago 29

Proof. By induction on t →h u. The base case: if (λx.u) r →h u{x/r} then (λx.u) r (dB
u[x/r] and u[x/r]→∗s u{x/r} by full composition. The inductive cases follows by the i.h.. J

We are now going to show that a sequence of→ls reduction steps can be factored into some
head-linear substitutions, followed by some linear substitutions under non-head contexts.
This allows to refine Lemma 4.3. Define ⇒s as the relation →s \ (ls, i.e. ⇒s reduces
non-head-linear substitution redexes. Moreover, define the linear unfolding t

(

of t as the
normal form of t with respect to (ls (which exists since (ls⊆→ls and →ls terminates,
and it is unique because (ls is deterministic).

Now, we can prove that any →h step is simulated in (dB(∗ls⇒∗s (actually, in such a
sequence there can be at most one (ls step):

I Lemma 4.4 (Unfolding Factorization). The following swaps hold:
1. ⇒s(ls⊆(+

ls⇒+
s , precisely: ⇒s(ls⊆(ls⇒s ∪(ls(ls⇒s ∪(ls⇒s⇒s.

2. →∗ls⊆(∗ls⇒∗s, and in particular t(∗ls t

(

⇒∗s t
→ .

Proof. 1) Formally, the proof is by induction on t ⇒s u. Informally, ⇒s cannot create,
duplicate or alter the head nature of an (ls-step, so that the second step in t ⇒s(ls r

can be traced back to a unique(ls redex. Now, there are two cases: either the two redexes
simply permute or the preponement of(ls duplicate the redex reduced by⇒s. The second
case splits in two subcases, of which we just give two examples:

x[x/y][y/z] ⇒s x[x/z][y/z](
ls

 (

ls
y[x/y][y/z] (ls z[x/y][y/z] ⇒s z[x/z][y/z]

x[x/y y][y/z] ⇒s x[x/y z][y/z](
ls

 (

ls
(y y)[x/y y][y/z] ⇒s (y z)[x/y y][y/z] ⇒s (y z)[x/y z][y/z]

2) There is an abstract lemma (see [4]) which says that if→2→1⊆→+
1→∗2 and→1 is strongly

normalizing then (→1 ∪ →2)∗ ⊆→∗1→∗2. Now, taking→1 to be(ls,→2 to be⇒s and since
(ls is strongly normalising we get →∗ls= ((ls ∪ ⇒s)∗ ⊆(∗ls⇒∗s . J

We know that a →h step is simulated by a sequence of the form(dB(∗ls⇒∗s⊆(∗⇒∗s . Con-
sider two (or more) →h-steps. They are simulated by a sequence of the form(∗⇒∗s(∗⇒∗s ,
while we would like to obtain (∗⇒∗s . What we need to do is to prove that a sequence of
the form ⇒∗s(dB can always be reorganized as a sequence (dB⇒∗s :

I Lemma 4.5. The following inclusions hold:
1. ⇒s(dB⊆(dB⇒s.
2. ⇒∗s(dB⊆(dB⇒∗s.

Proof. 1) By induction on t ⇒s u. The idea is that ⇒s cannot create, duplicate nor alter
the head nature of (dB redexes, therefore (dB-step can be preponed. Conversely, (dB-
steps cannot erase, duplicate nor alter the non-head nature of ⇒s redexes, so the two steps
commute. 2) Let t ⇒k

s(dB u. By induction on k using point 1 and a standard diagram
chasing. J

The next lemma is the last brick for the projection.

I Lemma 4.6. If t→ →h u then there exists r s.t. t

(

(dB r →∗ls u.

Proof. By Lemma 4.3, we get t → (→∗ls u. By Lemma 4.4, t→∗ls t

→ factors as t(∗ls t

(

⇒∗s t

→ ,
and so we get t

(

⇒∗s(→∗ls u. By Lemma 4.5.2, we get t

(

(⇒∗s→∗ls u, i.e. t

(

(→∗ls u. J

RTA’12

30 On the Invariance of the Unitary Cost Model for Head Reduction

We can then conclude with the result which gives the name to this section:

I Lemma 4.7 (Projection of →h on (). Let t be a λ-term. If t →k
h u then there exists a

reduction ρ s.t. ρ : t(∗ r, with r →∗ls u and |ρ|dB = k.

Proof. By induction on k. The case k = 0 is trivial, so let k > 0 and t →k−1
h s →h u.

By i.h. there exists a reduction τ s.t. τ : t (∗ v, v →∗ls s and |τ |dB = k − 1. Since s is a
λ-term we have that v → = s and v → →h u. By lemma 4.6 there exists r s.t. v

(

(dB r →∗ls u.
Moreover, v(∗ls v

(

; call γ this reduction. Let ρ be the reduction obtained by concatenating
τ : t(∗ v, γ : v (∗ls v

(

and v

(

(dB r. We have |ρ|dB = |τ |dB + 1 = k and r →∗ls u, and so
we conclude. J

This section and the previous one proved for Λ[·] results proved by more abstract means
by Melliès in the context of the λσ-calculus in [16]1. The linear substitution calculus is
simpler than the λσ-calculus, which is why our analysis — developed independently — is
simpler (but also less sophisticated and general) than Melliès’2.

4.3 Quadratic Relation
The last two sections proved that head reduction can be seen as head linear reduction
followed by unfolding, and that the number of head steps is exactly the number of (dB-
steps in the corresponding head linear reduction. To conclude that head and head linear
reduction are polynomially related, we need to show that the number of (ls-steps in a
linear head reduction ρ is polynomially related to the number of (dB-steps in ρ.

We do it by giving a precise estimate of the maximal length of a (ls reduction from a
given term. Intuition tells us that any reduction t(∗ls u cannot be longer than the number
of explicit substitutions in t (number noted es(t)), since any substitution in t can act at
most once on the head variable. However, a formal proof of this fact is not completely
immediate, and requires to introduce a measure and prove some (easy) lemmas.

The idea is to statically count the length of the maximum chain of substitutions on the
head, and to show that this number decreases at each head linear substitution step. Let us
give an example. Consider the reduction:

t = (x y)[x/y r][y/u](ls ((y r) y)[x/y r][y/u](ls ((u r) y)[x/y r][y/u].

It is easy to establish statically on t that [y/u] will give rise to the second(ls-step, since y
is the head variable of y r, which is what is going to be substituted on the head variable of
t, i.e. [y/u] is an hereditary head substitution of t. We use this idea to define the measure.
Note that, according to our reasoning, [y/u] is an hereditary head substitution also for
s = (x y)[x/(y r)[y/u]], but we get around these nested cases because we only have to deal
with shallow terms.

I Definition 4.8. Hereditary head contexts are generated by the following grammar:

HH := H | HH[x][x/H].

1 Soundness is Theorem 3 (Section 7) in [16] and completeness follows from the fact that λσ enjoys finite
normalization cones, the abstract rewriting notion studied in that paper.

2 In particular, it can be shown that Λ[·] enjoys pushouts modulo permutation equivalence exactly as the
λ-calculus, which implies—as Melliès says in [16]—that its normalization cones are at most singletons
(i.e. trivial in comparison with those of the λσ-calculus).

B. Accattoli and U. Dal Lago 31

The head measure |t|HH of a shallow term t is defined by induction on t:

|x|HH = 0; |t[x/u]|HH = |t|HH , if t 6= HH[x];
|λx.t|HH = |t|HH ; |t[x/u]|HH = |t|HH + 1, if t = HH[x];
|t u|HH = |t|HH .

Please notice that |t|HH = 0 for any λ-term t.
Next lemma proves that |t|HH correctly captures the number of (ls-reductions from

t, what is then compactly expressed by the successive corollary. The detailed proof of the
lemma is in [4].

I Lemma 4.9 (| · |HH Decreases with (ls). Let t be a shallow term.
1. t is a (ls-normal form iff |t|HH = 0.
2. t(ls u implies |t|HH = |u|HH + 1.
3. |t|HH > 0 implies that t is not (ls-normal.

Proof. 1) By induction on t. 2) By induction on t(ls u. 3) By induction on t. J

Summing up, we get:

I Corollary 4.10 (Exact Bound to (ls-sequences). t(n
ls t

(

iff n = |t|HH .

Proof. By induction on n. For n = 0 see Lemma 4.9.1, for n > 0 it follows from 4.9.2-3. J

Now, we are ready to prove the quadratic relation. The following lemma is the key point
for the combinatorial analysis. It shows that if the initial term t of a reduction ρ : t(n u

is a λ-term, then |u|HH is bounded by the number of (dB steps in ρ.

I Lemma 4.11. Let t ∈ Tλ. If ρ : t(n u then |u|HH ≤ es(u) = |ρ|dB.

Proof. Note that by definition of | · |HH we get |u|HH ≤ es(u) for any term u. So we
only need prove that es(u) = |ρ|dB. By induction on k = |ρ|dB. If k = 0 then ρ is empty,
because t is a λ-term and so it is (ls-normal. Then t = u and es(u) = 0. If k > 0 then
ρ = τ ;(dB;(m

ls for somem and some reduction τ . Let r be the end term of τ and s the term
s.t. r(dB s(∗ls u. By i.h. es(r) = |τ |dB = |ρ|dB−1. Now, es(s) = es(r)+1 = |ρ|dB, because
each(dB-step creates an explicit substitution. By lemma 3.2 we get that any box subterm
of s is a box-subterm of t, and since t is a λ-term, the duplication performed by a(ls-step
does not increase the number of explicit substitutions. Therefore, es(u) = es(s) = |ρ|dB. J

We finally get:

I Theorem 4.12. Let t ∈ Tλ. If ρ : t(n u then n = O(|ρ|2dB).

Proof. There exists k ∈ N s.t. ρ = τ1; γ1; . . . ; τk; γk, where τi is a non-empty(dB-reduction
and γi is a (ls-reduction for i ∈ {1, . . . , k} and it is non-empty for i ∈ {1, . . . , k − 1}.
Let r1, . . . , rk be the end terms of τ1, . . . , τk, respectively. By Corollary 4.10 |γj | ≤ |rj |HH
and by Lemma 4.11 |rj |HH ≤

∑
i∈{1,...,j} |τi|. Now |ρ|dB =

∑
i∈{1,...,k} |τi| bounds every

|rj |HH , hence: ∑

i∈{1,...,k}
|γi| ≤

∑

i∈{1,...,k}
|ri|HH ≤ k · |ρ|dB.

But k is bounded by |ρ|dB too, thus
∑
i∈{1,...,k} |γi| ≤ |ρ|2dB and n ≤ |ρ|2dB+|ρ|dB = O(|ρ|2dB). J

Putting together the results from the whole of Section 4, we get:

RTA’12

32 On the Invariance of the Unitary Cost Model for Head Reduction

I Corollary 4.13 (Invariance, Part I). There is a polynomial time algorithm that, given t ∈ Tλ,
computes a term u such that u→ = r if t has →h-normal form r and diverges if u has no
→h-normal form. Moreover, the algorithm works in polynomial time on the unitary cost of
the input term.

One may now wonder why a result like Corollary 4.13 cannot be generalized to, e.g., leftmost-
outermost reduction, which is a normalizing strategy. Actually, linear explicit substitutions
can be endowed with a notion of reduction by levels capable of simulating the leftmost-
outermost strategy in the same sense as linear head-reduction simulates head-reduction
here. And, noticeably, the subterm property continues to hold. What is not true anymore,
however, is the quadratic bound we have proved in this section: in the leftmost-outermost
linear strategy, one needs to perform too many substitutions not related to any β-redex. If
one wants to generalize Corollary 4.13, in other words, one needs to further optimize the
substitution process. But this is outside the scope of this paper.

5 Λ[·] as an Acceptable Encoding of λ-terms

The results of the last two sections can be summarized as follows: linear explicit substitutions
provide both a compact representation for λ-terms and an efficient implementation of β-
reduction. Here, efficiency means that the overhead due to substitutions remains under
control and is at most polynomial in the unitary cost of the λ-term we start from. But
one may wonder whether explicit substitutions are nothing more than a way to hide the
complexity of the problem under the carpet of compactness: what if we want to get the
normal form in the usual, explicit form? Counterexamples from Section 2, read through the
lenses of Theorem 4.13 tell us that that this is indeed the case: there are families of λ-terms
with polynomial unitary cost but whose normal form intrinsically requires exponential time
to be produced.

In this section, we show that this phenomenon is due to the λ-calculus being a very
inefficient way to represent λ-terms: even if computing the unfolding of a term t ∈ Λ[·]
takes exponential time, comparing the unfoldings of two terms t, u ∈ Λ[·] for equality can
be done in polynomial time in |t| + |u|. This way, linear explicit substitutions are proved
to be a succint, acceptable encoding of λ-terms in the sense of Papadimitriou [18]. The
algorithm we are going to present is based on dynamic programming: it compares all the
relative unfoldings of subterms of two terms t and u as above, without really computing
those unfoldings. Some complications arise due to the underlying notion of equality for
λ-terms, namely α-equivalence, which is coarser than syntactical equivalence. But what is
the relative unfolding of a term?

I Definition 5.1 (Relative Unfoldings). The unfolding t→

C
of t relative to context C is defined

by induction on C:

t

→

[·] := t

→ ; t

→

u C
:= t

→

C
; t

→

u[x/C] := t

→

C
;

t

→

C u
:= t

→

C
; t

→

λx.C
:= t

→

C
; t

→

C[x/u] := t

→

C
{x/u→ }.

Constraining sets allow to give sensible judgments about the equivalence of terms even when
their free variables differ:

I Definition 5.2 (Constraining Sets and Coherence). A constraining set A is a set of pairs
(x, y) of variable names. Two constraining sets A and B are coherent (noted A ∼ B)
if:

B. Accattoli and U. Dal Lago 33

Positive Rules

x, y /∈ S
var

(x,C) {(x,y)}∼ (y,D)

(t, C[[·] r]) v∼ (u,D[[·] s]) (r, C[t [·]]) w∼ (s,D[u [·]])
@

(t r, C) v�w∼ (u s,D)

Error Generation Rules

(t, C[λx.[·]]) v∼ (u,D[λy.[·]]) (∃z 6= y.{(x, z)} ∈ v) ∨ (∃z 6= x.{(z, y)} ∈ v) ∨ v = ⊥
λ3

(λx.t, C) ⊥∼ (λy.u,D)

errλ@
(λx.t, C) ⊥∼ (u r,D)

err@λ
(u r,C) ⊥∼ (λx.t,D)

x /∈ S errx@
(x,C) ⊥∼ (u r,D)

x /∈ S errλx
(λy.t, C) ⊥∼ (x,D)

x /∈ S errxλ
(x,C) ⊥∼ (λy.t,D)

x /∈ S err@x
(u r,C) ⊥∼ (x,D)

Figure 2 Unfolding Rules.

(x, y) ∈ A and (x, z) ∈ B imply y = z;
(y, x) ∈ A and (z, x) ∈ B imply y = z.

Moreover, A is auto-coherent if A ∼ A. Observe that ∼ is not reflexive and that a constrain-
ing set is auto-coherent iff it is the graph of a bijection.

As an example A = {(x, y), (x, z)} is not auto-coherent, while B = {(w, u)} is auto-coherent,
like any singleton set of pairs of variables. Moreover, A ∼ B.

The algorithm we are going to define takes in input a pair (a, b) of terms. We assume
them preprocessed as follows: the spaces of substituted, abstracted and free names of a
and b are all pairwise disjoint and neither a nor b contain any subterm in the form c[x/d],
where x 6∈ fv(c)3. We also note S the set of substituted variables of both terms. The whole
algorithm is built around the notion of an unfolding judgment:

IDefinition 5.3 (Unfolding Judgments and Unfolding Rules). Let P = (a, b) be a preprocessed
pair. An unfolding judgement is a triple (t, C), v, (u,D), where the value v is either ⊥ or a
constraining set A, also noted (t, C) v∼ (u,D). The rules for deriving unfolding judgments
are in Figure 2. An operation � on values is used, which is defined as follows:
1. v � w = v ∪ w if v 6= ⊥ 6= w and v ∼ w;
2. v � w = ⊥ if v 6= ⊥ 6= w and v 6∼ w;
3. v � w = ⊥ if v = ⊥ or w = ⊥.
The rules in Figure 2 induce a binary relation @a,b on the space of pairs (of pairs) in the
form ((t, C), (u,D)) such that C[t] = a and D[u] = b: (P,Q) @a,b (R,S) if knowing v such
that P v∼ Q is necessary to compute w such that R w∼ S.

The meaning of unfolding judgements can be summarized as follows. If (t, C) A∼ (u,D), then
r = t

→

C
and s = u

→

D
are α-equivalent, provided free variables of r are modified according

to A, seen as a substitution (or, analogously, free variables of s are modified according to
A−1). If, instead, (t, C) ⊥∼ (u,D), there cannot be any substitution like A above. The rules
in Figure 2 are not only a sound but also complete way of checking equality of terms in the
just described sense.

3 Any term can be turned in this form in polynomial time, by →gc-normalizing it.

RTA’12

34 On the Invariance of the Unitary Cost Model for Head Reduction

Given a preprocessed pair (a, b), checking the equality of a→ and b → through a direct use
of the formal system above immediately leads to an exponential blowup, which however can
be avoided by way of dynamic programming.

An unfolding matrix for a preprocessed pair (a, b) is the data structure storing intemedi-
ate judgements produced while deriving a judgement (a, [·]) v∼ (b, [·]). Relying on unfolding
matrices ultimately allows to avoid repeating the same computation many times. Formally,
an unfolding matrix for a preprocessed pair (a, b) is a bidimensional array whose rows are
indexed by pairs (t, C[·]) such that C[t] = a and whose columns are indexed by pairs (t, C[·])
such that C[t] = b. Each element of the unfolding matrix can be either a (possibly empty)
constraining sets or ⊥ or #.

Basically, the unfolding checking algorithm simply proceeds by filling an unfolding matrix
with the correct values, following the rules in Figure 2 and starting from an unfolding matrix
filled with #:

I Definition 5.4 (Unfolding Checking Algorithm). Let P = (a, b) be a preprocessed pair.
We define the following algorithm, which will be referred to as the unfolding checking al-
gorithm:
1. Initialize all entries in M to #;
2. If M has no entries filled with #, then go to step 7;
3. Choose (t, C) and (u,D) such that M[(t, C)][(u,D)] = #, and such that M[P1][Q1], . . . ,

M[Pn][Qn] are all different from #, where (P1, Q1), . . . , (Pn, Qn) are the immediate pre-
decessors of ((t, C), (u,D)) in @a,b;

4. Compute v such that (t, C) v∼ (u,D);
5. M[(t, C)][(u,D)]← v;
6. Go to step 2;
7. Return yes if M[(a, [·])][(b, [·])] is a constraining set which is the identity, otherwise return

no.

The Unfolding Checking Algorithm has a simple structure: initially M only contains #, and
steps 2− 5 are repeated until M does not contain any #. At each iteration, a cell containing
is assigned a value v, while the rest of M is left unchanged.

It is now time to prove that the Unfolding Checking Algorithm is correct, i.e., that it
gives correct results, if any:

I Theorem 5.5 (Correctness). The Unfolding Checking Algorithm, on input (a, b), returns
yes iff a

→ = b

→ .

Proof. This can be done by proving the following two lemmas:
If (t, C) v∼ (u,D) and v 6= ⊥ then v induces two renamings σ and θ such that t→

C
σ = u

→

D

and u→

D
θ = t

→

C
;

If (t, C) ⊥∼ (u,D), then there is no such pair of renamings for t→

C
and u→

D
.

Both can be proved by induction on the derivation of (t, C) A∼ (u,D). For details, see [4]. J

This is not the end of the story, however — one also needs to be sure about the time
complexity of the algorithm, which turns out to be polynomial:

I Proposition 5.6 (Complexity). The Unfolding Checking Algorithm works in time polyno-
mial in |a|+ |b|.

Proof. The following observations are sufficient to obtain the thesis:
The number of entries in M is |a||b| in total.

B. Accattoli and U. Dal Lago 35

At every iteration, one element of M changes its value from # to some non-blank v.
Step 2 can clearly be performed in time polynomial in |a|+ |b|.
Computing the predecessors of a pair P can be done in polynomial time, and so Step 3
can itself be performed in time polynomial in |a|+ |b|.
Rules in Figure 2 can all be applied in polynomial time, in particular because the car-
dinality of any constraining set produced by the algorithm can be |a|+ |b|, at most. As
a consequence, Step 4 can be performed in polynomial time.

This concludes the proof. J

6 Encoding Turing Machines

A cost model for computation time is said to be invariant if it is polynomially related to the
standard cost model on Turing machines. In sections 3 and 4, we proved that head reduction
of any λ-term t can be performed on a Turing machine in time polynomial in the number
of β-steps leading t to its normal form (provided it exists). This is proved through explicit
substitutions, which in Section 5 are shown to be a reasonable representation for λ-terms:
two terms t and u in Λ[·] can be checked to have α-equivalent unfoldings in polynomial time.

The last side of the story is still missing, however. In this section, we will show how head
reduction can simulate Turing machine computation in such a way that the unitary cost of
the simulating λ-term is polynomially related to the running time of the encoded Turing
machine. Results similar to the one we are going to present are common for the λ-calculus,
so we will not give all the details, which can anyway be found in [4].

The simplest objects we need to encode in the λ-calculus are finite sets. Elements of any
finite set A = {a1, . . . , an} can be encoded as follows: daieA ≡ λx1.λxn.xi . Notice that
the above encoding induces a total order on A such that ai ≤ aj iff i ≤ j. Other useful
objects are finite strings over an arbitrary alphabet, which will be encoded using a scheme
attributed to Dana Scott. Let Σ = {a1, . . . , an} be a finite alphabet. A string in s ∈ Σ∗ can
be represented by a value dseΣ∗ as follows, by induction on the structure of s:

dεeΣ∗ ≡ λx1.λxn.λy.y; daireΣ
∗ ≡ λx1.λxn.λy.xidreΣ

∗
.

Observe that representations of symbols in Σ and strings in Σ∗ depend on the cardinality
of Σ. In other words, if s ∈ Σ∗ and Σ ⊂ ∆, dseΣ∗ 6= dse∆∗ .

Of course, one should be able to very easily compute the encoding of a string obtained
by concatenating another string with a character. Moreover, the way strings are encoded
depends on the underlying alphabet, and as a consequence, we also need to be able to convert
representations for strings in one alphabet to corresponding representations in another,
different, alphabet. This can be done efficiently in the λ-calculus by way of a term AC (Σ)
which append a character to a string (both expressed in the alphabet Σ) and a term CS(Σ,∆)
which converts a string s ∈ Σ∗ into another string in ∆∗ obtained by replacing any character
in Σ −∆ by the empty string. AC (Σ) works in time independent on the size of the input,
while CS(Σ,∆) works in time proportional to the size of the argument.

A configuration (u, a, v, q) of a Turing machine M = (Σ, ablank , Q, qinitial , qfinal , δ) con-
sists of the portion of the tape on the left of the head (namely u ∈ Σ∗), the symbol under the
head (a ∈ Σ), the tape on the right of the head (v ∈ Σ∗), and the current state q ∈ Q. Such
a configuration is represented by the term d(u, a, v, q)eM ≡ λx.xdureΣ∗ daeΣ dveΣ∗ dqeQ.

We now encode a Turing machine M = (Σ, ablank , Q, qinitial , qfinal , δ) in the λ-calculus.
Suppose Σ = {a1, . . . , a|Σ|} and Q = {q1, . . . , q|Q|}. The encoding of M is defined around
three λ-terms:

RTA’12

36 On the Invariance of the Unitary Cost Model for Head Reduction

First of all, we need to be able to build the initial configuration for u from u itself. This
can be done in time proportional to |u| by a term I(M,∆), where ∆ is the alphabet
of u, which can be different from Σ. I(M,∆) simply converts u into the appropriate
format by way of CS(∆,Σ), and then packages it into a configuration.
Then, we need to extract a string from a final configuration C for the string. This can
be done in time proportional to the size of C by a term F(M,∆), which makes essential
use of CS(Σ,∆).
Most importantly, we need to be able to simulate the transition function of M, i.e.
compute a final configuration from an initial configuration (if it exists). This can be
done with cost proportional to the number of steps M takes on the input, by way
of a term T (M). The term T (M) just performs case analysis depending on the four
components of the input configuration, then manipulating them making use of AC (Σ).

A peculiarity of the proposed encoding of Turing machines is the use of Scott numerals
(instead of Church numerals), which make the simulation work even when head reduction
is the underlying notion of computation. Another crucial aspect is continuation passing:
the λ-terms cited above all take an additional parameter to which the result is applied after
being computed. At this point, we can give the desired simulation result:

I Theorem 6.1 (Invariance, Part II). If f : ∆∗ → ∆∗ is computed by a Turing machine M
in time g, then there is a term U(M,∆) such that for every u ∈ ∆∗, U(M,∆)due∆∗ →n

h
df(u)e∆∗ where n = O(g(|u|) + |u|).

Proof. Simply define U(M,∆) ≡ λu.I(M,∆)(λx.T (M)(λy.F(M,∆)(λw.w)y)x)u. It is
routine to prove the thesis. J

Noticeably, the just described simulation induces a linear overhead: every step of M cor-
responds to a constant cost in the simulation, the constant cost not depending on the input
but only onM itself.

7 Conclusions

The main result of this paper is the first invariance result for the λ-calculus when reduction
is allowed to take place in the scope of abstractions. The key tool to achieve invariance are
linear explicit substitutions, which are compact but manageable representations of λ-terms.

Of course, the main open problem in the area, namely invariance of the unitary cost
model for any normalizing strategy (e.g. for the strategy which always reduces the leftmost-
outermost redex) remains open. Although linear explicit substitutions cannot be directly
applied to this problem, the authors strongly believe that this is anyway a promising direc-
tion, on which they are actively working at the time of writing.

References
1 M. Abadi, L. Cardelli, P. L. Curien, and J. J. Levy. Explicit substitutions. Journal of

Functional Programming, 1:31–46, 1991.
2 B. Accattoli. An abstract factorization theorem for explicit substitutions. Accepted at RTA

2012.
3 B. Accattoli. Jumping around the box: graphical and operational studies on Lambda Cal-

culus and Linear Logic. Ph.D. Thesis, Università di Roma La Sapienza, 2011.
4 B. Accattoli and U. Dal Lago. On the invariance of the unitary cost model for head

reduction (long version). Available at http://arxiv.org/abs/1202.1641.

B. Accattoli and U. Dal Lago 37

5 B. Accattoli and S. Guerrini. Jumping boxes. In Proceedings of CSL 2009, pages 55–70,
2009.

6 B. Accattoli and D. Kesner. The structural λ-calculus. In Proceedings of CSL 2010, volume
6247 of LNCS, pages 381–395. Springer, 2010.

7 B. Accattoli and D. Kesner. The permutative -calculus, 2012.
8 M. Avanzini and G. Moser. Complexity analysis by graph rewriting. In Proceedings of

FLOPS 2010, volume 6009 of LNCS, pages 257–271. Springer, 2010.
9 Martin Avanzini and Georg Moser. Closing the gap between runtime complexity and poly-

time computability. In Proceedings of RTA 2010, volume 6 of LIPIcs, pages 33–48. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2010.

10 U. Dal Lago and S. Martini. The weak lambda-calculus as a reasonable machine. Theoretical
Computer Science, 398:32–50, 2008.

11 U. Dal Lago and S. Martini. On constructor rewrite systems and the lambda-calculus. In
Proceedings of ICALP 2009, volume 5556 of LNCS, pages 163–174. Springer, 2009.

12 U. Dal Lago and S. Martini. Derivational complexity is an invariant cost model. In Pro-
ceedings of FOPARA 2010, volume 6324 of LNCS, pages 88–101. Springer, 2010.

13 V. Danos and L. Regnier. Head linear reduction. Submitted. Available at http://iml.
univ-mrs.fr/~regnier/articles/pam.ps.gz, 2004.

14 G. Mascari and M. Pedicini. Head linear reduction and pure proof net extraction. Theor-
etical Computer Science, 135(1):111–137, 1994.

15 P.-A. Melliès. Typed lambda-calculi with explicit substitutions may not terminate. In
Proceedings of TLCA 1995, volume 902 of LNCS, pages 328–334. Springer, 1995.

16 P.-A. Melliès. Axiomatic rewriting theory II: the λσ-calculus enjoys finite normalisation
cones. Journal of Logic and Computation, 10(3):461–487, 2000.

17 R. Milner. Local bigraphs and confluence: Two conjectures: (extended abstract). ENTCS,
175(3):65–73, 2007.

18 C. Papadimitriou. Computational Complexity. Addison Wesley, 1994.
19 G. D. Plotkin. Call-by-name, call-by-value and the lambda-calculus. Theoretical Computer

Science, 1(2):125–159, 1975.
20 L. Regnier. Lambda-calcul et réseaux. Thèse de doctorat, Univ. Paris VII, 1992.
21 D. Sands, J. Gustavsson, and A. Moran. Lambda calculi and linear speedups. In The

Essence of Computation: Complexity, Analysis, Transformation. Essays Dedicated to Neil
D. Jones, number 2566 in LNCS, pages 60–82. Springer, 2002.

22 K. Terui. Light affine lambda calculus and polynomial time strong normalization. Archive
for Mathematical Logic, 46(3-4):253–280, 2007.

23 P. van Emde Boas. Machine models and simulation. In Handbook of Theoretical Computer
Science, Volume A: Algorithms and Complexity (A), pages 1–66. MIT Press, 1990.

RTA’12

A Term Rewriting System for Kuratowski’s
Closure-Complement Problem∗

Osama Al-Hassani1, Quratul-ain Mahesar1, Claudio Sacerdoti
Coen2, and Volker Sorge1

1 School of Computer Science, University of Birmingham
Edgbaston, United Kingdom
O.Al-Hassani@cs.bham.ac.uk,Q.Mahesar@cs.bham.ac.uk,V.Sorge@cs.bham.ac.uk

2 Dipartimento di Scienze dell’Informazione, Università di Bologna
Mura Anteo Zamboni, 7 (BO) Italy
sacerdot@cs.unibo.it

Abstract
We present a term rewriting system to solve a class of open problems that are generalisations
of Kuratowski’s closure-complement theorem. The problems are concerned with finding the
number of distinct sets that can be obtained by applying combinations of axiomatically defined
set operators. While the original problem considers only closure and complement of a topological
space as operators, it can be generalised by adding operators and varying axiomatisation. We
model these axioms as rewrite rules and construct a rewriting system that allows us to close some
so far open variants of Kuratowski’s problem by analysing several million inference steps on a
typical personal computer.

1998 ACM Subject Classification G.2.1 Combinatorics

Keywords and phrases Kuratowski’s closure-complement problem, Rewriting system

Digital Object Identifier 10.4230/LIPIcs.RTA.2012.38

Category Regular Research Paper

1 Introduction

In 1922 Kuratowski asked and solved the following question on an arbitrary topological
space: how many different combinations of the operators of complement and closure exist?
The number turns out to be just 14 and the proof is quite small. The problem has been
generalised in many different ways to consider other operators, such as union or intersection,
or slightly different settings, such as point free topology (locale theory). The solution to a
generalised version can be a significantly larger number of combinations, but it could also be
a proof that infinitely many combinations exist.

Computing finite large solutions, or obtaining an intuition for infinite variants is unfeasible
by hand and therefore computer automation is crucial to our solutions of the problems.
Solutions or partial solutions can be represented as directed graphs whose vertices are
equivalence classes of provably equal combinations of operators and whose arcs represent
the order relation. Graphs can be constructed iteratively by systematically adding more
combinations of iterators, merging distinct vertices once it can be shown that they contain

∗ This work was partially supported by the Italian PRIN project McTafi (Metodi Costruttivi in Topologia,
Algebra e Fondamenti dell’Informatica.)

© Osama Al-Hassani, Quratul-ain Mahesar, Claudio Sacerdoti Coen, and Volker Sorge;
licensed under Creative Commons License NC-ND

23rd International Conference on Rewriting Techniques and Applications (RTA’12).
Editor: A. Tiwari; pp. 38–52

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

O. Al-Hassani, Q. Mahesar, C. Sacerdoti Coen, and V. Sorge 39

x ≤ x (reflexive) x ≤ y y ≤ z
x ≤ z (transitive) x ≤ y y ≤ x

x = y
(antisymmetric)

x ≤ y
−y ≤ −x (antimonotone)

x ≤ −− x (saturates) −−−x = −x (quasi-idempotent)

i(x) ≤ x (reduces) x ≤ y
i(x) ≤ i(y) (monotone)

i(x) = i(i(x)) (idempotent)

x ≤ c(x) (saturates) x ≤ y
c(x) ≤ c(y) (monotone)

c(x) = c(c(x)) (idempotent)

c(−x) ≤ −i(x) (compatible-1)
i(−x) ≤ −c(x) (compatible-2)

Figure 1 The inference rules that define the problem.

provably equal combinations. For problems with finite solutions, this process terminates once
a fixpoint is reached, in the sense that new vertices are not added, or vertices will never be
merged in the future. The resulting graph then represents all possible distinct combinations.
In a case where a solution is infinite, there exist infinitely many distinct combinations and
finite graphs can only ever represent an approximation of the solution. Nevertheless these
approximations can offer crucial information by exhibiting regularities in the growth of the
graph, to suggest the existence of an infinite subgraph of distinct vertices that will never
become equal, thereby leading to the essential proof idea.

We present a generalised Kuratowski problem (§2) — originally proposed by Sambin in [7],
Section 2.4, and still listed as an open problem in [8] — which is particularly demanding in
terms of size of the approximating graphs. Indeed, in order to exhibit sufficient evidence of
regularities in the graph we need to compute several million edges, i.e., we need to prove
several million lemmas on relations between pairs of operator combinations. Since traditional
automated theorem proving techniques are unsuitable for this task, we have developed a term
rewriting system that models all inference rules of the problem in a uniform way and, coupled
with a particular strategy and some standard graph algorithms, can show the large numbers
of necessary lemmas in a few minutes (§3). We then demonstrate how the rewriting system
can be further enhanced, whilst retaining both correctness and completeness by exploiting
regularities in the partial solutions of the problem (§4). The implementation of our ideas
have not only enabled us to prove the infinite nature of the generalised Kuratowski problem,
which was up to now unknown (§6), but also serves as a basis to tackle other variants of
Kuratowski’s problem (§5).

2 The Problem

Kuratowski’s classical closure-complement problem [5] can be solved by observing that the
following identities hold for the interior operator i, the closure operator c, and the complement
‘−’ for subsets x of an arbitrary topological space. (i) c(c(x)) = c(x), (ii) −−x = x,
(iii) i(x) = −c(−x), and (iv) c(i(c(i(x)))) = c(i(x)). Applying the previous equalities
only, one can show that there exist at most 14 distinct subsets one can obtain by different
combinations of the three operators. As a consequence of equation (iii), all combinations
can be expressed in terms of closure and complement, only. Furthermore, one can indeed
construct a model, that is, a space in which this upper bound can be achieved.

The observation that the previous identities are sufficient to solve the problem allows to

RTA’12

40 A Term Rewriting System for Kuratowski’s Closure-Complement Problem

restate Kuratowski’s classical problem in point-free topology. It is sufficient to forget the
concrete definition of the operators and to define them axiomatically by means of the four
identities above. The domain of the operators is thus no longer required to be the power set
of a topological space, but it can be any arbitrary set.

In the rest of the paper we are interested in the generalisation of the point-free version
of Kuratowski’s problem introduced by Sambin in [7], Section 2.4. Corsi’s master thesis [3]
studied the problem under the supervision of Sambin, but the problem remained open and
only minimal progress towards a solution was achieved. The generalisation is obtained by
introducing a partial order relation ≤ — that captures the inclusion relation for subsets —
and relaxing the axioms for the operators as given in Figure 1 in a rule format. Observe
that the relaxed axiomatisation, effectively turns i into a reduction operator, c into a
saturation operator, and − into a pseudo-complement. Observe also that the two compatibility
requirements are reminiscent of the classical equation i(x) = −c(−x) (dually c(x) = −i(−x)).
Indeed, if we define i(x) as −c(−x) and we also assume −−x = x for all x, then both
compatibility axioms can be derived.

An example model for the axioms can be obtained by combining the definitions of interior,
closure and complement with the rules of intuitionistic logic. Given a topological space (P,O),
the interior of a set x is defined as {α | ∃y ∈ O, α ∈ y∧∀β ∈ y.β ∈ x}, and a definition of the
closure of x that avoids any reference to negation is {α | ∀y ∈ O, α ∈ y ⇒ ∃β ∈ y.β ∈ x} (the
set of all accumulation points of x). Thus the notion of interior hides an ∃∀ combination and
that of closure a ∀∃. The complement of x is {α | ¬(α ∈ x)} and it hides a negation. Finally,
the subset relation (axiomatised as ≤) hides implication: x ⊆ y iff ∀α, α ∈ x ⇒ α ∈ y.
All the axioms presented are thus simply obtained from the properties of negation and the
quantifiers in intuitionistic logic. For instance, from the intuitionistic principle A⇒ ¬¬A we
obtain x ≤ −−x and from the DeMorgan laws for quantifiers we obtain the two compatibility
relations: For example, ∀∃¬ ⇒ ¬∃∀ becomes c(−x) ≤ −i(x).

Since we are effectively interested in the number of different combinations of operators
that can lead to distinct sets when applied to any subset of a topological space, we define
the generalised Kuratowski problem in terms of equivalent operator combinations.

I Definition 1 (Generalised Kuratowski closure-complement problem). Let (P,≤) be any par-
tially ordered set and let {i, c,−} be the set of operators on P axiomatised as in Figure 1. Let
S = {i, c,−}∗ be the set of all words over the operators (i.e., all possible finite combinations).
We define the order relation ≤ on S for all w1, w2 ∈ S by: w1 ≤ w2 iff w1(x) ≤ w2(x) for all
x ∈ P . Finally, let ≡ over S be the symmetric closure of ≤. The generalised Kuratowski
closure-complement problem then consists in computing the cardinality of S/≡, the set of
equivalence classes of S modulo ≡.

Useful for the remainder of our considerations is to define the canonical representative
of an equivalence class [w]/≡ ∈ S/≡ as the minimum element of the set according to the
shortlex order1. Furthermore, we can naturally extend the relation ≤ on S to equivalence
classes.

Since the cardinality of S/≡ is not necessarily finite, for practical purposes it is necessary
to define finite approximations to the solution.

I Definition 2 (nth approximation). Let Sn = {i, c,−}≤n ⊂ S be the set of all operator
combinations up to order n. For w1, w2 ∈ Sn we define ≤n as w1 ≤n w2 iff for all x ∈ P we

1 Two words are in the shortlex order relation when the first is shorter or, in case they have the same
length, when the first comes first in lexicographical order.

O. Al-Hassani, Q. Mahesar, C. Sacerdoti Coen, and V. Sorge 41

Figure 2 Approximating graph of order 3 for the generalised problem.

can derive w1(x) ≤ w2(x) by applying the axioms from Figure 1 to elements w ∈ Sn only
(i.e., we restrict derivations to combinations of maximally n operators).

Finally, let≡n the symmetric closure of≤n. Then the nth approximation of the generalised
Kuratowski closure-complement problem is defined as computing the cardinality of Sn/≡n

.

The nth approximation of the problem can be visually represented as a directed graph
whose vertices are the equivalence classes of Sn/≡n

and whose edges represent one step of
the ≤n relation.

I Definition 3 (Approximating graph of order n). Let G = (V,A) be a directed graph, where
we define the set of vertices V = Sn and the set of arcs A by (v1, v2) ∈ A iff v1 ≤n v2 for
v1, v2 ∈ V .

Now let V ′ be the set of all strongly connected components in G. We then define
the approximating graph of order n as G′ = (V ′, A′) where (v′1, v′2) ∈ A′ iff v′1 ≤n v′2 for
v′1, v

′
2 ∈ V ′.

Note that the approximating graph can be represented in transitively reduced form, exploiting
the transitivity of the ≤n relation. We also observe that every vertex in the approximating
graph contains all the elements of the equivalence class it represents. Thus the graph itself
provides a solution to the nth approximation problem as the number of vertices in the graph
is the cardinality of Sn/≡n

. Consequently, our goal is effectively to construct the graph
by partitioning Sn into equivalence classes, which amounts to an inference procedure that
determines if [w1]/≡ ≤n [w2]/≡ for [w1]/≡n

, [w2]/≡n
∈ Sn/ ≡n.

Figure 2 shows the approximating graph of order 3 for the generalised Kuratowski closure-
complement problem. The vertices are subsets of S3, where only three vertices represent
equivalence classes with more than one element. Note that ‘.’ corresponds to the empty
word ε.

We note that the nth approximation is an approximation to the original problem in
two ways. First of all it only shows classes whose canonical representative has length at
most n. More importantly, however, it does not grant that two distinct classes in the nth
approximation will remain distinct for every (n+m)th approximation. Thus the cardinality
of the graph may decrease or increase when moving to larger values of n. Nevertheless, the

RTA’12

42 A Term Rewriting System for Kuratowski’s Closure-Complement Problem

approximation procedure is monotone in the following sense: if two words belong to the
same class in the nth approximation, they will belong to the same class in any (n+m)th
approximation. Moving to the (n+1)th approximation can only collapse more classes or
create new ones made only of words of length n+1.

The following theorem holds.

I Theorem 4. If the solution of the generalised problem is finite, then there exists an n such
that every (n+m)th approximation is isomorphic (as a directed acyclic graph) to the solution.

The theorem says that approximations stabilise, in the sense that larger approximations only
augment the cardinality of the equivalence classes, but they do not collapse any existent
distinct classes, nor do they add new arcs to the approximating graph.

The theorem does not provide an effective way to decide if an approximation is (isomorphic
to) the solution. We postulate the following conjecture that would provide a simple decision
procedure to recognise solutions.

I Conjecture 5. There exists an m such that, if for a given n the nthand the (n +
m)thapproximations are isomorphic, then they are isomorphic to the solution.

We have not tried to prove the conjecture yet and the proof does not seem to be simple. In
particular, we do not know what is the m for the set of axioms considered. Nevertheless, we
can employ an alternative to the conjecture to recognise which approximations are solutions.
Let us assume that at a certain point the approximations seem to stabilise, i.e., the (n+1)th
approximation is equal to the nth approximation. We can build a syntactic model of the
solution as follow. We take the set P of all strings w made from {i, c,−} such that w is a
canonical representative of an equivalence class in the nth approximation. Then we define an
≤ relation over P by taking the ≤n relation. The i, c and − operators are obtained as finite
maps that associate to each w ∈ P the canonical representative of i ◦w (respective c ◦w and
− ◦ w) in the nth approximation. In order to verify if (P, i, c,−) is a model for the problem,
we can use a computer algebra system or a theorem prover to verify that all axioms hold.
If they do, the nth approximation is isomorphic to the solution of the generalised problem
because the model shows that all classes are distinct and moreover the number of classes is
maximal because we have only equated combinations that had to be equated because proved
to be equal. Otherwise, we start computing larger approximations and we will eventually
find an (n+m)th approximation that is not isomorphic to the nth approximation that, a
posteriori, was not stable.

A priori, if the conjecture is false it may be that all syntactic models built from approxima-
tions that seem to be stable (i.e. (n+1)th isomorphic to nth) turn out to be wrong. However,
as we will see in the conclusions, this has not been the case for the different instances of the
generalised problem that we considered and that seemed to be stable.

The following theorem, instead, is obvious:

I Theorem 6. If the solution of the generalised problem is infinite, then there exists an
infinite increasing sequence of approximations with larger and larger cardinalities.

Our experience shows that in this case a clear pattern emerges, which after some time
allows us to predict what new classes will be generated passing from any nth approximation
to the (n+1)th approximation. This prediction can then be manually turned into a proof
that these new classes will never be collapsed in later approximations and therefore the
solution is infinite.

Consequently, in the rest of the paper we will focus on finding a solution to the nth
approximation of the problem.

O. Al-Hassani, Q. Mahesar, C. Sacerdoti Coen, and V. Sorge 43

3 The Basic Rewriting System

We now present a method to compute approximating graphs by constructing a rewriting
system directly from the axioms given in Figure 1. We present the term rewriting system in
a standard way employing terminology used in standard references such as [1]. Nevertheless,
the system can also be understood as an instance of generalised equational reasoning as
defined in [6], which corresponds more to the actual form in which the system was developed.

A preliminary observation is the fact that in the axiomatisation of the problem we can
replace the equality with a ≤ in all three idempotency inference rules as the (anti)monotonicity
of the respective operator yields the equality automatically. For instance, idempotency of the
i operator can be replaced by the axiom i(x) ≤ i(i(x)) since, by monotonicity, we already have
i(i(x)) ≤ i(x). Therefore, the only rule that employs an equality remains the antisymmetry
rule for ≤.

The approximating graph of order n can now be computed in two steps. In the first
step we compute the initial directed graph G from Definition 3 whose vertices are all the
elements of Sn (words of length at most n) and whose arcs represent all pairs (w1, w2) ∈≤n.
The anti-symmetric rule of the ≤ relation and, more generally, equalities are not used in
this step. In the second step we apply a standard connected component algorithm to this
graph. Since a connected component is made of all vertices that are mutually reachable, i.e.,
mutually less or equal, by antisymmetry of ≤ they are all equal. The resulting graph is then
the approximating graph of order n we are looking for.

Since the second step is completely standard and we can employ implementations out-of-
the-box, we will only focus on developing the first step here.

In order to compute the first directed graph G = (V,A) it is sufficient to find all pairs of
vertices (w1, w2) ∈ A in the transitive reduction of the graph of ≤n (recall that following
Definition 3 w1, w2 are words of length ≤ n in Sn), since the connected components algorithm
does not distinguish between a transitively reduced and a transitively closed graph. In other
words, we are looking for all pairs (w1, w2) ∈ A such that w1 ≤n w2 and there is no w3 ∈ V
such that w1 ≤n w3 and w3 ≤n w2.

By a close inspection of the rules that have a premise, it is easy to notice that all
applications of the transitive rules can be pushed towards the root of the derivation tree.
For instance, consider the monotone rule for i and assume (by induction hypothesis) that
the derivation of the premise x ≤ y is obtained by means of a transitive rule whose premises
are x ≤ z and z ≤ y. It is therefore possible to conclude both i(x) ≤ i(z) and i(z) ≤ i(y)
and then, with one final application of transitivity, that i(x) ≤ i(z). Thus, since we are
interested only in the transitively reduced graph, we can also avoid the use of the transitive
and reflexive properties of ≤.

The final preliminary observation is that, to compute all pairs (w1, w2) in the transitively
reduced graph G it is sufficient for every word w ∈ Sn to compute the two sets w↓ =
{w′ | w′ ≤n w ∧ |w′| ≤ |w|} and w↑ = {w′ | w ≤n w

′ ∧ |w′| ≤ |w|} where |.| is the length of
the two combinations. The final set is just given by

⋃

w∈Sn

({(w,w′) | w′ ∈ w↑} ∪ {(w′, w) | w′ ∈ w↓})

In order to compute w↓ and w↑ we introduce the non confluent, noetherian term re-
writing system presented in Figure 3. The term rewriting system manipulates both active
configurations of the form 〈w1, w2, d〉 (where d ∈ {≤,≥}) and stuck terms w. The intended
big step semantics of the rewriting system is the following: an initial term 〈ε, w, d〉B∗ w′ iff

RTA’12

44 A Term Rewriting System for Kuratowski’s Closure-Complement Problem

(saturates)
〈w1,−−w2,≥〉B w1w2

(antimonotone)
〈w1,−w2, d〉B 〈w1−, w2, d

−1〉
(quasi-idempotent)

〈w1,−−−w2,≥〉B w1−w2

(reduces)
〈w1, iw2,≤〉B w1w2

(monotone)
〈w1, iw2, d〉B 〈w1i, w2, d〉

(idempotent)
〈w1, iiw2,≥〉B w1iw2

(saturates)
〈w1, cw2,≥〉B w1w2

(monotone)
〈w1, cw2, d〉B 〈w1c, w2, d〉

(idempotent)
〈w1, ccw2,≤〉B w1cw2

(compatible-1)
〈w1, c−w2,≤〉B w1−iw2

(compatible-2)
〈w1, i−w2,≤〉B w1−cw2

Figure 3 The non confluent, noetherian term rewriting system to compute w↓ and w↑.

wdw′ and |w′| ≤ |w|. In particular, w↓ can be computed as {w′ | 〈ε, w,≥〉B∗ w′} and w↑ as
{w′ | 〈ε, w,≤〉B∗ w′}.

The small step semantics of the rewriting system is more technical and it involves generic
configurations 〈w1, w2, d〉. The idea is that an initial reduction trace 〈ε, w, d〉Bn 〈w1, w2, d

′〉
represents a partial derivation of wdw′ for some yet unknown w′. Two invariants say
that |w1| = n and w = w1w2. The partial derivation built in a top-down manner starts
with exactly n monotonicity/anti-monotonicity rules: if w1 = o1 . . . on where oj ∈ {−, i, c}
then the j-th inference rule in the partial derivation is the monotonicity/anti-monotonicity
rule for oj . Moreover, the hypothesis of the partial derivation is w2d

′w′2 for some yet
unknown w′2 such that w′ = w1w

′
2. According to this interpretation, a reduction trace

〈ε, w, d〉 B∗ 〈w1, w2, d
′〉 B w′ corresponds to a derivation of wdw′ where there is a w′2 such

that w′ = w1w
′
2, the last inference rule in the top-down construction is an axiom that proves

w2d
′w′2 and |w′2| ≤ |w2|. The proof that reduction traces of length n correspond to partial

derivation trees of height n having the property just described is by induction on n. We only
sketch here one case of the proof.

Each rule in Figure 3 corresponds to the rule with the same name in Figure 1. It means
that applying the reduction rule adds the corresponding inference rule to the partial proof tree.
The most interesting rule is the rule antimonotone: In order to proceed in the derivation
we use one more application of antimonotonicity of complement by pushing − on top of
the stack w1 and looking for a new derivation for w2d

−1w′. To see that the rule is correct,
assume that 〈ε, w, d〉Bn 〈w1,−w2, d

′〉B 〈w1−, w2, d
′−1〉. By induction hypothesis there is a

partial proof derivation of wdw′ built top-down that starts with monotone/anti-monotone
rules for the operators in w1 and whose hypothesis is −w2d

′w′′ for some yet unknown w′′
such that w′ = w1w

′′. By applying anti-monotonicity of − we obtain a new partial proof
derivation of wdw′ whose new hypothesis is w2d

′−1
w′′′ and such that w′ = w1w

′′ = w1−w′′′.
The reduction rule is therefore correct and by applying it we discover that w′′ = −w′′′ or,
equivalently, that the next rule in the combination w′ after w1 is −.

Strong normalisation of the term rewriting system can simply be proved by induction on
the length of the second component of active configurations, which always decreases by one
in all (anti)monotonicity rules. All remaining rules produce a stuck term.

By inspection of all the rules, it is easy to prove (by induction on the second component
of an active configuration) that if 〈ε, w, d〉B∗ w′ then |w′| ≤ |w|. Moreover, if 〈ε, w, d〉B∗ w′
and |w′| = |w| then 〈ε, w′, d−1〉6 B∗w. This is important for efficiency reasons since it means
that we are never generating the same arc twice (as w1dw2 and w2d

−1w1).
The system clearly has several critical pairs between (anti)monotonicity rules and the

O. Al-Hassani, Q. Mahesar, C. Sacerdoti Coen, and V. Sorge 45

remaining rules. Actually, it turns out that every critical pair is not joinable and the system
is thus non confluent. Non-joinability is a feature of our system; because our rewriting rules
are never applied under a context,from non-joinability it follows that we never compute the
same arc twice in different ways.

Computing all normal forms of a term can be done very efficiently (in terms of actual,
non asymptotic computational cost of the program): At every step at most two rules can be
applied, one produces a stuck term and the other can be implemented as a tail recursive call.
It is thus possible to simplify the code of an implementation for a generic term rewriting
system.

4 The Advanced Rewriting System

Given a combination w ∈ Sn, the computation of w↓ and w↑ by means of the term rewriting
system presented in the previous section is very efficient. Nevertheless, the number of
combinations to be reduced is exponential in n and the number of reducts for each w is also
exponential in n. The limiting factor for the computation of larger and larger approximating
graphs is thus the memory required to hold the graph defined by w↓ and w↑, which is the
initial directed graph G from Definition 3 before the computation of connected components.

To be able to compute larger approximations, we exploit the following result: There exist
only 7 distinct equivalence classes of combinations of closure and interior. While this results
is well known in the literature and we can obtain it with our technique for very small values
of n, we additionally observed that every class can be associated with a regular expression
that generates all elements of the class2. These seven regular expressions are:

ε, i+, c+, (ic)+, (ci)+, i(ci)+, c(ic)+

Taking as canonical representatives the shortest expressions in each class, we have that the
set of representatives is {ε, i, c, ic, ci, ici, cic}. Let K be any regular expression that generates
the set. When we consider combinations that also contain complement, and remembering
that −−−x = −x, we obtain that all combinations can be partitioned into an infinite number
of sets of equivalent combinations whose representatives are all generated by the following
regular expression E: (−|−−)?(K−−?)∗K?. The set that corresponds to a representative is
the set obtained by replacing any occurrence of − with an odd number of occurrences of
− and any occurrence of a term generated by K with an element of its equivalence class.
For instance −−−−−icicicic−−−− is a member of the set whose representative is −ic−−.
The sets that correspond to different representatives are not distinct according to the ≡
relation. For instance c−i− and −i− are representatives of different sets, but c−i− ≡ −i−.
Nevertheless, if two elements belong to the same set, than they are equivalent. Thus the ≡
equivalence relation is more fine grained than the equivalence relation that is induced by
partitioning with respect to regular expressions.

The idea to speed up our previous algorithm is to avoid to generate the vertices (and
relative arcs) that correspond to non-canonical representatives of the equivalence classes
discussed above. These vertices will all belong to the connected component that will be
collapsed to its canonical representative. For instance, for n = 7, our previous algorithm
would handle the vertices {−,−−−,−−−−−,−−−−−−−} as potentially distinct.

To implement the idea, we change the already presented algorithms in two ways.

2 This property does not hold any longer when we consider combinations with complement.

RTA’12

46 A Term Rewriting System for Kuratowski’s Closure-Complement Problem

(−−)
−−w B w

(cc)
ccw B w

(ii)
iiw B w

(cici)
ciciw B ciw

(icic)
icicw B icw

(compatible-1 + i-idempotent)
〈w1, c−iw2,≤〉B w1−iw2

(compatible-2 + c-idempotent)
〈w1, i−cw2,≥〉B w1i−w2

Figure 4 Additional rewriting rules.

1. We change the definition of Sn with the following one. The changes apply everywhere in
Section 3, and in particular to Definitions 2 and 3.

x ∈ Sn iff x is generated by the regular expression E and |x| ≤ n

2. We integrate the rewriting system with the rules of Figure 4 after dropping the rule
quasi-idempotent and the two idempotent rules from the previous rewriting system.
The reason why we drop these rules is that their left hand side will never match any
active configuration due to restricting the definition of Sn.

Considering the rules in Figure 4, we observe that all rules of the first line simplify a
combination. Applied repeatedly they put any combination into their K-normal form. The
rules of the second line are obtained by applying Knuth-Bendix completion. Note, however,
that our rewriting rules come from a non-symmetric relation (≤) and we have to take care of
this during the superposition phase of Knuth-Bendix completion. The names of the new rules
are a concatenation of the names of the rules superimposed. The new rules are necessary to
keep completeness after having changed the definition of Sn. For instance, because c−ii does
no longer belong to S4, we are no longer considering the combinations like (c−ii)↑ 3 −i.
The new rewriting rule generated by Knuth-Bendix completion takes care of adding −i to
(c−i)↑ by implicitly performing a step of ii-expansion. Note that, in the original rewriting
system, monotonicity of i was only used to perform a step of ii-contraction.

In Figure 4 we only list two rules obtained from the Knuth-Bendix completion because
all the others are logically redundant: they allow to derive w1 ∈ w2↓ when there exists a w3
such that w1 ∈ w3↓ and w3 ∈ w2↓. The redundant rules have been pruned by hand, but it is
surely possible to automate the procedure.

The new term rewriting system remains noetherian: all the new rules decrease the
length of either the (no longer stuck) combinations or the second component of the active
configurations. Of the new rules only those in the first line need to be applied several times
in order to obtain the normal form of a term. However, it is easy to show that all critical
pairs are joinable. Therefore, by Newman’s lemma, the normalisation step implemented by
the rules in the first line is confluent, as expected.

I Theorem 7 (Correctness and completeness). The algorithm based on the advanced rewriting
system just described correctly computes the nth approximation of the problem for each n.

The advanced rewriting system is obtained by rewriting in one step all combinations to
their canonical representatives in the equivalence classes identified by the regular expression
considered. The same trick can used more aggressively when we build the nthapproximation
after the (n − 1)th. Indeed, we can add to the nthterm rewriting system one rewriting
rule per combination of length (n − 1) that in one step rewrites the combination to its
(n− 1)thcanonical representative.

Since the number of these additional rules is exponential in n, we avoid running the
Knuth-Bendix completion, by using the new rules only to normalise terms that are not

O. Al-Hassani, Q. Mahesar, C. Sacerdoti Coen, and V. Sorge 47

−− = ε
(axiom 1)

c− = −i (axiom 2)

i− = −c (axiom 3)

c−− = −−c (axiom 4)

c = −i− (axiom 5)

{}

{3} {4} {2}

{4,3} {4,2}

{5,[2,3,4]} = {2,3,[4,5]}

General Case

Classical Case

{1,[4]}

{1,2,[3,4,5]} = {1,3,[2,4,5]}= {1,5,[2,3,4]}

Localic Case

Variants

Figure 5 Variations of Kuratowski’s problem.

active configurations. The consequence is that we have to normalise exactly the same set
of combinations and so we do not save time during the graph generation phase with the
rewriting system. The size of the generated graph, however, will be much smaller since it will
no longer contain nodes that are not in (n−1)thnormal form. The benefit is thus a significant
reduction of the computational cost for the computation of the connected components when
generating the approximating graph of order n.

The proof of correctness and completeness of the rewriting system obtained with this final
improvement is a simple corollary of Theorem 7. The implementation of the improvement is
very cheap: the additional rewriting rules generated at the (n− 1)thstep can only be applied
to terms that are stuck according to all other rules. Moreover, they only generate stuck
terms. Therefore we can implement this final step as a simple look-up in a trie.

5 More Variations of Kuratowski’s Problem

Although the rewriting system presented so far has been developed as a bespoke approach to
solve the generalised Kuratowski problem, it turns out that with a parametric implementation
our procedure can be applied to a variety of related problems lying between the classical
and general problem. These problems are generated by introducing axioms which restrict
the general problem, or generalise the classical one. Figure 5 demonstrates variations of
Kuratowski’s problem, where the axioms on the left hand side gradually refine the generalised
problem to the classical problem according to the graph on the right. The nodes are given as
sets of included axioms, with the root as the empty set representing the generalised case.
Furthermore, axioms derivable from already included ones are given in square brackets.

The variations are motivated by Sambin’s work who proposed the generalised problem in
the context of intuitionistic point-free topology. Axioms 1–5 are likewise inspired by axioms
commonly found in topological problems. For example, axiom 1 postulates the complement
operator as idempotent, corresponding to its use in classical logic. Axiom 4, c−− = −−c, is
another axiom that is frequently satisfied by concrete basic topologies (see [8]). Adding axiom
5 to the generalised problem, further restricts the saturation operator c. The axiomatisation
obtained is the one for locale theory, for which it is already known in the literature [9] that a
maximum of 21 combinations exists. Weaker cases than the localic one can be obtained by
effectively splitting axiom 5 into axioms 2 and 3, and considering those either separately or
in combination with axiom 4.

All the presented problems in the generalised problem domain can be obtained using
our approach, by simply adding the corresponding axioms to our advanced term rewriting

RTA’12

48 A Term Rewriting System for Kuratowski’s Closure-Complement Problem

systems as pairs of reductions over active configurations. The Knuth-Bendix completion
must also be applied to combine the new rules with the ones of the advanced term rewriting
system.

6 Implementation and Results

Our procedure has been implemented in a combination of bespoke code and existing tools. The
rewriting engine has been written in pure OCaml and is fully parametric on the list of reduction
rules. The connected-components algorithm exploits the ocamlgraph library [2] instantiated
with an ad-hoc, optimised hashing function for equivalence classes of combinations. For the
transitive reduction of the obtained graph we employ the tred tool and for its visualisation
we use the dot tool.

Implementing the rewrite engine from scratch has allowed us to take care of the peculiarities
of the rewriting system, (e.g., by exploiting as much as possible tail recursive calls). This
choice was also motivated by the need to generate graph representations that were easy to
inspect manually as well as to influence the generation of elements in S in order to explore
particular subgraphs, which, to the knowledge of the authors would have been difficult to
achieve in any existing system. Furthermore, our implementation allowed us to take some
care on memory consumption. Nevertheless, when supplying the rewrite engine with the
rules of the advanced rewriting system, the program runs out of memory after about 12
minutes on one of the cores of a server equipped with a 2.4GHz Intel Xeon processor and
48GB of RAM producing an approximating graph of order 16.

That means that it explores all words generated by the regular expression in Section 4 of
length at most 16, deriving all equations and inequalities that are provable without using
combinations of length ≥ 17. The initial graph generated by the rewriting system contains
1, 771, 825 vertices, corresponding to all the combinations of length up to ≡16, and 8, 687, 605
arcs, corresponding to steps of the ≤n relation. The approximating graph obtained after the
computation of the strongly connected components contains 44, 138 vertices, corresponding
to distinct equivalence classes. The number of arcs in the transitively reduced graph could
not be computed as the tred tool would not terminate within a 2 hour time-limit already
for approximating graphs of order greater than 12. Note that tred has been run in separate
threads of the computations of our rewrite systems.

The resulting graph is quite chaotic, in that, we were not able to find any simple
description of either the set of equivalence classes or the elements of most equivalence classes.
Nevertheless, by manual inspection of the generated graph we were able to spot sufficient
regularity to solve the problem by showing that the number of equivalence classes is infinite.
In fact, all the equivalence classes whose representatives are generated by the following
regular expression are distinct: c?(−−c)∗(−−)?. Moreover, each one is less than or equal to
every other class generated by a longer representative (e.g. −−c ≤ −−c−−) and they are all
bounded by −i−, which is also distinct from them and is the minimum of the lattice.

Figure 6 contains a clipping of the approximating graph of order 12 for the generalised
problem visualised with the dot tool. The clip contains the approximation of the infinite
subgraph with elements of the c?(−−c)∗(−−)?, together with some surrounding nodes. The
outgoing arc at the bottom leads to the bottom element of the graph, −i−, that is not
visible. It is obvious to see that the entire subgraph (i) has only one outgoing arc to the
bottom element, (ii) it is less than all elements in the remainder of the graph, and (iii) grows
downwards with increasing word length. We briefly sketch the formal argument that leads to
the above result using our rewriting formalism.

O. Al-Hassani, Q. Mahesar, C. Sacerdoti Coen, and V. Sorge 49

Figure 6 Infinite subgraph for the generalised problem.

First to demonstrate that the equivalence classes generated by the regular expression
r = c?(−−c)∗(−−)? constitute indeed an increasing sequence wrt. ≤, we let 〈w1, w2,≥〉 be
any configuration such that w2 6= ε and w1 and w1w2 are generated by r.

If 〈w1, w2,≥〉B∗w then w is generated by r and is shorter. The argument is by induction
over the length |w2|:

1. Suppose w2 starts with c or with −−. Then either one of the saturates rules is applicable,
resulting in a shorter expression.

2. Suppose w2 starts with c and monotone is applicable. Thus w2 is shorter and we can
apply the induction hypothesis.

3. Suppose w2 starts with − and antimonotone is applicable. The new configuration is
〈w1−,−w′2,≤. The only applicable rule is now antimonotone again and we can conclude
using the induction hypothesis.

Similarly we can show that −i− is indeed the bottom element: Let 〈w1, w2,≥〉 be any
configuration such that w2 6= ε and w1 and w1w2 are generated by r. If 〈w1, w2,≤〉 B∗ w
then w is in the same class as −i−. Again by induction over |w2| we can show:

1. Suppose w2 starts with c−− with compatible-1 we get w1−i−w2 = −i−.
2. Suppose w2 starts with c then monotone is applicable and we can apply the induction

hypothesis.
3. Suppose w2 starts with − then antimonotone is applicable. The new configuration is
〈w1−,−w′2,≤. The only applicable rule is now again antimonotone and we can conclude
using the induction hypothesis.

Applying our implementation to other problems in the domain introduced in the previous
section, we could quickly verify the results known from the literature of 14 and 21 combinations
in the classic and localic case, respectively. For the other problems we obtain a mixed picture
of both finite and infinite cases.

Table 1 lists the approximating graphs from order 14 to 16 for the infinite cases in terms
of vertices and arcs as well as infinite subgraphs identified. Again no arc count could be
computed for the general case due to non-termination of tred.

RTA’12

50 A Term Rewriting System for Kuratowski’s Closure-Complement Problem

Table 1 Approximating graph for all the variants that do not stabilise.

Axiom set Order 14 Order 15 Order 16 Infinite
Classes Arcs Classes Arcs Classes Arcs subgraph

∅ 10439 ? 16869 ? 27315 ? (−− c)∗

{2} 135 269 142 285 149 299 (−− ci)∗

{3} 135 269 142 285 149 299 (−− ic)∗

{4} 278 640 283 649 288 660 (−− ici)∗

So far we have proved formally only the infinite subgraph of the general case to consist
of distinct classes. While when adding axiom 2 or 3 or 4 only, the approximating graphs
also continue to grow, the infinite subgraph that we spotted in the general case collapses to
a finite one as the equation c−− = −−c forces all combinations generated by the regular
expression c?(−−c)∗(−−)? into less than four classes. Consequently, the argument we used
to show that the general case is infinite does no longer hold. Thus the formal proof for these
cases is still outstanding.

For the remaining problem variants the approximating graphs stabilise. The exact figures
for the graphs are given in Table 2. Axiom sets {1, 2, 3} and {2, 3} are the classical and localic
case from the literature and we can observe that in our system their approximating graphs
stabilise after only few iterations. Similarly, for axiom combinations {2, 4} and {3, 4}, the
set of equivalence classes stabilises quickly at 35 and 44 after 8 and 9 iterations, respectively.
Finally when adding axiom 1 alone we get a stable approximation after 13 iterations with
126 classes. For these latter three cases we also do not yet have a formal proof because we
did not check yet the induced syntactic model.

7 Conclusions and future work

We have presented the study of the generalised version of Kuratowski’s classical closure-
complement problem from point-set topology. To solve the problem we used a computational
procedure that combines a term rewriting system with bespoke graph algorithms. The
procedure is capable of showing several million lemmas about relations between combinations
of operators, which allowed us to iteratively approximate the solution to the problem. The
resulting graph exhibited enough regularity to enable us to show that the solution space
of the problem is infinite, thereby successfully closing the problem. A posteriori, the proof
that the number of combinations is infinite was quite easy and the infinite set of distinct
combinations is generated by a simple regular expression. Nevertheless, the problem has
remained open for more than nine years, and the clutter in the rest of the graph made it
difficult to spot the infinite subgraph.

Table 2 Approximating graphs for all variants that stabilise.

Axiom set Classes Arcs Stabilising Iteration
{1} 126 268 13
{1, 2, 3} 14 16 4
{2, 3} 21 31 5
{2, 4} 35 57 8
{3, 4} 35 57 8

O. Al-Hassani, Q. Mahesar, C. Sacerdoti Coen, and V. Sorge 51

From the mathematical point of view, the result is quite interesting. It shows that the
generalisation to a saturation operator partially independent from the reduction operator
greatly adds to the expressive power of the system. This is one of the main intuitions at
the base of the Basic Picture of Sambin [8], a complete re-formulation of point-wise and
point-free topology that is deeply rooted in intuitionistic and predicative logic.

Our graph algorithms, mainly the connected components computation, take care of
the transitivity of the less than relation and computes the smallest representatives of the
equivalence classes according to the shortlex order. The noetherian term rewriting system
where all critical pairs are non joinable takes care of monotonicity and anti-monotonicity of
the operators and is used to quickly derive a large number of inferences that do not require
transitivity. Non joinability implies that all inferences have different conclusions. Finally,
another noetherian and confluent rewriting system allows to aggressively prune the number
of inferences by constraining the shape of the terms under consideration. When combined
together, we need to apply Knuth-Bendix completion between some rules of the first rewriting
system and some of the second one because we implicitly choose the strategy when a term
is first simplified using the second set of rules, then reduced using the first, then simplified
again. The strategy is implicit since we start from terms already in normal form according
to the second set of rules. The completion allows to preserve completeness under the implicit
strategy.

Our initial problem that generalises Kuratowski’s classical result is not the only possible
generalisation. Other typical examples of generalisations are obtained by considering other
topological or set theoretical operators like union or intersection. A recent reference for
variations on the original problem and applications of the classification to the characterisation
of properties of subsets of topological space can be found in [4]. The paper also presents a
large bibliography on variants and applications of the problem. It does not cite, however,
the generalisation and variants studied in this paper, nor the paper [9] that shows that in
locale theory there are exactly 21 different combinations.

We have mapped out a landscape of generalised problems that lie between the finite
classical and localic cases, where results were previously known, and the infinite generalised
case, which is a new result. We are currently systematising the results about the intermediate
cases considered. The general picture obtained, once perfectly clear, will be the subject of a
future publication in a mathematical venue.

Already the presented results demonstrate that our approach scales well to all these
generalisations. Indeed, the system we implemented is fully parametric on the list of reduction
rules of the advanced rewriting system. The computation of the Knuth-Bendix like completion,
that at the moment is done manually, could be easily automated. Note, however, that we
cannot use any of the many off-the-shelf tools available. The reason is that we need to
perform a Knuth-Bendix completion, but we are not dealing with a canonical word problem
because the starting relation to be oriented is not symmetric. Rewriting in presence of non
symmetric relations has been previously investigated by the third author in [6] to implement
semi-equational reasoning and the technique employed here can be effectively understood as
an application of this study.

Acknowledgements The authors want to thank Prof. Sambin that stated the generalised
Kuratowski’s closure-complement problem studied in this paper and personally brought it to
the attention of the third author.

RTA’12

52 A Term Rewriting System for Kuratowski’s Closure-Complement Problem

References
1 Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge University

Press, Cambridge, 1998.
2 Sylvain Conchon, Jean-Christophe Filliâtre, and Julien Signoles. Designing a generic graph

library using ML functors. In The Ninth Symposium on Trends in Functional Programming,
volume 8, pages 124–140. Intellect, 2008.

3 Lara Corsi. Combinazioni di operatori di interno, chiusura e loro complemento in LJ. Tesi
di laurea in Matematica, Università di Padova, 2006.

4 Barry J. Gardner and Marcel Jackson. The Kuratowski closure-complement theorem. New
Zealand Journal of Mathematics, 38:9–44, 2008.

5 Kazimierz Kuratowski. Sur l’operation a de l’analysis situs. Fund. Math., 3:182–199, 1922.
6 Claudio Sacerdoti Coen. A semi-reflexive tactic for (sub-)equational reasoning. In Types

for Proofs and Programs, volume 3839/2006 of LNCS, pages 98–114. Springer-Verlag, 2006.
7 Giovanni Sambin. Some points in formal topology. Theoretical Computer Science, 305(1-

3):347–408, 2003.
8 Giovanni Sambin. The Basic Picture: a structural basis for constructive topology. Oxford

University Press, 2012.
9 He Wei and Zhang Yasoming. Interior and boundary in a locale. Advances in Mathematics,

29(5):439–443, 2000.

Term Rewriting Systems as Topological
Dynamical Systems
Søren Bjerg Andersen1 and Jakob Grue Simonsen2

1 Department of Mathematical Sciences, University of Copenhagen
Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
m08sba@math.ku.dk

2 Department of Computer Science, University of Copenhagen (DIKU)
Njalsgade 126, DK-2300 Copenhagen S, Denmark
simonsen@diku.dk

Abstract
Topological dynamics is, roughly, the study of phenomena related to iterations of continuous
maps from a metric space to itself. We show how the rewrite relation in term rewriting gives rise
to dynamical systems in two distinct, natural ways: (A) One in which any deterministic rewriting
strategy induces a dynamical system on the set of finite and infinite terms endowed with the usual
metric, and (B) one in which the unconstrained rewriting relation induces a dynamical system
on sets of sets of terms, specifically the set of compact subsets of the set of finite and infinite
terms endowed with the Hausdorff metric.

For both approaches, we give sufficient criteria for the induced systems to be well-defined
dynamical systems and for (A) we demonstrate how the classic topological invariant called topo-
logical entropy turns out to be much less useful in the setting of term rewriting systems than in
symbolic dynamics.

1998 ACM Subject Classification F.1.1 Models of computation, F.4.2 Grammars and other
rewrite systems, G.0 General

Keywords and phrases Term rewriting, dynamical systems, topology, symbolic dynamics

Digital Object Identifier 10.4230/LIPIcs.RTA.2012.53

Category Regular Research Paper

1 Topological dynamics and rewriting

A topological dynamical system is a pair (X, f) where X is a metric space and f : X −→ X

is a continuous map. The primary object of study is the long-term behaviour of iterations of
the map f . Such systems are widely studied in pure and applied mathematics, for example
in mathematical physics, in fractal geometry, and in combinatorial number theory [12]. A
well-studied subclass of dynamical systems is that of symbolic dynamical systems [25] where
X is a topologically closed set of infinite strings and f is the shift map, either chopping off
the first symbol of a right-infinite string or shifting a bi-infinite string one position to the left.
Such systems with right-infinite strings can be easily modelled by string rewriting systems
with very simple rules (a→ ε for right-infinite strings) and endowed with a rewrite strategy.
Equivalently, they can be modelled by term rewriting systems over unary signatures (with
rules a(x)→ x) endowed with a rewrite strategy. The observation that existing dynamical
systems can be modelled by almost trivial rules immediately raises the twin questions of
whether more general term rewriting systems on well-behaved sets of terms can be viewed as
topological dynamical systems.

© Søren B. Andersen and Jakob G. Simonsen;
licensed under Creative Commons License NC-ND

23rd International Conference on Rewriting Techniques and Applications (RTA’12).
Editor: A. Tiwari; pp. 53–68

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

54 TRSs as Topological Dynamical Systems

We answer this question in the positive by defining two distinct notions of dynamical
systems that we believe are quite natural: (A) One in which any (suitably continuous)
deterministic rewriting strategy induces a dynamical system on the set of finite and infinite
ground terms endowed with the usual metric, and (B) one in which the unconstrained
rewriting relation induces a dynamical system on sets of sets of terms, specifically the set of
compact subsets of the set of finite and infinite ground terms endowed with the Hausdorff
metric. We also provide a starting point for investigating the dynamical properties of these
systems by considering continuity, conjugacy and topological entropy.

We employ infinite, ground terms for two reasons: (1) that they are needed to generalize
the classes of dynamical systems that already exist in the literature, (2) that the set of finite
and infinite ground terms is topologically much more well-behaved than the set of finite terms,
hence allow stronger results. We stress that the rewriting relation itself is ordinary one-step
rewriting; thus, we have no infinite reductions, and we do not consider infinitary rewriting
[18]. However, as topological dynamics considers the long-term behaviour of iterated maps,
we do expect that connections with this area will be found in the future.

A clarification from the start: We do not have any practical applications of the
present work, nor have we actively sought out such applications. We believe the topological
dynamics of term rewriting to be mathematically interesting per se, even more so as the
systems we consider properly generalize existing classes of dynamical systems.

1.1 Related work
The class of (one-dimensional) symbolic dynamical systems (SDSs) is a special case of the
class of systems we define in this paper, and is the main in inspiration for our work; there is
a vast literature on SDSs, and we refer the reader to the excellent textbooks and handbook
chapters in the area [25, 22, 6]. Kitchens defines three classes of dynamical systems associated
to a class of maps on finite trees [23]; the trees are not in general trees of terms and the maps
themselves do not correspond to term rewriting. The thematically closest research to ours
are the tree-shifts of Aubrun and Béal [2, 3], introduced as an intermediate notion between
one-sided shifts of dimension one, resp. higher dimensions. In contrast to the systems we
consider, tree-shifts pertain to infinite, labelled trees with a fixed arity n (each node in
the tree has i children), and the set of maps associated to the set of such trees are the n
maps σi such that σi cuts off the root node and returns the ith child of the root. Aubrun
and Béal succesfully generalize a number of concepts and results from SDSs to the class of
tree-shifts, including the concepts of system of finite type and sofic systems, and prove the
highly interesting result that conjugacy of tree-shifts of finite type is decidable. We firmly
believe, but have not proved, that these results can be extended to many of the systems we
consider in this paper.

2 Preliminaries

2.1 Term rewriting on finite and infinite terms
We refer to standard textbooks [4, 27] for basics on term rewriting; to fix notation, we give
the most necessary definitions below.

A signature is a set of function symbols, each endowed with a non-negative integer arity;
if f is a function symbol of arity n, we invariably write f/n. If Σ is a signature and V is a
set of variables, we denote by T(Σ, V) the set of terms over Σ and V ; the elements of the
set are all variables, all nullary function symbols, and all objects on the form f(s1, . . . , sn)

S.B. Andersen and J.G. Simonsen 55

where f ∈ Σ has arity n and s1, . . . , sn are terms over Σ and V . The root symbol of a
term s = f(s1, . . . , sn) (for n ≥ 0), denoted root(s), is f . The set of ground terms over
Σ is T(Σ, ∅). A (one-hole) context is a term in T(Σ, V ∪ {�}) that contains exactly one
occurrence of �, where � /∈ Σ ∪ V . A substitution is a map θ : V −→ T(Σ, V) where we
usually assume that only a finite number of elements x ∈ V satisfy θ(x) 6= x. A substitution
extends homomorphically to a map θ : T(Σ, V) −→ T(Σ, V) in the obvious way. If C is
a context and s is a term, we define C[s] = θ(C) where θ is the substitution defined by
θ(�) = s and θ(x) = x for x 6= �.

The set of positions of a term s, denoted Pos (s) is the set of finite sequences of positive
integers defined inductively as follows: If s ∈ V or s is a nullary function symbol, then
Pos (s) = {ε} where ε is the empty string. If s = f(s1, . . . , sn), then Pos (s) = {ε} ∪ {ip : p ∈
Pos (si) ∧ 1 ≤ i ≤ n}. The length of a position is its length as a string. The subterm of term
s at position p ∈ Pos (s), denoted s|p, is defined inductively by s|ε = s and otherwise (in
which case s = f(s1, . . . , sn) and p = ip′ for some p′ ∈ Pos (si)) by s|p = si|p′ . For notational
convenience, we set POS = N<ω (“the set of all possible positions”), with the convention
that ε ∈ POS. If p ∈ POS and j is a non-negative integer, we set p0 = ε and pj = pj−1p (i.e.,
the sequence consisting of j copies of p). If C is a context, we occasionally write C as C[]p
where p is the unique position of � in C.

A term rewriting system (abbreviated TRS) over Σ and V is a set of pairs, invariably
written l → r, such that (i) l, r ∈ T(Σ, V), (ii) l /∈ V , and (iii) every variable that occurs
in r also occurs in l. The rewrite relation induced by R is the binary relation →R⊆
T(Σ, V)× T(Σ, V) defined by s→R t if there exist a rule l → r ∈ R, a context C[]p and a
substitution θ such that s = C[θ(l)]p and C[θ(r)]p = t (in which case we say that the pair
(p, l→ r) is a redex in s). We invariably drop the subscript R, writing →, when there is no
risk of confusion. A rule l→ r is called collapsing if r = x ∈ V .

The standard metric d : T(Σ, V)× T(Σ, V) −→ R+ ∪ {0} is defined by d(s, s) = 0 and
d(s, t) = 2−|p| where p is a position of minimal length such that root(s|p) 6= root(t|p).

The set of finite and infinite terms over Σ and V , denoted T∞(Σ, V) is the (necessarily
unique) metric completion of T(Σ, V). The set of infinite terms over Σ and V is T∞(Σ, V) \
T(Σ, V); note that an infinite term may have subterms that are finite. The set of finite and
infinite ground terms over Σ is T∞(Σ, ∅).

An equivalent definition of T∞(Σ, V) is obtained by interpreting the term formation rules
coinductively instead of inductively, and still other equivalent methods exist in the form of
ideal completion and partial functions (see, e.g., [20]) If in doubt: infinite terms are exactly
what you think they are.

Let R be a TRS over Σ and V ; the rewrite relation→R⊆ T∞(Σ, V)×T∞(Σ, V) is defined
exactly as in the finite case (note that in all rules l → r ∈ R, both l and r are still finite
terms). We denote by NF(R) the set of R-normal forms of T∞(Σ, ∅) (i.e. the set of possibly
infinite ground terms s such that there exists no t with s→ t).

2.2 Topological dynamics
We refer to standard textbooks on topological dynamics such as [12, 28], giving only the
most basic definitions below.

A topological dynamical system is a pair (X, f) where X is a topological space and
f : X −→ X is a continuous map. It is usually assumed that X is locally compact, metrizable
and second countable.

A standard notion of subsystems exists for dynamical systems (A, f): A dynamical
system (B, f) is a subsystem of (A, f) if B is a topologically closed subset of A that is

RTA’12

56 TRSs as Topological Dynamical Systems

f -(forward-)closed, that is f(B) ⊆ B [28, Ch. 5].
The following two examples introduce one- and two-sided shifts that are the primary

objects of study in the field of symbolic dynamics; for more information, consult textbooks
specifically on symbolic dynamics, for example [25, 22].

I Example 2.1 (One-sided shifts). Let Σ̃ be a finite string alphabet, and let F ⊆ Σ̃∗ be a
(finite or infinite) set (called the set of forbidden words). Let ÃF be the set of all right-infinite
strings over Σ̃ that do not contain any element of F as a substring. Then by standard results
ÃF is a topologically closed subset of Σ̃ω equipped with the usual Cantor metric on sequences
[25]. The shift map σ on ÃF is defined by σ(b1b2b3 · · ·) = b2b3 · · · , and it is easily seen that
(ÃF , σ) is a topological dynamical system.

I Example 2.2 (Two-sided shifts). Proceed as in Example 2.1, but define instead B̃F as the
set of all bi-infinite strings over Σ̃ that do not contain any element of F as a substring, and
let the shift map σ be given by σ(· · · b−2b−1b0b1b2 · · ·) = (cn)n∈Z where cn = bn+1 for all
n ∈ Z. Then, (B̃F , σ) is a topological dynamical system.

In both of the above examples we may have F = ∅ in which case ÃF (resp. B̃F) is the
set of all right-infinite (resp. bi-infinite) strings over Σ̃.

Finally, recall that a metric space (M,d) is an ultrametric space if d(x, y) ≤ max{d(x, z), d(z, y)}
for arbitrary x, y, z ∈M . The standard metric d on T∞(Σ, ∅) is an ultrametric.

I Lemma 2.3. Let (M,d) be an ultrametric space. If B(x, ε) and B(z, δ) are open balls
with δ ≤ ε and B(x, ε) ∩ B(z, δ) 6= ∅ then B(z, δ) ⊆ B(x, ε). In particular, if δ = ε,
B(x, ε) ∩B(z, δ) 6= ∅ implies B(x, ε) = B(z, δ).

Let A ⊆M . Then A has a cover of cardinality k of sets of diameter at most ε iff it has a
cover of cardinality k of open balls of radius ε.

Lastly, (M,dn) is an ultrametric space.

3 Topological dynamics and term rewriting

Many results in topological dynamics are contingent on the underlying topological space being
locally compact (and, in symbolic dynamics, compact). It is easy to see that (T(Σ, V), d)
is locally compact: For any term s, let m be a positive integer that is strictly greater than
the length of the longest position in s; then the open ball with radius 2−m centered on s is
exactly the (necessarily compact) singleton set {s}). However, in many cases we would like
(T(Σ, V), d) to be complete–and preferably compact–which it is not in general:

I Lemma 3.1. Let Σ contain at least one symbol with arity ≥ 1. If T(Σ, ∅) is not empty,
then it is not complete (hence is not compact).

Proof. Let f ∈ Σ have arity m ≥ 1. If T(Σ, ∅) 6= ∅, there must be a ∈ Σ with arity 0. Define
the sequence of terms (sn) by s0 = a and sn+1 = f(sn, . . . , sn). Then, (sn) is Cauchy, but
has no limit in T(Σ, ∅). J

If we extend our attention to T∞(Σ, V), however, the topological properties are much
better. The following results hold for the metric space (T∞(Σ, V), d):

I Lemma 3.2 (See [1]). Let Σ be a (possibly infinite) signature. Then, T∞(Σ, V) is complete.
In addition, T∞(Σ, V) is compact iff both Σ and V are finite (in particular, if Σ is finite,
then T∞(Σ, ∅) is compact).

S.B. Andersen and J.G. Simonsen 57

An important convention: In view of Lemma 3.2, we restrict our attention to T∞(Σ, ∅)–
the set of finite and infinite ground terms over a finite signature, and hence the compact
metric space (T∞(Σ, ∅), d). In addition, unless explicitly otherwise stated, R will always
denote a TRS with finitely many rules.

4 Take A: Dynamics on sets of terms with a rewriting strategy

We consider deterministic strategies on the set of finite and infinite terms; intuitively, a
strategy picks one among the (possibly infinite number of) redexes in a term to contract:

I Definition 4.1. Let R be a TRS on T∞(Σ, ∅). A (deterministic) strategy S for R is a
(total) map S : (T∞(Σ, ∅) \NF(R)) −→ POS×R such that S(t) = (p, l→ r) is a redex in t.

If S is a strategy for R, the map induced by S, denoted FS,R : T∞(Σ, ∅) −→ T∞(Σ, ∅)
(invariably abbreviated FS when R is clear from the context), is defined by FS(t) = t if t is a
normal form, and otherwise FS(t) = s if t→ s by contraction of the redex of rule l→ r at
position p where S(t) = (p, l→ r).

There are two potential pitfalls in the above definition: (i) as terms may be infinite,
the set NF(R) of normal forms of R is not in general decidable–even if R is finite–whence
computability of FS is not immediate, (ii) the map FS need not necessarily be continuous,
which is required of a topological dynamical system.

IDefinition 4.2. Let S be a strategy for the TRS R on T∞(Σ, ∅) such that FS : T∞(Σ, ∅) −→
T∞(Σ, ∅) is continuous. Then (T∞(Σ, ∅), FS) is a topological dynamical system and is called
the S-induced dynamical system on T∞(Σ, ∅).

Thus, the main question of interest is under which circumstances the map FS is continuous.
Note that if S is not continuous as a map T∞(Σ, ∅) \NF(R)) −→ POS×R when POS

and R are endowed with the discrete topology and POS × R has the product topology,
then in general FS will not be continuous either. For example, consider the signature
{a/1, b/1}, the TRS {a(x) → b(x), b(x) → a(x)} and the–pathological–strategy S defined
by S(bk(a(t)) = (1k, a(x)→ b(x)) (for any k ≥ 0 and term t), and S(bω) = (ε, b(x)→ a(x)).
Then, S is not continuous, as witnessed by the fact that (bn(aω))n is sequence converging to
bω, but S(bn(aω)) = (1n, a(x)→ b(x)) and S(bω) = (ε, b(x)→ a(x)), whereas the sequence
(S(bn(aω))) does not converge to S(bω). Hence, FS is not continuous.

We have the following useful lemma:

I Lemma 4.3. Let R be a (finite!) TRS and let S : (T∞(Σ, ∅) \NF(R)) −→ POS×R be a
strategy for R. Equip R and POS with the discrete topology, and let POS×R be equipped with
the product topology. If S is continuous, then FS : T∞(Σ, ∅) −→ T∞(Σ, ∅) is continuous.

Proof. We show pointwise continuity at s ∈ T∞(Σ, ∅). Let k be any non-negative integer
and split on cases according to s:

If s is not a normal form, let S(s) = (p, l→ r). By continuity of S, there is a non-negative
integer n1 such that if d(s, t) < 2−n1 , and S(t) = (p′, l′ → r′), then p = p′, l = l′ and
r = r′. Let w be the length of the longest position in l and set m1 = max{k, n1, |p|+ w}.
If d(s, t) < 2−m1 , we hence have d(FS(s), FS(t)) < 2−k.
If s is a normal form, let w be the length of a maximally long position occurring in a left-
hand side of a rule in R, and set m2 = k +w. Let t ∈ T∞(Σ, ∅) such that d(s, t) < 2−m2 .
If t is not a normal form, consider S(t) = (q, l → r); if |q| ≤ k, then there is a redex
in s at q, a contradiction. Hence, d(FS(s), FS(t)) < 2−k. If t is a normal form, then
d(FS(s), FS(t)) = d(s, t) < 2−m2 < 2−k. J

RTA’12

58 TRSs as Topological Dynamical Systems

Thus, continuity of FS merely requires us to prove that S is continuous.

I Corollary 4.4. Let R be any (finite) TRS, let S be a leftmost-outermost strategy (in case
more than one redex is present at a position, assume that S deterministically picks one of
them)1. Then, (T∞(Σ, ∅), FS) is a topological dynamical system.

Proof. Let s ∈ T∞(Σ, ∅) and let k be a non-negative integer. Let w be the length of the
longest position occurring in a left-hand side of a rule in R. Set m = k+w. If s, t ∈ T∞(Σ, ∅)
are both non-normal forms with d(s, t) < 2−m, we reason as follows: For the leftmost-
outermost strategy, if S picks a redex in s at position p with |p| ≤ k, then that redex is
present in t as well, and must be leftmost and outermost in t (otherwise another redex present
at depth at most k is leftmost-outermost, but then it would also be leftmost-outermost in
s, a contradiction). Contracting both redexes yields terms identical up to depth k (as the
length of any position across a rewrite step can be shortened by at most w). Alternatively, S
picks a redex at a position with length strictly greater than k; in this case, S cannot pick a
redex at a position of length ≤ k in t, as this redex would also be present in s and thus at a
position of strictly shorter length than the redex picked for s, contradicting outermostness.
In both cases, d(FS(s), FS(t)) < 2−k, establishing continuity. J

Perhaps surprisingly, innermost strategies are in general not continuous: Consider the
signature Σ = {a/1, b/1,B/0} and the TRS R = {a(x)→ B}. Consider terms on the form
a(bk(a(B))) for k ≥ 1. Then, any innermost strategy will always pick the redex resulting in the
step a(bk(aB))→ a(bk(B)). But for any term on the form a(bk(B)), any innermost strategy
will always pick the redex at the root of the term, resulting in the step a(bk(B)) → B.
If the innermost strategy were continuous, then there would be an integer m such that
d(a(bk(a(B))), a(bk(B))) < 2−m implies that S chooses the same redex in both terms; but S
chooses different redexes in the terms a(bm(a(B))) and a(bm(B)), a contradiction.
I Remark. It turns out that every computable strategy S is continuous, but due to space
constraints we omit the lengthy definitions needed to define computable strategies on infinite
terms. After the definitions have been made, continuity follows immediately from the
Kreisel-Lacombe-Shoenfield Theorem (“every computable map on a computably complete
computable metric space is continuous”) [24]. Note that the leftmost-outermost strategy is
computable, but the leftmost-innermost is not.

4.1 Examples
Let S be a strategy for TRS R such that the S-induced system (T∞(Σ, ∅), FS) exists. A
subsystem of (T∞(Σ, ∅), FS) is a dynamical system (T ′, FS) such that (i) T ′ is a topologically
closed subset of T∞(Σ, ∅), and (ii) FS(T ′) ⊆ T ′

I Example 4.5. We can easily model the one- and two-sided shifts of Examples 2.1 and 2.2:
Let Σ = {a1/1, . . . , ak/1}. For the one-sided shift, set R = {a1(x)→ x, . . . , ak(x)→ x}

and let S be the (necessarily unique, as all symbols are unary) outermost strategy for R. For
a set of “forbidden words” F , all on the form ai1(· · · (ain(x))), we may consider the set AF of
infinite, ground terms s such that no element of F occurs in s; formally: there is no context

1 For the purposes of this paper, a leftmost-outermost strategy is a strategy that picks a redex that is (i)
at a position of minimal length, and (ii) is minimal in the lexicographic order on positions among redexes
satisfying (i). For further discussion of the difficulties of generalizing leftmost-outermost reduction to
infinitary rewriting, see [21].

S.B. Andersen and J.G. Simonsen 59

C[], no element ai1(· · · (ain(x))) ∈ F , and no s′ ∈ T∞(Σ, ∅) such that s = C[ai1(· · · (ain(s′)))].
Then, (AF , FS) is a subsystem of (T∞(Σ, ∅), FS).

Correspondingly, for the two-sided shift, let u /∈ Σ be a fresh binary symbol and define BF
to be the set of all terms on the form u(s1, s2) where s1, s2 ∈ T∞(Σ, ∅) such that no string
of symbols corresponding to w ∈ F occurs in s, and no string of symbols corresponding to
the reverse of w ∈ F occurs in s1. Define R = {u(x, a1(y))→ u(a1(x), y), . . . , u(x, ak(y))→
u(ak(x), y} and let S be an outermost strategy for R. Then, (BF , FS) is a subsystem of
(T∞(Σ, ∅), FS).

I Example 4.6. Let Σ = {: /2,nil/0,+/1, 0/0, f/1}, write : (“cons”) as in infix operator as
usual, and set R = {f(nil)→ nil, f(x : y)→ +(x) : f(y)}.

Let N be the set of finite and infinite ground terms built solely from + and 0 (i.e., N
models the set N ∪ {∞}), and let L be the least subset of T∞(Σ, ∅) such that nil ∈ L, and
such that s ∈ N and t ∈ L implies s : t ∈ L (i.e. L models the set of finite and infinite lists
of natural numbers). Finally, let K ⊆ T∞(Σ, V) be the subset of terms such that s ∈ K
implies either s ∈ L, or s = t1 : (t2 : · · · f(tn : · · ·)) where all ti are elements of N . Then,
K is topologically closed, and if F is any outermost strategy, FS(s) = s for any s ∈ K and
FS(s) ∈ L if s ∈ K \ L. Finally, as there is at most one redex in any element of K, FS is
continuous as S is an outermost strategy.

The map FS contracts the unique redex, if any, in a term s ∈ K. By inspection, we see
that iteration of the map corresponds to “adding one” to each natural number in successive
elements of the list s. If s = f(s′) where s′ ∈ L, the sequence Fn(s) converges to the (finite
or infinite) term t ∈ K with one added to every natural number in s.

5 Take B: Dynamics on sets of sets of terms

We now consider the action of maps FR induced by R where the objects being “moved” by
FR are set of terms. Hence, the natural dynamical system is a map on a set of sets of terms.

I Definition 5.1. Let (X, d) be a metric space and let H(X) be the set of non-empty compact
subsets of X. The Hausdorff metric on H(X) is then the metric dH defined by

dH(A,B) = max
{

sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)
}

A proof that dH is indeed a metric on H(X) can be found for example in [5]. It is not hard
to see that if (X, d) is an ultrametric space, then so is (H(X), dH), and that completeness
of (X, d) implies completeness of (H(X), dH). For the standard metric on terms, there is a
simple, neat characterization of the Hausdorff metric:

I Theorem 5.2 (See e.g. Ch. 1 of [13]). Let x be a variable and define, for any non-
negative integer n and any s ∈ T∞(Σ, ∅), the term αn(s) as the term s where we have
replaced any subterm of s at positions p with |p| > n by x. For A ∈ H(T∞(Σ, ∅)), define
αn(A) = {αn(s) : s ∈ A}.

The Hausdorff metric on T∞(Σ, ∅) is then given by

dH(A,B) = 2− inf{n:αn(A)6=αn(B)}

I Definition 5.3. Let R be a TRS. We then define the map FR : H(T∞(Σ, ∅)) −→
H(T∞(Σ, ∅)) by

FR(A) = {t ∈ T∞(Σ, ∅) : s ∈ A ∧ s→R t} ∪ {t ∈ A : t is a normal form}

RTA’12

60 TRSs as Topological Dynamical Systems

If the map FR is continuous, then (H(T∞(Σ, ∅)), FR) is a dynamical system, which we denote
the R-induced system.

Thus, FR(A) consists of (i) all reducts of elements of A, and (ii) all normal forms in
A. The reason for including the normal forms in A is to ensure that FR is well-defined (as,
otherwise, any set consisting solely of normal forms would be mapped into the empty set,
which is not an element of H(X)).

Fortunately, FR is continuous for all ordinary TRSs R:

I Theorem 5.4. If R has finitely many rules, then FR is continuous.

Proof. Observe that dH(A,B) < ε iff

(∀s ∈ A∃t ∈ B.d(s, t) < ε) ∧ (∀t ∈ B∃s ∈ A.d(s, t) < ε)

Let m be the length of a position of maximal length occurring in the left-hand side of a
rule of R, and let k be an arbitrary non-negative integer. To show that FR is continuous, it
suffices to show that:

1.
(
∀s ∈ A∃t ∈ B.d(s, t) < 2−(2k+m))⇒

(
∀s′ ∈ FR(A)∃t′ ∈ FR(B).d(s′, t′) < 2−k

)
, and

2.
(
∀t ∈ B∃s ∈ A.d(t, s) < 2−(2k+m)

)
⇒
(
∀t′ ∈ FR(B)∃s′ ∈ FR(A).d(t′, s′) < 2−k

)
.

Note that the two conditions above are completely symmetrical in A and B; we hence
prove only the first.

Assume that ∀s ∈ A∃t ∈ B.d(x, y) < 2−(2k+m) and let s′ ∈ FR(A) be arbitrary. Then
there exists s ∈ A such that either (i) s = s′ and s is a normal form, or (ii) s→R s

′.
In case (i), consider t ∈ B: If t is a normal form, then t ∈ FR(B) and we may set t′ = t,

and we have d(s′, t′) = d(s, t) < 2−(2k+m) ≤ 2−k, as desired. If t is not a normal form, then
t → t′ for some term t′ by a rewrite step at some position p; note that |p| ≥ k as s is a
normal form and s and t are identical up to depth 2k +m. Hence, d(s′, t′) = d(s, t′) < 2−k,
as desired.

In case (ii), let p be the position of the redex contracted in the step s → s′. Split on
cases as follows:

If |p| < k, note that d(s, t) < 2−(2k+m), whence there is a redex of the same rule at p
in t; let t′ be the term such that t → t′ by contraction of this redex, and observe that
t′ ∈ FR(B). Observe that the rule employed in this redex can shorten positions by at
most m; hence, if the redex is contracted at depth |p| < k, the symbols occurring at
depth ≤ k in t′ are either created by the right-hand side of the rule, or are descendants
of positions occurring at depth at most 2k +m. As s and t were identical up to depth
2k +m, t′ and s′ are thus identical up to depth k, whence d(s′, t′) < 2−k, as desired.
If |p| ≥ k, then as d is an ultrametric, we have d(s′, t′) ≤ max{d(s′, s), d(s, t′)} ≤
max{d(s′, s),max{d(s, t), d(t, t′)}} < 2−k. J

The assumption that R has a finite number of rules cannot be omitted from the statement
of Theorem 5.4 as there are systems R with infinitely many rules for which FR is not
continuous, cf. the following example.

I Example 5.5. Consider the signature Σ = {a/1, b/1} and R = {an(b(x))→ b(x) : n ∈ N0}.
Define A = {aω} and, for each nonnegative integer k, Bk = {ak(bω)}. All sets A and
Bk are singletons, hence non-empty and compact, whence A,Bk ∈ H(T∞(Σ, ∅)) for all
k. For arbitrary k, we have dH(A,BK) = 2−k, and (Bk)k thus converges to A. If FR

S.B. Andersen and J.G. Simonsen 61

were continuous, the sequence (FR(Bk))k would converge to F (A). But FR(A) = A and
FR(Bk) = {bω, a(bω), . . . , ak(bω)} for each k, whence dH(FR(A), FR(Bk)) = 1 for all k,
disproving continuity.

5.1 Examples
As the dynamical system (H(T∞(Σ, ∅)), FR) tracks the evolution of sets of terms while
encompassing all possible rewrite steps in the terms, it is natural to consider the dynamical
system applied to processes usually described by non-deterministic evolution where the set
of all possible trajectories is the point of interest. One such area is fractals; we show a single
example below.

I Example 5.6. Let Σ = {0/0, 1/1, f/9}, and let R consist of the single rule 1 →
f(1, 0, 1, 0, 1, 0, 1, 0, 1). Consider the set T ′ = T∞(Σ, ∅) \ {0}. T ′ is a closed subset of
the compact set T∞(Σ, ∅), hence compact. Then (H(T ′), FR) is a topological dynamical
system (indeed, a subsystem of (H(T∞(Σ, ∅)), FR)).

It is easy to see that FR|H(T ′) : H(T ′) −→ H(T ′) satisfies dH(FR(A), FR(B)) =
dH(A,B)/2 for arbitrary non-empty compact subsets of T ′. Hence, by the Banach Fixed
Point Theorem, FR has a unique fixed point given by limn→∞ FnR(A) where A is any element
of H(T ′). In particular, we may choose A = {1} and hence see that the fixed point is the
term tf = limn→∞ tn where t0 = 1 and tn = f(tn−1, 0, tn−1, 0, tn−1, 0, tn−1, 0, tn−1).

It is convenient to visualize tf by letting the
root represent a square with edges of unit
length. If this square is partitioned into 9
smaller squares with edge length 1/3 in the
obvious manner, the 9 subterms of the root
are then represented by one of the smaller
squares, and so forth. This generates the box
fractal as shown to the right. (More precisely,
the box fractal can be drawn as follows:
Define f : {1, . . . , 9} → [0, 1]× [0, 1] by
f(i) = 1

3 (b i−1
3 c, (i− 1) mod 3). For each

p = εp1 · · · pn ∈ Pos(tn) with tn|p = 1
compute cp =

∑n
i=1 f(pi)/(3i) and draw a

square with lower left corner cp and side
length 1/(3n+1).)

It is tempting to try to derive a general result from Example 5.6. However, the use
of the Banach Fixed Point Theorem (which requires the map FR to be a contraction, i.e.,
d(FR(A), FR(B)) < d(A,B) for allA, B with A 6= B), is problematic from the vantage point of
term rewriting: If R has at least two distinct normal forms t 6= t′, then FR is not a contraction,
due to FR({t}) = {t} and FR({t′}) = {t′}, whence d(FR({t}), FR({t′})) = d({t}, {t′}). The
obvious “fix” for this problem is to consider FR as a map on the set of compact subsets on
T∞(Σ, ∅) \ NF(R); but this attempt fails as removing the set of normal forms in general
destroys compactness2.

2 More precisely: If there is a normal form t ∈ T ∞(Σ, ∅) such that (i) t is an infinite term, (ii) there is
a sequence (tn) with tn ∈ T ∞(Σ, ∅) \ NF(R) for all n and t = limn ti, then T ∞(Σ, ∅) \ NF(R) is not
complete, hence not compact.

RTA’12

62 TRSs as Topological Dynamical Systems

Another example of use is to consider a construction close to the tree-shifts of Aubrun
and Béal under the action of all shift maps:

I Example 5.7. Let Σ be any finite, non-empty signature where each symbol has the
same, positive arity (we choose Σ = {f/2, g/2} in this example). Consider the system
R = {f(x1, . . . , xn) → xi : f ∈ Σ, 1 ≤ i ≤ n}. Then, FR : H(T∞(Σ, ∅)) −→ H(T∞(Σ, ∅))
is continuous by Theorem 5.4. If A = T∞(Σ, ∅), we have FR(A) = A; if B is the subset
of T∞(Σ, ∅) consisting of all those infinite ground terms that do not contain the pattern
f(g(·, ·), g(·, ·)), then B is compact and FB(B) = B.

6 Conjugacy and topological entropy

Dynamical systems are usually identified up to topological conjugacy (roughly: The dynamical
properties of two conjugate systems are the same). As topological conjugacy is, in general,
undecidable, even for finitely presented dynamical systems, a number of topological invariants
(quantities known to be identical for conjugate systems) are studied with the purpose of
proving that two distinct dynamical systems are not conjugate; the most well-known of
these being the so-called topological entropy. We briefly define these concepts for S-induced
systems and show that the topological entropy is unlikely to be a useful topological invariant
in this case.

I Definition 6.1. Two dynamical systems (X, f) and (Y, g) are said to be topologically
conjugate (or simply conjugate) if there is a homeomorphism h : X −→ Y such that
h ◦ f = g ◦ h.
I Example 6.2. For S-induced systems, systems obtained by simple renamings are conjugate;
e.g. if Σ1 = {a/1, 0/0}, Σ2 = {b/1, 1/0}, R1 = {0→ a(0)} and R2 = {1→ b(1)}, then there
is only a single strategy S1 for R1 and a single strategy S2 for R2, and (T∞(Σ1, ∅), FS1) and
(T∞(Σ2, ∅), FS2) are conjugate.

Likewise, let Σ = {f/2}, R1 = {f(x, y) → x} and R2 = {f(x, y) → y}, and define,
for any t ∈ T∞(Σ, ∅), the term h(t) ∈ T∞(Σ, ∅) by swapping left- and right-subterms
of each occurrence of f top-down. Then H : H(T∞(Σ, ∅)) −→ H(T∞(Σ, ∅)) defined by
H(A) = {h(t) : t ∈ A} is a homeomorphism and FR1 and FF2 are conjugate by H.

I Example 6.3. The one- and two-sided shifts defined in Examples 2.1 and 2.2 are con-
jugate to their term rewriting counterparts of Example 4.5—for the two-sided shift, define
h(· · · b−2b−1b0b1b2 · · ·) = u(b−1(b−2(· · ·)), b0(b1(b2(· · ·)))).
I Remark. Unsurprisingly, the question of whether two, suitably presented, subsystems are
conjugate, is undecidable:

Let Σ be a signature with at least two distinct symbols both of which have arity ≥ 1.
The following question is undecidable:

Given: (i) Two finite TRSs R and R′ (it may wlog. be assumed that R = R′), (ii) two
strategies S and S′ (it may wlog. be assumed that S = S′) for resp. R and R′, and (iii)
two recursively enumerable, topologically closed subsets A,A′ ⊆ T∞(Σ, ∅) that are resp.
FS and FS′ -invariant.
To decide: Is (A,FS) conjugate to (A′, FS′)?

Proof. Let Σ = {0/1,B/0}, set R = R′ = {0(x) → x} and let S = S′ be the outermost
strategy. Let M be an inputless Turing machine and define the set

AM = {0ω} ∪ {0kB : M has not halted in the first k ≥ 0 steps of its execution}

S.B. Andersen and J.G. Simonsen 63

Note that AM is finite iffM halts after some number of steps and hence that AM is closed
in this case. IfM does not halt, then AM is infinite and AM = {B, 0B, 00B, 000B, . . .}∪{0ω},
whence AM is also closed in this case. Let S be the (unique) outermost strategy for R. Then
FS(0ω) = 0ω and, for k ≥ 1, FS(0kB) = 0k−1B, whence FS(AM) ⊆ AM in all cases.

Let N be any non-halting Turing machine. Then AN = {0kB : k ≥ 0} ∪ {0ω}. Note that
as AM is finite for any haltingM and a conjugacy h : AM −→ AN must be a homeomorphism
(in particular must be a bijection), then (AM , FS) and (AN , FS) are conjugate iff M does
not halt. Conversely, if M does not halt, then (AM , FS) and (AN , FS) are clearly conjugate
(as AM = AN and the two systems have the same rule set and strategies).

If it were decidable for all (AM , R) whether (AM , FS) and (AN , FS) are conjugate, then
we could decide whether M halts as the two systems are conjugate iff M does not halt, and
we obtain a contradiction. J

We do not know whether it is decidable in general whether two systems on the full sets
of terms over (possibly distinct) signatures are conjugate, whether conjugacy is decidable for
subsystems (A,FS) with decidable A. We very strongly suspect that both of these questions
are undecidable as well.

A similar result holds for subsystems of (H(T∞(Σ, ∅)), FR); the proof uses a construction
very similar to the one above and is thus omitted:

The following question is undecidable:

Given: (i) Two finite TRSs R and R′ (it may wlog. be assumed that R = R′) and (ii)
two recursively enumerable, topologically closed subsets A,A′ ⊆ H(T∞(Σ, ∅)) (both
consisting of finite subsets) that are resp. closed under FR and FR′ .
To decide: Is (A, FR) conjugate to (A′, FR′)?

6.1 Topological entropy
A topological invariant is a quantity that is equal for conjugate systems. Such invariants
are used to prove that certain systems are not conjugate. The topological entropy, defined
below, is a common such invariant (see, e.g., [12, Cor. 2.5.4] for a proof its invariance).

I Definition 6.4. Let (X, d) be a compact metric space and f : X −→ X be continuous. For
positive integer n, define dn(x, y) = max0≤j≤n−1 d(f j(x), f j(y)). For ε > 0, let cov(n, ε, f)
be the minimum number of sets of dn-diameter at most ε whose union contains X (the
dn-diameter of a set A is the quantity supx,y∈A dn(x, y)).

The topological entropy of f , denoted h(f), is then:

h(f) = lim
ε→0+

lim sup
n→∞

1
n

log cov(n, ε, f)

The definition of topological entropy can be intuitively understood as follows: Imagine a
computer screen with a picture of A as a two-dimensional set; the map f then defines how
the points in A move in one time step, and dn(x, y) measures the maximum distance of the
trajectories of the points x, y ∈ A after the first n − 1 time steps; ε can be viewed as the
“resolution” of our computer screen (small ε gives high resolution). The topological entropy
is then, roughly, the (exponential) rate of evolution of the number of distinct trajectories we
can discern as the number of time steps becomes very large and our resolution becomes very
high.

RTA’12

64 TRSs as Topological Dynamical Systems

I Example 6.5. Let Σ1 = {f1/2, . . . , fN/2} where N ≥ 1 and R1 = {f1(x1, x2) →
f2(x1, x2), . . . , fN (x1, x2) → f1(x1, x2)}, and let S1 be the (necessarily unique) outermost
strategy for R1. Then, FS1 is an isometry, whence dn(s, t) = d(s, t) for all non-negative
integers n and all s, t ∈ T∞(Σ, ∅). But for each ε > 0, the minimum number of sets
of d-diameter sets needed to cover X is then a number, k, independent of n, whence
h(FS1) = limε→0+ lim supn→∞ 1/n log k = 0.

Let Σ2 = {f1/1, . . . , fN/1} where N ≥ 1 and R2 = {f1(x) → x, . . . , fN (x) → x}, and
S2 be the (again, unique) outermost strategy for R2. Then, FS2 is conjugate to the full
one-sided shift on N symbols, hence has identical entropy. By standard results (see, e.g., [17,
p. 120]), the topological entropy of this system is logN ; hence h(FS2) = logN .

Let Σ3 = {f1/n1, . . . , fN/Nn}, let R3 be an orthogonal TRS containing at least one
rule, and such that each rule is on the form fi(x1, . . . , xni) → r where every variable in r
occurs at depth at least 2. Let S3 be the leftmost-outermost strategy for R3. Then, for
all s, t ∈ T∞(Σ, ∅), we have d(FS3(s), FS3(t)) ≤ d(s, t), and by arguing as for R1 above, we
obtain, mutatis mutandis, that h(FS3) = 0.

A moment’s thought reveals that when f is a weak contraction (i.e., d(f(x), f(y)) ≤ d(x, y)
for all x, y ∈ X), then h(f) = 0, and as Example 6.5 shows, this situation may occur if the
depth of any occurrence of a variable is not decreased in any rule. For depth-decreasing
systems such as R2 in Example 6.5, the situation at first glance seems more promising as we
obtain positive, finite entropy. However, we will momentarily show that this is an artifact of
all function symbols in the signature being unary. In general, systems containing at least
two symbols of arity at least 2, and just a single collapsing rule with at least two variables in
the left-hand side will have infinite entropy (for outermost strategies).

Before we proceed, we need an ancillary notion: If A is a closed subset of (X, d) such
that F (A) ⊆ A, the restriction f |A of f to A induces a topological dynamical system, and
we may hence consider the topological entropy h(f |A). The following result is standard (see,
e.g., [12, Prop. 2.5.5(3)]):

I Lemma 6.6. Let (X, d) be compact and let f : X −→ X be continuous. If A ⊆ X is closed
and satisfies F (A) ⊆ A, then h(f |A) ≤ h(f).

We then have:

I Theorem 6.7. Let Σ be a signature containing at least two elements f, g ∈ Σ each of which
has arity at least 2. Let l→ x be a rule where l is a linear term (i.e. each variable occurs at
most once) containing at least two distinct variables x and y.

Let R ⊇ {l→ x} be a TRS where no rule in R \ {l→ x} overlaps l→ x at the root, and
let S be any outermost strategy for R. Then, h(FS) =∞.

Proof. Let px and py be the unique positions of x and y in l. Define the map gl : T(Σ, V) −→
T(Σ, V) by gl(s) = l[s]px

. As l is not a variable, the sequence (gnl)n is convergent in T∞(Σ, V)
for every s and must converge to an infinite term. Thus, define tl = limn→∞ gnl (l). Note that
tl is an infinite term that is not ground, as l contains at least one variable distinct from x.

Let A ⊆ T∞(Σ, ∅) be the set of infinite ground terms such that s ∈ A iff (i) for each
position p of tl such that tl|p /∈ V , we have tl|p = s|p, and (ii) if q is a position in s not
covered by (i), then the root symbol of s|q is either f or g. (Intuition: s is obtained by
starting with tl and then filling in infinite ground terms over the signature {f/2, g/2} at all
occurrences of variables in tl.) Let (sn) be a convergent sequence of elements of A. Clearly,
the limit of the sequence must satisfy (i) and (ii) above, whence A is a closed set. For s ∈ A,

S.B. Andersen and J.G. Simonsen 65

we permit ourselves to talk about the “stacked copies of l” when referring to the copies of l
in the “spine” tl that is present s.

Observe that, as l was a linear term, each element of A contains a redex of rule l → x

at the root. As no rule in R distinct from l→ x overlaps l→ x at the root, any outermost
strategy S must, when applied to s ∈ A, always select the redex of rule l → x at the root.
By construction of A, contraction of this redex yields an element of A (specifically, we have
FS(s) = s|px

), whence FS(A) ⊆ A.
By Lemma 6.6 it thus suffices to prove that h(FS |A) =∞.

Let p be any position, j ≥ 0, and consider pjx; by the above observations, we have
F jS(s) = s|pj

x
, and hence for any position p in F jS(s), we have F jS(s)|p = s|pj

xp
. Thus, for

arbitrary s, t ∈ A:

dn(s, t) = max
0≤j≤n−1

max{2−|p| : root(s|pj
xp

) 6= root(t|pj
xp

)} .

(The second max in the above is due to the fact that the position p of minimal length
satisfying the conditions defines the metric; for such a p the quantity 2−|p| is maximized.)

By Lemma 2.3, dn is an ultrametric, and we may thus compute the topological entropy
by counting balls of radius ε instead of sets of diameter ε. Also by Lemma 2.3, two open
dn-balls Bn(s, 2−m) and Bn(t, 2−m) are either disjoint or equal, and we can thus compute
cov(n, 2−m, FS) by counting the number of distinct balls of radius 2−m. We proceed by
giving a lower bound on the number of such balls.

Let B be the set of infinite ground terms built solely of symbols f and g such that
t ∈ B iff root(t|p) = f for |p| 6= m − |py|. (i.e., t “consists of fs at all depths except
m − |py| where t may use both f and g”). Observe that |B| = 22m−|py| (there are ex-
actly 2m−|py| positions of length m − |py|, and each of these can hold either f or g).
Let s ∈ A be arbitrary and set
Cm,1 = {s[t]py

: t ∈ B}, resp. Cm,n =
{sn[t]pn−1

x py
: t ∈ B ∧ sn ∈ Cm,n−1}.

(Intuition: In the first n stacked copies of
l, we replace the subterm at py by an
element of B. See the drawing to the
right.) Observe that |Cm,1| = 22m−|py|

|Cm,n| = 22m−|py| · |Cm,n−1|, whence
|Cm,n| = 2n(2m−|py|). Let s, s′ ∈ Cm,n
with t 6= t′. Observe that
root(s|p) = root(s′|p) for all positions p
not on the form p = pjxpyq where
|q| = m− |py|.

l

m

py px

l

m+ |px|

pxpy p2
x

l

m+ 2|px|

p2
x
py p3

x

Thus, there must be a position p = pjxpyq with |q| = m − |py| such that root(s|p) 6=
root(s′|p). Let p have minimal length among such positions. Observe that FS(s) = s|px

and
FS(s′) = s′|px ; thus, dn(s, s′) = 2−|pyq| = 2−m.

All open dn-balls Bn(s, 2−m) with s ∈ Cm,n are disjoint by Lemma 2.3. Note that all of
these balls must occur in any minimal cover of A by balls of radius 2−m (for, if some ball
Bn(t, 2−m) of radius 2−m contains s ∈ Cm,n, then Bn(t, 2−m) ∩Bn(s, 2−m) 6= ∅, whence by
Lemma 2.3 we have Bn(t, 2−m) = Bn(s, 2−m).

RTA’12

66 TRSs as Topological Dynamical Systems

Hence, cov(n, 2−m, FS) ≥ |Cm,n| = 2n2m−|py| . Thus:

h(FS |A) = lim
ε→0+

lim sup
n→∞

1
n

log cov(n, ε, FS |A) ≥ lim
m→∞

lim sup
n→∞

1
n

log 2n2m−|py|

= lim
m→∞

lim sup
n→∞

n2m−|py|

n
≥ lim
m→∞

2m−|py| =∞ ,

and the result follows. J

Thus, if for example Σ = {f/2, g/3, h/0} andR = {f(x, y)→ y, g(x, y, z)→ g(f(x, y), h, h)}
and S is the outermost-left strategy, then h(FS) =∞.

Theorem 6.7 and Example 6.5 together show that the problems with collapsing rules
already known in infinitary rewriting rear their heads in our setting of finite reductions as
well; this is not entirely surprising as the topological entropy concerns the limiting behaviour
of the one-step rewrite relation. The problems with entropy are reminiscent of the result
from infinitary rewriting that an orthogonal system is confluent iff it is almost non-collapsing,
that is, has at most one collapsing rule, and such that the unique collapsing rule has exactly
one variable in the left-hand side [19].

7 Conclusion and future work

We have laid the groundwork for the study of topological dynamical systems induced by term
rewriting systems; while we have only scratched the surface, we have shown that such systems
properly generalize well-known classes of systems such as symbolic dynamical systems, and
are equipped with very interesting dynamical properties of their own.

A plethora of open questions remain. We mention a few and give suggestions for future
work:

Is conjugacy undecidable for rewriting systems over the full set of terms (i.e., without
passing to a closed proper subset of T∞(Σ, ∅)? Conjecture: yes.
There is a rich interaction between topological dynamical systems and measure theory;
in the same vein, it is highly conceivable that there are links between our work and
probabilistic rewriting [9, 10, 11].
There are several properties of topological dynamical systems that are typically studied for
each class of such systems, for example topological transitivity, mixing and expansiveness
[12]; it would be interesting to obtain characterizations of the term rewriting systems
whose induced topological dynamical systems have these properties.
The computability of the dynamics of general dynamical systems is well-studied (see,
e.g., [14, 15, 16]), as is complexity issues related to certain aspects of dynamical systems
(a few examples: [8, 7, 26]). It would be of interest to perform similar investigations of
computability and complexity for the systems defined in this paper.
There is a need for better topological invariants than the topological entropy; in addition,
the entropy of FR should be investigated.
What are the connections to the field of infinitary rewriting?

Acknowledgements The authors thank Jeroen Ketema and the anonymous referees for
helpful comments.

S.B. Andersen and J.G. Simonsen 67

References
1 A. Arnold and M. Nivat. The metric space of infinite trees. Algebraic and topological

properties. Fundamenta Informaticae, 3(4):445–476, 1980.
2 N. Aubrun and M.-P. Béal. Decidability of conjugacy of tree-shifts of finite type. In

S. Albers, A. Marchetti-Spaccamela, Y. Matias, S. E. Nikoletseas, and W. Thomas, editors,
ICALP (1), volume 5555 of Lecture Notes in Computer Science, pages 132–143. Springer,
2009.

3 N. Aubrun and M.-P. Béal. Sofic and almost of finite type tree-shifts. In F. M. Ablayev
and E. W. Mayr, editors, CSR, volume 6072 of Lecture Notes in Computer Science, pages
12–24. Springer, 2010.

4 F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,
Cambridge, United Kingdom, 1998.

5 M. Barnsley. Fractals Everywhere. Morgan Kaufmann, 1993.
6 M.-P. Béal and D. Perrin. Symbolic dynamics and finite automata. In G. Rosenberg and

A. Salomaa, editors, Handbook of Formal Languages, volume 2, chapter 10. Springer-Verlag,
1997.

7 V. D. Blondel, O. Bournez, P. Koiran, C. H. Papadimitriou, and J. N. Tsitsiklis. Deciding
stability and mortality of piecewise affine dynamical systems. Theor. Comput. Sci., 255(1-
2):687–696, 2001.

8 O. Bournez and M. Cosnard. On the computational power of dynamical systems and hybrid
systems. Theor. Comput. Sci., 168(2):417–459, 1996.

9 O. Bournez and F. Garnier. Proving positive almost-sure termination. In J. Giesl, editor,
RTA, volume 3467 of Lecture Notes in Computer Science, pages 323–337. Springer, 2005.

10 O. Bournez and F. Garnier. Proving positive almost sure termination under strategies.
In F. Pfenning, editor, RTA, volume 4098 of Lecture Notes in Computer Science, pages
357–371. Springer, 2006.

11 O. Bournez and M. Hoyrup. Rewriting logic and probabilities. In R. Nieuwenhuis, editor,
RTA, volume 2706 of Lecture Notes in Computer Science, pages 61–75. Springer, 2003.

12 M. Brin and G. Stuck. Introduction to Dynamical Systems. Cambridge University Press,
2002.

13 J. de Bakker and E. de Vink. Control Flow Semantics. The MIT Press, 1996.
14 J.-C. Delvenne. Turing universality in dynamical systems. In A. Beckmann, U. Berger,

B. Löwe, and J. V. Tucker, editors, CiE, volume 3988 of Lecture Notes in Computer Science,
pages 147–152. Springer, 2006.

15 J.-C. Delvenne, P. Kurka, and V. D. Blondel. Decidability and universality in symbolic
dynamical systems. Fundamenta Informaticae, 74(4):463–490, 2006.

16 S. Galatolo, M. Hoyrup, and C. Rojas. Effective symbolic dynamics, random points, statist-
ical behavior, complexity and entropy. Information and Computation, 208(1):23–41, 2010.

17 A. Katok and B. Hasselblatt. Introduction to the Modern Theory of Dynamical Systems.
Cambridge University Press, 1995.

18 R. Kennaway and F.-J. de Vries. Infinitary rewriting. In Terese [27], chapter 12, pages
668–711.

19 R. Kennaway, J. Klop, R. Sleep, and F.-J. de Vries. Transfinite reductions in orthogonal
term rewriting. Information and Computation, 119(1):18–38, 1995.

20 J. Ketema. Böhm-Like Trees for Rewriting Systems. PhD thesis, Vrije Universiteit Ams-
terdam, 2006.

21 J. Ketema. Reinterpreting compression in infinitary rewriting. In Proceedings of the 23rd
International Conference on Rewriting Techniques and Applications (RTA 2012), Leibniz
International Proceedings in Informatics, 2012.

RTA’12

68 TRSs as Topological Dynamical Systems

22 B. Kitchens. Symbolic Dynamics: One-Sided, Two-Sided and Countable State Markov
Shifts. Universitext. Springer-Verlag, 1997.

23 B. Kitchens. Symbolic dynamics of tree maps. Journal of Difference Equations and Ap-
plications, 15(1):71–76, 2009.

24 G. Kreisel, D. Lacombe, and J. Shoenfield. Fonctionelles récursivement définissables et
fonctionelles récursives. Comptes Rendus Hebdomadaires des Séanced de l’Academie des
Sciences, 245:399–402, 1957.

25 D. Lind and B. Marcus. An Introduction to Symbolic Dynamics and Coding. Cambridge
University Press, 1995.

26 J. G. Simonsen. On the computational complexity of the languages of general symbolic
dynamical systems and beta-shifts. Theor. Comput. Sci., 410(47-49):4878–4891, 2009.

27 Terese, editor. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 2003.

28 P. Walters. An Introduction to Ergodic Theory, volume 79 of Graduate Texts in Mathem-
atics. Springer-Verlag, 1981.

Infinitary Term Graph Rewriting is Simple, Sound
and Complete
Patrick Bahr

Department of Computer Science, University of Copenhagen (DIKU)

Abstract
Based on a simple metric and a simple partial order on term graphs, we develop two infinitary
calculi of term graph rewriting. We show that, similarly to infinitary term rewriting, the partial
order formalisation yields a conservative extension of the metric formalisation of the calculus. By
showing that the resulting calculi simulate the corresponding well-established infinitary calculi of
term rewriting in a sound and complete manner, we argue for the appropriateness of our approach
to capture the notion of infinitary term graph rewriting.

1998 ACM Subject Classification F.4.2 Grammars and Other Rewriting Systems, F.1.1 Models
of Computation

Keywords and phrases term graphs, partial order, metric, infinitary rewriting, graph rewriting

Digital Object Identifier 10.4230/LIPIcs.RTA.2012.69

Category Regular Research Paper

1 Introduction

Term graph rewriting provides an efficient technique for implementing term rewriting by
avoiding duplication of terms and instead relying on pointers in order to refer to a term several
times [8]. Due to cycles, finite term graphs may represent infinite terms, and, correspondingly,
finite term graph reductions may represent transfinite term reductions. Kennaway et al. [16]
showed that finite term graph reductions simulate a restricted class of transfinite term
reductions, called rational reductions, in a sound and complete manner via the unravelling
mapping U (·) from term graphs to terms. More precisely, given a term graph rewriting
system R and a finite term graph g, we have for each finite term graph reduction g →∗R h,
a rational term reduction U (g)�U(R) U (h) (soundness), and conversely, for each rational
term reduction U (g)�U(R) t, there is a term graph reduction g →∗R h and a rational term
reduction t �U(R) U (h) (completeness). Since term graph reduction steps may contract
several term redexes simultaneously, the completeness result has to be formulated in this
weaker form. Note, however, that this completeness property subsumes completeness of
normalising reductions: for each rational reduction U (g)�U(R) t to a normal form t, there
is a reduction g →∗R h with U (h) = t.

In this paper, we aim to resolve the asymmetry in the comparison of term rewriting
and term graph rewriting by studying transfinite term graph reductions. To this end, we
develop two infinitary calculi of term graph rewriting by generalising the notions of strong
convergence on terms, based on a metric [15] resp. partial order [4], to term graphs. Instead of
the complicated structures that we have used in our previous approach to weak convergence
on term graphs [5], we adopt a rather simple and intuitive metric resp. partial order [6].

After summarising the basic theory of infinitary term rewriting (Section 2) and the
fundamental concepts concerning term graphs (Section 3), we present a metric and a partial

© Patrick Bahr;
licensed under Creative Commons License NC-ND

23rd International Conference on Rewriting Techniques and Applications (RTA’12).
Editor: A. Tiwari; pp. 69–84

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

70 Infinitary Term Graph Rewriting is Simple, Sound and Complete

order on term graphs (Section 4). Based on these two structures, we define the notions of
strong m-convergence resp. strong p-convergence and show that – akin to term rewriting –
both coincide on total term graphs and that strong p-convergence is normalising (Section 5).

In Section 6, we present the main result of this paper: strongly p-converging term graph
reductions are sound and complete w.r.t. strongly p-converging term reductions in the sense
of Kennaway et al. [16] explained above.

This result comes with some surprise, though, as Kennaway et al. [16] argued that infinitary
term graph rewriting cannot adequately simulate infinitary term rewriting. In particular, they
present a counterexample for the completeness of an informally defined infinitary calculus of
term graph rewriting. This counterexample indeed shows that strongly m-converging term
graph reductions are not complete for strongly m-converging term reductions.

However, using the correspondence between strong p-convergence and m-convergence, we
can derive soundness of the metric calculus from the soundness of the partial order calculus.
Moreover, we prove that the metric calculus is still complete for normalising reductions.
We thus argue that strong m-convergence, too, can be adequately simulated by term graph
rewriting. In fact, in their original work on term graph rewriting [8], Barendregt et al. showed
completeness only for normalising reductions in order to argue for the adequacy of acyclic
finite term graph rewriting for simulating finite term rewriting.

Due to space restrictions, we could not include all proofs in the main body of this paper.
All missing proofs can be found in the companion report [7].

2 Infinitary Term Rewriting

We assume familiarity with the basic theory of term rewriting [19], ordinal numbers, orders
and topological spaces [14]. Below, we give an outline of infinitary term rewriting [15, 4].

We denote ordinal numbers by lower case Greek letters α, β, γ, λ, ι. A sequence S of
length α in a set A, written (aι)ι<α, is a function from α to A with ι 7→ aι for all ι ∈ α. We
write |S| for the length α of S. If α is a limit ordinal, S is called open; otherwise it is called
closed. Given two sequences S, T , we write S · T to denote their concatenation and S ≤ T
(resp. S < T) if S is a (proper) prefix of T . The prefix of T of length β ≤ |T | is denoted T |β .
For a set A, we write A∗ to denote the set of finite sequences over A. For a finite sequence
(ai)i<n ∈ A∗, we also write 〈a0, a1, . . . , an−1〉. In particular, 〈〉 denotes the empty sequence.

We consider the sets T ∞(Σ) and T (Σ) of (possibly infinite) terms resp. finite terms over
a signature Σ. Each symbol f has an associated arity ar(f), and we write Σ(n) for the set of
symbols in Σ with arity n. For rewrite rules, we consider the signature ΣV = Σ] V that
extends the signature Σ with a set V of nullary variable symbols. For terms s, t ∈ T ∞(Σ)
and a position π ∈ P(t) in t, we write t|π for the subterm of t at π, t(π) for the symbol in t
at π, and t[s]π for the term t with the subterm at π replaced by s.

A term rewriting system (TRS) R is a pair (Σ, R) consisting of a signature Σ and a set R
of term rewrite rules of the form l→ r with l ∈ T ∞(ΣV) \ V and r ∈ T ∞(ΣV) such that all
variables occurring in r also occur in l. If the left-hand side of each rule in a TRS R is finite,
then R is called left-finite. Every TRS R defines a rewrite relation →R as usual: s→R t iff
there is a position π ∈ P(s), a rule ρ : l → r ∈ R, and a substitution σ such that s|π = lσ

and t = s[rσ]π. We write s→π,ρ t in order to indicate the applied rule ρ and the position π.
The subterm s|π is called a redex and is said to be contracted to rσ.

The metric d on T ∞(Σ) that is used in the setting of infinitary term rewriting is defined
by d(s, t) = 0 if s = t and d(s, t) = 2−k if s 6= t, where k is the minimal depth at which s
and t differ. The pair (T ∞(Σ),d) is known to form a complete ultrametric space [2].

P. Bahr 71

A reduction in a term rewriting system R, is a sequence S = (tι →πι tι+1)ι<α of reduction
steps in R. The reduction S is called strongly m-continuous if limι→λ tι = tλ and the depths
of contracted redexes (|πι|)ι<λ tend to infinity, for each limit ordinal λ < α. A reduction S
is said to strongly m-converge to t, written S : t0 �m R t, if it is strongly m-continuous and
either S is closed with t = tα or S is open with t = limι→α tι and the depths of contracted
redexes (|πι|)ι<α tend to infinity.

I Example 2.1. Consider the rule ρ : Y x→ x (Y x) defining the fixed point combinator Y
in an applicative language. If we use an explicit function symbol @ instead of juxtaposition
to denote application, ρ reads @(Y, x)→ @(x,@(Y, x)). Given a term t, we get the reduction

S : Y t→ρ t (Y t)→ρ t (t (Y t))→ρ t (t (t (Y t)))→ρ . . .

which strongly m-converges to the infinite term t (t (. . .)).
As another example, consider the rule ρ′ : f(x)→ f(g(x)) and its induced reduction

T : h(c, f(c))→ρ′ h(c, f(g(c)))→ρ′ h(c, f(g(g(c))))→ h(c, f(g(g(g(c)))))→ρ′ . . .

Although the underlying sequence of terms converges in the metric space (T ∞(Σ),d), viz. to
the infinite term h(c, f(g(g(. . .)))), the reduction T does not strongly m-converges since the
depth of the contracted redexes does not tend to infinity but instead stays at 1.

The partial order ≤⊥ is defined on partial terms, i.e. terms over signature Σ⊥ = Σ] {⊥},
with ⊥ a nullary symbol. It is characterised as follows: s ≤⊥ t iff t can be obtained from s

by replacing each occurrence of ⊥ by some partial term. The pair (T ∞(Σ⊥),≤⊥) forms a
complete semilattice [13]. A partially ordered set (A,≤) is called a complete partial order
(cpo) if it has a least element and every directed subset D of A has a least upper bound (lub)⊔
D in A. If, additionally, every non-empty subset B of A has a greatest lower bound (glb)d
B, then (A,≤) is called a complete semilattice. This means that for complete semilattices

the limit inferior lim infι→α aι =
⊔
β<α

(d
β≤ι<α aι

)
of a sequence (aι)ι<α is always defined.

In the partial order approach to infinitary rewriting, convergence is defined by the limit
inferior. Since we are considering strong convergence, the positions πι at which reductions
take place are taken into consideration as well. In particular, we consider, for each reduction
step tι →πι tι+1 at position πι, the reduction context cι = tι[⊥]πι , i.e. the starting term with
the redex at πι replaced by ⊥. To indicate the reduction context cι of a reduction step, we
also write tι →cι tι+1. A reduction S = (tι →cι tι+1)ι<α is called strongly p-continuous if
lim infι<λ cι = tλ for each limit ordinal λ < α. The reduction S is said to strongly p-converge
to a term t, written S : t0 �p R t, if it is strongly p-continuous and either S is closed with
t = tα, or S is open with lim infι<α cι = t. If S : t0 �p R t and t as well as all tι with ι < α

are total, i.e. contained in T ∞(Σ), then we say that S strongly p-converges to t in T ∞(Σ).
The distinguishing feature of the partial order approach is that, since the partial order

on terms forms a complete semilattice, each continuous reduction also converges. It provides
a conservative extension to strong m-convergence that allows rewriting modulo meaningless
terms [4] by rewriting terms to ⊥ if they are divergent according to the metric calculus.

I Example 2.2. Reconsider S and T from Example 2.1. S has the same convergence
behaviour in the partial order setting, viz. S : Y t�p t (t (. . .)). However, while the reduction
T does not strongly m-converge, it does strongly p-converge, viz. T : h(c, f(c))�p h(c,⊥).

The relation between m- and p-convergence illustrated in the examples above is charac-
teristic: strong p-convergence is a conservative extension of strong m-convergence.

I Theorem 2.3 ([4]). For every reduction S in a TRS the following equivalence holds:

S : s�m R t iff S : s�p R t in T ∞(Σ).

RTA’12

72 Infinitary Term Graph Rewriting is Simple, Sound and Complete

In the remainder of this paper, we shall develop a generalisation of both strong m- and
p-convergence to term graphs that maintains the above correspondence, and additionally
simulates term reductions in a sound and complete way.

3 Graphs and Term Graphs

The notion of term graphs that we employ in this paper is taken from Barendregt et al. [8].

I Definition 3.1 (graphs). Let Σ be a signature. A graph over Σ is a tuple g = (N, lab, suc)
consisting of a set N (of nodes), a labelling function lab : N → Σ, and a successor function
suc : N → N∗ such that |suc(n)| = ar(lab(n)) for each node n ∈ N , i.e. a node labelled with
a k-ary symbol has precisely k successors. If suc(n) = 〈n0, . . . , nk−1〉, then we write suci(n)
for ni. Moreover, we use the abbreviation arg(n) for the arity ar(lab(n)) of n in g.

I Definition 3.2 (paths, reachability). Let g = (N, lab, suc) be a graph and n,m ∈ N . A
path in g from n to m is a finite sequence π ∈ N∗ such that either π is empty and n = m, or
π = 〈i〉 · π′ with 0 ≤ i < arg(n) and the suffix π′ is a path in g from suci(n) to m. If there
exists a path from n to m in g, we say that m is reachable from n in g.

I Definition 3.3 (term graphs). Given a signature Σ, a term graph g over Σ is a tuple
(N, lab, suc, r) consisting of an underlying graph (N, lab, suc) over Σ whose nodes are all
reachable from the root node r ∈ N . The class of all term graphs over Σ is denoted G∞(Σ).
We use the notation Ng, labg, sucg and rg to refer to the respective components N ,lab, suc
and r of g. Given a graph or a term graph h and a node n in h, we write h|n to denote the
sub-term graph of h rooted in n, which consists of all nodes reachable from n in h.

Paths in a graph are not absolute but relative to a starting node. In term graphs, however,
we have a distinguished root node from which each node is reachable. Paths relative to the
root node are central for dealing with term graphs modulo isomorphism:

I Definition 3.4 (positions, depth, trees). Let g ∈ G∞(Σ) and n ∈ Ng. A position of n in g
is a path in the underlying graph of g from rg to n. The set of all positions in g is denoted
P(g); the set of all positions of n in g is denoted Pg(n). A position π ∈ Pg(n) is called
minimal if no proper prefix π′ < π is in Pg(n). The set of all minimal positions of n in g
is denoted Pmg (n). The depth of n in g, denoted depthg(n), is the minimum of the lengths
of the positions of n in g. For a position π ∈ P(g), we write nodeg(π) for the unique node
n ∈ Ng with π ∈ Pg(n), g(π) for its symbol labg(n), and g|π for the sub-term graph g|n.
The term graph g is called a term tree if each node in g has exactly one position.

Note that the labelling function of graphs – and thus term graphs – is total. In contrast,
Barendregt et al. [8] considered open (term) graphs with a partial labelling function such
that unlabelled nodes denote holes or variables. This partiality is reflected in their notion of
homomorphisms in which the homomorphism condition is suspended for unlabelled nodes.

Instead of a partial node labelling function, we chose a syntactic approach that is more
flexible and closer to the representation in terms. Variables, holes and “bottoms” are labelled
by a distinguished set of constant symbols and the notion of homomorphisms is parametrised
by a set of constant symbols ∆ for which the homomorphism condition is suspended:

I Definition 3.5 (∆-homomorphisms). Let Σ be a signature, ∆ ⊆ Σ(0), and g, h ∈ G∞(Σ).
A function φ : Ng → Nh is called homomorphic in n ∈ Ng if the following holds:

labg(n) = labh(φ(n)) (labelling)
φ(sucgi (n)) = suchi (φ(n)) for all 0 ≤ i < arg(n) (successor)

P. Bahr 73

A ∆-homomorphism φ from g to h, denoted φ : g →∆ h, is a function φ : Ng → Nh that is
homomorphic in n for all n ∈ Ng with labg(n) 6∈ ∆ and satisfies φ(rg) = rh.

Note that, in contrast to Barendregt et al. [8], we require that root nodes are mapped to
root nodes. This additional requirement makes our generalised notion of homomorphisms
more akin to that of Barendsen [9]: for ∆ = ∅, we obtain his notion of homomorphisms.

Nodes labelled with a symbol from ∆ can be thought of as holes in the term graphs,
which can be filled with other term graphs. For example, if we have a distinguished set of
variable symbols V ⊆ Σ(0), we can use V-homomorphisms to formalise the matching of a
term graph against a term graph rule, which requires the instantiation of variables.

Note that ∆-homomorphisms are unique [5], i.e. there is at most one ∆-homomorphism
from one term graph to another. Consequently, whenever there are two ∆-homomorphisms
φ : g →∆ h and ψ : h →∆ g, they are inverses of each other, i.e. ∆-isomorphisms. If two
term graphs are ∆-isomorphic, we write g ∼=∆ h.

For the two special cases ∆ = ∅ and ∆ = {σ}, we write φ : g → h resp. φ : g →σ h

instead of φ : g →∆ h and call φ a homomorphism resp. a σ-homomorphism. The same
convention applies to ∆-isomorphisms.

Since we are studying modes of convergence over term graphs, we want to reason modulo
isomorphism. The following notion of canonical term graphs will allow us to do that:

I Definition 3.6 (canonical term graphs). A term graph g is called canonical if n = Pg(n)
for each n ∈ Ng. The set of all canonical term graphs over Σ is denoted G∞C (Σ).

For each term graph g, we can give a unique canonical term graph C(g) isomorphic to g:

NC(g) = {Pg(n) |n ∈ N } rC(g) = Pg(r)
labC(g)(Pg(n)) = lab(n) sucC(g)i (Pg(n)) = Pg(suci(n)) for all n ∈ N, 0 ≤ i < arg(n)

As we have shown previously [5], this indeed yields a canonical representation of term graphs,
viz. g ∼= h iff C(g) = C(h) for all term graphs g, h.

Note that the set of nodes NC(g) above forms a partition of the set of positions in g. We
write ∼g for the equivalence relation on P(g) that is induced by this partition. That is,
π1 ∼g π2 iff nodeg(π1) = nodeg(π2). The structure of a term graph g is uniquely determined
by its set of positions P(g), the labelling g(·) : π 7→ g(π), and the equivalence ∼g. We will
call such a triple (P(g), g(·),∼g) a labelled quotient tree. Labelled quotient trees uniquely
represent term graphs up to isomorphism. In other words: labelled quotient trees uniquely
represent canonical term graphs. For a more axiomatic treatment of labelled quotient tree
that studies these relationships, we refer to our previous work [5].

We can characterise ∆-homomorphisms in terms of labelled quotient trees:

I Lemma 3.7 ([5]). Given g, h ∈ G∞(Σ), there is a φ : g →∆ h iff for all π, π′ ∈ P(g),

(a) π ∼g π′ =⇒ π ∼h π′, and (b) g(π) = h(π) whenever g(π) 6∈ ∆.

Intuitively, (a) means that h has at least as much sharing of nodes as g has, whereas (b)
means that h has at least the same non-∆-symbols as g.

Given a term tree g, the equivalence ∼g is the identity relation IP(g) on P(g), i.e. π1 ∼g π2
iff π1 = π2. There is an obvious one-to-one correspondence between canonical term trees
and terms: a term t ∈ T ∞(Σ) corresponds to the canonical term tree given by the labelled
quotient tree (P(t), t(·), IP(t)). We thus consider the set of terms T ∞(Σ) as the subset of
term trees in G∞C (Σ).

With this correspondence in mind, we define the unravelling of a term graph g, denoted
U (g), as the unique term t such that there is a homomorphism φ : t→ g.

RTA’12

74 Infinitary Term Graph Rewriting is Simple, Sound and Complete

I Example 3.8. Consider the term graphs g2 and h0 illustrated in Figure 1. The unravelling
of g2 is the term @(f,@(f,@(Y, f))) whereas the unravelling of the cyclic term graph h0 is
the infinite term @(f,@(f, . . .)).

4 Two Simple Modes of Convergence for Term Graphs

In a previous attempt to generalise the modes of convergence of term rewriting to term
graphs, we developed a metric and a partial order on term graphs that were both rather
complicated [5]. While the resulting notions of weak convergence have a correspondence
similar to that for terms (cf. Theorem 2.3), they are also limited as we explain below. In this
paper, we shall use a much simpler and more intuitive approach that we recently developed [6],
and which we summarise briefly below.

Like for terms, we move to a signature Σ⊥ = Σ] {⊥} to define a partial order on term
graphs. Term graphs over signature Σ⊥ are also referred to as partial whereas term graphs
over Σ are referred to as total. In order to generalise the partial order ≤⊥ on terms to term
graphs, we make use of the observation that ⊥-homomorphisms characterise the partial
order ≤⊥: given two terms s, t ∈ T ∞(Σ⊥), we have s ≤⊥ t iff there is a ⊥-homomorphism
φ : s →⊥ t. In our previous work, we have used a restricted form of ⊥-homomorphisms
in order to define a partial order on term graphs [5]. In this paper, however, we simply
take ⊥-homomorphism as the definition of the partial order on term graphs. The simple
partial order ≤S

⊥ on G∞C (Σ⊥) is defined as follows: g ≤S
⊥ h iff there is a ⊥-homomorphism

φ : s→⊥ t. Hence, we get the following characterisation, according to Lemma 3.7:

I Corollary 4.1. Let g, h ∈ G∞C (Σ⊥). Then g ≤S
⊥ h iff, for all π, π′ ∈ P(g), we have

(a) π ∼g π′ =⇒ π ∼h π′ (b) g(π) = h(π) if g(π) ∈ Σ.

With this partial order on term graphs, we indeed get a complete semilattice:

I Theorem 4.2 ([6]). The pair (G∞C (Σ⊥),≤S
⊥) forms a complete semilattice. In particular,

the limit inferior of a sequence (gι)ι<α is given by the labelled quotient tree (P,∼, l):

P =
⋃

β<α
{π ∈ P(gβ) | ∀π′ < π∀β ≤ ι < α : gι(π′) = gβ(π′)}

∼ = (P × P) ∩
⋃

β<α

⋂
β≤ι<α

∼gι

l(π) =
{
gβ(π) if ∃β < α∀β ≤ ι < α : gι(π) = gβ(π)
⊥ otherwise

for all π ∈ P

In order to generalise the metric d on terms to term graphs, we need to formalise what
it means for two term graphs to be “equal” up to a certain depth. To this end, we define
for each term graph g ∈ G∞(Σ⊥) and d ∈ N the simple truncation g†d as the term graph
obtained from g by relabelling each node at depth d with ⊥ and (thus) removing all nodes
at depth greater than d. The distance d†(g, h) between two term graphs g, h ∈ G∞(Σ) is
then defined as 0 if g ∼= h and otherwise as 2−d with d the greatest d ∈ N with g†d ∼= h†d.
This definition indeed yields a complete ultrametric space:

I Theorem 4.3 ([6]). The pair (G∞C (Σ),d†) forms a complete ultrametric space. In particular,
the limit of each Cauchy sequence (gι)ι<α is given by the labelled quotient tree (P, l,∼):

P = lim inf
ι→α

P(gι) =
⋃

β<α

⋂

β≤ι<α
P(gι) ∼ = lim inf

ι→α
∼gι =

⋃

β<α

⋂

β≤ι<α
∼gι

l(π) = gβ(π) for some β < α with gι(π) = gβ(π) for each β ≤ ι < α for all π ∈ P

P. Bahr 75

The metric space that we have previously studied [5] was similarly defined in terms of a
truncation. However, we used a much more complicated notion of truncation that would
retain certain nodes of depth greater than d.

Similarly to the corresponding modes of convergence on terms, we have that if a sequence
of total term graphs (gι)ι<α converges in the metric space (G∞C (Σ⊥),d†), then limι→α gι =
lim infι→α gι. However, unlike in the setting of terms, the converse is not true! That is, if
lim infι→α gι is a total term graph, then it is not necessarily equal to limι→α gι – in fact,
(gι)ι<α might not even converge at all. As a consequence, we are not able to obtain a
correspondence in the vein of Theorem 2.3 for weak convergence. In the next section, we will
show that we do, however, obtain such a correspondence for strong convergence.

Note that the more restrictive partial order and metric space that we have studied in
our previous work [5] does yield the above described correspondence for weak convergence.
However, this result comes at the expense of generality and intuition: the convergence
behaviour illustrated in Figure 1c, which is intuitively expected and also captured by the
partial order ≤S

⊥ and the metric d�, is not possible in these more restrictive structures [6].

5 Infinitary Term Graph Rewriting

In this paper, we adopt the term graph rewriting framework of Barendregt et al. [8]. In order
to represent placeholders in rewrite rules, this framework uses variables – in a manner much
similar to term rewrite rules. To this end, we consider a signature ΣV = Σ] V that extends
the signature Σ with a set V of nullary variable symbols.

I Definition 5.1 (term graph rewriting systems).
(i) Given a signature Σ, a term graph rule ρ over Σ is a triple (g, l, r) where g is a graph

over ΣV and l, r ∈ Ng such that all nodes in g are reachable from l or r. We write ρl
resp. ρr to denote the left- resp. right-hand side of ρ, i.e. the term graph g|l resp. g|r.
Additionally, we require that for each variable v ∈ V there is at most one node n in g
labelled v and that n is different but still reachable from l.

(ii) A term graph rewriting system (GRS) R is a pair (Σ, R) with Σ a signature and R a
set of term graph rules over Σ.

The notion of unravelling straightforwardly extends to term graph rules: let ρ be a term
graph rule with ρl and ρr its left- resp. right-hand side term graph. The unravelling of
ρ, denoted U (ρ) is the term rule U (ρl) → U (ρr). The unravelling of a GRS R = (Σ, R),
denoted U (R), is the TRS (Σ, {U (ρ) | ρ ∈ R}).

I Example 5.2. Figure 1a shows two term graph rules which both unravel to the term rule
ρ : Y x → x (Y x) from Example 2.1. Note that sharing of nodes is used both to refer to
variables in the left-hand side from the right-hand side, and in order to simulate duplication.

Without going into all details of the construction, we describe the application of a rewrite
rule ρ with root nodes l and r to a term graph g in four steps: at first a suitable sub-term
graph of g rooted in some node n of g is matched against the left-hand side of ρ. This
matching amounts to finding a V-homomorphism φ from the left-hand side ρl to the sub-term
graph in g rooted in n, the redex. The V-homomorphism φ allows us to instantiate variables
in the rule with sub-term graphs of the redex. In the second step, nodes and edges in ρ that
are not in ρl are copied into g, such that each edge pointing to a node m in ρl is redirected
to φ(m). In the next step, all edges pointing to the root n of the redex are redirected to the
root n′ of the contractum, which is either r or φ(r), depending on whether r has been copied

RTA’12

76 Infinitary Term Graph Rewriting is Simple, Sound and Complete

@l

Y x

@r

@

Y
(ρ1)

@l

Y x

@r

(ρ2)
(a) Term graph rules that unravel to Y x → x (Y x).

@

Y f

(g0)

@

f

(h0)

ρ2

(b) A single ρ2-step.

@

Y f

(g0)

@

f @

Y

(g1)

@

f @

@

Y

(g2)

@

f @

@

(gω)

ρ1 ρ1 ρ1

(c) A strongly m-convergent term graph reduction over ρ1.

Figure 1 Implementation of the fixed point combinator as a term graph rewrite rule.

into g or not (because it is reachable from l in ρ). Finally, all nodes not reachable from the
root of (the now modified version of) g are removed.

With h the result of the above construction, this induces a pre-reduction step ψ : g 7→n,ρ,n′

h from g to h. In order to indicate the underlying GRS R, we also write ψ : g 7→R h.
The definition of term graph rewriting in the form of pre-reduction steps is very operational

in style. The result of applying a rewrite rule to a term graph is constructed in several
steps by manipulating nodes and edges explicitly. While this is beneficial for implementing a
rewriting system, it is problematic for reasoning on term graphs modulo isomorphism, which
is necessary for introducing notions of convergence. In our case, however, this does not cause
any harm since the construction of the result term graph of a pre-reduction step is invariant
under isomorphism. This observation justifies the following definition of reduction steps:

I Definition 5.3. Let R = (Σ, R) be GRS, ρ ∈ R and g, h ∈ G∞C (Σ) with n ∈ Ng and
m ∈ Nh. A tuple φ = (g, n, ρ,m, h) is called a reduction step, written φ : g →n,ρ,m h, if
there is a pre-reduction step φ′ : g′ 7→n′,ρ,m′ h′ with C(g′) = g, C(h′) = h, n = Pg′(n′), and
m = Ph′(m′). Similarly to pre-reduction steps, we write φ : g →R h or φ : g → h for short.

In other words, a reduction step is a canonicalised pre-reduction step. Figures 1b and 1c
show various (pre-)reduction steps derived from the rules in Figure 1a.

5.1 Reduction Contexts
The idea of strong convergence is to conservatively approximate the convergence behaviour
somewhat independently from the actual rules that are applied. Strong m-convergence
in TRSs requires that the depth of the redexes tends to infinity thereby assuming that
anything at the depth of the redex or below is potentially affected by a reduction step. Strong
p-convergence, on the other hand, uses a better approximation that only assumes that the
redex is affected by a reduction step – not however other subterms at the same depth. To
this end strong p-convergence uses a notion of reduction contexts – essentially the term
minus the redex – for the formation of limits. In this section, we shall devise a corresponding

P. Bahr 77

notion of reduction contexts on term graphs and argue for its adequacy for formalising strong
p-convergence. The following definition provides the basic construction that we shall use:

I Definition 5.4. Let g ∈ G∞(Σ⊥) and n ∈ Ng. The local truncation of g at n, denoted
g\n, is obtained from g by labelling n with ⊥ and removing all outgoing edges from n as
well as all nodes that thus become unreachable from the root.

I Lemma 5.5. For each g ∈ G∞(Σ⊥) and n ∈ Ng, the local truncation g\n has the following
labelled quotient tree (P, l,∼):

P = {π ∈ P(g) | ∀π′ < π : π′ 6∈ Pg(n)}
∼ = ∼g ∩ P × P

l(π) =
{
g(π) if π 6∈ Pg(n)
⊥ if π ∈ Pg(n)

for all π ∈ P

As a corollary of Lemma 5.5 and Corollary 4.1 we obtain the following:

I Corollary 5.6. For each g ∈ G∞(Σ⊥) and n ∈ Ng, we have g\n ≤S
⊥ g.

It is also possible – although cumbersome – to show that, given a reduction step g →n h

at node n, the local truncation g\n is isomorphic to the term graph that is obtained from h

by essentially relabelling the positions Pg(n) occurring in h with ⊥. For this term graph,
denoted h\[Pg(n)], we then also have h\[Pg(n)] ≤S

⊥ h. By combining this with Corollary 5.6,
we eventually obtain the following fundamental property of reduction contexts:

I Proposition 5.7. Given a reduction step g →n h, we have g\n ≤S
⊥ g, h.

This means that the local truncation at the root of the redex is preserved by reduction steps
and is therefore an adequate notion of reduction context for strong p-convergence [3].

5.2 Strong Convergence
Now that we have an adequate notion of reduction contexts, we can define strong p-convergence
on term graphs analogously to strong p-convergence on terms. For strong m-convergence, we
simply take the same notion of depth that we already used for the definition of the simple
truncation g†d and thus the simple metric d†.

I Definition 5.8. Let R = (Σ, R) be a GRS.
(i) The reduction context c of a graph reduction step φ : g →n h is the term graph C(g\n).

We write φ : g →c h to indicate the reduction context of a graph reduction step.
(ii) Let S = (gι →nι gι+1)ι<α be a reduction in R. S is strongly m-continuous in R if

limι→λ gι = gλ and (depthgι(nι))ι<λ tends to infinity for each limit ordinal λ < α. S
strongly m-converges to g in R, denoted S : g0 �m R g, if it is strongly m-continuous and
either S is closed with g = gα or S is open with g = limι→α gι and (depthgι(nι))ι<α
tending to infinity.

(iii) Let S = (gι →cι gι+1)ι<α be a reduction in R⊥ = (Σ⊥, R). S is strongly p-continuous
in R if lim infι→λ cι = gλ for each limit ordinal λ < α. S strongly p-converges to g
in R, denoted S : g0 �p R g, if it is strongly p-continuous and either S is closed with
g = gα or S is open with g = lim infι→α cι.

Note that we have to extend the signature ofR to Σ⊥ for the definition of strong p-convergence.
However, we can obtain the total fragment of strong p-convergence if we restrict ourselves
to total term graphs: a reduction (gι →R⊥ gι+1)ι<α strongly p-converging to g is called
strongly p-converging to g in G∞C (Σ) if g as well as each gι is total, i.e. an element of G∞C (Σ).

RTA’12

78 Infinitary Term Graph Rewriting is Simple, Sound and Complete

I Example 5.9. Figure 1c illustrates an infinite reduction derived from the rule ρ1 in Figure 1a.
Note that the reduction rule is applied to sub-term graphs at increasingly large depth. Since
additionally, gi†(i+ 1) ∼= gω†(i+ 1) for all i < ω, i.e. limi→ω gi = gω, the reduction strongly
m-converges to the term graph gω. Moreover, since each node in gω eventually appears in a
reduction context and remains stable afterwards, we have lim infi→ω gι = gω. Consequently,
the reduction also strongly p-converges to gω.

The rest of this section is concerned with proving that the above correspondence in convergence
behaviour – similarly to infinitary term rewriting (cf. Theorem 2.3) – is characteristic: strong
p-convergence in G∞C (Σ) coincides with strong m-convergence.

Since the partial order ≤S
⊥ forms a complete semilattice on G∞C (Σ⊥) according to The-

orem 4.2, we know that strong p-continuity coincides with strong p-convergence:

I Proposition 5.10. Each strongly p-continuous reduction in a GRS is strongly p-convergent.

The two lemmas below form the central properties that link strong m- and p-convergence:

I Lemma 5.11. Let (gι →nι gι+1)ι<α be an open reduction in a GRS R⊥. If S strongly
p-converges to a total term graph, then (depthgι(nι))ι<α tends to infinity.

I Lemma 5.12. Let (gι →nι gι+1)ι<α be an open reduction strongly p-converging to g in a
GRS R⊥. If (gι)ι<α is Cauchy and (depthgι(nι))ι<α tends to infinity, then g ∼= limι→α gι.

The following property, which relates strong m-convergence and -continuity, follows from
the fact that our definition of strong m-convergence on term graphs instantiates the abstract
notion of strong m-convergence from our previous work [3]:

I Lemma 5.13. Let S = (gι →nι gι+1)ι<α be an open strongly m-continuous reduction in a
GRS. If (depthgι(nι))ι<α tends to infinity, then S is strongly m-convergent.

Proof. Special case of Proposition 5.5 from [3]; cf. [10, Thm. B.2.5] for the correct proof. J

Now we have everything in place to prove that strong p-convergence conservatively extends
strong m-convergence.

I Theorem 5.14. Let R be a GRS and S a reduction in R⊥. We then have that

S : g �m R h iff S : g �p R h in G∞C (Σ).

Proof. Let S = (gι →nι gι+1)ι<α be a reduction in R⊥. We prove the “only if” direction by
induction on α. The case α = 0 is trivial. If α is a successor ordinal, then the statement
follows immediately from the induction hypothesis.

Let α be a limit ordinal. As S : g �m R gα, we know that S|γ : g �m R gγ for all γ < α.
Hence, we can apply the induction hypothesis to obtain that S|γ : g �p R gγ for each γ < α.
Thus, S is strongly p-continuous, which means, by Proposition 5.10, that S strongly p-
converges to some term graph h′. As S strongly m-converges, we know that (gι)ι<α is Cauchy
and that (depthgι(nι))ι<α tends to infinity. Hence, we can apply Lemma 5.12 to obtain that
h′ = limι→α gι = h, i.e. S : g �p R h. The “in G∞C (Σ)” part follows from S : g �m R h.

We will also prove the “if” direction by induction on α: again, the case α = 0 is trivial
and the case that α is a successor ordinal follows immediately from the induction hypothesis.

Let α be a limit ordinal. As S is strongly p-convergent in G∞C (Σ), we know that
S|γ : g �p R gγ in G∞C (Σ) for all γ < α. Thus, we can apply the induction hypothesis to
obtain that S|γ : g �m R gγ for each γ < α. Hence, S is strongly m-continuous. As S strongly
p-converges in G∞C (Σ), we know from Lemma 5.11 that (depthgι(nι))ι<α tends to infinity.
With the strong m-continuity of S, this yields, according to Lemma 5.13, that S strongly
m-converges to some h′. By Lemma 5.12, we conclude that h′ = h, i.e. S : g �m R h. J

P. Bahr 79

5.3 Normalisation of Strong p-convergence
In this section we shall show that – similarly to TRSs [4] – GRSs are normalising w.r.t.
strong p-convergence. As for terms, this is a distinguishing feature of strong p-convergence.
For example, the term graph rule (that unravels to) c → c, for some constant c, yields a
system in which c has no normal form w.r.t. strong m-convergence (or finite reduction or
weak p-/m-convergence). If we consider strong p-convergence however, repeatedly applying
the rule to c yields the normalising reduction c�p ⊥. Term graphs which can be infinitely
often contracted at the root – such as c – are called root-active:

I Definition 5.15. Let R be a GRS over Σ and g ∈ G∞C (Σ⊥). Then g is called root-active if,
for each reduction g �p R g′, there is a reduction g′ �p R h to a redex h in R. The term graph
g is called root-stable if, for each reduction g �p R h, h is not a redex in R.

Similar to the construction of Böhm normal forms [18], the strategy for rewriting a term
graph into normal form is to rewrite root-active sub-term graphs to ⊥ and non-root-active
sub-term graphs to root-stable terms. The following lemma will allow us to do that:

I Lemma 5.16. Let R be a GRS over Σ and g ∈ G∞C (Σ⊥).
(i) If g is root-active, then there is a reduction g �p R ⊥.
(ii) If g is not root-active, then there is a reduction g �p R h to a root-stable term graph h.
(iii) If g is root-stable, then so is every term graph h with a reduction g �p R h.

In the following, we need to generalise the concatenation of sequences. To this end, we
make use of the fact that the prefix order ≤ on sequences forms a cpo and thus has lubs for
directed sets: let (Sι)ι<α be a sequence of sequences in a common set. The concatenation
of (Sι)ι<α, written

∏
ι<α Sι, is recursively defined as the empty sequence 〈〉 if α = 0,(∏

ι<α′ Sι
)
· Sα′ if α = α′ + 1, and

⊔
γ<α

∏
ι<γ Sι if α is a limit ordinal.

The following lemma shows that we can use the reductions from Lemma 5.16 in order to
turn the sub-term graphs of a term graph into root-stable form level by level:

I Lemma 5.17. Let R be a GRS over Σ, g ∈ G∞C (Σ⊥) and d < ω such that g|n is root-stable
for all n ∈ Ng with depthg(n) < d. Then there is a reduction Sd : g �p R h such that h|n is
root-stable for each n ∈ Ng with depthg(n) ≤ d.

Proof. There are only finitely many nodes in g at depth d, say, n0, n1, . . . , nk. Let πi be
a minimal position of ni in g for each i ≤ k. For each i ≤ k, we construct a reduction
Ti : gi �p R gi+1 with g0 = g. Since all sub-term graphs at depth < d are root stable, each
step in Ti takes place at depth ≥ d and thus πi+1 is still a position in gi+1 of a node at
depth d. If gi|πi is root-active, then Lemma 5.16 yields a reduction gi|πi �p R ⊥. Let Ti be
the embedding of this reduction into gi at position πi. Hence, gi+1|πi = ⊥ is root-stable.
If gi|πi is not root-active, then Lemma 5.16 yields a reduction gi|πi �p R g′i to a root-stable
term graph g′i. Let Ti be the embedding of this reduction into gi at position πi. Hence,
gi+1|πi = g′i is root-stable.

Define Sd : =
∏
i≤k Ti. Since, by Lemma 5.16, root-stability is preserved by strongly

p-converging reductions, we can conclude that Sd : g �p R gk+1 such that all sub-term graphs
at depth at most d in gk+1 are root-stable. J

Note that the assumption that all sub-term graphs at depth < d are root-stable is crucial.
Otherwise, reductions within sub-term graphs at depth d may take place at depth < d!

Finally, the strategy for rewriting a term graph into normal form is to simply iterate the
reductions that are given by Lemma 5.17 above.

RTA’12

80 Infinitary Term Graph Rewriting is Simple, Sound and Complete

I Theorem 5.18. Every GRS R is normalising w.r.t. strongly p-converging reductions. That
is, for each partial term graph g, there is a reduction g �p R h to a normal form h in R.

Proof. Given a partial term graph g0, take the reductions Sd : gd �p gd+1 from Lemma 5.17
for each d ∈ N and construct S =

∏
d<ω Sd. By Proposition 5.10, we have S : g0 �p gω for

some gω. As, by Lemma 5.16, root-stability is preserved by strongly p-converging reductions,
and each reduction Sd increases the depth up to which sub-term graphs are root-stable, we
know that each sub-term graph of gω is root-stable, i.e. gω is a normal form. J

The ability of strong p-convergence to normalise any term graph will be a crucial
component of the proof of completeness of infinitary term graph rewriting.

6 Soundness and Completeness of Infinitary Term Graph Rewriting

In this section, we will study the relationship between GRSs and the corresponding TRSs
they simulate. In particular, we will show the soundness of GRSs w.r.t. strong convergence
and a restricted form of completeness. To this end we make use of the isomorphism between
terms and canonical term trees as outlined at the end of Section 3.

I Proposition 6.1. The unravelling U (g) of a term graph g ∈ G∞(Σ) is given by the labelled
quotient tree (P(g), g(·), IP(g)).

Proof. Since IP(g) is a subrelation of∼g, we know that (P(g), g(·), IP(g)) is a labelled quotient
tree and thus uniquely determines a term t. By Lemma 3.7, there is a homomorphism from t

to g. Hence, U (g) = t. J

Before we start investigating the correspondences between term rewriting and term graph
rewriting, we need to transfer the notions of left-linearity and orthogonality to GRSs:

I Definition 6.2. Let R = (Σ, R) be a GRS. A rule ρ ∈ R is called left-linear resp. left-finite
if its left-hand side ρl is a term tree resp. a finite term graph. The GRS R is called left-linear
resp. left-finite if all its rules are left-linear resp. left-finite. The GRS R is called orthogonal
if it is left-linear and the TRS U (R) is non-overlapping.

Note that the unravelling U (R) of a GRS R is left-linear if R is left-linear, that U (R) is
left-finite if R is left-linear and left-finite, and that U (R) is orthogonal if R is orthogonal.

We have to single out a particular kind of redex that manifests a peculiar behaviour:

I Definition 6.3. A redex of a rule (g, l, r) is called circular if l and r are distinct but the
matching V-homomorphism φ maps them to the same node, i.e. l 6= r but φ(l) = φ(r).

Kennaway et al. [16] show that circular redexes only reduce to themselves:

I Proposition 6.4. For every circular ρ-redex g|n, we have g 7→n,ρ g.

However, contracting the unravelling of a circular redex also yields the same term:

I Lemma 6.5. For every circular ρ-redex g|n, we have U (g)→π,U(ρ) U (g) for all π ∈ Pg(n).

Proof. Since there is a circular ρ-redex, we know that the right-hand side root rρ is reachable
but different from the left-hand side root lρ of ρ. Hence, there is a non-empty path π̂ from lρ

to rρ. Because g|n is a circular ρ-redex, the corresponding matching V-homomorphism maps
both lρ and rρ to n. Since ∆-homomorphisms preserve paths, we thus know that π̂ is also a

P. Bahr 81

path from n to itself in g. In other words, π ∈ Pg(n) implies π · π̂ ∈ Pg(n). Consequently,
for each π ∈ Pg(n), we have that U (g) |π = U (g) |

π·π̂.
Since there is a path π̂ from lρ to rρ, the unravelling U (ρ) of ρ is of the form s → s|

π̂
.

Hence, we know that each application of U (ρ) at a position π in some term t replaces the
subterm at π with the subterm at π · π̂ in t, i.e. t→π,U(ρ) t[t|π·π̂]π.

Combining the two findings above, we obtain that

U (g)→π,U(ρ) U (g) [U (g) |
π·π̂]π = U (g) [U (g) |π]π = U (g) for all π ∈ Pg(n) J

The following two properties due to Kennaway et al. [16] show how single term graph
reduction steps relate to term reductions in the corresponding unravelling.1

I Proposition 6.6. Given a left-linear GRS R and a term graph g in R, it holds that g is a
normal form in R iff U (g) is a normal form in U (R).

I Theorem 6.7. Let R be a left-linear, left-finite GRS with a reduction step g →n,ρ h. Then
S : U (g)�m U(R) U (h) such that the depth of every redex contracted in S is greater or equal to
depthg(n). In particular, if the ρ-redex g|n is not circular, then S is a complete development
of the set of redex occurrences Pg(n) in U (g).

In the following, we will generalise the above soundness theorem to strongly p-converging
term graph reductions. We will then use the correspondence between strong m-convergence
and strong p-convergence in G∞C (Σ) to transfer that result to stronglym-converging reductions.

At first, we can observe that the limit inferior commutes with the unravelling:

I Proposition 6.8. For each sequence (gι)ι<α in the partially ordered set (G∞C (Σ⊥),≤S
⊥), we

have that U (lim infι→α gι) = lim infι→α U (gι).

Proof. This is an immediate consequence of Theorem 4.2 and Proposition 6.1. J

In order to prove soundness w.r.t. strong p-convergence, we need to turn the statement
about the depth of redexes in Theorem 6.7 into a statement about the corresponding reduction
contexts. To this end, we make use of the fact that the semilattice structure of ≤S

⊥ admits
greatest lower bounds for non-empty sets of term graphs:

I Proposition 6.9 ([6]). In the partially ordered set (G∞C (Σ⊥),≤S
⊥) every non-empty set G

has a greatest lower bound
d
G given by the following labelled quotient tree (P, l,∼):

P =
{
π ∈

⋂
g∈G
P(g)

∣∣∣∀π′ < π∃f ∈ Σ⊥∀g ∈ G : g(π′) = f
}

l(π) =
{
f if ∀g ∈ G : f = g(π)
⊥ otherwise

∼ =
⋂

g∈G
∼g ∩ P × P

In particular, the glb of a set of term trees is again a term tree.

We can then prove the following proposition that relates the reduction context of a term
graph reduction step with the reduction contexts of the corresponding term reduction:

I Proposition 6.10. For each reduction step g →c h in a left-linear, left-finite GRS R, there is
a non-empty reduction S = (tι →cι tι+1)ι<α with S : U (g)�p U(R) U (h) and U (c) =

d
ι<α cι.

1 The original results are on finite term graphs. However, for the correspondence of normal forms, this
restriction is not necessary, and for the soundness, only the finiteness of left-hand sides is crucial.

RTA’12

82 Infinitary Term Graph Rewriting is Simple, Sound and Complete

Proof. By Theorem 6.7, there is a reduction S : U (g) �m U(R) U (h). At first we assume
that the redex g|n contracted in g →n h is not a circular redex. Hence, S is a complete
development of the set of redex occurrences Pg(n) in U (g). By Theorem 2.3, we then
obtain S : U (g)�p U(R) U (h). From Lemma 5.5 and Proposition 6.1 it follows that U (g\n)
is obtained from U (g) by replacing each subterm of U (g) at a position in Pmg (n), i.e. a
minimal position of n, by ⊥. Since each step tι →πι tι+1 in S contracts a redex at a
position πι that has a prefix in Pmg (n), we have, by Proposition 6.9 and Corollary 4.1, that
U (g\n) ≤S

⊥
d
ι<α tι[⊥]πι =

d
ι<α cι. Moreover, for each π ∈ Pmg (n) there is a step at ιπ < α

in S that takes place at π. From Proposition 6.9, it is thus clear that U (g\n) =
d
π∈Pmg (n) cιπ ,

which means that U (g\n) ≥S
⊥

d
ι<α cι. Due to the antisymmetry of ≤S

⊥, we thus know that
U (g\n) =

d
ι<α cι. Then U (c) =

d
ι<α cι follows from the fact that c ∼= g\n.

If the ρ-redex g|n contracted in g →ρ,n h is a circular redex, then g = h according
to Proposition 6.4. However, by Lemma 6.5, each U (ρ)-redex at positions in Pg(n) in
U (g) reduces to itself as well. Hence, we get a reduction U (g)�p U(ρ) U (h) via a complete
development of the redexes at the minimal positions Pmg (n) of n in g. The equality U (c) =d
ι<α cι then follows as for the first case above. J

In order to prove the soundness of strongly p-converging term graph reductions, we need
the following technical lemma, which can be proved easily:

I Lemma 6.11. Let (aι)ι<α be a sequence in a complete semilattice (A,≤) and (γι)ι<δ a
strictly monotone sequence in the ordinal α such that

⊔
ι<δ γι = α. Then

lim infι→α aι = lim infβ→δ
(d

γβ≤ι<γβ+1
aι

)
.

I Theorem 6.12. Let R be a left-linear, left-finite GRS. If g �p R h, then U (g)�p U(R) U (h).

Proof. Let S = (gι →cι gι+1)ι<α be a reduction strongly p-converging to gα in R. By
Proposition 6.10, there is, for each γ < α, a reduction Tγ : U (gγ)�p U(R) U (gγ+1) such that

l
ι<|Tγ |

cι = U (cγ), where (cι)ι<|Tγ | is the sequence of reduction contexts in Tγ . (∗)

Define for each δ ≤ α the concatenation Uδ =
∏
ι<δ Tι. We will show that Uδ : U (g0)�p U(R)

U (gδ) for each δ ≤ α by induction on δ. The theorem is then obtained from the case δ = α.
The case δ = 0 is trivial, and the case δ = δ′ + 1 follows from the induction hypothesis.
For the case that δ is a limit ordinal, let Uδ = (tι →c′

ι
tι+1)ι<β . For each γ < β we find

some δ′ < δ with Uδ|γ < Uδ′ . By induction hypothesis, we can assume that Uδ′ is strongly
p-continuous. Thus, the proper prefix Uδ|γ strongly p-converges to tγ . This shows that each
proper prefix Uδ|γ of Uδ strongly p-converges to tγ . Hence, Uδ is strongly p-continuous.

In order to show that Uδ : U (g0)�p U(R) U (gδ), it remains to be shown that lim infι→β c′ι =
U (gδ). Since S is strongly p-converging, we know that lim infι→δ cι = gδ. By Proposition 6.8,
we thus have lim infι→δ U (cι) = U (gδ). By (∗) and the construction of Uδ, there is a strictly
monotone sequence (γι)ι<δ with γ0 = 0 and

⊔
ι<δ γι = β such that U (cι) =

d
γι≤γ<γι+1

c′γ
for all ι < δ. Thus, we can complete the proof as follows:

U (gδ) = lim infι→δ U (cι) = lim infι→δ
(d

γι≤γ<γι+1
c′γ
)

Lem. 6.11= lim infι→β c′ι J

By combining the soundness result above with the normalisation of strong p-convergence,
we obtain the following completeness result:

I Theorem 6.13. Given an orthogonal, left-finite GRS R, we obtain for each reduction
U (g)�p U(R) t, a reduction g �p R h such that t�p U(R) U (h).

P. Bahr 83

Proof. Let U (g) �p U(R) t. By Theorem 5.18 there is a normalising reduction g �p R h.
According to Theorem 6.12, g �p R h implies U (g)�p U(R) U (h). By Proposition 6.6, U (h)
is a normal form in U (R). Since orthogonal, left-finite TRSs are confluent w.r.t. strong
p-convergence [4], the reduction U (g) �p U(R) U (h) together with U (g) �m U(R) t yields a
reduction t�p U(R) U (h). J

The results above make strongly p-converging term graph reductions sound and complete for
strongly p-converging term reductions in the sense of adequacy of Kennaway et al. [16].

The notion of adequacy of Kennaway et al. [16] does not only comprise soundness and
completeness but also demands that the unravelling U (·) is surjective and both preserves and
reflects normal forms. For infinitary term graph rewriting, surjectivity of U (·) is trivial since
each term is the image of itself under U (·) and the preservation and reflection of normal
forms is given for left-linear GRSs by Proposition 6.6.

From the soundness result for strong p-convergence, we can straightforwardly derive a
corresponding result for strong m-convergence:

I Theorem 6.14. Let R be a left-linear, left-finite GRS. If g �m R h, then U (g)�m U(R) U (h).

Proof. Given a reduction S : g �m R h, we know, by Theorem 5.14, that S : g �p R h in
G∞C (Σ). According to Theorem 6.12, we then find a reduction U (g) �p U(R) U (h). Since,
g, h are total, so are U (g) ,U (h). Hence, by Corollary 7.15 of [4], we obtain a reduction
U (g)�m U(R) U (h). J

Similar to the proof of Theorem 6.13, we can derive a weakened completeness property
for strong m-convergence:

I Theorem 6.15. Given an orthogonal, left-finite GRS R that is normalising w.r.t. strongly
m-converging reductions, we find for each normalising reduction U (g)�m U(R) t a reduction
g �m R h such that t = U (h).

Proof. Let U (g)�m U(R) t with t a normal form in U (R). As R is normalising w.r.t. strongly
m-converging reductions, there is a reduction g �m R h with h a normal form in R. According
to Theorem 6.14, we then find a reduction U (g)�m U(R) U (h). By Proposition 6.6, U (h) is a
normal form in U (R). Since U (R) is left-finite and orthogonal, we know that, according to
Theorem 7.15 in [17], R has unique normal forms w.r.t. �m . Consequently, t = U (h). J

While the above theorem is restricted to normalising GRSs, we conjecture that this restriction
is not needed: as soon as we have a compression lemma for strong p-convergence, completeness
of normalising strong m-convergence follows from the completeness of strong p-convergence.

Yet, as mentioned in the in the introduction, the restriction to normalising reductions is
crucial. The counterexample that Kennaway et al. [16] give for their informal notion of term
graph convergence in fact also applies to our notion of strong m-convergence.

7 Conclusions

By generalising the metric and partial order based notions of convergence from terms to term
graphs, we have obtained two infinitary term graph rewriting calculi that simulate infinitary
term rewriting adequately. Not only do these results show the appropriateness of our notions
of infinitary term graph rewriting. They also refute the claim of Kennaway et al. [16] that
infinitary term graph rewriting cannot adequately simulate infinitary term rewriting.

Since reasoning over the rather operational style of term graph rewriting is tedious, we
tried to simplify the proofs using labelled quotient trees. In future work, it would be helpful

RTA’12

84 Infinitary Term Graph Rewriting is Simple, Sound and Complete

to characterise term graph rewriting itself in this way or to adopt a more declarative approach
to term graph rewriting [12, 11, 1].

We think that, in this context, strong p-convergence may help to bridge the differences
between the operational style of Barendregt et al. [8] and the declarative formalisms [12, 11, 1],
which arise from the different way of contracting circular redexes. While in the operational
approach that we adopted here, circular redexes are contracted to themselves, they are
contracted to ⊥ in the abovementioned declarative approaches. However, since circular
redexes are root-active, they can be rewritten to ⊥ in a strongly p-converging reduction.

References
1 Z.M. Ariola and J.W. Klop. Equational term graph rewriting. Fund. inform., 26(3-4):207–

240, 1996.
2 A. Arnold and M. Nivat. The metric space of infinite trees. Algebraic and topological

properties. Fund. inform., 3(4):445–476, 1980.
3 P. Bahr. Abstract models of transfinite reductions. In C. Lynch, editor, RTA 2010, volume 6

of LIPIcs, pages 49–66. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2010.
4 P. Bahr. Partial order infinitary term rewriting and Böhm trees. In C. Lynch, editor, RTA

2010, volume 6 of LIPIcs, pages 67–84. Schloss Dagstuhl–Leibniz-Zentrum für Informatik,
2010.

5 P. Bahr. Modes of convergence for term graph rewriting. In Manfred Schmidt-Schauß,
editor, RTA 2011, volume 10 of LIPIcs, pages 139–154, Dagstuhl, Germany, 2011. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik.

6 P. Bahr. Convergence in infinitary term graph rewriting systems is simple. Unpublished
manuscript, available from the author’s web site, 2012.

7 P. Bahr. Infinitary term graph rewriting is simple, sound and complete. Companion report,
available from the author’s web site, 2012.

8 H.P. Barendregt, M.C.J.D. van Eekelen, J.R.W. Glauert, R. Kennaway, M.J. Plasmeijer,
and M.R. Sleep. Term graph rewriting. In P.C. Treleaven J. de Bakker, A. J. Nijman,
editor, PARLE 1987, volume 259 of LNCS, pages 141–158. Springer, 1987.

9 E. Barendsen. Term graph rewriting. In Terese [19], chapter 13, pages 712–743.
10 J. Bongaerts. Topological Convergence in Infinitary Abstract Rewriting. Master’s Thesis,

Utrecht University, 2011.
11 A. Corradini and F. Drewes. Term graph rewriting and parallel term rewriting. In TERM-

GRAPH ’11, pages 3–18, 2011.
12 A. Corradini and F. Gadducci. Rewriting on cyclic structures: Equivalence between the

operational and the categorical description. RAIRO Theor. Inf. Appl., 33(4):467–493, 1999.
13 J.A. Goguen, J.W. Thatcher, E.G. Wagner, and J.B. Wright. Initial algebra semantics and

continuous algebras. J. ACM, 24(1):68–95, 1977.
14 J.L. Kelley. General Topology, volume 27 of Graduate Texts in Mathematics. Springer-

Verlag, 1955.
15 R. Kennaway and F.-J. de Vries. Infinitary rewriting. In Terese [19], chapter 12, pages

668–711.
16 R. Kennaway, J.W. Klop, M.R. Sleep, and F.-J. de Vries. On the adequacy of graph

rewriting for simulating term rewriting. ACM Prog. Lang. Sys., 16(3):493–523, 1994.
17 R. Kennaway, J.W. Klop, M.R. Sleep, and F.-J. de Vries. Transfinite reductions in ortho-

gonal term rewriting systems. Ann. Pure Appl. Logic, 119(1):18–38, 1995.
18 R. Kennaway, V. van Oostrom, and F.-J. de Vries. Meaningless terms in rewriting. J.

Funct. Logic Programming, 1999(1):1–35, February 1999.
19 Terese. Term Rewriting Systems. Cambridge University Press, 1st edition, 2003.

Axiomatic Sharing-via-Labelling
Thibaut Balabonski

Univ Paris Diderot, Sorbonne Paris Cité,
PPS, UMR 7126, CNRS,
F-75205 Paris, France
thibaut.balabonski@pps.univ-paris-diderot.fr

Abstract
A judicious use of labelled terms makes it possible to bring together the simplicity of term re-
writing and the sharing power of graph rewriting: this has been known for twenty years in the
particular case of orthogonal first-order systems. The present paper introduces a concise and eas-
ily usable axiomatic presentation of sharing-via-labelling techniques that applies to higher-order
term rewriting as well as to non-orthogonal term rewriting. This provides a general framework
for the sharing of subterms and keeps the formalism as simple as term rewriting.

1998 ACM Subject Classification I.1.3 Languages and Systems: Evaluation strategies

Keywords and phrases Sharing, Abstract term rewriting, Graphs, Higher order, Non-orthogonality

Digital Object Identifier 10.4230/LIPIcs.RTA.2012.85

Category Regular Research Paper

1 Introduction

Termgraph rewriting [9, 27] improves on term rewriting by allowing the sharing of subterms,
thus preventing some duplications of computation steps. However, graph formalisms are
usually far more complex than the corresponding term formalisms. Higher-order graphs [29,
11, 19] in particular require non-trivial correctness criteria and readback procedures.

This paper aims at providing a fully general framework for the sharing of subterms, while
keeping the formalism as simple as term rewriting. It substantially generalizes an elegant
partial solution originating in L. Maranget’s work [25], of which we name two features:

Graphs are represented by labelled terms.
Graph reduction is simulated by sequences of term reduction.

Thus we get a formal setting for graph rewriting using only the well-known term rewriting.
This started 20 years ago with orthogonal first-order rewriting [25], and has then been

extended to several weak λ-calculi [10, 7] or orthogonal extensions of these weak calculi [6].
Thanks to its technological simplicity the approach turned out to be useful as an analysis
tool for various purposes, in particular by allowing the description of optimal reduction
strategies [25] and by allowing simple comparisons between different graph implementations
of the λ-calculus [7].

In this line of work, any symbol in a term is given a label which is a metaphorical
location. Two subterms with the same label are supposed to be physically equal, stored at
the same location in memory or drawn at the same coordinate in a picture (see Example 1).
Graph rewriting is then simulated by the simultaneous reduction of all the term-redexes
corresponding to a unique graph-redex, which means all the term-redexes with a given label.

© Thibaut Balabonski;
licensed under Creative Commons License NC-ND

23rd International Conference on Rewriting Techniques and Applications (RTA’12).
Editor: A. Tiwari; pp. 85–100

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

86 Axiomatic Sharing-via-Labelling

I Example 1. The two occurrences of aδ denote the same node and are reduced simultaneously.
Across this paper we use a single arrow → for the reduction of one redex, and a double arrow
⇒ for the simultaneous reduction of several redexes.

fα(fβ(aγ , aδ), aδ)
⇒ fα(fβ(aγ , bζ), bζ)

f

f
a a

→
f

f
a b J

This correspondence is sound as long as the system preserves a sharing property on its labelled
terms: whenever two subterms coexist with the same label they are syntactically equal. Note
that in this setting, a labelled term t satisfying the sharing property is itself a witness of the
correctness of the corresponding graph Gt, and that Gt is an acyclic graph.

While simultaneous reduction in general is a non-trivial extension to one-step rewriting,
the particular case considered here is simply definable within usual term rewriting. Indeed
we consider the simultaneous reduction of disjoint subterms, which we call parallel reduction.
It is simulated by the sequential reduction of the subterms in any order.

I Example 2. The parallel reduction of Example 1 can be implemented by:
fα(fβ(aγ , aδ), aδ) → fα(fβ(aγ , bζ), aδ) → fα(fβ(aγ , bζ), bζ) . J

In [25, 10, 6, 7] the labels are generated in an effective way, which helps to define the
labelled reduction by simple term rewriting rule schemes. The generation of labels in a
reduction is in two steps: first the redex is given a name Ω based on its labels, then new
labels are generated using Ω. For instance in Example 2, Ω = δ and ζ = <Ω, ζ0> for some
ζ0 fixed in the rule scheme.

In this method inspired by Lévy’s labelling for optimal sharing [23], the name of a redex
reflects the past reductions causally related to this redex, and is invariant from the creation
of the redex to its disappearance. These are key ingredients for providing absolute bounds
on the sharing of redexes, which is the point of Lévy’s optimality theory. In [25, 10, 6, 7],
both of these points also seem to play an important role in the preservation of the sharing
property. This limits the applicability of these labellings for sharing in several ways:
Orthogonality For the redex names to remain static, no reduction should ever interfere with

an existing redex in a way that could alter its name. Hence the restriction to orthogonal
systems where no two reduction rules can apply at overlapping sets of positions.

Causal sharing For each system the causal constraints of the previous labellings essentially
determine one level of sharing. Hence defining other sharing disciplines requires tampering
with the dynamics of the system. It is done in [7] by introducing various fine-tuned notions
of weak reduction (systems where reduction in the scope of a binder is constrained).

Weak reduction In higher-order rewriting, the “causal sharing” is typically incompatible
with our acyclic graphs, as the optimal sharing of the λ-calculus. Thus the previous
approaches apply to higher-order only through a restriction to weak systems that yield
compatible sharings. While the restriction does not prevent one from expressing the most
common evaluation strategies of the λ-calculus, it seems to rule out any truly higher-order
behaviour. Indeed, two common weak λ-calculi have been shown in [21, 7] to be strongly
equivalent to orthogonal first-order rewriting systems.

This paper generalizes the previous approaches, in particular by freeing them of their
bond to Lévy’s optimality theory. It expresses sharing-via-labelling in an abstract rewriting
framework encompassing any term rewriting system, be it higher-order and non-orthogonal.
In this framework we show that the preservation of sharing needs neither a static identification

T. Balabonski 87

of redexes, nor a tight relation to causality. We thus break through the previous limitations
by giving to redexes a dynamic identity. And this makes all the difference!

Our main contribution is an axiomatic framework for the sharing of subterms that is:
Simple: it does not require more formal technology than term rewriting.
Expressive: it can describe a variety of graph algorithms for any term-style rewriting system.
Usable: it relies only on few axioms, and comes with highly adaptable concrete examples.
As a second contribution, we use the axiomatic framework to revisit call-by-need reduction
and improve its sharing (Section 5).

Section 2 gives an overview of our axiomatic framework and its main mechanisms, and
discusses its expressive power. Section 3 provides all the formal definitions and proofs.
Section 4 presents some simple examples, and Section 5 develops a more elaborate example
that takes advantage of the specifities of our approach. Other approaches to sharing and to
graph reduction are reviewed in Section 6, then Section 7 concludes.

2 Overview of the axiomatic framework

This section gives an informal presentation of our axiomatic framework and discusses its
mechanisms. Section 2.1 sets the scene of an abstract term rewriting framework. Section 2.2
presents the mechanisms of our axiomatic labelling on an example, and Section 2.3 discusses
the expressive power of the whole framework.

2.1 Principles of the basic formalism
Abstract Rewriting Systems (ARS) [26, 28] give a fully general description of rewriting. In [26]
any system is described by only four basic elements: a set O of objects, a set R of reductions,
and two functions src : R → O and tgt : R → O assigning a source object and a target
object to each reduction. Hence ARS can express rewriting on any kind of objects through
any kind of rewriting rules with any kind of rule application conditions.

We introduce Abstract Term Rewriting Systems (ATRS, Definition 9) as a specialization
of ARS to term rewriting by taking as set of objects O a set of terms. Now each reduction r
is supposed to apply to a particular subterm of the source, at a position root(r) called root
of r, and to leave the rest unchanged (see Fig. 1).

Equivalently, any reduction r can be identified by three other components (see Fig. 2):
the redex dex(r) and reduct duct(r) are the source-version and target-version of the modified
subterm and the context ctx(r) is what remains and is common to the source and the target.

2.2 Principles of the axiomatic labelling
In this section we derive from scratch a labelling for a higher-order rewriting system. By
showing the backstage of this sample construction we present the main ideas of the axiomatic
labelling defined in Section 3 (Definition 17).

We consider the fixpoint operator expressed by the rule scheme: µx.t → t{x :=µx.t}. We
analyse the following graph reduction, where the symbol h is duplicated but the expression
g(a) is kept shared. (G1) (G2)

f(g(a), µx.h(g(a), x)) (t1)
→ f(g(a), h(g(a), µx.h(g(a), x))) (t2)

f
µx

h
g

a

x

→
f

h
µx

h
g

a

x

RTA’12

88 Axiomatic Sharing-via-Labelling

Figure 1 Abstract term reduction, ARS-style: source, target, root.

src(r)

root(r)

tgt(r)

r

Figure 2 Abstract term reduction, TRS-style: redex, reduct, context.

src(r) tgt(r)

ctx(r)

root(r)

dex(r) duct(r)

r

Remark that either triple (src, tgt, root) or (dex, duct, ctx) is enough to deduce the other
informations. For instance, decomposing the source at the root position gives the context
and the redex. Conversely, combining the context and the reduct yields the target.

Figure 3 Effect zone

r

The effect zone, in black, is a connected part of the reduct that contains all that is created
or modified by the reduction.

Figure 4 Reductions at disjoint positions

r1

r2

src(r1)

r′
2

tgt(r1)

The reduction r1 cannot suppress the disjoint reduction r2: some similar r′2 remains in the
target of r1. An equivalence of reductions (Definition 9) relates r2 and r′2.

T. Balabonski 89

We want to represent the graph G1 by a labelling tl1 of the term t1 such that each label
denotes a node of the graph. We label the symbols f , g and h. In particular the labels of the
two occurrences of g have to be equal, and the other labels have to be different. For instance:

fα(gβ(a), µx.hγ(gβ(a), x)) (tl1)

Now the reduction of tl1 will act on the labels along the following principles. If labels
figuratively represent memory locations, then label generation corresponds to memory
allocation. Hence the new labels correspond to creations or to duplications of graph nodes.
Call effect zone and write effz(r) the part of the target of a reduction r where new labels
are created (see Fig. 3). Intuitively, a smaller effect zone tends to make less duplications.

First, we do not want the reduction to modify its context: the effect zone is contained in
the reduct h(g(a), µx.h(g(a), x)) and the labelled context fα(gβ(a),_) keeps its labels.

Second, remark that some subterms of the reduct are exact copies of some subterms of
the redex. This is the case for instance of h(g(a), x), or of the first occurrence of g(a). We
do not need to make new copies of these subterms. Thus they can be kept outside of the
effect zone and inherit the labels of their source-side counterparts. Axiom Effect zone in
Definition 13 checks that any other position is in the effect zone.

Finally, only the outer occurrence of h needs a new label, say δ. Then we can take the
following labelling tl2 of t2 to represent G2:

fα(gβ(a), hδ(gβ(a), µx.hγ(gβ(a), x))) (tl2)

At this point, we have to generate a new label δ in a way that does not break the sharing
property. Preferably, we would like a method that deduces the new labels from the redex
and does not require any global information on the context. This fundamental choice of
design allows us to define labelled reduction as a usual term rewriting rule scheme.

To avoid unintended clashes, the idea is to blend into the new label δ some information
that is characteristic of the reduced redex. As a consequence, two distinct redexes will
generate different labels, while two copies of the same redex will naturally have similar
evolutions. In our metaphor a safe such characterization of a redex is its physical identity, in
other words its label. This choice is possible if and only if the root of the reduced redex is
labelled, which is required by an axiom Redex head label. In our example, we add a label ω
to the symbol µx in tl1 and get the following corrected labelling of t1:

fα(gβ(a), µxω.hγ(gβ(a), x)) (tl1)

Then the label δ can be explicitly built from ω and other information taken in the redex:
say for instance that hδ is the copy of hγ ordered by a redex of label ω, and write δ = [ω]γ.

Such a generation method is sound if the following last requirement is met: once a redex
of label ω is reduced, creating compounds such as [ω]γ, no other redex labelled by ω should
ever be created. Or better, no new occurrences of the label ω should ever be generated.

A first, short-term, precaution is to change the label of µx, which is done by putting µx
in the effect zone. This is one requirement of the axiom Effect zone: the copies of the root of
the redex must be in the effect zone. Also remark that the new label of µx, for instance [ω],
has to be taken different from the new label δ created for h. An axiom Separation states
that the labels created in the same reduction do not clash.

Then we need to check this property on the long run. We use two new ingredients:
A strict order ↪→ on labels called contribution such that α ↪→ [α] and α ↪→ [α]β for any
two labels α and β. An axiom Contribution expresses that the generated labels progress
along the contribution order.

RTA’12

90 Axiomatic Sharing-via-Labelling

An independence invariant on labelled terms that forbids the existence in a term of two
labels α and β such that α ↪→ β (Independence property, Definition 19).

In this setting we have all the ingredients needed to prove that the sharing property is
preserved by parallel reduction (Sharing theorem 21).

2.3 Expressive power
Our framework axiomatizes sharing-via-labelling along three directions: the underlying term
systems, the graph algorithms, and the labellings. Each of these levels of abstraction brings
its own expressive power. They are reviewed here in reverse order.

The labels play two roles in our framework. As announced they first describe sharing,
but they moreover have to contain enough information to allow the generation of fresh labels.
The axiom Contribution we use for this is strictly less restrictive than its equivalent in the
previous approaches. In particular our labels need not contain as much causal information
as their predecessors, and our framework covers the previous labellings as well as new and
possibly simpler ones that are illustrated across this paper (see Section 4.2). In particular,
the sequences of labels and the dummy nodes that create arbitrary long chains of indirections
in [10, 7] are no longer necessary. This is possible thanks to an invariant of independence that
is strictly more general than its predecessors, and that is a key of our technical contribution.

The graph algorithms that can be described in our framework come from the combination
of two parameters: first the effect zone specifies the positions for which new nodes are created,
then the labelling decides on the positions of the effect zone that are to be shared or not.
The first parameter is constrained by axiom Effect zone and the second by axiom Separation,
which are both expressed in terms of equality of subterms. This allows us to describe a
variety of graph reduction systems, such as the many variants of call-by-need, lazy, and fully
lazy reduction that have been studied on the λ-calculus or similar systems. Some have been
reviewed in [7] and encoded in a sharing-via-labelling framework, at the cost of defining
finely-tuned reduction strategies. Such studies can be carried on in our new framework
without tampering with the dynamics of the systems (see Section 4.2).

Our abstract term rewriting framework makes no assumption on the shape of the reduction
rules of the underlying term systems, and few on the application conditions of these rules.
The only restriction is the fairly natural one that the reductions affecting disjoint subterms of
the same source term do not interfere (see Fig. 4). This allows the sequentialization of parallel
reductions as in Example 2 (Lemma 12). This assumption is formalized in an axiom Residuals
that allows a reduction r1 to inhibit a reduction r2 of same source term only if the position of
one reduction is a prefix of the position of the other, or in other words one redex is a subterm
of the other. Thus, virtually any reasonable term-style rewriting system can be represented.
We list below some classes of higher-order systems that are rewriting-theoretically interesting,
and moreover particularly relevant to the study of functional programming.
Conditional calculi Closed reduction strategies [14] are a family of fragments of the λ-calculus

particularly convenient for implementation purposes as they are α-conversion free. They
introduce conditions on β-reduction based on the free variables of the redexes.

Non-right-linear systems The fixpoint seen above is such a system, since t appears twice in
the right member of µx.t → t{x :=µx.t}.

Non-orthogonal systems Higher-order rewriting is useful to the study of program trans-
formations. This may yield non-orthogonal systems as the fully-lazy λ-lifting presented
in [7]. Another famous reservoir of non-orthogonal higher-order rewriting systems is
the literature on calculi with explicit substitutions [1, 20]. Explicit substitutions are an
important tool to bridge the gap between the formal definition of β-reduction and its

T. Balabonski 91

various implementations. Section 5 presents a calculus with let-constructs having a
comparable flavor.

Non-sequential systems Defining functions by pattern matching is a key feature of functional
programming. One of its major difficulties is the treatment of matching failure, which is
non-sequential in general [18], and similar to the parallel or operator.

3 The axiomatic framework

This section defines Sharing-via-Labelling Systems (SvLS, Definition 17, Section 3.3) and
their parallel labelled reduction (Definition 18), and then proves that the latter preserves the
sharing property (Theorem 21).

The construction follows the principles presented above in three steps: Abstract Term
Rewriting Systems (ATRS, Definition 9, Section 3.2) are the basic formalism for term
rewriting. Marked ATRS (Definition 13, Section 3.2) enrich ATRS with a marking of the
potential effects of a reduction (the effect zone). SvLS are Marked ATRS whose terms are
partially labelled. We start by some basic and mostly natural definitions on terms.

3.1 Basic syntax
I Definition 3 (Terms). Let S be a finite or countable set called signature. Terms over S
are given by the following grammar:

t ::= f | f(t1, ..., tn)

where f ∈ S and n ≥ 1. Remark that the symbols in S have a priori variable arities. This
can be constrained later. A context c is a term with a hole. Write _ for the hole, and c[t]
for the term obtained by replacing the hole of c by the term t. J

I Example 4. @(λx(_), y)[@(x, y)] = @(λx(@(x, y)), y) J

I Definition 5 (Positions). A position p is a possibly empty sequence of positive integers.
Write ε the empty position, and p · q the concatenation of two positions p and q. The
concatenation extends to sets as follows: P · Q = {p · q | p ∈ P, q ∈ Q}. Write p · Q as a
shorthand for {p} ·Q. A position p is a prefix of a position q, written p ≺ q, if there is a
position p′ such that p · p′ = q. If moreover p′ 6= ε then the prefix is strict. Two positions
p, q are disjoint when none is a prefix of the other. An initial segment is a set of positions
P such that for any positions q ≺ p, if p ∈ P then q ∈ P .

The set of positions pos(t) of a term t is defined as follows:

pos(f) = {ε}
pos(f(t1, ..., tn)) = {ε} ∪

⋃

1≤i≤n
i · pos(ti)

For any term t and position p ∈ pos(t), write t(p) the symbol at position p in t and t|p the
subterm of t at position p, defined as follows:

f(ε) = f f |ε = f

f(t1, ..., tn)(ε) = f f(t1, ..., tn)|ε = f(t1, ..., tn)
f(t1, ..., tn)(i · p) = ti(p) f(t1, ..., tn)|i·p = ti|p J

I Example 6 (λ-terms). Let X be a countable set of variables. In the signature SΛ of the
λ-calculus we consider the binding λx as one symbol: SΛ = X ∪ {λx | x ∈ X} ∪ {@}. Let
t = @(λx(@(x, y)), y), then pos(t) = {ε, 1, 11, 111, 112, 2}, t(1) = λx and t|11 = @(x, y). J

RTA’12

92 Axiomatic Sharing-via-Labelling

I Definition 7 (Parallel replacement). For any terms t, u and any set of pairwise disjoint
positions P ⊆ pos(t), write t[u]P the parallel replacement defined as follows:

t[u]∅ = t

t[u]{ε} = u

f(t1, ..., tn)[u]P = f(t1[u]P1 , ..., tn[u]Pn) where P =
⋃
i i · Pi J

I Example 8 (Parallel replacement). f(f(a, a), a)[b]{12,2} = f(f(a, b), b) . J

3.2 Abstract Term Rewriting Systems (ATRS)
We define Abstract Term Rewriting Systems as a specialization of ARS where the set O of
objects is a set of terms. Each reduction r is associated to a redex dex(r), a reduct duct(r),
and a context ctx(r) (Fig. 2).

Axiom Source & Target ensures that the source src(r) and the target tgt(r) of a reduction
r are in O (which has to be understood as the set of well-formed terms). Axiom Residuals
requires that two reductions concerning disjoint positions do not interfere with each other
(Fig. 4). It is formalized using a notion of equivalence of redexes characterizing redexes
that differ only by their context. Axiom Residuals ensures that parallel reduction can be
simulated by sequences of single reduction steps (Lemma 12).

I Definition 9 (ATRS). Let Σ = (S, T ,R, dex, duct, ctx) be a tuple where:
S is a signature.
T is a set of terms over S.
R is a countable set whose elements are called reductions, and for any r ∈ R:

dex(r) is a term called redex of r.
duct(r) is a term called reduct of r.
ctx(r) is a context called context of r.

For any r ∈ R call source (resp. target) the term src(r) = ctx(r)[dex(r)] (resp. tgt(r) =
ctx(r)[duct(r)]) and say src(r) reduces to tgt(r). Write t→ t′ when t reduces to t′ and
write t � t′ if a sequence of reductions leads from t to t′. For any r ∈ R call root of r
the position root(r) of the hole of ctx(r). Two reductions r1, r2 are called equivalent if
dex(r1) = dex(r2) and duct(r1) = duct(r2). For any t ∈ T and p ∈ pos(t) write R(t, p)
the set of all the reductions r ∈ R such that src(r) = t and root(r) = p.
Σ is an Abstract Term Rewriting System if the two following axioms are satisfied:
Source & Target: For any r ∈ R, src(r) ∈ T and tgt(r) ∈ T .
Residuals: Let r1 ∈ R and p ∈ pos(src(r1)) such that root(r1) and p are disjoint. Then for

any r2 ∈ R(src(r1), p) there is r′2 ∈ R(tgt(r1), p) equivalent to r2. J
In any ATRS one can define a notion of parallel reduction that performs several disjoint

reductions at one go.

I Definition 10 (Parallel reduction). Let t be a term, and {r1, ..., rn} a set of reductions of
source t whose roots are pairwise disjoint. Write t′ = t[duct(r1)]root(r1)...[duct(rn)]root(rn)
the term t where each redex has been replaced by its reduct. Say t reduces parallely to t′
and write t⇒ t′. J
I Example 11. Let r1 and r2 be two reductions such that:

dex(r1) = a src(r2) = f(f(a, a), a)
duct(r1) = b tgt(r2) = f(f(a, a), b)
ctx(r1) = f(f(a,_), a) root(r2) = 2

Then f(f(a, a), a) ⇒ f(f(a, b), b) by parallel reduction of {r1, r2}. J

T. Balabonski 93

I Lemma 12 (Simulation of parallel reduction). In any ATRS, if t⇒ t′ then t� t′.

Proof. By induction on the number of redexes reduced in parallel, with axiom Residuals. J

An ATRS can be extended with effect zones identifying in each reduction a part of
the reduct containing all the positions that have possibly been created or modified by the
reduction (Fig. 3). Axiom Effect zone states this property by contraposition: any subterm of
the reduct which does not intersect the effect zone is syntactically equal to a strict subterm
of the redex. This forms a Marked ATRS.

I Definition 13 (Marked ATRS). Let Σ = (S, T ,R, dex, duct, ctx, effz) be a tuple where:
(S,T ,R,dex,duct,ctx) is an ATRS.
For any r ∈ R, effz(r) is an initial segment of pos(duct(r)), called effect zone of r.

Σ is a Marked ATRS if the following axiom is satisfied:
Effect zone: For any r ∈ R and p ∈ pos(duct(r)) \ effz(r) there is q ∈ pos(dex(r)) such

that q 6= ε and dex(r)|q = duct(r)|p. J

The condition q 6= ε ensures that any copy of the root symbol of the redex is in the effect
zone, which forces the generation of new labels in the next section. This is required for the
preservation of the so-called independence property (Definition 19, Lemma 20).

I Example 14. Let r be a reduction such that dex(r) = g(f(a, b)) and duct(r) = h(g(f(a, b)), a).
Any initial segment of {ε, 1, 11, 111, 112, 2} that includes {ε, 1} is an admissible effect zone
for r. In particular, so are {ε, 1}, {ε, 1, 2}, and {ε, 1, 11, 111, 112, 2}. See Section 4.2 for the
impact of the choice of an effect zone. J

3.3 Sharing-via-Labelling Systems (SvLS)
We define Sharing-via-Labelling Systems as a specialization of Marked ATRS where the
signature contains possibly labelled symbols and where the labels are partially ordered by a
contribution relation ↪→.

Axiom Redex head label requires the head symbol of the redex of any reduction to be
labelled. Axiom Separation prevents the labels of an effect zone from clashing. Axiom
Contribution controls the progression of the labels along ↪→.

I Definition 15 (Labelled signature). Let S be a signature, and L be a countable set
whose elements are called labels. The labelled signature S[L] is a signature defined by
S[L] = S ∪{fα|f ∈ S, α ∈ L}. Let t be a term over a labelled signature S[L], and p ∈ pos(t).
If t(p) = fα with f ∈ S and α ∈ L, then write τp(t) = α the label at position p in t. Else
τp(t) is undefined. From now on, by writing τp(t) we suppose the label is defined. J

The sharing property is the main invariant we want to preserve:

I Definition 16 (Sharing property). A term t on a labelled signature S[L] has the sharing
property, written S(t), when for any positions p, q ∈ pos(t) if τp(t) = τq(t) then t|p = t|q. J

I Definition 17 (SvLS). Let (L, ↪→,Σ) be a tuple where:
L is a countable set of labels.
↪→ is an irreflexive and transitive relation on L called contribution relation.
Σ = (S[L], T ,R, dex, duct, ctx, effz) is a Marked ATRS over a signature S[L].

For any t, if there is p ∈ pos(t) such that τp(t) = α then we say α occurs in t. If moreover
t = duct(r) for some r ∈ R and p ∈ effz(r) then we say α occurs in effz(r).

RTA’12

94 Axiomatic Sharing-via-Labelling

(L, ↪→,Σ) is a Sharing-via-Labelling System if the following axioms are satisfied:
Redex head label: For any reduction r ∈ R, the head label τε(dex(r)) is defined. Write τ(r)

as a shorthand for τε(dex(r)).
Separation: For any r ∈ R such that S(dex(r)), for any p, q ∈ effz(r), if τp(duct(r)) =

τq(duct(r)), then duct(r)|p = duct(r)|q.
Contribution: For any r ∈ R and β ∈ L occurring in effz(r) one has τ(r) ↪→ β. Moreover

for any α ∈ L, if α 6= τ(r) and α ↪→ β then there is γ ∈ L in dex(r) such that α ↪→ γ.
A label α ∈ L is initial if there is no β ∈ L such that β ↪→ α. A term t is initial if all its
labels are initial and different. J

Remark that→ does not preserve the sharing property: only the parallel labelled reduction
defined below and the corresponding reduction sequences have a graphical meaning. The
parallel labelled reduction simulating graph reduction is the simultaneous reduction of all
the redexes with a given label.

I Definition 18 (Parallel labelled reduction). Let t be a term in a SvLS such that S(t), and
α be a label in t. Write Pα = {q ∈ pos(t) | τq(t) = α}. By S(t) remark that the positions
in Pα are pairwise disjoint. Let r ∈ R with τ(r) = α such that for any p ∈ Pα there is
rp ∈ R(t, p) equivalent to r. Then t reduces parallely to t′ = t[duct(r)]Pα (Definition 10),
which is written t⇒α t

′ and called parallel labelled reduction. J

The proof of the preservation of the sharing property requires an invariant of ⇒α:

I Definition 19 (Independence property). A term t in a SvLS has the independence
property, written I(t), when there are no two labels α and β in t such that α ↪→ β. J

I Lemma 20 (Independence). In any SvLS, if S(t), I(t) and t⇒α0 t
′, then I(t′).

Proof. By definition, there is a reduction r such that τ(r) = α0 and the parallel reduction
uses dex(r) and duct(r) as unique redex and reduct. Let α, β be two labels in t′ s.t. α ↪→ β.

If β occurs in t, then by I(t) there is no occurrence of α in t. Hence α occurs in effz(r)
and by axiom Contribution α0 ↪→ α. By transitivity α0 ↪→ β, which contradicts I(t).
If there is no occurrence of β in t, then β occurs in effz(r).

If α occurs in t, then case on α ↪→ β with axiom Contribution:
∗ Either α = α0, which implies that α0 occurs in t′. Then by definition of parallel

labelled reduction α0 occurs in duct(r), and by axiom Effect zone α0 occurs in
effz(r). Hence by axiom Contribution α0 ↪→ α0, which contradicts irreflexivity.

∗ Or there is γ in dex(r) such that α ↪→ γ, which contradicts I(t).
If there is no occurrence of α in t, then α occurs in effz(r) and in particular α0 ↪→ α.
Moreover α 6= α0, hence by axiom Contribution there is γ in dex(r) s.t. α ↪→ γ. By
transitivity α0 ↪→γ, which contradicts I(t). J

I Theorem 21 (Sharing). In any SvLS, if S(t), I(t) and t⇒α0 t
′, then S(t′).

Proof. As above there is r with τ(r) = α0 such that the parallel reduction uses dex(r) and
duct(r) as unique redex and reduct. Let p′, q′ ∈ pos(t′). Suppose τp′(t′) = τq′(t′) = α.

If none of p′, q′ is in the effect zone of a reduced redex, then by axiom Effect zone there is p
(resp. q) in pos(t) such that t(p) = t′(p′) (resp. t(q) = t′(q′)). In particular τp(t) = τq(t) =
α, and t|p = t|q by S(t). Write P = {p1 | τp1(t|p) = α0} and Q = {q1 | τq1(t|q) = α0} and
remark that P = Q. By definition t′|p′ = (t|p)[duct(t)]P = (t|p)[duct(r)]Q = t′|q′ .
If both p′ and q′ are in the effect zone of a reduced redex, then by unicity of duct(r) and
by axiom Separation t′|p′ = t′|q′ .

T. Balabonski 95

Else, wlog. p′ is in the effect zone of a reduced redex and α0 ↪→ α (axiom Contribution)
and q′ is not in the effect zone of a reduced redex and α occurs in t (axiom Effect zone).
This contradicts I(t). J
Remark that any initial term ti satisfies S(ti) and I(ti). Then Independence lemma 20

and Sharing theorem 21 have an immediate corollary:
I Corollary 22 (Long-term sharing). In any SvLS, if ti is an initial term and there is a
sequence of parallel labelled reductions from ti to a term t, then S(t). J

4 First examples

This section presents some simple Sharing-via-Labelling Systems and gives useful definitions
to handle binders: Subsection 4.1 formalizes the example of Section 2.2, then Subsection 4.2
shows three sharing disciplines for the (unrestricted) λ-calulus.

4.1 The fixpoint operator, formally
Let X and L be countable sets of variables and initial labels. We consider the signature
{a, f, g, h} used in Section 2.2. Define:

Labels (L): α ::= a | [α] | [α]α a ∈ L
Terms (Tµ): t ::= x | a | µxα.t | Fα(t1, ..., tn) x ∈ X , F ∈ {f, g, h}

Free variables fv(t) and bound variables bv(t) of a term t are defined as usual, remembering
that µxα.u binds x in u. For any term t and variable x, call spine of x in t the initial segment
of pos(t) whose elements are the strict prefixes of the positions of the free occurrences of x in t.
These are exactly the positions of the subterms of t that would be affected by a substitution
of x. By abuse of language, the “labels of a spine” denote the labels at the positions of a
spine. The labelled substitution t{x :=ω,u} substitutes u for x in t and modifies the labels
of the spine of x in t using the label ω. If x 6∈ fv(t) then t{x :=ω,u} = t, else:

x{x :=ω,u} = u

(µyα.t){x :=ω,u} = µy[ω]α.t{x :=ω,u} y 6∈ fv(u)
(Fα(t1, ..., tn)){x :=ω,u} = F [ω]α(t{x :=ω,u}

1 , ..., t
{x :=ω,u}
n) F ∈ {f, g, h}

Remark that this substitution without capture may be undefined in general. See Section 4.2.
Define the reduction rule (µ) : µxω.t → t{x :=ω,µx[ω].t}. The corresponding reduction
relation is the smallest congruence on terms generated by (µ).

Axiomatic checking The application of the rule (µ) to a term µxω.t in any context c defines
an obvious reduction r in redex-reduct-context format in a way that satisfies the ATRS
axioms. Write t′ = t{x :=ω,µx[ω].t}. The effect zone of r is the union of the spine of x in t and
the occurrences of µx[ω]. Hence the positions in t′ that are outside of the effect zone are
subterms of t, which verifies the axiom Effect zone.

Define ↪→ as the least transitive relation such that α ↪→ [α] and α ↪→ [α]β for any α, β ∈ L.
It is irreflexive. Axiom Redex head label is satisfied since all occurrences of µ are labelled.
Axiom Contribution is satisfied since all labels in the effect zone have the form [ω] or [ω]α
with ω the label of the redex.

Axiom Separation: suppose S(µxω.t), and α occurs twice in the effect zone, at two
positions p and q of the reduct. If α = [ω] then t′|p = t′|q = µx[ω].t. Else α = [ω]β for
some β occurring at positions p and q in t. Hence, since S(t) by hypothesis, t|p = t|q, and
t′|p = t|{x :=ω,µx[ω].t}

p = t|{x :=ω,µx[ω].t}
q = t′|q.

RTA’12

96 Axiomatic Sharing-via-Labelling

4.2 The λ-calculus: β- and α-reduction
We consider the λ-calculus, with the usual notions of free and bound variables, and the
notions of spine and labelled substitution adapted from above. We also use L, L and ↪→
as above, and we label applications and abstractions. Let (λx.λy.x(ty))u → λy.u(ty) be
a reduction where t, u are two terms in which neither x nor y appears free. Three of the
possible effect zones are circled below. The effect zone is arbitrary as soon as it contains the
spine of x in λy.x(ty), which is circled in case (c).

λy(a)

@
u @

t y

λy(b)

@
u @
t y

λy(c)

@
u @

t y

(a) duplicating the whole body of the func-
tion is usual lazy evaluation; (b) avoiding
the copy of the free expressions (t here) is
Wadsworth’s algorithm [29]; (c) duplicat-
ing only the spine of x is found in [10].

While these examples have been originally defined with weak reduction strategies, more
general strategies are known to allow shorter reductions [17], thus we consider here general
β-reduction. As a consequence α-conversion is sometimes needed to avoid blocked terms.

Remark that in our framework only the symbols of the effect zone are allowed to be
modified, hence any renaming operation has to be contained in the effect zone. In cases (a)
and (b) there is no problem: the effect zone is always large enough. In case (c) there is a
solution: add a reduction rule for renaming, with appropriate creations of labels.

Renaming: λxα.t → λy[α].t{x :=α,y} y 6∈ fv(t) ∪ bv(t)

The effect zone of this reduction is ε · P where P is the spine of x in t. Checking the axioms
for this new rule as well as for β-reduction is similar to Section 4.1. Remark that renaming
can also be inlined in β, with an appropriate extension of the effect zone.

The need for this new rule and the duplications it implies comes from a new behaviour
brought by case (c): sharing-via-labelling allows the sharing of open subterms bound by
different binders. Note that this is not allowed in usual higher-order termgraphs [11, 19].
Section 5 develops this point and illustrates how one can take advantage of it.

5 A significant example

This section presents a labelling of a calculus inspired by the call-by-need λ-calculus [3]. It
emphasizes how the graphs represented by SvLS are more general than usual higher-order
termgraphs, and takes advantage of this point to present a reduction strategy performing a
more-than-fully-lazy sharing.

In the call-by-need λ-calculus λlet, the β-rule is replaced by the introduction of a let-
construct that delays the substitution of the argument: (λx.t)u → let x = u in t.
From the point of view of the argument u, this keeps only one shared occurrence of u for
possibly numerous corresponding occurrences of x in t.

Now, in our context the labels can take care of this sharing already: the substitution of u
does not need modifying the labels of u. This safeguard allows us to relax most of the original
rules of λlet and use the delay introduced by let in a new way. Indeed, in let x = u in t,
from the point of view of t, the let makes the value of x unspecified. This allows us to share
multiple copies of t bound by different let-constructs with different arguments.

Let X , L, L and ↪→ be as defined above. We define below the labelled terms, where
applications and let-constructs are labelled (labelling λ-abstractions is possible but not

T. Balabonski 97

needed). The answers represent λ-abstractions under let-constructs. Evaluation focuses
are contexts that guide call-by-need shared reduction by pointing one of the redexes to be
reduced parallely.

Terms (Tlet): t ::= x | λx.t | @α(t, t) | letα x = t in t x ∈ X
Answers (Alet): A ::= λx.t | letα x = t in A x ∈ X
Eval. focus (Elet): E ::= _ | @α(E, t) | letα x = t in E x ∈ X

The application is explicited by a binary constructor @ to ease the reading of labelled terms.
Free and bound variables are defined as usual, remembering that both λx.t and let x = u in t
bind x in t. Spines and labelled substitutions are adapted from above.

Two main rules (Intro) and (Subst) respectively introduce a let-construct to delay the
substitution of a β-reduction and perform substitution when the focus of the reduction
encounters a variable. The (Scope) rule prevents let-constructs from hiding β-redexes. A
(GC) rule is added to lighten the examples, and (Renaming) is as discussed in Section 4.2.
The system is not orthogonal: (GC) and (Renaming) introduce several critical pairs. The
reduction relation is the smallest congruence on terms generated by the rules.

Intro: @α(λx.t, u) → let[α] x = u in t
Subst: letα x = t in E[x] → let[α] x = t in E[y]{y :=α,t} y fresh
Scope: @α(letβ x = t in A, u) → let[α]β x = t in @[α](A, u) x 6∈ fv(u)
GC: letα x = t in u → u x 6∈ fv(u)
Renaming: letα x = t in u → let[α] y = t in u{x:=α,y} y 6∈ fv(u) ∪ bv(u)

Remark that in rule (Subst) only one occurrence of the variable is substituted and the labels
are modified along the substitution.

In the sequence below we follow the underlined subterm @δ(λz.z, y). In usual call-by-need
the two copies are separated from step (1), as the value of the first occurrence of x is required.
Even with the fully lazy version given in [2], only the duplication of λz.z would be spared,
which would not help here. In this example however, the two copies remain shared thanks to
the label δ (and later [δ]). They are separated only at the end of step (5). Inbetween, steps
(3), (4) and (5) evaluate in parallel the two copies. As a consequence, the function substituted
for the second occurrence of x in step (6) is already fully evaluated. The interesting new
behaviour observed here is the sharing of two subterms occurring at very different positions:
one is buried under a λ-abstraction while the other stands in the evaluation focus.

@α(λx.@β(x,@γ(x, a)), λy.@δ(λz.z, y))
→I let[α] x = λy.@δ(λz.z, y) in @β(x,@γ(x, a))

→Su let[[α]] x = λy.@δ(λz.z, y) in @[[α]]β(λy.@δ(λz.z, y),@γ(x, a)) (1)
→I let[[α]] x = λy.@δ(λz.z, y) in let[[[α]]β] y = @γ(x, a) in @δ(λz.z, y) (2)
⇒I let[[α]] x = λy.let[δ] z = y in z in let[[[α]]β] y = @γ(x, a) in let[δ] z = y in z (3)

⇒Su let[[α]] x = λy.let[δ] z = y in y in let[[[α]]β] y = @γ(x, a) in let[δ] z = y in y (4)
⇒GC let[[α]] x = λy.y in let[[[α]]β] y = @γ(x, a) in y (5)
→Su
GC let[[α]] x = λy.y in @γ(x, a)

→Su
GC @[[[α]]γ](λy.y)a (6)

The labelled term obtained at step (2) and its corresponding graph are represented below.
They show how sharing-via-labelling allows the sharing of open subterms affected by different
bindings. This kind of graph is usually called non-admissible [29], but in our case the labelled
term clearly shows that there is no binding ambiguity, and thus that using this graph is

RTA’12

98 Axiomatic Sharing-via-Labelling

possible. The point is: in this setting α-conversion cannot be silent. Indeed, renaming one
occurrence of y requires breaking the sharing and modifying one of the occurrences of the
label δ.

let[[α]] x = λy.@δ(λz.z, y)
in let[[[α]]β] y = @γ(x, a)

in @δ(λz.z, y)

→ let[[α]] x = λy.@δ(λz.z, y)
in let[[[[α]]β]] y = @γ(x, a)

in @[[[[α]]β]]δ(λz.z, y)

xin
λy yin

@
x a

@
λz y

z

→
xin

λy y′in
@

x a

@
yλz

z

@
y′λz

z

In this case the “physical identity” of one copy of the shared redex @δ(λz.z, y) is modified,
which illustrates the dynamic identification mentioned in introduction.

Axiomatic checking Define a reduction as the application of any rule in any context. The
axioms of ATRS are satisfied. Define the effect zone of a reduction as the set of the positions
where the labels are changed. Remark that the collapsing rule (GC) has an empty effect
zone, while the effect zones of (Subst.) and (Renaming) correspond to spines. The axiom
Effect zone is satisfied. The axioms of SvLS are satisfied as in Section 4.1.

I Remark. The labelled substitution extends implicitly the right-hand-sides of the rules,
hence this system does not fit directly in usual (higher-order) term rewriting frameworks.
This is fixed as soon as the rule schemes explicitly mention the spines, as it is done in [7]. J

6 Related work

Sharing and graph rewriting have already been described in many different ways, some of
which are reviewed here. We compare them with our framework along three directions:
Expressive power: the amount of compatible rewriting systems and their features.
Sharing power: the level of sharing achieved on compatible systems.
Formal complexity: the simplicity or complexity of defining and handling the system.

Adressed TRS D. Dougherty et al. [13] propose labelled first-order systems with a similar
sharing power. They allow non-orthogonality, and also cycles representing infinite terms,
which we do not here. They do not however mention higher-order systems. Their technology
is slightly more complex than term rewriting: the new labels are taken globally fresh, thus the
reduction of a redex depends on its global context and parallel reduction is not decomposed.

Term graphs Term graphs [9, 27, 19, 8] provide sharing facilities for any first-order or
higher-order system, with an equivalent sharing power in many cases, and also allow cycles [8].
They have a far higher formal complexity, since they require subtle correctness criteria and
notions of morphisms of graphs with binders. They forbid the sharing of open subterms
affected by different binders, which limits the reduction strategies with sharing (Section 5).

Call by need The call-by-need λ-calculus [3] and its fully lazy version [2] give a simple and
elegant account of Wadsworth’s graph algorithm for the evaluation of the λ-calculus [29].
N. Yoshida [30] also develops similar ideas by using explicit substitutions in place of let-
constructs. These works also manage to use only terms and one-step term reduction. On the
other hand they require structural rules or structural equations. The latter point however
has been recently improved in [12]. Concerning the expressive power, these works are a study
of the particular case of the λ-calculus, which is orthogonal.

T. Balabonski 99

Optimal sharing The optimal implementations of higher-order systems [23, 22, 4, 5] perform
a better sharing than our framework, and apply to a large class of orthogonal higher-order
systems, through Interaction Systems [5]. They do not apply however to all orthogonal
higher-order systems, and do not apply at all to non-orthogonal systems. They also achieve
optimal sharing at the cost of a far greater formal complexity.

Interaction nets Interaction nets can implement wide classes of first-order and higher-order
rewriting systems [15, 16, 24]. They are known in particular for the suboptimal yet powerful
sharing they realize in systems like [24]. The limit of their expressive power is their sequential
nature. Also their atomization of every operation makes the link with the term specifications
technically very demanding.

7 Conclusion

The axiomatic sharing-via-labelling systems presented in this paper provide a general frame-
work for the sharing of subterms in term rewriting. This very expressive framework applies
to higher-order and non-orthogonal rewriting systems and covers a wide range of shared
reduction algorithms based on acyclic graphs. The formalism is simpler than most of the
other approaches to shared rewriting since it is definable within the realm of term rewriting.

The framework generalizes the previous label-based approaches to sharing inspired by
optimality theory [25, 10, 6, 7] by dropping the causal content of the labels. This makes it
possible to eliminate their restriction to weak reduction as well as their need for indirection
nodes, and to define more efficient shared reduction strategies. Section 5 in particular shows
this, illustrating the power of ingredients as simple as term rewriting and acyclic sharing.

This work opens new perspectives for rewriting theory and functional programming:
Study of general term rewriting The Abstract Term Rewriting Systems (ATRS) are an

intermediate formalism between fully abstract rewriting frameworks and concrete term
rewriting frameworks. This granularity makes it possible to grasp specific properties of
term rewriting that are common to all term frameworks.

Specification of graph rewriting Sharing-via-labelling provides a simple approach to graph
rewriting, which is now applicable on a large scale.

Analysis of functional programming Our work provide a homogeneous framework for com-
paring shared implementations of functional programming languages, in the line of [7].

Implementation of functional programming Sharing-via-labelling provides means to ima-
gine and express new graph algorithms and new reduction strategies for the implementation
of functional programming languages, as illustrated in Section 5.

Acknowledgements I would like to thank Delia Kesner for her good advice and constant
support, as well as the anonymous referees for their helpful comments and suggestions.

References
1 M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitutions. J. Funct.

Program., 1(4):375–416, 1991.
2 Z.M. Ariola and M. Felleisen. The call-by-need lambda calculus. J. Funct. Program.,

7(3):265–301, 1997.
3 Z.M. Ariola, M. Felleisen, J. Maraist, M. Odersky, and P. Wadler. The call-by-need lambda

calculus. In POPL, pages 233–246, 1995.
4 A. Asperti and S. Guerrini. The Optimal Implementation of Functional Programming

Languages. Cambridge University Press, 1998.

RTA’12

100 Axiomatic Sharing-via-Labelling

5 A. Asperti and C. Laneve. Interaction systems ii: The practice of optimal reductions. TCS,
159(2):191–244, 1996.

6 T. Balabonski. Optimality for dynamic patterns. In PPDP’10, pages 231–242, 2010.
7 T. Balabonski. A unified approach to fully lazy sharing. In POPL’12, 2012.
8 P. Baldan, C. Bertolissi, H. Cirstea, and C. Kirchner. A rewriting calculus for cyclic higher-

order term graphs. Mathematical Structures in Computer Science, 17(3):363–406, 2007.
9 H. P. Barendregt, M. C. J. D. van Eekelen, J. R. W. Glauert, R. Kennaway, M. J. Plasmeijer,

and M. R. Sleep. Term graph rewriting. In PARLE (2), pages 141–158, 1987.
10 T. Blanc, J.-J. Lévy, and L. Maranget. Sharing in the Weak Lambda-Calculus Revisited.

In Reflections on Type Theory, Lambda Calculus and the Mind, 2007.
11 S. Blom. Term Graph Rewriting - Syntax and Semantics. Ph.D. thesis, 2001.
12 S. Chang and M. Felleisen. The call-by-need lambda calculus, revisited. In ESOP, 2012.
13 D. Dougherty, P. Lescanne, L. Liquori, and F. Lang. Addressed Term Rewriting Systems:

Syntax, Semantics, and Pragmatics: Extended Abstract. ENTCS, 127(5):57–82, 2005.
14 M. Fernández, I.Mackie, and F.-R. Sinot. Closed reduction: explicit substitutions without

alpha-conversion. MSCS, 15(2):343–381, 2005.
15 M. Fernández and I. Mackie. Interaction nets and term-rewriting systems. TCS, 190(1):3–

39, 1998.
16 M. Fernández, I. Mackie, S. Sato, and M. Walker. Recursive functions with pattern match-

ing in interaction nets. ENTCS, 253(4):55–71, 2009.
17 C.K. Holst and D.K. Gomard. Partial evaluation is fuller laziness. SIGPLAN Not.,

26(9):223–233, 1991.
18 C.B. Jay and D. Kesner. First-class patterns. J. Funct. Program., 19(2):191–225, 2009.
19 W. Kahl. Relational treatment of term graphs with bound variables. Logic Journal of the

IGPL, 6(2):259–303, 1998.
20 D. Kesner. The theory of calculi with explicit substitutions revisited. In CSL, pages 238–

252, 2007.
21 U. Dal Lago and S. Martini. On constructor rewrite systems and the lambda-calculus. In

ICALP’09, pages 163–174, 2009.
22 J. Lamping. An algorithm for optimal lambda calculus reduction. In POPL, 1990.
23 J.-J. Lévy. Optimal reductions in the lambda-calculus. In To H.B. Curry: Essays on

Combinatory Logic, Lambda Calculus and Formalisms, pages 159–191, 1980.
24 I. Mackie. Efficient lambda-evaluation with interaction nets. In RTA, pages 155–169, 2004.
25 L. Maranget. Optimal Derivations in Weak Lambda-calculi and in Orthogonal Terms

Rewriting Systems. In POPL’91, pages 255–269, 1991.
26 P.-A. Melliès. Description Abstraite des Systèmes de Réécriture. Ph.D. thesis, 1996.
27 D. Plump. Term graph rewriting. In Handbook of Graph Grammars and Computing by

Graph Transformation, volume 2, pages 3–61, 1999.
28 Terese. Term Rewriting Systems. Cambridge University Press, 2003.
29 C. P. Wadsworth. Semantics and Pragmatics of the Lambda Calculus. Ph.D. thesis, 1971.
30 N. Yoshida. Optimal reduction in weak-λ-calculus with shared environments. J. of Com-

puter Software, 11(5):2–20, 1994.

On the Decidability Status of Reachability and
Coverability in Graph Transformation Systems∗

Nathalie Bertrand1, Giorgio Delzanno2, Barbara König3,
Arnaud Sangnier4, and Jan Stückrath3

1 Inria Rennes Bretagne Atlantique, France
2 Università di Genova, Italy
3 Universität Duisburg-Essen, Germany
4 LIAFA, Univ Paris Diderot, Sorbonne Paris Cité, CNRS, France

Abstract
We study decidability issues for reachability problems in graph transformation systems, a power-
ful infinite-state model. For a fixed initial configuration, we consider reachability of an entirely
specified configuration and of a configuration that satisfies a given pattern (coverability). The
former is a fundamental problem for any computational model, the latter is strictly related to
verification of safety properties in which the pattern specifies an infinite set of bad configurations.
In this paper we reformulate results obtained, e.g., for context-free graph grammars and concur-
rency models, such as Petri nets, in the more general setting of graph transformation systems and
study new results for classes of models obtained by adding constraints on the form of reduction
rules.

1998 ACM Subject Classification D.2.2 Design Tools and Techniques, D.2.4 Software/Program
Verification, F.4.2 Grammars and Other Rewriting Systems

Keywords and phrases decidability, reachability, graph transformation systems

Digital Object Identifier 10.4230/LIPIcs.RTA.2012.101

Category Regular Research Paper

1 Introduction

Graph transformation systems (GTS) form an intuitive, but precise modelling framework,
which has been extensively studied since its introduction in the 1970’s. A graph trans-
formation system consists of an initial graph and a set of reduction rules, which rewrite
graphs and thus generate a transition system with graphs as states. Applications come from
diverse areas such as the specification of UML model transformation [14] or encoding of
process calculi [4].

In the past there has been a strong focus on questions of (categorical) semantics and
expressiveness, while algorithmic issues received much less attention. Especially, different
from related formalisms such as Petri nets [15], there is no systematic study of decidability
results for graph transformation systems.

Taking inspirations from recent work on concurrency models [5, 8, 19, 20, 23], we consider
here decidability issues for two fundamental problems: reachability and coverability of a
given graph Gf from an initial graph G0. The first problem requires the existence of a

∗ Research partially supported by DFG project GaReV.

© Nathalie Bertrand, Giorgio Delzanno, Barbara König, Arnaud Sangnier, Jan Stückrath;
licensed under Creative Commons License NC-ND

23rd International Conference on Rewriting Techniques and Applications (RTA’12).
Editor: A. Tiwari; pp. 101–116

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

102 On the Decidability Status of Reachability and Coverability in GTS

computation from G0 to (a graph isomorphic to) Gf . The second one requires the existence
of a computation from G0 to some graph G that includes Gf as a subgraph.

While it is straightforward to determine the decidability status of these problems for
general graph transformation systems, where the problems are both undecidable, and finite-
state graph transformations, where they are both decidable, there are several other classes
of infinite-state systems for which the question can be naturally asked. In this paper we
systematically analyse reachability and coverability for several subclasses of GTS obtained
as syntactic restrictions of reduction rules.

For special classes of GTS in which rules never change the underlying structure, we
also consider an existential formulation of the coverability problem in which the initial
configuration is an unknown variable to be discovered. This problem naturally models
parameterized verification questions for concurrent systems with a static topology [9].

With our analysis, we combine within a unified framework both known results coming
from fields such as context-free graph grammars, concurrency and verification, with new ones
that we obtain by considering restrictions such as non-deletion of nodes, well-structuredness
of the rewriting relation, and relabelling reductions only. An algorithmic view of graph
transformation systems could open new research directions in the field of verification of
infinite-state systems.

Due to length restrictions this paper contains mostly proof sketches. A version of this
paper including all proofs in full length is published as a technical report [3].

2 What is a Graph Transformation System?

A graph transformation systems (GTS) is defined by a collection of reduction rules that
can be used to dynamically modify the structure of an initial hypergraph. Reduction rules
can conveniently be defined as graph morphisms. To formalize these ideas, we next define
(labelled) hypergraphs – in the following simply called graphs – and graph morphisms.

I Definition 1. Let Λ be a finite sets of edge labels and ar : Λ→ N0 a function that assigns
an arity to each label. A (Λ-)hypergraph is a tuple (VG, EG, cG, l

E
G) where VG is a finite set

of nodes, EG is a finite set of edges, cG : EG → V ∗G is a connection function and lEG : EG → Λ
is an edge labelling function. We require that |cG(e)| = ar(lEG(e)) for each edge e ∈ EG

An edge e is called adjacent to a node v if v occurs in cG(e).

We remark here that we consider graphs in which hyperedges have a fixed arity determined
by their label. Directed labelled graphs are a special case of hypergraphs where every edge
label has arity 2 and every sequence cG(e) is of length two.

I Definition 2. Let G, G′ be (Λ-)hypergraphs. A partial hypergraph morphism (or simply
morphism) ϕ : G ⇀ G′ consists of a pair of partial functions (ϕV : VG ⇀ VG′ , ϕE : EG ⇀

EG′) such that for every e ∈ EG it holds that ϕV (cG(e)) = cG′(ϕE(e)) whenever ϕE(e) is
defined. Furthermore if a morphism is defined on an edge, it must be defined on all nodes
adjacent to it.

A morphism is called label-preserving if in addition lEG(e) = lEG′(ϕE(e)) for all e ∈ EG,
where ϕE(e) is defined. Total morphisms are denoted by an arrow of the form →.

In the following we drop the subscripts and write ϕ instead of ϕV and ϕE . Note that in the
literature graph morphisms are usually label-preserving. Here we are more flexible in our
definition, since we want to use graph morphisms also in order to define relabellings.

N. Bertrand, G. Delzanno, B. König, A. Sangnier, and J. Stückrath 103

E E

EE

T

21

E

E E

E
3

Figure 1 A graph (left) and its minor (right).

Isomorphism, Subgraphs, and Minors

Two graphs G,H are called isomorphic if there is a bijective, label-preserving morphism from
G to H. In the rest of the paper we consider the following graph orderings over hypergraphs:
G vs H, if G is a subgraph of H, namely, there exists a total, injective and label-preserving
morphism from G to H, and G vm H if G is a minor of H, i.e., G can be obtained from
H by (iterative) node deletion, edge deletion and edge contraction. Edge contraction for
hypergraphs means that the edge is deleted and its adjacent nodes are merged arbitrarily,
i.e. merging nodes according to any partition on the adjacent nodes will result in a valid
edge contraction (see also [22]). Fig. 1 shows an example of an edge contraction: the 3-ary
hyperedge labelled T (where the nodes attached to the edge are numbered 1, 2, 3 in their
respective order) is contracted with partition {1, 2}, {3}, which means that we obtain a
circle of E-edges.

Based on results in [22] it can be shown that the minor order defined above is a well-quasi
order1 on the set of all hypergraphs. The minor order on hypergraphs was first differently
introduced in [17], contracting all nodes attached to a hyperedge. However, unfortunately
it does not follow from the results in [22] that the order studied in [17] is a wqo. By using
the minor order defined above instead, the results of [17] can be recovered, see [18] for a
corrected version. Furthermore the subgraph order is a wqo on a restricted set of graphs
(for more details see Section 3.5). Note that if G is a subgraph of H, it is also a minor, but
not necessarily vice versa.

Graph Rewriting

We now define the rewriting mechanism, a slight extension of single-pushout rewriting (SPO)
[13]. One of the most important features of SPO is the handling of so-called “dangling”
edges: whenever a node is deleted, all edges attached to it have to be removed as well, also
those which are not explicitly deleted. Different from standard SPO we allow as rules partial
morphisms which are not necessarily label-preserving. In such a case the corresponding edge
is preserved and relabelled. In the definition below this is simulated by removing the old
edge and adding a new edge with the modified label. This will be especially important in
Section 3.7 where we consider node and edge relabelling as well.

I Definition 3. A rewriting rule is a partial morphism r : L ⇀ R, where L is called left-
hand side and R right-hand side. A match (of r) is a total, injective and label-preserving
morphism m : L→ G.2

1 A quasi order (on graphs) is a well-quasi order (wqo) if in every infinite sequence G1, G2, . . . of graphs
there are indices i < j with Gi v Gj .

2 Since m is injective we can assume that it acts as the identity on nodes and edges on which it is defined,
i.e., m(v) = v and m(e) = e for v ∈ VL, e ∈ EL. In addition we assume that the set of nodes and edges
in R not in the image of r are disjoint from the set of nodes and edges of G.

RTA’12

104 On the Decidability Status of Reachability and Coverability in GTS

Given a rule r and a match m, a rewriting step or an application of the rule to the graph
G, results in a graph H (symbolically G⇒R H), which is defined as follows. Let ED be the
set of edges e ∈ EG which are adjacent to a node m(v) where r(v) is undefined (so-called
dangling edges). We define the node and edge sets of H as follows: VH = VG\VL ∪ VR,
EH = EG\(EL ∪ ED) ∪ ER.

Define a mapping r̃ : VG ⇀ VH such that r̃(v) = v if v ∈ VG\VL, and r̃(v) = r(v) if
v ∈ VL. Finally, define the attachment and edge labelling functions of H:

cH(e) =
{
cR(e) if e ∈ ER

r̃(cG(e)) if e ∈ EG\(EL ∪ ED) lEH(e) =
{
lER(e) if e ∈ ER

lEG(e) if e ∈ EG\(EL ∪ ED)

Intuitively, we can think of this as follows: L is a subgraph of G, all items of L whose
image is undefined under r are deleted, the new items of R are added, merged and connected
as specified by r. Whenever a node is deleted, all adjacent edges will be deleted as well. In
addition, edges are relabelled as specified by r.

Note that for Definition 3 it would be sufficient to define r solely on nodes and to create
and recreate edges instead of preserving them. However, to be consistent with later sections,
especially Section 3.7, we allow that r is also defined on edges.

I Example 4. In the following we introduce an (erroneous) termination detection protocol
on a ring, modelled as a GTS to illustrate a rewriting step as well as the differences between
the classes of GTS studied in later sections.

AP

DP

Figure 2
Initial graph.

The protocol is initialised with a ring structure containing an active pro-
cess, a passive process and a passive detector as shown in Figure 2. The
first three rules presented in Figure 3 allow normal and detector processes
to deactivate themselves (3a), activate other processes (3b) and generate new
processes (3c). The last three rules shown in Figure 3 allow detector processes
to generate termination messages (3d), normal processes to forward these mes-
sages (3e) and detector processes to generate a termination flag after receiving
a termination message (3f).

Edges are represented as boxes with rounded edges and binary edges are drawn as dir-
ected edges, indicating the order of the nodes wrt. the edge. The example includes 0-ary
hyperedges (with label termination), unary hyperedges (with label T) and binary hyperedges
with labels (A,P,DA,DP). The label (D)A thereby represents both the label A and DA

(label (D)P is uses analogously), i.e. the rule in Figure 3a can either rewrite an A-edge to a

1 2 1 2

(D)A (D)P

(a) Deactivate
21 3

4 4

21 3

(D)A (D)P (D)A (D)A

(b) Activate

21 1 2

(D)A (D)A A

(c) Create new process 1 2 1 2

3 3

DP DP

T

(d) Generate termination message

1 2 1 2

3 3

P P

T T

(e) Forward termination message
1 2 1 2

3 3

DP DP

T

termination

(f) Termination detection

Figure 3 The basic rules of a termination detection protocol.

N. Bertrand, G. Delzanno, B. König, A. Sangnier, and J. Stückrath 105

1 2 1,2
(D)A

(a) Active process leaves
1 2 1,2

(D)P

(b) Passive process leaves

1 1

T

(c) Message lost

termination

(d) Termination flag lost

Figure 4 Additional rules simulating a lossy system.

D(A) termination

Figure 5 The error graph.

A

r �

m

��

P

��

AP

DP

�

P P

DP

Figure 6 A rewriting example.

P-edge or a DA-edge to a DP-edge. In a rule, an item (node or edge) in the left-hand side
numbered i is mapped to the corresponding item on the right-hand side.

This protocol is supposed to detect whether all processes are passive and generate a
termination flag in that case. However, by means of the methods of Section 3.5 it can
be proven erroneous. Figure 5 represents the pattern which a correct protocol will never
produce, that is an active process and a termination flag. Hence we can refute the correctness
by showing that a graph containing the pattern is reachable.

In order to model a lossy system, we add rules such that active (4a) and passive (4b)
processes can leave the ring and the termination message (4c) and flag (4d) may be lost.

Figure 6 exemplarily shows a rewriting step where the deactivation rule is applied to the
initial graph. The active process is thereby deleted and replaced by an identical but passive
process, resulting in the bottom right graph, where all processes are passive.

3 An Algorithmic Study of Reachability and Coverability

As mentioned in the introduction, we focus our attention on fundamental decision problems
for studying computational properties of a model, namely reachability and coverability. The
following definitions are given modulo isomorphism.

I Definition 5. Given a finite set of rewriting rules R, an initial graph G0 and a final graph
Gf , the Reachability Problem is defined as follows: does G0 ⇒∗R Gf hold?

I Definition 6. Given a finite set of rewriting rules R, an initial graph G0 and a final graph
Gf , the Coverability Problem is defined as follows: is there a graph H such that G0 ⇒∗R H

and Gf vs H?

RTA’12

106 On the Decidability Status of Reachability and Coverability in GTS

We will now study decidability and undecidability results by extending existing results
(e.g., for context-free grammars, GTS and Petri nets, and well-structured transition systems)
with new results for several fragments of GTS. The conclusion (Section 5) gives an overview
over the various cases in a single diagram. We first recall that the reachability and the
coverability problem are both undecidable in the general case. This is a known result. It
is quite straightforward to encode Turing machines into graph rewriting and either problem
admits a reduction from the halting problem.

Another immediate results follows from restricting the set of reachable graphs to be
finite. If it is known that only finitely many graphs up to isomorphism are reachable from
G0, the reachability and coverability problems are decidable for the given GTS. Indeed we
just have to enumerate all graphs up to isomorphism and check whether they are isomorphic
or in relation to Gf . While the result follows quite trivially, an efficient implementation is
more demanding (see for instance the GROOVE tool [21]).

3.1 Symbolic Backward Reachability Algorithm

Symbolic backward analysis turns out to be a convenient tool to answer coverability queries.
We present here a generic variant that we apply in some of the proofs in the rest of the
paper.

The key idea is to use a graph H as a symbolic representation of its upward closure
wrt. some subsumption relation v, namely the infinite set of graphs up(H) = {G | H v G}.
The subsumption relation is in our case either the subgraph inclusion (G vs H) or the graph
minor ordering (G vm H). For an upward closed set X, we define bXc to be a minimal
subset of X such that up(X) = up(bXc). We can then use bXc to describe X sufficiently, as
seen below. To check whether a graphs Gf is coverable using the set of rules R, we compute
the following sequence: Cover0 = {Gf}, Cover i+1 =

⌊
Cover i ∪

⋃
r∈R Prer(Cover i)

⌋
. The

sequence Cover0,Cover1, . . . resembles an exploration which starts from Gf and for each
rule r, it applies the rule backwards to the current set of graphs by taking into account their
denotation. The operator Prer is such that G ∈ Prer(H) iff ∃H ′. H v H ′, G⇒r H

′. Hence
in the case of subgraph inclusion, by adding auxiliary nodes and edges, we first expand H
into graph H ′, and then we search for a possible match with the right-hand side R of rule r.
If such a match exists, we apply a rewriting step backwards replacing R by L. The graph
Gf is then coverable if there is an H ∈ Cover i with H v G0 for some i ∈ N0.

It is sufficient to compute a minimal set MPrer(H) of graphs that denotes the infinite set
Prer(H), i.e. MPrer(H) = bPrer(H)c. In the case of subgraph inclusion this can be done
by considering only expanded graphs H ′ that are obtained by merging H with subgraphs
of R. Indeed we observe that if r is applied backwards to a subgraph of H ′ that does not
overlap with H, then the resulting graph will still contain H as a subgraph, and will never
be added (it is subsumed and does not bring any new information).

For the case of the minor ordering we can use similar ideas for the backwards step (see
also [17]).

In general the sequence Cover0,Cover1, . . . need not become stationary, hence the pro-
cedure need not terminate, but we can show that it terminates for our specific cases. The
termination depends mainly on the fact that the subsumption relation is a wqo on the used
set of graphs, but may also be affected by the rule set.

N. Bertrand, G. Delzanno, B. König, A. Sangnier, and J. Stückrath 107

3.2 Context-free Graph Transformation Systems
A well-known subclass of graph transformation systems are context-free graph grammars or
hyperedge replacement graph grammars [11], where the left-hand side of a rule consists of
a single hyperedge and no nodes are deleted or fused. Such grammars are usually used as
a language-generating device: labels are partitioned into terminal and non-terminal labels.
Only graphs which have only terminal labels are elements of the language. Furthermore
G0 consists of a single edge with a non-terminal label (the axiom) and the same is true for
all left-hand sides. Since the distinction between terminal and non-terminal labels does not
play a fundamental role for decidability questions, we will drop it in the following.

I Definition 7. A set R of rewriting rules is called context-free if every rule r ∈ R with
r : L ⇀ R satisfies the following restrictions:

L has the form L = ({v1, . . . , vn}, {e}, [e 7→ v1 . . . vn], lEL), i.e., L consists of a single
hyperedge, which is connected to a duplicate-free sequence of nodes.
r is defined and injective on v1, . . . , vn. Furthermore r is undefined on e.

Although not context-free, the termination detection example in Section 2 contains
context-free rules, e.g. the deactivation rule (3a), the creation rule (3c) and the rule gener-
ating a termination message (3f).

I Proposition 8 ([11]). The reachability problem for context-free graph transformation sys-
tems is NP-complete. More precisely: there are context-free grammars for which the mem-
bership problem is NP-complete (in the size of Gf).

I Proposition 9. The coverability problem for context-free graph transformation systems is
decidable.

Proof sketch. The decision procedure is based on the backward exploration algorithm in
Section 3.1, where we instantiate the predicate “G subsumesH” by G vs H (G is a subgraph
of H). Indeed, the key idea is to use a graph H as a symbolic representation of its upward
closure wrt. vs. For the case of context-free rules, termination is obtained by showing that
the number of hyperedges occurring in new graphs added at each iteration never increases.
From this property and since the arity of hyperedges is finite, we have that the state space
we need to explore to search for a graph that subsumes G0 is always finite (but potentially
exponential in the input). More details can be found in [3]. J

3.3 Restrictions on Node Deletion and Creation
In many cases graph transformation systems can be viewed as a variant of Petri nets with
additional structure. In this case the graph transformation system can be translated into
a low-level Petri net and we obtain decidability results from decidability results for Petri
nets, possibly with reset and transfer arcs. This is usually the case when we impose some
restrictions on the number of nodes that are deleted and/or created, since the main feature
that gives GTS more expressiveness than Petri nets is the creation of new nodes. We
can obtain such a GTS from the example of Section 2 by deleting the rule which creates
new processes and the lossy system rules. To model the lossy system rules transfer arcs
are required. This section relies on the intuitions and results of [2], which spells out the
connection between SPO and nets with reset arcs. The type of graph transformation systems
that are more or less equivalent to Petri nets can be specified as follows. Intuively the rules
do not allow node deletion, creation or fusion.

RTA’12

108 On the Decidability Status of Reachability and Coverability in GTS

I Proposition 10. Assume that the set R of rewriting rules satisfies the restriction that
every rule morphism r : L ⇀ R is a bijection on nodes. Then the reachability problem and
the coverability problem are decidable.
Proof sketch. Let G be the initial graph. In this setting VG remains unchanged by any
graph rewriting step and only the edges may change. We construct a Petri net from the
GTS to reduce reachability and coverability to reachability and coverability on Petri nets.
The places of the Petri net are defined as P = {(`, s) ∈ Λ × V ∗G | ar(`) = |s|}. A token
in a place (`, s) represents an edge e with l(e) = ` and c(e) = s. The initial graph can be
transformed straightforwardly into a marking of the Petri net. The rewriting steps are then
simulated by adding a set of transitions for each rule r : L ⇀ R, taking into account every
possible match of r to any possible graph with |VG| nodes. We achieve this by enumerating
all possible mappings h of nodes of L to nodes of VG, adding one transition for each. For
each edge e of L the transition has one input place (l(e), h(c(e))). Analogously the transition
has one output place for every edge in R using the same mapping. Effectively a transition
takes tokens out of places representing the edges deleted by r and adds tokens in places
representing the edges created by r. Since coverability and reachability are decidable for
P/T nets, we obtain the same for this variant of GTS. J

If we allow node fusion and node deletion and hence also deletion of adjacent dangling
edges, but recreate the same number of nodes, we are equivalent in expressivity to Petri nets
with transfer arcs.
I Proposition 11. Assume that the set R of rewriting rules satisfies the restriction that for
every rule (partial) morphism r : L ⇀ R we have |VL| = |VR|. Then the reachability problem
is undecidable, but the coverability problem is decidable.
Proof sketch. Since the number of nodes of a graph stays constant during rewriting, the
encoding of GTS into Petri nets is similar to the proof of Proposition 10. In order to deal
with partial morphisms (i.e. node deletion) and non-injective ones (i.e. node fusion), we
introduce transitions with transfer arcs that can transfer all tokens contained in a given set
of places into a specific place. Reset arcs [12] are a special case in which the transferred
tokens are moved to a sink place. Node deletion and subsequent recreation can be simulated
via reset arcs, which empty all places corresponding to edges adjacent to a deleted node.
Similarly, node fusion can be simulated by transfer arcs which merge the contents of all
places corresponding to edges adjacent to nodes that have the same image. Hence we can
encode all GTS conforming to the restrictions into transfer nets, inheriting the decidability
result from coverability of transfer nets. On the other hand, every reset net can be encoded
into a GTS with the above restrictions (see [2]). Hence reachability is undecidable for this
class of GTS. J

3.4 Non-Deleting Graph Transformation Systems
Now consider GTS that are non-deleting (neither edges nor nodes) and in addition label-
preserving, i.e., the rule morphism r : L � R is a (total) label-preserving injection. For
instance rule (3d) in Section 2 is non-deleting.
I Proposition 12. The reachability problem is decidable for non-deleting graph transform-
ation systems.
Proof sketch. In this setting reachability is decidable, due to the monotonicity of the rules.
We apply all rules to derive all possible graphs and stop the derivation if a graph larger than
Gf is reached. J

N. Bertrand, G. Delzanno, B. König, A. Sangnier, and J. Stückrath 109

However the monotonicity has no effect on coverability and we will show that coverability
is in fact undecidable.

I Proposition 13. The coverability problem is undecidable for non-deleting graph transform-
ation systems.

Proof sketch. The coverability problem is undecidable for general GTSs because the halting
problem for Turing machines can be reduced to it. This reduction is still possible for non-
deleting GTSs. We use a directed path of labeled edges to represent the tape of the Turing
machine and add one edge to mark the current state and head position. The input word
forms the initial graph and non-deterministically additional blanks are added at both tape
ends. Then for each step of the Turing machine, non-deleting rules copy the old tape
with the appropriate changes and connect it to the old tape, such that the full Turing
machine computation results in a grid-like graph. We have to take into account that without
application conditions any rule can be applied an arbitrary number of times using the same
matching, leading to a “branching” in the grid. However, we can show that this is not a
problem, because different branchings do not interact. Hence, the Turing machine terminates
if and only if an edge labeled with a final state is coverable in the GTS. The full proof can
be found in [3]. J

3.5 Well-Structured Graph Transformation Systems
A good source for decidability results for the coverability problem are well-structured trans-
ition systems [16, 1]. For this we need a well-quasi order v, possibly not on the class of all
graphs, but on restricted classes. Furthermore it has to be shown that the well-quasi order
is a (weak) simulation for the reduction relation, i.e., if G v H and G is rewritten to G′,
then H can be rewritten (possibly in several steps) to H ′ such that G′ v H ′.

These conditions ensure that every upward-closed set can be finitely represented and
that the set of predecessors of an upward-closed set is also upward-closed. If in addition the
order is decidable and the direct predecessors can be effectively computed, one automatically
obtains a backward search algorithm which can decide coverability.

Here we reuse results of [20, 17] and adapt them to our present setting (hypergraphs and
SPO with injective matches as a rewriting formalism). The following decidability results
then hold.

I Proposition 14. If the set of rules contains edge contraction rules for each edge label (i.e.,
a rule deleting that edge and merging some of its adjacent nodes using any partition on the
node set), then the coverability problem is decidable.

Proof sketch. We prove well-structuredness of GTS with contraction rules for all possible
edge labels. We first recall that the graph minor ordering is a decidable well-quasi ordering
[22]. Furthermore, the transition system of a GTS with contraction rules is monotone
wrt. the minor ordering. Based on these properties, we can apply the symbolic backward
reachability algorithm in Section 3.1, by instantiating the subsumes relation with the minor
relation, and by taking as MPrer the computation of the predecessors described in [17] for
conflict-free matches, adapted here to injective matches. The fact that the minor ordering
is a wqo ensures termination of the predecessor computation and thus of the entire decision
procedure. Note also that coverability with subgraph inclusion can be easily reduced to
coverability wrt. minor ordering by adding a rule that detects the subgraph Gf and adds an
edge with a unused label. Then we check whether this new edge is the minor of a reachable
graph. J

RTA’12

110 On the Decidability Status of Reachability and Coverability in GTS

[forward termination
message]

A

⇀

[activate]

⇀
[deactivate]

⇀
[termination

detection]

A

DA

A

DP

DA

P

⇀

A

DP

⇀

A

[activate]

DP

message]
[generate termination

⇀

DA

A

[deactivate]

⇀

DA

P

T

T T

T

termination

TT

Figure 7 Illustration of a backward search using the GTS of Example 4.

The GTS of Example 4 satisfies the conditions of Proposition 14 because of the lossy
system rules (Figure 4). Hence the presented backward search can be used to automatically
show that the protocol is erroneous, as shown in Figure 7. Beginning with the unwanted
pattern, i.e. an active process and the termination flag, the rules are applied backwards
until ultimately reaching a minor of the initial graph. In fact the result is a set of minimal
graphs describing all initial graphs for which the protocol is erroneous. Note that in the first
step the graph first has to be extended, adding the passive detector, before the rule can be
applied backwards. From the resulting sequence of rule applications it is apparent that the
protocols error occurs because a passive process which forwarded the termination message
can be activated afterwards. Hence the termination message and the process activation zone
both move around the ring, but never meet.

IDefinition 15. For a hypergraphG a path of length n is a sequence v0, e1, v1, . . . , vn−1, en, vn

of nodes vi ∈ VG and edges ei ∈ EG, where ei is adjacent to vi−1, vi and no node or edge
occurs more than once. A n-bounded path graph is a hypergraph G in which all paths have
length less than or equal to n.

The following proposition is inspired by results in [20].

I Proposition 16. If it is known that every graph reachable from G0 is an n-bounded path
graph, then the coverability problem is decidable for the given GTS.

Proof sketch. We prove well-structuredness of GTS wrt. subgraph ordering in the class of
n-bounded path graphs. We can then apply the symbolic backward reachability algorithm
in Section 3.1 by instantiating the subsumption relation v with subgraph inclusion, and by
discarding all predecessors that do not satisfy the n-bounded path property. Termination is
guaranteed here by the fact that subgraph ordering for bounded path graphs is a wqo [10].

J

3.6 Graph Transformation with Deletion by Minor Rules
The class of graph transformation systems with minor rules (node/edge deletion, edge con-
traction) is interesting in its own right. One can allow any combination of those rules and
study decidability questions.

A direct consequence of the decidability of the coverability problem (wrt. the minor
ordering) for graph transformation systems with edge contraction rules [17] is the decidab-
ility of the reachability problem for the class of graph transformation systems that contain

N. Bertrand, G. Delzanno, B. König, A. Sangnier, and J. Stückrath 111

=⇒

=⇒

=⇒

(q, 2, 1): q

]1 c1 c1]1

c′1c
′
1c
′
1

]2 c2]2

c′2c
′
2

q, dec(c1), q′:

1 2 1 2

q

]1 c1 c1

c′1c
′
1

q′

]1 c1

c′1

q

]1 c1]1

c′1c
′
1

q′

]1]1

c′1

q, zero(c1), q′: q

]1]1

c′1

q′

]1]1

c′1

Figure 8 Encoding of a Minsky machine.

node deletion, edge contraction and edge deletion rules. In fact, for these kind of systems,
reachability can be reduced to coverability because all the rules which are used in the minor
ordering are also present in the system. Here we investigate what happens to the reachabil-
ity problem when considering graph transformation systems where not all three minor rules
are present. In the sequel, we will say that a graph transformation system is:

edge-contracting if the set of rules contains all edge contraction rules for each edge label,
excluding the edge deletion rule which is a special case of edge contraction;
edge-deleting if the set of rules contains edge deletion rules for each edge label;
node-deleting if the set of rules contains a node deletion rule.

We have the following result which shows that to obtain the decidability of the reachability
problem in graph transformation systems with minor rules, all three types of minor rules
are necessary.

I Proposition 17. The reachability problem is undecidable for the following classes of graph
transformation systems: (a) edge-deleting and node-deleting; (b) edge-contracting and node-
deleting; (c) edge-deleting and edge-contracting.

Proof sketch. We encode reachability for two counter machines. A two counter machine
consists of a finite set of instructions manipulating two counters c1 and c2. Instructions
have the following form (the semantics is the intuitive one): (q, inc(ci), q′) (increment ci),
(q, dec(ci), q′) (decrement ci), (q, zero(ci), q′) (a blocking zero-test on ci), where q, q′ are
control states. Given a (q, k, l) with k, l ∈ N, it is undecidable to determine whether the
program can reach the configuration (q′, k′, l′) starting from (q0, 0, 0).

A configuration like (q, 2, 1) is encoded as a path with additional crossing edges as shown
Fig. 8. Such an encoding of configurations ensures that deletion by minor rules either blocks
a simulation or introduces some garbage that cannot be removed. In both cases we define
a reachability query that ensures that the simulation will not take wrong turns. Decrement
and increment are encoded via graph transformations that preserve the structure of the
representation as in Fig. 8. The correctness of the reduction is discussed in [3]. J

I Proposition 18. The coverability problem is undecidable for graph transformation systems
with edge deletion and node deletion rules.

RTA’12

112 On the Decidability Status of Reachability and Coverability in GTS

Proof sketch. The proof is a variant of the proof of Proposition 17 in the case of edge
deletion and node deletion. More details can be found in [3]. J

3.7 Relabelling Rules
We now consider rules with arbitrary left-hand sides that are however only allowed to relabel
their nodes or edges. So far, node labels were of no specific interest, but they play an
important role in this section. Hence we now generalize the notion of hypergraph to include
node labels: to a quadruple of the form G = (VG, EG, cG, l

E
G) representing a graph as

introduced in Definition 1, we will now add an additional node-labelling function lVG : VG →
Λ′, where Λ′ is a finite set of node labels. The notion of graph morphism and the notion of
rewriting are extended in the obvious way.

I Definition 19. A rewriting rule r : L ⇀ R is called a relabelling rule if r is a bijective
(but not necessarily label-preserving) morphism. A node or edge x is said to be relabelled
if lL(x) 6= lR(r(x)).

Example 4 can be seen as a relabelling system when deleting the lossy system rules as
well as the rule creating new processes. The termination message and flag can be realised
using two node labels or two edge labels where one indicates the existence and one the
non-existence of the message and flag respectively.

Since reachability and coverability from a fixed initial graph are clearly decidable in this
setting (the set of derivable graphs is finite), we consider the following existential coverability
problem: assume that we are given a set of rewriting rules R, a set of initial labels and a
final graph Gf . Is there a graph G0 labelled with only initial labels and a graph H such
that G0 ⇒∗R H and Gf is a subgraph of H?

The existential coverability is of interest when analysing distributed systems. By model-
ling an algorithm for a distributed system using a GTS, one effectively obtains a relabelling
GTS because the system’s topology remains unchanged during execution of the algorithm.
When Gf represents an error configuration, the existential coverability problem transforms
to the question: is there a distributed system where the modelled algorithm produces the
specified error? A slightly different approach using node labels is pursued in [6], where the
set of labels may be infinite and problems more specific for distributed systems are studied.

We first consider GTS with either only edge relabelling or only node relabelling rules,
i.e. either the set of node labels or the set of edge labels is a singleton.

I Proposition 20 (Edge Relabelling). The existential coverability problem is decidable for
graph transformation systems with relabelling rules where the set of node labels Λ′ is a
singleton, i.e., |Λ′| = 1.

Proof sketch. Coverability can be decided by a simple fixed-point computation which de-
termines the set of “reachable” edge labels. A label is reachable if it is initial or occurs
on a right-hand side of some rule, where all labels of the corresponding left-hand side are
reachable. Then the graph Gf is coverable if and only if its edges are labelled with only
reachable labels.

Assume all labels of Gf are reachable. Then for every edge ei of Gf there is an initial
graph Gei and a sequence of relabelling steps leading to some graph covering the edge. By
taking all graphs Gei

and merging appropriate nodes, an initial graph can be obtained from
which Gf is coverable by combining the relabelling steps used to cover the individual edges.
The nodes must thereby be merged such that the covered edges are connected to each other

N. Bertrand, G. Delzanno, B. König, A. Sangnier, and J. Stückrath 113

in a proper way to form Gf after relabelling. It can also be shown that Gf is not coverable
if it contains a non-reachable label. The full proof can be found in [3]. J

I Proposition 21 (Node Relabelling). The existential coverability problem is decidable for
graph transformation systems with relabelling rules where the set of edge labels Λ is a
singleton, i.e., |Λ| = 1.

Proof sketch. The proof for this proposition is analogous to the proof of Proposition 20
using node labels instead of edge labels. An initial graph for the whole graph can be
constructed by taking one initial graph for each occurrence of a node label (covering that
label) and adding every possible edge (i.e., generating a complete graph). J

Now assume there are both node and edge labels and both can be modified, then the
existential coverability problem is undecidable. The graph structure cannot be disregarded
in this case and therefore the main assumption of the proofs above does not hold.

I Proposition 22 (Node and Edge Relabelling). The existential coverability problem is un-
decidable for graph transformation systems with (general) node and edge relabelling rules.

Proof sketch. A GTS can be constructed, which simulates a Turing machine. It first ex-
tracts a path out of the initial graph and then simulates a Turing machine with the path as
tape, where each edge label is a cell of the tape. The node labels are thereby used to ensure
that the extracted structure is actually a path, i.e. they ensure that at most two edges at-
tached to the node belong to the tape. The Turing machine computation terminates if and
only if there is a sufficiently large initial graph, containing a large enough tape and resulting
in a graph covering the final state. The full proof can be found in [3]. J

Hence we arrive at the surprising conclusion that while for edge or node relabelling only
their existential coverability is easily decidable, their combination results in an undecidable
problem. The fact that graphs with edge and node labels can be encoded into graphs
with edge labels does not help, since the encoding is not surjective and the corresponding
relabelling problems cannot be reduced to each other: there could always be a graph outside
of the image of the encoding from which we can cover the given subgraph.

4 Related Work

In this paper we focused our attention on single-pushout (SPO) rewriting. Another possib-
ility would be to use double-pushout (DPO) rewriting [7]. In DPO a node cannot be deleted
if it is connected to edges that are not explicitly deleted. The relation between Petri nets
and DPO GTS has been studied in [2], where the encoding of nets into GTS deletes and
recreates nodes in order to simulate the effects of inhibitor arcs from which we get unde-
cidability of reachability and coverability even for rules that maintain the number of nodes
always constant.

Well-structuredness of concurrency models in the class of bounded path graphs has been
considered e.g. in [20, 23]. In all above mentioned models reduction rules have a restricted
form to model either rendezvous or broadcast communication. In this paper we generalize
well-structuredness to reduction rules defined by total injective morphisms. Well-structured
graph rewriting is also considered in [9] where reduction rules that involve all neighbours
(independently from their actual number) of a node are used to model broadcast commu-
nication. This type of rules cannot be modelled via GTS. Extending the language so as to
capture broadcast communication is a possible future research direction.

RTA’12

114 On the Decidability Status of Reachability and Coverability in GTS

Decidability boundaries for reachability problems of fragments of a graph-based model
of biological systems are given in [8]. In κ a configuration consists of a graph in which
nodes have labels and have a fixed number of binding sites. Rules can test and update
node labels and the presence or absence of a binding site. Undecidability of coverability in
GTS without deletion is inspired by a similar result for κ. The proof for GTS however does
not require (to test on) node labels: it is uniquely based on an increasing graph structure
used to simulate the evolution of an unbounded tape of a Turing machine. Furthermore, we
consider here several other classes of reduction rules (e.g. context-free, minor and bounded
path, relabeling) that are not studied in [8].

5 Conclusion

The results concerning decidability of reachability and coverability (excluding the relabelling
cases) can be summarised in the diagram in Fig. 9. Interestingly, for some classes of GTS
the reachability problem is decidable and the coverability problem undecidable, while for
other classes it is the other way round. Of particular interest is the case of non-deleting
GTS, into which we can encode Turing machines, however without guaranteeing termination
for halting machines. Hence these GTS cannot be considered Turing-complete in the sense
discussed in [19].

general

context-free

edge contr. edge del. node del.

edge del.
& contr.

node del. &
edge contr.

node &
edge del.

with minor
rules

with
bounded
paths

node del. &
recreation

no node
creation finite state non-deleting

Reachability

Coverability

Figure 9 Decidability and Undecidability Boundaries.

We have obtained very general (un)decidability results that can be applied to all kinds
of dynamic systems with evolving topologies. They can serve as a general toolbox to obtain
decidability results for process calculi, which can often be straightforwardly encoded into
graph transformation, for biological systems and for other formalisms. Note that, although
we used hypergraphs, our undecidability proofs are formulated such that they also hold for
directed multigraphs.

The studied subclasses of GTS can also be found in practice: first, in many examples in
the literature the system is indeed fairly static and the number of nodes is fixed. Still, GTS
here have a modelling advantage over Petri nets. Furthermore the node/edge deletion and
edge contraction rules can be used to faithfully model lossy systems. Finally, triple graph
grammars, specifying model transformations, usually have non-deleting rules.

Several of the decision procedures listed in this paper, especially those for coverability,
can be implemented in practice and have reasonable runtimes. For instance, there are

N. Bertrand, G. Delzanno, B. König, A. Sangnier, and J. Stückrath 115

implementations of the coverability algorithm for Petri nets and of the backwards search
algorithm described in [17].

One unsolved problem remains: the exact complexity of coverability for context-free
GTS. We currently know that the problem is in PSPACE and we have an NP-hardness
proof, but the exact complexity is open. We hope that this paper will stimulate further
research in this area and lead to a better understanding of the algorithmic aspects of graph
transformation systems.

Acknowledgements: We would like to thank Roland Meyer for interesting discussions
about several aspects of this work.

References

1 P. A. Abdulla, K. C̆erāns, B. Jonsson, and Y.-K. Tsay. General decidability theorems for
infinite-state systems. In Proc. of LICS ’96, pages 313–321. IEEE, 1996.

2 P. Baldan, A. Corradini, and U. Montanari. Relating SPO and DPO graph rewriting with
petri nets having read, inhibitor and reset arcs. In Proc. of PNGT ’04, volume 127.2 of
ENTCS, pages 5–28, 2005.

3 Nathalie Bertrand, Giorgio Delzanno, Barbara König, Arnaud Sangnier, and Jan Stückrath.
On the decidability status of reachability and coverability in graph transformation systems.
Technical Report DISI-TR-11-04, Dipartimento di Informatica e Scienze dell’Informazione,
Università di Genova, 2012.

4 F. Bonchi, F. Gadducci, and G. V. Monreale. Reactive systems, barbed semantics, and the
mobile ambients. In Proc. of FOSSACS ’09, pages 272–287. Springer, 2009. LNCS 5504.

5 N. Busi and G. Zavattaro. Deciding reachability in mobile ambients. In Proc. of ESOP
’05, pages 248–262. Springer, 2005. LNCS 3444.

6 J. Chalopin, Y. Métivier, and W. Zielonka. Election, naming and cellular edge local com-
putations. In Proc. of ICGT ’04 (International Conference on Graph Transformation),
pages 242–256. Springer, 2004. LNCS 3256.

7 A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe. Algebraic ap-
proaches to graph transformation—part I: Basic concepts and double pushout approach. In
Handbook of Graph Grammars and Computing by Graph Transformation, Vol. 1: Founda-
tions, chapter 3. World Scientific, 1997.

8 G. Delzanno, C. Di Giusto, M. Gabbrielli, C. Laneve, and G. Zavattaro. The kappa-lattice:
Decidability boundaries for qualitative analysis in biological languages. In Proc. of CMSB
’09, pages 158–172. Springer, 2009. LNCS 5688.

9 G. Delzanno, A. Sangnier, and G. Zavattaro. Parameterized verification of ad hoc networks.
In Proc. of CONCUR ’10, pages 313–327. Springer, 2010. LNCS 6269.

10 G. Ding. Subgraphs and well-quasi-ordering. Journal of Graph Theory, 16(5):489–502,
1992.

11 F. Drewes, H.-J. Kreowski, and A. Habel. Hyperedge replacement graph grammars. In
Handbook of Graph Grammars and Computing by Graph Transformation, Vol. 1: Founda-
tions, chapter 2. World Scientific, 1997.

12 C. Dufourd, A. Finkel, and Ph. Schnoebelen. Reset nets between decidability and unde-
cidability. In Proc. of ICALP ’98, pages 103–115. Springer, 1998. LNCS 1443.

13 H. Ehrig, R. Heckel, M. Korff, M. Löwe, L. Ribeiro, A. Wagner, and A. Corradini. Algebraic
approaches to graph transformation—part II: Single pushout approach and comparison
with double pushout approach. In Handbook of Graph Grammars and Computing by Graph
Transformation, Vol.1: Foundations, chapter 4. World Scientific, 1997.

14 C. Ermel, H. Ehrig, F. Orejas, and G. Taentzer, editors. Proc. of GraMoT ’10, volume 30
of Electronic Communications of the EASST, 2010.

RTA’12

116 On the Decidability Status of Reachability and Coverability in GTS

15 J. Esparza and M. Nielsen. Decidability issues for Petri nets. Technical Report RS-94-8,
BRICS, May 1994.

16 A. Finkel and Ph. Schnoebelen. Well-structured transition systems everywhere! Theoretical
Computer Science, 256(1–2):63–92, 2001.

17 S. Joshi and B. König. Applying the graph minor theorem to the verification of graph
transformation systems. In Proc. of CAV ’08, pages 214–226. Springer, 2008. LNCS 5123.

18 S. Joshi and B. König. Applying the graph minor theorem to the verification of graph
transformation systems. Technical report, Abteilung für Informatik und Angewandte Kog-
nitionswissenschaft, Universität Duisburg-Essen, 2012. Corrected version, available from
http://duepublico.uni-duisburg-essen.de/go/technische-berichte.

19 S. Maffeis and I. Phillips. On the computational strength of pure ambient calculi. Theor-
etical Computer Science, 330:501–551, 2005.

20 R. Meyer. Structural Stationarity in the π-Calculus. PhD thesis, Carl-von-Ossietzky-
Universität Oldenburg, 2009.

21 A. Rensink. The GROOVE simulator: A tool for state space generation. In Proc. of
AGTIVE ’03, pages 479–485. Springer, 2003. LNCS 3062.

22 Neil Robertson and Paul Seymour. Graph minors XXIII. Nash-Williams’ immersion con-
jecture. Journal of Combinatorial Theory Series B, 100:181–205, March 2010.

23 T. Wies, D. Zufferey, and T. A. Henzinger. Forward analysis of depth-bounded processes.
In Proc. of FOSSACS ’10, pages 94–108. Springer, 2010. LNCS 6014.

Normalisation for Dynamic Pattern Calculi
Eduardo Bonelli1,2, Delia Kesner3, Carlos Lombardi1,3,4, and
Alejandro Ríos4

1 Univ. Nac. de Quilmes, Argentina
2 CONICET, Argentina
3 Univ. Paris Diderot, Sorbonne Paris Cité, PPS, CNRS, France
4 Univ. de Buenos Aires, Argentina

Abstract
The Pure Pattern Calculus (PPC) [10, 11] extends the λ-calculus, as well as the family of algebraic
pattern calculi [20, 6, 12], with first-class patterns i.e. patterns can be passed as arguments,
evaluated and returned as results. The notion of matching failure of PPC in [11] not only provides
a mechanism to define functions by pattern matching on cases but also supplies PPC with parallel-
or-like, non-sequential behaviour. Therefore, devising normalising strategies for PPC to obtain
well-behaved implementations turns out to be challenging.

This paper focuses on normalising reduction strategies for PPC. We define a (multistep)
strategy and show that it is normalising. The strategy generalises the leftmost-outermost strategy
for λ-calculus and is strictly finer than parallel-outermost. The normalisation proof is based on
the notion of necessary set of redexes, a generalisation of the notion of needed redex encompassing
non-sequential reduction systems.

1998 ACM Subject Classification F.4.1 Mathematical Logic, D.3.3 Language Constructs and
Features

Keywords and phrases Pattern calculi, reduction strategies, sequentiality, neededness

Digital Object Identifier 10.4230/LIPIcs.RTA.2012.117

Category Regular Research Paper

1 Introduction

Pattern calculi [20, 12, 6, 15] model the pattern-matching primitives of functional program-
ming languages (e.g. OCAML, ML, Haskell) and proof assistants (e.g. Coq, Isabelle), where
functions can be defined by n different cases by writing for example f := p1->s1 | . . . | pn->sn.
When pi is typically expressed in terms of constructors and variables we speak of algebraic
pattern calculi. The application of f to an argument u starts by matching p1, the pattern
of the first case, against u. If such a matching is successful, then it yields a substitution σ1
whose domain is the set of variables in p1. This substitution is applied to s1, the body of
the first case, and then the substituted body is evaluated. If a successful matching is not
possible, i.e. there is a matching failure, then evaluation continues with the following cases
in the definition of f.

The Pure Pattern Calculus (PPC). PPC [10, 11] generalises algebraic pattern calculi (and
hence the λ-calculus) by allowing an arbitrary term ti to take the role of a pattern pi thus
generalising a function to f := t1->s1 | . . . | tn->sn. Reduction inside the ti is now allowed,
hence patterns may be computed dynamically. Also, symbols in ti now play two roles: either
they are variables (i.e. place holders) for terms (which substitution from “outside” will duly

© Eduardo Bonelli, Delia Kesner, Carlos Lombardi, and Alejandro Ríos;
licensed under Creative Commons License NC-ND

23rd International Conference on Rewriting Techniques and Applications (RTA’12).
Editor: A. Tiwari; pp. 117–132

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

118 Normalisation for Dynamic Pattern Calculi

fill in) or they are matchables (depicted with a hat for easy identification) in the sense that
they are only used to decompose data. These two roles are distinguished by decorating a case
t->s with a set θ of binding symbols that singles out the subset of matchables in the pattern t
that are meant for matching, the variables in the body s being those acting as place-holders.

λ{x} x̂.(λ{y} x ŷ.y)

Figure 1

Consider for example elim ::= λ{x} x̂.(λ{y} x ŷ.y)
where we write λθ t.s rather than t ->θ s.
The inner abstraction λ{y} x ŷ.y binds the
only occurrence of the matchable ŷ in the
pattern x ŷ and that of the variable y in the
body y; the x in x ŷ is excluded from {y}
since it acts as a place-holder in that pattern. However, the occurrence of x, as well as that
of x̂, are both bound by the outermost λ{x}, as can be seen in Fig. 1.

The dynamics of reduction in PPC may be illustrated by the reduction sequence of Fig. 2
in which elim is applied to the function λ{z} ẑ.cons z nil, where cons and nil denote
constructors. In the first step, λ{z} ẑ.cons z nil is substituted for x into the pattern x ŷ.

(λ{x} x̂.(λ{y} x ŷ.y)) (λ{z} ẑ.cons z nil)
→ λ{y} (λ{z} ẑ.cons z nil) ŷ.y
→ λ{y} cons ŷ nil.y

Figure 2

In the second step, the resulting ap-
plication (λ{z} ẑ.cons z nil) ŷ, which
resides in a pattern, is reduced. The
resulting term, when applied to an ar-
gument, will yield a succesful matching
only if this argument is a compound data
of the form cons t nil. This example

exhibits the pattern polymorphism capabilities of PPC allowing to obtain structurally different
deconstructors by applying the same term elim to different arguments.

Reduction in Fig. 2 proceeded smoothly. However, it may fail. In PPC, (λθ p.s)t is
reducible only if the match of the pattern p against the argument t is decided, i.e. it is either
a successful match, specified by a substitution, or a matching failure, specified by a closed
normal form (written1 nf). E.g. consider (λ{x} a r1.x)(b r2) where r1 and r2 are redexes.
Matching of a r1 against b r2 fails since the head constructors a and b are different. This is
also the case for (λ{x} a r1 b.x)(a r2 d), now because the constructors b and d mismatch,
a fact that can be established without examining r1 or r2. Indeed, failure of matching for
any component of a given compound data automatically implies failure of matching for the
entire compound.

Non-sequentiality of PPC. What would be a smart normalising strategy for PPC? Clearly, if
the matching of p against t is decided when evaluating (λθp.s)t, then it is a redex and should
be selected. However, when it is non-decided, it is necessary to understand which subterm
(p, s or t) needs to be evaluated first in order to attain a normal form for the whole term. E.g.
it is the pattern that must be reduced in (λ{x} I (a x̂).x)(a c) (I is the identity function) in
order to attain a decided match, the argument in (λ{x} a x̂.x)(I (a c)), and both the pattern
and the argument in (λ{x} a (I (b x̂)).x)((I a) b y). Even though we could establish that
the pattern or the argument or both have to be reduced, deciding which redex to pick in each
of these cases is not always possible. An example is t1 := (λ{x} a (b x̂) r1.r2) (a r3 (d r4))
where matching is non-decided: both pattern and argument must be reduced in order for t1
to become a redex. Reducing r1 is not necessarily a good idea. Indeed, suppose r1 is any
non-terminating computation and r3 reduces to d t, for some t. Then reduction of r3 causes

1 There are other different reasonable approaches.

E. Bonelli, D. Kesner, C. Lombardi, and A. Ríos 119

a matching failure since b and d mismatch. We could rather have selected r3, however if
this time it is r3 that is non-terminating and r1 reduces to b t, for some t, then again we
miss failure and loop. The same happens if we choose r4. The term t1 illustrates that PPC
fails to be sequential.

Informally, sequentiality means that given a term of the form C[r1, . . . , rn] where C
does not contain any redex and every ri is a redex, there exists an index i s.t. ri is a
needed redex and the choice of i is independent from r1, . . . , rn. A redex r in a term t

is needed iff every reduction sequence from t to normal form reduces (a residual of) r.
Another example showing terms not in normal form may not have needed redexes is t2 :=
(λ{y} a b c ŷ.y) (a (I c) (I b) (I a)) (redexes are shown in gray). This term admits at least
two different reduction sequences to normal form: t2 → (λ{y} a b c ŷ.y)(a c (I b) (I a))→ nf
and also t2 → (λ{y} a b c ŷ.y)(a (I c) b (I a)) → nf. Sequentiality fails in PPC because
matching may fail for different reasons: none of the redexes in t2 is needed since failure of
matching can be declared in terms of (only) I b or I c.

Even if dynamic patterns and non-sequentiality are central issues of this paper, the
calculus would also be non-sequential if the set of patterns were restricted to the static ones.
As explained before, non-sequentiality comes from the notion of matching failure introduced
in [11], which is detailed in Sec. 2, and applies to any kind of static pattern, including the
standard, algebraic ones.

Towards normalisation strategies for PPC. It has been shown in different settings that
repeated contraction of needed redexes yields normalising strategies for sequential rewriting
systems. Failure of sequentiality leaves us with two avenues to pursue in order to devise
normalising strategies for PPC. The first is to introduce look-ahead by performing several
reduction steps in order to identify an i. In this case, apart from C we would have to examine
the ris. Such an approach is overly expensive since it involves testing for cycles [1]. The
second avenue consists in selecting a multistep: a set of redexes reduced simultaneously at
each step. Of particular appeal in this approach is the notion of necessary set of redexes:
a set of redexes A in a term t is called necessary iff every reduction sequence from t to
normal form reduces at least (a residual of) one element of A, even if this element may differ
from sequence to sequence. The set of all redexes, and also the set of all outermost redexes,
are necessary sets for any term in PPC. However, implementations could benefit from finer
strategies, i.e. reduction strategies selecting smaller sets of redexes in each multistep.

Contributions. We propose a strategy for PPC which selects for each term a necessary set
bounded by the set of its outermost redexes and show that it is normalising. More precisely,
we introduce:

a theory of needed normalisation for PPC by adapting the notion of necessary sets [21] to
the higher-order case;
a proof that repeated contraction of necessary sets of redexes is normalising, provided
that those sets also enjoy an additional property, namely they are non-gripping [16];
an inductively formulated strategy for PPC that produces necessary, non-gripping sets of
redexes, and hence is normalising.

Related work. In λ-calculus and, more generally, orthogonal higher-order (HO) Expression
Reduction Systems, any normalising term not in normal form contains a needed redex and (one-
step) contraction of needed redexes attains a normal form [5, 7]. Unfortunately, as discussed
above, terms in PPC not in normal form may contain no needed redexes. Multistep reduction

RTA’12

120 Normalisation for Dynamic Pattern Calculi

strategies have been studied for both first-order (FO) and HO rewriting. Normalising
multistep strategies by means of necessary sets have been defined for non-sequential FO
TRS in [21], which has been our main source of inspiration. Van Raamsdonk [23] extends
O’Donnell’s result [19] (reduction of all outermost redexes is normalising) to almost orthogonal
HORS. Indeed, [23] proves that being outermost fair is a sufficient condition for a reduction
strategy to be normalising; this result was then extended [22] to weakly orthogonal HO
rewriting. These works have influenced some of the concepts and technical tools used in this
paper. Melliès [16, 17] develops an axiomatic theory of neededness for (possibly) overlapping
rewrite systems, motivated by the work of Huet and Lévy for orthogonal FO TRS [8]. Pattern
calculi may be modeled as the axiomatic rewrite systems of Melliès, however his normalisation
results are not applicable since pattern calculi do not enjoy stability [16](Axiom IV, pg.80):
there may be more than one way to create the same redex due to matching failure.

Regarding the specific setting of non-sequential pattern calculi (including matching
failure) we are not aware of any literature on normalising strategies. For an abridged
version of PPC resulting from restricting the set of patterns to the algebraic ones and
from disallowing matching to fail, one-step standard reductions (obtained by means of a
standardisation theorem) turn out to be normalising [13]. Also worth mentioning is the
existence of sequential (i.e. every term has a needed redex) operational semantics of dynamic
pattern calculi appearing for example in [9, 3, 4]; they can be understood as (re)formulations
of PPC where the conditions determining when a match should fail impose a more restricted
evaluation order.

Structure of the paper. Sec. 2 introduces PPC. Sec. 3 defines multistep strategies and
develops the tools needed to guarantee that complete developments can be used as multisteps.
Sec. 4 presents a reduction strategy S for PPC. Sec. 5 formalises the notion of necessary
sets of redexes, motivates and introduces the additional non-gripping property, shows that
S always reduces necessary and non-gripping sets, and uses these facts to prove that it is
normalising. Finally, Sec. 6 concludes and suggests further work.

2 The Pure Pattern Calculus

This section briefly introduces PPC following the presentation of [11]2.

Syntax: Consider a countable set of symbols f, g, . . . , x, y, z. Sets of symbols are denoted
by meta-variables θ, φ, The syntax of PPC is summarised by the following grammar:

Terms (T) t ::= x | x̂ | tt | λθ t.t
Data-Structures (DS) D ::= x̂ | Dt
Matchable-forms (MF) F ::= D | λθ t.t

The term x is called a variable, x̂ a matchable, tu an application (t is the function
and u the argument) and λθ p.u an abstraction (θ is the set of binding symbols, p
is the pattern and u is the body). Application (resp. abstraction) is left (resp. right)
associative. A λ-abstraction λx.t can be defined by λ{x} x̂.t. The identity function
λ{x} x̂.x is abbreviated I.

2 Other presentations are [10, 9], but both of them use sequential, rather than parallel-or like, semantics.

E. Bonelli, D. Kesner, C. Lombardi, and A. Ríos 121

A binding symbol x ∈ θ of an abstraction λθ p.s binds matchable occurrences of x
in p and variable occurrences of x in s. The derived notions of free variables and free
matchables are respectively denoted by fv(_) and fm(_). This is illustrated in Fig. 3.

λ{x} x x̂ . x x̂

Figure 3

As usual, we consider terms up to alpha-conversion,
i.e. up to renaming of bound matchables and vari-
ables. Constructors are matchables which are not
bound and, to ease the presentation, they are often
denoted in typewriter fonts a, b, c, d, . . ., thus for ex-

ample λ{x,y} x̂ y a.y denotes λ{x,y} x̂ y ẑ.y. The distinction between matchables and variables
is unnecessary for standard (static) patterns which do not contain free variables.

A position is either ε (the empty position), or na, where n ∈ {1, 2} and a is a position.
We use a, b, . . . (resp. A,B, . . . and δ, ρ, π, . . .) to denote positions (resp. sets and sequences
of positions) and bA to mean {ba | a ∈ A}. The set Pos(t) of positions of t is defined as
expected, provided that for abstractions λθ p.s positions inside both p and s are considered.
Here is an example Pos(λ{x} a b.a x x) = {ε, 1, 2, 11, 12, 21, 22, 211, 212}.

We write t|a for the subterm of t at position a and t[s]a for the replacement of the
subterm at position a in t by s. Notice that replacement may capture variables. We write
a ≤ b (resp. a ‖ b) when the position a is a prefix of (resp. disjoint from) the position b.
All these notions are defined as expected [2] and extended to sets of positions as well.

Substitution and Matching: A substitution σ is a mapping from variables to terms with
finite domain dom(σ). A match µ is either a substitution or a special constant in the set
{fail, wait}. A match is positive if it is a substitution; it is decided if it is either positive
or fail. The notions of domain and free variables/matchables are naturally extended to
matches, in particular, the domain of fail is the empty set and that of wait is undefined.
The application of a substitution σ to a term is written and defined as usual on alpha-
equivalence classes. The application of a match µ to a term t, written µt, is defined as
follows: if µ is a substitution, then it is applied as explained above; if µ = wait, then µt is
undefined; if µ = fail, then µt is the identity function I. Other closed terms in normal form
could be taken to define the last case, this one allows in particular to encode pattern-matching
definitions given by alternatives [11].

The disjoint union of two matches µ1 and µ2 is a crucial operation used to define the
operational semantics of PPC. Disjoint union is written µ1] µ2 and is defined as: their union
if both µi are substitutions and dom(µ1) ∩ dom(µ2) = ∅; wait if either of the µi is wait and
none is fail; fail otherwise. This definition of disjoint union of matches validates the
following equations which are responsible for the non-sequential nature of PPC:

fail] wait = wait] fail = fail

We return to these equations immediately after the definition of the operational semantics of
the calculus. The compound matching operation takes a term, a set of binding symbols
and a pattern and returns a match, it is defined by applying the following equations in order:

{{x̂ .θ t}} := {x→ t} if x ∈ θ
{{x̂ .θ x̂}} := {} if x /∈ θ
{{pq .θ tu}} := {{p .θ t}}] {{q .θ u}} if tu, pq ∈MF
{{p .θ t}} := fail if p, t ∈MF
{{p .θ t}} := wait otherwise

The use of disjoint union in the third case of the previous definition restricts compound

RTA’12

122 Normalisation for Dynamic Pattern Calculi

matching to linear patterns 3, which is necessary to guarantee confluence. Indeed, disjoint
union of two substitutions fails whenever their domains are not disjoint.

The result of the matching operation4 {p/θ t} is defined to be the check of {{p .θ t}}
on θ; where the check of a match µ on θ is fail if µ is a substitution whose domain is not
θ, µ otherwise. Notice that {p/θ t} is never positive if p is not linear with respect to θ. We
now give some examples: {x̂x̂/{x} uv} gives fail because x̂x̂ is not linear; {x̂ŷ/{x,y,z} uv}
gives fail because {x, y, z} 6= {x, y}, {x̂/∅ u} gives fail because ∅ 6= {x}; {ŷ/{x} ŷ} gives
fail because {x} 6= ∅; {x̂ŷ/{x} uẑ} gives fail because {{ŷ .{x} ẑ}} is fail; {x̂ŷ/∅ uẑ} gives
fail for the same reason.

Semantics: The semantics of PPC is given by means of the following reduction rule:

(λθ p.s)u 7→ {p/θ u}s, if {p/θ u} is decided

The rule applies to the term (λ{x,y} a x̂ ŷ.y x)(a b (I a)) yielding (I a) b; and also to
(λ{x,y} a x̂ ŷ.y x)(c b (I a)) yielding I (since the matching operation yields fail). However,
the rule does not apply to the term (λ{x,y} a x̂ ŷ.y x)(I x̂) since {a x̂ ŷ/{x,y} I x̂} is wait.

It is worth noticing that sequentiality of PPC can be recovered (see e.g. [9, 3, 4]) by
modifying the equations of disjoint union, however, some meaningful terms will no longer be
normalising. Thus for example, if fail] µ is defined to be fail, while wait] fail = wait
and σ] fail = fail, then (λ∅ a b b .ŷ)(a Ω c), where Ω is a non-terminating term, would
never fail as expected.

A (β) redex is a term of the form (λθ p.s)u s.t. {p/θ u} is decided. A redex (λθ p.s)u
s.t. {p/θ u} = fail is called a matching failure. A position a ∈ Pos(t) is called a redex
occurrence of t iff t|a is a redex; RO(t) denotes the set of all redex occurrences of a
term t. A redex in t is outermost if it is not contained in any other redex; i.e. it is minimal
with respect to the order < on redex occurrences. A reduction step from t to s via a
is a tuple t a→ s, where t|a is a redex (λθ p.u)v and s = t[{p/θ v}u]a; this reduction step
denotes the contraction (or evaluation) of the redex occurrence a ∈ RO(t). We occasionally
identify a reduction step t a→ s with the redex occurrence a if no confusion arises.

Given a sequence of positions δ = a1; . . . ; an; . . . (possibly empty or infinite) and t0 ∈ T,
a reduction sequence from t0 via δ, written t0

δ�, is a sequence of the form t0
a1→

t1 . . . tn−1
an→ tn We write nil for the empty reduction sequence. We occasionally identify

t
δ� s with δ if no confusion arises. The term t reduces to s in many steps, written t� s,

iff there is a reduction sequence t
δ� s. Notice that � is the reflexive and transitive closure

of →. Given t0
δ�, where δ = a1; . . . ; an; . . ., we write δ[i..k] (1 ≤ i ≤ k ≤ n) to identify the

finite (sub)reduction sequence ti−1
ai→ ti . . . tk−1

ak→ tk and δ[i] (1 ≤ i ≤ n) to identify the
reduction step ti−1

ai→ ti.
A term s is in normal form, written s ∈ NF, iff there is no t s.t. s → t. A term s is

normalising iff there is a normal form t s.t. s� t.
We refer the interested reader to [11] where different PPC examples are introduced,

particularly to illustrate path and pattern polymorphism.

3 A pattern p is linear w.r.t. θ if for every x in θ, the matchable x̂ appears at most once in p.
4 Note that the notation for (compound) matching we have just given differs from [10] and [11]: the

pattern and argument appear in reversed order there.

E. Bonelli, D. Kesner, C. Lombardi, and A. Ríos 123

3 Multisteps and multireductions

In the light of the discussion in the Introduction on the inexistence of needed redexes, the
reduction strategy for PPC we shall propose in Sec. 4 will select a set of redexes to contract at
each step. Contraction of a set of redexes is understood as simultaneous contraction of all its
members. Since, in principle, the order in which these members are contracted could affect
the target term of the step, it becomes necessary to lay out precise definitions of what it
means to perform simultaneous contraction of a set of redexes. It should be mentioned that
these definitions are rather straightforward in first-order rewriting since the aforementioned
set of redexes may be assumed to contain pairwise disjoint redexes, without any loss of
generality. This owes to the fact that (first-order) residuals of such sets are again pairwise
disjoint. In the higher-order case, however, this no longer holds, as can be seen by means of
the following example. Consider the reduction step

t = (λ{x} x̂. (λ{y} ŷ.y x)s)r → (λ{y} ŷ.y r)s = u

where r is a redex and s an arbitrary term; the redexes (λ{y} ŷ.y x)s and r are disjoint in t,
while (λ{y} ŷ.y r)s and r, their respective residuals in u (according to the formal definition
given below), are not. This significantly complicates any effort of adapting extant results on
normalisation of first-order systems to the higher-order setting.

Given a term t, b ∈ Pos(t) and a ∈ RO(t), the descendants of b after a in t, written
b/ta or simply b/a if the term is clear from the context, is the set of positions defined as
follows:

∅ if a = b.

{b} if a 6≤ b.
{an} if b = a12n, t|a= (λθ p.s)u, and {p/θ u} is a substitution

{akn . s|k= x} if b = a2mn, t|a= (λθ p.s)u, {p/θ u} is a substitution, p|m= x̂ and x ∈ θ
∅ otherwise

If b is the position of a redex in t, then each position in b/a denotes a residual of b after
performing a. This notion is extended to sets B ⊆ RO(t) as follows: the residuals of B
after a in t are B/a :=

⋃
b∈B b/a. In particular ∅/a = ∅. Given t

δ� u and B ⊆ RO(t),
the residuals of B after the sequence δ, are: if δ = nil, then B/δ := B; otherwise
B/δ := (B/δ[1])/δ[2 . . . n] where δ = δ[1..n].

Let A ⊆ RO(t). The reduction sequence t
δ� is a development of A iff δ[i] ∈ A/δ[1..i−1]

for all i. A development δ of A is said to be complete iff δ is finite and A/δ = ∅.
Using standard techniques we show that the order in which contraction of redexes in a

given set is performed does not introduce non-termination nor does it affect the target term.

I Proposition 1 (Strong Finite Developments). Let t be a term and A ⊆ RO(t).

(i) All developments of A from t are finite.
(ii) If t

δi� ui (i = 1, 2) are two complete developments of A, then u1 = u2 and ∀a ∈ RO(t),
a/δ1 = a/δ2.

As a consequence, for every A ⊆ RO(t) we can now formally define a multistep t A−→◦ u iff
there is a complete development of A from t to u. Given a sequence of sets ∆ = A1; . . . ;An; . . .
(possibly empty or infinite) and to ∈ T, a multireduction sequence ∆ from t0, written
t0

∆−�◦ , is a sequence of the form t0
A1−→◦ t1 . . . tn−1

An−→◦ tn We write nil for the empty
multireduction sequence. We occasionally identify t

∆−�◦ s with ∆ if no confusion arises. We

RTA’12

124 Normalisation for Dynamic Pattern Calculi

use the notations ∆[i] and ∆[i..j] to denote Ai and the (sub)sequence Ai; . . . ;Aj respectively.
We use Γ,∆,Π,Ψ, . . . to denote multireduction sequences. Let A, B be sets of positions.
The residual of B after A, written B/A, is defined as the multistep B/δ where δ is any
complete development of A (this is well-defined by Prop. 1).

We extend the concept of residual to multireductions as well. The residual of B after ∆
is defined as follows: if ∆ = nil, then B/∆ := B; otherwise B/∆ := (B/∆[1])/∆[2..n] where
∆ = ∆[1..n]. Analogously, we define the residual of ∆ after B as follows: nil/B := nil,
∆[1..n]/B := (∆[1]/B)/(∆[2..n]/(B/∆[1])). By applying several times Prop. 1 it can be
proved that ∆; (B/∆) and B; (∆/B) end in the same term and induce the same residual
relation.

Prop. 1 also allows us to introduce the depth of A, written ν(A), a notion we shall use
in Sec. 5. It is defined as the length of the longest complete development of A. Since PPC is
finitely branching, this is well-defined by König’s Lemma. We occasionally use the notation
ν(A, t) to make explicit the source of the multistep A.

4 The reduction strategy

The rationale behind the reduction strategy for PPC is that rather than selecting the entire
set of outermost redexes of a given term t, this set is refined in two complementary ways.
Let us call preredex a term of the form (λθ p.t)u, regardless of whether the match {p/θ u}
is decided or not. The first observation about the strategy is that it focuses on the leftmost-
outermost (LO) preredex of t, entailing that when PPC is restricted to the λ-calculus it
behaves exactly as the LO strategy for the λ-calculus. Second, if the match corresponding to
the LO occurrence of a preredex is not decided, then the strategy selects only the (outermost)
redexes in that subterm which should be contracted to get it “closer” to a decided match.

Suppose (λθ p.t) u is this LO preredex. If {p/θ u} is decided, then the preredex (in fact a
redex), is the only one selected by the strategy (it is LO in this case). If the match {p/θ u} is
not decided, then the strategy selects the outermost redexes whose contraction may contribute
towards obtaining a decided match. More precisely, in the term (λ{x,y} a x̂ (c ŷ).y x) (a r1 r2)
the match {a x̂ (c ŷ)/{x,y} a r1 r2} is not decided and the role played by r1 is different
from that of r2 in obtaining a decided match. Replacing r1 by an arbitrary term t1 will
not yield a decided match, i.e. {a x̂ (c ŷ)/{x,y} a t1 r2} is not decided. However, replacing
r2 by c s2 (resp. by d s2) does: {a x̂ (c ŷ)/{x,y} a r1 (c s2)} = {x → r1, y → s2} (resp.
{a x̂ (c ŷ)/{x,y} a r1 (d s2)} = fail). Hence, contraction of r2 can contribute towards
obtaining a decided match, while contraction of r1 does not.

The selection of redexes contributing towards a decided match is performed by a simul-
taneous structural analysis of both pattern and argument. Since PPC allows patterns to be
reduced, the selected redexes can lie inside a pattern or an argument of a preredex; and not
in the body of the abstraction. Take e.g. (λ{x,y} a (b x̂) r1.r2) (a r3 (d r4)) where every ri
is a redex. The strategy selects r1 and r3. Moreover, notice that contraction of r4 is delayed
since r1 is not in matchable form (if the contractum of r1 were e.g. either d ŷ or a, then the
match w.r.t. d r4 would be decided without the need of reducing r4).

The reduction strategy S is defined as a function from terms to sets of positions of redex
occurrences which should be reduced as a multistep. It is defined simultaneously with an
auxiliary function SM from sets of symbols and pairs of terms to pairs of sets of positions
which models the selection of contributing redexes towards a decided match.

E. Bonelli, D. Kesner, C. Lombardi, and A. Ríos 125

S(x) :=∅
S(x̂) :=∅

S(λθ p.t) :=1S(p) if p /∈ NF
S(λθ p.t) :=2S(t) if p ∈ NF

S((λθ p.t)u) :={ε} if {p/θ u} decided
S((λθ p.t)u) :=11G ∪ 2D if {p/θ u} = wait,SMθ(p, u) = 〈G,D〉 6= 〈∅, ∅〉,
S((λθ p.t)u) :=11S(p) if {p/θ u} = wait,SMθ(p, u) = 〈∅, ∅〉, p /∈ NF
S((λθ p.t)u) :=12S(t) if {p/θ u} = wait,SMθ(p, u) = 〈∅, ∅〉, p ∈ NF, t /∈ NF
S((λθ p.t)u) :=2S(u) if {p/θ u} = wait,SMθ(p, u) = 〈∅, ∅〉, p ∈ NF, t ∈ NF

S(tu) :=1S(t) if t is not an abstraction and t /∈ NF
S(tu) :=2S(u) if t is not an abstraction and t ∈ NF

SMθ(x̂, t) :=〈∅, ∅〉 if x ∈ θ
SMθ(x̂, x̂) :=〈∅, ∅〉 if x /∈ θ

SMθ(p1p2, t1t2) :=〈1G1 ∪ 2G2, 1D1 ∪ 2D2〉 if t1t2, p1p2 ∈MF,SMθ(pi, ti) = 〈Gi, Di〉
SMθ(p, t) :=〈S(p), ∅〉 if p /∈MF
SMθ(p, t) :=〈∅,S(t)〉 if p ∈MF & t /∈MF & ¬(p = x̂ & x ∈ θ)

The auxiliary function SM formalises the simultaneous structural analysis of the argument
and pattern of a preredex. Its outcome is a pair of sets of positions, corresponding to redexes
inside the pattern and argument respectively, which could contribute to turning a non
decided match into a decided one. Notice the similarities between the first three clauses in
the definition of SM and those of the definition of the matching operation (cf. Sec. 2).

If the LO preredex of a term is in fact a redex, then the strategy selects exactly that
redex (fifth clause); if it is not a redex, and the function SM returns some redexes which
could contribute towards a decided match, then the strategy selects them (sixth clause).

Otherwise, the preredex will never turn into a redex. Indeed, it can be proved that, given
p and u such that {p/θ u} = wait, if there exist p′ and u′ such that p−�◦ p′, u−�◦ u′ and
{p′/θ u′} is decided, then SMθ(p, u) 6= 〈∅, ∅〉. In this case the strategy looks for the LO
preredex inside the components of the term (seventh, eighth and ninth clauses).

The remaining clauses in the definition of S formalise the focus on the LO preredex for
other forms of the term.

Returning to the example t2 given in Sec. 1, namely (λ{y} a b c ŷ.y) (a (I c) (I b) (I a)),
notice that the set {I c, I b} is selected by the strategy S, even if the contraction of just one
redex of the set suffices to make the head match decided as explained before.

The reduction strategy S is complete. Formally:

I Lemma 2. Let t /∈ NF. Then S(t) 6= ∅, and S(t) only contains outermost redexes in t.

Moreover, notice that S is not outermost fair [23]. Indeed, given (λ cx.s) Ω, where Ω is a
non-terminating term, S continuously contracts Ω, even when s contains a redex.

5 The reduction strategy S is normalising

This section proves that S is normalising for PPC. Our proof is mainly inspired from [21]
which proves that selecting necessary sets (as introduced in Sec. 1) is a sufficient condition
for a reduction strategy to be normalising in a first-order setting.

RTA’12

126 Normalisation for Dynamic Pattern Calculi

t0 = t

◦S(t0)
��

◦
∆0 // // u

t1 ◦
∆1 // // u

tn

◦S(tn)
��

◦
∆n // // u

u
∆n+1

u

Figure 4 Proof idea.

The proof proceeds as follows: given any
multireduction to normal form starting from
a term t0, say t0

∆0−�◦ u ∈ NF, we construct
another multireduction starting from t0 to
normal form having the form t0

S(t0)−→◦ t1
∆1−�◦ u;

where S(t0) is the set of redexes of t0 chosen
by the strategy S and the multireduction
∆1 is strictly smaller than the original one
w.r.t. a convenient well-founded ordering.
Well-foundedness of the ordering entails that
repeated evaluation of the set of redexes
selected by the strategy S yields the normal
form u. This is depicted in Fig. 4 where ∆k+1 is strictly smaller than ∆k for all k and ∆n+1
is a trivial multireduction. Thus, the original multireduction ∆0 is first transformed into
S(t0); ∆1, then successively into S(t0); . . . ;S(tk); ∆k+1; and finally into S(t0); . . . ;S(tn).

Some difficulties arise when developing such a proof for higher-order calculi like PPC,
particularly in two aspects: it is not trivial to show that the succesive multireductions which
are built during the proof have the same target; nor is it straightforward to show that the
sequence of multireductions ∆0, . . . ,∆k, . . . is strictly decreasing.

To handle the first of these problems, we use a technique consisting of postponement of
certain (non relevant) redexes with respect to other (relevant) ones (our notion of relevant
is however different from that appearing in [22]). As for the second problem we define
a measure inspired from [21, 22]. In order to prove that the sequence ∆0, . . . ,∆k, . . . is
strictly decreasing w.r.t. this measure, we need to resort to an additional property verified
by the sets of redexes selected by S, namely that they are non-gripping. In the following, we
formalise the concept of necessary sets of redexes, we motivate and introduce the additional
non-gripping property, and finally we give a brief outline of the proof.

5.1 Necessary sets of redexes
As explained in Sec. 1, there are some terms in PPC which do not have any needed redex; this
was illustrated by the term t2 := (λ{y} a b c ŷ.y) (a (I c) (I b) (I a)) whose (outermost)
redexes are I c, I b and I a: it is possible to construct a reduction sequence from t2 to
normal form which ignores either of these redexes.

To formalise the meaning of needed redex, we first resort to the following notion of
ignoring (or not) a redex along a (multi)reduction: given a term t and B ⊆ RO(t), a
multistep/multireduction from t uses B iff it contracts at least one redex or one residual of
a redex in B. Formally, let t be a term, b ∈ RO(t), B ⊆ RO(t), a multistep t A−→◦ u and a
multireduction t

∆−�◦ u. Then, A uses b iff b ∈ A; ∆ uses b iff ∆[k] ∩ (b/∆[1..k − 1]) 6= ∅ for
at least one k; A (resp. ∆) uses B iff it uses at least one b ∈ B. Now, given a term t, a redex
a ∈ RO(t) is needed for t iff every reduction from t to normal form uses a.

Notice that the above term t2 has no needed redex. Now consider the set of redexes
{I c, I b} in the same term t2. All reductions from t2 to normal form must use at least one
of these redexes i.e. the set of redexes {I c, I b} as a whole cannot be ignored to obtain the
normal form of t2. We formalise this notion as follows: given a term t, a set A ⊆ RO(t) is a
necessary set for t, iff every reduction from t to normal form uses A.

The notion of necessary set generalises that of needed redex (notice that any singleton
whose only element is a needed redex is a necessary set). There is, however, an important

E. Bonelli, D. Kesner, C. Lombardi, and A. Ríos 127

difference: while not all terms admit a needed redex, any term admits at least one necessary
set, i.e. the set of all its redexes.

The reduction strategy S defined in Sec. 4 selects necessary sets of redexes; this property
turns out to be crucial to prove that S is normalising. Formally:

I Proposition 3. Let t be a term such that t /∈ NF. Then S(t) is a necessary set for t.

5.2 Gripping
To motivate the notion of gripping [16], let us consider the following example, suggested by
V. van Oostrom:

t5 := (λ{x}x̂.D x
b
) (I y)

a2
a1

B−→◦ (λ{x}x̂.x x) (I y)
a2
a1

= u5

where A := {a1, a2}, B := {b} and D := λ{x} x̂.x x. It is easy to verify that A/B = A.
Nevertheless, the depth (cf. Sec. 3) of A does change: the set A admits a development from
u5 requiring two contractions of I y, while this is not the case for t5; yielding ν(A, t5) = 2 <
3 = ν(A, u5).

The notion of gripping turns out to be appropiate to explain this example. Informally, a
redex b grips another redex a iff a < b and there are occurrences of variables inside b which
are bound by the abstraction of the redex a. In such a case, b-reduction may duplicate or
erase those variable occurrences, thus affecting the depth of multisteps including a. In the
term t5 above, the redex b grips the redex a1 because x, ocurring inside b, is bound by the
abstraction of a1; duplication of x explains the depth increase of A from u5.

The following definition formalises the notion of gripping for PPC: given a, b ∈ RO(t), say
t|a= (λθp.s)u, we say that b grips a iff {p/θ u} 6= fail, a12 ≤ b and fv(t|b) ∩ θ 6= ∅. Given
A,B ⊆ RO(t), we say that B grips A iff there exist b ∈ B and a ∈ A such that b grips a.

In addition, we define a set B ⊆ RO(t) to be non-gripping in t (or just non-gripping
if t is clear from the context) iff for any multireduction Ψ such that t

Ψ−�◦ u, B/Ψ does not
grip RO(u). Notice that when B is non-gripping all its residuals are.

The reduction strategy S defined in Sec. 4 selects non-gripping sets of redexes, formally

I Proposition 4. Let t be a term. Then S(t) is non-gripping in t.

Proof. (sketch) One first proves that t
Ψ−�◦ u, a ∈ RO(u), b ∈ S(t)/Ψ and a < b imply a is a

matching failure. This can be done by induction on the size of t, by considering the different
cases in the (mutually recursive) definitions of S and SM.

Now, let t
Ψ−�◦ u. To prove that S(t) is non-gripping in t we need to show that S(t)/Ψ does

not grip RO(u). Suppose b ∈ S(t)/Ψ, a ∈ RO(u) and b grips a. Then in particular a < b

and a is not a matching failure. But the previous observation entails that a is a matching
failure which leads to a contradiction. J

This property allows to resort to gripping in order to guarantee that the depth of sets
of redexes is stable under reduction in the cases in which this stability is needed in the
normalisation proof. Another approach, distinguishing between essential and inessential sets
of redexes, is taken in [22].

RTA’12

128 Normalisation for Dynamic Pattern Calculi

5.3 The measure
A measure on multireductions is defined by using the notion of depth for multisteps, denoted
by ν and defined at the end of Sec. 3. Given ∆ = ∆[1..n] and ti−1

∆[i]
−�◦ ti for all i, we define

χ(∆, t0) as the n-tuple 〈ν(∆[n], tn−1), . . . , ν(∆[1], t0)〉; the lexicographic order is used to
compare (measures of) multireductions. Notice that this (well-founded) ordering allows only
to compare multireductions having the same length; the minimal elements being all the
n-uples of the form 〈0, . . . , 0〉. Another observation is that whenever χ(∆, t) < χ(Γ, s) then
for all multireductions t′

Π−�◦ t, s′
Ψ−�◦ s having the same length χ(Π; ∆, t′) < χ(Ψ; Γ, s′)

holds.
As remarked in [22], the measure used in [21], based on sizes of multisteps rather than

depths, is not well-suited for a higher-order setting.

Returning to the key of the normalisation proof (cf. beginning of Sec. 5), the definition of
∆k+1 based on ∆k and S(tk) must verify χ(∆k+1, tk+1) < χ(∆k, tk).

In order to further describe how ∆k+1 will be defined, and particularly how the notion of
gripping will be applied to guarantee that the measure actually decreases, some additional
notions are needed. Given a term t and B ⊆ RO(t), a multistep/multireduction from t is
free from B iff it does not contract any redex equal to or below a redex (or residual of a
redex) in B (so it only contracts redexes lying above or disjoint with B and its residuals); a
multistep from t is dominated by B iff all their redexes lie below some redex in B. Formally,
let t be a term, a, b ∈ RO(t), A,B ⊆ RO(t), and a multireduction t

∆−�◦ u. Then,
A is free from B iff A∩B = ∅ and there does not exist a ∈ A and b ∈ B such that b < a.
∆ is free from B iff ∆[k] is free from B/∆[1..k − 1] for all k.
a is dominated by B iff a /∈ B and ∃∃∃b ∈ B s.t. b < a.
A is dominated by B iff ∀∀∀a ∈ A, a is dominated by B.

For example, consider the following term

r1 r2 (I ((λ{x} a x̂. r3) (a r4)
r6)

r5

)

where every ri is a redex, and B = {r1, r6}. Then the set {r2, r5} is free from B, {r3, r4} is
dominated by B, and {r2, r3} is neither free from nor dominated by B.

Notice that A free from B and C dominated by B imply A free from C.
Returning to the example in Sec. 5.2 notice that A is free from B and A/B = A, however,

as remarked before, ν(A, t5) < ν(A, u5). A free set of redexes is always preserved by reduction;
moreover, gripping explains all the cases in which the depth changes. Formally,

I Lemma 5. Let A,B ⊆ RO(t) s.t. A is free from B. Then A/B = A.

I Lemma 6. Let A,B ⊆ RO(t) s.t. A is free from B and t B−→◦ s. If B does not grip A, then
ν(A, t) = ν(A, s).

5.4 The normalisation proof
In this seciton we give a proof of the main result of the paper, namely that the strategy S
is normalising. The proof is based on the ideas described at the beginning of Sec. 5. The
main auxiliary results used in the proof are also included. They formalise the construction of
∆k+1 (cf. Fig. 4), in their statements B can be considered to be (some residual of) S(tk) and
A, C,∆ to be ∆k or parts of it.

E. Bonelli, D. Kesner, C. Lombardi, and A. Ríos 129

I Lemma 7. Let B, C ⊆ RO(t) s.t. t
C−→◦ u, and A ⊆ RO(u) s.t. C is dominated by B,

A is free from B/C, and B is non-gripping. Then A ⊆ RO(t), A is free from B, and
ν(A, t) = ν(A, u).

Proof. (sketch) To obtain A ⊆ RO(t) and A free from B, we reason by induction on ν(C, t);
so let c ∈ C and δ = c; δ′ be a complete development of C (so δ′ is a complete development of
C/c), i.e. t c→ s

C/c−→◦ u. It is not difficult to prove that C dominated by B and c ∈ C imply C/c
dominated by B/c, allowing to use the i.h. on C/c to obtain A ⊆ RO(s) and A free from
B/c. Now, for any a ∈ A ⊆ RO(s), it can be proved (by contradiction) that a ∈ RO(t) and
a is free from B. Thus, A is free from B. Noticing that B being non-gripping (so B does
not grip A), A free from B and C dominated by B imply C does not grip A, depth stability
follows from Lem. 6. J

I Lemma 8. Let t C−→◦ s
∆−�◦ u and B ⊆ RO(t) s.t. B is non-gripping, C is dominated by

B, ∆ is free from B/C, and B/(C; ∆) = ∅. Then t
∆−�◦ u, ∆ is free from B, B/∆ = ∅ and

χ(∆, t) = χ(∆, s).

Proof. We proceed by induction on the size of ∆.
Assume ∆ = nil. Then B/(C; ∆) = B/C = ∅. We first show B = ∅. Indeed, suppose

that B 6= ∅, let b be a minimal element of B w.r.t. the prefix order. It is straightforward to
verify that {b} is free from C (since C is dominated by B), then Lem. 5 yields {b}/C = {b},
contradicting B/C = ∅. Then B = ∅, therefore C = ∅, again since C is dominated by B, hence
t = s = u and the conclusions are straightforward.

If ∆ 6= nil, then consider t C−→◦ s
∆[1]−→◦ w

∆[2..n]
−�◦ u. Lem. 7 gives ∆[1] ⊆ RO(t), ∆[1] is free

from B and ν(∆[1], t) = ν(∆[1], s); moreover, since ∆[1] is free from B and C is dominated
by B, then ∆[1]/C = ∆[1] (cf. Lem. 5), so (C; ∆[1]) and (∆[1]; (C/∆[1])) are two complete

developments of ∆[1] ∪ C. Hence, Prop. 1 implies that t ∆[1]−→◦ s′
C/∆[1]−→◦ w

∆[2..n]
−�◦ u.

In order to apply the i.h. we need to verify the corresponding hypotheses. By a patient
analysis on residuals and positions we obtain that C/∆[1] is dominated by B/∆[1]. Moreover,
B non-gripping implies B/∆[1] non-gripping, and the remaining conditions can be easily
obtained by noticing that B/(∆[1]; (C/∆[1])) = B/(C; ∆[1]).

Therefore the i.h. can be applied, obtaining s′
∆[2..n]
−�◦ u, ∆[2..n] is free from B/∆[1],

B/(∆[1]; ∆[2..n]) = ∅, and χ(∆[2..n], s′) = χ(∆[2..n], w). We conclude by combining these
results with those obtained in the first paragraph. J

I Lemma 9. Let t
∆−�◦ u and B ∈ RO(t) s.t. ∆ = ∆[1..n], B is non-gripping, ∆ does not

use B and B/∆ = ∅. Then there exists a multireduction Γ = Γ[1..n] such that t
Γ−�◦ u, Γ is

free from B, B/Γ = ∅ and χ(Γ, t) ≤ χ(∆, t).

Proof. We proceed by induction on n.
If n = 0 then ∆ = ∅, therefore it suffices to take Γ = ∅.
If n > 0 then we consider t ∆[1]−→◦ s

∆[2..n]
−�◦ u. By observing that B/∆[1] is non-gripping we

can use the i.h. on t
∆[2..n]
−�◦ u, thus obtaining a multireduction Γ1 = Γ1[1..n − 1] such that

s
Γ1−�◦ u, Γ1 is free from B/∆[1], (B/∆[1])/Γ1 = ∅ and χ(Γ1, s) ≤ χ(∆[2..n], s).
We now define ∆[1]F := {a ∈ ∆[1] s.t. @@@b ∈ B . b < a} and ∆[1]D := (∆[1]\∆[1]F)/∆[1]F ,

then t ∆[1]F−→◦ t′
∆[1]D−→◦ s

Γ1−�◦ u for some term t′. It is easy to check that ∆[1]F is free from B
and ∆[1] \∆[1]F is dominated by B just by definition (∆[1] does not use B), and it can be

RTA’12

130 Normalisation for Dynamic Pattern Calculi

proved that ∆[1]D is dominated by B/∆[1]F . Moreover B/∆[1]F is non-gripping. Finally,
B/∆[1] = (B/∆[1]F)/∆[1]D by Prop. 1; consequently Γ1 is free from (B/∆[1]F)/∆[1]D and
(B/∆[1]F)/(∆[1]D; Γ1) = ∅.

Therefore we can use Lem. 8 on t′ ∆[1]D−→◦ s
Γ1−�◦ u, thus obtaining that t′

Γ1−�◦ u, Γ1 is free
from B/∆[1]F , (B/∆[1]F)/Γ1 = ∅ and χ(Γ1, t

′) = χ(Γ1, s) ≤ χ(∆[2..n], s).
We can conclude by taking Γ := ∆[1]F ; Γ1; notice that ν(∆[1]F , t) ≤ ν(∆[1], t). J

I Proposition 10. Let t
∆−�◦ u and B ⊆ RO(t) s.t. B is non-gripping, ∆ does not use B,

B/∆ = ∅ and t B−→◦ s. Then ∃∃∃ Γ s.t. s
Γ−�◦ u and χ(Γ, s) ≤ χ(∆, t).

Proof. Let us say ∆ = ∆[1..n]. Lem. 9 yields the existence of some Γ = Γ[1..n] such that
t

Γ−�◦ u, Γ is free from B, B/Γ = ∅ and χ(Γ, t) ≤ χ(∆, t). Let us define t0 := t, tn := u and
ti−1

Γ[i]−→◦ ti for all i ≤ n. Notice that Γ being free from B implies that Γ[i]/(B/Γ[1..i−1]) = Γ[i]
for all i, cf. Lem. 5. Therefore, we can build the following diagram

t ◦
Γ[1] //

◦B
��

t1 ◦
Γ[2] //

◦B/Γ[1]
��

t2 ...

◦B/Γ[1..2]
��

tn−1 ◦
Γ[n] //

◦B/Γ[n−1]
��

u

◦B/Γ=∅
��

s ◦
Γ[1]

// s1 ◦
Γ[2]

// s2 ... sn−1 ◦
Γ[n]

// u

where for all i,
Lem. 6 yields ν(Γ[i], ti−1) = ν(Γ[i], si−1) since B non-gripping implies that B/Γ[1..i− 1]

does not grip Γ[i]. We conclude by observing that χ(Γ, s) = χ(Γ, t) ≤ χ(∆, t). J

I Proposition 11. Let t
∆−�◦ u and B ⊆ RO(t), s.t. B is non-gripping, ∆ uses B, B/∆ = ∅

and t B−→◦ s. Then ∃∃∃ Γ s.t. s
Γ−�◦ u and χ(Γ, s) < χ(∆, t).

Proof. Let us say ∆ = ∆[1..n], t0 := t, tn := u and ti−1
∆[i]−→◦ ti for all i ≤ n. Since ∆ uses

B, there exists some ∆[m] being the last step of ∆ using (the corresponding residual of) B.
Formally, if B′ := B/∆[1..m − 1], then ∆[m]1 := ∆[m] ∩ B′ 6= ∅ and ∆[m + 1..n] does not
use B/∆[1..m]. Additionally, let ∆[m]2 := (∆[m] \∆[m]1)/∆[m]1.

We can build the following diagram

t ◦
∆[1..m−1]// //

◦B
��

tm−1 ◦
∆[m]1 //

◦B′

��

t′m ◦
∆[m]2 //

◦B′/∆[m]1

��

tm ◦
∆[m+1..n]// // u

s sm−1 sm−1

since ∆[m]1/B′ = ∅.
Assume the existence of some b ∈ ∆[m]2∩(B′/∆[m]1), this would imply that b ∈ b′/∆[m]1

such that b′ ∈ (∆[m]\∆[m]1)∩B′ since the ancestor of a redex is unique in PPC, contradicting
the definition of ∆[m]1.

Therefore ∆′ := ∆[m]2; ∆[m+ 1..n] does not use B′/∆[m]1, hence Prop. 10 can be used
to obtain some Π = Π[1..n −m + 1] such that sm−1

Π−�◦ u and χ(Π, sm−1) ≤ χ(∆′, t′m) <
χ(∆[m..n], tm−1).

E. Bonelli, D. Kesner, C. Lombardi, and A. Ríos 131

We now define Γ as follows: Γ[i] := ∆[i]/(B/∆[1..i − 1]) if 1 ≤ i ≤ m − 1, and Γ[i] :=

Π[i −m + 1] if m ≤ i ≤ n. We remark that Prop. 1 implies that s
Γ[1..m−1]
−�◦ sm−1, thus Γ

is well-defined. Moreover, the definition of the measure for multireductions by means of a
reversed order implies that χ(Π, sm−1) < χ(∆[m..n], tm−1) is a sufficient condition to obtain
χ(Γ, s) < χ(∆, t). J

I Theorem 12. The reduction strategy S is normalising.

Proof. Let t0 be a normalising term in PPC, then there exists some ∆0 such that t0
∆0−�◦ u and

u ∈ NF. We proceed by induction on χ(∆0, t0), using the well-founded ordering in Sec. 5.3.
If t0 ∈ NF there is nothing to prove. Otherwise, Lem. 2 guarantees that S(t0) 6= ∅.

Let t0
S(t0)−→◦ t1. Then ∆0 uses S(t0) and S(t0) is non-gripping by Prop. 3 and Prop. 4

respectively; moreover, u ∈ NF implies S(t0)/∆0 = ∅. Then Prop. 11 yields the existence of
a multireduction ∆1 s.t. t1

∆1−�◦ u and χ(∆1, t1) < χ(∆0, t0). We conclude by the i.h. J

As a final remark, notice that the construction of ∆k+1 from ∆k and S(tk) in the proof
of Prop. 11 combines two different kinds of projections: one based on residuals (cf. Prop. 1),
the other based in the notions of free and dominated sets of redexes.

6 Conclusions and further work

We study normalisation strategies for PPC, a dynamic pattern calculus equipped with matching
failure. Its semantics induces a parallel-or-like, non-sequential behaviour which hinders the
development of normalising strategies, particularly since it is not a FO system nor is it clear
how it may be encoded in terms of established HO rewriting formalisms (eg. HRS [18],
CRS [14]).

Building on ideas from [21] developed for FO systems, we propose a notion of necessary set
of redexes for a HO language. Repeated contraction of necessary sets is shown to normalise
a term provided that they are also non-gripping [16]. We introduce an inductively defined
strategy that, given a term t, selects a necessary set of redexes for t which is also non-gripping,
and moreover bounded by the set of outermost redexes. The strategy collapses to LO when
the λ-calculus is encoded in PPC.

We think that our normalisation proof could be adapted to other (HO) calculi, and even
to families of calculi defined in some general HO formalism, particularly since necessary and
gripping sets are specified in a quite general way. Another research direction is to adopt a
completely axiomatic approach, e.g. Abstract Rewriting Systems as defined in [16].

An encoding of PPC into some HO formalism, such as those mentioned above, could yield
interesting insights on the possible transfer of the normalisation results of [23] and [22] from
HORS to our framework.

Further avenues of research we intend to pursue include implementing an interpreter
based on our strategy and devising even more refined strategies, in the sense of selecting
smaller sets of redexes.

Acknowledgements To Vincent van Oostrom (for having pointed out a mistake in a previous
version of this work), Femke van Raamsdonk and the anonymous referees (for helpful remarks).
This work was partially funded by the Digiteo-IdF project MoDy and the French-Argentinian
Laboratory in Computer Science INFINIS.

RTA’12

132 Normalisation for Dynamic Pattern Calculi

References
1 S. Antoy and A. Middeldorp. A sequential reduction strategy. TCS, 165(1):75–95, 1996.
2 F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge Univ. Press, 1998.
3 T. Balabonski. On the implementation of dynamic patterns. In HOR, EPTCS 49, pages

16–30, Edinburgh, UK, 2010.
4 T. Balabonski. Optimality for dynamic patterns: Extended abstract. In PPDP, pages

16–30. ACM, 2010.
5 H.P. Barendregt, R. Kennaway, J-W. Klop, and M. Ronan Sleep. Needed reduction and

spine strategies for the lambda calculus. I & C, 75(3):191–231, 1987.
6 H. Cirstea and C. Kirchner. The rewriting calculus - Part I and Part II. Logic Journal of

the IGPL, 9(3), 2001.
7 J. Glauert, R. Kennaway, and Z. Khasidashvili. Stable results and relative normalization.

JLC, 10(3):323–348, 2000.
8 G. Huet and J-J Lévy. Computations in orthogonal rewriting systems - Parts I and II. In

Computational Logic, Essays in Honor of Alan Robinson, pages 395–443. MIT Press, 1991.
9 B. Jay. Pattern Calculus: Computing with Functions and Structures. Springer, 2009.

10 B. Jay and D. Kesner. Pure pattern calculus. In ESOP, LNCS 3924, pages 100–114.
Springer, 2006.

11 B. Jay and D. Kesner. First-class patterns. JFP, 19(2):191–225, 2009.
12 W. Kahl. Basic pattern matching calculi: A fresh view on matching failure. In FLOPS,

LNCS 2998, pages 276–290. Springer, 2004.
13 D. Kesner, C. Lombardi, and A. Ríos. Standardisation for constructor based pattern calculi.

In HOR, EPTCS 49, pages 58–72, Edinburgh, UK, 2010.
14 J-W. Klop. Combinatory Reduction Systems. Mathematical Centre Tracts 127. PhD thesis,

University Amsterdam, 1980.
15 J-W. Klop, V. van Oostrom, and R. de Vrijer. Lambda calculus with patterns. TCS,

398(1-3):16–31, 2008.
16 P-A. Melliès. Description abstraite des Systèmes de Réécriture. PhD thesis, Université

Paris VII, 1996.
17 P-A. Melliès. Axiomatic rewriting theory II: the λσ-calculus enjoys finite normalisation

cones. JLC, 10(3):461–487, 2000.
18 T. Nipkow. Higher-Order Critical Pairs. In LICS, pages 342–349, IEEE. 1991.
19 M. J. O’Donnell. Computing in Systems Described by Equations, LNCS 58. Springer, 1977.
20 S. L. Peyton-Jones. The Implementation of Functional Programming Languages. Prentice-

Hall, Inc., 1987.
21 R. C. Sekar and I. V. Ramakrishnan. Programming in equational logic: Beyond strong

sequentiality. I & C, 104(1):78–109, 1993.
22 V. van Oostrom. Normalisation in weakly orthogonal rewriting. In RTA, LNCS 1631, pages

60–74. Springer, 1999.
23 F. van Raamsdonk. Outermost-fair rewriting. In TLCA, LNCS 1210, pages 284–299.

Springer, 1997.

A Semantic Proof that Reducibility Candidates
entail Cut Elimination
Denis Cousineau1 and Olivier Hermant2

1 INRIA-Saclay, France
denis@cousineau.eu

2 ISEP, France
olivier.hermant@isep.fr

Abstract
Two main lines have been adopted to prove the cut elimination theorem: the syntactic one, that
studies the process of reducing cuts, and the semantic one, that consists in interpreting a sequent
in some algebra and extracting from this interpretation a cut-free proof of this very sequent.

A link between those two methods was exhibited by studying in a semantic way, syntactical
tools that allow to prove (strong) normalization of proof-terms, namely reducibility candidates.
In the case of deduction modulo, a framework combining deduction and rewriting rules in which
theories like Zermelo set theory and higher order logic can be expressed, this is obtained by
constructing a reducibility candidates valued model. The existence of such a pre-model for a
theory entails strong normalization of its proof-terms and, by the usual syntactic argument, the
cut elimination property.

In this paper, we strengthen this gate between syntactic and semantic methods, by providing
a full semantic proof that the existence of a pre-model entails the cut elimination property for the
considered theory in deduction modulo. We first define a new simplified variant of reducibility
candidates à laGirard, that is sufficient to prove weak normalization of proof-terms (and therefore
the cut elimination property). Then we build, from some model valued on the pre-Heyting algebra
of those WN reducibility candidates, a regular model valued on a Heyting algebra on which we
apply the usual soundness/strong completeness argument.

Finally, we discuss further extensions of this new method towards normalization by evaluation
techniques that commonly use Kripke semantics.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases cut elimination, reducibility candidates, (pre-)Heyting algebras.

Digital Object Identifier 10.4230/LIPIcs.RTA.2012.133

Category Regular Research Paper

1 Introduction

The cut elimination theorem [15] is a central result in proof theory and type theory. From a
proof theorist’s point of view, it implies the consistency of the considered logical framework, as
well as other nice results like the disjunction property, the witness property or the subformula
property. On the other side, the type theorist is more interested in the cut elimination
process itself, and in its termination. Those two different interests led to two distinct main
lines of showing cut elimination, namely the semantic and the syntactic methods.

The semantic methods [17, 4, 18] use the soundness/strong completeness paradigm: first
show that if we have a proof of A under the hypothesis Γ, then every model of Γ, valued on

© Denis Cousineau and Olivier Hermant;
licensed under Creative Commons License NC-ND

23rd International Conference on Rewriting Techniques and Applications (RTA’12).
Editor: A. Tiwari; pp. 133–148

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

134 A Semantic Proof that Reducibility Candidates entail Cut Elimination

a Heyting algebra, is a model of A, and then show that if the latter holds, then we can build
a cut-free proof of A when assuming Γ.

A modern variant of the syntactic method uses the Curry-Howard correspondence and
Tait-Girard’s reducibility method [16], in order to prove normalization of β-reduction on
proof-terms (that syntactically entails cut elimination).

The logical framework we shall work in is Deduction modulo [11]. It is a generic way
to integrate computation rules into a deduction system, in our case natural deduction. In
this logical framework, theories are expressed via rewrite rules on first order terms and
propositions, instead of axioms. One can express, only with rewrite rules, both theories that
satisfy the cut elimination property (such as Zermelo set theory [12], Peano’s arithmetic [14]
or higher-order logic [10, 13]) and theories that do not. One particularity of this framework
is that all theories (expressed only with rewrite rules) satisfying the cut elimination property
are consistent: if there is no axiom a cut-free proof always ends with an introduction rule,
and one cannot prove False with a cut-free proof. Hence, the cut elimination property entails
that False is unprovable, which is not true in presence of axioms (consider, for instance, the
theory containing the only axiom False. It enjoys cut elimination but it is not consistent).

A first link between the semantic and syntactic methods to prove cut elimination was
made by defining reducibility candidates for deduction modulo [13] as a model, and to show
that this model has a pre-Heyting algebra structure [9] (a Heyting algebra in which the
order is replaced by a pre-order). It can be shown, with the usual (syntactic) reducibility
arguments, that having such a (pre-)model entails strong normalization and therefore cut
elimination for a theory in deduction modulo.

In this paper, we strengthen this gate between syntactic and semantic methods, by provid-
ing a full semantic proof that the existence of a pre-model entails the cut elimination property
for the considered theory in deduction modulo. Since our goal is cut elimination, we consider
weak normalization rather than strong normalization. We define a new simplified variant of
reducibility candidates à la Girard for weak normalization, which is a first contribution of
our work. We give those reducibility candidates a pre-Heyting algebra structure. Then we
build, from a given model valued on that pre-Heyting algebra, a regular model valued on a
Heyting algebra, that we can use to prove cut elimination with the usual soundness/strong
completeness argument. This is the second contribution of our work.

Many results have been obtained in the direction we follow, especially in the normalization
by evaluation approach [1, 2, 3, 5, 6], based on a Kripke-like semantic structure. In this paper,
the proof of cut elimination generates, in some cases, also a normalization by evaluation
algorithm, but with respect to the standard Heyting semantics notion.

We first introduce Deduction modulo in Sec. 2. Sec. 3 is devoted to semantics (Heyting
and pre-Heyting algebras) and to the specific pre-Heyting algebra of reducibility candidates à
la Girard for weak normalization.Then we prove, in Sec. 4 that we can extract from a model
valued on that precise pre-Heyting algebra, a model valued on a Heyting algebra that allows
to prove semantically cut elimination (Sec. 5). We finally discuss further extensions of the
present work, especially concerning normalization by evaluation algorithms it can raise.

2 Deduction modulo

Natural Deduction modulo [10] is an extension of Natural Deduction with rewrite rules on
terms and propositions. As in Natural Deduction, a theory is first defined by a language in
first order logic [20], composed of a set of variables, a set of function symbols and a set of

D. Cousineau and O. Hermant 135

predicate symbols (all symbols given with their arities). Formulæ are then built-up from
predicates (called atomic formulæ), the usual connectives⇒, ∧, ∨ and the quantifiers ∀ and ∃.
Given a language in predicate logic, a theory is defined not by axioms but by rewrite rules on
terms and formulæ. In this paper, we shall not focus on how to define such a rewrite system,
we will only consider the congruence relation on terms and formulæ it generates. The only
mandatory property is that the congruence relation has to be non-confusing, i.e. two formulæ
with different top connectives (or quantifiers) cannot be congruent (cut elimination does not
entail consistency for confusing theories, since a cut-free proof does not necessarily end with
an introduction rule). The principle of deduction modulo is to adapt the typing/deduction
rules of natural deduction, giving the ability to replace a formula by an equivalent one, at each
step of a typing derivation, as detailed in Fig. 1. We use the Curry-Howard correspondence
to express proof-terms of deduction modulo. Those proof-terms can contain both term
variables (written x, y, . . . , given by the language in predicate logic) and proof variables
(written α, β, . . .). In the same way, terms are written t, u, . . . while proof-terms are written
π, ρ, Typing contexts Γ are sequences of labeled formulæ: α1 : A1, · · · , αn : An.

axiom, if α : A ∈ Γ and A ≡ BΓ ` α : B
Γ, α : A ` π : B ⇒-intro, if C ≡ A⇒ BΓ ` λα.π : C

Γ ` π : C Γ ` π′ : A ⇒-elim, if C ≡ A⇒ B
Γ ` (π π′) : B

Γ ` π : A Γ ` π′ : B ∧-intro, if C ≡ A ∧B
Γ ` 〈π, π′〉 : A ∧B

Γ ` π : C∧-elim1, if C ≡ A ∧B
Γ ` fst(π) : A

Γ ` π : C ∧-elim2, if C ≡ A ∧B
Γ ` snd(π) : B

Γ ` π : A∨-intro1, if C ≡ A ∨B
Γ ` i(π) : C

Γ ` π : B ∨-intro2, if C ≡ A ∨B
Γ ` j(π) : C

Γ ` π1 : D Γ, α : A ` π2 : C Γ, β : B ` π3 : C ∨-elim, if D ≡ A ∨B
Γ ` (δ π1 απ2 βπ3) : C

Γ ` π : B ⊥-elim, if B ≡ ⊥
Γ ` (δ⊥ π) : A

Γ ` π : A ∀-intro, if B ≡ ∀xA, and x /∈ FV (Γ)Γ ` λx.π : B
Γ ` π : B ∀-elim if B ≡ ∀xA, and C ≡ (t/x)A

Γ ` (π t) : C

Γ ` π : C ∃-intro if B ≡ ∃xA, and C ≡ (t/x)A
Γ ` 〈t, π〉 : B

Γ ` π : C Γ, α : A ` π′ : B ∃-elim, if C ≡ ∃xA, and x /∈ FV (Γ, B)
Γ ` (δ∃ π xαπ

′) : B

Figure 1 Intuitionistic natural deduction modulo.

Each proof-term construction corresponds to a natural deduction rule: terms of the
form α express proofs built with the axiom rule, terms of the form λα π and (π π′) express
proofs built respectively with the introduction and elimination rules of the implication,

RTA’12

136 A Semantic Proof that Reducibility Candidates entail Cut Elimination

terms of the form 〈π, π′〉 and fst(π), snd(π) express proofs built with the introduction and
elimination rules of the conjunction, terms of the form i(π), j(π) and (δ π1 απ2 βπ3) express
proofs built with the introduction and elimination rules of the disjunction, terms of the
form (δ⊥ π) express proofs built with the elimination rule of the contradiction, terms of the
form λx π and (π t) express proofs built with the introduction and elimination rules of the
universal quantifier and terms of the form 〈t, π〉 and (δ∃ π xαπ′) express proofs built with
the introduction and elimination rules of the existential quantifier.
We call neutral those proof-terms that are formed with an elimination rule or an axiom.

For example, in predicate logic with two 0-ary predicates P and Q, and in a theory
defined by a congruence relation ≡ such that P ≡ (Q⇒ Q), the proof-term λα.α is a proof
of P in the empty context, with the rules ⇒-intro and axiom as proof derivation.

Capture avoiding substitution in proof-terms is defined as usual. Notice that both term-
variables and proof-variables can be substituted respectively by terms and proof-terms. The
substitution of the variable x (resp. proof-variable α) by the term t (resp. proof-term π′) in
the proof-term π is written (t/x)π (resp. (π′/α)π).

Cut elimination in proof derivations is done, via the Curry-Howard correspondence, by
β-reduction on proof-terms. β-reduction is defined as the smallest contextual closure of the
following reduction rules (corresponding, respectively, to the elimination of a cut ⇒-e/⇒-i,
∧-e1/∧-i, ∧-e2/∧-i, ∨-e/∨-i1, ∨-e/∨-i2, ∀-e/∀-i and ∃-e/∃-i).

(λα.π1 π2) B (π2/α)π1

fst(〈π1, π2〉) B π1

snd(〈π1, π2〉) B π2

(δ i(π1) απ2 βπ3) B (π1/α)π2

(δ j(π1) απ2 βπ3) B (π1/β)π3

λx.π t B (t/x)π
(δ∃ 〈t, π1〉 αxπ2) B (t/x, π1/α)π2

Figure 2 Proof-term reduction rules.

Let π be a proof-term. We write π B∗ π′ if π β-reduces to π′ in zero or more steps.
π is said in normal form if no reduction rule applies to π. It is weakly (resp. strongly)
normalizing if there exists a finite β-reduction sequence πB∗ π′ with π′ in normal form (resp.
all β-reduction sequences from π are finite). By extension, a theory is weakly (resp. strongly)
normalizing if all proof-terms that are proofs of formulæ of that theory, are weakly (resp.
strongly) normalizing. Since a step of cut elimination in a proof derivation corresponds to a
β-reduction step of the corresponding proof-term, one can prove syntactically that all weakly
normalizing theories satisfy the cut elimination property.
Finally, notice that β-reduction is confluent for all theories expressed in deduction modulo,
i.e. if π, π1, π2 are proof-terms such that πB∗ π1 and πB∗ π2 then there exists a proof-term
π′ such that π1 B∗ π′ and π2 B∗ π′.

3 Pre-Heyting algebras and pre-models

In [13], Dowek and Werner have generalized the Tait-Girard’s reducibility method, by
defining the notion of reducibility candidates for deduction modulo, namely pre-models,

D. Cousineau and O. Hermant 137

whose existence is a sufficient condition for strong normalization. Later, Dowek exhibited
the notion of pre-Heyting algebras [9] (also known as pseudo-Heyting algebras or Truth
Values Algebras) which is the underlying structure of those pre-models. Let us first recall
the definitions of those pre-Heyting algebras and of models valued on them.

3.1 (pre-) Heyting algebras
I Definition 1 (pre-Heyting algebra). Let B be a set, ≤ be a relation on B, A and E be
subsets of ℘(B), >̃, ⊥̃ be elements of B, ⇒̃, ∧̃, and ∨̃ be functions from B × B to B, ∀̃ be a
function from A to B and ∃̃ be a function from E to B.
The structure B = 〈B,≤,A, E , >̃, ⊥̃, ⇒̃, ∧̃, ∨̃, ∀̃, ∃̃〉 is said to be a pre-Heyting algebra if

the relation ≤ is a pre-order,
⊥̃ is a minimum element,
>̃ is a maximum element,
for all a, b in B, a ∧̃ b is a greatest lower bound of a and b
and a ∨̃ b is a least upper bound of a and b,
∀̃ and ∃̃ are infinite greatest lower bound and least upper bound, respectively,
for all a, b, c in B, a ≤ b ⇒̃ c if and only if a ∧̃ b ≤ c.

Compared to [9], we drop the closure conditions that a ⇒̃ A and E ⇒̃ a are both in A. This
simplification is possible because we do not reason within Truth Values Algebras. See [9] for
more detailed definitions and explanations.

I Definition 2 (Heyting algebra). A pre-Heyting algebra is said to be a Heyting algebra if
the pre-order ≤ is antisymmetric and therefore an order.

3.2 Models
Let us define now the notion of model valued on a pre-Heyting algebra.

I Definition 3 (B-valued structure).
Let L = 〈fi, Pj〉 be a language in first order logic and B be a pre-Heyting algebra, a B-valued
structure for the language L, M = 〈M,B, f̂i, P̂j〉 is a structure such that f̂i is a function
from Mn to M where n is the arity of the function symbol fi and P̂j is a function from Mn

to B where n is the arity of the predicate symbol Pj .

I Definition 4 (Environments).
Given a B-valued structureM = 〈M,B, f̂i, P̂j〉, an environment is a function which associates
an element of M with each term variable.

I Definition 5 (Denotation). Let B be a pre-Heyting algebra,M a B-valued structure and
φ an environment. The denotation JAKMφ of a formula A inM is inductively defined from B
and φ as follows:

JxKMφ = φ(x),
Jf(t1, ..., tn)KMφ = f̂(Jt1KMφ , ..., JtnKMφ),
JP (t1, ..., tn)KMφ = P̂ (Jt1KMφ , ..., JtnKMφ),
J⊥KMφ = ⊥̃,
JA⇒ BKMφ = JAKMφ ⇒̃ JBKMφ ,
JA ∧BKMφ = JAKMφ ∧̃ JBKMφ ,
JA ∨BKMφ = JAKMφ ∨̃ JBKMφ ,

RTA’12

138 A Semantic Proof that Reducibility Candidates entail Cut Elimination

J∀x AKMφ = ∀̃ {JAKMφ+〈x,e〉 | e ∈M} when it is defined,
J∃x AKMφ = ∃̃ {JAKMφ+〈x,e〉 | e ∈M} when it is defined.

I Remark. We omitM from JAKMφ when it is clear from context.
In all the pre-Heyting Algebras we consider in this paper, A and E at least contain all the
sets of the form {JAKφ+〈x,e〉 | e ∈M} so that JAKφ is always defined.
For any formula A, terms t, u and environment φ, we have J(t/x)AKφ = JAKφ+〈x,JtKφ〉 and
J(t/x)uKφ = JuKφ+〈x,JtKφ〉

I Definition 6 (Model). The B-valued structureM is said to be a model of a theory L,≡
if for all formulæ A and B and terms t and u such that A ≡ B and t ≡ u, and for all
environments φ, we have JAKφ = JBKφ and JtKφ = JuKφ.

3.3 Reducibility candidates and pre-models for weak normalization
The main idea of Tait-Girard’s reducibility method is to associate with each proposition A,
a set RA of strongly normalizing proof-terms, that verifies some reducibility conditions, and
then show the so-called adequacy lemma: all proof-terms that are proofs of some formula A
belong to RA and are therefore strongly normalizing. We adapt here this notion of reducibility
candidates to weak normalization. We shall write WN -reducibility candidates. We also write
“WN” the set of weakly normalizing proof-terms and “π isWN” when π ∈WN . A proof-term
is said to be neutral if it is of the form α, (π π′), fst(π), snd(π), (δ π1 απ2 βπ3), (π t) or
(δ∃ π1 αxπ2). A neutral proof-term is said to be isolated if all its reduction sequences end
with a neutral proof-term (those proof-terms are called hereditarily neutral in [19]).

I Definition 7 (Reducibility candidates for weak normalization).
A set R of proof-terms is a WN -reducibility candidate if and only if:
(P1) if π ∈ R, then π is weakly normalizing,
(P3a) if π is neutral and there exists π′ ∈ R such that π B π′, then π ∈ R.
(P3b) R contains all isolated weakly normalizing proof-terms.

If we compare this definition to usual reducibility candidates (see [16]), (CR1) becomes
(P1), stability by reduction (CR2) is not needed for our particular purpose of proving, via
semantic methods, the cut elimination property (albeit we shall see in Section 5.1 that it could
be useful to impose this property), and we split the usual property (CR3) of reducibility
candidates into (P3a) and (P3b): (P3a) is the adaptation of (CR3) to weak normalization
but this no longer entails the non-emptiness of the considered set (a crucial point in the
proof of the adequacy lemma). (P3b) ensures that non-emptiness.

Let us now define the pre-Heyting algebra of WN -reducibility candidates.

I Definition 8 (Operations).
If E and F are sets of proof-terms, and F is a set of sets of proof-terms,

The sets >̃ and ⊥̃ are both the set of weakly normalizing proof-terms.
E ⇒̃ F is the set of proof-terms π such that either π is isolated and weakly normalizing,
or there exists π1 such that π B∗ λα π1 and for all π′ ∈ E, (π′/α)π1 ∈ F .
E ∧̃ F is the set of proof-terms π such that either π is isolated and weakly normalizing,
or there exists π1, π2 such that π B∗ 〈π1, π2〉, π1 ∈ E and π2 ∈ F .
E ∨̃ F is the set of proof-terms π such that either π is isolated and weakly normalizing,
or there exists π1 such that π B∗ i(π1) (resp. j(π1)) and π1 ∈ E (resp. F).

D. Cousineau and O. Hermant 139

∀̃ F is the set of proof-terms π such that either π is isolated and weakly normalizing, or
there exists π1 such that π B∗ λx π1 and for all terms t and G ∈ F , (t/x)π1 is in G.
∃̃ F is the set of proof-terms π such that either π is isolated and weakly normalizing, or
there exists π1, G ∈ F and a term t such that π B∗ 〈t, π1〉 and π1 ∈ G.

I Remark. We could also have left ⊥̃ be the smallest (for inclusion) reducibility candidate,
i.e. the set of isolated weakly normalizing terms. But since we are going to choose the trivial
pre-order, there is no particular reason to do so.

I Lemma 9. The set of WN -reducibility candidates is closed by the operations of Def. 8.

We can first remark that the set WN is a WN -reducibility candidate. Moreover, if E,F are
WN -reducibility candidates and F is a set of WN -reducibility candidates, E ⇒̃ F , E ∧̃ F ,
E ∨̃ F , ∀̃ F and ∃̃ F contains all isolated weakly-normalizing proof-terms by definition hence
those sets satisfy (P3b).

⇒̃) (P1) Let π ∈ E ⇒̃ F . Either π is isolated and weakly normalizing. Or there exists π1
such that π B∗ λα π1 and for all π′ ∈ E, (π′/α)π1 ∈ F . Since E satisfies (P3b), we have
α ∈ E, hence π1 ∈ F ⊆WN, since F satisfies P1 and so do λα.π1 and finally π.
(P3a) Let π be a neutral proof-term and π′ ∈ E ⇒̃ F such that π B π′. If π′ is isolated
and WN, then π ∈WN and is also isolated, by confluence. Otherwise πB π′B∗ λα.π1 with
(π′′/α)π1 ∈ F for all π′′ ∈ E. In both cases, π ∈ E ⇒̃ F .

∧̃) (P1) Let π ∈ E ∧̃ F . Either π is isolated and weakly normalizing. Or there exists π1, π2
such that π B∗ 〈π1, π2〉 with π ∈ E ⊆WN and π2 ∈ F ⊆WN, hence π ∈WN.
(P3a) Let π be a neutral proof-term and π′ ∈ E ∧̃ F such that π B π′. If π′ is isolated
and WN, then π ∈WN and is also isolated, by confluence. Otherwise π B π′ B∗ 〈π1, π2〉
with π1 ∈ E and π2 ∈ F . In both cases, π ∈ E ∧̃ F .

∨̃) (P1) Let π ∈ E ∨̃ F . Either π is isolated and weakly normalizing. Or there exists π1
such that π B∗ i(π1) (resp. j(π1)) with π1 ∈ E (resp. F). Since E and F satisfy (P1),
we have π ∈WN .
(P3a) Let π be a neutral proof-term and π′ ∈ E ∨̃ F such that π B π′. If π′ is isolated
and WN, then π ∈WN and is also isolated, by confluence. Otherwise πB π′ B∗ i(π1) (resp.
j(π1)) with π1 ∈ E (resp. F). In both cases, π ∈ E ∨̃ F .

∀̃) (P1) Let π ∈ ∀̃F . Either π is isolated and weakly normalizing. Or there exists π1 such
that π B∗ λx π1 and for all terms t and sets G ∈ F , (t/x)π1 ∈ F . Since each G ∈ F
satisfies (P1), we have, in particular, π1 = (x/x)π1 ∈WN, and so do λx.π1 and finally π.
(P3a) Let π be a neutral proof-term and π′ ∈ ∀̃F such that π B π′. If π′ is isolated and
WN, then π ∈WN and is also isolated, by confluence. Otherwise π B π′ B∗ λx.π1 with
(t/x)π1 ∈ G for all terms t and G ∈ F . In both cases, π ∈ ∀̃F .

∃̃) (P1) Let π ∈ ∃̃F . Either π is isolated and weakly normalizing. Or there exists π1, G ∈ F
and a term t such that π B∗ 〈t, π1〉 with π1 ∈ G. Hence π1 ∈WN and so does π.
(P3a) Let π be a neutral proof-term and π′ ∈ ∃̃F such that π B π′. If π′ is isolated and
WN, then π ∈WN and is also isolated, by confluence. Otherwise π B π′ B∗ 〈t, π1〉 with π1
in some G ∈ F . In both cases, π ∈ ∃̃F .

I Definition 10 (The algebra of WN -reducibility candidates).
The set B is the set of WN -reducibility candidates. The sets A and E are ℘(B) (the powerset
of B). The operations are those of Def. 8. The pre-order is the trivial pre-order, i.e. a ≤ b
for any a, b ∈ B.

RTA’12

140 A Semantic Proof that Reducibility Candidates entail Cut Elimination

Notice that the existence of a model valued on this pre-Heyting algebra for some theory can
be obtained by super-consistency [9] since this pre-Heyting algebra is full, ordered (using the
inclusion) and complete.

Syntactic proof of (weak normalization and) cut elimination
In the following, we show how to adapt the usual reducibility method ([13] and [7, 8] for
deduction modulo) to prove that the existence of a model valued on the pre-Heyting algebra
of WN-reducbility candidates entails weak normalization (and therefore, syntactically, cut
elimination) for the considered theory in deduction modulo.
We suppose that the denotation J.K. of a theory forms a model valued on the pre-Heyting
algebra of WN-reducibility candidates in the sense of Def. 6.

As usual, we work with proof-terms substitutions adapted to a typing context, that we
call assignments.

I Definition 11 (Assignments on a typing context). Given a typing context Γ and an
environment φ, an assignment is a proof-term substitution σ such that for all declarations
α : A in Γ, we have σα ∈ JAKMφ . When it is clear from context, we may not precise the
typing context on which some assignment is defined.

I Lemma 12 (Adequacy lemma).
For all typing contexts Γ, formulæ A, environments φ, term substitutions θ, proof-terms π,
and assignments σ on Γ,

if Γ ` π : A then σθπ ∈ JAKφ.

Proof. By induction on the length of the derivation of Γ ` π : A. By case analysis on the
last rule.

If the last rule is axiom, then π is a variable α and there exists some formula B ≡ A and
a declaration α : B in Γ. By hypothesis on the assignment, σθα = σα ∈ JBKφ = JAKφ
since J.K. is a model.
If the last rule is ⇒-intro, then π is an abstraction λα.ν (we can suppose that α is
not in the domain of σ by α-renaming), and there exists formulæ B and C such that
A ≡ B ⇒ C and Γ, α : B ` ν : C (with a smaller derivation). For all µ ∈ JBKφ, (µ/α)σ is
an assignment on Γ, α : B hence by induction hypothesis (µ/α)θσν ∈ JCKφ. Finally, by
Def. 8, σθπ = λα.σθν ∈ JBKφ⇒̃JCKφ = JB ⇒ CKφ = JAKφ.
If the last rule is ⇒-elim, then π is an application (µ ν), and there exists formulæ B

and C such that Γ ` µ : C, Γ ` ν : B (with smaller derivations), and C ≡ B ⇒ A.
By induction hypothesis, we have σθµ ∈ JCKφ = JB ⇒ AKφ = JBKφ⇒̃JAKφ and σθν ∈
JBKφ. Either σθµ is isolated and weakly normalizing (since it belongs to JCKφ), then
so is σθπ = σθ(µ ν) = (σθµ σθν) which therefore belongs to JAKφ by (P3b). Or there
exists α and π1 such that σθµB∗ λα.π1 and (σθν/α)π1 ∈ JAKφ since σθµ ∈ JBKφ⇒̃JAKφ.
Finally σθπ = (σθµ σθν) ∈ JAKφ since it is neutral and it reduces to (σθν/α)π1 ∈ JAKφ
(by a repeated use of (P3a)).
Proofs of the other cases follow the same scheme.

J

In the following, we shall bypass that method and make appear an underlying Heyting
algebra structure from WN-reducibility candidates in order to provide a full semantic proof
that the existence of a model valued on WN-reducibility candidates entails cut elimination.

D. Cousineau and O. Hermant 141

4 A Heyting algebra

Pre-Heyting Algebras can easily be turned into Heyting Algebras [9] by a quotient operation,
but this is of no help here since with the algebra of Def. 10 we obtain a one-point (i.e. trivial)
Heyting Algebra. In order to achieve our purpose and extract a non-trivial Heyting algebra
from our structure of pre-models for weak normalization, we interpret propositions by sets
of contexts (outer values) given by this notion of pre-model and we show that it forms a
Heyting Algebra with well chosen operations.
For the following, we consider a theory in deduction modulo and we suppose that there
exists a modelM, valued on the pre-Heyting algebra of WN -reducibility candidates, for that
theory. We write J.KM for the denotation it defines.

4.1 Outer value
Notice that the algebra we are to build contains sets of contexts (i.e. sequences of unlabeled
formulæ) and not typing contexts. We say that a typing context ∆ is a labeling of a context
Γ = A1, . . . , An if there exists proof-variables α1, . . . , αn such that ∆ = α1 : A1, . . . , αn : An.

I Definition 13 (Outer Value). Let A be a formula. We define its weak outer value bAc as
the set of contexts Γ such that there exists a labeling ∆ of Γ and a proof-term π with:

∆ ` π : A
for any environment φ, any term-substitution θ, any assignment σ on ∆, σθπ ∈ JAKMφ

I Lemma 14. For all formulæ A, B and contexts Γ, we have
A ∈ bAc
Γ ∈ bAc implies Γ, B ∈ bAc
bAc = bBc if A ≡ B.

Proof. Each point is treated separately and is straightforward.
Because the labeling α : A and the proof α : A ` α : A verify Def. 13.
If ∆ is a labeling of Γ, π is a suitable proof-term and β is a fresh proof variable, the
typing context Γ, β : B and the proof Γ, β : B ` π : A verify Def. 13.
From Def. 6, the same proof-terms are JAKM and JBKM. Moreover, if Γ ` π : A then
Γ ` π : B is an easy property of Deduction modulo [13].

J

In the following, for all (unlabeled) contexts Γ, proof-terms π and formulæ A, we shall write
Γ ` π : A if there exists a labeling ∆ of Γ such that ∆ ` π : A.

4.2 The algebra
With the help of Def. 13 we can now define a Heyting algebra:

I Definition 15 (Heyting algebra Ω).
We define Ω to be the set containing all the bAc for any formula A. It is ordered by inclusion.
A and E are both equal to the set of all {b(t/x)Ac | t ∈ T } for any formula A, where T is
the set of open terms. We define the operations and constants to be:

⊥̌ = b⊥c
>̌ = b⊥ ⇒ ⊥c
bAc ∧̌ bBc = bA ∧Bc
bAc ∨̌ bBc = bA ∨Bc

RTA’12

142 A Semantic Proof that Reducibility Candidates entail Cut Elimination

bAc ⇒̌ bBc = bA⇒ Bc
∀̌ {b(t/x)Ac | t ∈ T } = b∀xAc
∃̌ {b(t/x)Ac | t ∈ T } = b∃xAc

I Remark. This definition should formally appear below Lem. 16 and 17, and not just above.
Indeed, those lemmata ensure that the introduced operators are well-defined, and do not
depend on them. However, we believe that presenting first Def. 15 is more natural.
To show that Def. 15 defines a Heyting algebra, we first prove that ∧̌ is set intersection.

I Lemma 16. For any formulæ A and B, bAc ∧̌ bBc = bAc ∩ bBc.
Proof.
bAc ∩ bBc ⊆ bA ∧Bc: Let Γ ∈ bAc ∩ bBc. Let π1 and π2 be proof-terms verifying the
conditions of Def. 13. Since Γ ` π1 : A and Γ ` π2 : B, we have Γ ` 〈π1, π2〉 : A ∧ B.
We claim that 〈π1, π2〉 is a suitable proof-term that verifies the conditions of Def. 13:
let φ be an environment, σ be an assignment and θ be a term-substitution. Then
σθ〈π1, π2〉 = 〈σθπ1, σθπ2〉 and, since by Def. 13 σθπ1 ∈ JAKMφ and σθπ2 ∈ JBKMφ , we get
by Def. 8 that 〈σθπ1, σθπ2〉 ∈ JA ∧BKMφ .
bA ∧Bc ⊆ bAc ∩ bBc: we show only bA ∧Bc ⊆ bAc since the other inclusion has exactly
the same proof. Let Γ ∈ bA ∧Bc and let π be a proof-term that verifies the conditions
of Def. 13. Then Γ ` fst(π) : A and we claim that fst(π) is a suitable proof-term:
let φ be an environment, σ be an assignment and θ be a term-substitution. Then
σθfst(π) = fst(σθπ). By hypothesis, σθπ ∈ JA ∧BKMφ and according to Def. 8 we have
two choices. If σθπ is WN isolated, then so is fst(σθπ) and then fst(σθπ) ∈ bAc by
(P3b). Otherwise, σθπ B∗ 〈π1, π2〉 (σθπ cannot reduce to a non neutral term of another
form since the theory is not confusing and the types of β-equivalent proof-terms are
equivalent). with π1 ∈ JAKMφ and π2 ∈ JBKMφ . Then we have the following sequence:

fst(σθπ)B∗ fst(〈π1, π2〉)B1 π1

Since every term but the last in this reduction sequence is neutral, we conclude by a
repeated use of (P3a) that fst(σθπ) ∈ JAKMφ .

J

We check now that Def. 15 does define a Heyting algebra (sinceM is a model valued on the
pre-Heyting algebra of WN -reducibility candidates).

I Lemma 17. The constants ⊥̌ , >̌ and the operators ∧̌ , ∨̌ , ⇒̌ , ∀̌ , ∃̌ are operators of a
Heyting algebra, the order being inclusion.

Proof. We check one by one each operator:
>̌ is the greatest element. Let bCc ∈ Ω and Γ ∈ bCc. Then Γ ` λα.α : ⊥ ⇒ ⊥
and to show Γ ∈ b⊥ ⇒ ⊥c we claim that λα.α is a suitable proof-term that verifies
the conditions of Def. 13. Let φ be an environment, σ be an assignment and θ be a
term-substitution. σθ(λα.α) = λα.α and λα.α ∈ J⊥ ⇒ ⊥KMφ by Def. 8 since for any
π′ ∈ J⊥KMφ , (π′/α)α = π′ ∈ J⊥KMφ .
⊥̌ is the least element. Let bAc ∈ Ω, let Γ ∈ b⊥c and π be a proof term verifying
the conditions of Def. 13. Then Γ ` (δ⊥ π) : A and we claim that (δ⊥ π) is a suitable
proof-term (Def. 13). Let φ be an environment, σ be an assignment and θ be a term-
substitution. σθ(δ⊥ π) = δ⊥ σθπ is isolated since there is no δ⊥ reduction rule and it is
WN since σθπ is WN by hypothesis on π. So Γ ∈ bAc.

D. Cousineau and O. Hermant 143

bA ∧Bc is the greatest lower bound of bAc and bBc follows directly from Lemma 16 and
the fact that set intersection is the greatest lower bound for set inclusion.
bA ∨Bc is the least upper bound of bAc and bBc:
bAc ⊆ bA ∨Bc. Let Γ ∈ bAc and π a proof-term verifying the conditions of Def. 13.
Then Γ ` i(π) : A ∨ B and we claim that i(π) is a suitable proof-term. Let φ be an
environment, σ be an assignment and θ be a term-substitution. σθi(π) = i(σθπ) and
we know by hypothesis that σθπ ∈ JAKMφ . By Def. 8, i(σθπ) ∈ JA ∨BKMφ .
bBc ⊆ bA ∨Bc has exactly the same proof.
if bAc ⊆ bCc and bBc ⊆ bCc then bA ∨Bc ⊆ bCc. Let C be a formula such that
bAc ⊆ bCc and bBc ⊆ bCc, let Γ ∈ bAc and let π be the proof-term verifying the
conditions of Def. 13 such that Γ ` π : A ∨B. We show that Γ ∈ bCc.
By Lem. 14 A ∈ bAc ⊆ bCc and Γ, A ∈ bCc. Let π1 be the proof-term verifying the
conditions of Def. 13 such that Γ, α : A ` π1 : C. Analogously let π2 be the suitable
proof-term such that Γ, β : B ` π2 : C. We build the proof:

Γ, α : A ` π1 : C Γ, β : B ` π2 : C Γ ` π : A ∨B ∨-elimΓ ` (δ π απ1 βπ2) : C
We claim that (δ π απ1 βπ2) is a suitable proof-term. Let φ be an environment, σ be
an assignment and θ be a term-substitution. Up to an α-renaming of α, β we have
σθ(δπ απ1 βπ2) = (δ σθπ ασθπ1 βσθπ2). σθπ ∈ JA ∨BKMφ . If σθπ is WN isolated,
then so is σθ(δ π απ1 βπ2) and this proof-term belongs to JCKMφ by (P3b). Otherwise,
following Def. 8, assume that σθπ B∗ i(π′) with π′ ∈ JAKMφ (the other case is similar).
Then we have the reduction sequence:

σθ(δ π απ1 βπ2)B∗ (δ i(π′) ασθπ1 βσθπ2)B (π′/α)σθπ1

Since π′ ∈ JAKMφ , (π′/α)σ = σ+ (π′/α) is an assignment on Γ, α : A and by hypothesis
on π1 (π′/α)σθπ1 ∈ JCKMφ . Every term but the last in the above reduction sequence
is neutral, so we conclude by a repeated use of (P3a) that σθ(δ π απ1 βπ2) ∈ JCKMφ .

bA⇒ Bc is an implication operator. From Def. 1 (see also [21]) we must check:

bAc ≤ bBc ⇒̌ bCc iff bAc ∧̌ bBc ≤ bCc

if part: by Lem. 16 we can assume bAc ∩ bBc ⊆ bCc. Let Γ ∈ bAc. By Lem. 14,
Γ, B ∈ bAc ∩ bBc, so by hypothesis, Γ, B ∈ bCc. Let π be the proof-term verifying
the conditions of Def. 13 such that Γ, α : B ` π : C. Then Γ ` λα.π : B ⇒ C and we
claim that λα.π is a suitable proof-term (Def. 13). Let φ be an environment, σ be an
assignment, θ be a term-substitution and assume without loss of generality that α is
fresh, so that σθλα.π = λα.σθπ. Let π′ ∈ JBKMφ , then, by Def. 8, we must show that
(π′/α)σθπ = (σ + (π′/α))θπ ∈ JCKMφ but this is immediate by hypothesis on π.
only if part: by Lem. 16, let Γ ∈ bAc∩bBc. By hypothesis, Γ ∈ bBc ⇒̌ bCc = bB ⇒ Cc.
Let π and πB the proof-terms verifying the conditions of Def. 13 such that Γ ` π :
B ⇒ C and Γ ` πB : B. We have Γ ` (π πB) : C and we claim that (π πB) is a
suitable proof-term (Def. 13). Let φ be an environment, σ be an assignment and θ be
a term-substitution. σθπ ∈ JB ⇒ CKMφ by hypothesis. If it is WN isolated, then so is
σθ(π πB) and therefore it belongs to JCKMφ . Otherwise, following Def. 8, assume that
σθπ B∗ λαπ1 with π1 verifying the associated hypothesis. Then we have the reduction
sequence:

σθ(π πB)B∗ λα.π1 σθπB B (σθπB/α)π1

RTA’12

144 A Semantic Proof that Reducibility Candidates entail Cut Elimination

By hypothesis on π1 and since σθπB ∈ JBKMφ , (σθπB/α)π1 ∈ JCKMφ , and by a repeated
use of (P3a), σθ(π πB) ∈ JCKMφ .

b∀xAc is the greatest lower bound of the set {b(t/x)Ac | t ∈ T }:

if for any t, bCc ⊆ b(t/x)Ac then bCc ⊆ b∀xAc. Let Γ ∈ bCc. In particular, assuming
without loss of generality that x is fresh, Γ ∈ b(x/x)Ac. Let π be the proof-term that
verifies the conditions of Def. 13. Then Γ ` λx.π : ∀xA, and we claim that λx.π is a
suitable proof-term. Let φ be an environment, σ be an assignment and θ be a term-
substitution. Assuming for simplicity that x does not appear in σθ, σθλx.π = λx.σθπ,
and we show that for any term t and any d ∈ M , (t/x)σθπ ∈ JAKMφ+(d/x). This is
immediate by hypothesis on π, applied to the environment φ+ (d/x), the assignment
σ and the term-substitution θ + (t/x).

b∀xAc ⊆ b(t/x)Ac for any t: let Γ ∈ b∀xAc, and let π a proof-term that veri-
fies the conditions of Def. 13. Then Γ ` (π t) : (t/x)A and we claim that (π t)
is a suitable proof-term. Let φ be an environment, σ be an assignment and θ

be a term-substitution. If σθπ is WN isolated then so is σθ(π t) and this proof-
term belongs to J(t/x)AKMφ . Otherwise, σθπ B∗ λx.π1 and (u/x)π1 ∈ JAKMφ+(d/x) for
any term u and any d ∈ M , in particular for θt and JtKMφ . Thus, by remark 3.2,
(θt/x)π1 ∈ J(t/x)AKMφ and by a repeated use of (P3b), σθ(π t) ∈ J(t/x)AKMφ .

b∃xAc is the least upper bound of the set {b(t/x)Ac | t ∈ T }:

b(t/x)Ac ⊆ b∃xAc for any t: let t be a term, Γ ∈ b(t/x)Ac and let π a proof-term that
verifies the conditions of Def. 13. Then Γ ` 〈t, π〉 : ∃xA and we claim that 〈t, π〉 is a
suitable proof-term (Def. 13). Let φ be an environment, σ be an assignment and θ
be a term-substitution. σθ〈t, π〉 respects the condition of Def. 8 since it is such that
σθπ ∈ J(t/x)AKMφ = JAKMφ+JtKM

φ
by hypothesis and remark 3.2.

if, for any t, b(t/x)Ac ⊆ bCc, then b∃xAc ⊆ bCc: Let Γ ∈ b∃xAc. In particular,
assuming without loss of generality that x is fresh, b(x/x)Ac ⊆ bCc, and by Lem. 14
we have Γ, A ∈ bCc. Let π and π′ be the proof-terms verifying the conditions of Def. 13
such that Γ ` π : ∃xA and Γ, α : A ` π′ : C, with α a fresh proof variable. We build
the proof:

Γ ` π : ∃xA Γ, α : A ` π′ : C
Γ ` (δ∃ π xαπ′) : C

We claim that (δ∃ π xαπ′) is a suitable proof-term (Def. 13). Let φ be an environment,
σ be an assignment and θ be a term-substitution. If σθπ is WN isolated, then so is
σθ(δ∃ π xαπ′) and this proof-term belongs to JCKMφ . Otherwise σθπ B∗ 〈t1, π1〉 and
π1 ∈ JAKMφ+(d/x) for some d ∈M . Assuming for simplicity that x and α do not appear
in σ nor in θ:

σθ(δ∃ π xαπ′)B∗ δ∃ 〈t1, π1〉 xαπ′ B (t/x, π1/α)σθπ′

Since σ + (π1/α) is a suitable assignment (adapted to the environment φ+ (d/x)), we
have, by hypothesis on π, (σ + (π1/α))(θ + (t/x))π′ ∈ JCKMφ+(d/x) = JCKMφ so, that by
a repeated use of (P3a) we conclude that σθ(δ∃ π xαπ′) ∈ JCKMφ .

J

D. Cousineau and O. Hermant 145

We can conclude finally that Ω is a Heyting algebra when M is a model valued on the
pre-Heyting algebra of WN -reducibility candidates1. We shall see now how it allows to prove
the cut elimination property for the considered theory.

5 Model and cut elimination

We continue to suppose that we have a theory, defined by a language 〈fi, Pj〉 and a congruence
relation ≡, that has a model valued on the pre-Heyting algebra ofWN -reducibility candidates.
We build a model valued on the Heyting algebra Ω of the previous section and we prove that
the existence of such a model implies the cut elimination property.

I Definition 18 (Heyting algebra model interpretation).
We define D as the Ω-valued structure 〈T ′,Ω, f̂i, P̂j〉 where:
T ′ is the set of classes modulo ≡ of open terms (the class of t is denoted t),
for any n-ary function symbol f : f̂D(t1, ..., tn) = f(t1, ..., tn),
for any n-ary predicate symbol P : P̂D(t1, ..., tn) = bP (t1, ..., tn)c.

The last definition is well-formed since the function t1, ..., tn 7→ bP (t1, ..., tn)c is constant on
classes of terms modulo ≡.

As explained in the following lemma, b.c is the denotation generated by Def. 18.

I Lemma 19. For all terms t, formulæ A, assignments φ taking their values in T ′, and
substitutions σ such that σ(x) = φ(x) for any variable x, we have JtKDφ = σt and JAKDφ = bσAc.

Proof. By structural induction on t and then A. There is a little subtlety in the case of
quantifiers. Let us process the ∀ case, assuming that x is a fresh variable symbol:

J∀x AKDφ = ∀̃{JAKDφ+(t/x) | t ∈ T ′}
= ∀̃{b(σ + (t/x))Ac | t ∈ T ′} = ∀̃{b(σ + (t/x))Ac | t ∈ T }
= bσ∀x Ac

The first equality is the definition of a model interpretation, the second comes by induction
hypothesis, the last one is an application of Lem. 17, those steps are standard. Lem. 14
justifies the third equality on the second line: instead of having only one representative of
the class t, we can consider them all. J

I Lemma 20. Let t1 ≡ t2 be two terms, A ≡ B be two formulæ and φ be an assignment
taking its values in T ′. Then Jt1K

D
φ = Jt2K

D
φ and JAKDφ = JBKDφ .

Proof. Let σ be a substitution fulfilling the hypothesis of Lem. 19. Then σt1 ≡ σt2, and
σt1 = σt2 and the result follows by Lem. 19. Similarly, σA ≡ σB, bσAc = bσBc by Lem. 14
and the result follows by Lem. 19. J

Hence the model interpretation given by Def. 18 is adapted to the congruence ≡. And we
finally get the cut-elimination theorem:

I Theorem 21. If the sequent Γ ` A has a proof, then there exists a weakly normalizable
proof of this sequent.

1 We can also show that it is not trivial (>̌ 6= ⊥̌) but for this we need Thm. 21 that follows, to show, for
instance, that the empty context does not belong to ⊥̌

RTA’12

146 A Semantic Proof that Reducibility Candidates entail Cut Elimination

Proof. We let JΓKD =
⋂{JAKD | A ∈ Γ} and bΓc =

⋂{bAc | A ∈ Γ}. By usual soundness
w.r.t. Heyting algebras, JΓKD ⊆ JAKD. Lem. 14 implies Γ ∈ bΓc = JΓKD, so Γ ∈ JAKD = bAc
and by Def. 13 there exists a proof-term π0 such that Γ ` π0 : A and, in particular, π0 ∈ JAKMφ
for any φ. Therefore, π0 is weakly normalizable. J

5.1 Towards normalization by evaluation
In order to obtain some algorithm of normalization by evaluation, we need to strengthen
the result of Thm. 21. First we need to obtain some proof in normal form, instead of, in
Thm. 21, a weakly normalizable proof:

if Γ ` A has a proof then Γ ` A has a proof in normal form. (E1)

Then we need to relate this proof in normal form to the original one:

if Γ ` A has a proof π then Γ ` A has a proof in normal form π0 with π B∗ π0. (E2)

Let us see how to obtain (E1). We shall discuss about how to obtain (E2) in the conclusion.
In order to obtain (E1) we refine Def. 13 as follows:

I Definition 22 (strong outer value). Let A be a formula. We let bAc be the set of contexts
Γ such that there exists some proof term π in normal form such that:

Γ ` π : A
for any environment φ, any assignment σ and any term-substitution θ, σθπ ∈ JAKMφ .

We need, in that case, WN -reducibility candidates that satisfy stability by β-reduction
(the (CR2) property of usual reducibility candidates), as we shall see in the following. The
algebra B contains WN -reducibility candidates (Def. 10) that do not enjoy stability by
β-reduction. But we can build a sub-algebra B′ that only contains sets of proof-terms that
are stable by β-reduction.

I Lemma 23 (Stability by reduction). Let B′ be the smallest set of reducibility candidates
closed by the operations of Def. 8. Let E be a member of B′, π and π′ be proof-terms. If
π ∈ E and π B∗ π′, then π′ ∈ E.

Proof. By induction on the construction of E. If E = >̃ or E = ⊥̃, this is immediate.
Assume E = F ⇒̃ G. If π is WN isolated, then so is π′ (it is WN by confluence). Otherwise,
π B∗ λα.π1. By confluence, π′ B∗ λα.π′1 with π1 B∗ π′1. Let π2 ∈ F . (π2/α)π1 ∈ G by
definition of π1 and (π2/α)π1 B∗ (π2/α)π′1. So by induction hypothesis, (π2/α)π′1 ∈ G, and
π′ ∈ F ⇒̃ G. The other cases are handled similarly. J

This algebra B′ is also full, ordered and complete so that we can also use super-consistency
to build a model interpretation in it.
With this new algebra B′, Lem. 14 and 17 hold without effort. We only need to reformulate
the cases of Lem. 17.
Let us process a key case as an example: bAc ≤ bBc ⇒̌ bCc only if bAc ∧̌ bBc ≤ bCc.
Let Γ ∈ bAc ∩ bBc. We build the proof:

Γ ` π : B ⇒ C Γ ` πB : B
Γ ` π πB : C

D. Cousineau and O. Hermant 147

with π ∈ JB ⇒ CKM and πB ∈ JBKM, so that both are in normal form. However, (π πB)
may not be in normal form. If this is not the case it means that π = λα.π1. π is not isolated
and by Def. 8 there exists π′1 such that π B∗ λα.π′1 and (πB/α)π′1 ∈ JCKM. Let πC the
normal form of (πB/α)π′1.

Since σθ(π π′) ∈ JCKM (exactly as in Lem. 17), and σθ(π π′) B∗ σθπC , we have by
Lem. 23 (so by stability by reduction) σθπC ∈ JCKM and πC is the proof-term we wanted.

Now, Thm. 21 will produce proof-terms in normal form.

6 Conclusion and further work

In this paper, we have defined a notion of pre-models for weak normalization of theories
expressed in intuitionistic natural deduction modulo. This notion of pre-model is defined as
a model on a specific pre-Heyting algebra. To prove that the existence of such a pre-model
implies cut elimination for the considered theory, we do not use the usual syntactic way,
but we extract from such a pre-model, a (regular) model valued on some Heyting algebra,
which implies cut elimination via the usual soundness/strong completeness paradigm. In
the following, we discuss how to extend this result to obtain, in the same way, first weak
normalization of the considered theory, and secondly a normalization by evaluation algorithm.

Thm. 21, does not state that all proofs of the sequent Γ ` A are weakly normalizable,
but the fact that if this sequent is provable (by a proof-term π), then there exists a weakly
normalizable proof π0 (or in normal form in Sec. 5.1) of that sequent. We have seen, in the
previous section how to obtain that π0 is not only weakly normalizable but also in normal
form. But how to relate π0 to π in order to obtain, first, a semantic proof thatWN -reducibility
candidates entail weak normalization, and second, a normalization by evaluation algorithm?

Indeed, in our construction, we have split the usual adequacy lemma [13] in two parts: the
appeal to the proof-term and an inductive argument is handled by the soundness theorem,
and the inductive cases, that are handled by Lem. 17. This way, we get rid of the original
proof-term π and we have no way to get it back.

But if we formalize this algorithm, in Coq for instance, π will lift from the syntactic level
towards the proof-assistant level. So it will be saved, and eventually be re-used to produce
π0 in Def. 13. However, there is still no way to show that π0 is the normal form of π, unless
we examine Coq’s proof-term itself.

In order to enforce this, we would have to embed π at a lower level, as a justification
of the fact that bΓc ⊆ bAc in the model, and to carry it in every proposition, especially
Lem. 17.

It should be instructing to compare this approach to other normalization by evaluation
approaches [1, 2, 3, 5, 6], in particular because they are all based on a Kripke-like structure,
whereas in this paper we meet a pure Heyting algebra structure. Perhaps transforming
Heyting algebras into Kripke structures [21], or a reverse operation like the one of [18] will
help in this matter. Also, since Kripke worlds are formed of contexts, the presence of contexts
in outer values should be a hint that such a transformation is possible.

References
1 Thorsten Altenkirch, Peter Dybjer, Martin Hofmann, and Phil Scott. Normalization by

evaluation for typed lambda calculus with coproducts. In 16th Annual IEEE Symposium
on Logic in Computer Science, pages 303–310, 2001.

RTA’12

148 A Semantic Proof that Reducibility Candidates entail Cut Elimination

2 Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher. Categorical reconstruction
of a reduction free normalization proof. In David Pitt, David E. Rydeheard, and Peter
Johnstone, editors, Category Theory and Computer Science, LNCS 953, pages 182–199.
Springer, 1995.

3 Ulrich Berger and Helmut Schwichtenberg. An inverse to the evaluation functional for
typed λ-calculus. In Proceedings of the 6th Annual IEEE Symposium on Logic in Computer
Science, pages 202–211, 1991.

4 Richard Bonichon and Olivier Hermant. On constructive cut admissibility in deduction
modulo. In Thorsten Altenkirch and Conor McBride, editors, TYPES for proofs and pro-
grams, volume 4502 of Lecture Notes in Computer Science, pages 33–47. Springer, 2007.

5 Catarina Coquand. From semantics to rules: A machine-assisted analysis. In CSL, LNCS
832, pages 91–105. Springer, 1993.

6 Thierry Coquand and Jean Gallier. A proof of strong normalization for the theory of con-
structions using a Kripke-like interpretation. In Preliminary Proceedings 1st Intl. Workshop
on Logical Frameworks, 1990.

7 Denis Cousineau. Models and Proof Normalization. PhD thesis, École Polytechnique, 2009.
8 Denis Cousineau. On completeness of reducibility candidates as a semantic for strong

normalization. In Logical Methods in Computer Science, 2012.
9 Gilles Dowek. Truth value algebras and normalization. In Thorsten Altenkirch and Conor

McBride, editors, TYPES for proofs and programs, volume 4502 of Lecture Notes in Com-
puter Science, pages 110–124. Springer, 2007.

10 Gilles Dowek, Thérèse Hardin, and Claude Kirchner. Hol-lambda-sigma: an intentional
first-order expression of higher-order logic. Mathematical Structures in Computer Science,
11:1–25, 2001.

11 Gilles Dowek, Thérèse Hardin, and Claude Kirchner. Theorem proving modulo. Journal
of Automated Reasoning, 31:33–72, 2003.

12 Gilles Dowek and Alexandre Miquel. Cut elimination for Zermelo’s set theory. manuscript,
2007.

13 Gilles Dowek and Benjamin Werner. Proof normalization modulo. The Journal of Symbolic
Logic, 68(4):1289–1316, December 2003.

14 Gilles Dowek and Benjamin Werner. Arithmetic as a theory modulo. In Jürgen Giesl,
editor, RTA, volume 3467 of Lecture Notes in Computer Science, pages 423–437. Springer,
2005.

15 Gerhard Gentzen. Untersuchungen über das logische Schliessen. Mathematische Zeitschrift,
39:176–210, 405–431, 1934.

16 Jean-Yves Girard. Une extension de l’interprétation de Gödel à l’analyse et son application
à l’élimination des coupures dans l’analyse et la théorie des types. In Proceedings of the
Second Scandinavian Logic Symposium (Univ. Oslo, Oslo, 1970), volume 63 of Studies in
Logic and the Foundations of Mathematics, pages 63–92. North-Holland, Amsterdam, 1971.

17 Olivier Hermant. Semantic cut elimination in the intuitionistic sequent calculus. In Pawel
Urzyczyn, editor, Typed Lambda-Calculi and Applications, volume 3461 of LNCS, pages
221–233, Nara, Japan, 2005. Springer.

18 James Lipton and Mary De Marco. Completeness and cut elimination in Church’s intu-
itionistic theory of types. Journal of Logic and Computation, 15:821–854, December 2005.

19 Colin Riba. Union of reducibility candidates for orthogonal constructor rewriting. In
CiE’08, pages 498–510, 2008.

20 Helmut Schwichtenberg and Anne Sjerp Troelstra. Basic Proof Theory. Cambridge Univer-
sity Press, 1996.

21 Anne Sjerp Troelstra and Dirk van Dalen. Constructivism in Mathematics, An Introduction.
North-Holland, 1988.

One-context Unification with STG-Compressed
Terms is in NP∗

Carles Creus1, Adrià Gascón1, and Guillem Godoy1

1 Universitat Politècnica de Catalunya, departament de Llenguatges i Sistemes
Informàtics, Jordi Girona 1, Barcelona, Spain
ccreuslopez@gmail.com adriagascon@gmail.com ggodoy@lsi.upc.edu

Abstract
One-context unification is an extension of first-order term unification in which a variable of arity
one standing for a context may occur in the input terms. This problem arises in areas like program
analysis, term rewriting and XML processing and is known to be solvable in nondeterministic
polynomial time. We prove that this problem can be solved in nondeterministic polynomial
time also when the input is compressed using Singleton Tree Grammars (STG’s). STG’s are a
grammar-based compression method for terms that generalizes the directed acyclic graph repres-
entation. They have been recently considered as an efficient in-memory representation for large
terms, since several operations on terms can be performed efficiently on their STG representation
without a prior decompression.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Term Unification; Compression; Grammars

Digital Object Identifier 10.4230/LIPIcs.RTA.2012.149

Category Regular Research Paper

1 Introduction

Term unification is a basic operation in many areas of computer science, especially in those
related to logic (see [1] for a survey). Unifying two terms s, t corresponds to find a substitution
σ for the variables occurring in the equation s .= t such that σ(s) = σ(t) holds. The particular
case when one of the terms has no occurrences of variables is called matching.

A simple case of term unification is called first-order unification. In this case variables
occur at leaf positions and stand for terms. Both the first-order unification and matching
problems have applications in the context of automated deduction, functional and logic
programming, rewriting, and pattern matching. Moreover, several variants of first-order
unification have been studied to tackle problems arising in those areas, see [1]. A remarkable
extension is unification modulo theories. In this notion of unification, equality between
terms is interpreted under equational theories such as associativity, commutativity, and
distributivity, among others.

Another widely considered notion of unification allows variables of arity one standing for
contexts, in addition to variables at leaf positions. This extension is called context unification,

∗ The authors were supported by Spanish Ministry of Education and Science by the FORMALISM project
(TIN2007-66523). The first author was also supported by an FPI-UPC grant. The second author was also
supported by an FPU grant from the Spanish Ministry of Education. The last author was also supported
by the Spanish Ministry of Science and Innovation SweetLogics project (TIN2010-21062-C02-01).

© Carles Creus, Adrià Gascón, and Guillem Godoy;
licensed under Creative Commons License NC-ND

23rd International Conference on Rewriting Techniques and Applications (RTA’12).
Editor: A. Tiwari; pp. 149–164

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

150

which is a particular case of second-order unification. While second-order unification is
known to be undecidable [8], decidability of context unification is still open. However, some
interesting results have been found for more particular cases with application in computational
linguistics [10, 4, 12]. One-context unification is the particular case when only one context
variable, possibly with many occurrences, may appear in the input terms. This problem can
be solved in nondeterministic polynomial time [6] but it is not known whether it is NP-hard.
One of the motivations for this specific variant is its close relation to interprocedural program
analysis [9]. The goal of this kind of analysis is to compute all simple invariants of imperative
procedural programs. Other interesting applications of one-context unification and matching
arise in searching/extracting information from tree data structures. For example, a simple
matching equation of the form F (s) .= t, where F is the context variable, t is ground, and s
may contain first-order variables but it does not contain occurrences of F , corresponds to
search instances of s within t. In the context of XML processing, combinations of unificaton
modulo commutativity and context unification are used for querying XML documents with a
logic programming approach [2].

Other relevant variants of unification are related to term compression. Some applications
dealing with trees, especially in the context of XML processing, require some kind of
succint representation for terms. For this reason, in addition to the well-known Directed
Acyclic Graph representation (DAG), several compressed in-memory representations have
been developed [18, 15]. Grammar-based compression techniques were initially applied to
words [17] and led to important results in string processing. Besides its direct applications
in data compression, this kind of representations has also been useful as a technique for
complexity analysis [11]. This compression mechanisms were extended from words to terms
in [3] to introduce Singleton Tree Grammars (STG’s), which allow to represent terms with
exponential size and height in linear space. STG’s are useful in the context of XML tree
structure compression [15], tree automata [16], XPATH [14], and unification theory [12].
Moreover, polynomial time algorithms for first-order unification and matching for the case
when the input is compressed using STG’s have been developed and implemented [5, 7].

In this work we extend the result in [6] proving that one-context unification can be solved
in nondeterministic polynomial time even in an STG-compressed setting.

2 Preliminaries

2.1 Terms, Contexts and Substitutions
A ranked alphabet F is a (finite) set of function symbols with arity. Symbols in F of arity
0, called constants, are denoted by a, b; nonconstant symbols are denoted by g, h. A set of
variables V is a ranked alphabet containing symbols of arity 0, called first-order variables
and denoted by x, y, and symbols of arity 1, called context variables and denoted by F . We
assume that F and V are always disjoint. We use α to refer to an element of F ∪ V. The
set T (F ,V) of terms over F and V is the smallest set such that α(t1, . . . , tm) is in T (F ,V)
whenever α ∈ F ∪ V, the arity of α is m, and t1, . . . , tm ∈ T (F ,V). By s, t, u we denote
terms in T (F ,V). The set of variables occurring in a term t is denoted by Vars(t).

A position is a sequence of natural numbers. The symbol λ denotes the empty sequence,
also called the root position, and p.p′ denotes the concatenation of the positions p and p′. The
set of positions of a term t, denoted by Pos(t), is defined recursively as Pos(α(t1, . . . , tm)) =
{λ} ∪ {i.p | i ∈ {1, . . . ,m} ∧ p ∈ Pos(ti)}. The length of a position is denoted by |p|. Note
that |λ| = 0 and |i.p| = 1 + |p| hold. A position p1 is a prefix of a position p, denoted p1 ≤ p,
if there is a position p2 such that p1.p2 = p holds. Also, p1 is a proper prefix of p, denoted

C. Creus, A. Gascón, and G. Godoy 151

p1 < p, if p1 ≤ p and p1 6= p hold. Two positions p, p′ are parallel if p 6≤ p′ and p′ 6≤ p hold.
The size of a term t is denoted by |t| and defined as |Pos(t)|. The subterm of a term t at

a position p ∈ Pos(t), denoted t|p, is defined recursively as t|λ = t and α(t1, . . . , tm)|i.p = ti|p.
The replacement of a term t at a position p ∈ Pos(t) by a term s, denoted t[s]p, is defined
recursively as t[s]λ = s and α(t1, . . . , tm)[s]i.p = α(t1, . . . , ti[s]p, . . . , tm). α(t1, . . . , tm).

A context is a term with exactly one occurrence of a special constant symbol •, called
hole. The set of contexts over a ranked alphabet F and a set of variables V is denoted
C(F ,V). We use c to denote a context in C(F ,V). The operations on terms defined above
are extended to contexts in the natural way. The hole position of a context c, denoted hp(c),
is the position in Pos(c) labeled by •. Given a context c and a term t, we define the term c[t]
as c[t]hp(c). Similarly, given another context c′, the concatenation cc′ is the context c[c′]hp(c).
Note that hp(cc′) = hp(c).hp(c′) holds. The exponentiation of a context c to a natural number
e, denoted ce, is the context recursively defined as ce = cce−|hp(c)| if e > |hp(c)| > 0, as
ce = c[•]p if |hp(c)| ≥ e, where p ≤ hp(c) and |p| = e, and as ce = • otherwise. Note that
|hp(ce)| = e holds for any context c with |hp(c)| > 0 and natural number e. We say that c is
a subcontext of a term t if c = t|p1 [•]p2 , for p1.p2 ∈ Pos(t).

A substitution, denoted by σ, θ, is a total function σ : V → T (F ,V) ∪ C(F ,V) such that
σ(α) ∈ T (F ,V) if α is a first-order variable and σ(α) ∈ C(F ,V) if α is a context variable.
The domain of a substitution σ is usually considered to be the set of variables α such that
σ(α) 6= α, i.e. Dom(σ) = {α | σ(α) 6= α}. For this reason, when defining a particular
substitution σ we do not make explicit σ(α) for variables α 6∈ Dom(σ). We also define the
variables occurring in a substitution σ as Vars(σ) =

⋃
α∈Dom(σ){α} ∪ Vars(σ(α)). Moreover,

substitutions are extended to be mappings from terms to terms, i.e. σ : T (F ,V)→ T (F ,V),
as follows: σ(g(t1, . . . , tn)) = g(σ(t1), . . . , σ(tn)) and σ(F (t)) = σ(F)[σ(t)]. In addition,
substitutions are also extended, in a similar way, to be mappings from contexts to contexts,
i.e. σ : C(F ,V) → C(F ,V). The composition of σ and θ, denoted θ ◦ σ, is defined as
{α 7→ θ(σ(α)) | α ∈ Dom(σ) ∪ Dom(θ)}.

2.2 Singleton Tree Grammars
A Singleton Tree Grammar (STG) is a 4-tuple G = 〈T N , CN ,Σ, R〉, where T N is a set
of nonterminals of arity 0, called term nonterminals and denoted by T , CN is a set of
nonterminals of arity 1, called context nonterminals and denoted by C, and Σ is a ranked
alphabet, whose elements are called terminals. The sets T N , CN , and Σ are pairwise
disjoint. We denote by N nonterminals in T N ∪ CN . R is a finite set of rules of the form:
T → α(T1, . . . , Tm), T → C1T2, C → •, C → C1C2, C → α(T1, . . . , Ti−1, Ci, Ti+1, . . . , Tm),
T → T1, C → C1, where α is a terminal of arity m. STG’s are nonrecursive, i.e. the transitive
closure of the derivational relation between nonterminals is terminating. Furthermore, for
every nonterminal N there is exactly one rule having N as left-hand side. Last two conditions
guarantee that every nonterminal of an STG generates exactly one term/context. Given a
term t (context c) with occurrences of nonterminals, the derivation of t (resp. c) by G is an
exhaustive iterated replacement of the nonterminals by the corresponding right-hand sides.
The result is denoted as wG,t (resp. wG,c). In the case of a nonterminal N we also say that
N generates wG,N . The size of an STG G, denoted |G|, is the number of nonterminals of
G. The size of the representation of an STG G is bounded by |G| · (2 +m), where m is the
maximum arity of the terminals of G, but we use the other notion to ease the presentation.

Our definition of STG’s is different from the one in [3], where nonterminals are allowed
to generate contexts with several holes. Nevertheless, both notions were proven equivalent
in [16] up to a polynomial transformation. In the present paper we use STG’s for term

RTA’12

152

representation. It allows to represent terms with exponential size and height in linear space.
This is in contrast with DAG’s, which only allow for exponential compression in size.
I Example 2.1. Let n be a natural number. We define the STG Gn to have the following set
of rules: {T → CnTa, Ta → a, C• → •, C0 → g(C•), C1 → C0C0, C2 → C1C1, C3 → C2C2,
. . ., Cn → Cn−1Cn−1}. Note that wGn,T = g2n(a), which would require exponential space
both in an explicit and a DAG representation.

Several properties can be computed efficiently on STG’s (see [5, 12]), e.g. computing
|wG,N | for every nonterminal N of G or computing the symbol labeling a certain position of
the generated term/context. A remarkable result used in the present paper is stated in the
following lemma. The rest of known results on STG’s needed in this work are presented in
the following section.
I Lemma 2.2 ([13, 3]). Given an STG G and two term nonterminals T1, T2 of G, it is
decidable in time O(|G|3) whether wG,T1 = wG,T2 .

2.3 Context Unification
Given two terms s, t ∈ T (F ,V), the context unification problem consists of deciding whether s
and t are unifiable, i.e. whether there exists a substitution σ : V → T (F ,V)∪C(F ,V) such that
σ(s) = σ(t). The one-context unification problem is the particular case of context unification
in which V contains exactly one context variable. First-order unification corresponds to the
particular case where there are no context variables in V. For a fixed ranked alphabet F ,
we define an instance of the one-context unification problem as a triple 〈∆,X , F 〉, where
X is a set of first-order variables, F is a context variable, and ∆ is a set of equations,
i.e. a set of unordered pairs, of the form s

.= t, with s, t ∈ T (F ,X ∪ {F}). A solution
of 〈∆,X , F 〉 is a substitution σ : X ∪ {F} → T (F ,X ∪ {F}) ∪ C(F ,X ∪ {F}) such that
∀(s .= t) ∈ ∆ : σ(s) = σ(t). The definition of an instance that considers a single equation
and ours are equivalent, but considering a set of equations is more appropriate in our setting.
I Example 2.3. Consider the set of equations {F (a) .= g(a, x), F (b) .= g(x, b)}. It can be
unified by the substitution {F 7→ g(•, b), x 7→ b}. Now consider the equation F (g(x, b)) .=
g(a, F (y)). It has infinitely many solutions such as {F 7→ g(a, •), x 7→ a, y 7→ b} and {F 7→
g(a, g(a, •)), x 7→ a, y 7→ b}. Finally, consider the set of equations {F (a) .= g(x, y), F (b) .=
g(x, g(g(y, y), g(a, b)))}, which has no solution.

By considering that the input terms are compressed using STG’s, we obtain one-context
unification with STG’s. Fixed a ranked alphabet F , an instance of this problem is a
tuple 〈∆, G,X , F 〉, where X is a set of first-order variables, F is a context variable, G =
〈T N , CN ,F ∪ X ∪ {F}, R〉 is an STG, and ∆ is a set of equations of the form {S1

.=
T1, . . . , Sn

.= Tn}, where the Si’s and the Ti’s are term nonterminals of G. With this
representation, the context variable and first-order variables are initially represented as
unary and constant terminal symbols of the grammar, respectively. Given an instance
〈{S1

.= T1, . . . , Sn
.= Tn}, G,X , F 〉, its corresponding uncompressed one-context unification

instance is 〈{wG,S1
.= wG,T1 , . . . , wG,Sn

.= wG,Tn
},X , F 〉.

3 Known Results

3.1 Operations on STG’s
In this section we describe the operations needed to compute a solution to an STG-compressed
one-context unification instance. The following definition of extension of an STG describes
the result of those operations.

C. Creus, A. Gascón, and G. Godoy 153

I Definition 3.1. Let F be a ranked alphabet. Let G = 〈T N , CN ,Σ, R〉 be an STG such
that F ⊆ Σ. An F-extension of G is an STG G′ = 〈T N ′, CN ′,Σ′, R′〉 such that T N ⊆ T N ′,
CN ⊆ CN ′, R ⊆ R′, and F ⊆ Σ′.

The goal of the previous definition is to capture operations on STG’s that correspond
to instantiation of variables. More concretely, let G = 〈T N , CN ,F ∪ V, R〉 be an STG and
let G′ = 〈T N ′, CN ′,F ∪ V ′, R′〉 be an F-extension of G. The terms generated by term
nonterminals ofG andG′ are assumed to belong to the sets T (F ,V) and T (F ,V ′), respectively,
and analogously for contexts. Hence, by defining a substitution σ : V → T (F ,V ′) ∪ C(F ,V ′)
as σ(α) = wG′,α it holds that, for each nonterminal N of G, σ(wG,N) = wG′,N .

In [5] it is proven that first-order unification can be solved in polynomial time when
the input terms are compressed using STG’s. This approach proceeds analogously to the
classical unification process. The main idea is that, given a first-order equation s .= t, the
algorithm iteratively finds a position p labeled by a variable x in one of the terms, say s,
and replaces all its occurrences by the corresponding subterm t|p. This process ends when
either s and t become equal, and thus they are unifiable, or a contradiction is reached. Since
each iteration of the algorithm instantiates a variable, the solution σ can be described as an
ordered sequence of substitutions on first-order variables. The authors focus on showing that
this behaviour can be efficiently adapted to the STG-compressed setting. Besides checking
equality at each iteration, the only operation that the algorithm needs to perform is to
apply substitutions of the form {x 7→ t|p}. This corresponds to computing an F-extension
of the grammar that adds n new nonterminals T1, . . . , Tn such that Tn generates t|p using
T1, . . . , Tn−1 and adds a new rule x → Tn, i.e. converting the terminal symbol x into a
nonterminal generating t|p. The crucial result to prove that such an F-extension can be
computed in polynomial time is that all such n are linearly bounded by the size of the initial
input grammar and not by the size of the current grammar at each step of the process. Note
that this implies that the size of the final grammar, i.e. the grammar obtained after all the
variables have been replaced, is polynomially bounded by the size of the initial grammar.
This technical fact is summarized in the following lemma, which is proven in [5].

I Lemma 3.2. Let G = 〈T N , CN ,Σ, R〉 be an STG describing a one-context unification
instance. Let T be a term nonterminal of G and let t0 be wG,T . Let t1, . . . , tn be terms,
x1, . . . , xn be first-order variables, p1, . . . , pn be positions, and σ1, . . . , σn be substitutions
satisfying, for i ∈ {1, . . . , n}, pi ∈ Pos(ti−1), xi ∈ Vars(ti−1) \ Vars(ti−1|pi

), σi = {xi 7→
ti−1|pi

}, and ti = σi(ti−1).
Then, there exists an F-extension G′ = 〈T N ′, CN ′,Σ \ {x1, . . . , xn}, R′〉 of G such that

wG′,T = tn and |G′| ≤ |G|+ n(|G|+ 1).

In this paper we deal with one-context unification. Similar to the first-order case,
instantiation of the special context variable F is performed by adding a rule F → C to
the grammar, i.e. turning the terminal unary symbol F into a context nonterminal. This
C is a new context nonterminal defined through the concatenation of several subcontexts
of the input terms. In [5] it is shown how to efficiently compute subcontexts from a given
STG-compressed term. The proposed construction guarantees that, given a grammar G,
a nonterminal T and a position p1.p2 ∈ Pos(wG,T), G can be extended with, at most,
|G|(2|G|+ 3) new nonterminals such that one of them generates the context wG,T |p1 [•]p2 .
Moreover, given the context nonterminals C1, . . . , Cn of a grammar G, an extended grammar
containing a context nonterminal that generates the concatenation wG,C1 . . . wG,Cn

can be
easily obtained by adding n new nonterminals to G. These facts are stated in the following
lemma, whose proof is also given in [5].

RTA’12

154

I Lemma 3.3. Let G = 〈T N , CN ,Σ, R〉 be an STG describing a one-context unification
instance. Let T be a term nonterminal of G and let t be wG,T . Let p1, . . . , pn, p̂1, . . . , p̂n
be positions and c1, . . . , cn be contexts satisfying, for i ∈ {1, . . . , n}, pi.p̂i ∈ Pos(t) and
ci = t|pi [•]p̂i .

Then, there exists an F-extension G′ = 〈T N ′, CN ′,Σ, R′〉 of G with a context nonterminal
C such that wG′,C = c1 . . . cn and |G′| ≤ |G|+ n|G|(2|G|+ 3) + n.

In some cases, the context nonterminal C that instantiates F is defined using one last
construction: context exponentiation. Computing the grammar that generates the result of
this operation is straightforward, as shown in the following illustrative example.

I Example 3.4. Let G be an STG with the following set of rules: {Tg → g(Th), Th →
h(Ta), Ta → a}. Note that wG,Tg

is g(h(a)). The context exponentiation (wG,Tg
|λ[•]1.1)11 is

g(h(g(h(g(h(g(h(g(h(g(•) . . .) and can be generated by the STG with the set of rules:

{C → g(Ch), Ch → h(C•), C• → •}
∪ {Cexp4 → CC,Cexp8 → Cexp4Cexp4, Cexp10 → Cexp8C}
∪ {Cpref → g(C•)}
∪ {Cexp11 → Cexp10Cpref}

Note that we use the nonterminals C and Cpref to generate two different subcontexts, g(h(•))
and g(•), respectively. Moreover, the nonterminals Cexp4, Cexp8, Cexp10, and Cexp11 are used
for exponentiation and concatenation, with Cexp11 generating the desired context.

As seen in the previous example, raising a context to a natural number e requires to (i)
compute two different subcontexts c1 and c2, (ii) concatenate c1 with itself several times, and
(iii) concatenate the resulting context with c2. The construction done in (i) adds, at most,
|G|(2|G|+ 3) for each computed subcontext, (ii) can be performed efficiently because the
number of new nonterminals to be added is logarithmic with respect to e, and (iii) only adds
one extra nonterminal to the grammar. This fact is stated formally in the following lemma.

I Lemma 3.5. Let G = 〈T N , CN ,Σ, R〉 be an STG describing a one-context unification
instance. Let T be a term nonterminal of G and let t be wG,T . Let p1, p2 be positions such
that p1.p2 ∈ Pos(t) and let e ≥ 0 be a natural number.

Then, there exists an F-extension G′ = 〈T N ′, CN ′,Σ, R′〉 of G with a context nonterminal
C such that wG′,C = (t|p1 [•]p2)e and |G′| ≤ |G|+ 2|G|(2|G|+ 3) + dlog2(e)e+ 1.

3.2 Uncompressed One-Context Unification
Consider an instance 〈∆,X , F 〉 of the one-context unification problem. In [6] it is proven that
this problem is in NP when the terms in ∆ are represented explicitly. The proposed algorithm
is presented as an inference system that modifies the set of equations until a contradiction
is found or the empty set is derived, which implies unifiability. By representing ∆ with
DAG’s, the size of the representation of the terms in the set of equations is guaranteed to
stay polynomially bounded by the size of the input at each step of a derivation. For the sake
of clarity and in order to make this paper self contained, we introduce in Figure 1 a simplified
version of that inference system. In this simplified version we have erased the rules used to
early detect nonunifiability and some restrictions that eased the proofs by guaranteeing a
bound on the length of every derivation. Hence, the new version of the inference system
is simpler and still sound. Moreover, since it is less restrictive than the original one, each
derivation leading to a solution can still be performed, and thus it is complete.

The most basic rule of the inference system is the rule Decompose, which is just used
to simplify the unification problem. Note that it does not introduce any new subterms in

C. Creus, A. Gascón, and G. Godoy 155

Decompose: ∆ = ∆′] {α(t1, . . . , tn) .= α(u1, . . . , un)}
∆′ ∪ {t1 .= u1, . . . , tn

.= un}

Var-Elim: x
.= t ∈ ∆

{x 7→ t}(∆) where x 6∈ Vars(t)

Var-Elim2: F (u) .= c[x] ∈ ∆
{x 7→ F (θ(u))}(θ(∆)) where θ = {F 7→ c[F (•)]} and c is guessed such

that F 6∈ Vars(c), x 6∈ Vars(u),
and (F 6∈ Vars(u) ∨ x 6∈ Vars(c))

CVar-Elim: F (u) .= c[t] ∈ ∆
{F 7→ c}(∆) where c is guessed such that F 6∈ Vars(c)

CVar-Elim2: F (u) .= c[F (t)] ∈ ∆
{F 7→ ce}(∆) where c is guessed such that F 6∈ Vars(c) and e is

guessed such that 0 ≤ e ≤ 3
∑

s
.
=t∈∆(|s|+ |t|)

Figure 1 Inference system for one-context unification.

the set of equations. The remaining rules modify the current set of equations by replacing
variables by subterms and subcontexts constructed from the terms in the set of equations.
In particular, rule Var-Elim replaces a first-order variable by a term, rule Var-Elim2 partially
guesses the initial part of F and instantiates a first-order variable, and rules CVar-Elim and
CVar-Elim2 replace F by a context. As a technical detail, note that the substitution applied
due to the application of rule Var-Elim2 can be seen as an instantiation of F in terms of a
freshly introduced context variable, which, for clarity, we denote also as F . Finally, the rule
CVar-Elim2 instantiates the context variable by a context raised to a natural number whose
value is linearly bounded by the size of the current set of equations. Note that it is a bound
on the exponent of periodicity of minimal solutions, i.e. the maximum number of periodic
repetitions of a context in a minimal solution.

I Example 3.6. Consider the one-context unification instance 〈∆, {x}, F 〉, where ∆ contains
only the following equation: F (g(a, F (b))) .= g(x, g(a, x)).

This instance has no solution. Note that neither Decompose, Var-Elim, nor CVar-Elim2 can
be applied. In the case of CVar-Elim, we need to choose a position in Pos(g(x, g(a, x))) in order
to guess a context c. Hence, there exist five different options for c: c = •, c = g(•, g(a, x)),
c = g(x, •), c = g(x, g(•, x)), and c = g(x, g(a, •)). Note that, in any case, the resulting
first-order equation after applying the substitution {F 7→ c} to ∆ does not lead to a solution.
Finally, Var-Elim2 cannot be applied since the left-hand side of the equation is of the form
F (u) and F occurs in u, and the right-hand side of the equation has two occurrences of x.
In order to understand the conditions of rule Var-Elim2, note that they allow either x to
occur more than once in the right-hand side or F to occur in u. The reason to consider these
situations separately is that both facts cannot hold at the same time since it would lead to
an instantiation of F in terms of itself, and thus a contradiction.

By the form of the rules, the following statement bounding the length of the derivations
holds trivially.

I Lemma 3.7. Let 〈∆,X , F 〉 be a one-context unification instance. Any derivation from
∆ using the inference system of Figure 1 contains at most |X | occurrences of Var-Elim and
Var-Elim2, and at most one occurrence of either CVar-Elim or CVar-Elim2.

RTA’12

156

4 Approach

In our setting, the terms in the initial set of equations ∆ are represented by an STG. In
order to prove that one-context unification is also in NP in the STG-compressed case, we
adapt the inference system described in Section 3.2. Since subterms, subcontexts, context
exponentiation, and variable instantiations are known to be efficiently computable with
STG’s, as seen in Section 3.1, one may be tempted to simply reproduce the sequence of
variable instantiations done in the uncompressed case. However, the size of the grammar
may grow after certain operations and, in order to prove that it does not explode, we need
to use a different approach. In particular, the difficulties rely on the fact that we do not
have the analogous of Lemma 3.2 for successive partial instantiations of the context variable,
which require to compute a subcontext and thus increase the size of the grammar.

Our approach consists of modifying the sequences of rule applications that describe a
solution in order to guarantee that they can be represented in polynomial space using an STG.
To simplify reasonings, we introduce in Figure 2 a new inference system R that generalizes
the previous one in Figure 1. In R we assume without loss of generality that the initial set
of equations ∆ = {s1

.= t1, . . . , sn
.= tn} is encoded as a single term. This can be done by

extending the alphabet with new symbols d and e of arity n and 2, respectively, and defining
term(∆) = d(e(s1, t1), . . . , e(sn, tn)). With this notion, the question of whether there exists a
substitution σ, the solution for ∆, such that σ(s1) = σ(t1), . . . , σ(sn) = σ(tn) corresponds to
check whether there exists a substitution σ, the solution for term(∆), such that σ(term(∆)) is
of the form d(e(u1, u1), . . . , e(un, un)). This change in notation is useful to refer to subterms
of both sides of the equations in ∆ indistinctly as subterms of term(∆).

Rx:
t

{x 7→ t|p}(t)
where p ∈ Pos(t) and x ∈ Vars(t) \ Vars(t|p)

RFF:
t

{F 7→ t|p1 [F (•)]p2}(t)
where p1.p2 ∈ Pos(t) and F ∈ Vars(t) \ Vars(t|p1)

RFC:
t

{F 7→ (t|p1 [•]p2)e}(t) where p1.p2 ∈ Pos(t), F ∈ Vars(t) \ Vars(t|p1 [•]p2),
and e ∈ {0, . . . , 3|t|}

Figure 2 The adapted inference system R.

It is easy to see that an application of Var-Elim, Var-Elim2, CVar-Elim, or CVar-Elim2
corresponds to the application of at most two of the rules of R. In particular, an application
of Var-Elim is emulated by an application of Rx. In the rest of this paper, we use RxF and
Rx¬F to refer to applications of Rx in which the involved subterm t|p has an occurrence of
F or not, respectively. An application of Var-Elim2 corresponds to an application of RFF
followed by an application of RxF. Finally, applications of CVar-Elim and CVar-Elim2 are
emulated by RFC. The remaining original rule, Decompose, was only used to simplify the
problem in order to apply other rules. Its behaviour is implicitly emulated in R by defining
its rules by means of subterms and subcontexts of t.

With→RxF,x,p and→Rx¬F,x,p we denote an application of rules RxF and Rx¬F, respectively,
making explicit the position p and the first-order variable x involved in the rule application.
Analogously, with →RFF,p1,p2 and →RFC,p1,p2 we denote an application of RFF and RFC,
making explicit the positions p1 and p2 involved in the rule application. Sometimes, we do
not make explicit x, p, p1, and p2 when they are clear from the context or not relevant. By
→R we denote the derivational relation using R and, as usual, →+

R denotes its transitive
closure and →∗R denotes its reflexive-transitive closure. Additionally, by →r and →∗r , we

C. Creus, A. Gascón, and G. Godoy 157

denote the derivational relation using the rule r of R and its reflexive-transitive closure,
respectively.

The following example illustrates the fact that R can emulate derivations done with the
inference system in Figure 1.
I Example 4.1. Consider the one-context unification instance 〈{F (a) .= g(x0, x0), F (b) .=
g(g(x1, x1), g(a, b))}, {x0, x1}, F 〉. In this example we use →σ

r to denote a derivation step
using the rule r and applying the substitution σ and →∗Decompose to denote some derivation
steps using the rule Decompose. A possible successful derivation using the rules of Figure 1
is the following:

{F (a) .= g(x0, x0), F (b) .= g(g(x1, x1), g(a, b))}
→{x0 7→F ({F 7→g(x0,F (•))}(a))}◦{F 7→g(x0,F (•))}

Var−Elim2

{g(F (a), F (a)) .= g(F (a), F (a)), g(F (a), F (b)) .= g(g(x1, x1), g(a, b))}
→∗Decompose

{F (a) .= g(x1, x1), F (b) .= g(a, b)}
→{x1 7→F ({F 7→g(x1,F (•))}(a))}◦{F 7→g(x1,F (•))}

Var−Elim2

{g(F (a), F (a)) .= g(F (a), F (a)), g(F (a), F (b)) .= g(a, b)}
→∗Decompose {F (a) .= a, F (b) .= b} →{F 7→•}CVar−Elim {a .= a, b

.= b} →∗Decompose ∅

Since we could derive ∅, the considered instance is indeed unifiable. The solution associated
to the derivation is {F 7→ g(g(a, a), g(a, •)), x0 7→ g(a, a), x1 7→ a}.

We now show that the same solution can be derived also using R. The initial set
of equations, expressed with the new notation, corresponds to the term t = term(∆) =
d(e(F (a), g(x0, x0)), e(F (b), g(g(x1, x1), g(a, b)))). Note that the subterm t|1 encodes the
equation F (a) .= g(x0, x0) and t|2 encodes F (b) .= g(g(x1, x1), g(a, b)). Our goal is to check
whether there exists a substitution σ such that σ(t) is of the form d(e(t1, t1), e(t2, t2)). The
previous derivation corresponds to the following one using R:

d

e

F

a

g

x0 x0

e

F

b

g

g

x1 x1

g

a b

→RFF,1.2,2 d

e

g

x0 F

a

g

x0 x0

e

g

x0 F

b

g

g

x1 x1

g

a b

→RxF,x0,1.1.2

d

e

g

F

a

F

a

g

F

a

F

a

e

g

F

a

F

b

g

g

x1 x1

g

a b

→RFF,2.2.1,2 d

e

g

g

x1 F

a

g

x1 F

a

g

g

x1 F

a

g

x1 F

a

e

g

g

x1 F

a

g

x1 F

b

g

g

x1 x1

g

a b

→RxF,x1,2.1.1.2

d

e

g

g

F

a

F

a

g

F

a

F

a

g

g

F

a

F

a

g

F

a

F

a

e

g

g

F

a

F

a

g

F

a

F

b

g

g

F

a

F

a

g

a b

→RFC,2.2.2.1,λ d

e

g

g

a a

g

a a

g

g

a a

g

a a

e

g

g

a a

g

a b

g

g

a a

g

a b

Note that, there are several equivalent options for the selection of the first position used in
the last rule application. We chose 2.2.2.1 because this is the position that corresponds to
the last steps of the previous derivation.

RTA’12

158

It is trivial thatR is sound. Moreover, sinceR can emulate the original inference system, it
follows that it is also complete. The following lemma states that soundness and completeness
of R also hold when the length of derivations is linearly bounded. This property follows from
completeness of the inference system of Figure 1, soundness of R, and Lemma 3.7, taking
into account that each rule of Figure 1 can be emulated with at most two rules of R.

I Lemma 4.2. Let 〈∆,X , F 〉 be a one-context unification instance. ∆ has a solution if and
only if there exists a derivation term(∆)→∗R t of length at most 2|X |+ 1 such that t is of
the form d(e(u1, u1), . . . , e(u|∆|, u|∆|)).

In the case of one-context unification with STG’s, term(∆) is represented by a single term
nonterminal. More concretely, an instance of one-context unification with STG’s 〈{S1

.=
T1, . . . , Sn

.= Tn}, Ḡ,X , F 〉 is represented as 〈T,G,X , F 〉, where G is an F -extension of Ḡ and
T is a term nonterminal of G such that wG,T = d(e(wḠ,S1

, wḠ,T1
), . . . , e(wḠ,Sn

, wḠ,Tn
)) =

term({wḠ,S1

.= wḠ,T1
, . . . , wḠ,Sn

.= wḠ,Tn
}) = term(∆). With this new representation, the

problem consists of deciding whether there exists a substitution σ such that σ(wG,T) is of
the form d(e(u1, u1), . . . , e(un, un)). Recall that NP can be defined as the set of decisional
problems whose positive instances can be verified in polynomial time. Hence, to prove that
one-context unification with STG’s is in NP we need to prove that there exists an F -extension
G′ of G of polynomial size with respect to |G| that represents σ. More concretely, in the
rest of the paper we prove that, for each derivation of the form term(∆)→∗R t of length at
most 2|X |+ 1, there exists an F-extension G′ of G such that wG′,T = t and whose size is
polynomial with respect to |G|. This is enough for proving that one-context unification with
STG’s is in NP since the fact that t is of the form d(e(u1, u1), . . . , e(un, un)) can be checked
in polynomial time with respect to |G′|.

5 Commutation of Substitutions

As commented in the previous section, our approach consists of modifying the sequences of
derivation steps with R in such a way that allows to conclude that every unifiable instance
〈∆,X , F 〉 has a solution σ that can be represented in polynomial space using an STG. Our
goal is to show that rule applications can always be commuted to obtain an equivalent
derivation, i.e. a derivation describing the same substitution σ, that is of the following form:

term(∆)→∗Rx¬F→∗RFF→∗RxF→
0,1
RFC
→∗Rx¬F σ(term(∆))

where →0,1
RFC

denotes either 0 or 1 applications of the rule RFC. As a first ingredient in this
argument, we define a particular notion of composition of substitutions which will be useful
to reason in our setting. Next, we present some technical results to, finally, prove how to
commute derivation steps until obtaining an equivalent derivation of the desired form.

5.1 Strong Composition
Consider two substitutions σ1, σ2. The goal of the following notion of composition of σ1 and
σ2 is to capture how instantiations due to σ1 are modified by the later application of σ2.

I Definition 5.1. Let σ1, σ2 be substitutions. The strong composition of σ1 and σ2, denoted
σ2 � σ1, is defined as {α 7→ σ2(σ1(α)) | α ∈ Dom(σ1)}

The usual and the strong notions of composition are not equivalent in general. Recall
that, given substitutions σ1, σ2, the usual notion of composition can be defined as σ2 ◦ σ1 =

C. Creus, A. Gascón, and G. Godoy 159

{α 7→ σ2(σ1(α)) | α ∈ Dom(σ1) ∪ Dom(σ2)}. In order to stress the difference, consider
θ1 = {y 7→ b} and θ2 = {x 7→ a} and note that (θ2 � θ1)(x) = x, while (θ2 ◦ θ1)(x) = a.
Moreover, strong composition is not associative, i.e. (σ3 � σ2) � σ1 = σ3 � (σ2 � σ1) does not
hold in general: consider θ0 = {y 7→ g(x)} and note that (θ2 � θ1) � θ0 = {y 7→ g(x)}, while
θ2 � (θ1 � θ0) = {y 7→ g(a)}. Another property that distinguishes both notions of composition
is that, when using strong composition, Dom(σ2 � σ1) ⊆ Dom(σ1) holds. This inclusion is
strict only in anomalous cases, for example Dom({y 7→ x} � {x 7→ y}) = ∅. In fact, the
condition Dom(σ2 �σ1) = Dom(σ1) is ensured when Vars(σ2)∩Dom(σ1) = ∅, which is usually
the case in our setting.

The following lemma is straightforward from the definition of strong composition.

I Lemma 5.2. Let σ1, σ2 be substitutions and let α be a variable in Dom(σ1). Then,
(σ2 ◦ σ1)(α) = (σ2 � σ1)(α).

The following lemma states how two substitutions can be “commuted” using the strong
composition.

I Lemma 5.3. Let σ1, σ2 be substitutions such that Vars(σ2)∩Dom(σ1) = ∅. Then, σ2 ◦σ1 =
(σ2 � σ1) ◦ σ2.

Proof. Let V be a set of variables such that Dom(σ1) ∪ Dom(σ2) ⊆ V holds. It suffices to
prove that, for all α ∈ V, (σ2 ◦ σ1)(α) = ((σ2 � σ1) ◦ σ2)(α) holds.

We distinguish cases depending on whether α ∈ Dom(σ1) and α ∈ Dom(σ2). If α ∈
Dom(σ1) then, by the assumption of the lemma, α 6∈ Dom(σ2) holds, and hence ((σ2 �
σ1) ◦ σ2)(α) = (σ2 � σ1)(α) = (σ2 ◦ σ1)(α) holds by Lemma 5.2. If α ∈ Dom(σ2) then,
by the assumption of the lemma, Vars(σ2(α)) ∩ Dom(σ2 � σ1) = ∅ and α 6∈ Dom(σ1) hold,
and it follows ((σ2 � σ1) ◦ σ2)(α) = σ2(α) = (σ2 ◦ σ1)(α). Finally, the case where α 6∈
Dom(σ1) ∪ Dom(σ2) trivially holds and the case where α ∈ Dom(σ1) ∩ Dom(σ2) is not
possible by the assumption. J

5.2 Subterm Preservation
Let t1 and t2 be terms such that t2 is obtained from t1 by applying a substitution. The
following two lemmas state under which conditions a certain subterm of t2 exists also as a
subterm of t1. These results will be crucial to argue about the commutation of derivation
steps.

I Lemma 5.4. Let F be a ranked alphabet and let V be a set with first-order variables and a
context variable F . Let t1, t2 be terms in T (F ,V) such that t2 = {F 7→ c[F (•)]}(t1), where c
is a context in C(F ,V). Let p be a position in Pos(t2) such that F 6∈ Vars(t2|p). Then, either
there exists a position p̂ ∈ Pos(t1) such that t1|p̂ = t2|p or there exists a position p̂ ∈ Pos(c)
such that c|p̂ = t2|p.

Proof. We prove the lemma by induction on |p|. If p = λ, note that F cannot occur in
t1 since, otherwise, F ∈ Vars(t2|p). Hence, in this case, t1 = t2 holds and we are done by
defining p̂ as p. For the induction step, assume that |p| > 0 and consider the following cases.

First, consider that t1 is of the form g(u1, . . . , un), where g is a function symbol in F .
Note that n > 0 holds since, otherwise, t2 = g and p = λ, contradicting the assumption.
Let p be i.p′ more explicitly written, for i ∈ {1, . . . , n}. Note that t2|i = {F 7→ c[F (•)]}(ui),
p′ ∈ Pos(t2|i), and F 6∈ Vars(t2|i|p′) hold. By induction hypothesis on |p′|, there exists a
position p̂′ such that either ui|p̂′ = t2|i|p′ or c|p̂′ = t2|i|p′ . The statement follows by defining
p̂ as i.p̂′ in the former case and as p̂′ in the latter case.

RTA’12

160

Second, consider that t1 is of the form F (u). We distinguish cases depending on whether
p and hp(c) are parallel or not. Note that p cannot be a prefix of hp(c) since it would lead to a
contradiction with the fact that F 6∈ Vars(t2|p). In the case where p and hp(c) are parallel, it
follows that c|p = t2|p, and we are done by defining p̂ as p. Otherwise, let p be hp(c).1.p′ more
explicitly written. In this case, note that t2|hp(c).1 = {F 7→ c[F (•)]}(u), p′ ∈ Pos(t2|hp(c).1),
and F 6∈ Vars(t2|hp(c).1|p′) hold. Hence, by induction hypothesis on |p′|, there exists a position
p̂′ such that either u|p̂′ = t2|hp(c).1|p′ or c|p̂′ = t2|hp(c).1|p′ . The statement follows by defining
p̂ as 1.p̂′ in the former case and as p̂′ in the latter case.

Third, the case where t1 is a first-order variable is not possible because, in such case, p
must be λ, which contradicts the assumption. J

I Lemma 5.5. Let F be a ranked alphabet and let V be a set with first-order variables
and a context variable F . Let t1, t2 be terms in T (F ,V) such that either t1 →RxF t2 or
t1 →RFF t2. Let p be a position in Pos(t2) such that F 6∈ Vars(t2|p). Then, there exists a
position p̂ ∈ Pos(t1) such that t1|p̂ = t2|p.

Proof. We first consider the case where the applied rule is RFF. Let t1 →RFF,p1,p2 t2 be the
derivation step of the statement more explicitly written. Hence, t2 = {F 7→ t1|p1 [F (•)]p2}(t1)
and, by Lemma 5.4, the statement holds.

Now assume that the applied rule is RxF with variable x and position q. Let P be the
subset of positions of Pos(t1) labeled by x in t1. Note that P is a set of pairwise parallel
positions. Moreover, note that p cannot be a prefix of any of the positions in P since,
otherwise, F ∈ Vars(t2|p), contradicting the assumptions of the lemma. In the case where p
is parallel with every position in P , it follows that p ∈ Pos(t1) and t1|p = t2|p. Otherwise,
exactly one position p′ ∈ P is a proper prefix of p. Hence, p is of the form p′.q′ and it follows
that t1|q.q′ = t2|p. J

The following lemma states how the instantiation of a context variable and the computation
of a subterm can be commuted.

I Lemma 5.6. Let F be a ranked alphabet and let V be a set with first-order variables and
a context variable F . Let t be a term in T (F ,V), let p be a position in Pos(t), and let
σ = {F 7→ c} be a substitution, where c is a context in C(F ,V). Then, there exists a position
p̂ ∈ Pos(σ(t)) such that σ(t|p) = σ(t)|p̂.

Proof. We prove the lemma by induction on |p|. The base case, i.e. when p = λ, trivially
holds by defining p̂ as p. For the induction step, assume that |p| > 0. We distinguish cases
depending on the form of t.

First, assume that t is of the form g(u1, . . . , un), where g is a function symbol in F . Note
that n > 0 necessarily holds since, otherwise, p = λ, contradicting the assumption. Let p
be i.p′ more explicitly written, for i ∈ {1, . . . , n}. By induction hypothesis, there exists a
position p̂′ ∈ Pos(σ(ui)) such that σ(ui|p′) = σ(ui)|p̂′ holds. Hence, the statement holds by
defining p̂ as i.p̂′.

Second, assume that t is of the form F (u). Let p be 1.p′ more explicitly written. By
induction hypothesis, there exists a position p̂′ ∈ Pos(σ(u)) such that σ(u|p′) = σ(u)|p̂′ holds.
Hence, the statement holds by defining p̂ as hp(c).p̂′.

Third, the case where t is a first-order variable is not possible because, in such case, p
must be λ, which contradicts the assumption. J

C. Creus, A. Gascón, and G. Godoy 161

5.3 Reordering Derivations
In this section we show how derivations with R can be modified in order to guarantee that
rules are applied in a specific order. As basic ingredients, the following three technical lemmas
show how pairs of derivation steps can be swapped.

I Lemma 5.7. Let F be a ranked alphabet and let V be a set with first-order variables and
a context variable F . Let t1, t2, t be terms in T (F ,V) such that t1 →RxF,x,p t→RFF,p1,p2 t2.
Then, there exists a position p̂1 ∈ Pos(t1), a term t′ ∈ T (F ,V), and a position p̂ ∈ Pos(t′)
such that t1 →RFF,p̂1,p2 t

′ →RxF,x,p̂ t2 holds.

Proof. By the conditions on the application of RxF, x ∈ Vars(t1) \ Vars(t1|p) and F ∈
Vars(t1|p) hold. In addition, since RxF instantiates x, then x 6∈ Vars(t) holds. Moreover, by
the conditions on the application of RFF, we know that F ∈ Vars(t) \ Vars(t|p1). Note that

t2 ={F 7→ t|p1 [F (•)]p2}({x 7→ t1|p}(t1)) (1)
=({F 7→ t|p1 [F (•)]p2} � {x 7→ t1|p})({F 7→ t|p1 [F (•)]p2}(t1)) (2)
={x 7→ {F 7→ t|p1 [F (•)]p2}(t1|p)}({F 7→ t|p1 [F (•)]p2}(t1)) (3)
={x 7→ {F 7→ t1|p̂1 [F (•)]p2}(t1|p)}({F 7→ t1|p̂1 [F (•)]p2}(t1)) (4)
={x 7→ {F 7→ t1|p̂1 [F (•)]p2}(t1)|p̂}({F 7→ t1|p̂1 [F (•)]p2}(t1)) (5)

where (1) follows from definition of RxF and RFF, (2) follows from Lemma 5.3, which can be
applied because Vars({F 7→ t|p1 [F (•)]p2})∩Dom({x 7→ t1|p}) = ∅ holds since x 6∈ Vars(t) and
x 6= F , (3) follows from Definition 5.1, in (4) the implicit definition of p̂1 holding t1|p̂1 = t|p1

follows from Lemma 5.5, which can be applied since t1 →RxF,x,p t and F 6∈ Vars(t|p1), and in
(5) the implicit definition of p̂ holding {F 7→ t1|p̂1 [F (•)]p2}(t1)|p̂ = {F 7→ t1|p̂1 [F (•)]p2}(t1|p)
follows from Lemma 5.6.

Finally, let the t′ of the lemma be defined as {F 7→ t1|p̂1 [F (•)]p2}(t1) and note that
t2 = {x 7→ t′|p̂}(t′). It remains to prove that t′ can be derived from t1, and that t2 can
be derived from t′, as stated in the lemma. First, note that t1 →RFF,p̂1,p2 t

′ holds because
F does not occur in t1|p̂1 , since t1|p̂1 = t|p1 , and, moreover, F ∈ Vars(t1) holds because
F ∈ Vars(t) and Vars(t) (Vars(t1). Now, note that t′ →RxF,x,p̂ t2 holds because:

x ∈ Vars(t′), which follows from the facts that x ∈ Vars(t1) and Vars(t′) = Vars(t1),
x /∈ Vars(t′|p̂), since x 6∈ Vars(t1|p), x 6∈ Vars(t), and t′|p̂ = {F 7→ t1|p̂1 [F (•)]p2}(t1)|p̂ =
{F 7→ t|p1 [F (•)]p2}(t1|p), and
F ∈ Vars(t′|p̂), since F ∈ Vars(t1|p) holds and thus F ∈ Vars({F 7→ t1|p̂1 [F (•)]p2}(t1|p)) =
Vars({F 7→ t1|p̂1 [F (•)]p2}(t1)|p̂) = Vars(t′|p̂) also holds.

Hence, t1 →RFF,p̂1,p2 t
′ →RxF,x,p̂ t2 holds, which concludes the proof. J

The proofs of the following two lemmas are very similar and, due to lack of space, the
second one is omitted.

I Lemma 5.8. Let F be a ranked alphabet and let V be a set with first-order variables and a
context variable F . Let t1, t2, t be terms in T (F ,V) such that t1 →RFF,p1,p2 t→Rx¬F,x,p t2.
Then, there exists a position p̂ ∈ Pos(t1) and a term t′ ∈ T (F ,V) such that t1 →Rx¬F,x,p̂

t′ →RFF,p1,p2 t2 holds.

Proof. By the conditions on the application of rule RFF, F ∈ Vars(t1) \ Vars(t1|p1)
holds. Moreover, by the conditions on the application of rule Rx¬F, we know that

RTA’12

162

x ∈ Vars(t) \ Vars(t|p) and F 6∈ Vars(t|p). Note that

t2 ={x 7→ t|p}({F 7→ t1|p1 [F (•)]p2}(t1)) (1)
=({x 7→ t|p} � {F 7→ t1|p1 [F (•)]p2})({x 7→ t|p}(t1)) (2)
={F 7→ {x 7→ t|p}(t1|p1 [F (•)]p2)}({x 7→ t|p}(t1)) (3)
={F 7→ {x 7→ t1|p̂}(t1|p1 [F (•)]p2)}({x 7→ t1|p̂}(t1)) (4)
={F 7→ {x 7→ t1|p̂}(t1)|p1 [F (•)]p2}({x 7→ t1|p̂}(t1)) (5)

where (1) follows from definition of RFF and Rx¬F, (2) follows from Lemma 5.3, which can be
applied because Vars({x 7→ t|p}) ∩ Dom({F 7→ t1|p1 [F (•)]p2}) = ∅ holds since F 6∈ Vars(t|p)
and F 6= x, (3) follows from Definition 5.1, in (4) the implicit definition of p̂ holding t1|p̂ = t|p
follows from Lemma 5.5, which can be applied since t1 →RFF,p1,p2 t and F 6∈ Vars(t|p), and
(5) holds because replacements of first-order variables and computation of subterms can be
commuted in this way.

Finally, let the t′ of the lemma be defined as {x 7→ t1|p̂}(t1) and note that t2 = {F 7→
t′|p1 [F (•)]p2}(t′). It remains to prove that t′ can be derived from t1, and that t2 can be
derived from t′, as stated in the lemma. First, note that t1 →Rx¬F,x,p̂ t

′ holds because neither
F nor x occur in t1|p̂ since t1|p̂ = t|p and, moreover, x ∈ Vars(t1) holds because x ∈ Vars(t)
and Vars(t) = Vars(t1). Now, note that t′ →RFF,p1,p2 t2 holds because:

F ∈ Vars(t′), since F ∈ Vars(t1) \ {x} = Vars({x 7→ t1|p̂}(t1)) = Vars(t′), and
F 6∈ Vars(t′|p1) since F 6∈ Vars(t1|p1) ∪ Vars({x 7→ t1|p̂}) and thus F 6∈ Vars({x 7→
t1|p̂}(t1|p1)) = Vars({x 7→ t1|p̂}(t1)|p1) = Vars(t′|p1).

Hence, t1 →Rx¬F,x,p̂ t
′ →RFF,p1,p2 t2 holds, which concludes the proof. J

I Lemma 5.9. Let F be a ranked alphabet and let V be a set with first-order variables and a
context variable F . Let t1, t2, t be terms in T (F ,V) such that t1 →RxF,x1,p1 t→Rx¬F,x2,p2 t2.
Then, there exists a position p̂2 ∈ Pos(t1) and a term t′ ∈ T (F ,V) such that t1 →Rx¬F,x2,p̂2

t′ →RxF,x1,p1 t2 holds.

The following result follows from the three previous lemmas, summarizing the goal of
this section.

I Lemma 5.10. Let 〈∆,X , F 〉 be a one-context unification instance. Let t be a term such
that term(∆)→∗R t in n derivation steps. Then, there exists a derivation of length n of the
form term(∆)→∗Rx¬F

→∗RFF
→∗RxF

→0,1
RFC
→∗Rx¬F

t.

6 Complexity Analysis

We now have all the ingredients needed to prove that the one-context unification where the
input terms are compressed using STG’s is in NP. To prove this fact, we show, for each
unifiable instance, that there exists a witness of polynomial size verifiable in polynomial
time. In our setting, this witness is an STG generating the unified term and the verification
consists of checking whether such a term is of a certain form.

I Theorem 6.1. One-context unification with STG’s is in NP.

Proof. Let 〈∆,X , F 〉 be a one-context unification instance represented by an STG G and a
nonterminal T of G such that wG,T = term(∆). By Lemma 4.2, ∆ has a solution if and only
if there exists a derivation term(∆)→∗R t of length at most 2|X |+ 1 such that t is of the form
d(e(u1, u1), . . . , e(u|∆|, u|∆|)). Moreover, by Lemma 5.10, we assume without loss of generality

C. Creus, A. Gascón, and G. Godoy 163

that this derivation is of the form term(∆)→∗Rx¬F
t1 →∗RFF

t2 →∗RxF
t3 →0,1

RFC
t4 →∗Rx¬F

t, for
some terms t1, t2, t3, t4.

We first prove that there exists an F-extension G′ of G such that wG′,T = t and whose
size is polynomially bounded by |G|. By Lemma 3.2, there exists an F -extension G1 of G such
that wG1,T = t1 and whose size is polynomially bounded by |G|. Now we claim that there
exists an F -extension G2 of G1 such that wG2,T = t2 and whose size is polynomially bounded
by |G1|. By the conditions on the application of RFF and by Lemma 5.5, the subcontexts
computed in each step of the subderivation t1 →∗RFF

t2 can be obtained from t1. Hence, the
sequence of applications of rules RFF can be seen as a single application of a substitution
of the form {F 7→ c1 . . . cnF (•)}, where each ci is a subcontext of t1. By Lemma 3.3, there
exists an F -extension G′1 of G1 such that wG′

1,T
= t1 with a context nonterminal C such that

wG′
1,C

= c1 . . . cn and whose size is polynomially bounded by |G1| and |X |. The STG G2
mentioned above is defined as the F-extension of G′1 obtained by transforming the context
variable into a context nonterminal generating c1 . . . cnF (•), where F is a freshly introduced
terminal symbol standing for the context variable. Again by Lemma 3.2, there exists an
F -extension G3 of G2 such that wG3,T = t3 and whose size is polynomially bounded by |G2|.
At this point, note that the exponent e involved in the application of RFC can be at most
exponential with respect to |G3| since it is linear with |t3|. Hence, by Lemma 3.5, there exists
an F-extension G4 of G3 such that wG4,T = t4 and whose size is polynomially bounded by
|G3|. Hence, by definition of G1, G2, G3, G4, it follows that |G4| is polynomially bounded by
|G|. Finally, the existence of the grammar G′ mentioned above follows from Lemma 3.2 and
the fact that |G4| is polynomially bounded by |G|. Note that, as commented in Section 2.2,
the size of the representation of G′ is bounded by |G′| · (2 +m), where m is the maximum
arity of the terminals of G′.

To conclude the proof, note that the property whether the term generated by a certain
nonterminal, in our case by the nonterminal T ofG′, is of the form d(e(u1, u1), . . . , e(u|∆|, u|∆|))
can be checked in polynomial time with respect to the size of the given grammar. To see
this, first note that checking whether the symbol labeling wG′,T at position p, with |p| = 0
or |p| = 1, is d or e, respectively, can be computed in linear time. Finally, nonterminals
generating wG′,T |i.1 and wG′,T |i.2, for i ∈ {1, . . . , |∆|}, can be computed efficiently, and thus,
by Lemma 2.2, checking whether wG′,T |i.1 = wG′,T |i.2 can be solved in polynomial time. J

7 Conclusions and Further Work

We have proved that the one-context unification problem belongs to NP even when the input
is compressed using STG’s. A natural next step is to study whether there exists a polynomial
time algorithm for this problem. However, this is also open when using an uncompressed
term representation. Hence, it seems reasonable to first consider this problem before tackling
the compressed case.

Another option is to study the complexity of particular cases of one-context unification
with STG’s. Concretely, the following one is particularly interesting due to its applications
in term rewriting and querying XML-databases: solving an equation F (s) .= t where t is
ground and s does not contain the context variable F but may contain first-order variables.
As shown in [19], this problem can be solved in polynomial time when the representation of
s is noncompressing. However, it is still open whether the general case is NP-hard or it can
be solved in polynomial time.

RTA’12

164

References
1 F. Baader and W. Snyder. Unification theory. In Handbook of Automated Reasoning, pages

445–532. Elsevier and MIT Press, 2001.
2 F. Bry and S. Schaffert. Towards a declarative query and transformation language for xml

and semistructured data: Simulation unification. In ICLP, pages 255–270, 2002.
3 G. Busatto, M. Lohrey, and S. Maneth. Efficient memory representation of XML document

trees. Information Systems, 33(4-5):456–474, 2008.
4 K. Erk and J. Niehren. Dominance constraints in stratified context unification. Information

Processing Letters, 101(4):141–147, 2007.
5 A. Gascón, G. Godoy, and M. Schmidt-Schauß. Unification and matching on compressed

terms. ACM Transactions on Computational Logic, 12(4):26, 2011.
6 A. Gascón, G. Godoy, M. Schmidt-Schauß, and A. Tiwari. Context unification with one

context variable. Journal of Symbolic Computation, 45(2):173–193, 2010.
7 A. Gascón, S. Maneth, and L. Ramos. First-order unification on compressed terms. In

RTA, pages 51–60, 2011.
8 W. D. Goldfarb. The undecidability of the second-order unification problem. Theoretical

Computer Science, 13:225–230, 1981.
9 S. Gulwani and A. Tiwari. Computing procedure summaries for interprocedural analysis.

In ESOP, pages 253–267, 2007.
10 J. Levy, J. Niehren, and M. Villaret. Well-nested context unification. In CADE, pages

149–163, 2005.
11 J. Levy, M. Schmidt-Schauß, and M. Villaret. The complexity of monadic second-order

unification. SIAM Journal on Computing, 38(3):1113–1140, 2008.
12 J. Levy, M. Schmidt-Schauß, and M. Villaret. On the complexity of bounded second-order

unification and stratified context unification. Logic Journal of the IGPL, 19(6):763–789,
2011.

13 Y. Lifshits. Processing compressed texts: A tractability border. In CPM, pages 228–240,
2007.

14 M. Lohrey and S. Maneth. The complexity of tree automata and XPath on grammar-
compressed trees. Theoretical Computer Science, 363(2):196–210, 2006.

15 M. Lohrey, S. Maneth, and R. Mennicke. Tree structure compression with RePair. In DCC,
pages 353–362, 2011.

16 M. Lohrey, S. Maneth, and M. Schmidt-Schauß. Parameter reduction in grammar-
compressed trees. In FOSSACS, pages 212–226, 2009.

17 W. Plandowski. Testing equivalence of morphisms on context-free languages. In ESA, pages
460–470, 1994.

18 K. Sadakane and G. Navarro. Fully-functional succinct trees. In SODA, pages 134–149,
2010.

19 M. Schmidt-Schauß. Pattern matching of compressed terms and contexts and polynomial
rewriting. Frank report 43, Institut für Informatik. Goethe-Universität Frankfurt am Main,
February 2011.

Deciding Confluence of Ground Term Rewrite
Systems in Cubic Time∗

Bertram Felgenhauer1

1 Institute of Computer Science, University of Innsbruck, Austria
bertram.felgenhauer@uibk.ac.at

Abstract
It is well known that the confluence property of ground term rewrite systems (ground TRSs) is
decidable in polynomial time. For an efficient implementation, the degree of this polynomial is
of great interest. The best complexity bound in the literature is given by Comon, Godoy and
Nieuwenhuis (2001), who describe an O(n5) algorithm, where n is the size of the ground TRS.
In this paper we improve this bound to O(n3). The algorithm has been implemented in the
confluence tool CSI.

1998 ACM Subject Classification F.4.2 Grammars and Other Rewriting Systems – Decision
problems

Keywords and phrases confluence, term rewriting, decidability, ground terms

Digital Object Identifier 10.4230/LIPIcs.RTA.2012.165

Category Regular Research Paper

1 Introduction

It is well known that confluence of ground TRSs can be decided in polynomial time. In this
paper, we are interested in the degree of the associated polynomial.

To derive a polynomial time decision procedure for confluence of ground TRSs, Comon
et al. [3] use an approach based on a transformation by Plaisted [9] that flattens the TRS.
Then they test deep joinability of sides of rules. The authors sketch an implementation
with complexity O(n5), where n is the size of the given TRS. Tiwari [10] and Godoy et
al. [6] base their approach on a rewrite closure that constructs tree transducers—the given
TRS R is converted into two TRSs F and B such that F and B−1 are left-flat, right-
constant, F is terminating, and →∗R =→∗F · →∗B. They then consider top-stabilizable terms
to derive conditions for confluence. Tiwari obtains a bound of O(n9) (but a more careful
implementation would end up with O(n6)), while Godoy et al. obtain a bound of O(n6). The
algorithm of [3] is limited to ground TRSs, but [10] extends the algorithm to certain shallow,
linear systems, and [5] treats shallow, linear systems in full generality.1 In these extensions,
however, the exponent depends on the maximum arity of the function symbols of the given
TRS. In our work we combine ideas from [3, 10, 6] in order to improve the complexity bound
to O(n3). The key ingredients are a Plaisted-style rewrite closure, which results in TRSs
F and B of only quadratic size, and top-stabilizability, which is cheaper to test than deep
joinability.

∗ This research is supported by FWF (Austrian Science Fund) project P22467.
1 The same claim can be found in [6]. However, rule splitting, a key step in the proof of their Lemma 3.1,

only works if left-hand side and right-hand side variables are disjoint for every rule.

© Bertram Felgenhauer;
licensed under Creative Commons License NC-ND

23rd International Conference on Rewriting Techniques and Applications (RTA’12).
Editor: A. Tiwari; pp. 165–175

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

166 Deciding Confluence of Ground Term Rewrite Systems in Cubic Time

The remainder of this paper is structured as follows: After some preliminaries in Section 2
we describe the confluence check in Section 3. Some experimental results are presented in
Section 4. Finally we conclude in Section 5.

2 Preliminaries

A signature is a set of function symbols F = F (0)∪F (1)∪ . . . , where F (i) is the set of function
symbols of arity i, and the sets (F (i))i∈N are pairwise disjoint. The ground terms T (F) over
F are constructed inductively in the usual way: If t1, . . . , tn ∈ T (F) and f ∈ F (n), then
f(t1, . . . , tn) ∈ T (F). A position p of a term is a sequence of natural numbers addressing a
subterm t|p. Replacement of subterms t[u]p, and the size of terms |t| have their standard
definitions [2]. A term t together with a position p defines a context C[·] = t[·]p. Contexts
can be instantiated, C[s] = t[s]p. The elements of F (0) ⊆ F are called constants. A term is
flat if it is either a constant or a function symbol applied to constants.

A set R ⊆ T (F)2 of rules is a ground term rewrite system (TRS). If (`, r) ∈ R, we also
write `→ r ∈ R and sometimes ` ≈ r ∈ R. By R−, R±, |R|, ‖R‖ we denote R−1 (where we
view R as a relation on ground terms), R∪R−1, the number of rules in R, and the total size
of the rules,

∑
`→r∈R(|`|+ |r|), respectively. Any ground TRS R induces a rewrite relation

→R on ground terms: s→R t if there is a context C[·] such that C[`] = s and C[r] = t for
some `→ r ∈ R. Properties like flatness extend to rules and TRSs. For example, a rule is
left-flat if its left-hand side is flat; a TRS is left-flat if all its rules are.

Given a rewrite relation →, we write →∗ and ↔ for its reflexive, transitive closure and
its symmetric closure, respectively. A rewrite relation → is confluent if ∗← ·→∗ ⊆ →∗ · ∗←.
It is terminating if there are no infinite rewrite sequences t0 → t1 → t2 → Two terms s

and t are convertible if s↔∗ t. They are joinable, denoted by s ↓ t, if s→∗ · ∗←.
In the complexity analysis we make use of the fact that systems of Horn clauses can

be solved linear time, see Dowling and Gallier [4]. We work with propositional variables.
For each variable A, there is a positive atom A and a negative atom ¬A. A Horn clause
is a disjunction of atoms, with at most one positive atom. Horn clauses can be written
as implications—the clause ¬A ∨ ¬B ∨ C is equivalent to A ∧B → C. This implication is
equivalent to the following inference rule:

A B
C

3 Testing Confluence

We are given a finite ground TRS R0 over a finite signature F . We may assume without
loss of generality that R0 is curried, with a binary function symbol ◦ (representing function
application) and no other non-constant function symbols. To curry an arbitrary ground TRS
R, one introduces a fresh binary function symbol ◦ and replaces all function applications
f(t1, . . . , tn) by (. . . ((f ◦ t1) ◦ t2) . . .) ◦ tn. The original function symbols become constants
in the curried TRS. It is well-known that currying preserves (non-)confluence (e.g., [7]) and
can be performed in linear time, increasing the size ‖R‖ of the TRS by a constant factor.

Furthermore we assume that F is minimal, i.e., only function symbols occurring in R0
are elements of F . We can make this assumption because (non-)confluence is preserved
under signature extension (this follows from the modularity of confluence, [11]). Let K be a
countably infinite set of fresh constants (disjoint from F (0)), and let u, v, w denote elements

B. Felgenhauer 167

of F (0) ∪K. We call u → v a C-rule (constant rule), and u ◦ v → w a D-rule (decreasing
rule).

The construction proceeds in four phases: First the TRS is flattened preserving confluence
and non-confluence, then we determine its rewrite closure and congruence closure, and finally
these closures are used for testing confluence of the flattened TRS.

I Example 3.1. We will decide confluence of R = {a → b, a → f(a), b → f(f(b))} and
R′ = R ∪ {f(f(f(b))) → b}. We start with the curried ground TRSs R0 = {a → b, a →
f ◦ a, b→ f ◦ (f ◦ b)} and R′0 = R0 ∪ {f ◦ (f ◦ (f ◦ b))→ b}.

3.1 Flattening
First, we flatten the TRS R0, as follows. We start with (R0,∅) and exhaustively apply the
rules

(R[u ◦ v], E) `ext (R[w], E ∪ {u ◦ v ≈ w})
(R[t], E ∪ {t ≈ u}) `simp (R[u], E ∪ {t ≈ u}),

where w ∈ K is fresh in `ext, and R[·] is a context of R, i.e., a context `[·] (or r[·]) of a side
of a rule `→ r in R, so that R[u] is obtained by replacing `→ r by `[u]→ r (or `→ r[u])
in R. After each `ext step, we apply `simp as often as possible before using `ext again.

In the resulting pair (R, E), R consists solely of C-rules (since otherwise, `ext would be
applicable), and E consists of D-rules. Furthermore, →R0 is confluent, if and only if →E±∪R
is, since every deduction step preserves and reflects the confluence property (cf. Lemma 3.2).
Because `simp is applied eagerly, no two left-hand sides in E are equal, and therefore E
is confluent (it is orthogonal). Note that as a result, every distinct subterm occurring in
R is represented by exactly one constant from F (0) ∪ K. This is similar in spirit to the
Nelson-Oppen congruence closure algorithm [8].

I Lemma 3.2. If (R, E) `ext (R′, E ′) or (R, E) `simp (R′, E ′) then →E±∪R is confluent if
and only if →E′±∪R′ is.

Proof. The rule `ext can be split into two steps, first adding the rule u ◦ v ≈ w to E followed
by applying `simp. The first step preserves confluence since any application of the new E-rule
can be undone using the corresponding E−-rule and vice versa, and since w is fresh, no rule
other than w ≈ u ◦ v can affect a subterm containing w.

For `simp, we prove that →E±∪R[t] ⊆ →∗E±∪R[u] and →E±∪R[u] ⊆ →∗E±∪R[t]. There are
two cases. (i) If a left-hand side of a rule is changed, i.e., `[t] → r ∈ R[t] is changed to
`[u]→ r ∈ R[u], then observing that s[`[t]]→E s[`[u]]→R[u] s[r] (simulating →`[t]→r using
rules from E± ∪R[u]) and s[`[u]]→E− s[`[t]]→R[t] s[r] (simulating →`[u]→r using rules from
E± ∪R[t]) establishes the claim, since all other rules are contained in both R[u] and R[t].
(ii) If a right-hand side is changed, ` → r[t] ∈ R[t], ` → r[u] ∈ R[u], then the simulations
s[`]→R[t] s[r[t]]→E s[r[u]] and s[`]→R[u] s[r[u]]→E− s[r[t]] prove the claim. J

Let the result of flattening be (R1, E), over an extended signature, where F (0) includes
the fresh constants added by `ext. Flattening is straightforward to implement by a bottom-up
traversal of the sides of the TRS, replacing subterms of the shape u ◦ v by constants, and
maintaining a lookup table of which such terms have been seen before. This takes time
O(‖R0‖ log(‖R0‖)) (the log(‖R0‖) factor accounts for the lookup table operations), and we
have ‖E‖ = O(‖R0‖), ‖R1‖ = O(|R0|), i.e., the total size of the TRSs R1 and E is at most
linear in that of R0.

RTA’12

168 Deciding Confluence of Ground Term Rewrite Systems in Cubic Time

I Example 3.3 (continued from Example 3.1). We introduce fresh constants fa, fb, ffb and fffb
for f ◦ a, f ◦ b, f ◦ fb and f ◦ ffb, respectively. The resulting TRSs are (R1, E) = ({a→ fa, a→
b, b→ ffb}, {f◦a ≈ fa, f◦b ≈ fb, f◦fb ≈ ffb}) and (R′1, E ′) = (R1∪{fffb→ b}, E∪{f◦ffb ≈ fffb).

3.2 Rewrite Closure
In this step, we are given a pair (R1, E), where R1 is a system of C-rules and E is a system
of D-rules. We want to obtain another pair (R2, E), where s→∗E±∪R2

t iff s→∗E±∪R1
t, such

that every rewrite sequence in (R1, E) can be transformed into a rewrite sequence in (R2, E)
of a special shape (cf. Lemma 3.4). The inference rules in Figure 1 define a relation u v

on constants. We will see in a moment that u v iff u→∗E±∪R1
v.

u→ v ∈ R1
u v base u ∈ F (0)

u u refl u v v w
u w trans

u1 v1 u2 v2 {u1 ◦ u2 ≈ u, v1 ◦ v2 ≈ v} ⊆ E
u v

comp

Figure 1 Inference Rules for Rewrite Closure
The result of the rewrite closure step is (R2, E), where R2 = {u→ v | u v}.

I Lemma 3.4. s→∗E±∪R1
t if and only if s→∗E∪R2

· →∗E−∪R2
t.

Proof. Because of (base), we have R1 ⊆ R2, so that →∗E±∪R1
⊆ →∗E±∪R2

. On the other
hand, all rules in Figure 1 are compatible with the requirement that →∗E±∪R2

⊆ →∗E±∪R1
.

Therefore, the reachability relation is preserved, i.e., →∗E±∪R1
=→∗E±∪R2

.
First we show that for u, v ∈ F (0), u v (and therefore u→R2 v) whenever u→∗E±∪R2

v.
Assume that we have u→∗E±∪R2

v but not u v. Let u = t0 → · · · → tn = v be the shortest
sequence of (E± ∪R2) steps from u to v, and pick u and v such that n is minimal. If n = 0
then u = v, and u v by (refl). If n = 1 then u→ v ∈ R2 since E only contains D-rules. If
ti ∈ F (0) for any 0 < i < n, then u ti v by minimality of u→∗E±∪R2

v, and u v by
transitivity (trans). In the remaining case, we have ti = ui ◦ vi for all 0 < i < n, and hence
u1 →∗E±∪R2

un−1 and v1 →∗E±∪R2
vn−1 since any root step would have a constant from F (0)

as source or target. But these two rewrite sequences have length at most n− 2, and therefore
u1 un−1 and v1 vn−1, implying u v by the (comp) rule. In all cases we found that
u v, a contradiction.

Now let s →∗E±∪R1
t. Then s →∗E±∪R2

t. Assume that this rewrite sequence is not of
the shape s→∗E∪R2

· →∗E−∪R2
t, but has a minimal number of inversions between E and E−

steps (an inversion is any pair of an E step following an E− step, not necessarily directly).
Then it has a subsequence of the shape s′ →p,E− s′′ →∗R2

t′′ →q,E t′, starting with an E−
step at p and a final E step at q. The cases p < q or p > q are impossible, because E contains
only D-rules and R2 only C-rules (applying C-rules does not change the set of positions of a
term).

If p = q then s′′|pi →∗R2
t′′|qi for i ∈ {1, 2}, collecting all R2 steps at positions below

p from s′′ →∗E±∪R2
t′′. By (refl) and (trans) this implies s′′|pi t′′|qi for i ∈ {1, 2}.

Consequently, we have s′|p t′|p by (comp). Hence we can delete the two E± steps and
the collected R2 steps, and replace them by an R2 step using the rule s′|p → t′|p. This
decreases the number of inversions between E and E− steps, contradicting our minimality
assumption. Otherwise, if p ‖ q, then we can reorder the rewrite sequence s′ →∗E±∪R2

t′

as s′ →∗>q,R2
· →q,E · →∗R2

· →p,E− · →∗>p,R2
t′, commuting mutually parallel rewrite

B. Felgenhauer 169

rewrite-closure(n, E ,R): Compute rewrite closure.
(Assumes that F (0) = {1, . . . , n}, which can be achieved as part of the flattening step).
1. By scanning E once, compute arrays l and r such that l[u] = {(v, w) | u ◦ v → w ∈ E}

and r[v] = {(u, w) | u ◦ v → w ∈ E}.
2. Let R′ = ∅ ⊆ {1, . . . , n}2 (represented by an array).
3. Process (refl): Call add(u, u) for 1 ≤ u ≤ n.
4. Process (base): Call add(u, v) for u→ v ∈ R.

add(u, v): Add u→ v to R′ and process implied (trans) and (comp) rules.
1. If u→ v ∈ R′, return immediately.
2. Let R′ = R′ ∪ {u→ b}.
3. Process (trans): For all w ∈ {1, . . . , n},

if w → u ∈ R′, call add(w, v).
if v → w ∈ R′, call add(u, w).

4. Process (comp):
For all (u2, ur) ∈ l[u] and (v2, vr) ∈ l[v], if u2 → v2 ∈ R′, call add(ur, vr).
For all (u1, ur) ∈ r[u] and (v1, vr) ∈ r[v], if u1 → v1 ∈ R′, call add(ur, vr).

Figure 2 Algorithm for Rewrite Closure

steps. This reduces the number of inversions between E and E− steps, and again we reach a
contradiction. J

The size of R2 is bounded by |F (0)|2 = O(‖R0‖2). We can view the inference rules in
Figure 1 as a system of Horn clauses with atoms of the form u v (u, v ∈ F (0)). This system
can be solved in time proportional to the total size of the clauses [4], finding a minimal
solution for the relation . There are |R1| instances of (base), |F (0)| instances of (refl),
|F (0)|3 instances of (trans) and at most |F (0)|2 instances of (comp), noting that u1, u2 are
determined by u and v1, v2 are determined by v. Therefore, we can compute R2 in time
O(‖R0‖3).
I Remark. In our implementation, we do not generate these Horn clauses explicitly. Instead,
whenever we make a new inference u v, we check all possible rules that involve u v as a
premise. The result is a neat incremental algorithm (see Figure 2). From an abstract point
of view, however, this is no different than solving the Horn clauses as stated above. This
remark also applies to inference rules presented later.

I Example 3.5 (continued from Example 3.3). We present R2 and R′2 as tables, where
non-empty entries correspond to the rules contained in each TRS. For example, fa→ b ∈ R′2
but fa→ b /∈ R2. The letters indicate the inference rule used to derive the entry, while the
superscripts indicate stage numbers—each inference uses only premises that have smaller
stage numbers.

R2 =

f a fa b fb ffb
f r0

a r0 b0 b0 t2 t1

fa r0 c1 c3

b r0 b0

fb r0

ffb r0

R′2 =

f a fa b fb ffb fffb
f r0

a r0 b0 b0 t2 t1 t3

fa r0 t3 c1 t3 t2

b r0 t4 b0 t4

fb t2 r0 t2 c1

ffb t4 c3 r0 c3

fffb b0 t4 t1 r0

RTA’12

170 Deciding Confluence of Ground Term Rewrite Systems in Cubic Time

3.3 Congruence Closure
We are also interested in the congruence closure of (R1, E), because it allows us to decide
when two terms are convertible. We calculate the congruence closure as the rewrite closure
of (R±1 , E) and call it (C, E). This step also takes O(‖R0‖3) time. By Lemma 3.4 we have

s↔∗E±∪R1
t ⇐⇒ s→∗E±∪R±1 t ⇐⇒ s→∗E∪C · →∗E−∪C t ⇐⇒ s ↓E∪C t.

Note that C is symmetric and therefore, →E−∪C = E∪C←.
I Remark. There are far more efficient methods for calculating the congruence closure (an
almost linear time algorithm can be found in [2]), but the simple reduction to the rewrite
closure is sufficient for our purposes, since the total asymptotic running time is unchanged.

I Example 3.6 (continued from Example 3.5). Since C is an equivalence relation, we just give
its equivalence classes: [f]C = {f} and [a]C = {a, fa, b, fb, ffb}. For C′, we obtain [f]C′ = [f]C
and [a]C′ = [a]C ∪ {fffb}. Note that C and C′ are the symmetric, transitive closures of R2 and
R′2, respectively. This holds in general.

3.4 Confluence Conditions
So far we have flattened the TRS R0 and computed its rewrite and congruence closures,
enabling us to check reachability and convertibility of any given terms efficiently. In this
section we use these tools to decide confluence of R0.

We closely follow the approach in [10] and [6], which is based on the analysis of two
convertible terms s, t and their normal forms with respect to a system of so-called forward
rules of a rewrite closure. In our approach, these correspond to the system E ∪R2. However,
→E∪R2 is typically non-terminating, and we cannot use this idea directly. This problem
is easy to overcome though. We define A;B = {` → r | ` → m ∈ A and m → r ∈ B} and
→A/B = →∗B · →A · →∗B. Note that →E/R2 is terminating. We will use →E/R2 in place of
the forward reduction. This choice is justified by Lemma 3.8 below. We will abuse notation
slightly and speak of E/R2 normal forms.

I Lemma 3.7. Let S be a transitive, reflexive (as a relation) set of C-rules and E a set of
D-rules. Then →∗E∪S =→∗S · →∗E;S and →∗E−∪S =→∗S;E− · →∗S .

Proof. We first show that →∗E∪S = →∗S · →∗E;S . Start with a rewrite sequence s →∗E∪S t.
Whenever an S step is followed by another S step at the same position, we can combine
them using transitivity of S. Note that since E only contains D-rules, no intermediate E step
can overlap with either of the S steps. Once there are no more S steps that can be combined
this way, we replace each E step that is followed by an S step at the same position by the
corresponding E ;S step. If there is no following S step, we add an identity S step (which
exists by reflexivity of S) first. It is easy to verify that the final rewrite sequence is of the
desired shape.

For →∗E−∪S =→∗S;E− · →∗S it suffices to note that by reversing the rewrite sequences this
is equivalent to→∗E∪S− =→∗S− ·→∗E;S− . Since S− is transitive and reflexive if S is, the claim
reduces to the previous one. J

I Lemma 3.8.
1. If s→∗E±∪R1

t then s→∗E/R2
· →∗R2;E− · →∗R2

t.
2. If s↔∗E±∪R1

t then s→∗C · →∗E;C · ∗
E;C← · ∗C← t.

B. Felgenhauer 171

Proof. 1. Assume that s →∗E±∪R1
t. By Lemma 3.4, this is equivalent to s →∗E∪R2

· →∗E−∪R2
t, or s →∗E/R2

· →∗E−∪R2
t, which according to Lemma 3.7 is equivalent to

s→∗E/R2
· →∗R2;E− · →∗R2

t, noting that R−2 is both reflexive and transitive by construction.
2. Assume that s↔∗E±∪R1

t, i.e., s→E±∪R±1 t. Again by Lemma 3.4, this is equivalent to
s→∗E∪C · ∗

E∪C← t. Since C is reflexive and transitive, the claim follows from Lemma 3.7. J

Let us assume that R1 ∪ E± is confluent, and that we have two convertible terms s and t.
There are corresponding E/R2 normal forms s′ and t′ for s and t, respectively. Now s′ and
t′ are convertible, so that by Lemma 3.8(2), for some term r,

s′ →∗C · →∗E;C r ∗
E;C← · ∗C← t′. (1)

Furthermore, by confluence and Lemma 3.8(1), noting that the choice of s′ and t′ forces the
→∗E/R2

sequences to be empty, it follows that for their common reduct r′,

s′ →∗R2;E− · →∗R2 r′ ∗
R2← · ∗

R2;E−← t′. (2)

To capture the conditions on s′ and t′ (which are E/R2 normal forms), we adapt the notion
of top-stabilizable terms and constants from [6] to our purposes.

I Definition 3.9. A term u ◦ v with u, v ∈ F (0) is top-stabilizable if there exists an E/R2
normal form s such that s→∗C · →∗E;C u ◦ v. A constant u ∈ F (0) is top-stabilizable if there
exist v, w ∈ F (0) such that u→C;E− v ◦ w and v ◦ w is top-stabilizable.

The equations (1,2) define two rewrite sequences from r to r′ that consist solely of C- and
inverse D-steps (note that we consider the rewrite sequences from (1) in reverse). This means
that no rewrite step occurs below a preceding rewrite step. In fact all rewrite steps modify a
leaf of a term. Therefore we may assume without loss of generality that r ∈ F (0). Looking
at the surrounding rewrite steps in equation (1), we distinguish three cases depending on
whether the sequence of E ; C steps is empty or not.

1. s′ →∗C∪E s1 ◦ s2 →E;C r E;C← t1 ◦ t2
∗

C∪E← t′. In this case s1 ◦ s2, t1 ◦ t2 must be
top-stabilizable. Furthermore, for i ∈ {1, 2}, the terms si and ti are convertible via ri, so
that si ↓C∪E ti by Lemma 3.8.

2. s′ →∗C∪E s1 ◦ s2 →E;C t′ ∈ F (0). (Note that we use the fact that C is an equivalence
relation: s1 ◦ s2 →E;C · ∗C← t′ implies s1 ◦ s2 →E;C t′ if t′ ∈ F (0).) Then there must be
t1, t2 ∈ F (0) such that t′ →R2;E− t1 ◦ t2, and si ↓C∪E ti for i ∈ {1, 2}. This case also
covers s′ E;C← t1 ◦ t2

∗
C∪E← t′ by symmetry.

3. F (0) 3 s′ →C t′ ∈ F (0). Then s′ ↓E−∪R2 t′, with common reduct r′.

Hence we have found the following necessary conditions for confluence of R1 ∪ E±:

I Definition 3.10. The confluence conditions for confluence of R2 ∪ E± are as follows.
1. If s1 ◦ s2 and t1 ◦ t2 are top-stabilizable for constants s1, s2, t1, t2 ∈ F (0) such that

s1 ◦ s2 →E;C r E;C← t1 ◦ t2 then si ↓C∪E ti for i ∈ {1, 2}.
2. If s1 ◦ s2 →E;C t′ for s1, s2, t′ ∈ F (0) and top-stabilizable s1 ◦ s2, then there must be

t1, t2 ∈ F (0) such that t′ →R2;E− t1 ◦ t2, and si ↓C∪E ti for i ∈ {1, 2}.
3. If F (0) 3 s′ →C t′ ∈ F (0) then s′ ↓E−∪R2 t′.

I Lemma 3.11. The confluence conditions are necessary and sufficient for confluence of
R1 ∪ E±.

RTA’12

172 Deciding Confluence of Ground Term Rewrite Systems in Cubic Time

Proof. Necessity has already been shown above. For sufficiency, assume that the confluence
conditions are satisfied and there are convertible terms s and t with no common reduct.
Then any corresponding E/R2 normal forms do not have a common reduct either. Let s′ and
t′ be convertible E/R2 normal forms with no common reduct such that |s′|+ |t′| is minimal.
Recall that →∗E±∪R1

=→∗E±∪R2
so that R1 ∪E± joinability and R2 ∪E± joinability coincide.

The same holds for convertibility. We will simply use the terms “joinable” and “convertible”
for both R1 ∪ E± and R2 ∪ E±. We distinguish three cases.
1. If s′, t′ ∈ F (0), then by Lemma 3.8(2), s′ →C t′ (since s′, t′ are E ; C normal forms and C

is an equivalence relation) and we obtain a joining sequence from the third confluence
condition, contradicting the non-joinability of s′ and t′.

2. If s′ = s′1 ◦ s′2 /∈ F (0) and t′ ∈ F (0), then by Lemma 3.8(2) there is a rewrite sequence
s′ →∗C∪E s1 ◦ s2 →E;C t′ (again using that t′ is an E ; C normal form and that C is an
equivalence relation). By the second confluence condition we obtain a term t1 ◦ t2 such
that t′ →R2;E− t1 ◦ t2, and ti and si are convertible for i ∈ {1, 2}. Therefore, t1 and s′1
are convertible. Furthermore, since |t1| + |s′1| < |t′| + |s′|, this implies that t1 and s′1
are joinable. Analogously, t2 and s′2 are also joinable, and therefore s′ is joinable with
t1 ◦ t2 R2;E−← t′, contradicting our assumptions.
The case that s′ ∈ F (0) and t′ /∈ F (0) is handled symmetrically.

3. If s′ = s′1 ◦ s′2 /∈ F (0) and t′ = t′1 ◦ t′2 /∈ F (0), then by Lemma 3.8(2), s′ →∗E∪C r ∗
E∪C← t′.

If r = r1 ◦ r2 is not a constant, then s′1 and t′1 are convertible via r1 and likewise s′2 and
t′2 are convertible via r2. However, one of these pairs cannot be joinable, and we obtain a
smaller counterexample to confluence, a contradiction. Therefore, r must be a constant.
Using Lemma 3.8(2) we obtain a rewrite proof s′ →∗C∪E s1◦s2 →E;C r E;C← t1◦t2

∗
C∪E← t′.

From the first confluence condition, we conclude that s1 and t1 are convertible and
therefore also s′1 and t′1. By minimality of |s′|+ |t′|, s′1 and t′1 must be joinable. Likewise,
s′2 and t′2 must also be joinable, from which we conclude that s′ = s′1 ◦ s′2 and t′ = t′1 ◦ t′2
are joinable as well, a contradiction.

This completes the proof. J

3.5 Computation of Confluence Conditions
The computation consists of two major steps: First we compute all top-stabilizable constants
and terms of the form u ◦ v. Then we check the three confluence conditions.

In order to compute the top-stabilizable constants and terms, we first need to find
the E/R2 normal forms of the shape u ◦ v—denoted by NF(u ◦ v). We can compute the
complement of that set, i.e., the E/R2 reducible terms of that shape using the following
inference rules.

u ◦ v ≈ w ∈ E
¬NF(u ◦ v) base

{u1 → v1, u2 → v2} ⊆ R2 ¬NF(v1 ◦ v2)
¬NF(u1 ◦ u2)

comp

To obtain a cubic time algorithm, note that thanks to transitivity of R2, inferences made
by (comp) need not be processed—if ¬NF(w1 ◦ w2) implies ¬NF(v1 ◦ v2) by (comp) and
¬NF(v1 ◦ v2) implies ¬NF(u1 ◦ u2) by (comp) then ¬NF(w1 ◦ w2) implies ¬NF(u1 ◦ u2) by
(comp) as well. Therefore we simply consider each E rule (there are O(‖R0‖) of these) in
turn, and then make the corresponding inferences by the (comp) rule in O(‖R0‖2) time, for
a total of O(‖R0‖3).

Let us turn to top-stabilizable terms and constants now. First note that any constant
is an E/R2 normal form. The top-stabilizable constants and terms can be found using
another incremental computation. Every E/R2 normal form is top-stabilizable. If u ◦ v is

B. Felgenhauer 173

top-stabilizable and u ◦ v →E/C w, then w is a top-stabilizable constant, and u′ ◦ v and u ◦ v′

are top-stabilizable terms whenever u→C u′, v →C v′. For any top-stabilizable constant w,
w ◦ v, u ◦w for constants u, v are also top-stabilizable. Consequently, we obtain the following
inference rules, where TS(u) and TS(v ◦ w) assert that u and v ◦ w are top-stabilizable,
respectively, and (i, i′) ∈ {(1, 2), (2, 1)}.

u1 ◦ u2 ∈ NF(E/R2)
TS(u1 ◦ u2) nf

u1 ◦ u2 ≈ u ∈ E TS(u1 ◦ u2)
TS(u)

ts0
TS(ui)

TS(u1 ◦ u2)
tsi

u→ v ∈ C TS(v)
TS(u)

comp0
ui → vi ∈ C ui′ = vi′ TS(v1 ◦ v2)

TS(u1 ◦ u2)
compi

There are O(‖R0‖2) instances of (nf), (ts{1,2}) and (comp0), and O(‖R0‖3) instances of (ts0)
and (comp{1,2}). Again these inference rules have the shape of Horn clauses and can be
processed in time proportional to their total size, which is O(‖R0‖3).

I Example 3.12 (continued from Example 3.6). For R we have ¬NF = {f ◦b, f ◦ fa, f ◦ fb, f ◦a}.
Indeed f ◦ ffb is an E/R2 normal form since using R2 it can only be rewritten to itself
and it is not the left-hand side of any E rule. On the other hand, for R′ we obtain
¬NF′ = ¬NF ∪ {f ◦ ffb, f ◦ fffb}. Note that normal forms also include terms like f ◦ f or fa ◦ a
that have no correspondence in the original TRS.

In the R case, all terms of the form u ◦ v are top-stabilizable and so are all constants
except for f. For R′, only the normal forms are top-stabilizable.

With this pre-computation done, checking the confluence conditions becomes a straight-
forward matter. The only tricky part is checking joinability of constants in the third
condition. This relation can be computed in a way strikingly similar to the rewrite closure
from Section 3.2, using the following inference rules for computing ↓ = ↓E−∪R2 on constants:

u ∈ F (0)

u ↓ u
refl

{u1 ◦ u2 ≈ u, v1 ◦ v2 ≈ v} ⊆ E u1 ↓ v1 u2 ↓ v2
u ↓ v

comp

u→ v ∈ R2 v ↓ w

u ↓ w
trans1

u ↓ v w → v ∈ R2
u ↓ w

transr

As with the previous inference rules, this is a system of Horn clauses. There are O(‖E‖2) =
O(‖R0‖2) instances of (comp), O(‖R0‖) instances of (refl) and O(‖R0‖3) instances of
(transl,r). Therefore, computing ↓ can be done in O(‖R0‖3) time.

I Example 3.13 (continued from Example 3.12). The joinability relations R and R′ are given
below. As in Example 3.5, the letters and superscripts indicate the rule being used to derive
the entry and computation stage.

↓ =

f a fa b fb ffb
f r0

a r0 t1
l t1

l t1
l t1

l

fa t1
r r0 t1

l t1
l t1

l

b t1
r t1

r r0 t1
l

fb t1
r t1

r r0

ffb t1
r t1

r t1
r r0

↓′ =

f a fa b fb ffb fffb
f r0

a r0 t1
l t1

l t1
l t1

l t1
l

fa t1
r r0 t1

l c2 c2 c2

b t1
r t1

r r0 t1
r c3 c3

fb t1
r c2 t1

l r0 c2 c4

ffb t1
r c2 c3 c2 r0 c3

fffb t1
r c2 c3 c4 c3 r0

It is now easy to verify that R violates the third confluence condition (fb →C ffb but not
fb ↓ ffb), and therefore is not confluent. The other two confluence conditions are satisfied.
R′, on the other hand, satisfies all confluence conditions and is, therefore, confluent.

RTA’12

174 Deciding Confluence of Ground Term Rewrite Systems in Cubic Time

Table 1 Confluence of Ground Cops.

Cop 21 33 34 38 39 40 80 81 84 114 115 116
CR × X X × × X × X X X X X

Table 2 Runtimes for Rn.

system R100 R200 R400 R800 R1600 R3200

time (s) 0.2 (×) 0.2 (×) 1.3 (×) 19.2 (×) 254.3 (×) 2321 (×)
system R101 R201 R401 R801 R1601 R3201

time (s) 0.2 (X) 0.2 (X) 2.3 (X) 30.1 (X) 427.4 (X) 3919 (X)

Putting everything together, we obtain the following theorem.

I Theorem 3.14. The confluence of a ground TRS R can be decided in cubic time.

Proof. Let n = ‖R‖. We follow the process outlined above. First we curry R in linear time,
obtainingR0 with ‖R0‖ = O(n). Then we flattenR0, obtaining (R1, E) with ‖E‖ = O(n) and
‖R1‖ = O(n) in time O(n log(n)). In the next step we compute the rewrite and congruence
closures (R2, E) and (C, E) of (R1, E) in O(n3) time. Afterwards, we compute the E/R2
normal forms NF(− ◦ −), which as seen above takes O(n3) time. We then compute TS(−),
TS(−,−) and ↓E−∪R2 in O(n3) time. Finally we check the three confluence conditions. For
the first condition, we check each of the O(n2) pairs of rules s1 ◦ s2 →E u, t1 ◦ t2 →E v with
u→C v. For the second condition, we consider the O(n3) triples such that s1 ◦ s2 →E u→C
t′ →R2 v E← t1 ◦ t2. For the third condition we check all O(n2) pairs s′ →C t′. All these
steps can be accomplished in O(n3) time. J

4 Experiments

We have implemented the above algorithm in the confluence tool CSI2 [12], and tested it
on the ground confluence problems from the Cops database.3 The results are displayed in
Table 1. There are no runtimes given because they are all negligible. Note though that even
before implementing ground confluence in CSI, the tool could handle all these problems.
The runtime improved from 14s to 3s for checking all the TRSs. In order to obtain runtime
measurements, we considered the family of TRSs Rn = R∪ {fn(b)→ b} extending R from
Example 3.1. One can easily argue that the system Rn is confluent if and only if n is odd.
(Since R is a subsystem, all terms are convertible. However, f(b) and b are only joinable if n

is odd—otherwise the parity of k in the reducts fk(b) is invariant.) The runtimes for various
n are given in Table 2. ACP4 [1] and Saigawa5 fail on all these systems. The numbers from
Table 2 do not agree well with the proven complexity bound. This is due to cache effects—as
the input size increases, the intermediate arrays outgrow the first and second level caches.
Note that for the last two columns, the factor is very close to 8, finally meeting expectations.
The difference between odd and even n can be explained by the different size of the rewrite
closures. All measurements were done on a 2.67GHz Intel i7-620M computer with 4GB RAM
using a single core.

2 http://cl-informatik.uibk.ac.at/software/csi/
3 http://coco.nue.riec.tohoku.ac.jp/cops/
4 version 0.20, http://www.nue.riec.tohoku.ac.jp/tools/acp/
5 version 1.2, http://www.jaist.ac.jp/project/saigawa/

B. Felgenhauer 175

5 Conclusion

We have described an efficient algorithm for deciding the confluence of ground TRSs. In
our opinion, this is a worthwhile addition to an automated confluence checker, since other
methods fail on relatively simple ground TRSs. In fact, ACP can not handle either TRS
from Example 3.1, and neither can Saigawa. Before adding the ground TRS code, CSI could
not disprove confluence of R, but it was able to prove confluence of R′. It still failed on a
close relative of R′, namely the confluent ground TRS R5 = R∪ {f(f(f(f(f(b)))))→ b}.

A natural question is whether we can improve the bounds for the other known classes
of TRSs with fixed maximum arity that have a known polynomial complexity for deciding
complexity, foremost the class of shallow, left-linear TRSs. Our main improvement over [10]
is the limitation to C-rules in the rewrite closure, effectively constraining the considered
rules to relations between subterms of the original curried TRS. This does no longer work
once we have variables in rules. Therefore, at present, we do not know how to improve the
other results.

Acknowledgements The author is grateful to Aart Middeldorp, Harald Zankl and Sarah
Winkler for comments on a preliminary draft of this paper, and to the anonymous reviewers
for advice that helped to improve the presentation of the final version.

References
1 T. Aoto, J. Yoshida, and Y. Toyama. Proving confluence of term rewriting systems auto-

matically. In Proc. 20th RTA, volume 5595 of LNCS, pages 93–102, 2009.
2 F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,

1998.
3 H. Comon, G. Godoy, and R. Nieuwenhuis. The confluence of ground term rewrite systems

is decidable in polynomial time. In Proc. 42nd FOCS, pages 298–307, 2001.
4 W.F. Dowling and J.H. Gallier. Linear-time algorithms for testing the satisfiability of

propositional horn formulae. Journal of Logic Programming, 1(3):267–284, 1984.
5 G. Godoy, A. Tiwari, and R. Verma. On the confluence of linear shallow term rewrite

systems. In Proc. 20th STACS, volume 2607 of LNCS, pages 85–96, 2003.
6 G. Godoy, A. Tiwari, and R. Verma. Deciding confluence of certain term rewriting systems

in polynomial time. Annals of Pure and Applied Logic, 130(1-3):33–59, 2004.
7 S. Kahrs. Confluence of curried term-rewriting systems. JSC, 19(6):601–623, 1995.
8 G. Nelson and D.C. Oppen. Fast decision procedures based on congruence closure. Journal

of the ACM, 27(2):356–364, 1980.
9 D. Plaisted. Polynomial time termination and constraint satisfaction tests. In Proc. 5th

RTA, volume 690 of LNCS, pages 405–420, 1993.
10 A. Tiwari. Deciding confluence of certain term rewriting systems in polynomial time. In

Proc. 17th LICS, pages 447–457, 2002.
11 Y. Toyama. On the Church-Rosser property for the direct sum of term rewriting systems.

Journal of the ACM, 34(1):128–143, 1987.
12 H. Zankl, B. Felgenhauer, and A. Middeldorp. CSI – A confluence tool. In Proc. 23rd

CADE, volume 6803 of LNCS (LNAI), pages 499–505, 2011.

RTA’12

Polynomial Interpretations for Higher-Order
Rewriting ∗

Carsten Fuhs1 and Cynthia Kop2

1 University College London, Gower Street, London WC1E 6BT, UK
2 Vrije Universiteit, De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

Abstract
The termination method of weakly monotonic algebras, which has been defined for higher-order
rewriting in the HRS formalism, offers a lot of power, but has seen little use in recent years.
We adapt and extend this method to the alternative formalism of algebraic functional systems,
where the simply-typed λ-calculus is combined with algebraic reduction. Using this theory, we
define higher-order polynomial interpretations, and show how the implementation challenges of
this technique can be tackled. A full implementation is provided in the termination tool WANDA.

1998 ACM Subject Classification F.4.2 Grammars and Other Rewriting Systems – Decision
problems

Keywords and phrases higher-order rewriting, termination, polynomial interpretations, weakly
monotonic algebras, automation

Digital Object Identifier 10.4230/LIPIcs.RTA.2012.176

Category Regular Research Paper

1 Introduction

One of the most prominent techniques in termination proofs for first-order term rewriting
systems (TRSs) is the use of polynomial interpretations. In this method, which dates back
to the seventies [24], terms are mapped to polynomials over (e.g.) N. The method is quite
intuitive, since a TRS is usually written with a meaning for the function symbols in mind,
which can often be modeled by the interpretation. In addition, it has been implemented
in various automatic tools, such as AProVE [14], TTT2 [22] and Jambox [8]. Polynomial
interpretations are an instance of the monotonic algebra approach [9] which also includes for
instance matrix interpretations. They are used both on their own, and in combination with
dependency pair approaches [1].

In the higher-order world, monotonic algebras were among the first termination methods
to be defined, appearing as early as 1994 [26]; an in-depth study is done in van de Pol’s 1996
PhD thesis [27]. Surprisingly, the method has been almost entirely absent from the literature
ever since. This is despite a lot of interest in higher-order rewriting, witnessed not only by
a fair number of publications, but also by the recent participation of higher-order tools in
the annual Termination Competition [30]. Since the addition of a higher-order category,
two tools have participated: THOR [4], by Borralleras and Rubio, and WANDA [18], by the
second author of this paper. So far, neither tool has implemented weakly monotonic algebras.

∗ This research is supported by the Netherlands Organisation for Scientific Research (NWO-EW) under
grant 612.000.629 (HOT).

© Carsten Fuhs and Cynthia Kop;
licensed under Creative Commons License NC-ND

23rd International Conference on Rewriting Techniques and Applications (RTA’12).
Editor: A. Tiwari; pp. 176–192

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

C. Fuhs and C. Kop 177

In this paper we aim to counteract this situation, by both studying the class of polynomial
interpretations in the natural numbers, and implementing the resulting technique in the
termination tool WANDA. Van de Pol did not consider automation of his method (there
was less focus on automation at the time), but there are now years of experience of the
first-order world to build on; we will lift the parametric first-order approach [6], and make
some necessary adaptations to cater for the presence of higher-order variables.

Paper Setup. Section 2 discusses preliminaries: Algebraic Functional Systems, the higher-
order formalism we consider, reduction pairs and weakly monotonic algebras for typed λ-terms.
In Section 3 we extend these definitions to AFSs, and define a general termination method. Sec-
tion 4 defines the class of higher-order polynomials, and in Section 5 we show how suitable
polynomial interpretations can be found automatically. Experiments with this implementation
are presented in Section 6, and an overview and ideas for future work are given in Section 7.

The main contribution of this paper are the techniques for automation, discussed in
Section 6. For simplicity of the code, these techniques are limited to the (very common)
class of second-order AFSs, although extensions to systems of a higher order are possible. As
far as we know, this is the first implementation of higher-order polynomial interpretations.

An extended version of this paper with more elaborate proofs is available at [13].

2 Background

2.1 Algebraic Functional Systems
We consider algebraic higher-order rewriting as defined by Jouannaud and Okada, also called
Algebraic Functional Systems (AFSs) [16]. This formalism combines the simply-typed λ-calcu-
lus with algebraic reduction, and appears in papers on e.g. HORPO [17], MHOSPO [5] and
dependency pairs [20]; it is also the formalism in the higher-order category of the annual ter-
mination competition. We follow roughly the definitions in [29, Ch. 11.2.3], as recalled below.

Types and Terms. The set of simple types (or just types) is generated from a given set B of
base types and the binary, right-associative type constructor⇒; types are denoted by σ, τ and
base types by ι, κ. A type with at least one occurrence of ⇒ is called a functional type. A
type declaration is an expression of the form [σ1× . . .×σn]⇒τ for types σi, τ ; if n = 0 we just
write τ . Type declarations are not types, but are used to “type” function symbols. All types
can be expressed in the form σ1⇒ . . .⇒σn⇒ ι (with n ≥ 0 and ι ∈ B). The order of a type is
order(ι) = 0 if ι ∈ B, and order(σ⇒τ) = max(order(σ)+1, order(τ)). Extending this to type
declarations, order([σ1 × . . .× σn]⇒τ) = max(order(σ1) + 1, . . . , order(σn) + 1, order(τ)).

We assume a set V of infinitely many typed variables for each type, and a set F disjoint
from V which consists of function symbols, each equipped with a type declaration. Terms
over F are those expressions s for which we can infer s : σ for some type σ using the clauses:

(var) x : σ if x : σ ∈ V
(app) s · t : τ if s : σ⇒τ and t : σ
(abs) λx. s : σ⇒τ if x : σ ∈ V and s : τ
(fun) f(s1, . . . , sn) : τ if f : [σ1 × . . .× σn]⇒τ ∈ F and s1 : σ1, . . . , sn : σn

Note that a function symbol f : [σ1 × . . .× σn]⇒τ takes exactly n arguments, and τ is not
necessarily a base type (a type declaration gives the arity of the symbol). λ binds occurrences
of variables as in the λ-calculus. Terms are considered modulo α-conversion; bound variables
are renamed if necessary. Variables which are not bound are called free, and the set of free
variables of s is denoted FV (s). Application is left-associative, so s · t · u should be read
(s · t) · u. Terms constructed without clause (fun) are also called (simply-typed) λ-terms.

RTA’12

178 Polynomial Interpretations for Higher-Order Rewriting

A substitution [~x := ~s], with ~x and ~s finite vectors of equal length, is the homomorphic
extension of the type-preserving mapping ~x 7→ ~s from variables to terms. Substitutions are
denoted γ, δ, and the result of applying γ to a term s is denoted sγ. The domain dom(γ) of
γ = [~x := ~s] is {~x}. Substituting does not bind free variables. A context C[] is a term with a
single occurrence of a special symbol 2σ. The result of replacing 2σ in C[] by a term s of
type σ is denoted C[s]. Free variables may be captured; if C[] = λx.2σ then C[x] = λx. x.

Rules and Rewriting. A rewrite rule is a pair of terms l→ r such that l and r have the same
type and all free variables of r also occur in l. In [19] some termination-preserving transforma-
tions on the general format of AFS-rules are presented; using these results, we may additionally
assume that l has the form f(l1, . . . , ln)·ln+1 · · · lm (with f ∈ F andm ≥ n ≥ 0), that l has no
subterms x·s with x a free variable, and that neither l nor r have a subterm (λx. s)·t. Given a
set of rules R, the rewrite or reduction relation →R on terms is given by the following clauses:

(rule) C[lγ] →R C[rγ] with l→ r ∈ R, C a context, γ a substitution
(β) C[(λx. s) · t] →R C[s[x := t]] with s, t terms, C a context

An algebraic functional system (AFS) is the combination of a set of terms and a rewrite
relation on this set, and is usually specified by a pair (F ,R), or just by a set R of rules. An
AFS is terminating if there is no infinite reduction s1 →R s2 →R . . .

An AFS is second-order if the type declarations of all function symbols have order ≤ 2.
In a second-order system, all free variables in the rules have order ≤ 1 (this follows by the
restrictions on the left-hand side), and all bound variables have base type (this holds because
free variables have order ≤ 1 and we have assumed that the rules do not contain β-redexes).

I Example 2.1. One of the examples considered in this paper is the AFS shuffle. This
(second-order) system for list manipulation has five function symbols, nil : natlist, cons :
[nat× natlist]⇒natlist, append : [natlist× natlist]⇒natlist, reverse : [natlist]⇒natlist, shuffle :
[(nat⇒nat)× natlist]⇒natlist, and the following rules:

append(cons(h, t), l) → cons(h, append(t, l)) append(nil, l) → l

reverse(cons(h, t)) → append(reverse(t), cons(h, nil)) reverse(nil) → nil
shuffle(F, cons(h, t)) → cons(F · h, shuffle(F, reverse(t))) shuffle(F, nil) → nil

2.2 Reduction Pairs
To prove termination, modern approaches typically use reduction pairs, in one of three setups:

For rule removal, we consider a strong reduction pair : a pair (%,�) of a quasi-ordering
and a well-founded ordering on terms, such that % and � are compatible: % · � is included
in � or � · % is, both % and � are monotonic, both % and � are stable (preserved under
substitution), and in the higher-order case, % contains β: (λx. s) · t % s[x := t].

If R = R1]R2 and l � r for rules in R1, and l % r for rules in R2, then there is no →R-
sequence which uses the rules in R1 infinitely often; this would contradict well-foundedness
of �. Thus, →R is terminating if →R2 is terminating. In practice, we try to orient all rules
with either � or %, and then remove those ordered with � and continue with the rest.

The second setup, dependency pairs, is more sophisticated. In this approach, dependency
pair chains are considered, which use infinitely many “dependency pair” steps at the top of a
term. It is enough to orient the resulting constraints with a weak reduction pair : a pair (%,�)
of a quasi-ordering and a compatible well-founded ordering where both are stable, and % is
monotonic and contains β. The dependency pair approach was defined for first-order TRSs
in [1], and has seen many extensions and improvements since. For higher-order rewriting,
two variations exist: static dependency pairs [23] and dynamic dependency pairs [28, 21].

C. Fuhs and C. Kop 179

The static dependency pair approach is restricted to plain function passing systems;
slightly simplified, whenever a higher-order variable F occurs in the right-hand side of a rule
f(l1, . . . , ln)→ r, then F is one of the li. Static dependency pairs may have variables in the
right-hand side which do not occur in the left (such as a dependency pair I](s(n))→ I](m)), but
always have the form f](l1, . . . , ln)→ g](r1, . . . , rm). The static approach gives constraints
of the form l % r or l � r for dependency pairs l→ r, and l % r for rules l→ r.

The dynamic dependency pair approach is unrestricted, but right-hand sides of dependency
pairs may be headed by a variable, e.g. collapse](cons(F, t))→ F · collapse(t), and sometimes
subterm steps are needed. Thus, the dynamic approach not only gives constraints l � r or
l % r for dependency pairs and l % r for rules, but also two further groups of constraints:

f(s1, . . . , sn) ·t1 · · · tm % si ·cσ1 · · · cσki if both sides have base type, si : σ1⇒ . . .⇒σki⇒ ι

and f is a symbol in some fixed set S (the cσj are special symbols which may occur in
the right-hand sides of dependency pairs but do not occur in the rules)
s · t1 · · · tn % ti · cσ1 · · · cσki if both sides have base type, and ti : σ1⇒ . . .⇒σki⇒ ι

A third setup, which also uses a sort of reduction pair rather than the traditional reduction
ordering, are the monotonic semantic path orderings from Borralleras and Rubio [5]. This
method is based on a recursive path ordering, but uses a well-founded order on terms rather
than a precedence on function symbols; this gives constraints of the form s �I t, s �Q t, s �Q
t, where �I and �Q are quasi-orderings and s �I t implies f(. . . , s, . . .) �Q f(. . . , t, . . .).

In this paper, we focus on the first two setups, which have been implemented in WANDA.
However, the technique could be used with the monotonic semantic path ordering as well.

2.3 First-order Monotonic Algebras - Idea Sketch
In the first-order definition of monotonic algebras [9], terms are mapped to elements of a
well-founded target domain (A, >,≥). This is done by choosing an interpretation function
J (f) for all function symbols f that is monotonic w.r.t. > and ≥, and extending this
homomorphically to an interpretation J·K of terms; for polynomial interpretations, J (f) is
always a polynomial. If JlKJ ,α > JrKJ ,α for all valuations α of the free variables of l, then
JC[lγ]KJ > JC[rγ]KJ for all contexts C and substitutions γ. Thus, the pair (%,�) where
s % t if JsKJ ,α ≥ JtKJ ,α and s � t if JsKJ ,α > JtKJ ,α can be used as a strong reduction pair.

For example, to prove termination of the TRS consisting of the two append rules from
Example 2.1, we might assign the following interpretation to the function symbols: J (nil) =
2, J (cons) = λλnm.n + m + 1 and J (append) = λλnm.2 · n + m + 1. Here, the λλ syntax
indicates function creation: cons, for instance, is mapped to a function which takes two
arguments, and returns their sum plus one. Calculating all JlKJ ,α, JrKJ ,α, and noting that
(N, >,≥) is a well-founded set and that all interpretations are monotonic functions, we see
that the TRS is terminating because for all h, t, l: 4+l+1 > l (for the rule append(nil, l)→ l),
and 2·h+2·t+2+l+1 > h+2·t+l+1 (for append(cons(h, t), l)→ cons(h, append(t, l)).

2.4 Weakly Monotonic Functionals
In higher-order rewriting we have to deal with infinitely many types (due to the type
constructor⇒), a complication not present in first-order rewriting. As a consequence, it is
not practical to map all terms to the same target set. A more natural interpretation would
be, for instance, to map a functional term λx. s : o⇒o to an element of the function space
N⇒ N. However, this choice has problems of its own, since it forces the termination prover
to deal with functions that absolutely nothing is known about. Instead, the target domain

RTA’12

180 Polynomial Interpretations for Higher-Order Rewriting

for interpreting terms, as proposed by van de Pol in [27], is the class of weakly monotonic
functionals. To each type σ we assign a set WMσ and two relations: a well-founded ordering
=σ and a quasi-ordering wσ. Intuitively, the elements of WMσ⇒τ are functions which
preserve w.

I Definition 2.2 (Weakly Monotonic Functionals). [27, Def. 4.1.1] We assume given a well-
founded set: a triple A = (A, >,≥) of a non-empty set, a well-founded partial ordering on
that set and a compatible quasi-ordering.1 To each type σ we associate a setWMσ of weakly
monotonic functionals of type σ and two relations =σ and wσ, defined inductively as follows:

For a base type ι, we have WMι = A; =ι = >, and wι = ≥.
For a functional type σ⇒τ , WMσ⇒τ consists of the functions f from WMσ to WMτ

such that: if x wσ y then f(x) wτ f(y). Let f =σ⇒τ g iff f(x) =τ g(x), and f wσ⇒τ g iff
f(x) wτ g(x) for all x, y ∈ WMσ.

Thus, WMσ⇒τ is a subset of the function space WMσ ⇒ WMτ , consisting of functions
which preserve w. Note that both WMσ and the relations =σ and wσ should be considered
as parametrised with A; the complete notation would be (WMAσ ,=Aσ ,wAσ). For readability,
A will normally be omitted, as will the type denotations for the various =σ and wσ relations.
The phrase “f is weakly monotonic” means that f ∈ WMσ for some σ.

It is not hard to see that an element λλx1 . . . xn.P (x1, . . . , xn) of the function space
WMσ1 ⇒ . . .⇒WMσn ⇒ A is weakly monotonic if and only if:

∀N1,M1 ∈ WMσ1 , . . . , Nn,Mn ∈ WMσn :
if each Ni wMi then P (N1, . . . , Nn) w P (M1, . . . ,Mn)

By Lemmas 4.1.3 and 4.1.4 in [27] we obtain several pleasant properties of w and =:

I Lemma 2.3. For all types σ, the relations =σ and wσ are compatible, =σ is well founded,
wσ is reflexive, and both =σ and wσ are transitive.

Comment: the definition in [27] actually assigns a different set Aι to each base type ι
(although there must be an addition operator +ι,κ,ι for every pair of base types). We use the
same set for all base types, as this gives a simpler definition, and it is not obvious that using
different sets gives a stronger technique; we could for instance choose A = Aι] Aκ instead.

Also, in [27] WMσ⇒τ consists of functions f in a larger function space Iσ ⇒ Iτ 2 such
that f(x) ∈ WMτ if x ∈ WMσ and f preserves w. Our definition is essentially equivalent;
every function in WMσ ⇒WMτ can be extended to a function in Iσ ⇒ Iτ .

I Example 2.4 (Some Examples of Weakly Monotonic Functionals).
1. Constant Function: For all n ∈ A and types τ = τ1⇒ . . .⇒τk⇒ ι, let nτ := λλ~x.n. Then

nτ ∈ WMτ , since nτ (N1, . . . , Nk) = n w n = nτ (M1, . . . ,Mk) if all Ni wMi.
2. Lowest Value Function: Suppose A has a minimal element 0 for the ordering >. Then

for any type τ = τ1⇒ . . .⇒ τk ⇒ ι the function λλf.f(~0), which maps f ∈ WMτ to
f(0τ1 , . . . , 0τk) (where each 0τi is a constant function), is in WMτ⇒o by induction on k.

3. Maximum Function: In the natural numbers, the function max which assigns to any
two numbers the highest of the two is weakly monotonic, since max(a, b) ≥ max(a′, b′)
if a ≥ a′ and b ≥ b′. For any type τ = τ1⇒ . . .⇒ τk⇒ ι (with ι ∈ B) let maxτ (f,m) =
λλx1 . . . xk.max(f(x1, . . . , xk),m). This function is in WMτ⇒ι⇒τ by induction on k.

1 Van de Pol defines ≥ as the reflexive closure of >. In contrast, here we generalise the notion of a
well-founded set to include an explicitly given compatible quasi-ordering ≥.

2 Here, Iι = Aι if ι ∈ B, and Iσ⇒τ is the full function space Iσ ⇒ Iτ .

C. Fuhs and C. Kop 181

The constant and lowest value function appear in [27]; the maximum function appears in [20].

I Definition 2.5 (Interpreting a λ-Term to a Weakly Monotonic Functional). Given a well-
founded set A = (A, >,≥), a simply-typed λ-term s and a valuation α which assigns to all
variables x : σ in FV (s) an element of WMσ, let [s]α be defined by the following clauses:

[x]α = α(x) if x ∈ V
[s · t]α = [s]α([t]α)
[λx. s]α = λλn.[s]α∪{x 7→n} if x /∈ dom(α) (always applicable with α-conversion)

Definition 2.5 is an instance of a definition in [27] which suffices for the extension to AFSs.
By Lemma 3.2.1 and Proposition 4.1.5(1) in [27], we have:

I Lemma 2.6 (Facts on λ-Term Interpretations).
1. (Substitution Lemma) Given a substitution γ = [x1 := s1, . . . , xn := sn] and a valuation

α whose domain does not include the xi: [sγ]α = [s]α◦γ. Here, α ◦ γ is the valuation
α ∪ {x1 7→ [s1]α, . . . , xn 7→ [sn]α}.

2. If s : σ is a simply-typed λ-term, then [s]α ∈ WMσ for all valuations α.

3 (Weakly and Extended) Monotonic Algebras for AFSs

The theory in [27] was defined for Nipkow’s formalism of Higher-order Rewrite Systems
(HRSs) [25], which differs in several ways from our Algebraic Functional Systems. Most
importantly, in the setting of HRSs terms are equivalence classes modulo β; thus, the
definitions in [27] are designed so that JsK = JtK if s and t are equal modulo β. This is not
convenient for AFSs, since then for instance J(λx. 0) · tK = J(λx. 0) · uK regardless of t and u.

Fortunately, we do not need to redesign the whole theory for use with AFSs; rather, we
can transpose the result using a transformation. We will need no more than Lemma 2.6.

Note: some of the results of this section have also been stated in [20], but the results there
are limited to what is needed for the dynamic dependency pair approach; here, we are more
general, by not fixing the interpretation of application and also studying strong monotonicity.

I Definition 3.1 (Weakly Monotonic Algebras for AFSs). A weakly monotonic algebra for
an AFS with function symbols F consists of a well-founded set A = (A, >,≥) and an
interpretation function J which assigns an element of WMσ1⇒...⇒σn⇒τ to all f : [σ1× . . .×
σn]⇒τ ∈ F , and a value in WMσ⇒σ to the fresh symbol @σ for all functional types σ.

Given an algebra (A,J), a term s over F and a valuation α which assigns to all variables
x : σ in FV (s) an element of WMσ, let JsKJ ,α be defined recursively as follows:

JxKJ ,α = α(x) if x ∈ V
Jf(s1, . . . , sn)KJ ,α = J (f)(Js1KJ ,α, . . . , JsnKJ ,α) if f ∈ F
Js · tKJ ,α = J (@σ)(JsKJ ,α, JtKJ ,α) if s : σ
Jλx. sKJ ,α = λλn.JsKJ ,α∪{x7→n} if x /∈ dom(α)

This definition, which roughly follows the ideas of [27] and extends the definition of a weakly
monotone algebra in [9] to the setting of AFSs, assigns to every function symbol and variable
a weakly monotonic functional, and calculates the value of the term accordingly. For the
purposes of the interpretation, application is treated as a function symbol @σ. As in [27],
the interpretation function J is separate from the valuation α, as we will quantify over α.

I Example 3.2. Consider the shuffle signature from Example 2.1, extended with symbols
0 and s for the natural numbers. Let A = (N, >,≥). By way of example, choose: J (0) =
1, J (s) = λλn.n+ 2, J (cons) = λλnm.n+m, J (shuffle) = λλFn.F (n) and α(z) = 37. Then
Jshuffle(λx. s(x), cons(s(0), z))KJ ,α = JF (n)KJ ,{F 7→λλm.m+2,n7→40} = 42.

RTA’12

182 Polynomial Interpretations for Higher-Order Rewriting

I Lemma 3.3 (Weakly Monotonic Algebras for AFSs). Let (A,J) be a weakly monotonic
algebra for F , and s, t terms over F . For all valuations α as described in Definition 3.1:
1. JsKJ ,α ∈ WMσ if s : σ.
2. JsKJ ,α◦γ = JsγKJ ,α (where α ◦ γ = α ∪ {x 7→ Jγ(x)KJ ,α | x ∈ dom(γ)})
3. If JsKJ ,δ w JtKJ ,δ for all valuations δ, then JsγKJ ,α w JtγKJ ,α.

If JsKJ ,δ = JtKJ ,δ for all valuations δ, then JsγKJ ,α = JtγKJ ,α.
4. If JsKJ ,δ w JtKJ ,δ for all valuations δ, then JC[s]KJ ,α w JC[t]KJ ,α.

Proof. The proof proceeds by translating (arbitrary) terms to simply-typed λ-terms, and
then reusing the original result. Interpretation of function symbols (J) is translated to
assignment of variables (α), and application is treated as a function symbol.

Consider the following transformation:

ϕ(x) = x (x ∈ V) ϕ(f(s1, . . . , sn)) = xf · ϕ(s1) · · ·ϕ(sn) (f ∈ F)
ϕ(λx. s) = λx. ϕ(s) ϕ(s · t) = x@,σ · ϕ(s) · ϕ(t) (s : σ)

Here, the xf is a new variable of type σ1⇒ . . .⇒ σn⇒ τ for f : [σ1 × . . . × σn]⇒ τ ∈ F ,
and x@,σ is a variable of type σ⇒σ. For any substitution γ, let γϕ denote the substitution
[x := ϕ(γ(x)) | x ∈ dom(γ)] (the xf are left alone). We make the following observations:

(**) ϕ(sγ) = ϕ(s)γϕ for all substitutions γ.
(***) JsKJ ,α = [ϕ(s)]δ, if δ(x) = α(x) for x ∈ FV (s), δ(xf) = J (f), δ(x@,σ) = J (@σ)
Both statements hold by a straightforward induction on the form of s.

(1) holds by (***) and Lemma 2.6(2). (2) holds because JsγKJ ,α = [ϕ(sγ)]δ by (***),
= [ϕ(s)γϕ]δ by (**), = [ϕ(s)]δ◦γϕ by Lemma 2.6(1), which is exactly JsKJ ,α◦γ by (***). (3)
holds by (2): JsγKJ ,α = JsKJ ,α◦γ by (2), w JtKJ ,α◦γ = JtγKJ ,α, and similar for =. (4) holds
by a straightforward induction on the form of C (this result has no counterpart in [27]). J

The theory so far allows us to use weakly monotonic algebras in a weak reduction pair.

I Theorem 3.4. Let a weakly monotonic algebra (A,J) be given such that always J (@σ) w
λλfn.f(n), and define the pair (%,�) by: s % t if JsKJ ,α w JtKJ ,α for all valuations α, and
s � t if JsKJ ,α = JtKJ ,α for all α. Then (%,�) is a weak reduction pair.

Proof. (%,�) is a compatible combination of a quasi-ordering and a well-founded ordering by
Lemma 2.3 and % is monotonic by Lemma 3.3(4). Also, % contains beta: for all valuations
α, J(λx. s) · tKJ ,α = J (@σ)(Jλx. sKJ ,α, JtKJ ,α) w Jλx. sKJ ,α(JtKJ ,α) by assumption, which
equals JsKJ ,α∪{x7→JtKJ ,α} = JsKJ ,α◦[x:=t], and this equals Js[x := t]KJ ,α by Lemma 3.3(2). J

Comment: if we choose J (@σ) = λλfn.f(n), we have a system very similar to the one
used for simply-typed λ-calculus (and HRSs). By not fixing the interpretation of @σ we have
a choice, which, depending on the setting (rule removal, static dependency pairs, dynamic
dependency pairs) may be essential; we will see different choices in Examples 3.5, 3.6 and 4.4.

I Example 3.5. Using the static dependency pair framework of [23] to deal with shuffle, we
obtain several sets of requirements. HORPO [17] runs into trouble with the dependency pair
shuffle](F, cons(h, t))→ shuffle](F, reverse(t)), where we need a weak reduction pair satisfying:

shuffle](F, cons(h, t)) � shuffle](F, reverse(t))
append(cons(h, t), l) % cons(h, append(t, l)) append(nil, l) % l

reverse(cons(h, t)) % append(reverse(t), cons(h, nil)) reverse(nil) % nil

C. Fuhs and C. Kop 183

Using Theorem 3.4, we choose the following interpretation J in the natural numbers:

J (shuffle]) = λλfn.n J (cons) = λλnm.m+ 1 J (nil) = 0
J (reverse) = λλn.n J (append) = λλnm.n+m J (@σ) = λλfn.f(n) for all σ

Quantifying over the valuation, it suffices to show that for all F ∈ WMnat⇒nat, h, t ∈ N:
t+ 1 > t, t+ l + 1 ≥ t+ l + 1, t+ 1 ≥ t+ 1, l ≥ l, 0 ≥ 0. This is obviously the case!

I Example 3.6. For a case where we cannot choose J (@σ) = λλfn.f(n), consider collapse:

0 : nat min : [nat× nat]⇒nat cons : [(nat⇒nat)× flist]⇒flist
s : [nat]⇒nat diff : [nat× nat]⇒nat build : [nat]⇒flist

nil : flist gcd : [nat× nat]⇒nat collapse : [flist]⇒nat

min(x, 0) → 0 gcd(s(x), 0) → s(x)
min(0, x) → 0 gcd(0, s(x)) → s(x)

min(s(x), s(y)) → s(min(x, y)) gcd(s(x), s(y)) → gcd(diff(x, y), s(min(x, y)))
diff(x, 0) → x build(0) → nil
diff(0, x) → x build(s(x)) → cons(λy. gcd(y, x), build(x))

diff(s(x), s(y)) → diff(x, y) collapse(nil) → 0
collapse(cons(F, t)) → F · collapse(t)

This AFS is not plain function passing, so we cannot use static dependency pairs. Using
dynamic dependency pairs, HORPO runs into trouble when faced with the constraints:

collapse](cons(F, t)) (%) F · collapse(t)
collapse](cons(F, t)) (%) collapse](t) l % r for all rules l→ r listed above

The (%) relation denotes that the constraint can either be oriented with % or with �; to make
progress, at least one of these constraints must be oriented with �. Recall that in the dynamic
dependency pair approach the constraints must be satisfied with a reduction pair that also
has s · t1 · · · tn % ti · c1 · · · cm if both sides have base type, for fresh constants cj ; moreover, we
must have gcd(x, y) % x, y. To guarantee this, we choose J (@σ⇒τ) = λλfn.maxτ (f(n), n(~0)),
where n(~0) and maxτ were defined in Example 2.4. Then J (@σ⇒τ) w λλfn.f(n), and if we
assign J (cj) = 0σ for cj : σ, then Js · ~tKJ ,α w Jti · ~cKJ ,α is indeed satisfied. Additionally, let
J (0) = J (nil) = 0, J (diff) = J (gcd) = λλnm.n+m, J (s) = J (build) = λλn.3 · n, J (min) =
λλnm.0, J (collapse) = λλn.n, J (collapse]) = λλn.n+ 1 and J (cons) = λλfn.f(n) + n.

With this interpretation, we have l % r for all rules. Moreover, Jcollapse](cons(F, t))KJ ,α =
1+F (t)+t > max(F (t), t) = JF ·collapse(t)KJ ,α and Jcollapse](cons(F, t))KJ ,α = 1+F (t)+t ≥
1 + t = Jcollapse](t)KJ ,α. As required, we can remove one dependency pair (the first one).

Strong Monotonicity. To use weakly monotonic algebras in the setting of rule removal,
we shall need an additional requirement: = must be monotonic. This is achieved by posing a
restriction on J : each J (f) should be strongly monotonic:

I Definition 3.7 (Strongly Monotonic Functional). An element f of WMσ1⇒...⇒σn⇒ι is
strongly monotonic in argument i if for all N1 ∈ WMσ1 , . . . , Nn ∈ WMσn and Mi ∈ WMσi

we have: f(N1, . . . , Ni, . . . , Nn) = f(N1, . . . ,Mi, . . . , Nn) if Ni =Mi.

For first- and second-order functions, strong monotonicity corresponds with the notion strict
in [27]. For higher-order functions, the definition of [27] is more permissive. We have chosen
to use strong monotonicity because the strictness requirement significantly complicates the

RTA’12

184 Polynomial Interpretations for Higher-Order Rewriting

theory of [27], and most common examples of higher-order systems are second-order. Strongly
monotonic functionals exist for all types, e.g. λλx1 . . . xn.x1(~0)+. . .+xn(~0) ∈ WMτ1⇒...⇒τn⇒ι.

An extended monotonic algebra is a weakly monotonic algebra where each J (@σ) is
strongly monotonic in its first two arguments,3 and for f : [σ1 × . . . × σn]⇒ τ ∈ F also
J (f) is strongly monotonic in its first n arguments. This notion extends the corresponding
definition from [9] for the first-order setting to the setting of AFSs. We obtain:

I Theorem 3.8. Let an extended monotonic algebra (A,J) be given such that always
J (@σ) w λλfn.f(n); the pair (%,�) from Theorem 3.4 is a strong reduction pair.

Proof. It is a weak reduction pair by Theorem 3.4, and strongly monotonic because
JC[s]KJ ,α = JC[t]KJ ,α for all α whenever JsKJ ,α = JtKJ ,α for all α (an easy induction). J

4 Higher-Order Polynomial Interpretations

It remains to be seen how to find suitable polynomial interpretations, preferably automatically.
In this section, we will discuss the class of higher-order polynomials over N, a specific subclass
of the weakly monotonic functionals with (N, >,≥) as a well-founded base set. In the
following, we will see how suitable polynomials can be found automatically.

I Definition 4.1 (Higher-Order Polynomial over N). For a set X = {x1 : σ1, . . . , xn : σn} of
variables, each equipped with a type, the set Pol(X) of higher-order polynomials in X is
given by the following clauses:

if n ∈ N, then n ∈ Pol(X);
if p1, p2 ∈ Pol(X), then p1 + p2 ∈ Pol(X) and p1 · p2 ∈ Pol(X);
if xi : τ1⇒ . . .⇒ τm⇒ ι ∈ X with ι ∈ B, and p1 ∈ Polτ1(X), . . . , pm ∈ Polτm(X), then
xi(p1, . . . , pm) ∈ Pol(X);

here, Polι(X) = Pol(X) for base types ι, and Polσ⇒τ (X) contains functions λλy.p ∈
WMσ with p ∈ Polτ (X ∪ {y}).

We do not fix the set X. A higher-order polynomial is an element of any Pol(X).
Noting that WMσ = WMτ if σ and τ have the same “form” (so are equal modulo

renaming of base types), the following lemma holds for all ι ∈ B:

I Lemma 4.2. If p ∈ Pol({x1 : σ1, . . . , xn : σn}), then λλx1 . . . xn.p ∈ WMσ1⇒...⇒σn⇒ι.

Proof. It is easy to see that + and · are weakly monotonic. Taking this into account, the
lemma follows quickly with induction on the size of p, using Lemma 2.6(2). For the variable
case, if λλ~y.pi ∈ Polτi({~x}), then pi ∈ Pol({~x, ~y}), so the induction hypothesis applies. J

Higher-order polynomials are typically represented in the form a1 + . . .+ an (with n ≥ 0),
where each ai is a higher-order monomial: an expression of the form b · c1 · · · cm, where b ∈ N
and each ci is either a base-type variable x or a function application x(λλ~y1.p1, . . . , λλ ~yk.pk)
with all pj higher-order polynomials again. Examples of higher-order polynomials over the
natural numbers are for instance 0 and 3 + 5 ·x2 · y+F (37 +x). To find a strongly monotonic
functional, it suffices to include, for all variables, a monomial containing only that variable:

3 Note that e.g. J (@o⇒o⇒o) is an element of the function spaceWMo⇒o⇒o ⇒WMo ⇒WMo ⇒WMo;
a function which takes three arguments. It need not be strongly monotonic in its 3rd argument, because
we think of application as a symbol @σ⇒τ : [(σ⇒τ)× σ]⇒τ of arity 2, where τ may be functional.

C. Fuhs and C. Kop 185

I Lemma 4.3. Let P (x1, . . . , xn) be a higher-order polynomial of the form p1(~x)+. . .+pm(~x),
where all pi(~x) are higher-order monomials. Then λλ~x.P (~x) is strongly monotonic in argument
i if there is some pj of the form a · xi(~b(~x)), where a ∈ N+.

Proof. Let xi = x′i, so also xi w x′i (since > ⊆ ≥). Let ~x := x1, . . . , xi, . . . , xl and ~x′ :=
x1, . . . , x

′
i, . . . , xl. All pk are weakly monotonic by Lemma 4.2, so pk(~x) w pk(~x′). Since

pj(~x) = pj(~x′) and + is strongly monotonic, indeed P (~x) = P (~x′). J

I Example 4.4. For rule removal on the AFS shuffle from Ex. 2.1, consider the interpretation:
J (append) = λλnm.n+m J (cons) = λλnm.n+m+ 3
J (reverse) = λλn.n+ 1 J (nil) = 0
J (shuffle) = λλFn.2n+ F (0) + nF (n) + 1 J (@σ) = λλfn~m.f(n, ~m) + n(~0) (∗∗)

(**) Here, n(~0) is the “lowest value” function from Ex. 2.4. With this interpretation, which is
a strongly monotonic polynomial interpretation by Lemma 4.3, all rules are oriented with %,
and the two shuffle rules and the reverse(nil) one even with �. Only for the main shuffle rule
this is non-trivial to see; here we have the constraint: F (h+ t+ 3) + tF (h+ t+ 3) + F (h+
t+ 3) + [h+ hF (h+ t+ 3) + 3F (h+ t+ 3)] + 2 > F (h) + tF (t+ 1) +F (t+ 1). This holds by
weak monotonicity of F : since h+ t+ 3 ≥ h always holds, we must have F (h+ t+ 3) ≥ F (h)
as well, and similarly we see that tF (h+ t+ 3) ≥ tF (t+ 1) and F (h+ t+ 3) ≥ F (t+ 1).

5 Automation

To demonstrate that the approach is automatable, we have made a proof-of-concept imple-
mentation of polynomial interpretations in the higher-order termination tool WANDA. The
implementation only tries simple parametric shapes, does not use heuristics, and is limited to
second-order AFSs – a limitation which excludes but 5 out of the 156 higher-order benchmarks
in the current termination problem database (TPDB),4 as the class of second-order systems
is very common.5 Even with this minimal implementation, the combination of polynomial
interpretations with dependency pairs can handle about 75% of the TPDB.

To find polynomial interpretations automatically, WANDA uses the following steps:
1. assign every function symbol a higher-order polynomial with parameters as coefficients;
2. for all requirements l (%)r and l % r, calculate JlKJ ,α and JrKJ ,α as a function on

parameters and variables – this gives constraints Pi (≥)Qi and Pi ≥ Qi;
3. introduce a parameter oi for all constraints of the form Pi (≥)Qi, and replace these

constraints by Pi ≥ Qi + oi; if we also introduce the constraints o1 + . . .+ on ≥ 1 then,
when all constraints are satisfied, at least one (≥) constraint is strictly oriented;

4. simplify the constraints until they no longer contain variables;
5. impose maximum values on the search space of the parameters and use a non-linear

constraint solver to find a solution for the constraints.

These steps are detailed below, with an AFS rule for the function map as a running example.

4 See http://termination-portal.org/wiki/TPDB for details on this standard database.
5 The restriction to second-order systems is not essential, but it makes the code easier in a number of

places: we can avoid representing function-polynomials λλ~x.P (~x), stick to simple interpretation shapes,
and we do not have max in the left-hand side of constraints. Mostly, the restriction is present because
of the low number of available benchmarks of order 3 or higher, which makes it hard to select suitable
interpretation shapes, and not initially worth the added implementation effort.

RTA’12

186 Polynomial Interpretations for Higher-Order Rewriting

5.1 Choosing Parametric Polynomial Interpretations
The module for polynomial interpretations in WANDA is called in three contexts: rule
removal, the dynamic dependency pair framework and the static dependency pair framework.
In the first case, function interpretations must be strongly monotonic, in the second case
they have to satisfy a subterm property, and in the third there are no further restrictions.

To start, every function symbol f : [σ1 × . . .× σn]⇒σn+1⇒ . . .⇒σm⇒ ι ∈ F is assigned
a function of the form λλx1 . . . xm.p1 + p2 + a, where a is a parameter and:

p1 has the form a1 · x1(0, . . . , 0) + . . .+ am · xm(0, . . . , 0), where the ai are parameters
(this is well-typed because we work in a second-order system);

in the rule removal setting, we add requirements: a1 ≥ 1, . . . , an ≥ 1;
in the dynamic dependency pairs setting, we add requirements: an+1 ≥ 1, . . . , am ≥ 1.

p2 = q1 + . . . + qk, where each qj has the form cj · xi1 · · ·xik · xj(xi1 , . . . , xik) + dj ·
xj(xi1 , . . . , xik), with cj , dj parameters, the xil first-order variables, and xj a higher-order
variable; every combination of a higher-order variable with first-order variables occurs.6

We must also choose an interpretation of @σ for all types. Rather than using a parametric
interpretation, we observe that application occurs mostly on the right-hand side of constraints.
There, we often have (sub-)terms F · s1 · · · sn with F a free variable; on the left-hand side,
such subterms do not occur, nor can we have applications headed by an abstraction or bound
variable (in a second-order system, bound variables have base type). Only applications of
the form f(s1, . . . , sn) · sn+1 · · · sm occur on the left; since function symbols usually have
a base type as output type, this is a rare situation. Thus, we fix the interpretation of @σ

for all types to be as small as possible. Note that we must have J (@σ) w λλfn.f(n) by
Theorem 3.4, and J (@σ) may have to be strongly monotonic, or satisfy a subterm property.

in the rule removal setting, J (@σ) = λλfn~m.f(n, ~m) + n(~0);
in the dynamic dependency pairs setting, J (@σ) = λλfn~m.max(f(n, ~m), n(~0));
in the static dependency pairs setting, J (@σ) = λλfn~m.f(n, ~m).

In the rule removal setting this choice together with the constraints on the parameters guar-
antees that all J (f) are strongly monotonic in the arguments required by the definition of an
extended monotonic algebra and Theorem 3.8. In the dynamic dependency pairs setting, we
obtain the required subterm property as demonstrated in Example 3.6. Moreover, in this set-
ting always Jf(s1, . . . , sn) ·sn+1 · · · smKJ ,α = max(J (f)(Js1KJ ,α, . . . , JsnKJ ,α, Jsn+1KJ ,α, . . . ,
JsmKJ ,α), Jsn+1KJ ,α(~0), . . . , JsmKJ ,α(~0)) = J (f)(Js1KJ ,α, . . . , JsmKJ ,α) by the restriction on
the parameters. Thus, although we now also need to deal with the max-operator, it will only
ever occur on the right-hand side of a constraint! Since this avoids the need for conditional
constraints as used in [11] (without losing any power), it both simplifies the automation and
creates smaller constraints.

From these parametric higher-order polynomials, we calculate the interpretations of
terms, and simplify the resulting higher-order polynomials into a sum of monomials. For the
constraints l (%)r, in general we use constraints JlKJ ,α ≥ JrKJ ,α + o for some fresh bit o (a
parameter whose value ranges over {0, 1}), and require that the sum of these bits is positive.

I Example 5.1 (Running Example). To demonstrate the technique, consider rule removal on
the recursive rule of the common map example, which gives the constraint map(F, cons(h, t)) (%)

6 In case the constraint solver does not find a solution for this interpretation shape, WANDA additionally
includes non-linear monomials ci,j · xi · xj (where i < j) without functional variables in the parametric
higher-order polynomials and tries again. In general, here one can use arbitrary parametric polynomials.

C. Fuhs and C. Kop 187

cons(F · h,map(F, t)). We assign: J (cons) = λλnm.a1 · n + a2 · m + a3 and J (map) =
λλfn.a4 · f(0) + a5 · n+ a6 · n · f(n) + a7.7 This leads to the following constraints:

a1, a2, a4, a5 ≥ 1, o1 ≥ 1 (we could also immediately replace o1 by 1).
a7 + a3 · a5 + a1 · a5 · h+ a2 · a5 · t+ a4 · F (0) + a1 · a6 · h · F (a1 · h+ a2 · t+ a3) + a2 · a6 ·
t · F (a1 · h+ a2 · t+ a3) + a3 · a6 · F (a1 · h+ a2 · t+ a3) ≥ a3 + a2 · a7 + o1 + a1 · h+ a2 ·
a5 · t+ a2 · a4 · F (0) + a1 · F (h) + a6 · t · F (t)

5.2 Simplifying Polynomial Requirements
We obtain requirements that contain variables as well as parameters; they should be read
as “there exist ai, ok such that for all h, t, F the inequalities hold”. To avoid dealing with
claims over all possible numbers or functions we simplify the requirements until they contain
no more variables. To a large extent, these simplifications correspond to the ones used
with automations of polynomial interpretations for first-order rewriting [6], but higher-order
variables in function application present an extra difficulty. To deal with application of
higher-order variables, we will use Lemma 5.2:

I Lemma 5.2. Let F be a weakly monotonic functional and all p, q, pi, qi, si, ri polynomials.
1. F (r1, . . . , rk) · p ≥ F (s1, . . . , sk) · q if r1 ≥ s1, . . . , rk ≥ sk, p ≥ q.
2. r1 · p1 + . . .+ rn · pn ≥ s1 · q1 + . . .+ sm · qm if there are ei,j for 1 ≤ i ≤ n, 1 ≤ j ≤ m with:

a. for all i: ri ≥ ei,1 + . . .+ ei,m;
b. for all j: e1,j + . . .+ en,j ≥ sj;
c. either ei,j = 0 or pi ≥ qj.

Proof. (1) holds by weak monotonicity of F . As for (2), r1·p1+. . .+rn·pn ≥
∑n
i=1

∑m
j=1 ei,j ·

pi by (a), and since ei,j = 0 whenever not pi ≥ qj by (c),
∑n
i=1

∑m
j=1 ei,j ·pi ≥

∑n
i=1

∑m
j=1 ei,j ·

qj =
∑m
j=1

∑n
i=1 ei,j · qj . Using (b),

∑m
j=1

∑n
i=1 ei,j · qj ≥

∑m
j=1 sj · qj as required. J

Lemma 5.2, together with some observations used in the first-order case, supplies the theory
we need to simplify the requirements to constraints which do not contain any variables. Here,
a “component” of a monomial a1 · · · an is any of the ai (but p is not a component of F (p)).

1. Do standard simplifications on the constraints, for instance replacing 3·F (n) ≥ F (n)+a1·n
by 2 · F (n) ≥ a1 · n and p+B · p by (B + 1) · p if B is a known constant, and removing
monomials 0 · p. Remove constraints p ≥ 0 and p ≥ p which always hold.

2. Split constraints 0 ≥ p1 + . . . + pn into the n constraints 0 ≥ pi. Remove constraints
0 ≥ a where a is a single parameter, and replace a by 0 everywhere else.
This is valid because, in the natural numbers, 0 ≥ a implies a = 0, and 0 + . . .+ 0 = 0.

3. Replace constraints P ≥ Q[max(r, s)] by the two constraints P ≥ Q[r] and P ≥ Q[s].
This is valid because for any valuation Q[max(r, s)] equals Q[r] or Q[s].

4. Given a constraint p1 + . . . + pn ≥ pn+1 + . . . + pm where some, but not all, of the
monomials pi contain a component x or x(~q) for some fixed variable x, let A contain the
indices i of those monomials pi which have x or x(~q). Replace the constraint by the two
constraints

∑
i∈A,i≤n pi ≥

∑
i∈A,i>n pi and

∑
i/∈A,i≤n pi ≥

∑
i/∈A,i>n pi. For example,

splitting on n, the constraint 3 · n ·m+ a2 · F (a3 · n+ a4) ≥ 2 + a7 ·m+ F (n) is split
into 3 · n ·m ≥ 0 and a2 ·F (a3 · n+ a4) ≥ 2 + a7 ·m+F (n); subsequently, splitting on F ,
the latter is split into a2 · F (a3 · n+ a4) ≥ F (n) and 0 ≥ 2 + a7 ·m.
This is valid because p1 + p2 ≥ q1 + q2 certainly holds if p1 ≥ q1 and p2 ≥ q2.

7 To ease presentation, in contrast to WANDA here we do not use an addend ai · f(n) for map.

RTA’12

188 Polynomial Interpretations for Higher-Order Rewriting

5. If all non-zero monomials on either side of a constraint have a component x, “divide
out” x. For example, replace the constraint a1 · n + n · n · f(a3, n) ≥ n + a3 · n by
a1 + n · f(a3, n) ≥ 1 + a3, and replace 0 ≥ a5 ·m by 0 ≥ a5.
This is valid because p ·n ≥ q ·n holds if p ≥ q (cf. the absolute positiveness criterion [15]).

6. Replace a constraint s ·x1(p1,1, . . . , p1,k1) · · ·xn(pn,1, . . . , pn,kn) ≥ s ·x1(q1,1, . . . , q1,k1) · · ·
xn(qn,1, . . . , qn,kn) by the constraints s · pi,j ≥ s · qi,j for all i, j.
This is valid by Lemma 5.2(1) and case analysis whether s = 0 or not.

7. Let p1, . . . , pn, q1, . . . , qm be monomials of the form x1(~r1), . . . , xk(~rk), for fixed x1, . . . , xk.
Replace a constraint r1 · p1 + . . .+ rn · pn ≥ s1 · q1 + . . .+ sm · qm with n,m ≥ 1 by the
following constraints, where the ei,j are fresh parameters:

for 1 ≤ i ≤ n: ri ≥ ei,1 + . . .+ ei,m
for 1 ≤ j ≤ m: e1,j + . . .+ en,j ≥ sj
for 1 ≤ i ≤ n, 1 ≤ j ≤ m: ei,j · pi ≥ ei,j · qj (which can be handled with clause 6)

This is valid by Lemma 5.2(2).8

It is easy to see that while a constraint still has variables in it, we can apply clauses to
simplify or split it (taking into account that max does not appear in the left-hand side of
a constraint), and that the clauses also terminate on a system without variables. These
simplifications are not complete: for example, a universally valid constraint F (n) ·n ≥ F (1) ·n
is split into constraints n ≥ n (which holds), and n ≥ 1 (which does not).

I Example 5.3. Let us simplify the constraints from Example 5.1. First, using clause 4 to
group monomials by their variables, we obtain:

a1, a2, a4, a5, o1 ≥ 1
a7 + a3 · a5 ≥ a3 + a2 · a7 + o1

a1 · a5 · h ≥ a1 · h
a2 · a5 · t ≥ a2 · a5 · t
a4 · F (0) + a3 · a6 · F (a1 · h+ a2 · t+ a3) ≥ a2 · a4 · F (0) + a1 · F (h)
a1 · a6 · h · F (a1 · h+ a2 · t+ a3) ≥ 0
a2 · a6 · t · F (a1 · h+ a2 · t+ a3) ≥ a6 · t · F (t)

The 4th and 6th requirements are trivial and can be removed with clause 1. After dividing
away the non-functional variables using clause 5 we have the following constraints left:

a1, a2, a4, a5, o1 ≥ 1
a7 + a3 · a5 ≥ a3 + a2 · a7 + o1

a1 · a5 ≥ a1

a4 · F (0) + a3 · a6 · F (a1 · h+ a2 · t+ a3) ≥ a2 · a4 · F (0) + a1 · F (h)
a2 · a6 · F (a1 · h+ a2 · t+ a3) ≥ a6 · F (t)

The first three are completely simplified. Clauses 7 and 6 replace the last two constraints by:
a4 ≥ e1,1 + e1,2, a3 · a6 ≥ e2,1 + e2,2, e1,1 + e2,1 ≥ a2 · a4, e1,2 + e2,2 ≥ a1

e1,1 · 0 ≥ e1,1 · 0, e1,2 · 0 ≥ e1,2 · h
e2,1 · (a1 · h+ a2 · t+ a3) ≥ e2,1 · 0, e2,2 · (a1 · h+ a2 · t+ a3) ≥ e2,2 · h
a2 · a6 ≥ k1,1, k1,1 ≥ a6, k1,1 · (a1 · h+ a2 · t+ a3) ≥ k1,1 · t

Using clauses 1, 4 and 5, we can simplify the constraints further, and obtain:

8 In the cases where n = 1 or m = 1, some of these parameters are unnecessary; for instance, if n = 1, we
can safely fix e1,j = sj for all j. Our actual implementation uses a few of such special-case optimisations.

C. Fuhs and C. Kop 189

a1, a2, a4, a5, o1 ≥ 1
a7 + a3 · a5 ≥ a3 + a2 · a7 + o1

a3 · a6 ≥ e2,1 + e2,2
e1,1 + e2,1 ≥ a2 · a4

a1 · a5 ≥ a1
a4 ≥ e1,1
e2,2 ≥ a1

e2,2 · a1 ≥ e2,2

a2 · a6 ≥ k1,1
k1,1 ≥ a6

k1,1 · a2 ≥ k1,1

Thus, using a handful of clauses, the requirements are simplified to a number of constraints
with parameters over the natural numbers. In the actual WANDA implementation a few
small optimisations are used; for example, some simplifications are combined, and if max(r, s)
occurs more than once in the same polynomial, all occurrences are replaced by r or s at the
same time. However, these optimisations make no fundamental difference to the method.

After imposing bounds on the search space, we can solve the resulting non-linear con-
straints using standard SAT- [10] or SMT-based [3] techniques (WANDA uses a SAT encoding
similar to [10] with the solver MiniSAT [7] as back-end). If the problem is satisfiable, the
solver returns values for all parameters, so it is easy to see which requirements have been
oriented with >. For map, the solver could provide for example the solution a7 = e2,1 = 0,
a1 = a2 = a3 = a4 = a6 = e1,1 = e2,2 = k1,1 = o1 = 1, and a5 = 2. This results in the
interpretation J (cons) = λλnm.n+m+ 1 and J (map) = λλfn.f(0) + 2 · n+ n · f(n).

6 Experiments

For an empirical evaluation of our contributions, we conducted a number of experiments
with our implementation in WANDA using an Intel Xeon 5140 CPU with four cores at
2.33 GHz (cf. also http://aprove.informatik.rwth-aachen.de/eval/HOPOLO/ for details
on the evaluation). As underlying benchmark set, we used the 156 examples from the higher-
order category of the TPDB version 8.0.1 together with Examples 2.1 and 3.6. WANDA
invokes the SAT solver MiniSAT [7] and the first-order termination prover AProVE [14] as
back-ends. As in the Termination Competition, we imposed a 60 second timeout per example.

The module for polynomial interpretation is called potentially twice with different poly-
nomial shapes, as described at the start of Section 5.1 (cf. Footnote 6). The search space
for the parameters is {0, . . . , 3}. Our first experiment is designed to analyse the impact of
polynomial interpretations coupled with a higher-order dependency pair framework.

Configuration YES NO MAYBE TIMEOUT Avg. time
WANDA full 124 9 23 2 3.19 s

WANDA no poly 119 9 30 0 2.40 s
WANDA no horpo 118 9 28 3 3.59 s

Figure 1 Experimental results of full WANDA with and without polynomials or horpo.

Fig. 1 shows the results of WANDA full, which includes both polynomial interpretations
and HORPO, the other main class of orderings implemented by WANDA (other than that,
WANDA only uses the subterm criterion as an ordering-based technique). They are compared
to versions of WANDA where either polynomials or HORPO are disabled. Although WANDA
already scored highest in the Termination Competition of 2011, adding the contributions of
this paper gives an additional 5 examples on the benchmark set. It is interesting to note that
even without HORPO, WANDA with polynomials can still show termination of 118 examples.

Using the contributions of [12], WANDA delegates the first-order part of a higher-order
rewrite system to the first-order termination tool AProVE, where it is commonplace to use
polynomial interpretations. The setup of our second experiment deals with the impact of
higher-order polynomial interpretations if WANDA does not use a first-order tool.

RTA’12

190 Polynomial Interpretations for Higher-Order Rewriting

Configuration YES NO MAYBE TIMEOUT Avg. time
WANDA no [12] full 118 9 29 2 2.32 s

WANDA no [12] no poly 107 9 42 0 1.09 s
WANDA no [12] no horpo 111 9 35 3 2.89 s

Figure 2 Experimental results of WANDA without first-order back-end.

Fig. 2 juxtaposes the results of WANDA without the first-order prover AProVE in three
configurations. We see that if we disable the first-order back-end, the increase in power by
polynomial interpretations goes up from 5 examples in the first experiment to 11 examples in
the second. Thus, the gain of using a first-order tool can at least partially be compensated
by using native higher-order polynomial interpretations.

Our third experiment investigates the impact of higher-order polynomial interpretations
if no dependency pairs are used (which also excludes first-order termination tools). Here we
compare to the version of HORPO implemented in WANDA.

Configuration YES NO MAYBE TIMEOUT Avg. time
Rule Removal both 76 9 70 3 3.60 s

Rule Removal horpo 69 9 80 0 1.01 s
Rule Removal poly 47 9 97 5 3.64 s

Figure 3 Experimental results of WANDA with rule removal (and without dependency pairs).

Using just rule removal, HORPO clearly trumps polynomial interpretations. However, in
part this may be due to the limited choice in interpretation shapes this first implementation
of polynomial interpretations supports.

Discussion. Analysing the termination problem database, it is perhaps not surprising that
the gain from using polynomial interpretations in the first experiment is not larger: the
majority of the benchmarks which WANDA cannot already handle is non-terminating, or
not known to be terminating (for example, state-of-the-art first-order tools cannot prove
termination of the first-order part). For others, type-conscious methods such as accessibility
(see e.g. [2]) are required; the method described in this paper ignores differences in base types.
For cases where polynomial interpretations are needed, but only for the (truly) first-order
part, passing this first-order part [12] to a modern first-order tool already suffices – as is
evident by comparing the numbers in the first and second experiments. With higher-order
polynomial interpretations, we have gained three out of the remaining seven benchmarks.

7 Conclusion

In this paper, we have extended the termination method of weakly monotonic algebras
to the class of AFSs, simplifying definitions and adding the theory to use algebras with
rule removal and dependency pairs; some efforts towards this were previously made in [20],
but only for the setting of dynamic dependency pairs. Then, we introduced the class of
higher-order polynomial interpretations, and discussed how suitable interpretations can be
found automatically. The implementation of polynomial interpretations increases the power
of WANDA by a respectable five benchmarks, including the two examples in this paper.

Thus, weakly monotonic algebras form an elegant method for proving termination by hand
and, as demonstrated by the implementation in WANDA and the results of the experiments,
a feasible automatable termination method as well.

C. Fuhs and C. Kop 191

Future Work. We have by no means reached the limit of what can be achieved with this
technique: we might consider different interpretation shapes, possibly coupled with heuristics
to determine a suitable shape. Or we may go beyond polynomials; we could for instance use
max in function interpretations as done in e.g. [11], or (for a truly higher-order alternative),
use repeated function application; this leads to interpretations like λλnmf.max(m, fn(m)).9

Another alley to explore is to combine polynomial interpretations with type interpretations:
rather than collapsing all base types into one, we might translate them, e.g. mapping a
base type funclist to o⇒o. WANDA already does this in very specific cases, and one could
simultaneously search for polynomial interpretations and for a type interpretation – this could
parallel the search for type orderings in implementations of the recursive path ordering [2].

Moreover, in the first-order world, there are many more applications of monotonic algebras,
e.g. matrix, arctic, rational, real and integer interpretations. . . There is no obvious reason
why these methods cannot be lifted to the higher-order case as well!

References
1 T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. Theoretical

Computer Science, 236(1-2):133–178, 2000.
2 F. Blanqui, J.-P. Jouannaud, and A. Rubio. The computability path ordering: The end of

a quest. In Proc. CSL 2008, LNCS 5213, pages 1–14, 2008.
3 C. Borralleras, S. Lucas, A. Oliveras, E. Rodríguez-Carbonell, and A. Rubio. SAT mod-

ulo linear arithmetic for solving polynomial constraints. Journal of Automated Reasoning,
48(1):107–131, 2012.

4 C. Borralleras and A. Rubio. THOR – a higher-order termination tool. http://www.lsi.
upc.edu/~albert/term.html.

5 C. Borralleras and A. Rubio. A monotonic higher-order semantic path ordering. In Proc.
LPAR 2001, LNAI 2250, pages 531–547, 2001.

6 E. Contejean, C. Marché, A. P. Tomás, and X. Urbain. Mechanically proving termination
using polynomial interpretations. Journal of Automated Reasoning, 34(4):325–363, 2005.

7 N. Eén and N. Sörensson. An extensible SAT-solver. In Proc. SAT 2003, LNCS 2919, pages
502–518, 2004.

8 J. Endrullis. Jambox. http://joerg.endrullis.de/.
9 J. Endrullis, J. Waldmann, and H. Zantema. Matrix interpretations for proving termination

of term rewriting. Journal of Automated Reasoning, 40(2-3):195–220, 2008.
10 C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann, and H. Zankl. SAT

solving for termination analysis with polynomial interpretations. In Proc. SAT 2007, LNCS
4501, pages 340–354, 2007.

11 C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann, and H. Zankl. Maximal
termination. In Proc. RTA 2008, LCNS 5117, pages 110–125, 2008.

12 C. Fuhs and C. Kop. Harnessing first order termination provers using higher order depend-
ency pairs. In Proc. FroCoS 2011, LNAI 6989, pages 147–162, 2011.

13 C. Fuhs and C. Kop. Polynomial interpretations for higher-order rewriting. Technical
Report arXiv:1203.5754 [cs.LO], 2012. http://arxiv.org/abs/1203.5754.

14 J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic termination proofs
in the dependency pair framework. In Proc. IJCAR 2006, LNAI 4130, pages 281–286, 2006.

15 H. Hong and D. Jakuš. Testing positiveness of polynomials. Journal of Automated Reas-
oning, 21(1):23–38, 1998.

9 The max is essential in this interpretation because λλnmf.fn(m) is not weakly monotonic. A case
analysis whether m ≥ f(m) or f(m) ≥ m shows that λλnmf.max(m, fn(m)) is weakly monotonic.

RTA’12

192 Polynomial Interpretations for Higher-Order Rewriting

16 J.-P. Jouannaud and M. Okada. A computation model for executable higher-order algebraic
specification languages. In Proc. LICS 1991, pages 350–361, 1991.

17 J.-P. Jouannaud and A. Rubio. Polymorphic higher-order recursive path orderings. Journal
of the ACM, 54(1):1–48, 2007.

18 C. Kop. WANDA – a higher order termination tool. http://few.vu.nl/~kop/code.html.
19 C. Kop. Simplifying algebraic functional systems. In Proc. CAI 2011, LNCS 6742, pages

201–215, 2011.
20 C. Kop and F. van Raamsdonk. Higher order dependency pairs for algebraic functional

systems. In Proc. RTA 2011, LIPIcs 10, pages 203–218, 2011.
21 C. Kop and F. van Raamsdonk. Dynamic dependency pairs for algebraic functional sys-

tems. Logical Methods in Computer Science, 2012. Special Issue of the 22nd International
Conference on Rewriting Techniques and Applications (RTA 2011). To appear.

22 M. Korp, C. Sternagel, H. Zankl, and A. Middeldorp. Tyrolean Termination Tool 2. In Proc.
RTA 2009, LNCS 5595, pages 295–304, 2009.

23 K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static dependency pair method based on
strong computability for higher-order rewrite systems. IEICE Transactions on Information
and Systems, 92(10):2007–2015, 2009.

24 D. Lankford. On proving term rewriting systems are Noetherian. Technical Report MTP-3,
Louisiana Technical University, Ruston, LA, USA, 1979.

25 T. Nipkow. Higher-order critical pairs. In Proc. LICS 1991, pages 342–349, 1991.
26 J. van de Pol. Termination proofs for higher-order rewrite systems. In Proc. HOA 1993,

LNCS 816, pages 305–325, 1994.
27 J.C. van de Pol. Termination of Higher-order Rewrite Systems. PhD thesis, University of

Utrecht, 1996.
28 M. Sakai, Y. Watanabe, and T. Sakabe. An extension of the dependency pair method for

proving termination of higher-order rewrite systems. IEICE Transactions on Information
and Systems, E84-D(8):1025–1032, 2001.

29 Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 2003.

30 Wiki. Termination portal. http://www.termination-portal.org/.

On Soundness Conditions for Unraveling
Deterministic Conditional Rewrite Systems∗

Karl Gmeiner, Bernhard Gramlich, and Felix Schernhammer

Faculty of Informatics, TU Wien, Austria
{gmeiner,gramlich,felixs}@logic.at

Abstract
We study (un)soundness of transformations of conditional term rewriting systems (CTRSs) into
unconditional term rewriting systems (TRSs). The focus here is on analyzing (un)soundness
of so-called unravelings, the most basic and natural class of such transformations. We extend
our previous analysis from normal 1-CTRSs to the more general class of deterministic CTRSs
(DCTRSs) where extra variables in right-hand sides of rules are allowed to a certain extent. We
prove that the previous soundness results based on weak left-linearity and on right-linearity can
be extended from normal 1-CTRSs to DCTRSs. Counterexamples show that such an extension
to DCTRSs does not work for the previous criteria which were based on confluence and on non-
erasingness, not even for right-stable systems. Yet, we prove weaker versions of soundness criteria
based on confluence and on non-erasingness. Finally, we compare our approach and results with
other recently established soundness criteria for unraveling DCTRSs.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases Conditional term rewriting system (CTRS), deterministic CTRS, trans-
formation, simulation, soundness

Digital Object Identifier 10.4230/LIPIcs.RTA.2012.193

Category Regular Research Paper

1 Introduction and Overview

1.1 Background and Motivation
Unconditional term rewriting systems (TRSs) are very well studied and enjoy many nice
properties. However, often TRSs are insufficient to appropriately model computations or
specifications, since the applicability of rules is inherently conditional. Thus, conditional
term rewriting systems (CTRSs) naturally arise in many settings and examples. Since con-
ditional rewriting is known to be much more involved than unconditional rewriting, both in
theory and in practice, an attractive approach to analysis and implementation of CTRSs con-
sists in transforming them into unconditional TRSs where ordinary (unconditional) rewriting
can simulate the original conditional computations.

There exists abundant literature on conditional rewriting, cf. e.g. [16, 3] and also on
transforming CTRSs into TRSs, where computation is sometimes restricted by further mech-
anism like membership constraints, context-sensitivity or imposed reduction strategies so as
to avoid reductions which have no counterpart in the conditional setting (cf. e.g. [6, 8, 14, 13,
17, 19]). Typically, completeness of such transformations (w.r.t. reduction) is easily obtained

∗ The first author was supported by a grant of the Vienna PhD School of Informatics, the last author
by a grant of the Austrian Academy of Sciences (ÖAW-DOC grant No. 22361).

© Karl Gmeiner, Bernhard Gramlich, and Felix Schernhammer;
licensed under Creative Commons License NC-ND

23rd International Conference on Rewriting Techniques and Applications (RTA’12).
Editor: A. Tiwari; pp. 193–208

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

194 On Soundness Conditions for Unraveling Deterministic Conditional Rewrite Systems

and proved (by construction). However, soundness is much more difficult to analyze and to
achieve. The reason simply is that in the encoding much more fine-grained rewrite compu-
tations are possible and potentially dangerous, since they may lead to reductions between
terms in the original signature which have not been possible in the original CTRS.

Concerning soundness of transformations using restricted versions of unconditional re-
writing various positive and negative results are known. But concerning soundness of trans-
formation approaches using unrestricted unconditional rewriting little was known until re-
cently, and mostly only for the simplest class of CTRSs, namely oriented normal 1-CTRSs,
and only for the simplest class of such transformations, the unravelings ([10]).1

The first important soundness result for unravelings is due to Marchiori [10] who showed
that unraveling left-linear normal 1-CTRSs is sound (cf. also [16]). In [12] and — based on
this paper — recently in [15] Nishida et al. presented an analysis of (a slightly optimized
form of) unraveling deterministic CTRSs (DCTRSs), an interesting subclass of 3-CTRSs,
where they showed that soundness is guaranteed if the transformed system is either left-
linear or both right-linear and non-erasing. In [8] we have shown that a few other sufficient
soundness criteria for the case of normal 1-CTRSs exist, including confluence and non-
erasingness. Moreover, we could show there that instead of left-linearity even weak left-
linearity is sufficient for soundness. In weakly left-linear systems one may have non-left-
linear rules like eq(x, x)→ true where the non-linear variables are erased.

Here we extend our analysis for normal 1-CTRSs also to the practically important class
of DCTRSs, and finally compare the approach and results with the ones of [15].

1.2 Contributions
First we discuss simultaneous versus sequential unravelings. A careful analysis reveals that
instead of simultaneously unraveling normal 1-CTRSs as in [16, 8], a sequential unraveling
is also perfectly possible thus enforcing a simulated evaluation of the conditions from left to
right. In the case of DCTRSs sequentially unraveling still yields an ordinary unconditional
TRS, although the original DCTRS may have extra variables in the right-hand sides and
the conditions of rules. A careful analysis reveals that for normal 1-CTRSs all soundness
results for the simultaneous case from [8] extend to the sequential case.

Our main results for transforming DCTRSs into TRSs via sequential unravelings are the
following:

We show that various tempting extensions of the soundness results for normal 1-CTRSs
to DCTRSs do not hold, even for quite restricted sub-classes of DCTRSs, in particular
potential criteria based on confluence and on non-erasingness (as in [8]), cf. Example
3.1).
Our main positive result is that weak left-linearity of a DCTRS is already sufficient for
soundness of its transformed version (Theorem 3.28).
For non-erasingness, we show that we obtain soundness only for a restricted class of
DCTRSs (Theorem 3.16).
Furthermore, we show that right-linearity of the transformed system is also a sufficient
condition for soundness (Theorem 3.11).
Regarding confluence, we only get a weaker soundness criterion w.r.t. reduction to normal
form (Theorem 3.11).

1 The very idea of unravelings is actually much older and appears already e.g. in [4], though in a spe-
cialized form (for function definitions).

K. Gmeiner, B. Gramlich, and F. Schernhammer 195

The rest of the paper is structured as follows. In Section 2 we present the necessary technical
and conceptual background. The main Section 3 contains the soundness analysis. In Section
4 we discuss related work, especially [12, 15], and promising directions for future research.

Due to space restrictions, for some results we only sketch the proof or give its main idea
and the underlying intuition. Full proofs of these results are provided in the long Technical
Report version [9] of this paper.

2 Preliminaries

We assume familiarity with the basic concepts and notations of abstract reductions systems
(ARSs) and (conditional) term rewriting systems (CTRSs) (cf. e.g. [2], [16], [3]).

2.1 Basics
For the sake of readability we recall some notions and notations: The set of (non-variable,
variable) positions of a term s is denoted as Pos(s) (FPos(s), VPos(s)). root(s) denotes
the root symbol of the term s. Throughout the paper V denotes a countably infinite set of
variables. x, y, z denote variables from V. By Var(s) we denote the set of variables of a term
s. If X = {x1, . . . , xn} is a set of variables, we denote by ~X the sequence of all variables
in X in some arbitrary but fixed order (e.g. with: if X ⊆ Y , then ~X is a prefix of ~Y). By
|s1, . . . , sn|x we mean the number of occurrences of the (variable) symbol x in s1, . . . , sn.

A term rewriting system R is a pair (F , R) of a signature and a set of rewrite rules
over this signature. Slightly abusing notation we also write R instead of R (leaving the
signature implicit). A rewrite system R is called non-erasing (NE) if Var(r) = Var(l) for all
l → r ∈ R, and left-linear (LL) (right-linear (RL)) if every x ∈ Var(l) (x ∈ Var(r)) occurs
exactly once in l (r) for all rules l → r ∈ R. The function lin : T → T renames non-linear
variables into fresh new variables while keeping the linear ones.

We denote a rewrite step from a term u to a term v at position p in a rewrite system R
with a rule α from R as u→p,R,α v. We skip p,R or α if they are clear from the context
or of no relevance. The parallel reduction at positions P ⊆ Pos(u) is denoted as u ‖→P,R v.

The set of one-step descendants of a (subterm) position p of a term u w.r.t. a (one-step)
reduction u = C[s]p →q v is the set of positions in v given by {p}, if q ≥ p or q ‖ p;
{q.o′.p′ | t|q = lσ, l|o ∈ Var(l), q.o.p′ = p, l|o = r|o′}, if q < p and (a superterm of) s is bound
to a variable in the matching of u|q with the lhs of the applied rule; and ∅, otherwise. Slightly
abusing terminology, when u = C[s]p →q v with set {p1, . . . , pk} of one-step descendants
of p in v, we also say that u|p has the one-step descendants v|pi in v. The descendant
relation (w.r.t. given derivations) is obtained as the (reflexive-)transitive closure of the one-
step descendant relation. The relation of (one-step) ancestors of a subterm position (w.r.t.
a given reduction sequence) is the inverse relation of the (one-step) descendant relation.

A conditional term rewriting system R (over some signature F) consists of rules l →
r ⇐ c where l 6∈ V and c is a conjunction of equations si = ti. Equality in the conditions
may be interpreted (recursively) e.g. as ↔∗ (semi-equational case), as ↓ (join case), or as
→∗ (oriented case). In the latter case, if all right-hand sides of conditions are ground terms
that are irreducible w.r.t. the unconditional version Ru = {l → r | l → r ⇐ c ∈ R} of R,
the system is said to be a normal CTRS. Subsequently, unless otherwise stated, we will
always consider oriented CTRSs.

According to the distribution of variables, a conditional rule l → r ⇐ c may satisfy
(1) Var(r) ∪ Var(c) ⊆ Var(l), (2) Var(r) ⊆ Var(l), (3) Var(r) ⊆ Var(l) ∪ Var(c), or (4)
no variable constraints at all. If all rules of a CTRS R are of type (i), 1 ≤ i ≤ 4, we

RTA’12

196 On Soundness Conditions for Unraveling Deterministic Conditional Rewrite Systems

say that R is an i-CTRS. Given a conditional rewrite rule l → r ⇐ c and a variable x
such that x ∈ Var(r) ∪ Var(c) but x 6∈ Var(l), we say that x is an extra variable. An
oriented 3-CTRS R is called deterministic if for every conditional rule l → r ⇐ s1 →∗
t1, . . . , sn →∗ tn we have Var(si) ⊆ Var(l, t1, . . . , ti−1). Note that a normal 1-CTRS is by
definition also a DCTRS. A DCTRS R is right-stable (RS, cf. [18]) if for every conditional
rule l → r ⇐ s1 →∗ t1, . . . , sn →∗ tn we have Var(l, s1, t1, . . . , si−1, ti−1, si) ∩ Var(ti) = ∅,
and ti is a linear constructor term or a ground Ru-normal form for all 1 ≤ i ≤ n. To
simplify the presentation of some results we will sometimes denote conditional rules as
t0 → sn+1 ⇐ s1 →∗ t1, . . . , sn →∗ tn.

The rewrite relation of an oriented CTRS R is inductively defined as follows: R0 = ∅,
Rj+1 = {lσ → rσ | l → r ⇐ s1 →∗ t1, . . . , sn →∗ tn ∈ R ∧ siσ →∗Rj tiσ for all 1 ≤ i ≤ n},
and →R=

⋃
j≥0 →Rj .

2.2 Unravelings
There exists abundant literature on transforming CTRSs into unconditional systems. For
a unified parameterized approach to such transformations and the relevant terminology we
refer to [7]. Unravelings as introduced and investigated in [10] are the most simple and
intuitive ones. We present here a sequential version of unraveling for DCTRS.

I Definition 2.1 (sequential unraveling of DCTRSs, [16]). Let R be a DCTRS. For every
conditional rule α : l → r ⇐ s1 →∗ t1, . . . , sn →∗ tn we use n new function symbols Uαi
(i ∈ {1, . . . , n}). Then α is transformed into a set of unconditional rules as follows:2

Useq(α) = {l→ Uα1 (s1, ~X1) , Uα1 (t1, ~X1)→ Uα2 (s2, ~X2) , . . . , Uαn (tn, ~Xn)→ r}

where Xi = Var(l, t1, . . . , ti−1). Any unconditional rule β of R is transformed into itself:
Useq(β) = {β}. The transformed system Useq(R) = R′seq = (F ′, R′) is obtained by trans-
forming each rule of R where F ′ is F extended by all new function symbols.

The simultaneous unraveling of a rule α from R as above just yields one introduction
rule and one elimination rule: Usim(α) = {l → Uα(s1, . . . , sn, ~X) , Uα(t1, . . . , tn, ~X) → r}
where X = Var(l, t1, . . . , tn−1).

Unconditional rules remain invariant. The resulting (unraveled) TRS is denoted by
Usim(R) or R′sim.
I Remark (simultaneous versus sequential unraveling). Note that for a normal 1-CTRS R,
Usim(R) is indeed a TRS. However, for a given DCTRS R its simultaneously unraveled
system Usim(R) does in general not satisfy the variable condition of TRSs Var(r) ⊆ Var(l)
for its rules l→ r.

In [15], an “optimized” version Uopt of Useq is presented. In Uopt variable bindings are
only passed along the computation process if they are eventually used again. Intermediate
results in other variables bindings are dropped. The conditional rule α is thereby transformed
into Uopt(α) = {l → Uα1 (s1, ~X1) , Uα1 (t1, ~X1) → Uα2 (s2, ~X2) , . . . , Uαn (tn, ~Xn) → r} where
Xi = Var(l, t1, . . . , ti−1) ∩ Var(ti, si+1, ti+1, . . . , sn, tn, r).

Symbols from F ′ \ F are also called U -symbols. Terms rooted by such symbols are
called U -terms or U -rooted terms. Terms containing U -terms are mixed terms (as opposed

2 Using
−−−−→Var(s) as sequence of the variables in s goes back to [16], whereas in [10] the sequence is

constructed from the multiset of variables in s. The former version appears to be generally preferable,
because it is more abstract and avoids additional complications due to “non-synchronization effects”.

K. Gmeiner, B. Gramlich, and F. Schernhammer 197

to original terms). Every U -symbol corresponds to a particular conditional rewrite rule of
the original CTRS according to Definition 2.1. Hence, we write Uαj to indicate that Uαj
corresponds to the rewrite rule α. Rewrite rules l → r of an unraveled DCTRS are called
original unconditional rules if neither root(l) nor root(r) is a U -symbol, U -introduction rules
if root(l) is not a U -symbol and root(R) is a U -symbol, U -switch rules (or just switch rules)
if both root(l) and root(r) are U -symbols and U -elimination rules if root(l) is a U -symbol
and root(r) is not a U -symbol.

If a property P is satisfied in the transformed DCTRS Useq(R) (Uopt(R)) then R satisfies
the ultra-property, ultra-P w.r.t. Useq (Uopt) (cf. [10]) or short U-P (Uopt-P). Observe, that
Uopt-P is in many cases different from U-P. While U-LL is equivalent to Uopt-LL, Uopt-RL
and Uopt-NE are more general than Useq-RL and Useq-NE, respectively.

From now on, unless stated otherwise, U is the unraveling Useq, R = (F , R) is a DCTRS
and R′ = (F ′, R′) denotes its unraveled TRS (using U). By T we mean the terms over the
original signature F and by T ′ the terms over the extended signature F ′.

For proof-technical reasons, in particular in order to show that unraveled systems are
not too general and do not enable “too many” reductions, we use a function that maps
mixed terms to original terms. The idea of this function is to recursively substitute for
each U -term the left-hand side of the corresponding conditional rule instantiated by the
substitution which is determined by the variable bindings stored in the U -term.

I Definition 2.2 (translate backwards (tb)). Let R = (F , R) be a DCTRS. The mapping
tb : T ′ → T (read “translate back”) which is equivalent to Ohlebusch’s mapping ∇ ([16,
Definition 7.2.53]) is defined as follows:

tb(t) =

x if t = x ∈ V
f(tb(t1), . . . , tb(tar(f))) if t = f(t1, . . . , tar(f)) and f ∈ F
lσ if t = Uαj (u, v1, . . . , vk) and xiσ = tb(vi) for 1 ≤ i ≤ k

where α is the rule l→ r ⇐ c and
−−−−→Var(l) = x1, . . . , xk′ (1 ≤ k′ ≤ k).

Observe, that tb cannot be sensibly defined for Uopt , since in Uopt not all variable bindings
of the left-hand side of rules are preserved in U -terms.

In this paper we focus on the property of soundness of unravelings which is dual to
the (easier to obtain) property of completeness. An unraveling is said to be complete for
reduction (or simulation-complete) for a class of CTRSs if for every CTRS R of this class,
u→∗R v for u, v ∈ T implies u→∗R′ v. An unraveling is sound for reduction (or simulation-
sound) if u→∗R′ v implies u→∗R v. We use the notion of soundness for reduction to normal
form, which means that u →∗R′ v with v being a normal form implies u →∗R v. Given a
particular CTRS R, we also say that the unraveling is complete (sound) for R or, slightly
abusing terminology, that R′ is complete (sound) w.r.t. R. For a more thorough discussion
of the terminology used for (preservation properties of) transformations we refer to [7].

3 Sufficient Criteria for Soundness of Unraveling DCTRSs

For the case of a normal 1-CTRS R it was shown in [8] that R can soundly be (simultan-
eously) unraveled provided that it is either confluent, or non-erasing, or weakly left-linear or
contains only ground conditions. A careful inspection of the proofs in [8] reveals that when
using sequential instead of simultaneous unraveling the same results can also be proved in
essentially the same way.

RTA’12

198 On Soundness Conditions for Unraveling Deterministic Conditional Rewrite Systems

The main additional complication is here that when analyzing reduction sequences in
the sequential unraveling case one now has not just one introduction and one elimination
step for α : l→ r ⇐ s1 →∗ t1, . . . , sn →∗ tn, but also n− 1 intermediate switch rule steps of
the shape Uαi (ti, ~Xi)→ Uαi+1(si+1, ~Xi+1).

When considering general DCTRSs instead of normal 1-CTRSs, there are two major
sources of complication. First, right-hand sides of conditions of rules in DCTRSs need not
be ground normal forms, and second, these right-hand sides may introduce extra variables
that do not occur in the left-hand side of the conditional rule. Both of these properties
indeed cause unsoundness in general even for e.g. confluent and U-NE systems (cf. Example
3.1 below). Thus, it is necessary to restrict our results to certain classes of DCTRSs (cf. e.g.
Theorems 3.6, 3.11 and 3.16 below).

3.1 Negative Results
Let us consider potential criteria for soundness of unraveling DCTRSs, namely confluent
(CR) DCTRSs and DCTRSs R where R′ is non-erasing (i.e., R is U-NE). Unfortunately,
both of these criteria do not extend to DCTRSs.

I Example 3.1. Consider the U-NE and RS DCTRS R = R1 ∪ R2 ∪ R3 where

R1 =

a→ c s(c)→ t(k)
↗↘ ↘

b→ d t(l)

R2 = {g(x, x)→ h(x, x)}

R3 = {f(x)→ 〈x, y〉 ⇐ s(x)→∗ t(y)}

Unraveling of R yields R′ = R1 ∪ R2 ∪ {f(x)→ Uα1 (s(x), x) , Uα1 (t(y), x)→ 〈x, y〉}. R′
gives rise to the derivation

g(f(a), f(b)) ‖→ g(Uα1 (s(a), a), Uα1 (s(b), b))→∗ g(Uα1 (s(c), d), Uα1 (s(c), d))
→ h(Uα1 (s(c), d), Uα1 (s(c), d))→∗ h(Uα1 (t(k), d), Uα1 (t(l), d))→∗ h(〈d, k〉, 〈d, l〉) .

However, to get this reduction g(f(a), f(b))→∗ h(〈d, k〉, 〈d, l〉) in R, we need a term v ∈ T
such that (1) s(v)→∗R t(w) where w ∈ {k, l}, (2) a→∗R v and b→∗R v, and (3) v →∗R d. By
(1) and (2) v = c, yet this contradicts (3).

The DCTRS R ∪ { c → e ← d , k → e ← l , s(e) → t(e) } is even confluent. Note
that this DCTRS is even operationally terminating (or, equivalently quasi-decreasing), cf.
[6, 17]. Although h(〈d, k〉, 〈d, l〉) can now be reduced to h(〈e, e〉, 〈e, e〉) and g(f(a), f(b))→∗R
h(〈e, e〉, 〈e, e〉), still g(f(a), f(b)) 6→∗R h(〈d, k〉, 〈d, l〉) by the same argument as above.

Example 3.1 shows that neither confluence nor U-NE are sufficient for soundness of
unraveling DCTRSs, even if the system is right-stable and terminating.

For NE, the reason why an extension of the proof approach of [8] to (RS) DCTRSs is
not possible in the general case, lies in the fact that for the construction in [8] we used a
“translation forward” tf from reductions in the unraveled system to reductions in the original
system. From an intermediate stage of evaluating the conditions of the unraveled version
of some rule l → r ⇐ c we would need to calculate the final substitution for the right-hand
side. However, this is in general impossible due to the incremental left-to-right computation
character in DCTRSs. In fact, in Example 3.1, from the term Uα1 (s(c), c)) (with x = c) we
get two possible instances for y, namely k and l. Therefore tf cannot be sensibly defined
here.

K. Gmeiner, B. Gramlich, and F. Schernhammer 199

3.2 Confluence
Considering again Example 3.1 (the confluent version), we see that in the unsound R′-
reduction g(f(a), f(b)) →∗R′ h(〈d, k〉, 〈d, l〉) the result is not a normal form. If we only
consider reduction from original terms to original terms which are normal forms then we
can indeed guarantee soundness in the case of confluent right-stable DCTRSs. The proof
works similar to the one for confluent normal 1-CTRSs, however, now instead of normality
we exploit the fact that the final result of the reduction considered is a normal form.

Due to the specific structure of rules in unraveled DCTRSs, whenever there is an R′
reduction D : s→∗ Uαj (v, x1, . . . , xn)σ where s ∈ T , then intuitively the reduction sequences
siσi → tiσi+1 that explicitly satisfy the conditions si →∗ ti for all 1 ≤ i < j of the conditional
rule α : l→ r ⇐ s1 →∗ t1, . . . , sn →∗ tn must have occurred as subreductions of D (for some
substitutions σi where xσi →∗R′ xσi+1 for all i and all x). This observation is formalized in
the following lemma (which is used e.g. in the proof of Lemma 3.4 below).

I Lemma 3.2 (extraction of condition evaluation). Let R be a DCTRS. If u1 →R′ u2 →R′
· · · →R′ un →R′ v (u1 ∈ T), v|p = Uαj (v1, . . . , vm) for some position p and α = l → r ⇐
s1 →∗ t1, . . . , sn →∗ tn, then there exist substitutions σ1, . . . , σj such that

siσi →∗R′ tiσi+1 for all 1 ≤ i < j, sjσj →∗R′ v1; and
x ∈ Dom(σi) ∩ Dom(σi+1) implies xσi →∗R′ xσi+1 for all 1 ≤ i < j; and
if Uαj (tj , x2, . . . , xm) is the left-hand side of the unique rule of R′ defining Uαj , then
xiσj →∗R′ vi for all 2 ≤ i ≤ m.

Moreover, for each single reduction step s→R′ t in the reductions siσi →∗R′ tiσi+1, sjσj →∗R′
v1, xσi →∗R′ xσi+1 and xiσj →∗R′ vi, there exists an index k ≤ n and a position q such that
uk|q = s and uk+1|q = t.

Proof. Straightforward by induction on the length of D. J

For the case of normal 1-CTRSs, confluence of a DCTRS R is a sufficient criterion for
soundness of R′ (cf. [8]). Normality of right hand-sides of conditions is vital for this result,
because it means that if a conditional rule α : l → r ⇐ s1 →∗ t1, . . . , sn →∗ tn is applicable
to a term lσ ∈ T , then it is also applicable to a term lσ′ ∈ T if xσ →∗R xσ′ for all variables
x. This is because applicability of α to lσ means that siσ →∗R ti for all 1 ≤ i ≤ n. Moreover,
we have siσ →∗R siσ

′ and thus by confluence and normality of ti we obtain siσ′ →∗R ti for
all 1 ≤ i ≤ n.

This observation leads to the conjecture that confluence of a right-stable DCTRS is suf-
ficient for soundness of R′, because for right-stable DCTRSs right-hand sides of conditions
are either ground normal forms or constructor terms with fresh variables. Hence, we have
siσ
′ → tiθ

′
i for all 1 ≤ i ≤ n and some substitution θ′i provided that l → r ⇐ s1 →∗

t1, . . . , sn →∗ tn is a right-stable rewrite rule, siσ →∗R tiθ for all 1 ≤ i ≤ n and xσ →∗R xσ′

for all variables x. Indeed, as the following lemmas and Theorem 3.6 below show, R′ is
sound w.r.t. reductions to normal forms, provided that R is confluent and right-stable.

The following lemma states a monotonicity property of tb w.r.t. joining reductions. It is
comparable to Lemma 3.8 in [8].

I Lemma 3.3. Let R = (F , R) be a DCTRS. If s →p,R′ t and tb(s|p) ↓R tb(t|p), then
tb(s|q) ↓R tb(t|q′) for every descendant t|q′ of s|q.

Proof Sketch. For the interesting case of p ≤ pi we use induction on the length of q where
p.q = pi. J

RTA’12

200 On Soundness Conditions for Unraveling Deterministic Conditional Rewrite Systems

The next lemma is the key lemma for proving soundness of R′ for reduction to normal
form of confluent right-stable DCTRSs.

I Lemma 3.4 (technical key lemma). Let R = (F , R) be a confluent right-stable DCTRS and
let D : u1 →p1,R′ u2 →p2,R′ . . . →pn−1,R′ un be a R′ reduction sequence where u1 ∈ T and
ui ∈ T ′ for all 1 ≤ i ≤ n. Then tb(ui|pi) ↓R tb(ui+1|pi) for all 1 ≤ i < n.

Proof Sketch. Proof by induction on the length ofD and case distinction on the rule applied
in the last step of D. J

I Lemma 3.5. Let R = (F , R) be a confluent right-stable DCTRS and let D : u1 →p1,R′
u2 →p2,R′ . . . →pn−1,R′ un be a R′ reduction sequence where u1, un ∈ T , ui ∈ T ′ for all
1 ≤ i ≤ n and un is a normal form. Then u1 →∗R tb(un).

Proof. By Lemma 3.4, tb(ui|pi) ↓R tb(ui+1|pi) for all i ∈ {1, . . . , n − 1}. By Lemma 3.3,
tb(ui|ε) ↓R tb(ui+1|ε). Since un is a normal form and by confluence of R this implies
u1 →∗R tb(un). J

I Theorem 3.6. Let R be a confluent right-stable DCTRS. Then Useq is sound for reduction
to normal form.

Proof. Straightforward by Lemma 3.5. J

Note that several results for verifying confluence of DCTRSs exist, cf. e.g. [18, 1].

I Example 3.7. Consider the DCTRS R = Rdiv ∪Rsub ∪Rleq where

Rdiv =
{

div(0, s(y))→ (0, 0) div(s(x), s(y))→ 〈0, s(x)〉 ⇐ leq(s(y), s(x))→∗ false
div(s(x), s(y))→ 〈s(q), r〉 ⇐ leq(s(y), s(x))→∗ true, div(x− y, s(y))→∗ 〈q, r〉

}

Rsub = { s(x)− 0→ s(x) 0− s(y)→ 0 s(x)− s(y)→ x− y }
Rleq = { leq(s(x), 0)→ false leq(0, s(y))→ true leq(s(x), s(y))→ leq(x, y) }

performing a simple division with remainder. Transforming the conditional rules yields

div(s(x), s(y))→ Uα1
1 (leq(s(y), s(x)), x, y) div(s(x), s(y))→ Uα2

1 (leq(s(y), s(x)), x, y)
Uα1

1 (false, x, y)→ 〈0, s(x)〉 Uα2
1 (true, x, y)→ Uα2

2 (div(x− y, s(y)), x, y)
Uα2

2 (〈q, r〉, x, y)→ 〈s(q), r〉

R is right-stable, left-linear, quasi-reductive (cf. [1, 17]), strongly deterministic ([1]) and
has infeasible critical pairs. Thus it is locally confluent and confluent (using either [18] or
[1]). Hence, by Theorem 3.6 we obtain that R′ is sound for reduction to normal form.

3.3 Right-Linearity
In the case of normal 1-CTRSs R it was shown in [8] that right-linearity of R′ implies that all
left-hand sides of conditions are ground terms. Moreover, since right-hand sides of conditions
in normal 1-CTRSs are ground terms as well, such systems are of limited practical interest.
For the case of DCTRSs, the situation is slightly more interesting, since, while left-hand
sides of conditions must still be ground terms in order to guarantee right-linearity of the
unraveled unconditional system, right-hand sides of conditions may contain variables. In
this section we show that for a DCTRS R, right-linearity of R′ implies soundness of R′.

I Lemma 3.8. Let R = (F , R) be a DCTRS. If s →p,R′ t and tb(s|p) →∗R tb(t|p), then
tb(s|q)→∗R tb(t|q′) for every descendant t|q′ of s|q.

K. Gmeiner, B. Gramlich, and F. Schernhammer 201

Proof. Analogous to Lemma 3.8 in [8]. J

I Lemma 3.9. Let R = (F , R) be a DCTRS such that R′ is right-linear and let D : u1 →p1,R′
u2 →p2,R′ . . . →pn−1,R′ un be a R′ reduction sequence where u1 ∈ T and ui ∈ T ′ for all
1 ≤ i ≤ n. Then tb(ui|pi)→∗R tb(ui+1|pi) for all 1 ≤ i < n.

Proof Sketch. Proof by induction on the length ofD and case distinction on the rule applied
in the first step of D. J

I Lemma 3.10. Let R = (F , R) be a DCTRS such that R′ is right-linear and let D : u1 →p1,R′
u2 →p2,R′ . . . →pn−1,R′ un be a R′ reduction sequence where u1 ∈ T , ui ∈ T ′ for all
1 ≤ i ≤ n. Then u1 →∗R tb(un).

Proof. By Lemmas 3.9 and 3.8 we obtain u1 = tb(u1)→∗R tb(u2)→∗R . . .→∗R tb(un). J

I Theorem 3.11. Let R be a Useq-RL DCTRS. Then, Useq is sound for reduction.

Proof. Straightforward by Lemma 3.10. J

3.4 Non-Erasingness
In [8] we proved soundness of Usim for NE normal 1-CTRSs. For our proof it was essential
that U -terms are not erased but properly eliminated. In order to ensure this, U-NE is
sufficient (which is equivalent to NE for normal 1-CTRSs).

Yet, we cannot extend our result for normal 1-CTRSs to DCTRSs because we used a
translation forward (tf) that cannot be defined in an appropriate way if the rhs of a rule
contains extra variables. In order to prove soundness using tf we therefore restrict ourselves
to 2-DCTRSs. Example 3.1 shows indeed that Useq-NE (and also Uopt-NE) is not a sufficient
criterion for soundness.

Uopt-NE is more general than U-NE and tf can be properly defined for Uopt for 2-DCTRSs.
Hence, we show our result for Uopt . Since U is sound for a DCTRS R if Uopt is (cf. [15,
Theorem 4.19]), this also yields soundness of U.

Rules that use the same variable in the lhs and the rhs of conditions can still be a
source of unsoundness. A more thorough analysis of CTRSs containing such rules shows
that the following property is sufficient to exclude such cases of unsoundness: Var(ti) ∩
Var(t0, . . . , ti−1) = ∅ for all conditional rules α : t0 → sn+1 ⇐ s1 →∗ t1, . . . , sn →∗ tn. This
property resembles right-stability but is slightly more general since it allows non-linear rhs’s
in conditions. In the following we will refer to DCTRSs with this property as right-separated
DCTRSs.

To prove soundness of Uopt for Uopt-NE, right-separated 2-DCTRSs we first define the
function “translate forward” for Uopt :

I Definition 3.12 (translation forward). Let R = (F , R) be a 2-DCTRS. The mapping
tf : T ′ → T is defined by

tf(t) =

x if t = x ∈ V
f(tf(t1), . . . , tf(tar(f))) if t = f(t1, . . . , tar(f)) and f ∈ F
rσ if t = Uαj (u, v1, . . . , vk) and xiσ = tf(vi) for 1 ≤ i ≤ k

where α is the rule l → r ⇐ s1 →∗ t1, . . . , sn →∗ tn, ~Xj = x1, . . . , xk and Xj =
Var(l, t1, . . . , tj−1) ∩ Var(tj , sj+1, tj+1, . . . , sn, tn, r).

By the definition of Uopt , Xj contains all variables occurring in r for 2-DCTRSs so that
tf is well-defined. The proof now follows mainly the proof for NE 1-CTRSs in [8]:

RTA’12

202 On Soundness Conditions for Unraveling Deterministic Conditional Rewrite Systems

I Lemma 3.13 (monotony property of tf). Let R = (F , R) be a 2-DCTRS. If s →p,R t for
s, t ∈ T ′ and tf(s|p)→∗R tf(t|p), then tf(s|q)→∗R tf(t|q′) for every descendants t|q′ of s|q.

Proof Sketch. Analogous to Lemma 3.13 in [8]. J

I Lemma 3.14 (technical key result for Uopt-NE right-separated 2-DCTRSs). Let R = (F , R)
be an Uopt-NE and right-separated 2-DCTRS and let D : u1 →p1,R′ u2 →p2,R′ · · ·un be
a derivation where un ∈ T and u1, . . . , un−1 ∈ T ′, then tf(ui|pi) →∗R tf(ui+1|pi) for all
i ∈ {1, . . . , n− 1}.

Proof Sketch. Proof by induction on n and case distinction on the rule applied in the first
rewrite step. The interesting case is where the first rewrite step is an introduction step of a
conditional rule α : t0 → sn+1 ⇐ s1 →∗ t1, . . . , sn →∗ tn. Since R′ is NE, all U -terms are
eventually eliminated. By the induction hypothesis and Lemma 3.13, we inductively find
matchers such that all conditions are satisfied. Because of right-separateness there are no
conflicts with extra variables in the rhs of conditions. J

I Lemma 3.15. Let R be a Uopt-NE, right-separated 2-DCTRS, and D : u1 →p1,R′ u2 →p2,R′
· · ·un be a derivation such that un ∈ T and u1, . . . , un−1 ∈ T ′, then tf(u1)→∗R un.

Proof. By Lemma 3.14, tf(ui|pi)→∗R tf(ui+1|pi) for all i ∈ {1, . . . , n− 1}. By Lemma 3.13,
tf(ui|ε)→∗R tf(ui+1|ε). Since tf(un) = un, tf(u1)→∗R un. J

I Theorem 3.16 (Soundness for reduction for Uopt). Let R be an Uopt-NE and right-separated
2-DCTRS, then Uopt is sound for reduction.

Proof. Straightforward via Lemma 3.15. J

3.5 Weak Left-Linearity
In [8] the class of weakly left-linear (WLL) normal 1-CTRSs has been introduced. Weakly
left-linear normal 1-CTRSs may, in addition to left-linear rules, contain non-left-linear rules
provided the variables occurring more than once in the the lhs of such a rule do not occur in
its rhs at all. It was shown in [8] that for weakly left-linear normal 1-CTRSs Usim is sound.

For a DCTRS R the situation is significantly more involved, since extra variables may
occur in rhs’s of multiple conditions of one conditional rewrite rule (which indeed can not be
the case for normal 1-CTRSs). In this case, R′ can be non-left-linear (indeed non-weakly-left-
linear according to Definition [8, 3.22]) even if R is left-linear and the rhs’s of all conditions
are linear. Hence, WLL of a DCTRS R does not necessarily imply WLL of R′ (and this is in
sharp contrast to the situation of normal 1-CTRSs).

Hence, the notion of WLL from [8] is inadequate for our treatment of DCTRSs and we
instead introduce and use a generalized notion of WLL. The basic idea of our definition of
WLL for DCTRSs is to count simultaneous occurrences of variables in the rhs’s of conditions
and the lhs of a conditional rule, thus anticipating non-left-linear rules in the transformed
systems. Variables that occur more than once in the lhs of a conditional rule and the rhs’s
of conditions should not occur at all in lhs’s of conditions or the rhs of the conditional rule:

I Definition 3.17 (Weakly left-linear DCTRSs). A DCTRS R is weakly left-linear (WLL) if
for every rule α : t0 → snα+1 ⇐ s1 →∗ t1, . . . , snα →∗ tnα in R and all variables x ∈ Var(α),
|t0, . . . , tnα |x > 1 =⇒ x 6∈ Var(s1, . . . , snα+1).

K. Gmeiner, B. Gramlich, and F. Schernhammer 203

Note that the version of weak left-linearity of [8] and the one from Definition 3.17 are
compatible in the sense that WLL normal 1-CTRSs according to [8] are also WLL according
to Definition 3.17. Hence, whenever we speak of WLL we mean the notion of Definition 3.17.

Given a WLL DCTRS R, R′ is not necessarily WLL (according to Definition 3.17). How-
ever, WLL of a DCTRS R does imply that in introduction or switch rules l → r, every
non-linear variable in l is linear in r, and elimination rules l→ r erase all such variables.

In [8], we showed soundness of WLL normal 1-CTRSs by using a back translation w.r.t.
derivations called tbD to translate derivations in the transformed CTRS into derivations in
the original CTRS. For DCTRSs R, we are using a slightly modified version of tbD that
takes into account potential non-weak left-linearity of R′:

I Definition 3.18 (tbD). Let D : u1 →p1,R′ u2 →p2,R′ · · · →pn−1,R′ un (u1 ∈ T), then tbD
is defined as

tbD(i, p) =

x if ui|p = x ∈ V
tbD(i− 1, p′) if root(ui|p) = Uαj and p′ is the unique one-step-ancestor of p
f(tbD(i, p.1), . . . , tbD(i, p.ar(f)) if root(ui|p) = f, f ∈ F , and

tbD(i, p.1), . . . , tbD(i, p.ar(f)) are defined
undefined otherwise

tbD is undefined for U -terms with multiple one-step ancestors or terms containing such
U -terms. This can happen if we apply a non-left-linear introduction or switch rule. After
applying an introduction rule l[xi, xi] → Uα1 (s1, x1, . . . , xk), tbD would be undefined for
U -terms in the i+ 1st argument in Uα1 -rooted terms. In the following, we will refer to such
arguments in U -terms as non-traceable arguments for Uα1 .

Formally, the ith argument of the symbol Uαj is a non-traceable argument for Uαj , if in the
introduction or switch rule l → Uαj (sj , x1, . . . , xk) in R′, |l|xi−1 > 1, or the rule is a switch
rule, l = Uαj−1(tj−1, x1, . . . , xk′) and the ith argument of Uαj−1 is a non-traceable argument
for Uαj−1. If the ith argument of Uαj (2 ≤ i ≤ ar(Uαj)) is not a non-traceable argument, it
is a traceable argument (for Uαj). Analogously, a term u|p.i (i ∈ N+) is a (non-)traceable
argument, if root(u|p) = Uαj and the ith argument of Uαj is a (non-)traceable argument.

Our goal is to show that we can translate a derivation D of a transformed WLL DCTRS
R′ into a derivation of the original DCTRS using tbD. Yet, tbD might be undefined for
terms occurring in D. To illustrate this problem, consider a (introduction or switch) rule
l[x, x]→ Uαj (sj , x) (such that either j = 1, or x is not a non-traceable argument for Uαj−1).
Consider the derivation l[u, u] →R′ Uαj (s, u) →R′ Uαj (s, v). tbD is not defined for U -terms
in u and v. We therefore cannot backtranslate the rewrite step u→ v using tbD.

Our basic idea to remedy this problem is to show that arbitrary R′ reductions (starting
from old terms) can be reconstructed into R′ reductions (having the same starting and
end term) such that no rewrite step occurs in a non-traceable argument (of any U -term).
Intuitively, a derivation l[u, u] → Uαj (s, u) → Uαj (s, v) is rebuilt by moving rewrite steps in
non-traceable arguments ahead: l[u, u] ‖→ l[v, v]→ Uαj (s, v).

However, in general we cannot rebuild all derivations in WLL DCTRSs in this way: If
a non-traceable argument has multiple descendants, we cannot move such rewrite steps
ahead because they are not unique: Consider the rule l′[z] → r′[z, z] and the derivation
l′[l[u, u]]→ l′[Uαj (s, u)]→ r′[Uαj (s, u), Uαj (s, u)] ‖→ r′[Uαj (s, v1), Uαj (s, v2)].

The rewrite steps u → v1 and u → v2 occur in non-traceable argument positions of
Uαj . In order to move these rewrite steps ahead, we first have to avoid rewrite steps that
duplicate non-traceable arguments of U -terms. To achieve this, we further rearrange re-
duction sequences by moving applications of duplicating rewrite rules ahead of reductions
in non-traceable arguments of involved U -terms. For instance, in a derivation l′[l[u, u]] →

RTA’12

204 On Soundness Conditions for Unraveling Deterministic Conditional Rewrite Systems

l′[Uαj (s, u)]→ r′[Uαj (s, u), Uαj (s, u)] we shift the rewrite step multiplying the U -terms ahead
in the following way: l′[l[u, u]] → r′[l[u, u], l[u, u]] ‖→ r′[Uαj (s, u), Uαj (s, u)]. Then we trans-
form r′[l[u, u], l[u, u]] ‖→ r′[Uαj (s, u), Uαj (s, u)] ‖→ r′[Uαj (s, v1), Uαj (s, v2)] into r′[l[u, u], l[u, u]]
‖→ r′[l[v1, v1], l[v2, v2]] ‖→ r′[Uαj (s, v1), Uαj (s, v2)]. Note that in the final reduction sequence
no rewrite steps take place in non-traceable arguments of any U -term.

The following Lemma shows that we can transform a derivation s[u] → s[v] → t[v, v]
that duplicates a U -term containing a non-traceable argument into s[u]→ t[u, u] ‖→ t[v, v].

I Lemma 3.19 (shifting ahead rewrite steps duplicating U -terms). Let R be a WLL DCTRS,
u, v, w ∈ T ′ be such that D : u →p,R′ v →q,R′ w where v|p′.i is a non-traceable argument,
p′ ≤ p, either q ‖ p′ or q < p′, and such that there are no one-step descendants of v|p′ inside
a non-traceable argument. Then, there is a derivation u →R′ w[u|p]P ‖→R′ w[v|p]P = w

where P is the set containing all one-step descendants of v|p in D.

Proof Sketch. In the interesting case that q < p′, the rule l→ r applied in the rewrite step
v → w is linear for v|p′ . We therefore can apply l→ r to u|q. J

In the following lemma, we show that we can transform a derivation s[u, u]→ t[u]→ t[v]
into s[u, u] ‖→ s[v, v] → t[v], thereby eliminating the rewrite step in the non-traceable
argument in t.

I Lemma 3.20 (shifting ahead rewrite steps in non-traceable arguments). Let R be a WLL
DCTRS, u, v, w ∈ T ′ be such that D : u →p,R′ v →q,R′ w where v|q′.i (q′.i ≤ q) is a non-
traceable argument and the only one-step-descendant of all its one-step-ancestors, and either
p < q′.i or p ‖ q′.i. Then, there is a derivation u ‖→R′ u[w|q]Q →p,R′ v[w|q]q = w where Q
is the set containing all one-step ancestors of v|q in D.

Proof Sketch. In the interesting case that p < q′.i, the rule l → r applied in the rewrite
step u→ v is right-linear for v|q, so that can apply the rewrite step v|q → w|q to all one-step
ancestors of v|q, and then apply l→ r. J

By repeatedly applying these two Lemmata, we can eliminate all rewrite steps in non-
traceable arguments:

I Lemma 3.21 (elimination of rewrite steps in non-traceable arguments). Let D : u1 →p1,R′
u2 →p2,R′ · · ·un be a derivation in R′, then there is a derivation D′ : u1 = u′1 →p′1,R′
u′2 →p′2,R′ · · ·u′n′ = un such that there are no rewrite steps in non-traceable arguments.

Proof Sketch. We prove this result by an inductive argument over the number of rewrite
steps in non-traceable arguments in D: Assume the mth rewrite step is the first one inside
a non-traceable argument. We repeatedly apply Lemma 3.19 to the derivation D : u1 →∗R
um+1 and obtain a new derivation D′ : u1 →∗R′ u′m ‖→R′ um+1 such that no non-traceable
arguments are duplicated. We then can repeatedly apply Lemma 3.20 and thereby eliminate
all rewrite steps in non-traceable arguments. J

The following example shows how we can rebuild a complex derivation such that it does
not contain rewrite steps in non-traceable arguments:

I Example 3.22. Consider the WLL DCTRS R = R1 ∪R2 where

R1 = {between(x, y, z)→ true⇐ up(x)→∗ y, down(z)→∗ y}

R2 =
{
up(x)→ x down(x)→ x dup(x)→ 〈x, x〉
up(x)→ up(s(x)) down(s(x))→ down(x)

}

K. Gmeiner, B. Gramlich, and F. Schernhammer 205

It is unraveled into R′ =

between(x, y, z)→ Uα1 (up(x), x, y, z)
Uα1 (y, x, y, z)→ Uα2 (down(z), x, y, z)
Uα2 (y, x, y, z)→ true

∪R2

We obtain the derivation

dup(between(0, up(0), s(0)))→ dup(u1(up(0), 0, up(0), s(0)))→
→ dup(u2(down(s(0)), 0, up(0), s(0)))→
→ 〈u2(down(s(0)), 0, up(0), s(0)), u2(down(s(0)), 0, up(0), s(0))〉 →∗
→∗ 〈u2(down(s(0)), 0, 0, s(0)), u2(down(s(0)), 0, s(0), s(0))〉

We want to move the rewrite steps in the non-traceable argument ahead of the application
of the non-left-linear rule. Yet, the term up(0) has two different descendants 0 and s(0) in
the last term of the derivation. In order to obtain a derivation without rewrite steps in
non-traceable arguments, we move the introduction of the non-traceable argument behind
the application of the duplicating rule (repeated application of Lemma 3.19). Then, we
delay the introduction of the non-traceable argument (repeated application of Lemma 3.20):

dup(between(0, up(0), s(0)))

dup(u1(up(0), 0, up(0), s(0)))

dup(u2(down(s(0)), 0, up(0), s(0)))

〈u2(down(s(0)), 0, up(0), s(0)), u2(down(s(0)), 0, up(0), s(0))〉

〈u2(down(s(0)), 0, 0, s(0)), u2(down(s(0)), 0, s(0), s(0))〉

=⇒

dup(between(0, up(0), s(0)))

〈between(0, up(0), s(0)), between(0, up(0), s(0))〉

〈between(0, 0, s(0)), between(0, s(0), s(0))〉

〈u1(up(0), 0, 0, s(0)), u1(up(0), 0, s(0), s(0))〉

〈u1(0, 0, 0, s(0)), u1(s(0), 0, s(0), s(0))〉

〈u2(down(s(0)), 0, 0, s(0)), u2(down(s(0)), 0, s(0), s(0))〉

After rebuilding the derivation, we can use the same proof structure we already used in
[8], although we have to consider switch rules and take care that tbD is still undefined for
U -terms in non-traceable arguments. Lemma 3.25 shows that we can use tb for such cases.

First we show monotony of tbD:

I Lemma 3.23 (monotony of tbD). Let D : u1 →p1,R′ u2 →p2,R′ · · · →pn−1,R′ un be a
derivation without rewrite steps in non-traceable arguments such that tbD(i, pi)→∗R tbD(i+
1, pi) for all i ∈ {1, . . . , n− 1}. If ui|p (p ∈ Pos(ui)) has a one-step-descendant ui+1|p′ and
tbD(i+ 1, p′) is defined, then tbD(i, p)→∗R tbD(i+ 1, p′).

Proof Sketch. By case distinction on p and pi. For the interesting case p ≤ pi, we use
induction on the length of q, determined by p.q = pi. J

The next auxiliary lemma helps us to extract derivations inside U -terms:

I Lemma 3.24 (Extraction of U -terms). Let D : u1 →p1,R′ u2 →p2,R′ · · · →pn−1,R′ un
be a derivation without rewrite steps in non-traceable arguments such that tbD(i, pi) →∗R
tbD(i+1, pi) for all i ∈ {1, . . . , n−1}. Let um|q = Uαj (v, x1τ, . . . , x|Xj |τ) such that tbD(m, q)
is defined, then (1) (extraction of [extra] variables) if tbD(m, q.(i + 1)) is defined, then
tbD(m−1, q′i)→∗R tbD(m, q.(i+ 1)) where q′i is a one-step ancestor of um|q.(i+1) = xiτ (1 ≤
i ≤ |Xj |), and (2) (extraction of conditional arguments) if um−1|q′ = Uαj (u, x1σ, . . . , xkσ),
then tbD(m− 1, q′.1)→∗R tbD(m, q.1).

Proof. Straightforward via Lemma 3.23. J

RTA’12

206 On Soundness Conditions for Unraveling Deterministic Conditional Rewrite Systems

Although we can prevent that there are rewrite steps applied in non-traceable arguments
we still might obtain terms for which tbD is undefined, namely terms in non-traceable
arguments containing U -terms. For such terms we can use tb instead of tbD as the following
result shows.

I Lemma 3.25 (tbD to tb). Let D : u1 →p1,R′ u2 →p2,R′ · · · →pn−1,R′ un be a derivation
without rewrite steps in non-traceable arguments such that tbD(i, pi)→∗R tbD(i+1, pi) for all
i ∈ {1, . . . , n−1}. Then, tbD(m, q)→∗R tb(um|q) for all m ∈ {1, . . . , n} and all q ∈ Pos(um)
such that tbD(m, q) is defined.

Proof Sketch. By induction on the term depth of um|q. In the interesting case that um|q is
a U -term, tbD(m, q) = lin(l)σ and tb(um|q) = lτ . By repeated application of Lemma 3.24 we
obtain xσ →∗R xτ for traceable arguments. If tbD(m, q.i) is undefined (i.e., um|q.i is a non-
traceable arguments), we exploit the fact that there are no rewrite steps in non-traceable
arguments. We then obtain tbD(k, q′)→∗ tb(uk|q′) = tb(um|q.i) for ancestors uk|q′ of um|q.i
such that tbD(k, q′) is defined. J

The following is our key result for WLL DCTRSs:

I Lemma 3.26 (technical key result). Let R be a WLL DCTRS and D : u1 →p1,R′ u1 →p2,R′
· · · →pn−1,R′ un (u1 ∈ T) be a derivation without rewrite steps in non-traceable arguments,
then tbD(i, pi)→∗R tbD(i+ 1, pi).

Proof Sketch. By induction on n and a case distinction on the type of rule applied in the last
rewrite step. The interesting case is the application of the elimination rule of the conditional
rule t0 →∗ sk+1 ⇐ s1 →∗ t1, . . . , sk →∗ tk. In this case tbD(n − 1, pn−1) = lin(t0)σ1 and
tbD(n, pn−1) = sk+1τk. By Lemma 3.24 and the induction hypothesis we obtain derivations
siτi →∗R lin(ti)σiσ′i where σi is the matcher for variables containing traceable arguments
in ti and σ′i for variables containing non-traceable arguments. Observe, that Dom(τi) ∩
Dom(σ′j) = ∅. By Lemma 3.24, xσi →∗ xτi so that siσ1 . . . σi−1 →∗ siτi. By Lemma 3.25,
lin(ti)σi+1σ

′
i+1 →∗ tiσi+1τ

′
i+1 where τ ′i+1 contains the tb-backtranslation of the non-traceable

arguments in ti (since there are no rewrite steps in non-traceable arguments, there are no
rewrite steps in τ ′i). Let now σ = σ1 . . . σk+1τ

′
1 . . . τ

′
k+1. Observe, that siσ1 . . . σi = siσ and

tiσi+1τ
′
i+1 = tiσ, so that t0σ →R sk+1σ. Finally, repeated application of Lemma 3.24 yields

sk+1σ →∗R sk+1τk+1. J

Finally, we obtain soundness for WLL DCTRSs:

I Lemma 3.27 (Soundness for weakly left-linear DCTRSs). Let R be a WLL DCTRS and
D : u1 →p1,R′ u1 →p2,R′ · · · →pn−1,R′ un (u1 ∈ T) then u1 →∗R tb(un).

Proof. By Lemma 3.21, there is a derivation D′ : u1 →∗R′ un without rewrite steps in non-
traceable arguments. In D′, tbD(n, ε) is defined so that via Lemma 3.26 and repeated
application of Lemma 3.23 we obtain u1 →∗R tbD(n, ε). By Lemma 3.25 we finally get
tbD(n, ε)→∗R tb(un). J

I Theorem 3.28 (Soundness for reduction of weakly left-linear DCTRSs). The unraveling is
sound for reduction w.r.t. weakly left-linear DCTRSs.

Proof. Straightforward via Lemma 3.27. J

The definition of WLL DCTRSs allows conditional non-left-linear rules so that this result
is more general than our result in [8] even for normal 1-CTRSs.

K. Gmeiner, B. Gramlich, and F. Schernhammer 207

4 Discussion, Perspectives and Related Work

We have shown that the main ideas and approaches of [8] for soundness of normal 1-CTRSs
also extend to DCTRSs, but with a couple of complications and subtleties. We think that es-
pecially the results involving weak left-linearity, non-erasingness and confluence as sufficient
conditions for soundness (in the case of confluence restricted to soundness for reductions to
normal forms) are quite interesting and practically relevant.

We are not aware of many related works on DCTRS or other classes of 3- or 4-CTRSs.
An early one is [11] (which contains only a claim but no proofs). Yet, there is a notable
exception. In [12] and, building on that paper, in [15] by the same authors closely related
questions are investigated and similar soundness results for Uopt are obtained using quite
different proof techniques.

More precisely, the main results of [15] are:

(a) Uopt is sound for Uopt-LL (and for U-LL) DCTRSs([15, Theorem 4.5]).
(b) Uopt is sound for Uopt-RL-NE DCTRSs([15, Theorem 4.12]).
(c) If Uopt is sound w.r.t. R, then U is so, too ([15, Theorem 4.19]).

Result (a) is of course important and practically relevant, since (Uopt- or U-)LL are reasonable
requirements for DCTRSs. It is subsumed by our result on weak left-linearity (WLL) as
sufficient criterion for soundness of U (Theorem 3.28). As Example 4.1 shows, Uopt is
unsound even for WLL normal 1-CTRSs.

Result (b) resembles our Theorem 3.16, since it also requires Uopt-NE. However, our
result additionally forbids extra variables on rhs’s. On the other hand, being right-separated
is a much less restrictive property than Uopt-RL. Proof-technically, the approach for (b) in
[15] is remarkable and elegant. The proof works by reduction to the proof of (a) using the
inverse reduction relation.

Result (c) is of particular interest, since via Uopt certain properties (e.g. soundness cri-
teria) like NE become more likely to be satisfied. However, the reverse of (c) does not hold
in general. In particular, we cannot reproduce our soundness results for WLL and CR (in
the latter case w.r.t. soundness for reductions to normal forms) for Uopt :

I Example 4.1 (unsoundness of Uopt). Consider the WLL and confluent normal 1-CTRS R
consisting of the rules or(x, y) → true ⇐ x →∗ true and eq(x, x) → true. R is unraveled
using Uopt into R′opt = {or(x, y)→ Uα1 (x) , Uα1 (true)→ true , eq(x, x)→ true}.

InR′opt, or(false, true) and or(false, false) both rewrite to the irreducible U -term Uα1 (false),
so that eq(or(false, true), or(false, false))→∗R′opt true.

Yet, or(false, true) and or(false, false) are irreducible (and therefore not joinable) in R
so that eq(or(false, true), or(false, false)) 6→∗R true. Therefore, Uopt is not sound for R.

In future work we will try to improve the (un)soundness analysis for DCTRSs (e.g. by
isolating abstract principles or characterization results), apply the sondness criteria for de-
riving properties of the original systems, and exploit / transfer the analysis and criteria for
other well-known transformation approaches from CTRSs to TRSs.

Acknowledgements: We are grateful to the anonymous reviewers for their detailed and
helpful comments and criticisms!

RTA’12

208 On Soundness Conditions for Unraveling Deterministic Conditional Rewrite Systems

References
1 J. Avenhaus and C. Loría-Sáenz. On conditional rewrite systems with extra variables and

deterministic logic programs. In F. Pfenning, editor, Proc. 5th LPAR, Kiev, Ukraine, July
1994, pp. 215–229, 1994.

2 F. Baader and T. Nipkow. Term rewriting and All That. Cambridge Univ. Press, 1998.
3 M. Bezem, J. Klop, and R. Vrijer, editors. Term Rewriting Systems. Cambridge Tracts in

Theoretical Computer Science 55. Cambridge University Press, Mar. 2003.
4 N. Dershowitz and D. Plaisted. Logic programming cum applicative programming. In Proc.

of the 1985 Symp. on Logic Programming, Boston, MA, July 1985, pp. 54–66. IEEE, 1985.
5 F. Durán, S. Lucas, J. Meseguer, C. Marché, and X. Urbain. Proving termination of

membership equational programs. In N. Heintze and P. Sestoft, eds., PEPM’04, pp. 147–
158. ACM, 2004.

6 F. Durán, S. Lucas, J. Meseguer, C. Marché, and X. Urbain. Proving operational ter-
mination of membership equational programs. Higher-Order and Symbolic Computation,
21(10):59–88, 2008.

7 K. Gmeiner and B. Gramlich. Transformations of conditional rewrite systems revisited. In
A. Corradini and U. Montanari, eds., Recent Trends in Algebraic Development Techniques
(WADT 2008) – Selected Papers, LNCS 5486, pp. 166–186. Springer, 2009.

8 K. Gmeiner, B. Gramlich, and F. Schernhammer. On (un)soundness of unravelings. In
C. Lynch, ed., Proc. RTA, July 2010, Edinburgh, Scotland, UK, LIPIcs (Leibniz Interna-
tional Proceedings in Informatics), 2010.

9 K. Gmeiner, B. Gramlich, and F. Schernhammer. On soundness conditions for unraveling
deterministic conditional rewrite systems. Tech. Rep. E1852-2012-01, TU Wien, 2012.
http://www.logic.at/staff/gramlich/papers/techrep-e1852-2012-01.pdf.

10 M. Marchiori. Unravelings and ultra-properties. In M. Hanus and M. M. Rodríguez-
Artalejo, eds., Proc. 5th ALP, Aachen, LNCS 1139, pp. 107–121. Springer, 1996.

11 M. Marchiori. On deterministic conditional rewriting. Technical Report MIT LCS CSG
Memo n.405, MIT, Cambridge, MA, USA, Oct. 1997.

12 N. Nishida, M. Sakai, , and T. Sakabe. On simulation-completeness of unraveling for
conditional term rewriting systems. IEICE Technical Report SS2004-18, 104(243):25–30,
2004. Revised version from December 27, 2005, 15 pages.

13 N. Nishida and M. Sakai. Completion after program inversion of injective functions. ENTCS
237:39–56. Proc. 8th WRS, Hagenberg, Austria, July 2008, A. Middeldorp, ed., 2009

14 N. Nishida, M. Sakai, and T. Sakabe. Partial inversion of constructor term rewriting
systems. In J. Giesl, ed., Proc. 16th RTA, Nara, Japan, April 2005, LNCS 3467, pp. 264–
278. Springer, 2005.

15 N. Nishida, M. Sakai, and T. Sakabe. Soundness of unravelings for deterministic conditional
term rewriting systems via ultra-properties related to linearity. In M. Schmidt-Schauss,
ed., Proc. 22nd RTA, May/June 2011, Novi Sad, Serbia, LIPIcs (Leibniz International
Proceedings in Informatics), pp. 267–282, 2011.

16 E. Ohlebusch. Advanced Topics in Term Rewriting. Springer, 2002.
17 F. Schernhammer and B. Gramlich. Characterizing and proving operational termination

of deterministic conditional term rewriting systems. Journal of Logic and Algebraic Pro-
gramming, 79(7):659–688, 2010.

18 T. Suzuki, A. Middeldorp, and T. Ida. Level-confluence of conditional rewrite systems
with extra variables in right-hand sides. In J. Hsiang, ed., Proc. 6th RTA, Kaiserslautern,
Germany, LNCS 914, pp. 179–193, Springer-Verlag. 1995.

19 P. Viry. Elimination of conditions. J. Symb. Comput., 28(3):381–401, 1999.

Reinterpreting Compression in Infinitary Rewriting
Jeroen Ketema

Faculty EEMCS, University of Twente
PO Box 217, 7500 AE Enschede, the Netherlands
j.ketema@ewi.utwente.nl

Abstract
Departing from a computational interpretation of compression in infinitary rewriting, we view
compression as a degenerate case of standardisation. The change in perspective comes about via
two observations: (a) no compression property can be recovered for non-left-linear systems and
(b) some standardisation procedures, as a ‘side-effect’, yield compressed reductions.

1998 ACM Subject Classification F.1.1 Models of Computation, F.3.2 Semantics of Program-
ming Languages, F.4.2 Grammars and Other Rewriting Systems

Keywords and phrases term rewriting, infinitary rewriting, compression, standardisation

Digital Object Identifier 10.4230/LIPIcs.RTA.2012.209

Category Regular Research Paper

1 Introduction

One of the most fundamental properties studied in infinitary rewriting is the so-called
compression property. Roughly, the property states that for every reduction of transfinite
length a ‘similar’ reduction can be found of length at most ω (the first infinite ordinal).
Consider, e.g., the binary function symbol f and the rules a→ g(a) and b→ g(b). We have
the following reduction of length ω + ω:

f(a, b)→ f(g(a), b)→ · · · → f(gn(a), b)→ · · ·
f(gω, b) → f(gω, g(b)) → · · · → f(gω, gn(b)) → · · · f(gω, gω) .

By interleaving the a- and b-steps, we can compress this reduction to obtain a ‘similar’
reduction of length ω:

f(a, b)→ f(g(a), b)→ f(g(a), g(b))→ · · · → f(gn(a), gn(b))→ · · · f(gω, gω) .

This second reduction has a very appealing property: We can obtain an arbitrarily good
approximation of the final term by rewriting f(a, b) a sufficient, finite number of times.
As we are now in the realm of finite rewriting, it can be said that compression gives
computational meaning to infinitary rewriting (see also [8], although room is left there for
other interpretations than a computational one).

There are, however, two problems with the aforementioned computational interpretation.
First, the compression property does not apply to all rewrite systems, while it can be argued
that every rewrite system computes something. In particular, the property can fail for
systems with non-left-linear rules. Consider, e.g., the non-left-linear rule f(x, x)→ c. This
rule, in combination with the rules a→ g(a) and b→ g(b) from above, yields the standard
counterexample to compression for non-left-linear systems [5, 8, 7]; the following reduction is
of length ω + 1 and cannot be compressed:

f(a, b)→ f(g(a), b)→ f(g(a), g(b))→ · · · → f(gn(a), gn(b))→ · · · f(gω, gω)→ c .

© Jeroen Ketema;
licensed under Creative Commons License NC-ND

23rd International Conference on Rewriting Techniques and Applications (RTA’12).
Editor: A. Tiwari; pp. 209–224

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

210 Reinterpreting Compression in Infinitary Rewriting

Essentially, we need ω steps to obtain f(gω, gω) before we can rewrite to c.
The second problem with the computational interpretation has to do with the fact that

infinitary rewriting is susceptible to a similar computational treatment [10] as that of the
real numbers in computable analysis [15]. We can think of both terms and reductions as
Turing Machines. As such, any term along every transfinite reduction can be approximated
with arbitrary precision in finite time (by executing the Turing Machines). Of course, such a
computational treatment is not perfect: Although terms and reductions can be represented
by Turning Machines, we cannot compute whether a reduction step that occurs in any such
representation is indeed ‘valid’, as computing the validity of a match would take infinite time
in case a non-left-linear rule is employed. Instead, with each representation of a reduction
one should provide a ‘certificate’ (i.e. a proof) showing the validity of the matches that occur.

In the current paper we address both points of critique regarding the computational
interpretation. To address the first, i.e. the lack of compression in non-left-linear systems,
it would suffice if we could establish a generalised compression property: For each system
a countable ordinal α might exist such that each reduction within that system can be
compressed to one of length at most α [11, 12]. Unfortunately, as we will show, such a
generalised compression property fails even for very simple systems. Hence, and as is also
needed to address the second point of critique, a different interpretation of compression —
one outside the realm of computability — is warranted for.

We reinterpret compression as a degenerate case of standardisation. Such a reinter-
pretation is not unexpected: Likewise to connections that exist between the equivalence of
reductions and standardisation in finite rewriting [14], connections can be drawn between
equivalence and compression in infinitary rewriting [8]. To enable our reinterpretation, we
provide the first ever standardisation procedures for infinitary Term Rewriting Systems
(iTRSs). We will show that these procedures, as a ‘side-effect’, yield compressed reductions.

The paper now proceeds as follows: In Section 2, we state a number of preliminaries
needed in the remainder of the paper. We discuss the generalised compression property and
its failure in Section 3. In Section 4, we formulate two standardisation procedures. Finally,
in Section 5, we conclude.

2 Preliminaries

We briefly review some basic facts regarding infinitary Term Rewriting Systems (iTRSs); see
[8, 7] for more detailed accounts. Throughout, we denote the first infinite ordinal by ω and
arbitrary ordinals by α, β, γ, and so on; [α, β) denotes a left-closed, right-open interval of
ordinals and (α, β] a right-open, left-closed interval. By N we denote the natural numbers
including zero.

Terms. Let Σ be a signature, each element of which has finite arity, and let V be a countably
infinite set of variables. The set of (finite and infinite) terms is commonly defined by metric
completion [2, 8, 7]. Here, we give the shorter, but equivalent, definition from [3, 9].

I Definition 2.1. The set of terms T er(Σ, V) is defined coinductively such that x is a term
for each x ∈ V and if f(t1, . . . , tn) is a term, then f ∈ Σ is n-ary and t1, . . . , tn are terms.

Substitutions over terms are defined by interpreting the usual definition coinductively [8, 7].
For the root symbol, root(t), of a term t we have root(x) = x and root(f(t1, . . . , tn)) = f .

The set of positions Pos(t) of a term t is a set of finite strings over N representing the
‘locations’ of subterms in t [8, 7]. Denoting the empty string by ε, we have Pos(x) = {ε}

J. Ketema 211

and Pos(f(t1, . . . , tn)) = {ε} ∪⋃
1≤i≤n{i · p | p ∈ Pos(ti)}. If p is a position of t, then t|p

denotes the subterm of t at position p; we have t|ε = t and f(t1, . . . , ti, . . . , tn)|i·p = ti|p. By
t[s]p we denote the replacement of the subterm at position p in t by s; we have t[s]ε = s

and f(t1, . . . , ti, . . . , tn)[s]i·p = f(t1, . . . , ti[s]p, . . . , tn). The length of p is denoted |p|. There
exists a well-founded order < on positions: p < q iff p is a proper prefix of q. We write ≤ for
the reflexive closure of <. If neither p ≤ q nor q ≤ p, then p and q are parallel and we write
p ‖ q. The concatenation of positions p and q is denoted by p · q.

Rewrite Rules and Reductions. Rewrite rules and iTRSs are defined as in the finite case,
except that the finiteness restriction on the right-hand side of rewrite rules is dropped:

I Definition 2.2. A rewrite rule is a pair of terms (l, r), denoted l → r, with l finite and
such all variables that occur in r also occur in l. A rewrite rule is left-linear, if each variable
occurs at most once in l.

An infinitary Term Rewriting System (iTRS) is a pair R = (Σ, R) with Σ a signature
and R a set of rewrite rules over Σ. An iTRS is left-linear if all its rewrite rules are.

Rewrite steps are now defined as usual:

I Definition 2.3. A rewrite step is a pair of terms s→ t adorned with a position p and a
rewrite rule l→ r such that s = s[σ(l)]p and t = s[σ(r)]p for some substitution σ. The term
σ(l) is called an l→ r-redex. The redex occurs at position p and depth |p| in s.

The previous gives sufficient background to define strongly convergent reductions [8, 7]
(the most common notion of reduction in infinitary rewriting; see [6] for further discussion of
notions of reduction in infinitary rewriting).

I Definition 2.4. A strongly convergent reduction of ordinal length α, denoted t0 �α tα, is
a pair consisting of sequence of terms (tβ)β<α+1 and a sequence of steps (pβ , lβ → rβ)β<α
such that for all β < α it holds that (a) tβ → tβ+1 is a rewrite step adorned with the position
pβ and the rewrite rule lβ → rβ , and (b) if β is a limit ordinal, then tγ converges to tβ and
|pγ | tends to infinity when γ approaches β from below.

Here, a sequence of terms (tγ)γ<β is said to converge to a term tβ whenever the depth
up to which tγ and tβ are identical increases as γ approaches β.

In case we are only interested in an upper bound, respectively a lower bound, α on the
length of a strongly convergent reduction we write s�≤α t, respectively s�≥α t. Moreover,
in case the length is irrelevant, respectively finite, we write s� t, respectively s→∗ t. We
say that a reduction s� t is maximal if there does not exist a term t′ such that t→ t′. In
other words, in this case t is a normal form.

I Example 2.5. Consider the rewrite rule a→ g(a) from the introduction. The following is
a strongly convergent, maximal reduction with normal form gω:

a→ g(a)→ g(g(a))→ · · · → gn(a)→ · · · gω .
Replacing the final term of the reduction by a breaks strong convergence, as the sequence
(gn(a))n<ω does not converge to a; it only converges to gω.

Consider now the rule c→ c. We can construct the following reduction of length ω:

c→ c→ · · · → c→ · · · c .
Although a sequence in which all terms are equal to c obviously converges to c, this reduction
is not strongly convergent, as the depth of the contracted redexes does not tend to infinity
along the reduction.

RTA’12

212 Reinterpreting Compression in Infinitary Rewriting

Compression. Having defined iTRSs and strongly convergent reductions we can now state
the classical compression property for left-linear systems [8, 7]:

I Theorem 2.6. Let R be a left-linear iTRS. For each s� t there exists a reduction s�≤ω t.

Thus, for every reduction in a left-linear iTRS we can find a reduction with the same
initial and final term that is of length at most ω. In the case of orthogonal iTRSs the above
can be strengthened [8]: a reduction s�≤ω t exists which is Lévy equivalent to s� t.

3 Generalised Compression

Assuming compression should hold equally for all reductions within a rewrite system, the
only obvious generalisation of the compression property is the one from [12]:

I Definition 3.1. Let α be a countable ordinal, an iTRS R satisfies the α-compression
property iff it holds for each s� t that there exists a reduction s�≤α t.

Since all strongly convergent reductions have countable length [8, 7], only countable
ordinals make sense in the definition; the property holds trivially for any uncountable ordinal.
By Theorem 2.6, we have that ω-compression holds for every left-linear iTRS.
I Remark. The α-compression property is related to the notion of α-closedness from [5].
The difference between the notions is two-fold: First, α-compression allows for both finite
and infinite terms as the starting terms of reductions, while α-closedness only allows for
finite terms as starting terms. Second, while we consider strongly convergent reductions,
α-closedness is concerned with the more general, but less well-behaved, Cauchy convergent
or weakly convergent reductions (which dispose of the depth requirement that is part of
Definition 2.4 [5, 8]).

Based on the known counterexamples to compression from the literature, one may
conjecture that for every iTRS it is possible to find an ordinal α such that α-compression
holds: With regard to the standard counterexample from the introduction, [5] states without
proof that for finite starting terms all reductions are compressible to length at most ω+ω. A
similar property holds for λβη-calculus — the prototypical higher-order system not satisfying
the compression property. As can be inferred from [12, Lemma 5], all reductions in λβη-
calculus also compress to reductions of length at most ω + ω.

As we will show below, the above conjecture is false: We uncover two systems that do
not satisfy α-compression for any countable α. The first system, discussed in Section 3.1,
is — remarkably enough — the one from the standard counterexample. The second system,
discussed in Section 3.2, refutes the above conjecture in even stronger ways: We exhibit terms
that have unique strongly convergent reductions starting from them which are incompressible:

I Definition 3.2. Let R be an iTRS, a reduction s�α t is incompressible if all reductions
s� t are of length at least α.

Considering incompressible reductions mitigates a possible point of critique regarding the
proof in Section 3.1: We only show that the considered reductions are at least of a certain
length, we do not show that they cannot be compressed precisely up to that length.

3.1 Compression in the Standard Counterexample
Consider the iTRS with as its sole rule f(x, x)→ c, the non-left-linear rule from the standard
counterexample. We have the following:

J. Ketema 213

f

f f

tµ(0) f c f

tµ(1) f c f

tµ(2) c

Figure 1 A limit term from the proof of Lemma 3.3.

I Lemma 3.3. For every countable ordinal α, there is a term tα such that tα � c exists and
is of length at least α+ 1 and such that no tα � c exists of length less than α+ 1.

Proof. We prove the lemma by transfinite induction over the ordinal α. In case α = 0, define
tα = f(c, c). As we have f(c, c)→ c, we are done.

In case α = β + 1, we have by the induction hypothesis that a strongly convergent
reduction exists from tβ to c. Set tα = f(tβ , c). The reduction tα �≥β+1 f(c, c) → c is
obviously strongly convergent, as tβ � c is. Moreover, as the redex at the root is only created
after at least β + 1 steps — for tβ � c consists of at least β + 1 steps — we have that tα � c

is of length at least α+ 1 = β + 2.
In case α is a limit ordinal, choose any bijection µ from N to α and define tα = f(φµ(0), ψ)

(see also Figure 1), where:

φµ(n) = f(tµ(n), φµ(n+ 1))
ψ = f(c, ψ)

By the induction hypothesis we have for every n ∈ N that a strongly convergent reduction
of length at least µ(n) + 1 starts from tµ(n). Reduce each tµ(n) to c, possibly interleaving
the reductions in the different subterms. Doing so, we obtain f(ψ,ψ), which we can further
reduce to c. The reduction to f(ψ,ψ) is strongly convergent, for suppose not, then an
infinite number of reduction steps occurs at a certain fixed depth [7, Exercise 12.3.6]. By the
pigeonhole principle for infinite sets and since the terms tµ(n) occur at increasingly greater
depths, this means there exists an m such that an infinite number of steps occurs in tµ(m) at
a fixed position. Hence, the reduction from tµ(m) is not strongly convergent, contradiction.
As the reductions from the different tµ(n) are independent and as a reduction of length at
least β+ 1 occurs for every ordinal β < α, the constructed reduction has length at least α+ 1.
No reduction of length γ < α exists, otherwise for infinitely many tµ(n) with reductions of
length at least β + 1 > γ there also exist reductions of length at most γ, contradicting the
induction hypothesis. J

Remark that the rules a→ g(a) and b→ g(b) from the standard counterexample do not
affect the above result, as a and b do not occur in the defined terms. Hence, the lemma also
holds for the iTRS from the standard counterexample.

By the above, we immediately have:

I Theorem 3.4. There exists an iTRS such that the α-compression property fails to hold
for every countable ordinal α.

RTA’12

214 Reinterpreting Compression in Infinitary Rewriting

3.2 Unique Incompressible Reductions
Although the result from the previous section establishes that compression, even in a
generalised form, cannot be carried over to arbitrary iTRSs, the result is not completely
satisfactory: We only uncovered reductions that are of at least a certain length; we did not
show that these reductions cannot be compression at all (up to the provided lower bounds on
their lengths). To rectify this situation, we study a second system with a non-left-linear rule
in the current section. For this second system, we will define for every countable ordinal α
terms tνα with starting from them unique maximal and incompressible reductions of length
at least α. As a corollary we will obtain that each tνα also has a unique incompressible
reduction of length precisely α starting from it.

Before we give the actual proofs, we first describe our second system and give some
examples.

Signature. The signature Σ of our second system consists of five symbols:

Σ = {f, f ′, h, h′, k} ,
where f and f ′ are ternary and such that all other symbols are unary. Of these symbols, f is
the most important and is the root symbol of our unique non-left-linear rule. The symbol h
will be inserted above the redexes we are going to contract to ensure that the redexes occur
at sufficient depth to guarantee strong convergence. Moreover, the symbols f ′ and h′ will
allow us to construct terms that are already of the required ‘shape’, but in which no redexes
occur (due to the presence of the primes). Finally, the function symbol k will help us to
convert ‘primed’ into ‘unprimed’ terms.

Rewrite Rules. Our system has four rewrite rules: One non-left-linear rule and three rules
to convert ‘primed’ into ‘unprimed’ terms. The non-left-linear rule is as follows:

f(x, x, y)→ h(k(y)) (1)

That is, we match the first two arguments of f .
Contracting an f -redex introduces an h to ensure that the term substituted for y will

eventually — after contracting of a number of k-redexes — occur at the same depth as before
contraction of the f -redex.

As already mentioned, the rules associated with k convert ‘primed’ into ‘unprimed’ terms.
The rules are as follows:

k(f ′(x, y, z))→ f(k(x), y, z) (2)
k(h′(x))→ h(k(x)) (3)
k(h(x))→ h(x) (4)

The first two rules remove a prime and then recurse. The third rule ensures that the
conversion terminates once we encounter a non-primed h. Although a similar terminating
rule could be introduced for f , i.e. k(f(x, y, z))→ f(x, y, z), the terms considered below are
such that this rule is never needed and, hence, we prefer omit the rule.
I Remark. Observe that the first two rules associated with k move the k to a lower position and
that the last rule removes the k all together. Hence, if we would instead use f(x, x, y)→ k(y)
as our f -rule, it not longer holds that the (converted) term substituted for y eventually
occurs at the same depth d as before application of the f -rule; it will occur at depth d− 1
instead. The equal depth is, however, needed to ensure that our reductions are strongly
convergent. For this reason the h occurs at the root of the right-hand side of our f -rule.

J. Ketema 215

f

h hω f ′

f hω hω hω

hω hω hω

(a) Example 3.5.

f

f hω hω

hω hω f ′

hω hω f ′

hω hω

(b) Example 3.6.

Figure 2 The initial terms from Examples 3.5 and 3.6.

Two Examples. Before proving the central result of this section, let us consider two concrete
incompressible reductions that make use of the above rules.

I Example 3.5. Consider the following term (also depicted in Figure 2(a)):

s = f(h(f(hω, hω, hω)), hω, f ′(hω, hω, hω)) .

Underlining contracted redexes, we have precisely one maximal reduction starting from s

(consisting of seven steps):

f(h(f(hω, hω, hω)), hω, f ′(hω, hω, hω))→ f(h(h(k(hω))), hω, f ′(hω, hω, hω))
→ f(hω, hω, f ′(hω, hω, hω))→ h(k(f ′(hω, hω, hω)))

→ h(f(k(hω), hω, hω)) → h(f(hω, hω, hω)) → h(h(k(hω))) → hω .

This reduction cannot be compressed to a reduction of less than seven steps: For each step
the redex contracted in that step is created in the step immediately preceding it.

With regard to the above example, note that, if we fix the ordinal α to be 3, we obtain a
bijection ν−1

α between α and the depths of the α (= 3) f -steps in the reduction: ν−1
α (0) = 2,

ν−1
α (1) = 0, and ν−1

α (2) = 1; the first f -step occurs at depth 2, the second at depth 0, and
the third at depth 1. Bijections like ν−1

α will be central in the construction of reductions
such as the above. As the inverse of the bijection will be more important below, we choose
to write ν−1

α here instead of να.

I Example 3.6. Consider the following system of recursive equations, with the solution of s
depicted in Figure 2(b):

s = f(f(hω, hω, t), hω, hω)
t = f ′(hω, hω, t)

As in the previous example, we have exactly one maximal reduction starting from s (in this
case one of length ω + 2):

f(f(hω, hω, t), hω, hω)→ f(h(k(t)), hω, hω)→ f(h(f(k(hω), hω, t)), hω, hω)
→ f(h(f(hω, hω, t)), hω, hω)→ f(h2(k(t)), hω, hω)→ · · ·

→ f(hn(k(t)), hω, hω) → · · · f(hω, hω, hω) → h(k(hω)) → hω .

RTA’12

216 Reinterpreting Compression in Infinitary Rewriting

Like the reduction from the previous example, the above reduction cannot be compressed, as
each contracted redex is created in the step immediately preceding it.

As before, we have with regard to the above example that a bijection ν−1
α exists from an

ordinal α (in this case ω + 1) to the depths of the α f -steps that occur along the reduction:
ν−1
α (i) = i+ 1 for all i < ω and ν−1

α (ω) = 0.

Initial Term Construction. Following the above examples, our incompressible reductions
will be defined by specifying initial terms and showing that each of these initial terms allows
for exactly one maximal reduction (which cannot be compressed).

To define the initial terms, we first introduce a function ρ : T er(Σ, V) → T er(Σ, V)
which maps ‘unprimed’ terms to ‘primed’ ones:

ρ(f(s1, s2, s3)) = f ′(ρ(s1), s2, s3)

ρ(h(s)) =
{
h′(ρ(s)) if s 6= hω

hω if s = hω

for all s1, s2, s3, s ∈ T er(Σ, V).
The rewrite rules for k ‘cancel out’ ρ:

I Lemma 3.7. Let t ∈ T er(Σ, V). It holds that k(ρ(t))�≤ω t. Moreover, if t|1n = hω for
some n ∈ N, then k(ρ(t))�≤n t.

Proof. By definition of ρ, we have that exactly one maximal strongly convergent reduc-
tion can be defined starting from ρ(t) and employing only k-rules. Also by definition
of ρ, the reduction is finite in case t|1n = hω for some n ∈ N. That the final term of
the reduction is t follows by structural induction over the positions of t, observing that
k(ρ(f(s1, s2, s3)))→ f(k(ρ(s1)), s2, s3) and that, moreover, k(ρ(h(s)))→ h(k(ρ(s))) in case
s 6= hω, and k(ρ(h(s)))→ hω in case s = hω. J

We can now define the initial terms of our incompressible reductions, where it is strongly
suggested that the reader satisfies him- or herself of the fact that the initial terms from
Examples 3.5 and 3.6 can be constructed by employing this definition.

I Definition 3.8. Let α be a countable ordinal and να : D → α a bijection with D ⊆ N.
The term tνα is defined by τνα(0, 0, α) where τνα : N× (α+ 1)2 → T er(Σ, V) is such that:

τνα(d, δ, γ) =

f(τνα(d+ 1, δ, να(d)),
hω, ρ ◦ τνα(d+ 1, να(d) + 1, γ))

if d ∈ D and να(d) ∈ [δ, γ)

h(τνα(d+ 1, δ, γ)) otherwise

With regard to the f -steps from the reductions we will be constructing, ν−1
α indicates

the depth at which each of these steps occurs. The first parameter of τνα specifies the depth
of the subterm of tνα we are currently constructing; the second and third parameter indicate
the range of f -steps that will occur within this subterm.

The first clause of τνα defines a subterm at depth d with an f at the root in case an
f -step should occur at depth d and is within the current range (i.e. να(d) ∈ [δ, γ)). Moreover,
the range is split over the two occurrences of τνα : All earlier f -steps at greater depths occur
in the first argument of f and all later f -steps at greater depths occur in the third argument.
Note that the second argument of f is always hω and, hence, f is not the root of a redex

J. Ketema 217

unless the first argument is also equal to hω. Moreover, note that no redexes occur in the
third argument of f due to the occurrence of ρ.

The second clause of τνα defines a subterm at depth d with h at the root in case no f -step
from within the current (possibly empty) range occurs at d.

Every subterm τνα(d, δ, γ), in particular tνα = τνα(0, 0, α), satisfies the following property.

I Lemma 3.9. Suppose τνα(d, δ, γ) is such that for all d′ ≥ d it holds that either d′ 6∈ D or
να(d′) 6∈ [δ, γ), then τνα(d, δ, γ) = hω.

Proof. By induction on d′ ≥ d, where we have for every d′ ≥ d that the second clause from
the definition of τνα applies. J

We also have:

I Lemma 3.10. For every τνα(0, δ, γ) with να(d) ∈ [δ, γ) for some d ∈ D there exists an
n ∈ N such that τνα(0, δ, γ)|1n = f(hω, hω, t) for some term t.

Proof. Suppose not, then either τνα(0, δ, γ) = hω or eventually always the first clause from the
definition of τνα applies. In the first case, no d exists such that να(d) ∈ [δ, γ), contradiction.
In the second case, there exists an infinite chain of depths d1 < d2 < . . . < dn < . . . with
[δ, να(d1))) [δ, να(d2))) . . .) [δ, να(dn))) . . . Hence, να(d1) > να(d2) > . . . > να(dn) >
. . . However, this is an infinite descending chain of ordinals, which cannot exist, again a
contradiction. J

Incompressible Reductions. Having introduced all necessary ingredients, we can now prove
the central theorem of this section.

I Theorem 3.11. For every να, the term tνα has an unique maximal strongly convergent
reduction starting from it which is incompressible and of length at least length α.

Proof. We prove by transfinite induction that tνα = τνα(0, 0, α) reduces to τνα(0, κ, α) with
κ ≤ α in at least κ rewrite steps. In case κ = 0, the result is immediate.

In case κ = λ+ 1, we have by the induction hypothesis that tνα reduces to τνα(0, λ, α) in
at least λ steps. Hence, it suffices to show that τνα(0, λ, α) reduces to τνα(0, κ, α) in at least
one step. As λ < α, we have να(d) ∈ [λ, α) for some d ∈ D and, hence, by Lemma 3.10, a
redex occurs at a position 1n for some n ∈ N. In fact, by definition of τνα , n = ν−1

α (λ). There
are now two cases to consider depending on the value of ν−1

α (κ): We either have ν−1
α (κ) < n

or ν−1
α (κ) > n (equality is impossible, as να is a bijection). We consider each of these cases

in turn.
In case ν−1

α (κ) < n, the redex at position 1n is defined by τνα(n, λ, κ). Hence, since
κ = λ+ 1, it follows by definition of τνα and Lemma 3.9 that τνα(n, λ, κ) = f(hω, hω, hω).
We have:

f(hω, hω, hω)→ h(k(hω))→ hω .

Thus, τνα(n, λ, κ) reduces to τνα(n, κ, κ) = hω in two steps and the result follows by
observing that τνα(0, λ, α) and τνα(0, κ, α) are identical except for the subterm at 1n.
In case ν−1

α (κ) > n, the redex at position 1n is defined by τνα(n, λ, ι) for some ι > κ.
Hence, the subterm at position 1n is of the form f(hω, hω, ρ ◦ τνα(n+ 1, κ, ι)). We have

f(hω, hω, ρ ◦ τνα(n+ 1, κ, ι)→ h(k(ρ ◦ τνα(n+ 1, κ, ι)))

and by Lemma 3.7, this further reduces to h(τνα(n+ 1, κ, ι)) = τνα(n, κ, ι). By these facts
and the observation that τνα(0, λ, α) and τνα(0, κ, α) are identical except for the subterm
at position 1n, the result follows.

RTA’12

218 Reinterpreting Compression in Infinitary Rewriting

In case κ is a limit ordinal, observe that whenever λ approaches κ from below, we have
that the redexes occur at increasingly greater depths. In case of the f -redexes, this follows
as the position at which the λth f -redex occurs is equal to 1ν−1

α (λ) and as να is a bijection.
In case of the k-redexes, we have that only finitely many of these redexes are contracted
after each f -step. Moreover, all these redexes occur at depths greater than ν−1

α (λ). Hence,
as the redexes occur at increasingly greater depths, it follows by the induction hypothesis
that we have a strongly convergent reduction which passes through each τνα(0, λ, α) with
λ < κ. As τνα(0, λ, α) and τνα(0, κ, α) are identical except for some subterm at a position
1n, where n eventually increases as λ increases (as να is a bijection), τνα(0, κ, α) is the final
term of the strongly convergent reduction, concluding this case.

Our theorem follows once we observe that each redex contracted in the constructed
reduction (of length at least α) is created in the step immediately preceding it. J

We now immediately have:

I Corollary 3.12. For every countable ordinal α, there exists a strongly convergent reduction
of length at least α that is incompressible.

In fact, as each prefix of each of the above reductions is also incompressible, we obtain
the following by the same reasoning regarding redex creation:

I Corollary 3.13. For every countable ordinal α, there exists a strongly convergent reduction
of length precisely α that is incompressible.

4 Standardisation

Having established that compression does not generalise to systems with non-left-linear
rules, we will next reinterpret compression in left-linear systems as a degenerate case of
standardisation. To be able to do this, we first need to define standard reductions.

Starting from finite rewriting, we could define a standard reduction as one that contracts
redexes in leftmost-outermost order [14, Section 8.5], where a position p1 is said to occur to
the left of a position p2 if p1 = q · n1 · p′1 and p2 = q · n2 · p′2 with n1 < n2 for some q (note
that p1 ‖ p2). However, this notion of standardisation is ill-suited to our purposes, as infinite
terms exist that do not have a leftmost redex.

I Example 4.1. Consider the term which is the unique solution of the equation s = f(s, a)
and suppose we have at our disposal the rewrite rule a → b. The term s does not have a
leftmost-outermost redex: For each n ∈ N, an outermost redex occurs at position 1n · 2.
However, no redex is leftmost, as also for each n ∈ N the redex at position 1n+1 · 2 occurs to
the left of the redex at position 1n · 2.

Dropping the requirement that the order in standard reductions should be leftmost, we can
alternatively consider parallel standard reductions [14, Definition 8.5.6], which allow for more
freedom with regard to redexes that occur at parallel positions. The definition is as follows,
where we make explicit the case distinction that implicitly occurs in [14, Definition 8.5.6]:

I Definition 4.2. Let t0 � tα with (pβ , lβ → rβ)β<α the sequence of rewrite steps of t0 � tα.
The reduction t0 � tα is parallel standard iff for every β < α either:

pβ ‖ pκ or pβ ≤ pκ for all β < κ < α, or
pβ = pκ · p′β with p′β ∈ {q ∈ Pos(lκ) | root(lκ|q) ∈ Σ} and κ = min{γ ∈ (β, α) | pβ > pγ}.

J. Ketema 219

Hence, either (a) every step after the βth step should occur parallel to or below pβ , or
(b) the position pβ should occur either in the redex pattern of the first redex that occurs at
a position pκ above pβ (i.e. pβ = pκ · q with q a non-variable position of lκ). Thus, in the
second case, contracting the redex in the βth step helps to create the redex pattern of the
redex contracted in the κth step.

As in the finite case, parallel standard reductions are not necessarily unique: Given
the rule a → h(a), we have that both f(a, a) → f(h(a), a) → f(h(a), h(a)) and f(a, a) →
f(a, h(a))→ f(h(a), h(a)) are parallel standard reductions from f(a, a) to f(h(a), h(a)). We
will further discuss the issue of uniqueness in Section 4.2.
I Remark. Compressed reductions do not need to be parallel standard: Consider the rules
a → h(a) and f(x) → g(x). The reduction f(a) → f(h(a)) → g(h(a)) is compressed, as it
has length ≤ ω. However, it is not parallel standard, as the a-redex that is being contracted
occurs below the contracted f -redex, while it is not part of the redex pattern of the f -redex.

Although Definition 4.2 alleviates the problem with leftmost redexes as exhibited in
Example 4.1, it does allow for standard reductions of length greater than ω.

I Example 4.3. Consider the term f(a, a) and the rewrite rule a→ h(a) from above. We
have the following reduction of length ω + ω:

f(a, a)→ f(h(a), a)→ · · · → f(hn(a), a)→ f(hn+1(a), a)→ · · · f(hω, a)
→ f(hω, h(a))→ · · · → f(hω, hn(a))→ f(hω, hn+1(a))→ · · · f(hω, hω) .

The reduction is parallel standard, as the first argument of f is parallel to its second argument.

The situation in the above example can be mitigated by strengthening Definition 4.2. One
possibility with regard to the first clause of the definition is to not only consider pβ ‖ pκ and
pβ ≤ pκ, but additionally |pβ | ≤ |pκ|, which when combined reduces to simply |pβ | ≤ |pκ|.
With this restriction the reduction from the above example is no longer valid: contraction of
a-redexes in the second argument is postponed even though we are contracting redexes at
greater depths in the first argument.

We prefer not to introduce the above strengthening as part of the definition of parallel
standard reductions as we wish to stay as close as possible to the definition from finite
rewriting. Our standardisation procedure does, however, implicitly use the strengthening.

4.1 Parallel Standardisation
To show that reductions in left-linear systems can be transformed into parallel standard form,
we first introduce a variant of parallel standard reduction which is limited to a certain depth.

I Definition 4.4. Let t0 � tα with (pβ , lβ → rβ)β<α the sequence of rewrite steps of
t0 � tα. The reduction t0 � tα is parallel standard up to depth d ∈ N iff for every β < λ

with λ = max{γ | |pγ | < d} either:
|pβ | ≤ |pκ| for all β < κ ≤ λ, or
pβ = pκ · p′β with p′β ∈ {q ∈ Pos(lκ) | root(lκ|q) ∈ Σ} and κ = min{γ ∈ (β, λ] | pβ > pγ}.
Thus, a reduction is parallel standard up to depth d if (a) the reduction is parallel

standard up to and including the last step in t0 � tα contracting a redex at depth less than d
and (b) it incorporates the depth requirement on parallel redexes as mentioned immediately
below Example 4.3.

Our standardisation procedure works on a depth-by-depth basis and per depth follows
the inversion procedure from [14, Section 8.5.3]. Effectively, this means that per depth,
standardisation will be achieved by permuting redexes that are not parallel standard.

RTA’12

220 Reinterpreting Compression in Infinitary Rewriting

Permutation. Write s →‖ t for a reduction contracting (an infinite number of) parallel
redexes; such a reduction can always be transformed into a strongly convergent reduction,
e.g. by contracting the parallel redexes in order of least depth. We have the following lemma,
assuming left-linearity.

I Lemma 4.5 (Step Permutation). Let d ∈ N. If s→‖ t→ s′ is such that all steps in s→‖ t
occur at depth > d and such that t→ s′ occurs at a position p with |p| ≥ d, then there exists
a reduction s →∗ t′ →‖ s′ which is parallel standard up to depth d + 1 such that all steps
occur at depth ≥ d and such that the final step of s→∗ t′ occurs at position p.

Proof. As left-hand sides of rewrite rules are finite, only finitely many steps from s →‖ t
are required to create the redex at position p contracted in t→ s′ and to guarantee parallel
standardness; the required steps are those at positions q such that either q ≤ p or q = p · q′
with q′(6= ε) occurring in the redex pattern of the redex contracted in t→ s′. Define s→∗ t′′
by first contracting all the required redexes in order of least depth and next contracting the
redex at position p, which exists by contraction of the required redexes and left-linearity.

Project the remaining redexes from s →‖ t over s →∗ t′′. By left-linearity and since
the original set of redexes is parallel, this projection yields a set of redexes all of which are
parallel and occur at depth > d, possibly, with exception of a unique redex occurring at
position p with |p| = d (in which case t→ s′ is collapsing). In this latter case define t′ to be
the result of contracting the parallel redex at position p in t′′, otherwise define t′ to be t′′.
Contracting the remaining parallel redexes yields s′, as a projection argument similar to the
Strip Lemma for orthogonal iTRSs [8, 7] shows.

It is easily seen that all steps in s→∗ t′ →‖ s′ occur at depth ≥ d and that the final step
of s→∗ t′ occurs at position p (and depth d in case |p| = d). Moreover, by construction it
also immediately follows that the reduction is parallel standard up to depth d+ 1. J

Write s→∗‖ t for a finite sequence of parallel steps, we can now use the previous result to
permute steps in finite reductions, again assuming left-linearity.

I Lemma 4.6 (Reduction Permutation). Let n ≥ 1 and d ∈ N. If s0 →∗ sn is such that all
steps in s0 →∗ sn−1 occur at depth > d and such that sn−1 → sn contracts a redex at a
position p with |p| = d, then there exists a reduction s0 →∗ t→∗‖ sn which is parallel standard
up to depth d+ 1 such that all steps occur at depth ≥ d and such that the last step of s0 →∗ t
is the last step that occurs at position p and depth d.

Proof. The proof is by induction on the number of steps in s0 →∗ sn, where in addition we
show that the second clause of Definition 4.4 applies to every step at depth > d in s0 →∗ t.
In case n = 1, the reduction consists of a single step and the result is immediate.

In case n > 1, write s0 → s1 →∗ sn. By the induction hypothesis there exists a reduction
s1 →∗ t′ →∗‖ sn which is parallel standard up to d + 1 and which satisfies the required
properties. We construct s0 →∗ t by permuting a set of parallel redexes such that at any
point during the permutation we have a reduction of the form s0 →∗ t1 →‖ t2 →∗ t′. Initially,
define s0 →∗ t1 to be empty, t1 →‖ t2 equal to s0 → s1, and t2 →∗ t′ equal to s1 →∗ t′. For
each permutation step, write t2 →∗ t′ as t2 → t′2 →∗ t′ and apply Lemma 4.5 to t1 →‖ t2 and
t2 → t′2 to obtain t1 →∗ t′1 →‖ t′2. In the following permutation step assume that s0 →∗ t1 is
equal to s0 →∗ t′1, that t1 →‖ t2 is equal to t′1 →‖ t′2, and that t2 →∗ t′ is equal to t′2 →∗ t′.
Continue until t2 →∗ t′ is empty and then define t to be t1 and t→∗‖ sn to be t1 →‖ t′ →∗‖ sn.

By the permutation procedure and Lemma 4.5, we have that all steps in s0 →∗ t→∗‖ sn
occur at depth ≥ d and that the last step of s0 →∗ t is the last step that occurs at position
p and depth d. Hence, this leaves to show that s0 →∗ t is parallel standard up to depth d+ 1

J. Ketema 221

such that the second clause of Definition 4.4 applies to any step at depth > d: Since all
steps occur at depth ≥ d, the first clause of Definition 4.4 immediately applies to any step at
depth d. For any other step it follows by the construction in the proof of Lemma 4.5 and the
permutation procedure that any such step either (a) occurs in the redex pattern of a step
following it or (b) occurs above it. In the first case, the second clause holds immediately; in
the second case, observe that there must be some later step in whose redex pattern the step
under consideration occurs (thus implying the second clause), otherwise, tracing usage of
redex patterns in contracted redexes, it follows that the second clause does not apply to some
of the reduction steps at depth > d in s1 →∗ t′, contradicting the induction hypothesis. J

Needed Rewrite Steps. To work on a depth by depth basis in our standardisation theorem,
we require a way to establish which redexes are needed for the creation of a redex at a certain
depth. To this end we extend from finite rewriting [4] the notion of origins (roughly the
inverse of descendants) and we define the related notion of needed steps.

I Definition 4.7. Let s→ t be adorned with (p, l→ r). If q ∈ Pos(t), then the set of origins
of q across s→ t, denoted (s→ t)0q, is the set of positions of s defined as follows:
{q} if q ‖ p or q < p,
{p · q′ | root(l|q′) ∈ Σ} if q = p · p′ with root(r|p′) ∈ Σ, and
{p · q′ · p′′ | l|q′ = r|p′} ∪ {p · q′ | l|q′ ∈ Σ and r|ε ∈ V } if q = p · p′ · p′′ with r|p′ ∈ V .

If Q is a finite set of positions, then (s → t)0Q =
⋃
q∈Q(s → t)0q; if t0 →∗ tn is a finite

reduction, then (t0 →∗ tn)0Q = (t0 →∗ tn−1)0((tn−1 → tn)0Q). Moreover, if t0 � tα, then
(t0 � tα)0Q = (t0 � tγ)0((tγ →∗ tβ)0Q) with γ the largest limit ordinal smaller than or
equal to β (and γ = 0 if no such ordinal exists) and β such that each step in tβ � tα occurs
at a position p with |p| > |q| for all q ∈ Q.

Remark that the set of origins of a finite set Q is finite, as left-hand sides of rewrite rules
are finite. Moreover, if Q is prefix-closed (i.e. p < q ∈ Q implies p ∈ Q), then the set of
origins is also prefix-closed.

I Example 4.8. Consider the reduction rules f(x)→ h(x, x) and g(x)→ x. We have

(f(g(a))→ h(g(a), g(a))→ h(a, g(a)))0{ε, 1, 2, 21}
= (f(g(a)) → h(g(a), g(a)))0{ε, 1, 11, 2, 21} = {ε, 1, 11} .

We now define needed steps.

I Definition 4.9. Let t0 � tα and let Q be a finite, prefix-closed subset of positions of tα.
A step (pβ , lβ → rβ) is needed for Q iff pβ ∈ (tβ � tα)0Q.

Observe by strong convergence and the definition of origins that only finitely many redexes
are needed for finite, prefix-closed subsets of positions of tα. In case of Example 4.8 both the
first and second step are needed for {ε, 1}; only the first step is needed for {ε} and {ε, 2, 21}.

Standardisation. Employing neededness, we can now prove our standardisation theorem for
left-linear iTRSs; the argument derives from the compression argument in [10]. It is, however,
necessarily more complicated due to added complexity of standardisation over compression.

I Theorem 4.10. Let s� t in a left-linear iTRS. There exists a parallel standard reduction
of length at most ω from s to t.

RTA’12

222 Reinterpreting Compression in Infinitary Rewriting

Proof. We prove by induction over the depth d ∈ N that there exists a reduction s→∗ sd � t

which is parallel standard up to depth d and such that all steps in sd � t occur at depth
≥ d. In case d = 0, define s0 = s. The result is immediate in this case.

In case d > 0, it follows by the induction hypothesis that there exists a reduction
s→∗ sd−1 � t which is parallel standard up to depth d− 1 such that all steps in sd−1 � t

occur at depth ≥ d− 1. There are now two cases to consider, either no redex in the reduction
sd−1 � t occurs at depth d or there are such redexes. In the first case, s →∗ sd−1 is also
parallel standard up to depth d and it suffices to define sd = sd−1. In the remainder of the
proof we consider the second case.

Consider the first redex in sd−1 � t which occurs at depth d and suppose that the step in
which the redex is contracted is s′ → t′. Let Q be the smallest prefix-closed set of positions
in s′ which includes the positions in the redex pattern of the redex contracted in s′ → t′.
By definition of neededness, finitely many steps from sd−1 � s′ are needed for Q, all of
which occur at depth > d by definition of sd−1 � t. Moreover, by definition of origins,
these needed steps (in their original order) together with the redex contracted in s′ → t′

form a finite reduction from sd−1 to some term t′′. By a projection argument, similar to
the Strip Lemma for orthogonal iTRSs [8, 7], it follows that sd−1 →∗ t′′ � t, where the
steps at depth d are identical to those of sd−1 � t. Observe now that Lemma 4.6 can be
applied to sd−1 →∗ t′′, as all steps needed for Q occur at depth > d and as s′ → t′ occurs
at depth d. Let sd−1 →∗ s′d−1 � t′′ be the result of applying Lemma 4.6. By definition
of sd−1 →∗ s′d−1 � t′′ and the observation that the second clause of Definition 4.4 applies
to all steps in sd−1 →∗ s′d−1 at depth > d (see the proof of Lemma 4.6), it follows that
s→∗ sd−1 →∗ s′d−1 is parallel standard up to depth d+ 1 and that the number of redexes
at depth d in s′d−1 � t′′ � t is equal to the number of redexes at depth d in t′ � t (i.e.
one less than the number of redexes at depth d in s′ � t). Hence, we can now repeat the
argument with s′d−1 � t until no redexes are left at depth d, at which point we have obtained
a reduction s→∗ sd � t which is parallel standard up to depth d+ 1.

As the redexes considered above occur at increasingly greater depths, we have that the
constructed reduction is strongly convergent. Moreover, the reduction is of length at most ω,
as s→∗ sd is finite for each d ∈ N. Finally, the reduction is parallel standard, as it is parallel
standard up to every depth d ∈ N. J

As the above proof applies to arbitrary reductions, the following is now immediate.
I Corollary 4.11. There exists a standardisation procedure which transforms every reduction
of every left-linear iTRS into a parallel standard reduction of length at most ω.

Hence, standardisation can be used to obtain a compressed reduction. Turning this
around and observing that the proof of the compression theorem is also based on permutation
of redexes [8, 7], we can also see the compression theorem as a degenerate instance of a
standardisation procedure. It is degenerate, as compression is less strict with respect to the
order in which redexes are contracted. As such, we have arrived at our reinterpretation of
compression.

4.2 Approximating Leftmost-Outermost Standardisation
Although it is not always possible to obtain a reduction which is standard in the sense of the
leftmost-outermost order (see Example 4.1), we would still like to approximate this order to
ensure that there is a unique standard reduction as in the finite case (see Theorem 8.5.51
and Lemma 8.5.52 in [14]). The natural idea in the context of infinitary rewriting, as also
mentioned in [1], is to take into account depth next to the left-to-right order.

J. Ketema 223

I Definition 4.12. Let t0 � tα with (pβ , lβ → rβ)β<α the sequence of rewrite steps of
t0 � tα. The reduction t0 � tα is depth leftmost standard iff for all β < λ < α:

if pι < pβ for some β < ι ≤ λ, then pβ = pκ · p′β with p′β ∈ {q ∈ Pos(lκ) | root(lκ|q) ∈ Σ}
and κ = min{γ ∈ (β, ι] | pβ > pγ}, and otherwise
either |pβ | < |pλ| or |pβ | = |pλ| and pβ occurs to the left of or is equal to pλ.

Roughly, the above states that the position pβ should either (a) occur in the redex pattern
of the first redex that occurs at a position above it or (b) occur above or to the left of any
redex that is contracted later.

I Example 4.13. Consider the term f(a, a) and the rewrite rule a→ h(a) from Example 4.3.
The following reduction is depth standard:

f(a, a)→ f(h(a), a)→ f(h(a), h(a))→ · · · → f(hn(a), hn(a))
→ f(hn+1(a), hn(a)) → f(hn+1(a), hn+1(a)) → · · · f(hω, hω) .

Note that the second clause of Definition 4.12 induces a total order on positions: We
first order by depth and next we order from left to right. Hence, as the definition considers
every initial t0 � tλ, it follows for each s� t that there exists at most one depth leftmost
standard reduction from s to t. Moreover, we have the following.

I Lemma 4.14. Every depth leftmost standard reduction is parallel standard.

Proof. Immediate by transfinite induction over the steps from the depth leftmost standard
reduction, where the first clause of Definition 4.12 implies the second clause of Definition 4.2
and where the second clause of Definition 4.12 implies the first clause of Definition 4.2. J

Finally, we have:

I Theorem 4.15. Let s � t in a left-linear iTRS. There exists a depth leftmost standard
reduction of length at most ω from s to t.

Proof (Sketch). By Theorem 4.10, there exists a parallel standard reduction from s to t.
This parallel standard reduction is not necessarily depth leftmost standard, as certain redexes
may violate the second clause of Definition 4.12. However, all these redexes will be parallel
to each other and, hence, can be permuted without reservation (as long as we ensure that
the finitely many redexes needed to create each redex are also permuted). The resulting
reduction will be strongly convergent, as the second clause of Definition 4.12 only requires us
to permute redexes that occur at lesser or equal depth than the redexes preceding them. J

5 Conclusion and Proposed Research

As shown, the obvious generalisation of the compression property — replacing ω by an
arbitrary countable ordinal — does in principle not apply to iTRSs with non-left-linear
rules. This result might be considered rather unexpected, as the standard counterexample to
compression does satisfy such a property, albeit only for finite starting terms [5], and as does
λβη-calculus, the standard counterexample in the higher-order case [12].

Given the above observation and noting that infinitary rewriting is susceptible to a similar
computational treatment as the real numbers in computable analysis [10], it seems we can
no longer maintain a computational view of the compression property. Hence, we provide a
reinterpretation, viz. that compression is a degenerate case of standardisation.

RTA’12

224 Reinterpreting Compression in Infinitary Rewriting

Given that compression and standardisation are closely related and that both have strong
ties with notions related to the equivalence of reductions [8, 14], a further study of reduction
equivalence in infinitary rewriting seems warranted for. Moreover, a pertinent question is
whether our standardisation results can be used to simplify existing proofs in infinitary
rewriting, e.g., the proof of confluence modulo hypercollapsing subterms [8, 7]. Finally, it
would be interesting to investigate whether both the counterexamples to α-compression
and the standardisation theorem extend to infinitary higher-order systems [11], where any
counterexample to α-compression then employs a non-fully-extended rule instead of a non-
left-linear rule.

Acknowledgements. The author wishes thank Jan Willem Klop, Yoshihito Toyama, and
Jaco van de Pol for their continuing support. Moreover, acknowledgements go to the reviewers
for their constructive feedback and to Jakob Grue Simonsen for encouraging the author
to complete the paper. Finally, the author is indebted to Alastair Donaldson and the
Department of Computing at Imperial College London for their financial support.

References
1 Søren Bjerg Andersen and Jakob Grue Simonsen. Term rewriting systems as topological

dynamical system. In Proc. 23rd Int’l Conf. on Rewriting Techniques and Applications
(RTA 2012), volume 15 of Leibniz International Proc. in Informatics, pages 53–68, 2012.

2 André Arnold and Maurice Nivat. The metric space of infinite trees. Algebraic and topolo-
gical properties. Fundamenta Informaticae, 3(4):445–476, 1980.

3 Michael Barr. Terminal coalgebras in well-founded set theory. Theoretical Computer Sci-
ence, 114(2):299–315, 1993.

4 Inge Bethke, Jan Willem Klop, and Roel de Vrijer. Descendants and origins in term
rewriting. Information and Computation, 159(1-2):59–124, 2000.

5 Nachum Dershowitz, Stéphane Kaplan, and David A. Plaisted. Rewrite, rewrite, rewrite,
rewrite, rewrite, Theoretical Computer Science, 83(1):71–96, 1991.

6 Stefan Kahrs. Infinitary rewriting: Foundations revisited. In Proc. 21st Int’l Conf. on
Rewriting Techniques and Applications (RTA 2010), volume 6 of Leibniz International Pro-
ceedings in Informatics, pages 161–176, 2010.

7 Richard Kennaway and Fer-Jan de Vries. Infinitary rewriting. In Terese [13], Chapter 12,
pages 668–711.

8 Richard Kennaway, Jan Willem Klop, Ronan Sleep, and Fer-Jan de Vries. Transfinite
reductions in orthogonal term rewriting systems. Information and Computation, 119(1):18–
38, 1995.

9 Jeroen Ketema. Böhm-Like Trees for Rewriting. PhD thesis, Vrije Universiteit, Amsterdam,
2006.

10 Jeroen Ketema and Jakob Grue Simonsen. Computing with infinite terms and infinite
reductions. Unpublished manuscript.

11 Jeroen Ketema and Jakob Grue Simonsen. Infinitary Combinatory Reduction Systems.
Information and Computation, 209(6):893–926, 2011.

12 Paula Severi and Fer-Jan de Vries. An extensional Böhm model. In Proc. 13th Int’l Conf.
on Rewriting Techniques and Applications (RTA 2002), volume 2378 of Lecture Notes in
Computer Science, pages 159–173, 2002.

13 Terese, editor. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 2003.

14 Vincent van Oostrom and Roel de Vrijer. Equivalence of reductions. In Terese [13],
Chapter 8, pages 301–474.

15 Klaus Weihrauch. Computable Analysis: An Introduction. Springer-Verlag, 2000.

Finite Models vs Tree Automata in Safety
Verification
Alexei Lisitsa1

1 Department of Computer Science
University of Liverpool, UK
a.lisitsa@liverpool.ac.uk

Abstract
In this paper we deal with verification of safety properties of term-rewriting systems. The veri-
fication problem is translated to a purely logical problem of finding a finite countermodel for a
first-order formula, which is further resolved by a generic finite model finding procedure. A finite
countermodel produced during successful verification provides with a concise description of the
system invariant sufficient to demonstrate a specific safety property.

We show the relative completeness of this approach with respect to the tree automata com-
pletion technique. On a set of examples taken from the literature we demonstrate the efficiency
of finite model finding approach as well as its explanatory power.

1998 ACM Subject Classification I.2.3 Deduction and Theorem Proving, F.4.2 Grammars and
Other Rewriting Systems, D.2.4 Software/Program Verification

Keywords and phrases term-rewriting systems, safety verification, first-order logic, finite model
finding

Digital Object Identifier 10.4230/LIPIcs.RTA.2012.225

Category Regular Research Paper

1 Introduction

The development of general automated methods for the verification of infinite-state and
parameterized systems poses a major challenge. In general, such problems are undecidable,
so one can not hope for the ultimate solution and the development should focus on the
restricted classes of systems and properties.

In this paper we deal with a very general method for verification of safety properties of
infinite-state systems which is based on a simple idea. If an evolution of a computational
system is faithfully modelled by a derivation in a classical first-order logic then safety
verification (non-reachability of unsafe states) can be reduced to the disproving of a first-
order formula. The latter task can be (partially, at least) tackled by generic automated
procedures searching for finite countermodels.

Such an approach to verification was originated in the research on formal verification of
security protocols [28, 27, 13] and later has been extended to the wide classes of infinite-state
and parameterised verification tasks. Completeness of the approach for particular classes of
systems (lossy channel systems) and relative completeness with respect to general method of
regular model checking has been established in [20] and [21] respectively.

Here we continue investigation of the boundaries of applicability of finite countermodels
based method and are looking into verification of safety properties of term-rewriting systems
(TRS). Term-rewriting systems provide with a general formalism for specification and

© Alexei Lisitsa;
licensed under Creative Commons License NC-ND

23rd International Conference on Rewriting Techniques and Applications (RTA’12).
Editor: A. Tiwari; pp. 225–239

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

226 Finite models vs tree automata in safety verification

verification of infinite-state systems. Several general automated methods for verification of
safety properties of term-rewriting systems has been proposed and implemented [12, 9, 10]
with the methods based on tree automata completion [12, 9] playing the major role.

We show that verification via finite countermodels (FCM) approach provides with a viable
alternative to the methods based on the tree automata completion. We show the relative
completeness of FCM with respect to the tree automata completion methods (TAC).

We illustrate it on a simple example taken from [11]. Consider the TRS R = {f(x)→
f(s(s(x)))} and assume that we want to prove that f(a) 6→∗ f(s(a)). In [11] a simple finite-
state abstraction of the set of reachable terms expressed by the equation E = {s(s(x)) = x}
is explicitly added to the TRS and simple analysis of rewriting modulo E is proposed. In
FCM approach, the same problem is translated into disproving of the first-order formula
ϕR := (∀xR(f(x), f(s(s(x)))) → R(f(a), f(s(a)). The intended meaning of the binary
predicate R here is to encode the reachability relation for the TRS. The finite countermodel
of ϕR, having the size 2 (cardinality of the domain) and essentially representing the above
abstraction, i.e. satisfying s(s(x) = x, can be found by an automated model finder, e.g.
Mace4 in a fraction of a second.

On a series examples taken from the literature we demonstrate practical efficiency, the
high degree of automation and the explanatory power of FCM approach using off-the shelf
and state of the art implementation of a finite model finding procedure Mace4 (W. McCune).

The preliminary version of this paper has appeared as the report [22].

2 Preliminaries

In this paper we use standard terminology for first-order predicate logic and term-rewriting
systems, and the for detailed accounts of these areas the reader is referred to [8] and to [2],
respectively. We remind here only the concepts which we are going to use in the paper.

2.1 First-order Logic
The first-order vocabulary is defined as a finite set Σ = F ∪P where F and P are the sets of
functional and predicate symbols, respectively. Each symbol in Σ has an associated arity,
and we have F = ∪i≥0Fi and P = ∪i≥1Pi, where Fi and Pi consist of symbols of arity i.
The elements of F0 are also called constants.

First-order model over vocabulary Σ, or just a model is a pairM = 〈D, [[Σ]]D〉 where D
is a set called domain ofM and [[ΣD]] denotes the interpretations of all symbols from Σ in
D. For a domain D and a function symbol f of arity n ≥ 1 an interpretation of f in D is a
function [[f]]D : Dn → D. For a constant c its interpretation [[c]]D is an element of D. For a
domain D and a predicate symbol P of arity n an interpretation of P in D is a relation of
arity n on D, that is [[P]]D ⊆ Dn. The modelM = 〈D, [[Σ]]D〉 is called finite if D is a finite
set.

We assume that the reader is familiar with the standard definitions of first-order for-
mula, first-order sentence, satisfactionM |= ϕ of a formula ϕ in a modelM, deducibility
(derivability) Φ ` ϕ of a formula ϕ from a set of formulae Φ, first-order theory, equational
theory.

2.2 Term-rewriting systems and tree automata
To define a term-rewriting system we fix a finite set of functional symbols F , each associated
with an arity and a set of variables X . T (F ,X) and T (F) denote the set of terms and ground

A. Lisitsa 227

terms, respectively, defined in the standard way using F and X . The set of variables of a term
t is denoted by V ar(t). A substitution is a function σ : X → T (F ,X), which can be extended
homomorphically in a unique way (and keeping the name) to σ : T (F ,X) → T (F ,X).
Application of a substitution σ to a term t we denote by tσ.

A term-rewriting system R is a set of rewrite rules l→ r where l, r ∈ T (F ,X), l 6∈ X and
V ar(r) ⊆ V ar(l). The notion of a subterm is defined in a standard way. One-step rewriting
relation ⇒R⊆ T (F ,X) × T (F ,X) is defined as follows: t1 ⇒R t2 holds iff t2 is obtained
from t1 by replacement of a subterm lσ of t1 with a subterm rσ for some rewriting rule
(l→ r) in R and some substitution σ. The reflexive and transitive closure ⇒R is denoted by
⇒∗R.

Given a set E of F-equations, TE denotes a set of equivalent classes of ground F-terms
modulo the equations E. E-equivalence class of a term t is denoted by [t]E . Given a term
rewriting systemR and an equational theory given by a set of equations E we denote by⇒R,E

one step rewriting relation modulo E, that is t⇒R,E t′ iff ∃τ ∈ [t]E ∃τ ′ ∈ [t′]E τ ⇒R τ ′.
Let Q be a finite set of symbols called states which we formally treat as functional symbols

of arity 0 (constants). We assume Q∩F = ∅. Elements of T (F ∪Q) are called configurations.

I Definition 2.1. (Transitions) A transition is a rewrite rule c→ q, where c is a configuration,
i.e. c ∈ T (F ∪ Q), and q ∈ Q. A normalized transition is a transition c → q where
c = f(q1, . . . , qn), f is a functional symbol of arity n from F , q, q1, . . . qn ∈ Q. An ε-transition
c→ q is such that c ∈ Q.

I Definition 2.2. (Tree automata) A (bottom-up, non-deterministic, finite) tree automaton
is a quadruple A = 〈F , Q,Qf ,∆〉, where Qf ⊆ Q is a set of final (accepting) states and ∆
is a set of normalized transitions and of ε-transitions. A tree automaton is deterministic if
there are no two transitions in ∆ with the same left-hand side.

Transitions ∆ of A induce the rewriting relation on T (F ∪Q) which is denoted by ⇒∆
or ⇒A.

I Definition 2.3. (Recognized language) The tree language recognized by A in a state q is
L(A, q) = {t ∈ T (F) | t⇒∗A q}. The language recognized by A is L(A) = ∪q∈Qf

L(A, q).

I Example 2.4. (Tree automaton and recognized language) Let F = {f, a, b} and A =
〈F , Q,Qf ,∆〉, where Q = {q1, q2}, Qf = {q1}, and ∆ = {f(q1) → q1, a → q1, b → q2, q2 →
q1}. Then L(A, q1) = T (f, a, b), that is the set of all terms build on {f, a, b}, and L(A, q2) =
{b}.

Deterministic bottom-up tree automata have the same expressive power as non-determinis-
tic bottom-up tree automata, that is they recognize the same classes of term languages. In
what follows we assume that automata are deterministic, unless otherwise specified.

3 Safety via finite countermodels

3.1 Basic verification problem
The main verification problem we consider in this paper is as follows.

I Problem 1.
Given: Tree automata AI and AU , a term-rewriting system R
Question: Does ∀t1 ∈ L(AI) ∀t2 ∈ L(AU) t1 6⇒∗R t2 hold?

RTA’12

228 Finite models vs tree automata in safety verification

In applications, we assume that the states of a computational system to be verified are
represented by terms, the system evolution (computation) is represented by R; tree automata
AI and AU provide with finitary specifications of the (infinite, in general) sets of allowed
initial states and the sets of unsafe states, presented by L(AI) and L(AU), respectively.
Under such assumptions, safety of the system is equivalent to the positive answer on the
question of the Problem 1.

3.2 Translation of the basic verification problem

In this subsection we show how to reduce the basic verification problem to the problem
of disproving of a formula from classical first-order predicate logic.
First, we define the translation ΦR of a term-rewriting system R over T (F ,X) into a set of
first-order formulae in the vocabulary F ∪ {R}, where R is a new binary predicate symbol.
Let ΦR = Φr

R ∪ ΦF , where Φr
R = {R(l, r) | (l→ r) ∈ R} and ΦF is the set of the following

formulae, which are all assumed to be universally closed and where x1, . . . xi, . . . xn, x
′
i are

distinct variables:

1. R(x, x) reflexivity axiom
2. R(x, y) ∧R(y, z)→ R(x, z) transitivity axiom
3. R(xi, x

′
i)→ R(f(x1, . . . , xi, . . . xn), f(x1, . . . , x

′
i, . . . xn)) for every n-ary functional symbol

f from F and every position i: 1 ≤ i ≤ n congruence axioms

Under such a translation first-order derivability faithfully models rewriting in R as the
following proposition shows.

I Proposition 3.1. For ground terms t1, t2 ∈ T (F) if t1 ⇒∗R t2 then ΦR ` R(t1, t2).

Proof. Due to the transitivity of R specified in ΦR it is sufficient to show that if t1 ⇒R t2
then ΦR ` R(t1, t2). Assume t1 ⇒ t2 then t2 is obtained from t1 by the replacement of some
subterm lσ of t1 with a subterm rσ for some (l→ r) ∈ R and some substitution σ. Consider
two sequences of subterms τ0 = lσ, τ1, . . . , τk = t1 and ρ0 = rσ, ρ1, . . . , ρk = t2 with the
property that τi is an immediate subterm of τi+1 within t1 and ρi is an immediate subterm
of ρi+1 within t2, i = 0, . . . , k. Then we show by easy induction on i that ΦR ` R(τi, ρi)
for i = 0, . . . , k. Indeed, for i = 0 we have R(τ0, ρ0) ≡ R(lσ, rσ) is a ground instance of
R(l, r) ∈ Φr

R and therefore ΦR ` R(τ0, ρ0). For the step of induction, assume ΦR ` R(τi, ρi).
Notice that by construction of sequences of τ ’s and ρ’s τi+1 and ρi+1 should have the same
outermost functional symbol f and coincide everywhere apart of subterms τi and ρi. Let
τi+1 = f(. . . , τi, . . .) and ρi+1 = f(. . . , ρi, . . .). Then we have R(τi, ρi)→ R(τi+1, ρi+1) is a
ground instance of one of the formulae in Φr

R. So we have ΦR ` R(τi, ρi) → R(τi+1, ρi+1)
and by inductive assumption ΦR ` R(τi, ρi). It follows ΦR ` R(τi+1, ρi+1). The induction
step is completed. We have ΦR ` R(τk, ρk), which is ΦR ` R(t1, t2)

J

Now we define a first-order translation of a tree automaton.
Let A = 〈F , QI , Qf ,∆〉 be a tree automaton. let ΣA be the following first-order vocabu-

lary:

constants for all elements of Q;
all functional symbols from F ;
a binary predicate symbol R;

A. Lisitsa 229

Let ΦA to be the set of first-order formulae in vocabulary ΣA defined as ΦA = Φ∆ ∪ ΦF ,
where Φ∆ = {R(c, q) | (c→ q) ∈ ∆} and ΦF is as defined above.

As the following proposition shows first-order logic derivations from ΦA faithfully simulate
the work of the automaton A

I Proposition 3.2. (Adequacy of automata translation)
If t ∈ LA then ΦA ` ∨q∈Qf

R(t, q)

Proof. The statement of the proposition follows immediately from Definitions 2.2 and 2.3
and Proposition 3.1.

J

Now we are ready to define the translation of the basic verification problem. Assume we
are given an instance P = 〈AI ,R,AU 〉 of Problem 1, with a term-rewriting system R over
T (F ,X) and tree automata AI = 〈F , QI , QfI

,∆I〉, AU = 〈F , QU , QfU
,∆U 〉. Assume also

(without loss of generality) that sets F , QI and QU are disjoint.
We define translation of P as ΦP = ΦAI

∪ΦAU
∪ΦR. By the above definitions we then also

have ΦP = ΦF∪Φ∆I
∪Φ∆U

∪Φr
R. We further define the translation of (negation of) correctness

condition from P as a formula ψP = ∃x∃y ∨qi∈QI ,qu∈QU
R(x, qi) ∧R(x, y) ∧R(y, qu).

The following proposition and corollary serves as a formal underpinning of the proposed
verification method.

I Proposition 3.3. (Correctness of the translation)
Let P be an instance of the basic verification problem as detailed above. Then if P has a

negative answer then ΦP ` ψP

Proof. The statement of the proposition immediately follows from Definitions 2.2 and 2.3
and Propositions 3.1 and 3.2. J

By contraposition we have the following

I Corollary 3.4. If ΦP 6` ψP the instance P has a positive answer and the safety property
holds.

3.3 FCM method
By FCM (finite countermodels) verification method we understand the following. Given
an instance P = 〈AI ,R,AU 〉 of the basic verification problem, translate it into a set of
first-order formulae ΦP and a formula ψP as described above. Then apply a generic finite
model finding procedure to find a countermodel for ΦP → ψP . If a countermodel is found
the safety property is established and the instance P has got a positive answer.

3.4 Relative completeness
In this section we show the relative completeness of FCM with respect to verification methods
based on tree automata completion techniques (TAC). More precisely, we show that if safety
of TRS can be demonstrated by TAC, it can be demonstrated by FCM too.

Given an instance P of basic verification problem (Problem 1) verification by TAC
approach would proceed as follows. Starting from AI and R completion procedure yields an
automaton A∗ wich describes, in general, an overapproximation of the set of terms reachable
in R from L(AI)), that is L(A∗) ⊇ {t | ∃t0 ∈ L(AI) t0 →∗R t}. Further, the check of
whether L(A∗) ∩ L(AU) = ∅ is performed and, if it holds, the safety is established.

RTA’12

230 Finite models vs tree automata in safety verification

Exact description of the set of all reachable terms in a term-rewriting system by a tree
automaton is not always possible. The main direction in the development of TAC methods
is a development of more efficient and more precise approximations methods.

I Theorem 3.5. Let P = 〈AI ,AU ,R〉 be a basic verification problem and there exists a
tree automaton A∗ = 〈F , Q∗, Q∗f ,∆∗〉 such that L(A∗) ⊇ {t | ∃t0 ∈ L(AI) t0 →∗R t} and
L(A∗) ∩ L(AU) = ∅. Then there exists a finite modelM such thatM |= ΦP ∧ ¬ψP (i.eM
is a countermodel for ΦP → ψP).

Proof. Assume the conditions of the theorem hold. Define the domain D of the required
model: D = Q⊥I ×Q⊥∗ ×Q⊥U , where Q⊥I = QI ∪ {⊥}.

Define interpretations of constants [[c]] = 〈aI , a∗, aU 〉, where ax = q if (c, q) ∈ ∆x, or
ax = ⊥ otherwise, x ∈ {I, ∗, U}. For a functional symbol f of arity n ≥ 1 define its
interpretation [[f]] : Dn → D as [[f]](〈a1

I , a
1
∗, a

1
U 〉, . . . , 〈an

I , a
n
∗ , a

n
U 〉) = 〈aI , a∗, aU 〉, where for

all x ∈ {I, ∗, U}, either (f(a1
x, a

2
x, . . . a

n
x)→ ax) ∈ ∆x, or ax = ⊥, otherwise.

Once we defined the interpretations of all functional symbols (including constants) any
ground term t gets its interpretation [[t]] ∈ D in a standard way. Then it is an easy consequence
of definitions that [[t]] is a triple of states of automata AI , A∗, AU , respectively, into which
they get working on the input t. More formally, if [[t]] = 〈aI , a∗, aU 〉, then for all x ∈ {I, ∗, U}
either t⇒∗x ax ∈ Qx, or there is no such q ∈ Qx that t⇒∗x q, and then t⇒∗x ax = ⊥.

Define the interpretation [[R]] ⊆ D ×D of R as follows.

[[R]] = {〈[[t1]], [[t2]]〉 | t1, t2 are ground in D, t1 ⇒∗ t2}

where ⇒ denotes ⇒R ∪ ⇒∆I
∪ ⇒∆U

.
Now we are going to show that in a such defined modelM we have ΦP ∧ ¬ψP satisfied.

Recall ΦP = ΦF ∪ Φ∆I
∪ Φ∆U

∪ Φr
R.

We have
M |= ΦF (by definition of rewriting and definition of [R])
M |= Φ∆I

∪ Φ∆U
∪ Φr

R (by definition of [R])

To showM |= ¬ψP assume the opposite i.eM |= ψP that isM |= ∃x∃y ∨qi∈QI ,qu∈QU

R(x, qi) ∧ R(x, y) ∧ R(y, qu). That means there are a, b ∈ D such that (a, [[qi]]) ∈ [[R]],
(a, b) ∈ [[R]], (b, [[qu]]) ∈ [[R]]. Consider the ground terms τ1 and τ2 such that [[τ1]] = a and
[[τ2]] = b. We have τ1 ∈ L(AI), τ1 ⇒∗ τ2, τ2 ∈ L(AU). It follows that τ2 ∈ L(A∗) ∩ L(AU)
which contradicts to the assumption of the theorem on emptiness of L(A∗) ∩ L(AU). J

I Note 1. The above model construction serves only the purpose of proof and it is not
efficient in practical use of the method. Instead we assume that the task of model construction
is delegated to a generic finite model building procedure.

3.5 Finite models as invariants
Assume that for a basic verification problem P = 〈AI ,AU ,R〉, a model M such that
M |= ΦP ∧ ¬ψP is found. Then not only the safety is established, the model itself provides
with a finite description of an invariant of a TRS sufficient to prove the safety. Define the
following subsets of a domain D ofM.

I = {[[t]] | t ∈ L(AI)}
U = {[[t]] | t ∈ L(AU)}
Reach = {[[t]] | ∃t0 ∈ L(AI) t0 →∗R t}
I • [[R]] = {y | ∃x ∈ I ∧ (x, y) ∈ [[R]]} (where [[R]] is an interpretation of R inM)

A. Lisitsa 231

Then it is easy consequence of definitions of ΦP and ψP that Reach ⊆ I • [[R]] and
I • [[R]] ∩ U = ∅. Thus I • [[R]] is a finite invariant set which subsumes the interpretations
of all reachable terms and at the same time is disjoint with the set of interpretations of all
unsafe terms. For a finite model M both conditions can be verified by a straightforward
induction, providing thereby the translation of FCM verification into an inductive proof of a
safety property.

3.6 Variations on a theme
Theorem 3.5 provides with a lower bound for the verifying power of FCM method applied to a
basic verification problem. In this section we consider practically important variations of the
basic verification problem which allow simplified translations and more efficient verification.

3.6.1 Finitely based sets of terms
In many cases of safety verification tasks for TRS the sets of initial and/or unsafe terms are
given not by tree automata, but rather described as the sets of ground instances of terms
from a given finite set of terms. More precisely, let B be a finite set of terms in a vocabulary
F and g(B) = {τ | ∃t ∈ B ∧ τ = tθ; θ is ground }. It is easy to see that for the finite B g(B)
is a regular set.

Consider the following modification of the basic verification problem.

I Problem 2.
Given: Finite sets of terms BI and BU , a term-rewriting system R
Question: Does ∀t1 ∈ g(BI) ∀t2 ∈ g(BU) t1 6⇒∗R t2 hold?

Let P = 〈BI ,R, BU 〉 be an instance of the Problem 2.
The translation ΦR of the term rewriting system R is defined in 3.2.
The translation of (negation of) correctness condition from P is defined as ψP =

∃x̄ ∨t1∈g(BI),t2∈g(BU) R(t1, t2).
Now we have the following analogue of Proposition 3.3

I Proposition 3.6. (Correctness of the translation)
Let P be an instance of the basic verification problem as detailed above. Then if P has a

negative answer then ΦR ` ψP

3.6.2 Outermost rewriting
Another simplification of the translation may come from the restrictions on the rewriting
strategies in TRSs. If rewriting can only be applied at the outer level, i.e. redex can be
only the whole term, not its proper subterm, then the first-order translation of an TRS
can be simplified by using unary reachability predicate R(−) instead of binary R(−,−).
The intended meaning of R(t) is “term t is reachable from some of the initial terms (using
outermost rewriting)”. The translation of a term rewriting system R becomes especially
simple in this case: ΦR = {R(t)→ R(t′) | (t→ t′) ∈ R}.

We omit the obvious further details of translation (e.g. on specification of the sets of
initial and unsafe terms) as well as the statement on its correctness and rather refer the
reader to the Example 6.2.

RTA’12

232 Finite models vs tree automata in safety verification

4 Rewriting modulo theories

Proposed FCM method is very flexible and can be naturally extended to the rewriting
modulo equational theories. We consider here only the case of basic verification problem.
The extensions of other variants (such as Problem 2, or as in subsection 3.6.2) can be dealt
with in a similar way.

I Problem 3.
Given: Tree automata AI and AU , a term-rewriting system R, and a set of equations E
Question: Does ∀t1 ∈ L(AI) ∀t2 ∈ L(AU) [t1] 6⇒∗R,E [t2] hold?

Using notation introduced in subsection 3.2 we now have

I Proposition 4.1. For ground terms t1, t2 ∈ T (F) if [t1]⇒∗R,E [t2] then ΦR∪E ` R(t1, t2).

Proof. (Hint) The proof follows the proof of Proposition 3.1 using the following straightfor-
ward statement. If for some ground terms t1, t2 ΦR ∪E ` R(t1, t2) then for any t′1 ∈ [t1] and
t′2 ∈ [t2] ΦR ∪ E ` R(t′1, t′2).

J

Based on that we have an equational analogue of Proposition 3.3 supporting applicability
of FCM for proving the safety of TRS modulo equational theories:

I Proposition 4.2. For the instance P of the above verification problem if P has a negative
answer then ΦAI

∪ ΦAU
∪ ΦR ∪ E ` ψP

Example 6.3 illustrates the use of FCM for equational rewriting. Since the outermost
rewriting strategy is assumed in this Example the simplified translation with unary reachability
predicate R is used.

5 Approximation by symmetric closure

In theory the application of FCM method is simple - apply finite model builder to the
first-order encoding of the problem and wait. If there is a finite countermodel it will be
eventually found if a complete model builder is used. In practice, however, it may take a
long time to find a countermodel. To accelerate the search one may use the approximation of
reachability relation ⇒R (⇒R,E) by its symmetric closure ⇔R (⇔R,E). It is obvious that if
the safety holds for the original problem, it may be lost after the symmetric closure is applied.
If however the safety is shown for the problem with the symmetric closure it holds for the
original problem too. To take an account of the symmetric closure it is sufficient to add to the
first-order translation of the basic verification problem just one formula R(x, y)→ R(y, x).
Notice that after such a modification an interpretation of R in any model is an equivalence
relation which is a congruence. It follows that if a countermodel searched in FCM method
exists then there exists a countermodel where R is interpreted by the equality relation. This
observation allows to simplify the translation of such modified problem further. Assuming
that a sound model finder procedure for the first-order logic with equality is used, in the
first-order translation all occurrences of R can be replaced with equality and reflexivity,
transitivity and congruence axioms can be dropped. Example 6.4 demonstrates the use of
such a technique.

A. Lisitsa 233

6 Experiments

In this section we present four examples of application of FCM method for safety verification
and compare the results with the results of alternative methods reported in the literature.

In the experiments we used the finite model finder Mace4[24] within the package Prover9-
Mace4, Version 0.5, December 2007. The system configuration used in the experiments:
Microsoft Windows XP Professional, Version 2002, Intel(R) Core(TM)2 Duo CPU, T7100 @
1.8Ghz 1.79Ghz, 1.00 GB of RAM. The time measurements are done by Mace4 itself, upon
completion of the model search it communicates the CPU time used.

6.1 Parity of n2

I Example 6.1.
The following verification task is taken from [12, 10].
Let Pn2 = 〈AI ,R,AU 〉 be an instance of basic verification task. Term rewriting system

R consists of the following rewriting rules

plus(0, x)→ x

plus(s(x), y)→ s(plus(x, y))
times(0, x)→ 0
times(s(x), y)→ plus(y, times(x, y))
square(x)→ times(x, x)
even(0)→ true

even(s(0))→ false

even(s(x))→ odd(x))
odd(0)→ false

odd(s(0))→ true

odd(s(x))→ even(x)
even(square(x))→ odd(square(s(x)))
odd(square(x))→ even(square(s(x)))

The tree automaton AI recognizes the set of initial terms. It has the set of states
QI = {s0, s1, s2}, the set

of the final states QIf
= {s0} and the set of rewriting rules ∆I = {even(s1) →

s0, square(s2)→ s1, 0→ s2} It is easy to see that L(AI) = {even(square(0))}
The tree automaton AU recognizes the set of unsafe terms. It has the set of states

QU = QUf
= {q0} and the set of rewriting rules ∆U = {false→ q0}.

So the question of the verification problem Pn2 is whether false is reachable from
even(square(0)).

Denote by ΦP the first-order translation of Pnn as defined in Section 3.2. The formula
ψP : ∃x∃y(R(x, s0) ∧R(x, y) ∧R(y, q0) expresses the negation of correctness condition.

The finite model finder Mace4 has found a finite countermodel for ΦP → ψP (i.e a finite
model for ΦP ∧ ¬ψP) in 0.03s. The domain D of the model is a two element set {0, 1}.
Interpretations of constants: [[f]] = [[q0]] = [[s1]] = [[s2]] = 0; [[s0]] = [[t]] = 1. Interpretations
of functions: [[even]](0) = 1, [[even]](1) = 0; [[odd]](0) = 0, [[odd]](1) = 1; [[s]](0) = 1, [[s]](1)
= 0; [[square]](0) = 0; [[square]](1) = 1; [[plus]](x,y) = (x + y)mod2; [[times]](x,y) = x × y.
Interpretation of reachability relation: [[R]] = {(0, 0), (1, 1)}.

Notice that verification is done here automatically. This can be contrasted with the
verification of the same system by a tree completion algorithm implemented in Timbuk system
[9], where an user interaction was required to add an approximation equation s(s(x)) = x

RTA’12

234 Finite models vs tree automata in safety verification

manually. In [10] an automated verification of the same system was reported using Horn
Clause approximation technique. The system was specified as a Horn Clause program and
the verification followed by producing a model for the program which contained 53 elements.
The above model produced by Mace4 within FCM approach provides with much more concise
explanation of why the safety holds: interpretation of any ground term (0 or 1) is an invariant
for reachability in TRS, [[even(square(0))]] = 1 and [[f]] = 0.

6.2 Readers-writers system verification
In this subsection we consider the example of a readers-writers system verification taken
from [6, 11].

I Example 6.2.
In the TRS specifying the system the only outermost rewriting is possible, so for the

translation we use monadic reachability predicate. Furthermore, both the set of initial terms
and the set of unsafe terms are finitely based. The vocabulary consists the constant 0, unary
functional symbol s (for successor) and binary functional symbol state.

The rules are as follows

state(0, 0)→ state(0, s(0))
state(x, 0)→ state(s(x), 0)
state(x, s(y))→ state(x, y)
state(s(x), y)→ state(x, y)

The set of initial terms is I = {state(0, 0)}. The set of unsafe terms U is finitely based
with the base B = {state(s(x), s(y)), state(x, s(s(y)))}. The first-order translation Φ consists
the conjunction of the following formulae

R(state(0, 0))
R(state(0, 0))→ R(state(0, s(0)))
R(state(x, 0))→ R(state(s(x), 0))
R(state(x, s(y)))→ R(state(x, y))
R(state(s(x), y))→ R(state(x, y))

The formula ψ ≡ ∃x∃yR(s(x), s(y)) ∨R(x, s(s(y))) expresses the negation of the correct-
ness condition.

The system can be then successfully verified by an FCM method. The search for the
countermodel for Φ→ ψ took 0.01s and the model found is as follows.

The domain D of the model is a three element set {0, 1, 2}; [[s]](0) = 1, [[s]](1) = 2, [[s]](2)
= 2; [[R]] = {(0, 0), (0, 1), (1, 0), (2, 0)}.

Notice that no additional information is needed for FCM method to automatically verify
the reader-writer system. That may be contrasted with the verification using tree automata
completion approach (Timbuk 3.0 system), reported in [11] where an equational abstraction
rule s(s(x)) = s(s(0)) should be manually added to the TRS for the successful verification.

6.3 Glass replacement puzzle
I Example 6.3.

The following verification example is taken from [17], where it has been formalized
using higher-order rewriting by simply-typed term rewriting systems (STRS) and solved by

A. Lisitsa 235

using higher-order Knuth-Bendix completion procedure. We use first-order term rewriting
formalization of the same problem .

Assume a sequence of sake, whisky and beer glasses. The sequence can be modified by
application of the following glass-replacement rules.

A sake glass may be inserted to the left of a beer glass. A sake glass having a beer glass
to its right may be removed.
A sake glass and whisky glass may be added to the left and right, respectively, of
an arbitrary contiguou s subsequence of glasses. The reverse operation may also be
performed.

The verification problem is to show that starting from sake-whisky-whisky-whisky sequence
and applying the replacement rules above one can not reach the sequence sake-whisky-whisky-
beer.

We formalize the problem by the term-rewriting system R consisting the following
rewriting rule

x ∗ (sake ∗ (beer ∗ y))→ x ∗ (beer ∗ y)
x ∗ (beer ∗ y)→ x ∗ (sake ∗ (beer ∗ y))
v ∗ (sake ∗ (x ∗ (whisky ∗ y)))→ v ∗ (x ∗ y)
v ∗ (x ∗ y)→ (v ∗ (sake ∗ (x ∗ (whisky ∗ y)))

where sake, beer, whisky are constants, and ∗ is a binary associative term constructor
(we use it in infix notation). Associativity of ∗ means we consider rewriting modulo equational
theory E = {(x ∗ y) ∗ z = x ∗ (y ∗ z)}.

First-order translation Φ consists the following formulae:

(x ∗ y) ∗ z = x ∗ (y ∗ z)
P (x ∗ (sake ∗ (beer ∗ y)))→ P (x ∗ (beer ∗ y))
P (x ∗ (beer ∗ y))→ P (x ∗ (sake ∗ (beer ∗ y)))
P ((v ∗ (sake ∗ (x ∗ (whisky ∗ y))))→ P (v ∗ (x ∗ y))
P (v ∗ (x ∗ y))→ P (v ∗ (sake ∗ (x ∗ (whisky ∗ y))))

Now, to resolve the puzzle it is sufficient to show Φ ∧ P (sake ∗ (whisky ∗ (whisky ∗
whisky))) 6` P (sake ∗ (whisky ∗ (whisky ∗ beer))). A countermodel of size 2 is found by
finite model finder MACE4 in 0.01sec.

6.4 Reverse function
In this section we consider a verification problem from [12]. The problem here is to show
that list reverse function satisfies the following property: if in a list all symbols ‘a’ are before
all symbols ‘b’ then after reversing there are no ‘a’ before ‘b‘.

I Example 6.4.
Vocabulary F consists of one 0-ary functional (constant) symbol 0 and three binary

symbols app, cons, rev.
The automaton recognizing is initial terms is defined as AI = 〈F , QI , QfI

,∆I〉, where F
is as defined above; QI = {qrev, qlab, qlb, qa, qb}; QfI

= {qrev}; ∆I contains

rev(qlab)→ qrev

cons(qa, qlab)→ qlab

0→ qlb

RTA’12

236 Finite models vs tree automata in safety verification

a→ qa

0→ qlab

cons(qa, qlb)→ qlab

cons(qb, qlb)→ qlb

b→ qb

The automaton recognizing unsafe terms is defined as AU = 〈F , QU , QfU
,∆U 〉, where F

is as above; QU = {qlab1, qlb1, q1, qa, qb}, QfU
= {qlab1}; ∆U contains

cons(qa, qlab1)→ qlab1
cons(qa, qlb1)→ qlab1
cons(qa, q1)→ q1
a→ qa

0→ q1
cons(qb, qlab1)→ qlab1
cons(qb, q1)→ qlb1
cons(qb, q1)→ q1
b→ qb

The term-rewriting system R consists of the following rules

app(0, x)→ x

app(cons(x, y), z)→ cons(x, app(y, z))
rev(0)→ 0
rev(cons(x, y))→ app(rev(y), cons(x, 0))

First-order translation ΦP consists of the following formulae.

R(rev(qlab), qrev)
R(cons(qa, qlab), qlab)
R(0, qlb)
R(a, qa)
R(0, qlab)
R(cons(qa, qlb), qlab)
R(cons(qb, qlb), qlb)
R(b, qb)
R(cons(qa, qlab1), qlab1)
R(cons(qa, qlb1), qlab1)
R(cons(qa, q1), q1)
R(0, q1)
R(cons(qb, qlab1), qlab1)
R(cons(qb, q1), qlb1)
R(cons(qb, q1), q1)
R(b, qb)
R(app(0, x), x)
R(app(cons(x, y), z), cons(x, app(y, z)))
R(rev(0), 0)
R(rev(cons(x, y)), app(rev(y), cons(x, 0)))
(R(x, y) ∧R(y, z))→ R(x, z)
R(x, x)
R(x, y)→ R(rev(x), rev(y))

A. Lisitsa 237

R(x, y)→ R(cons(z, x), cons(z, y))
R(x, y)→ R(cons(x, z), cons(y, z))
R(x, y)→ R(app(z, x), app(z, y))
R(x, y)→ R(app(x, z), app(y, z))

The formula ψP : ∃x∃y((R(rev(x), qrev) ∧ R(y, qlab1)) ∧ R(rev(x), y) expresses the
negation of the correctness condition.

For this standard encoding Mace4 has failed to find a countermodel for ΦP → ψP

within 250000s. However after removing the congruence axiom R(x, y)→ R(rev(x), rev(y))
Mace4 has found the model of size 3 (cardinality of the domain) in 0.06s. (see further
details in [18]. The absence of such a congruence axiom means that no rewriting of proper
subterms of rev(. . .) is allowed. One can either easily argue that in TRS given above no
such rewriting possible anyway, or, remaining in a pure automated verification scenario, just
accept verification modulo restrictions on the rewriting strategy. Alternatively one can apply
an approximation by symmetric closure, in which case Mace4 finds the model of size 3 in
0.1s.

Notice that the verification of the same system in [12] has been done using tree automata
completion technique, which required interactive approximation.

7 Related work and further directions

As mentioned Section 1 the approach to verification using the modeling of protocol executions
by first-order derivations and together with countermodel finding for disproving was intro-
duced within the research on the formal analysis of cryptographic protocols [28, 27, 13, 16, 14].

In [27], apparently for the first time, explicit building of finite countermodels has been
proposed as a tool to establish correctness of cryptographic protocols. It has been illustrated
by an example, where a countermodel was produced manually, and the automation of the
process has not been discussed. The later work [13] has shown how a countermodel produced
during the verification of cryptographic protocols can be converted into a formal induction
proof.

Later FCM approach has been applied to the various problems of infinite-state and
parameterized system [18, 19, 20, 21, 23]. In [20] it was shown that FCM provides a decision
procedure for the verification of safety properties of lossy channel systems and applications
to the verification of parameterized cache coherence protocols are presented . In [21, 23] the
relative completeness of FCM with respect to regular model checking and regular tree model
checking, respectively, has been established. Despite its simplicity, in many cases FCM has
turned out to be very efficient and comparable with or even outperforming (e.g. in [23]) the
best reported alternative methods.

From the viewpoint of this paper the verification problems considered in the above papers
can be seen as safety problems for the specific classes of (conditional) TRS modulo equational
theories.

The verification of safety properties for general term-rewriting systems using tree automata
completion techniques has been addressed in [12, 9, 11]. The paper [10] presents a method
based on encoding both term-rewriting system and tree automata into Horn logic and
application of the static analysis techniques. The main conceptual difference between these
approaches and FCM presented in this paper, is that in [12, 9, 11, 10] the safety verification
is performed in two stages: first, a tree automaton approximating all reachable terms is
obtained and it depends only on TRS but not on the safety property, and, second, an
intersection of the language of this automaton with the language of unsafe states is computed.

RTA’12

238 Finite models vs tree automata in safety verification

FCM method we presented here operates in one stage and computing regular approximations
or invariants (in terms of finite countermodels) is done for concrete safety properties. It
has its disadvantage that the results of the verification of a TRS can not be re-used for
the verification of different safety properties for the same TRS. On the other hand this
disadvantage is compensated by a higher degree of automation and higher explanatory power
of FCM method as our experimental results suggest. Furthermore, as the Example 6.1 has
demonstrated the invariants for specific safety properties might be much simpler than the
approximations of all reachable terms. That raises hope that the scalability, which is a
potential issue for FCM applications, can be dealt with. Tree automata completion has
shown that it scales well on very large TRS and large tree automata (with thousands of
rewrite rules and automata states) [3]. The applicability of FCM for the verification of
specific safety properties of the large systems requires further investigation.

Another feature of FCM approach which makes it different from tree automata completion
techniques is that it does not depend on linearity of TRS.

Perhaps, conceptually closest work to that reported in this paper has appeared very
recently in [4]. In the context of safety verification the computation of the overapproximation
of the set of reachable terms is reduced in [4] to the problem of instantiation of a symbolic
tree automaton, which in turn is reduced to the satisfiability testing of a boolean combination
of equalities and inequalities between variables. The latter task is then delegated to the
second-order satisfiability checker Mona. Similar to FCM and unlike to the methods reported
in [12, 9, 11, 10] approximations of reachable terms are computed there with respect to a
particular safety property. Theoretical and practical comparisons of FCM and the method of
[4] is a very interesting topic for future work.

Finally, we would like to notice that the translations we have defined in this paper can be
seen as the axiomatizations of rewriting theories in a sense of rewriting logic [25] within the
standard first-order logic, where binary predicate R represents the entailment ` for rewriting
theory. Rewriting logic formalizing conditional and modulo theory rewriting may serve as
an unifying formalism for representing all applications of FCM. Development of such an
approach is another direction for future work.

References

1 Abdulla, P.A., Jonsson,B., Nilsson, M., & Saksena, M., (2004) A Survey of Regular Model
Checking, In Proc. of CONCUR’04, volume 3170 of LNCS, pp 35–58, 2004.

2 Baader, F., Nipkow, T., (1998) Term Rewriting and All That, Cambridge University Press,
1998

3 Boichut, Y., Genet, T., Jensen T.P., Le Roux, L., (2007) Rewriting Approximations for
Fast Prototyping of Static Analyzers, in Proc. of RTA’2007, 48–62, 2007.

4 Boichut, Y., Dao, T.-B.-H., Murat, V., (2011) Characterizing Conclusive Approximations
by Logical Formulae, in Proc. of Reachability Problems 2011, pp72-84, 2011

5 Caferra, R., Leitsch, A., & Peltier, M., (2004) Automated Model Building, Applied Logic
Series, 31, Kluwer, 2004.

6 Clavel, M., Duran, F., Eker, S., Lincoln, P., Marti-Oliet, N., Meseguer, J., Talcott., C.L.,
2007. All About Maude, A High-Performance Logical Framework. Vol. 4350 of Lecture
Notes in Computer Science. Springer.

7 Delzanno, G., (2003) Constraint-based Verification of Parametrized Cache Coherence Pro-
tocols. Formal Methods in System Design, 23(3):257–301, 2003.

8 Enderton, H., (1972) A Mathematical Introduction to Logic, Academic Press, 1972

A. Lisitsa 239

9 Feuillade, G., Genet, T., Tong, V.V.T.: Reachability Analysis over Term Rewriting Systems.
J. Autom. Reasoning 33(3-4), 341–383 (2004).

10 Gallagher, John P., & Rosendahl, M.,(2008) Approximating Term Rewriting Systems: A
Horn Clause Specification and Its Implementation. I.Cervesato, H. Veith, and A. Voronkov
(Eds.): LPAR 2008, LNCS 5330, pp. 682–696, 2008.

11 Genet, T., Rusu, V., Equational Approximations for Tree Automata Completion, Journal
of Symbolic Computation Volume 45, Issue 5, May 2010, Pages 574-597

12 Genet, T., Tong, V.V.T.: Reachability Analysis of Term Rewriting Systems with timbuk. In:
Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001, LNCS, vol. 2250, pp. 695–706. Springer,
Heidelberg, 2001.

13 Goubault-Larrecq, J., (2008), Towards producing formally checkable security proofs, auto-
matically. In: Computer Security Foundations (CSF), pp. 224–238 (2008)

14 Guttman, J., (2009) Security Theorems via Model Theory, Proceedings 16th International
Workshop on Expressiveness in Concurrency, EXPRESS, EPTCS, vol. 8 (2009)

15 Habermehl, P., & Vojnar, T., (2005), Regular Model Checking Using Inference of Regular
Languages, Electronic Notes in Theoretical Computer Science (ENTCS), Volume 138, Issue
3 (December 2005), pp 21–36, 2005

16 Jurjens, J., & Weber, T., (2009), Finite Models in FOL-Based Crypto-Protocol Verification,
P. Degano and L. Vigan‘o (Eds.): ARSPA-WITS 2009, LNCS 5511, pp. 155–172, 2009.

17 Kusakari, K., & Chiba, Y., (2007), Higher-Order Knuth-Bendix Procedure and Its Applica-
tions, IEICE Transactions on Information and Systems, Vol.E90-D, No.4, pp.707-715, Apr
2007.

18 Lisitsa, A., (2009a), Verfication via countermodel finding
http://www.csc.liv.ac.uk/~alexei/countermodel/

19 Lisitsa, A., (2009b), Reachability as deducibility, finite countermodels and verification. In
preProceedings of AVOCS 2009, Technical Report of Computer Science, Swansea University,
CSR-2-2009, pp 241-243.

20 Lisitsa, A., (2010b), Reachability as deducibility, finite countermodels and verification. In
Proceedings of ATVA 2010, LNCS 6252, 233–244

21 Lisitsa, A., (2010c), Finite model finding for parameterized verification, CoRR
abs/1011.0447: (2010)

22 Lisitsa, A., (2011a), First-order finite satisfiability vs tree automata in safety verification
Corr abs/1107.0349:(2011)

23 Lisitsa, A.,(2011), Finite countermodels for safety verification of parameterized tree systems,
CoRR abs/1107.5142:(2011)

24 McCune, W., Prover9 and Mace4 http://www.cs.unm.edu/~mccune/mace4/
25 Meseguer, J., (1992), Conditional Rewriting Logic as a unified model of concurrency, The-

oretical Computer Science, 96:73–155, 1992.
26 Nilsson, M., (2005) Regular Model Checking. Acta Universitatis Upsaliensis. Uppsala Dis-

sertations from the Faculty of Science and Technology 60. 149 pp. Uppsala. ISBN 91-554-
6137-9, 2005.

27 Selinger, P., (2001), Models for an adversary-centric protocol logic. Electr. Notes Theor.
Comput. Sci. 55(1) (2001)

28 Weidenbach, C., (1999), Towards an Automatic Analysis of Security Protocols in First-
Order Logic, in H. Ganzinger (Ed.): CADE-16, LNAI 1632, pp. 314–328, 1999.

RTA’12

Triangulation in Rewriting
Vincent van Oostrom1 and Hans Zantema2

1 Department of Philosophy, Utrecht University, The Netherlands
Vincent.vanOostrom@phil.uu.nl

2 Department of Computer Science, TU Eindhoven, The Netherlands
Institute for Computing and Information Sciences, Radboud University
Nijmegen, The Netherlands
h.zantema@tue.nl

Abstract
We introduce a process, dubbed triangulation, turning any rewrite relation into a confluent
one. It is more direct than usual completion, in the sense that objects connected by a peak
are directly related rather than their normal forms. We investigate conditions under which this
process preserves desirable properties such as termination.

1998 ACM Subject Classification F.3.1 Specifying and Verifying and Reasoning about Pro-
grams, F.4.2 Grammars and Other Rewriting Systems

Keywords and phrases triangulation, codeterminism, completion, (co)confluence, (co)termination

Digital Object Identifier 10.4230/LIPIcs.RTA.2012.240

Category Regular Research Paper

1 Introduction

We study the problem of deciding whether two objects are equivalent with respect to the
equivalence relation generated by some rewrite relation. We do this in a fully abstract
setting, that is, any binary relation on any set of objects may serve as a rewrite relation.
The standard idea in such a setting is to compute the normal forms of both objects with
respect to the rewrite relation, subsequently comparing whether these normal forms are
equal or not. If and only if the normal forms are equal the original objects are deemed to
be equivalent.

For the above to work, i.e. for it to yield a sound and complete decision procedure for
equivalence, normal forms should exist and be unique within equivalence classes. For a
given rewrite relation neither needs to be the case. On the one hand, the objects b and
c are distinct normal forms with respect to the rewrite relation b //− a −.. c despite them
belonging to the same equivalence class {a, b, c} generated by −.. (see Figure 1 left); normal
forms are not unique so the procedure is not sound. On the other hand, the object a does
not have a normal form in the rewrite relation a −.. a; normal forms need not exist, even if
they are unique when they exist, hence the procedure need not be complete.

First we introduce in Section 2 a process called triangulation to stepwise extend an
arbitrary rewrite relation in such a way that normal forms are unique within each equivalence
class, without altering the generated equivalence relation. That is, after triangulation the
decision procedure is sound: if two objects both rewrite to a normal form, then they are
equivalent if and only if these normal forms are equal. For instance, triangulation would
extend the above rewrite relation b //− a −.. c by either of the steps b −I c (see Figure 1
right) or b J− c, forming a triangle, hence our naming. The idea of triangulation is similar

© Vincent van Oostrom and Hans Zantema;
licensed under Creative Commons License NC-ND

23rd International Conference on Rewriting Techniques and Applications (RTA’12).
Editor: A. Tiwari; pp. 240–255

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

V. van Oostrom and H. Zantema 241

a

b c

a

b c

Figure 1 b //− a −.. c before (left) and after (right) triangulation.

to that of abstract Knuth–Bendix completion, see e.g. [2]; the main difference is that by
triangulation two not directly related objects that are related by a peak will be related
directly, while in completion their normal forms will be related.

Next, in Section 3, we provide two sufficient conditions for triangulation to preserve
termination, guaranteeing existence of normal forms when starting out with a terminating
rewrite relation, thus giving rise to a sound and complete decision procedure for the gener-
ated equivalence. The first condition is a compatibility condition, requiring the union of the
original rewrite relation and the relation used to relate the adjoined steps to be terminat-
ing. The second condition requires both these relations to be terminating on their own, and
moreover the original rewrite relation to be codeterministic; at most one object rewrites to
any given object.

Finally, in Section 4, we reflect on how the triangulation process brings about complete-
ness. That is, looking back from the result of the completion process, i.e. from the original
rewrite relation and the relation by which it is extended, we provide sufficient conditions
on these two relations for their union to be complete. These conditions are abstract in that
they do not require the latter being stepwise generated from the former. We also provide
sufficient conditions for the result of triangulation to be cocomplete, i.e. coconfluent and
coterminating.

The origin of this research was in a question of Jan Friso Groote, relevant for the typing
mechanism in the tool-set of the specification language mCRL2 [5]. In a part of that mech-
anism types a, b, c, d, . . . are specified, some of which are equated, expressed by definitions
of the shape x //− y with x the definiendum and y the definiens. A natural question that
came up is whether two types are equivalent in the sense that the one can be reached by the
other by means of a series of definition foldings and unfoldings. For instance, in the system
having six types a, b, c, d, e, f with four definitions

a //− b, b //− c, d //− c, f //− e

the types a and d are seen to be equivalent since they can be connected by the chain of
definition foldings and unfoldings a //− b //− c −.. d. Triangulation arose here as a method
to answer the equivalence question, as it constructs unique representatives of equivalence
classes, hence checking equivalence of two types reduces to checking equality of their re-
spective representatives (→-normal forms). Executing it on this example, first the peak
b //− c −.. d is turned into a triangle by adjoining a definition b −I d, the direction being de-
termined by some given order on the objects, here the alphabetic order. This then gives rise
to a new peak a //− b −I d which in turn is made into a triangle by adjoining a −I d, after
which d, f have become the unique representatives of their respective equivalence classes.
The types a and b are −..-equivalent since d is their common →-normal form. The example
also motivates our interest in studying rewrite relations that are codeterministic, as code-
terminism of a system of definitions −.. corresponds to the natural requirement, satisfied by
the example, that types are not defined twice.

RTA’12

242 Triangulation in Rewriting

2 Triangulation

We introduce triangulation as a process to turn an arbitrary rewrite relation into a confluent
one, without altering the generated equivalence relation. We first quickly recapitulate the few
basic notions on rewrite relations needed for this, referring the reader to [1, 6] for background
information. Throughout, we will use relation to mean a binary relation. A relation R is said
to have property co-P if its converse has property P .1 A rewrite relation is a binary relation
on a set of objects, that is, a relation having the same domain and codomain. Rewrite
relations may denote notions of computation steps, and we will use arrow-like notations like
→, −.., −I to denote them. For a rewrite relation →, we inductively define an object a to
be terminating, if for all objects b such that a→ b, b is terminating. The rewrite relation →
is terminating if all its objects are. For a rewrite relation denoted by an arrow-like notation
→, its converse is denoted by the converse ← of the notation. We denote the union of two
rewrite relations by the union of their notations, e.g. ↔ denotes ← ∪ →, the symmetric
closure of →. We say → is total if a ↔ b for all objects a, b. We use −.. · −I to denote
the composition of −.. and −I, use →n to denote the n-fold composition of → with itself,
and→= and→+ to denote respectively the reflexive and transitive closure of→. To denote
the reflexive–transitive closure of →, i.e. its ‘repetition’, we employ the ‘repetition’ � of its
notation, or, if clutter would arise from repeating the notation, →∗. If a � b then we say
that a reduces or rewrites to b. We define →-expansion as →-coreduction, i.e. ←-reduction,
and →-convertibility as ↔∗ which is easily shown to be the equivalence closure of →. A
rewrite relation→ is confluent if� ·� ⊆� ·�. A rewrite relation is complete if it is both
terminating and confluent. Further notions and notations will be introduced on a by-need
basis.

Now we are ready for our main definition: we want to extend an arbitrary rewrite
relation −.. to achieve desired properties like confluence. In doing so, we use a total relation
R, typically a total order, to order the added new pairs.

I Definition 2.1 (Triangulation). Let R be a total relation on the objects of a rewrite relation
−... The triangulation Tr(−..) of −.. with respect to R is the rewrite relation→ =

⋃
n≥1→n,

where →n is defined inductively as follows:
→1 = −..; and
a→n b holds for n > 1 if and only if
a R b and for some m, k ≥ 1 with m+ k = n there is a c such that a←m c→k b; and
for no k < n, a↔=

k b holds.
Below we will assume the relation R to be total.

I Example 2.2. Triangulating the rewrite relation −.. displayed on the left in Figure 2
with respect to the usual alphabetic order on its objects {a, . . . , h} gives rise to the rewrite
relation displayed on the right of that figure. The original arrows are labelled by 1. Next
for every peak x ← · → y with x 6= y for which there is not yet an arrow between x and y
an arrow x→2 y is created or conversely, depending on whether x R y or y R x holds. This
is continued until after creating the →5 arrow, there is a direct arrow between x and y for
all peaks x← · → y with x 6= y.

I Remark. The index n of a step a→n b is the number of −..-steps in a proof showing that
a and b are −..-convertible. Counting each axiom (−..-step) and transitivity rule employed

1 We will in particular be interested in codeterminism, coconfluence, cotermination and cocompleteness.

V. van Oostrom and H. Zantema 243

a

b

c

d

f

g h

e

1

a

b

c

d

f

g h

e

2

1 1
1

1

5

3

2

1
1

1
2

2

Figure 2 A rewrite relation −.. (left) and its triangulation (right).

in such a proof, this amounts to the same thing as half of (one plus the size of that proof).
In Example 2.2 the step d →5 e witnesses a proof of size 9 (= 2 × 5 − 1) based on the
−..-conversion d //− b //− a −.. c //− f −.. e consisting of 5 steps and 4 applications of the
transitivity rule as witnessed by first b→2 c and c→2 e, then d←3 c, and finally d→5 e.
The rewrite relation in the example is finite, hence triangulation must stop in the sense that
no new steps will be adjoined from some stage on (in fact, from stage 5 on). But also for
infinite rewrite relations the process may well stop. Triangulation always results in what we
will call an affluent rewrite relation without altering the generated equivalence relation.

I Definition 2.3 (Affluence). A pair −..,−I of rewrite relations is affluent2 if ////− · −II ⊆
////−∪−II, one-step affluent if //− · −I ⊆ //−∪−I, and locally affluent if //− · −I ⊆ ////−∪−II.
These notions pertain to a single rewrite relation → via the pair →,→.

Observe that in term rewriting affluence seldomly occurs: even with respect to the single
rule a→ b, affluence does not hold for the term f(a, a). So both affluence and triangulation
are about rewrite relations in abstract settings, typically not described by a term rewriting
system.
I Remark. One-step affluence of −..=,−I= is equivalent to //− · −I ⊆ (//− ∪ −I)=, hence
implies sub-commutation //− · −I ⊆ −I= · //−=. In turn, local affluence of −..,−I implies
local commutation //− · −I ⊆ −II · ////− and affluence of −..,−I implies commutation
////− · −II ⊆ −II · ////−. In case of a single rewrite relation, the same holds, replacing
commutation by confluence.
The standard example showing that local commutation does not imply commutation, b //−
a −I//− a′ −I c, shows local affluence does not imply affluence. Analogous to the fact that
one-step commutation implies commutation by the former being preserved under taking
reflexive and transitive closures, one-step affluence implies affluence:

I Lemma 2.4. If −..,−I is one-step affluent, then so are −..=,−I= and −..+,−I+.

Proof. Suppose the pair −..,−I is one-step affluent.
That −..=,−I= is one-step affluent follows from //−= · −I= = id∪ //−∪−I∪ (//− · −I).

2 The idea is that whereas the standard notion of confluence expresses that rewrite sequences (viewed
as streams) may ‘flow together’, we use affluence in its original (archaic) sense to express that one of
them may ‘flow to’ (is a tributary of) the other.

RTA’12

244 Triangulation in Rewriting

To prove that−..+,−I+ is one-step affluent, we show for n,m ≥ 0, a //−n · //− · −I · −Im
b implies a (//−+ ∪ −I+) b, by induction on n+m. By assumption a //−n · (//− ∪−I) · −Im
b. Suppose w.l.o.g. a //−n · //− · −Im b. Then we conclude to a //−+ b if m = 0. Otherwise
we conclude to a (//−+ ∪ −I+) b by the induction hypothesis. J

I Theorem 2.5. Let → = Tr(−..) be the triangulation of any rewrite relation −... Then →
is affluent and ↔∗ = //−..∗.

Proof. To prove affluence of −.. it suffices by Lemma 2.4 and the remark above it, to prove
← · → ⊆ ↔=. To that end, we show that for all natural numbers n,m ≥ 1, a ←n c →m b

implies a ↔= b. By the triangulation construction then either a is
⋃

1≤k<n+m↔=
k -related

to b and we are done, or a is not so related to b and then a↔n+m b by the assumed totality
of the relation R.

To prove ↔∗ = //−..∗ it suffices, since → =
⋃
n≥1→n, to show →n ⊆ //−..∗ for all n ≥ 1

by induction on n. In the base case→1 = −.. ⊆ //−..∗. If a→n+m b because a←n c→m b for
some object c and natural numbers n,m, then by the induction hypothesis a //−..∗ c //−..∗ b,
and we conclude by transitivity of //−..∗. J

I Corollary 2.6. The triangulation Tr(−..) is confluent for every rewrite relation −...

Having established this basic result, we investigate in the next section on which rewrite rela-
tions triangulation is a completion process, i.e. for which rewrite relation does triangulation
preserve termination?

3 Completion

When does triangulation yield a complete rewrite relation? That is, when does triangulation
yield a rewrite relation that is both confluent and terminating? We first present an example
showing that, in general, triangulation fails to do so. Analysing the example, we then
propose two sufficient conditions for triangulation to preserve termination of the rewrite
relation, i.e. for triangulation to be a completion process.

a

b

c

d

f

g h

e

Figure 3 Rendering of Figure 2 using convention to decompose → into −..,−I.

To ease discussing the various examples and conditions, we will from now on, when
discussing triangulation, use −I to denote

⋃
n>1→n. Hence → = −.. ∪ −I and this union

is disjoint; the triangulation → consists of the original relation −.. and the triangulating
relation −I, cf. Figure 3.

V. van Oostrom and H. Zantema 245

I Example 3.1. Consider the rewrite relation −.. and its triangulation with respect to
the usual greater-than relation > as displayed in Figure 4. The resulting rewrite relation
→ = −.. ∪ −I is not terminating; it is even cyclic: 0 −.. 4 −I 3 −.. 1 −I 0.

5

0

43

2

1

Figure 4 Failure of triangulation to yield a complete rewrite relation.

What causes that triangulation succeeds in yielding a complete rewrite relation in Ex-
ample 2.2? Below we present two conditions, compatibility and codeterminism, each being
sufficient for triangulation to be a completion process.

3.1 Compatibility

Our first (trivial) condition is based on the observation that despite that both the original
rewrite relation −.. and the greater-than relation > with respect to which triangulation
takes place in Example 3.1 are terminating, they are not compatible in the sense that their
union is not terminating; it even is cyclic, e.g. 0 −.. 4 > 0. Since the −I-steps adjoined by
triangulation conform to the relation with respect to which triangulation takes place, the
latter being compatible with −.. guarantees that termination is preserved:

I Theorem 3.2. The triangulation Tr(−..) of −.. with respect to R is terminating if −..∪R
is terminating.

Proof. Combining →1 = −.. with →n ⊆ R, for all n > 1, we conclude to → =
⋃
n≥1→n ⊆

−.. ∪R, hence to termination of →. J

I Remark. The termination assumption on −.. ∪ R could have been rephrased as: −.. ⊆ R

and R is terminating. Clearly, the latter entails the former. To see the converse, note that
if a −.. b but a 6R b, then b R a by totality of R, hence a −.. b R a contradicting termination
of −.. ∪R. Therefore −.. ⊆ R and R is terminating.

I Remark. In ordinary completion, instead of adjoining a step between b and c as in tri-
angulation, a step between their −..-normal forms is adjoined if they are distinct. Under
the conditions of the theorem, also ordinary completion yields a complete rewrite relation.
However, ordinary completion results in confluence, not the stronger affluence guaranteed
by triangulation.

I Remark. If triangulation results in a complete rewrite relation, then, although unboundedly
many stages may have been needed, there cannot be unbounded creation. More precisely,
there is no infinite sequence of triangulating steps such that each step in the sequence is a
cause, one of the two (see Figure 5 left), in the triangulation process for the next step in
the sequence, as unbounded creation would contradict termination of the obtained rewrite
relation (see Figure 5 right).

RTA’12

246 Triangulation in Rewriting

Figure 5 How steps in a peak cause its triangulating step (left) and how an infinite causal chain
would give rise to an infinite sequence of steps through the sources of the triangulating steps (right).

3.2 Codeterminism
Our second (nontrivial) condition is based on the observation that the original rewrite rela-
tion −.. in Example 3.1 is not codeterministic: there are objects that are the target of more
than one rewrite step, viz. 0 −.. 4 //− 5.

I Definition 3.3. A binary relation R is deterministic if for all objects a in its domain, and
all objects b,c in its codomain, a R b and a R c imply b = c.

Forbidding the above configurations is captured by requiring the rewrite relation to be
codeterministic per our earlier convention of a relation having a property co-P if its converse
has property P .

g

a b c d e

hf i

j

Figure 6 Codeterministic rewrite relation.

I Example 3.4. Neither of the rewrite relations of Example 2.2 (Figure 2 left) and Ex-
ample 3.1 is codeterministic. For the latter this was observed above. The former fails to
be codeterministic because, e.g., a −.. c //− f . Both the system of definitions given in the
introduction in Figure 1 and the rewrite relation displayed in Figure 6 are codeterministic.

Note that the graph in Figure 6 consists of a number of trees branching off from a cycle
(a −.. b −.. c −.. d −.. e −.. a). It is easy to see (branching ‘off’ is allowed by codeterminism,
but branching ‘in’ is not) that this holds in general: each component of the graph of a
codeterministic rewrite relation consists of a number (possibly 1) of trees branching off (if
at all) from pairwise distinct objects lying at a (possibly empty) cycle. Thus the graph of
an acyclic codeterministic rewrite relation is a forest of trees.3

3 The trees may be infinite: both infinitely branching and non-rooted trees are allowed.

V. van Oostrom and H. Zantema 247

I Remark. Although it is not unreasonable to require acyclicity, in any case for systems of
definitions as in the introduction, one can well imagine an infinite setting without maximal
types, that is, for every type there’s a definition allowing it to be folded further. In Section 4
we also provide a dual approach, choosing maximally unfolded representatives. For the
moment we will view termination simply as necessary for the approach via maximally folded
representatives to make sense.

Intuitively, triangulating is a completion process for codeterministic rewrite relations, since
despite that triangulating the different branches from a node in a forest will create new
steps ‘spanning the gaps’ between these branches, no cycles will be created nor will disjoint
trees be joined by triangulating, hence termination will be preserved. As formalising this
intuition exactly turned out to be tedious,4 we instead provide a short proof based on the
following result due to Doornbos and von Karger. Variations on this result are given by
Dershowitz in [3].

a9

infinite →-reduction giving preference to −I-steps

infinite −..-reduction

a0 a1

a2 a5

a6

a7

Figure 7 Ramsey-style construction in proof of Lemma 3.5.

I Lemma 3.5 ([4]). For rewrite relations −..,−I let → = −..∪−I. Then → is terminating
if −.. and −I are terminating, and −.. · −I ⊆ −.. ∪ (−I ·�).5

Proof. We provide a Ramsey-style proof, see Figure 7, as an alternative to the calculational
proof in [4]. Without loss of generality we may assume −.. and −I to be disjoint (otherwise
consider −..−−I and −I).

For a proof by contradiction, suppose an object a0 such that∞(a0) were to exist, writing
∞(a) to denote that a allows an infinite→-reduction. Such an infinite→-reduction sequence
may then be constructed through objects an with ∞(an), while giving preference to −I-
steps. Formally: suppose the sequence has been constructed up to an. If there exists an
object a such that an −I a and ∞(a), then we set an+1 to a. Otherwise we set an+1 to any
object a such that an −.. a and ∞(a) (which must exist since ∞(an) and → = −.. ∪ −I).

We show one can construct an infinite −..-subsequence through objects that do not allow
a −I-step to an object b with ∞(b). Formally: we start out with the empty subsequence for
some object an for a pair of indices n,n + 1 such that an −.. an+1. Such a pair must exist
since otherwise the original reduction sequence would be an infinite −I-reduction sequence.

4 Still, that formalisation may be interesting, e.g. from a proof-theoretic point of view.
5 The latter property was dubbed lazy commutation in [3].

RTA’12

248 Triangulation in Rewriting

Per construction of the original sequence, an −.. an+1 entails that an does not allow a −I-
step to an object b with ∞(b). Next, suppose to have a subsequence ending in an for some
pair of indices n < m such that an −.. am.

In case am −.. am+1 (e.g. a1 −.. a5 −.. a6 for n = 1, m = 5 in Figure 7), we extend the
subsequence with am and continue with the pair of indices m,m+ 1.
Otherwise an −.. am −I am+1 (e.g. a6 −.. a7 −I a8 in Figure 7), hence by assumption
an (−.. ∪ (−I ·�)) am+1. Since by construction an does not allow a −I-step to an
object b with ∞(b), but ∞(am+1), in fact an −.. am+1 must hold and we may continue
with the pair of indices n,m+ 1.

Noting that we always eventually end up in the first case (otherwise the original sequence
would contain an infinite −I-reduction sequence, cf. a6 −.. a9 in Figure 7), the process yields
an infinite −..-reduction sequence (in Figure 7 the sequence a1, a5, a6, a9, . . .), contradicting
termination of −... J

I Remark. The proof of Lemma 3.5 in fact shows a stronger property than preservation of
termination of rewrite relations: it shows that any object allowing an infinite →-reduction
also allows an infinite →-reduction having either an infinite −..-tail or an infinite −I-tail.

I Theorem 3.6. Triangulating with respect to a terminating relation preserves termination
of codeterministic rewrite relations.

Proof. Let → be the triangulation Tr(−..) =
⋃
n≥1→n of the codeterministic terminating

rewrite relation −.. and let −I =
⋃
n>1→n be the triangulating rewrite relation, which is

terminating since it is contained in the terminating relation R. Since → = −.. ∪ −I ⊆
−..+ ∪ −I ⊆ →+, to prove termination of → it suffices by Lemma 3.5 to prove −..+ · −I ⊆
−..+ ∪ (−I ·�). This is an immediate consequence of the following claim.

Claim: −..+ · ↔n ⊆ −..+ ∪ (−I ·�) for all n > 1.

We prove this claim by induction on n, for n > 1. Suppose a −..+ b ↔n c for some n > 1.
We have to prove that either a −..+ c or a −I ·� c. By definition of triangulation b ↔n c

implies that there is an object d and there are natural numbers m, k both ≥ 1 and < n such
that b←m d→k c. We distinguish cases on whether or not m = 1.

If m = 1, then b //− d by definition of triangulation, hence a −.... d by codeterminism
of −... If a = d then we are done since then a −I c. Otherwise we conclude by the
induction hypothesis for a −..+ d→k c.
If m > 1, then by the induction hypothesis for a −..+ b ←m d we conclude that
a (−..+ ∪ (−I ·�)) d. If a −..+ d then we conclude by the induction hypothesis as
in the previous item. Otherwise a −I ·� d→ c. J

I Corollary 3.7. Triangulating a terminating codeterministic rewrite relation with respect
to a terminating relation is a completion process.
The corollary does not necessarily yield a decision procedure for deciding equivalence of ter-
minating codeterministic rewrite relations, as the triangulation process may well be infinite
itself, as it is the case for the rewrite relation in Figure 8.

Acyclicity too is preserved by triangulation of codeterministic relations.

I Corollary 3.8. Triangulating an acyclic codeterministic rewrite relation with respect to an
acyclic relation, yields an acyclic relation.

V. van Oostrom and H. Zantema 249

Figure 8 Rewrite relation requiring infinite triangulation.

Proof. If a cycle were to exist in the triangulation, then this cycle would be generated from
a finite part of the rewrite relation. On this finite part both the rewrite relation and the
total relation with respect to which it is triangulated, are terminating by acyclicity, hence
by Theorem 3.6 there can be no cycle. J

4 Completed

The previous section provided sufficient conditions on the original rewrite relation −.. and
the relation R with respect to which it was triangulated, for the triangulation process to yield
a complete rewrite relation. In this section, we reverse the process and look for conditions
on rewrite relations −..,−I that are sufficient for their union to be complete. Although one
still may think of −.. as the original rewrite relation and −I as the triangulating rewrite
relation, the conditions provided will be abstract in that they only concern −.. and −I. In
particular, the conditions refer neither to the triangulation process nor to the relation R used
in it; they may (and will) of course refer to the characteristic properties the triangulation
process brings about. Throughout → will be used to denote −.. ∪ −I.6

On the one hand, triangulation guarantees every peak to give rise to a triangle:

← · → ⊆ ↔= (affluence)

On the other hand, it guarantees that every −I-step is caused by triangulation:

−I ⊆ ← · → (triangulation)

As these properties are characteristic of the triangulation process of Section 2, we will assume
both throughout this section.

Since (affluence) states one-step affluence of→= which in turn implies that→ is conflu-
ent (Lemma 2.4), to obtain completeness it only remains to investigate which conditions on
−..,−I are sufficient to guarantee termination of →. In the case that −.. is not codetermin-
istic, one cannot do much more than crudely require that→ itself is terminating. Of course,
one may try to employ compatibility results such as Lemma 3.5, to reduce termination of→
to that of its constituting relations −..,−I, but as the following example shows, employing
that lemma is tied closely to the codeterministic case.

I Example 4.1. The union of a //− b −.. c //− d −.. e and c −I e J− a J− c is terminating,
but Lemma 3.5 cannot be used to show this as b −.. a −I e but neither b −..+ e nor
b −I ·� e. Note that −.. is not codeterministic.

6 Assuming −.. and −I to be disjoint would not affect the results in this section.

RTA’12

250 Triangulation in Rewriting

Hence(forth), we restrict ourselves to the codeterministic case below. That is, we will assume
the following property on top of the (affluence) and (triangulation) assumptions:

−.. · //− ⊆ id; (codeterminism)

4.1 Preservation of acyclicity by finiteness
We first show that for finite rewrite relations, as is the case for the motivating systems of
definitions in the introduction, the above three conditions are already sufficient to guarantee
completeness of →, if −..,−I are assumed terminating. After that we show this does not
hold for infinite rewrite relations.

Noting that for finite rewrite relations termination coincides with acyclicity, our first
result can be formulated as a preservation of acyclicity result.

I Theorem 4.2. For finite rewrite relations −..,−I and → = −.. ∪ −I, if properties (tri-
angulation) and (codeterminism) hold and −..,−I are acyclic, then → is acyclic.

Proof. Assume → admits a cycle. With a cycle we associate the multiset of elements on
it, by which cycles can be compared by a well-founded order: the multiset order induced
by −I. Now we take a →-cycle that is minimal with respect to this multiset order, that is,
there exists no cycle that is strictly smaller with respect to the multiset order.

As −.. and −I are acyclic, our cycle contains both −.. and −I-steps. Moreover, it also
contains a −..-step followed by a −I-step:

a −.. b −I c� a.

Now we choose c1 such that b ← c1 → c, using property (triangulation). As long as
b J− ci for increasing i we repeat the following: choose ci+1 such that b← ci+1 → ci, again
using property (triangulation). Now one of the following two cases holds:

This process stops. Then for the last chosen ci we have ci −.. b, see Figure 9. By
property (codeterminism) we conclude a = ci. Since cj −I b for all j satisfying
1 ≤ j < i, we conclude that the cycle via {cj | 1 ≤ j < i}

a = ci � c� a

is smaller than our original minimal cycle: the element b has been replaced by the
(possibly empty) multiset {cj | 1 ≤ j < i}, contradiction.

c5

b ca = c6 a

c1

c2
c3

c4

Figure 9 Smaller cycle if erecting cotriangles stops.

This process goes on forever. Then by finiteness of the set we obtain cj = ci for some
j > i, yielding a new cycle cj → cj−1 � ci = cj . Since b J− cκ for all κ, all elements in
this new cycle are less than the element b occurring in the original minimal cycle, again
contradicting minimality.

V. van Oostrom and H. Zantema 251

As both cases contradict the assumption of the existence of a →-cycle, we have proved that
→ is acyclic. J

I Corollary 4.3. For finite rewrite relations −..,−I and → = −.. ∪ −I, if properties (af-
fluence), (triangulation) and (codeterminism) hold and −..,−I are terminating, then
→ is complete.

Somewhat surprisingly, this result does not generalise to rewrite relations on infinite sets of
objects as illustrated by the following counterexamples.
I Counterexamples 4.4. Take as objects the set of natural numbers and let
−.. = {(n+ 1, n) | n ≥ 2} ∪ {(2, 0), (0, 1)}; and
−I = {(n, 1) | n ≥ 2} ∪ {(1, 0)}.

Then except for finiteness, all conditions of Corollary 4.3 are satisfied yet → is not termin-
ating; it admits the cycle 0 −.. 1 −I 0 (see Figure 10 left).

0102345 2345 1

Figure 10 Loss of termination by infinite −..-expansion (left) and infinite −I-expansion (right).

For another example, take as objects the set of natural numbers and let
−.. relate 0 to 1;
−I be the greater-than relation.

Again all conditions of Corollary 4.3 except for finiteness are satisfied, yet → is not termin-
ating; it admits the cycle 0 −.. 1 −I 0 (see Figure 10 right where transitive −I-edges have
been omitted).
In the next two sections, we investigate how to regain the preservation result for (potentially)
infinite rewrite relations, for two natural generalisation of acyclicity, termination respectively
cotermination.

4.2 Preservation of termination by strong triangulation
To obtain completeness for infinite rewrite relations as well, we bar the counterexamples of
the previous section by requiring, on top of the (affluence) and (codeterminism), the
following strengthening of (triangulation)

−I ⊆ ((//− · →) ∪ (← · −..)) ∩ (////− · ((//− · −..)− id) · −....) (strong triangulation)

The first conjunct of (strong triangulation) captures the idea that every −I-step is
caused by a peak containing at least one −..-step, while the second conjunct captures that
the −I-step originates with some non-trivial peak of −..-reductions. We proved that (strong
triangulation) captures an essential aspect of triangulation in the sense that for any code-
terministic rewrite relation its triangulation satisfies (strong triangulation); the proof is
found in the report version [7] of this paper.
I Remark. That (strong triangulation) is a proper strengthening of (triangulation) can
be seen by considering the rewrite relations in Counterexamples 4.4. That the triangulation
of a non-codeterministic rewrite relation may fail to satisfy (strong triangulation) can be
seen by viewing −I in Example 4.1 as arising from triangulating −.., and considering the
step a −I e.

RTA’12

252 Triangulation in Rewriting

>

1234 ⊥0

Figure 11 Non-terminating example satisfying all conditions of Corollary 4.6 except for the first
conjunct of the (strong triangulation) property.

I Theorem 4.5. For rewrite relations −..,−I and → = −.. ∪ −I, if properties (strong
triangulation) and (codeterminism) hold and −..,−I are terminating, then → is ter-
minating.

Proof. We proceed as in the proof of Theorem 3.6. That is, to prove termination of →
under the assumption that −..,−I are terminating, it suffices by Lemma 3.5 to prove −..+ ·
−I ⊆ −..+ ∪ (−I ·�). The latter property follows from the following claim.

Claim: If a −..+ b J−I c then a (−..+ ∪ (−I ·�)) c, for all a, b, c.

We prove this claim by induction on n+m for the natural numbers n,m such that it holds
b (//−n · ((//− · −..)− id) · −..m) c. Note that the pair exists by the second conjunct of the
(strong triangulation) property, and that it is unique by the (codeterminism) property
and the assumption that −.. is terminating. From the (strong triangulation) property
for b J−I c we conclude that there exists b′ such that one of the following three cases holds.

b //− b′ −.. c. Then by the (codeterminism) property, a −.... b′ −.. c and we conclude.
b //− b′ −I c. Then by the (codeterminism) property, a −.... b′ −I c. If a = b′ then we
conclude. Otherwise we conclude by the induction hypothesis for a −..+ b′ −I c, which
applies since by the second conjunct of the (strong triangulation) property for b′ −I c,
for some pair n′,m′ of positive natural numbers b′ (//−n′ · ((//− · −..)− id) · −..m′) c,
hence also b (//−n′+1 · ((//− · −..)− id) · −..m′) c, so n = n′+1 and m = m′ by uniqueness
of the pair n,m;
b J− b′ −.. c. Then a (−..+ ∪ (−I ·�)) b′ by the induction hypothesis for a −..+ b J− b′,
which applies for the same reason as in the previous item. From that we conclude
again. J

I Corollary 4.6. For rewrite relations −..,−I and → = −..∪−I, if properties (strong tri-
angulation) and (codeterminism) hold and −..,−I are terminating, then → is complete.
Neither conjunct of the (strong triangulation) property can be dispensed with.
I Counterexamples 4.7. The first example of Counterexamples 4.4 satisfies all conditions of
Corollary 4.6 except for the second conjunct of the (strong triangulation) property, yet
→ is not complete; it is not terminating as we have seen before.

For an example satisfying all conditions of Corollary 4.6 except for the first conjunct of
the (strong triangulation) property, consider the natural numbers extended with ⊥,>,
where −.. is given by ⊥ −.. 1, > −.. ⊥, and > −.. n for all n 6= 1, and where −I is
the greater-than relation on natural numbers extended with 0 −I ⊥ (see Figure 11 where
transitive −I-edges have been omitted). That the conditions hold is easy to check, yet →
is not complete; it is not terminating as it admits the cycle 1 −I 0 −I ⊥ −.. 1. Although
the example does not satisfy the first conjunct −I ⊆ (//− · →) ∪ (← · −..) of the (strong
triangulation) property for 1 −I 0, it does satisfy the weaker condition −I ⊆ ← · →.

V. van Oostrom and H. Zantema 253

4.3 Preservation of cotermination by triangulation
There are two natural generalisations of acyclicity from finite to infinite rewrite relations,
termination and cotermination. In the previous section we have seen that for termination
to be preserved (triangulation) had to be strengthened to (strong triangulation).7 In
this section we show that for cotermination no such strengthening is needed: it is preserved
without extra conditions. That is, investigating the properties of the triangulation process,
we answer the dual question whether triangulating a coterminating rewrite relation −.. with
respect to a coterminating relation R yields a coterminating rewrite relation, affirmatively.

That the triangulation of −.. with respect to R is coterminating if their union −.. ∪R is
coterminating, follows by the same proof as the one of Theorem 3.2. The interesting situ-
ation is again when −.. is assumed to be codeterministic, but no compatibility or finiteness
condition is put on the coterminating relations −..,R.8 We first show an auxiliary result,
characterising the −..-reduction peaks that cause →-steps.

I Lemma 4.8 (∆). For rewrite relations −.., −I and → = −.. ∪ −I, if properties (trian-
gulation) and (codeterminism) hold and −..,−I are coterminating, then for all a0 → a1
a common −..-expansion a0,1 of a0,a1 exists, such that a1 J−+ b, for i∈{0, 1} and all b with
ai //−+ b //−+ a0,1 (see Figure 12).

a0,1

a1a0
+

+
+

++

Figure 12 Illustration of the statement of the ∆-lemma.

Proof. The proof is by well-founded induction on the pair consisting of a1 and the multiset of
all −..-expansions of a0, finite by (codeterminism) and cotermination of −.., well-foundedly
ordered by the lexicographic product of J− and its multiset extension. We distinguish cases
on the step a0 → a1.

(a0 −I a1) We distinguish cases on the peak obtained by (triangulation):
if a0 //− a2 −.. a1, then, setting a0,1 = a2, we conclude immediately;
if a0 //− a2 −I a1, then we conclude by the induction hypothesis for a2 −I a1, which
applies by a decrease in the second component as the multiset of −..-expansions of a2
is a proper submultiset of that of a0, since a0 //− a2;
if a0 J− a2 −.. a1, then we conclude by the induction hypothesis for a2 −I a0, which
applies by a decrease in the first component, since a1 J− a0;
if a0 J− a2 −I a1 then the induction hypothesis applies first to a2 −I a0 yielding a
common −..-expansion a2,0 (decrease in the first component: a1 J− a0) and next to

7 Counterexamples 4.4 showed that the (triangulation) property was not sufficient to show preservation
of termination in the case of infinite rewrite relations.

8 By Corollary 3.8 cotermination is seen to be preserved in the case of finite rewrite relations, since then
termination, acyclicity, and cotermination all coincide.

RTA’12

254 Triangulation in Rewriting

a2 −I a1 yielding a common −..-expansion a2,1 (decrease in the second component:
the objects on the −..-expansion from a2 up to a2,0 all are −I-expansions of a0 via a2).
By (codeterminism) a2,1−j ////− a2,j for one of j ∈ {0, 1}, so we may set a0,1 = a2,j

as common −..-expansion of a0,a1. If ai //−+ b //−+ a0,1 for some i ∈ {0, 1} and some
b, then either ai //−+ b //−+ a2,i or a2 ////− a2,i ////− b //−+ a0,1 = a2,j and we conclude
by either induction hypothesis and a1 J− a0;

(a0 −.. a1) Then we conclude, setting a0,1 = a0, trivially. J

Nothing in the conditions of the ∆-lemma entails completeness of →, and indeed it may fail
to hold as can be seen by letting −.. be the (coterminating) predecessor relation on natural
numbers and −I the empty relation. We do however have cocompleteness (coconfluence and
cotermination) even without requiring (affluence).

I Theorem 4.9. For rewrite relations −.., −I and→ = −..∪−I, if properties (codetermin-
ism) and (triangulation) hold and −..,−I are coterminating, then → is cocomplete.

Proof. First we consider cotermination of →. For a proof by contradiction, suppose a1 ←
a2 ← . . . were an infinite expansion. Then adjoining an object a0, and steps ai+1 −I
a0, for all i, would yield relations still satisfying the assumptions. The ∆-lemma yields a
contradiction as a0 and a1 do not have a common −..-expansion.9

For the proof of coconfluence of →, note that the ∆-lemma yields that →-convertibility
is contained in −..-convertibility, from which one concludes as −.. is trivially coconfluent
by (codeterminism). J

Although we think the proof of the result, in particular that of the ∆-lemma, is interesting,
as of yet this is just a theoretical result and we do not have applications (except for providing
an alternative more general/complex proof to Corollary 4.3). Still, the result lends itself well
for a reformulation as a nice puzzle, i.e. one that is easy to understand but hard to solve.
I Puzzle 4.10. Consider a city with Red (−I) and Blue (−..) bus lines (see Figure 13 left):

Blue buses are deterministic, i.e. the next stop of a Blue bus (if it can go anywhere at
all) is completely determined by the stop it’s currently at;
Red buses can be triangulated, i.e. if a Red bus can go directly from stop a to stop b,
then there is a stop c (not necessarily distinct from a,b) such that one can go directly
from both a and b to c, in each case by either taking a Red or a Blue bus.

Show that if one can make an infinite trip using buses of either company, then one can make
an infinite monochrome trip, i.e. a trip using buses of one and the same company only.10

To solve Puzzle 4.10 for the particular case displayed in Figure 13 it suffices to apply, the
contrapositive of, the construction in the proof of the ∆-lemma (for the converse of the
relations):
I Solution 4.11. Applying the construction to the bus route from top–right to top–left in
the circuit on the left in Figure 13 leads to adjoining an infinite succession of triangles to
−I-steps, as indicated by the numbers on the right in the figure, and thereby to an infinite
monochrome trip, the Red trip indicated by the thick arrows.
A general solution to the puzzle requires considering arbitrary length bichrome trips instead
of single hops, corresponding exactly to our result.

9 For an alternative constructive proof, one may show, measuring objects by their multiset of −..-
expansions, a decrease in the multiset extension of J−, along any step.

10 So one can save lots of money by buying an ∞-pass from one of the companies only.

V. van Oostrom and H. Zantema 255

1

2

> 3

Figure 13 On the left Red and Blue bus lines satisfying the conditions of the puzzle are shown.
On the right it is shown how to construct an infinite monochrome Red trip (the thick arrows).

5 Conclusion

In diagram completion in rewriting theory [6] the focus is on square diagrams. For instance,
for proving confluence if a rewrites to both b and c we are looking for d such that both b and
c rewrite to d, as depicted in a square diagram as is in the RTA logo. In contrast, in this
paper not these squares are the basic building blocks, but the even more basic triangles: in
the above setting we directly want to relate b and c. Inspired by computational geometry
where splitting up polygons into triangles is called triangulation, we defined triangulation to
be the process of extending a rewrite relation by extending every peak to a triangle. In this
paper we studied some basic properties of triangulation, and its relation to confluence and
termination. It turned out that the result of triangulation is always confluent (Theorem 2.5),
even affluent, being the natural strengthening of confluence with respect to triangulation.
We showed that in general triangulation does not preserve termination (Example 3.1), but
that in case the initial rewrite relation is codeterministic termination is preserved (Theorem
3.6); the proof of this property was remarkably hard.

Acknowledgments. We thank Ashish Tiwari, Nachum Dershowitz, the referees, and
the attendants of TeReSe and the TF-lunch seminar, for feedback and interesting discussions.

References
1 F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,

1998.
2 L. Bachmair and N. Dershowitz. Equational Inference, Canonical Proofs, and Proof Or-

derings. Journal of the ACM, 41(2):236–276, 1994.
3 N. Dershowitz. On Lazy Commutation. In Languages: From Formal to Natural, volume

5533 of Lecture Notes in Computer Science, pages 59–82. Springer, 2009.
4 H. Doornbos and B. von Karger. On the Union of Well-Founded Relations. Logic Journal

of the IGPL, 6(2):195–201, 1998.
5 J.F. Groote, J. Keiren, A. Mathijssen, B. Ploeger, F. Stappers, C. Tankink, Y. Usenko,

M. van Weerdenburg, W. Wesselink, T. Willemse, and J. van der Wulp. The mCRL2
toolset. In Proceedings of the International Workshop on Advanced Software Development
Tools and Techniques (WASDeTT 2008), 2008.

6 Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 2003.

7 H. Zantema and V. van Oostrom. Triangulation in rewriting. Logic Group Preprint Series
292, Utrecht University, 2012. http://www.phil.uu.nl/preprints/lgps/.

RTA’12

Turing-Completeness of Polymorphic Stream
Equation Systems
Christian Sattler and Florent Balestrieri

School of Computer Science, University of Nottingham
Nottingham, NG8 1BB, UK
{cvs,fyb}@cs.nott.ac.uk

Abstract
Polymorphic stream functions operate on the structure of streams, infinite sequences of elements,
without inspection of the contained data, having to work on all streams over all signatures
uniformly. A natural, yet restrictive class of polymorphic stream functions comprises those
definable by a system of equations using only stream constructors and destructors and recursive
calls. Using methods reminiscent of prior results in the field, we first show this class consists of
exactly the computable polymorphic stream functions. Using much more intricate techniques,
our main result states this holds true even for unary equations free of mutual recursion, yielding
an elegant model of Turing-completeness in a severely restricted environment and allowing us to
recover previous complexity results in a much more restricted setting.

1998 ACM Subject Classification F.1.1 Models of Computation; F.4.2 Grammars and Other
Rewriting Systems

Keywords and phrases stream functions, Turing-completeness, recursion

Digital Object Identifier 10.4230/LIPIcs.RTA.2012.256

Category Regular Research Paper

1 Introduction

Streams over some set D are the basic example of a polymorphic coinductive data type,
having been forced to serve as case study for almost every technique dealing with infinite data
structures. Although being well-explored coalgebraic objects [5, 3, 19], they have recently
re-emerged in the specific setting of term rewriting [22, 6]. They are usually introduced as
the coinductive data type StrD generated by the constructor · :: · : D× StrD → StrD (cons),
appending an element to the front of a stream, and come with destructors head : StrD → D
and tail : StrD → StrD, selecting and removing the front element, respectively. Algebraically,
they can be characterised as an infinite term model parameterised by the value type D
modulo observational equivalence on D.

Since this work is concerned with computability and partiality, we choose to work in
a semantics of partial streams, adding a bottom element ⊥ to the underlying data type.
Technically, such streams are just functions of type N→ D⊥. Note that with this terminology,
if an element of a stream equals ⊥, further elements can still be proper inhabitants of D.
Also, when speaking of computable (stream) functions, we always mean partial computable
(stream) functions.

One of the simplest classes of functions on streams are the polymorphic stream functions,
being parametric in the data type D. This prohibits any kind of pattern matching or
case distinction on the underlying data type, effectively restricting them to discarding,
duplicating, and reordering of the input stream elements. This defines an indexing function

© Christian Sattler and Florent Balestrieri;
licensed under Creative Commons License NC-ND

23rd International Conference on Rewriting Techniques and Applications.
Editor: A. Tiwari; pp. 256–271

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

C. Sattler and F. Balestrieri 257

which in the unary case has type N→ N⊥, associating with each output stream index the
corresponding input stream index to copy from, or ⊥ if the output element is ⊥. We can
consider a polymorphic stream function f computable if this indexing function, denoted f ,
is computable. What we call indexing function is a container morphism for streams in the
terminology of Abott et al. [1].

We consider recursive stream equation systems for specifying polymorphic stream functions
involving only stream constructors and destructors. As a representative example, consider
the system

const(s) = head(s) :: const(s),
zip2(s, t) = head(s) :: zip2(t, tail(s)),
hanoi(s) = zip2(hanoi(tail(s)), const(s)).

Through evaluation, which will be elaborated upon in the examples subsection, we find that

hanoi(s) = ⊥ :: s(0) :: s(1) :: s(0) :: s(2) :: s(0) :: s(1) :: s(0) :: s(3) ::

The corresponding indexing function is hanoi(k) = max{v such that 2v divides k} where
max{N} := ⊥. To explain the naming, if D is instantiated with the set of disks of an infinite
Tower of Hanoi and s ∈ StrD is a list of the disks sorted by increasing size, then tail(hanoi(s))
is a walkthrough for coinductively solving the puzzle, the k-th stream element being the disk
to be moved in the k-th step, with the smallest disk always moving in the same direction
[12].

The key point to stress is that polymorphism is a severe restriction. Constructing examples
less trivial than the above seems out of reach: the reader is invited to try to encode the
Fibonacci sequence as the indexing function of an equation in a polymorphic system.

Most proofs of undecidability and complexity results for stream equations, like the ones of
Roşu [18] and Simonsen [20], use straightforward encodings of Turing machines, representing
the infinite band of symbols as two streams, one each for the left and right side of the band
relative to the head, with canonical rewrite rules pattern matching on the current symbol.
This central dispatching mechanism is unavailable in our setting. Still, we are able to recover
all of these results even in the unary setting as direct corollaries of Theorem 14.

As a first taste, Proposition 3 states that our limited systems are nevertheless still sufficient
to define every computable polymorphic stream function. Although the construction requires
some imagination, the simulation of counter machines is quite direct and mainly intended
to give the reader some intuition for the long road towards the proof of our key result,
Theorem 14, which improves upon this by restricting systems to unary stream functions
without mutual recursion. This is the main contribution of our work, which seems surprising
giving the crippled expressiveness of the syntax.

Endrullis et al. [7, 8, 9] strive to decompose rewriting into a stream layer and a data
layer in such a way as to encapsulate just so much complexity into the data layer that the
productivity of streams becomes decidable while still retaining usefulness of computation.
Our work can be seen as a another extreme, eradicating the data layer and showing that
polymorphic unary stream functions attain computational completeness. For example, our
results imply that the lazy stream formats of Endrullis et al. [8] can actually be restricted
to (general) unary stream functions with productivity still retaining Π0

2-completeness (in
the non-unary case, a hint of Proposition 3 can be found in their encoding of fractran-
programs). We note that their notions of lazy stream specifications and data-oblivious
analysis shares some points with our polymorphism restriction: choosing the unit type for
the data type leaves no possibility of analysing the input. We also note that the flat stream

RTA’12

258 Turing-Completeness of Polymorphic Stream Equation Systems

specifications, for which the authors develop an algorithm for semi-deciding productivity,
present an exception: we allow general nested calls.

See Simonsen [20] for a good survey of some of the complexity analysis on stream rewriting
our developments generalise. We hope that our Turing-complete unary recursive systems,
in their simplicity, may be used as a computational model in further reduction proofs (e.g.
of complexity results) not only in rewriting theory. We conclude by remarking that all our
proofs are constructive, i.e. algorithmically implementable.

2 Syntax and Semantics

2.1 Streams and Indexing Functions
Given a set D, we denote D⊥ := D∪{⊥} the set together with a distinguished bottom element
⊥, which is used to denotate partial or non-terminating computation on the object-level
of stream reduction. We warn that on the meta-level, ⊥ is in quoted form, i.e. treated as
a normal element. Given a function f : A → B⊥, we adopt the convention of implicitly
extending the domain of f to A⊥ by setting f(⊥) = ⊥.

The set of (partial) streams over D is defined as StrD := N→ D⊥. A stream s is total if
s(k) 6= ⊥ for all k ∈ N. A polymorphic stream function is a family of functions

fD : StrD× . . .× StrD → StrD

natural (or parametric) in the domain argument D, i.e. for all sets D1,D2 and functions
g : D1 → (D2)⊥, we have

(map g) ◦ fD1 = fD2 ◦ (map g, . . . ,map g)

where map g : StrD1 → StrD2 , s 7→ g ◦ s. Such a function is called total if total arguments
yield total results.

Even though a polymorphic stream function is an operation on streams, its parametricity
property enables us to express it as a single stream on a particular domain. To see this,
consider a stream function f of arity n. Let In := {0, . . . , n − 1} × N. In the following,
we exploit the fact that the type of the argument of fD is isomorphic to In → D⊥. Define
f : N→ (In)⊥, f := fIn(j 7→ (i, j))i∈{0,...,n−1}. Essentially, this is fIn applied to the identity.
Given an arbitrary domain D and stream arguments s0, . . . , sn−1 ∈ StrD, define g : In → D⊥,
(i, j) 7→ si(j). By parametricity,

fD(s0, . . . , sn−1) = (fD ◦ (map g, . . . ,map g))(j 7→ (i, j))i∈{0,...,n−1}

= ((map g) ◦ fIn)(j 7→ (i, j))i∈{0,...,n−1}

= (map g)(f).

This equation is the reason we call f the indexing function of f : for each k ∈ N, the value of
fD(s0, . . . , sn−1) at stream position k is given by si(j) if f(k) = (i, j), and ⊥ if f(k) = ⊥, i.e.

fD(s0, . . . , sn−1) = sf(0) :: sf(1) :: sf(2) :: . . .

with the convention that s(i,j) := si(j) and s⊥ = ⊥.
From this, it is clear that polymorphic stream functions and indexing functions of the

same arity are in bijective correspondence. A polymorphic stream function is total if and only
if its indexing function is total. We call it computable if its indexing function is a computable
function. In the remainder of the article, we will identify I1 with N.

C. Sattler and F. Balestrieri 259

It is worth noting that indexing functions represent an inversion of the usual notions of
input and output for stream functions. This contravariance is reflected in f ◦ g = g◦f for poly-
morphic fD, gD : StrD → StrD, a fact heavily utilised in the rest of the article. Basic examples
of polymorphic stream functions are the tail operation tailD : StrD → StrD, s 7→ i 7→ s(i+ 1)
with indexing function tail(k) = k + 1 and the combined head-cons operation

(head(·) :: ·)D : StrD×StrD → StrD,

(s, t) 7→ i 7→
{
s(0) if i = 0,
t(i− 1) else

with indexing function

(head(·) :: ·)(k) =
{

(0, 0) if k = 0,
(1, k − 1) else.

2.2 Stream Equation Systems
We now define a simple form of a recursive system of equations for specifying polymorphic
stream functions. A (stream equation) system of size n is a family of stream equations
fk(s0, . . . , smk−1) = σk with k ∈ {0, . . . , n− 1} where each σk is a stream term of the form

σ ::= si stream parameter with i ∈ {0, . . . ,mk − 1},
| tail(σ) stream stripped of its first element,
| head(σ) :: σ′ first element of a stream prepended to stream (head-cons),
| fj(σ0, . . . , σmj−1) recursive stream function call with j ∈ {0, . . . , n− 1}.

We explicitly state that there are no further restrictions such as guardedness on the form of
the stream terms σk since we specifically deal with ill-defined equation using our (domain
theoretic) partiality semantics. A system is called unary if all defined stream functions are
unary, i.e. mk = 1 for all k. By a canonical application of the Kleene fixed-point theorem
[10], each stream equation system of size n gives rise to n corresponding polymorphic stream
functions, the least fixpoint of the given system of equations with respect to the partial
ordering on D⊥ generated by ⊥ < d for d ∈ D when the tail and head-cons operations are
interpreted according to the previous section. An equation in the system is called productive
if the polymorphic stream function it defines is total. In what follows, we will usually use
the same symbols to denote syntactic occurrences and their semantic counterparts as their
meaning is always clear from the context.

We can also view such a system as an executable specification, giving rise to a notion of
operational semantics allowing us to explicitly construct the least fixpoint alluded to above.
For this, we formalise the computation of stream elements using a functional relation → on
pairs σ ! k of stream terms σ and indices k ∈ N by setting

tail(σ) ! k → σ ! k + 1,

head(σ) :: σ′ ! k →
{
σ ! 0 if k = 0,
σ′ ! k − 1 else,

fj(σ0, . . . , σnj−1) ! k → ρ[σi/si]i∈{0,...,nj−1} ! k

where fj(s0, . . . , snj−1) = ρ is an equation in the system. This is effectively equivalent to
introducing a rewriting system on constructs of the form head(tailk(σ)) based on the rules

head(head(σ) :: σ′)→ head(σ),
tail(head(σ) :: σ′)→ σ′

RTA’12

260 Turing-Completeness of Polymorphic Stream Equation Systems

with a deterministic outermost rewriting strategy. For a given domain D, we can now define
fj,D as

fj,D(s0, . . . , smj−1) =
{
sw(i) if fj(s0, . . . , smj−1) ! k →∗ sw ! i,
⊥ else

for j ∈ {0, . . . , n − 1}, verifying that this is indeed the smallest solution to the given
specification and fulfills the parametricity property. From this, we can express the indexing
function as

fj(k) =
{

(w, i) if fj(s0, . . . , smj−1) ! k →∗ sw ! i,
⊥ else.

Retrospectively, this consolidates our definition of productivity with its usual connotation,
namely that each finite prefix of a stream (or the result of a stream function called with
productive arguments) be constructible through finite evaluation. It furthermore shows that
in this restricted settings, what is usually denoted by productivity is equivalent to unique
solvability for instantiations of the parameter D to sets containing more than one element,
i.e. well-definedness. On a side note, this description of indexing functions makes explicit the
obvious fact that the defined stream functions are always computable.

2.3 Examples
Using this syntax, we can specify the interleaving function zipn for n > 0 as

zipn(s0, . . . , sn−1) = head(s0) :: zipn(s1, . . . , sn−1, tail(s0)).

It is productive with indexing function zipn(k) = (k mod n, bk/nc). Let us prove this
statement in detail by induction. In the base case, we have

zipn(s0, . . . , sn−1) ! 0→ head(s0) :: zipn(s1, . . . , sn−1, tail(s0)) ! 0→ s0 ! 0

proving zipn(0) = (0, 0) = (0 mod n, b0/nc). In the induction step, we have

zipn(s0, . . . , sn−1) ! k + 1→ head(s0) :: zipn(s1, . . . , sn−1, tail(s0)) ! k + 1
→ zipn(s1, . . . , sn−1, tail(s0)) ! k

→∗
{

tail(s0) ! bk/nc if k ≡ −1 mod n,

s(k mod n)+1 ! bk/nc else

→∗ s(k+1) mod n ! b(k + 1)/nc,

proving zipn(k) = (k mod n, bk/nc) implies zipn(k) = ((k + 1) mod n, b(k + 1)/nc).
As a kind of inverse to interleaving, the projection function projn is defined as

projn(s) = head(s) :: projn(tailn(s)).

It is easily shown to be productive with indexing function projn(k) = n·k. For convenience, we
also define shifted projections projn,i(s) := projn(taili(s)) for i < n with projn,i(k) = n ·k+ i.
Note that projn,i,D(zipn,D(s0, . . . , sn−1)) = si as well as s = zipn,D

(
(projn,i,D(s))i∈{0,...,n−1}

)

for all domains D and s, s0, . . . , sn−1 ∈ StrD. We also have the constant function const(s) =
head(s) :: const(s), repeating the first stream element of its argument, with const(k) = 0.

We are now ready to return to the example from the introduction. Recall that hanoi(s) =
zip2(hanoi(tail(s)), const(s)). We will prove that hanoi(2v(2m+ 1)) = v by induction on v.
In the base case, we have

hanoi(s) ! 2k + 1→ zip2(hanoi(tail(s)), const(s)) ! 2k + 1→∗ const(s) ! k →∗ s ! 0,

C. Sattler and F. Balestrieri 261

proving hanoi(2k + 1) = 0. In the induction step, we have

hanoi(s) ! 2v+1(2m+ 1)→ zip2(hanoi(tail(s)), const(s)) ! 2v+1(2m+ 1)
→∗ hanoi(tail(s)) ! 2v(2m+ 1)
→∗ tail(s) ! v → s ! v + 1,

proving hanoi(2v(2m+ 1)) = v implies hanoi(2v+1(2m+ 1)) = v + 1. Now, the interesting
artifact is the first stream position,

hanoi(s) ! 0→ zip2(hanoi(tail(s)), const(s)) ! 0→+ hanoi(tail(s)) ! 0,

leading to an infinite loop

hanoi(s) ! 0→+ hanoi(tail(s)) ! 0→+ hanoi(tail2(s)) ! 0→+ . . . ,

showing that hanoi(0) = ⊥.
After having established some intuition for computing indexing functions, let us prove a

lemma which will be of much use further on.

I Lemma 1. Given h ≥ 1 and a stream equation of the form

f(s) = head(taila0(s)) :: . . . :: head(tailah−1(s)) :: f(v(s)),

then f(k) = vbk/hc(ak mod h) for k ∈ N.

Proof. Since this is our first technical result about indexing functions, we will be explicit in
every detail. The proof is by induction on k ∈ N. For k < h, we have

f(s) ! k = head(taila0(s)) :: . . . :: head(tailah−1(s)) :: f(v(s)) ! k
→k tailak (s) ! 0→ak s ! ak,

yielding f(k) = ak = v0(ak) = vbk/hc(ak mod h). For k ≥ h, we have

f(s) ! k = head(taila0(s)) :: . . . :: head(tailah−1(s)) :: f(v(s)) ! k →h f(v(s)) ! k − h.

By induction hypothesis, it follows that

f(k) = (f ◦ v)(k − h) = v(f(k − h))
= v(vb(k−h)/hc(a(k−h) mod h))
= v(vbk/hc−1(ak mod h)) = vbk/hc(ak mod h),

where we exploited contravariance of the indexing operation in the second step. J

3 Definability

Our first result consists of the insight that the above stream equations of simple form,
incorporating only the stream constructor and destructors and recursion, already allow for
the definition of every computable polymorphic stream function. In the following, we will
only consider single argument functions since we can easily fuse multiple arguments into a
single one using instances of zip and proj. The argument can be seen as a generalization
of the idea expressed in the proof of Theorem 4.4 in an article by Endrullis et. al. [8]
that recognising productivity of a form of system similar to ours (with a unit stream data

RTA’12

262 Turing-Completeness of Polymorphic Stream Equation Systems

type instead of abstract polymorphism) is of complexity Π0
2. Since our key contribution

concerns the even more general result of unary definability, the main purpose of the following
exposition is to serve as a contrast to the next section.

Recall that for a single argument stream function, the indexing function has type N→ N⊥.
We will give our proof in the form of a reduction, transforming a counter machine [16]
representing an arbitrary computable function φ : N→ N⊥ into a corresponding system with
an equation having φ as indexing function.

I Definition 2. A counter machine is given by a tuple (L, I) where L is the length of the
program and I is a list I0, . . . , IL−1 of instructions inc(r) with r ∈ N, denoting increment of
register r, and jzdec(r, l) with r ∈ N and l ∈ {0, . . . , L}, denoting a jump to instruction l if
register r is zero and a decrement of r otherwise.

The semantics of such a machine is as follows: The state (P,R) ∈ S := {0, . . . , L} × N(N)

consists of the value P of its instruction pointer and the values R of its registers, where N(N)

denotes the set of functions N→ N with finite support, i.e. with only finitely many values
non-zero. Such a tuple is called terminal if P = L, denoting the machine has exited with
output R(1). For R ∈ N(N) and r, v ∈ N, the result of replacing the r-th entry of R with v
will be denoted R[r ← v]. Representing execution, We define a functional next relation →
on S on non-terminal elements by

(P,R)→

(P + 1, R[r ← R(r) + 1]) if IP = inc(r),
(P + 1, R[r ← R(r)− 1]) if IP = jzdec(r, l), R(r) 6= 0,
(l, R) if IP = jzdec(r, l), R(r) = 0.

The result function result(L,I) : S → N⊥ is defined as

result(L,I)(t) =
{
R(1) for t→∗ (L,R) terminal,
⊥ else.

The initial state for a given input i ∈ N is given by init(i) := (0, (i, 0, . . .)). With this
machinery, we can now define the associated computable function of the counter machine as
φ(L,I) = result(L,I) ◦ init : N→ N⊥.

I Proposition 3. Given a computable function represented as a counter machine (L, I),
there is a stream equation system defining a unary stream function with indexing function
φ(L,I).

I Definition 4. Let p0 < p1 < . . . be all the primes. We encode a register state R ∈ N(N) as
a single positive integer using R̂ :=

∏
r∈N,R(r)6=0 p

R(r)
r .

Proof of Proposition 3. Our goal is to mutually define unary stream functions f0, . . . , fL−1
such that for a sequence of machine states (P,R)→ (P ′, R′), we have fP ! R̂→+ fP ′ ! R̂′,
effectively simulating the execution of the counter machine. It follows that whenever the
counter machine terminates with (P,R)→∗ (L,R′) terminal, then fP ! R̂→∗ fL ! R̂′, and
fP (R̂) = ⊥ otherwise. Defining fL to extract the value of register 1, i.e. the exponent of
p1 = 3, from the encoding we set

fL(s) = zip3(fL(tail(s)), const(s), const(s)).

A straightforward induction on R(1) shows that fL(R̂) = R(1) = result(L,I)(L,R) 6= ⊥ for
R ∈ N(N). Together, this means fP (R̂) = result(L,I)(P,R) for any state (P,R) ∈ S.

C. Sattler and F. Balestrieri 263

For each instruction IP with P ∈ {0, . . . , L − 1}, we mutually define a corresponding
stream function fP reproducing the action of IP on the register encoding. If IP = inc(r), let

fP (s) = projpr
(fP+1(s))

and note that fP ! R̂→+ fP+1 ! prR̂ = fP+1 ! ̂R[r ← R(r) + 1] for R ∈ N(N), simulating
an increment. If IP = jzdec(r, l), let

fP (s) = zippr

({
fP+1(s) if i = 0,
projpr,i(fl(s)) else

)

i∈{0,...,pr−1}
.

Given R ∈ N(N) with R(r) 6= 0, we know R(r) is divisible by pr and hence fP ! R̂ →+

fP+1 ! R̂/pr = fP+1 ! ̂R[r ← R(r)− 1], simulating a decrement. For R(r) = 0, we have
fP ! R̂ →+ fl ! prbR̂/prc+ (R̂ mod pr) = fl ! R̂, simulating a jump. Here, we exploited
properties of the indexing functions of proj and zip noted earlier.

Finally, we need a stream function to produce the initial register encoding. This will
be accomplished by u(s) = head(tail(s)) :: u(projp0(s)). By Lemma 1, we have u(i) =
projp0

i(1) = pi0 = ̂(i, 0, . . .). Defining q(s) = u(f0(s)), we have q(i) = f0(̂(i, 0, . . .)) =
result(L,I)(init(i)) for i ∈ N, and thus q = φ(L,I). The equations for the stream functions
f0, . . . , fL, u, q, const plus finitely many instances of zip and proj hence represent a stream
equation system with the denotation of q having φ(L,I) as indexing function. J

Note that Minsky [16] shows that counter machines with only two registers are enough
to achieve Turing-completeness. However, when representing computable functions, this
requires an extra level of encoding of input values and decoding of output values, which can
also be achieved by defining suitable stream functions.

4 Unary Definability

The defining feature of the previous construction was its reliance on interleaving for im-
plementing conditional execution, effectively dispatching different cases, identified by their
residues of the register encoding modulo a prime, to arbitrarily different handlers. Noting
that zipp with p prime were the only non-unary stream functions in the construction, we are
left to reflect on the computational consequences of only allowing unary stream functions
to be defined. Note that allowing interleaving is synonymous to allowing non-unary stream
functions since we can use interleaving to merge any number of stream arguments into a
single one. In order to prove an even more general definability result in the unary setting,
entirely different techniques need to be developed, separating conditional execution and
unbounded looping into orthogonal concepts.

4.1 Collatz Functions and If-Programs
I Definition 5. A function g : N → N is called a Collatz function if there is n > 0 such
that g is affine on each equivalence class modulo n, i.e. there are coefficients ai, bi ∈ N for
i = 0, . . . , n− 1 such that g(n · q+ i) = ai · q+ bi for q ∈ N. In this case, n is called a modulus
of g.

The naming stems from the famous conjecture first proposed by Collatz in 1937, asking
whether the function collatz : N→ N, n 7→ n/2 for n even, n 7→ 3n+ 1 for n odd, will map
each positive integer to 1 after finitely many applications. Despite its deceivingly simple

RTA’12

264 Turing-Completeness of Polymorphic Stream Equation Systems

form, it has been resisting all attempts of resolution [15]. In recent years, the equivalent
of this conjecture for the above generalised notion of Collatz functions has been proved
(algorithmically) undecidable [14].

I Lemma 6. Given a Collatz function g, we can construct a non-mutually recursive unary
system defining a stream function v such that v = g.

Before going into the details of the proof, note that, although it is quite clear that the
above encoding of Collatz functions already enables an embedding of full computational
power into unary stream equations, what is not at all obvious is whether we can actually
define every computable unary stream function through a purely unary system.

Proof. Let modulus n > 0 and coefficients ai, bi ∈ N be as in the above definition. Define a
stream function

add(s) = head(tailn·a0+0(s)) :: . . . :: head(tailn·an−1+(n−1)(s)) :: add(tailn(s)).

Lemma 1 shows that add(k) = b knc · n + (n · ak mod n + (k mod n)) = k + n · ak mod n
for k ∈ N. The role of this function is to act as a crude replacement conditional for the
unavailable zip, adding different constants depending on the equivalence class of the stream
index modulo n.

Next, define a stream function

u(s) = head(tailn·b0+0(s)) :: . . . :: head(tailn·bn−1+(n−1)(s)) :: u(add(s)).

Using Lemma 1, we derive u(n · q+ i) = addq(n · bi + i) = (n · bi + i) + q · (n · ai) = n · g(k) + i

for q ∈ N. This function is an approximation to g, the only difference being that the output
indices come pre-multiplied by n.

We fix this by defining a stream function

div(s) = head(s) :: . . . :: head(s)︸ ︷︷ ︸
n times

:: div(tail(s)).

A trivial application of Lemma 1 verifies that div(k) = b knc for k ∈ N. Finally defining
v(s) = u(div(s)) yields the Collatz function semantics we want in that v = div ◦ u = g. J

For instance, the original Collatz function would be encoded as collatz = v as follows:

add(s) = head(tail2(s)) :: head(tail13(s)) :: add(tail2(s)),
u(s) = head(s) :: head(tail9(s)) :: u(add(s)),

div(s) = head(s) :: head(s) :: div(tail(s)),
v(s) = u(div(s)).

For further illustration, let us evaluate stream position 3 of v(s):

v(s) ! 3→∗ u(div(s)) ! 3→∗ u(add(div(s))) ! 1→∗ add(div(s)) ! 9
→∗ add(tail2(div(s))) ! 7→∗ . . .→∗ add(tail8(div(s))) ! 1
→∗ div(s) ! 21→∗ div(tail(s)) ! 19→∗ . . .→∗ div(tail10(s)) ! 1
→∗ s ! 10.

This is consistent with collatz(3) = 3 · 3 + 1 = 10.

C. Sattler and F. Balestrieri 265

Note that this encoding is fundamentally different from the encoding of Collatz functions
or Fractran program iterations used by Endrullis et al. [8], the essential difference being
the unavailability of zip in the unary setting. The dispatch mechanism of interleaving,
enabling differing treatment of stream positions based on the residue of their indices, makes
the implementation of Collatz-like constructs rather straightforward. Since we are lacking
even such basic conditional control flow mechanisms, we have to resort to highly indirect
constructions such as the above.

The role of Collatz functions in our setting is to serve as an intermediate between indexing
functions and the known world of computability. To make the latter link clearer, we will
show how Collatz functions relate semantically to different register machine models under
the prime factorization register encoding introduced in the previous section.

I Definition 7. The inductive set of if-programs is generated by concatenation A0 . . .An−1,
increments inc(r), decrements dec(r), and conditional clauses ifz(r,A,B), where n ∈ N,
r ∈ N designates a register, and A0, . . . ,An−1,A,B are if-programs.

Although it is quite clear intuitively what the semantic effects of running an if-program
A on some register state R ∈ N(N) are, we will formally introduce an associated semantics
function χA : N(N) → N(N) defined structurally as follows:

χA0...An−1 = χAn−1 ◦ . . . ◦ χA0 ,

χinc(r)(R) = R[r ← R(r) + 1],
χdec(r)(R) = R[r ← max(R(r)− 1, 0)],

χifz(r,A,B)(R) =
{
χA(R) if R(r) = 0,
χB(R) else.

Note that a decrement on a zero-valued register is ignored.
We will reuse the prime factorization register encoding ·̂ : N(N) → N \ {0}, R̂ 7→ R̂ =∏

r∈N,R(r) 6=0 p
R(r)
r from the previous section. Translated to this setting, the semantics function

of an if-program A takes the form χ̂A := ·̂ ◦ χA ◦ ·̂ −1. Although this is an endofunction
on the positive integers, to make the following treatment more uniform, we will extend it to
the natural numbers by setting χ̂A(0) := 0.

I Lemma 8. Given an if-program A, its semantics χ̂A : N→ N on the register encoding is
a Collatz function.

Proof. By induction on the structure of A, noting that:
The concatenation of finitely many Collatz functions of moduli m0 · . . . ·mn−1 is a Collatz
function of modulus m0 · . . . ·mn−1.
Given a register state R ∈ N(N), increment of register r corresponds to multiplication of
R̂ with pr, a Collatz function of modulus 1.
Decrement of register r corresponds to division of R̂ by pr if the former is divisible by pr,
and no change otherwise. This is a Collatz function of modulus pr.
Let χ̂A and χ̂B be Collatz functions of moduli mA and mB, respectively. A conditional
clause ifz(r,A,B) corresponds first to case distinction depending on whether R̂ is divisible
by pr and subsequent application of either χ̂A or χ̂B. This is a Collatz function of modulus
the least common multiple of pr,mA,mB.

J

RTA’12

266 Turing-Completeness of Polymorphic Stream Equation Systems

We note that the Collatz function χ̂A in the previous lemma is special in that it is
linear on each of its equivalence classes in the strict sense, i.e. with vanishing ordinate,
corresponding to single multiplication with a fraction. Even though we do not make use of
this fact in our developments, it shows the connection between if-programs and the iteration
steps of the fractran-programs of Conway [4], which are of equivalent expressive power.

4.2 Iteration-Programs and Their Encoding
Unsurprisingly, the expressive power of if-programs by themselves is quite limited. To
achieve computational completeness, we need an unbounded looping construct. The following
definition intends to provide a minimal such model, enabling us to concentrate on the essential
details of the conversion from Turing-complete programs to stream equation systems.

I Definition 9. An iteration-program P is a tuple (BodyP, inputP, outputP, loopP) con-
sisting of an if-program BodyP called the body of P and designated and mutually distinct
input, output and loop registers inputP, outputP, loopP ∈ N.

The semantics of such a program is a computable function φP : N → N⊥ defined as
follows: given an input i ∈ N, the register state R0 ∈ N(N) is initialised with R0(inputP) := i,
R0(loopP := 1, and R0(r) := 0 for r 6= inputP, loopP. We iteratively execute the body of P,
yielding Rn+1 := χBodyP

(Rn) for n ∈ N. If there is n minimal such that Rn(loopP) = 0, then
P is called terminating with iteration count countP (i) := n and output φP(i) := Rn(outputP)
for input i. Otherwise, countP(i) := ⊥ and φP(i) := ⊥.

Intuitively, an iteration-program is just a while-program [17] with a single top-level
loop, a well-studied concept in theoretical computer science bearing resemblance to the
normal form theorem for µ-recursive functions [13], [21] except that we do not even allow
primitive recursion inside the loop.

I Theorem 10. Given a computable function φ : N→ N⊥, there is an iteration-program
P with semantics φP = φ.

Proof. This is a folklore theorem [11], see Böhm and Jacopini [2] and Perkowska [17] for
more details. J

The reason behind our choice for this computationally complete machine model is that
we already have the machinery to simulate a single execution of the body of such a machine
via Collatz functions as indexing functions of stream equations using our prime factorization
exponential encoding on the register state. In fact, another option would have been the
fractran-programs of Conway [4], but we are in need of a more conceptual representation
in light of what lies ahead of us.

We will now investigate how to translate a top-level unbounded looping construct into
the recursive stream equation setting.

I Lemma 11. Let h ≥ 1 be given with a stream equation

f(s) = head(taila0(s)) :: . . . :: head(tailah−1(s)) :: tailh(u(f(v(s)))).

Fix k ∈ N and choose c(k) ∈ N minimal such that d(k) := uc(k)(k) ∈ {⊥, 0, . . . , h − 1}. If
such a c(k) exists and d(k) 6= ⊥, then f(k) = vc(k)(ad(k)), otherwise f(k) = ⊥.

Proof. The proof is by induction on c(k) if existent. At the base, c(k) = 0 is equivalent to
k < h. In this case, f(s) ! k →k tailak (s) ! 0→ak s ! ak, i.e. f(k) = ak = vc(k)(ad(k)).

C. Sattler and F. Balestrieri 267

Now assume k ≥ h. Note that

f(s) ! k →h tailh(u(f(v(s)))) ! k − h→h u(f(v(s))) ! k.

If u(k) = ⊥, then c(k) = 1, d(k) = ⊥, and f(k) = ⊥. In the remainder, we will assume
u(k) 6= ⊥. Then, f(s) ! k →+ f(v(s)) ! u(k), and f(k) = v(f(u(k))).

If c(k) is defined, then c(k) = c(u(k)) + 1 and we can apply the induction hypothesis: if
d(k) = d(u(k)) 6= ⊥, then v(f(u(k))) = v(vc(u(k))ad(k)) = vc(k)(ad(k)), otherwise v(f(u(k))) =
v(⊥) = ⊥.

If c(k) is undefined, then so is c(u(k)), and with a second induction we can construct
an infinite sequence f(s) ! k →+ f(v(s)) ! u(k) →+ f(v2(s)) ! u2(k) →+ . . . showing
non-termination and f(k) = ⊥. J

The inquiring reader will notice that this lemma can be seen as a generalization of
Lemma 1 with u defined in a particular way, namely

u(s) = head(s) :: . . . :: head(s)︸ ︷︷ ︸
h times

:: s.

Using Lemmata 8 and 6, we can translate the encoded iteration step function χ̂BodyP
:

N→ N of an iteration-program P to an indexing function of a stream equation for some
u. We would like to use this stream function u as it appears in Lemma 11 in a way such
that the minimal choice of c(k) corresponds to the iteration count of P. Unfortunately, the
equivalent of the stopping condition in the lemma, that the index be smaller than some
constant h, corresponds to R̂ < h for the register state R ∈ N(N), a statement which does not
have a natural meaning for the registers of R individually, forestalling us from expressing
the condition ploopP | R̂ corresponding to the termination condition R(loopP) = 0. A second
problem comes from our desire to somehow extract the value of R(outputP) after termination.
But since at this point of time R̂ is limited to a finite set of values, there is no direct way of
realising this.

What we can do is extract the iteration count for particularly nicely behaving programs.

I Lemma 12. Given an iteration-program Q such that whenever Q terminates, all its
registers are zero-valued, i.e. χcountQ(i)

BodyQ
= (0, 0, . . .) for terminating input i ∈ N, there is a

non-mutually recursive unary system defining a stream function w such that w = countQ.

Proof. In anticipation of applying Lemma 11, we extend this system with a new equation

q(s) = head(s) :: head(s) :: tail2(v(q(tail(s))).

Given an input i ∈ N and corresponding initial register state R ∈ N(N), the termination
condition in Lemma 11 can equivalently be expressed as follows:

vc(R̂)(R̂) < 2 ⇐⇒ χ̂
c(R̂)
BodyQ

(R̂) = 1 ⇐⇒ χ
c(R̂)
BodyQ

(R) = (0, 0, . . .).

Now, by our assumption on the behaviour of Q, the first point in time all registers are
zero equals the first point in time the loop register attains zero. But by our definition
of the iteration count, this just means that c(R̂) = countQ(i), and Lemma 11 shows that

q(R̂) = tailc(R̂)(0) = c(R̂) = countQ(i).
All that remains is to produce the initial register state R(i) with only R(i)(inputQ) = i

and R(i)(loopQ) = 1 non-zero. For this, we define

r(s) = head(tailploopQ (s)) :: r(projpinputQ
(s))

RTA’12

268 Turing-Completeness of Polymorphic Stream Equation Systems

and utilise Lemma 1 to prove that r(i) = projpinputQ

i(ploopQ) = piinputQ
· ploopQ = R̂(i). Defining

w(s) = r(q(s)), we verify that w(i) = q(r(i)) = q(R̂(i)) = countQ(R(i)). J

Unfortunately, the set of possible iteration count functions constitutes only a small part
of the set of all computable functions. Intuitively, this is because even very small values can
be the result of prohibitively expensive operations. However, this range can still be seen
as containing Turing-complete fragments under certain encodings. This is what we exploit
in the next step by shifting the role of the output register to the iteration count under a
particular such encoding. The trick is to have each possible output value correspond to
infinitely many iteration counts in a controlled way such that after having computed the
result, by being self-aware of the current iteration count, we can consciously terminate the
loop at one of these infinitely many counts, no matter how long the computation took.

I Lemma 13. Given an iteration-program P, there is an iteration-program Q such that
for every input i natural, Q terminates if and only if P terminates, and furthermore if P
terminates with output o ∈ N, then Q terminates after exactly (3m+ 1) · 3o+1 iterations with
all registers zero-valued where m ∈ N depends on i.

Proof. Let r0, . . . , rk−1 ∈ N denote all the registers occurring in BodyP except for outputP
and loopP (but including inputP). We choose loopQ as a fresh natural number distinct from
all previously mentioned registers. Both programs will have the same input register, i.e.
inputQ := inputP. The output register of Q is irrelevant since we aim to have all registers
reset at termination.

The body of Q is listed in Exhibit A. Note that the body of P is textually inserted at line
14. Register names main-phase, run-time, mod-three, swap-phase, copy also designate fresh
natural numbers. To enhance readability, we used some lyrical freedom with the syntax: for
example, if R(outputP) 6= 0 then A else B end if translates to ifz(outputP,B,A). Since
the program is somewhat complex, we will describe its function in great detail.

Execution of Q, i.e. iterated execution of BodyQ until decrement of loopQ, is split
into two main phases, as signalled by the flag register main-phase. The first phase, when
main-phase has value 0 (lines 2–22), is dedicated to simulating the original program P while
keeping track of the total iteration count in a dedicated register run-time. At the end of this
phase, after P has exited with result o ∈ N in register outputP, we want the total iteration
count to equal 3m + 1 for some arbitrary m ∈ N. The second phase, when main-phase
has value 1 (lines 23–44) is dedicated to tripling the total iteration count o times, plus an
additional tripling to reset run-time, so that the total iteration count becomes (3m+ 1) · 3o+1.

In detail, the first phase (lines 2–22) contains three separate components:
Lines 3–4 are executed only at the beginning of the first iteration and initialise the
loop register of P (note that the input register of P does not need to be initialised as
inputP = inputQ) and mod-three (see below).
Lines 6-12 keep track not only of the current iteration count by incrementing run-time
once per iteration, but also of how many iterations modulo 3 we are afar from meeting
the (3m+ 1)-condition in a dedicated register mod-three.
Lines 13–22 execute the body of P once per iteration until termination is signalled by
loopP being set to zero (lines 13–14). In subsequent iterations, the registers used in P are
incrementally reset (lines 15–19). Finally, we wait up to two iterations for the iteration
count (including the current iteration) to have the proper remainder modulo 3 (line 20),
and proceed to the second phase (lines 21).

C. Sattler and F. Balestrieri 269

Exhibit A The body of Q from Lemma 13
1. if R(main-phase) = 0 then
2. if R(run-time) = 0 then
3. inc(loopP)
4. inc(mod-three)
5. end if
6. inc(run-time)
7. if R(mod-three) = 0 then
8. inc(mod-three)
9. inc(mod-three)

10. inc(mod-three)
11. end if
12. dec(mod-three)
13. if R(loopP) 6= 0 then
14. BodyP
15. else if R(r0) 6= 0 then
16. dec(r0)
17. [...]
18. else if R(rn−1) 6= 0 then
19. dec(rn−1)
20. else if R(mod-three) = 0 then
21. inc(main-phase)
22. end if

23. else if R(swap-phase) = 0 then
24. dec(run-time)
25. inc(copy)
26. if R(run-time) = 0 then
27. inc(swap-phase)
28. end if
29. else
30. dec(copy)
31. if R(outputP) 6= 0 then
32. inc(run-time)
33. inc(run-time)
34. inc(run-time)
35. if R(copy) = 0 then
36. dec(swap-phase)
37. dec(outputP)
38. end if
39. else if R(copy) = 0 then
40. dec(swap-phase)
41. dec(main-phase)
42. dec(loopQ)
43. end if
44. end if

After the final iteration of this phase, the iteration count is 3m + 1 for some m ∈ N and
the only possibly non-zero registers are main-phase and swap-phase of value 1 and outputP of
value o. We duly note that if P does not terminate, then neither does Q.

In similar detail, the second phase (lines 23–44) contains two alternately executed
subphases (lines 24–28 and 30–43) responsible for shifting the iteration count back and
forth between the registers run-time and copy. The current subphase is indicated by the flag
register swap-phase:

The first subphase in lines 24–28 started with register values [swap-phase : 1, run-time : x ≥
1, copy : 0] will end, after x iterations, with values [swap-phase : 0, run-time : 0, copy : x].
The second subphase in lines 30–43 started with register values [swap-phase : 0, run-time :
0, copy : x ≥ 1] will end, after x iterations, depending on the value of register outputP,

if non-zero, with [swap-phase : 1, run-time : 3x, copy : 0] and outputP decremented,
if zero, with all registers zero and loopQ decremented to zero in the last iteration.

Taken together, we deduce that starting (the first subphase) with [swap-phase : 1, run-time :
x ≥ 1, copy : 0] and outputP non-zero, after 2x iterations, the effective changes will be tripling
of run-time and decrement of outputP. In particular, if x and hence run-time denoted the
iteration count before these iterations, run-time will again denote the iteration count after
these iterations. After following this reasoning o times, the iteration count and value of
run-time will be (3m+ 1) · 3o while outputP attains zero. One last instance of each phase,
costing 2 · (3m+ 1) · 3o iterations, yield a total iteration count of (3m+ 1) · 3o+1 with all
registers having been cleared. J

RTA’12

270 Turing-Completeness of Polymorphic Stream Equation Systems

4.3 Proof of the Main Result
I Theorem 14. A unary polymorphic stream function is definable by a non-mutually recursive
unary system if and only if its indexing function is computable.

Proof. We need only consider the reverse implication. Let a computable function φ : N→ N⊥
be represented as an iteration-program P, i.e. φ = φP , and let Q be the modified iteration-
program as defined in Lemma 13. By Lemma 12, there is a non-mutually recursive unary
system defining a stream function w such that w(i) = countQ(i) = (3m+ 1) · 3φP(i)+1 for all
i ∈ N and some m ∈ N depending on i. As stated at the beginning, the latter expression is
taken to mean ⊥ if φP(i) = ⊥.

Our strategy for extracting the final output value φP(i) from this expression is by iterating
a second program, adding a tail for each time the stream index is divisible by 3. In particular,
from Lemma 6, it is clear how to give a non-mutually recursive unary system defining u such
that

u(k) =
{
k/3 if 3 | k,
0 else

since this is a Collatz function. But note that we can alternatively directly define

u(s) = head(s) :: head(s) :: head(s) ::
head(tail(s)) :: head(s) :: head(s) :: tail3(u(head(s) :: tail2(s)))

using only a single equation. For either choice, we define v(s) = head(s) :: tail(u(v(tail(s)))).
A second application of Lemma 11 shows that v((3m+ 1) · 3i+1) = i+ 1 for i,m ∈ N. This
function is of almost as critical importance as w as it repeats each natural number output
infinitely many times in a controlled way and reverses the iteration count result encoding of
program Q.

We now have all the parts necessary for concluding our venture. Defining f(s) =
w(v(head(s) :: s)), we see that

f(i) = max(v(w(i))− 1, 0)
= max(v((3m+ 1) · 3φP(i)+1)− 1, 0)
= max((φP(i) + 1)− 1, 0) = φP(i)

with our usual convention regarding ⊥, proving f = φP. J

Further Work

A thorough inquisition of the proofs in the previous section shows that, in total, ten equations
were defined for proving the main result, two of which can be inlined. It is natural to ask:
what is the minimum number of unary equations required to define an arbitrary computable
indexing function? The answer is four (and still being free of mutual recursion), but space
constrains prevent us from presenting the rather involved proof.

Furthermore, we can show that recognising productivity is undecidable with complexity
Π0

2 even for unary systems with only two non-mutually recursive equations. Interestingly, we
can prove that productivity is decidable for a singleton unary system. Again, the proof of
this positive result is quite complex and in need of more space to be presented.

Altogether, this amounts to an exhaustive classification of definability and complexity of
recognising productivity based on unary system size. However, it would be euphemistic to
say that the proofs involved are not very abstract, making them even more unsuitable for
exposition in a conference article.

C. Sattler and F. Balestrieri 271

Acknowledgements

The authors would like to thank Venanzio Capretta for introducing us to the definability
problem for polymorphic stream equations and spending much time with proof checking and
helpful discussions, Nicolai Kraus for proofreading, the Functional Programming Laboratory
at the University of Nottingham for the encouraging research environment, and the anonymous
referees for providing helpful suggestions regarding the exposition of our results.

References
1 Michael Abbott, Thorsten Altenkirch, and Neil Ghani. Containers - constructing strictly

positive types. Theor. Comp. Sci., 342:3–27, 2005.
2 Corrado Böhm and Giuseppe Jacopini. Flow diagrams, Turing machines and languages

with only two formation rules. Commun. ACM, 9(5):366–371, 1966.
3 Wilfried Buchholz. A term calculus for (co-)recursive definitions on streamlike data struc-

tures. Ann. Pure Appl. Logic, 136(1-2):75–90, 2005.
4 John H. Conway. Fractran: A simple universal programming language for arithmetic. In

T. M. Cover and B. Gopinath, editors, Open Problems in Communication and Computation,
chapter 2, pages 4–26. Springer, 1987.

5 Edgar W. Dijkstra. On the producitivity of recursive definitions. EWD749, 1980.
6 Jörg Endrullis, Herman Geuvers, Jacob G. Simonses, and Hans Zantema. Levels of unde-

cidability in rewriting. Inf. Comput., 209(2):227–245, 2011.
7 Jörg Endrullis, Clemens Grabmayer, and Dimitri Hendriks. Data-oblivious stream pro-

ductivity. In Proc. 15th Int. Conf. on LPAR, LPAR ’08, pages 79–96. Springer, 2008.
8 Jörg Endrullis, Clemens Grabmayer, and Dimitri Hendriks. Complexity of Fractran and

productivity. In CADE, pages 371–387, 2009.
9 Jörg Endrullis, Clemens Grabmayer, Dimitri Hendriks, Ariya Isihara, and Jan Willem

Klop. Productivity of stream definitions. In Proc. FCT 2007, volume 4639 of LNCS, pages
274–287. Springer, 2007.

10 Gerhard Gierz, Karl Heinrich Hofmann, Klaus Keimel, Jimmie D. Lawson, Michael Mis-
love, and Dana S. Scott. Continuous Lattices and Domains, volume 93 of Encyclopedia of
Mathematics and its Applications. Cambridge University Press, 2003.

11 David Harel. On folk theorems. SIGACT News, 12:68–80, 1980.
12 Andreas M. Hinz. The Tower of Hanoi. Enseign. Math., 35(2):289–321, 1989.
13 Stephen C. Kleene. Recursive predicates and quantifiers. Trans. AMS, 53(1):41–73, 1943.
14 Stuart A. Kurtz and Janos Simon. The undecidability of the generalized Collatz problem.

In TAMS, volume 4484 of LNCS, pages 542–553. Springer, 2007.
15 Jeffery C. Lagarias. The Ultimate Challenge: The 3x+ 1 Problem. AMS, 2010.
16 Marvin L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, 1967.
17 Eleonora Perkowska. Theorem on the normal form of a program. Bull. Acad. Pol. Sci.,

Ser. Sci. Math. Astr. Phys., 22(4):439–442, 1974.
18 Grigore Roşu. Equality of streams is a Π0

2-complete problem. In ICFP. ACM, 2006.
19 Jan M. Rutten. Behavioural differential equations: a coinductive calculus of streams, auto-

mata, and power series. Theor. Comp. Sci., 308(1-3):1–53, 2003.
20 Jakob Grue Simonsen. The Π0

2-completeness of most of the properties of rewriting systems
you care about (and productivity). In Proc. 20th Int. Conf. on RTA, RTA ’09, pages
335–349. Springer, 2009.

21 Robert I. Soare. Recursively Enumerable Sets and Degrees. Perspectives in Mathematical
Logic. Springer, 1987.

22 Hans Zantema. Well-definedness of streams by transformation and termination. LMCS,
6(3), 2010. paper 21.

RTA’12

Matching of Compressed Patterns with
Character-Variables∗

Manfred Schmidt-Schauß1

1 Goethe-Universität, Frankfurt, Germany
schauss@ki.informatik.uni-frankfurt.de

Abstract
We consider the problem of finding an instance of a string-pattern s in a given string under com-
pression by straight line programs (SLP). The variables of the string pattern can be instantiated
by single characters. This is a generalisation of the fully compressed pattern match, which is
the task of finding a compressed string in another compressed string, which is known to have a
polynomial time algorithm. We mainly investigate patterns s that are linear in the variables, i.e.
variables occur at most once in s, also known as partial words. We show that fully compressed
pattern matching with linear patterns can be performed in polynomial time. A polynomial-sized
representation of all matches and all substitutions is also computed. Also, a related algorithm is
given that computes all periods of a compressed linear pattern in polynomial time. A technical
key result on the structure of partial words shows that an overlap of h + 2 copies of a partial
word w with at most h holes implies that w is strongly periodic.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, F.4.2 Gram-
mars and Other Rewriting Systems

Keywords and phrases matching, grammar-based compression, partial words

Digital Object Identifier 10.4230/LIPIcs.RTA.2012.272

Category Regular Research Paper

1 Introduction

Matching is a widely used operation in computer science: Given a string (term, object)-
pattern s with variables, and a string (term, object) t, is there a substitution σ, such that
σ(s) is a substring (subterm, subobject) of t? There are at least two sources of motivation
for considering matching problems: (i) Given a term rewrite system R and a term t, in order
to rewrite t it is first necessary to find a substitution σ, and a rule s → r of R, such that
σ(s) is a subterm of t. (ii) Given a string t or a data base D, and a pattern s, find and
retrieve the substrings of t or the records (objects) in D, respectively, that are matched
by s. Here the pattern may be a string, a string with variables, with holes, or a regular
expression, or otherwise extended patterns. The task is to design efficient algorithms for the
different variants of matching. In the following we sometimes speak of submatching in order
to emphasize that substrings (subterms) are searched.
Often terms, strings or databases are very large, and are thus represented or stored in
a compressed format. This is the motivation to propose and analyze efficient variants of
matching, term rewriting or other algorithms that can also be run on the compressed strings

∗ Partially supported by DFG, grant SCHM 986/9-1

© Manfred Schmidt-Schauß;
licensed under Creative Commons License NC-ND

23rd International Conference on Rewriting Techniques and Applications (RTA’12).
Editor: A. Tiwari; pp. 272–287

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

M. Schmidt-Schauß 273

or terms. We do not directly tackle the full problem of compressed term-submatching. The
reason is that this turns out to be a nontrivial problem with complex algorithms even for
specializations if polynomial-time algorithms are requested: The technical report [24] contains
an approach to compressed term submatching and compressed rewriting but has to leave
open several issues. In particular wether there is a polynomial-time algorithm for finding a
redex for rewriting where the rule as well as the to-be-rewritten term are compressed. Even
the complexity-question of term-submatching for left-linear rules was left unsolved. Thus
this paper is restricted to matching algorithms on compressed strings where the patterns
are linear and variables mainly stand for characters. The result in this paper turns out
to be a first step in the construction of a polynomial-time algorithm for finding matches
of compressed left-linear rules in compressed terms. Note that compressed (exact) term
matching, where s should match the whole term t is known to be polynomial [11].
Potential applications of matching are in information retrieval, in optimizing term rewriting
systems on large terms, and in application domains where large strings are processed. Citing
the book [6], where algorithms on partial words (string patterns which are linear in the
variables) are investigated: “The next generation of research on combinatorics of partial
words promises to have a substantial impact on molecular biology, nanotechnology, data
communication, and DNA computing”. Our algorithm has potential applications in finding
DNA-fragments under compression taking care of SNPs (single nucleotide polymorphism),
which is a special case of a point mutation.
Well-known compression methods and compressed representations of strings are the LZ77,
LZ78 schemes [26, 27], where LZ77 may compress a string of length n into a representation
of O(log(n)) size. Other compression mechanisms are straight line programs (SLP), which
are context free grammars (in Chomsky normal form) that generate exactly one string. It is
well-known that there are efficient translations between LZ77 and SLPs. A prominent result
is that SLP-compressed strings can be tested for equality in polynomial time in the size of
SLPs using the method of Plandowski [22] (with improvements in [17, 12]). Plandowski’s
algorithm works top-down in the grammar and keeps the space (and time) requirements
small by exploiting periodicities to detect and eliminate redundancies, whereas Lifshits’ is a
dynamic programming algorithm that memorizes periodicities using arithmetic progressions.
Fully compressed matching of compressed strings (finding a string as a substring in another
string) can also be decided and computed in polynomial time [14]. An efficient algorithm
is given by Lifshits [17], who shows that it can be done in time O(mn2) where m is the
size of the SLP for the pattern and n is the size of the SLP of the string. An algorithm
with improved complexity is proposed by Jez [12]. Complexities of further algorithms on
SLP-compressed strings are in [18]. There are also generalizations of SLP-compression on
two-dimensional texts, see [2]. The SLP-compression scheme is also extended to terms and
ranked trees: An application and an analysis for XML-compressions is in [9], and an analysis
and application to matching and unification is in [11].
The matching problem for strings is the question, given a pattern string s, whether it occurs
in another given (long) string t. Well-known and folklore algorithms scanning the string t and
comparing it with s are for example the Knuth-Morris-Pratt and the Boyer-Moore algorithm.
An example for a generalization is searching for an instance of a regular expression in a string,
which is possible by a polynomial-time algorithm. There are also results for regular string
matching in compressed strings, which is also known to be executable in polynomial time
[4, 21], where however, the compression schemes LZ78 or LZW ([26, 27]) are used that have
a maximum compression ratio of O(

√
n), in contrast to straight line programs (SLP) which

have a potential compression ratio up to O(logn). In [19] the complexity of several variants

RTA’12

274 Matching of Compressed Patterns with Character-Variables

of the matching problem of regular expressions in SLP-compressed texts is investigated: for
the usual regular expressions with concatenation, union, and star-operator, the matching
problem is P-complete [20], whereas for slightly extended regular expressions including integer
exponents, the matching problem in an SLP-compressed string is PSPACE-hard [19].
The string-matching problem when both strings s, t are SLP-compressed is called fully
compressed matching. It is well known that the fully compressed pattern matching problem
can be decided in polynomial time [17, 12]. It is also well-known that if s contains string-
variables and s, t are both uncompressed, then exact matching is NP-complete [1]. The same
problem restricted to the case where s is linear, but where the pattern may be compressed,
can easily be decided in polynomial time by an eager search (see Lemma 5.1). A related
paper is [25], where the pattern s is linear, uncompressed and may contain character- and
string-variables and where t is SLP-compressed, matching is shown to be in PTIME .
In this paper we consider the following string matching problem: The pattern s is SLP-
compressed by Gs, s may have at most O(|G|) holes, and t is also a string SLP-compressed
by Gt. We use the view that the holes are character-variables (that may be instantiated
with characters from the signature). The question is whether there exists a substitution
σ (replacing variables by characters), such that σ(s) is a substring of t. The methods as
mentioned above lead to exponential time algorithms, so a different algorithm is required. As
a technical sub-problem we have to analyze structural properties of strings with character-
variables, where every variable occurs at most once. Such strings are more or less equivalent
to strings with holes (where a hole means a missing or unknown character). This notion
is equivalent to partial words. Some results on the structure of partial words and simple
unification equations on partial words are in [6, 7].

As result (Algorithm 4.1, Theorem 4.5) we describe an algorithm that runs in polynomial time,
decides this problem and moreover outputs a polynomial representation of all occurrences of
the pattern. A technical result that is required to show polynomiality of the algorithm is
a periodicity-lemma (Theorem 3.10): Given a partial word w with h holes, and an overlap
of h + 2 copies of w where the occurrences are dense enough, we show that w is strongly
periodic, together with a formula for the period. As a corollary, we show that if a partial
word has two periods p, q, then it has gcd(p, q) as periods, provided further conditions on
p, q, the length |w| and the number of holes hold. We also show that there is a polynomial
time algorithm to compute all periods of a compressed partial word (Proposition 4.6).
Also extensions are considered: The algorithm can be extended to the case where s contains
character and string-variables, and s contains every variable at most once (Proposition 5.2).
Another extension is that the variables in the pattern s may occur several times, and s is
compressed. Then a modification of the algorithm runs in polynomial time in the number of
variable occurrences, and the size of the SLPs (Proposition 5.3).
The paper is structured as follows. After some preliminaries on string properties and
compression, in Section 3 words with holes, periodicity and overlaps of a word with holes
with itself are analyzed. In Section 4 a dynamic programming algorithm is described that
computes all matching occurrences of one partial word in a string, both compressed. Finally,
some potential extensions are discussed in Section 5.

2 On Strings and Compression

We provide some preliminaries for our algorithm and results: strings, overlaps and periodicity,
straight line programs (SLP) for compressing strings and several algorithms and operations
on SLPs.

M. Schmidt-Schauß 275

2.1 Properties of Strings
If s is a string (also called a word) over a finite alphabet Σ of characters, we write s[i] for
the symbol of s at position i, where we assume that s = s[0] . . . s[n− 1], if n = |s|, where |s|
denotes the length of s. The substring of s from positions i to j is denoted as s[i..j]. We
also use tk for a k-fold concatenation of t with k ≥ 0, where t0 = ε is the empty string.
If for a string s there is a number 1 ≤ p < |s| such that s[i] = s[i + p] for all i, provided
s[i], s[i + p] are defined, then we say that s is periodic with period p. For strings this is
equivalent to: for all i, j: i ≡ j mod p implies s[i] = s[j] for all 0 ≤ i, j ≤ |s| − 1.

I Theorem 2.1. (Fine and Wilf [10]) Let s be a word with periods p and q. If |s| ≥
p+ q − gcd(p, q), then s has a period gcd(p, q).

A string w is a cyclic permutation of another string w′, iff there are substrings w1, w2 of w,
such that w = w1w2, and w′ = w2w1.

I Lemma 2.2. If w is a p-periodic string, then any two substrings v, v′ of w of length
|v| = |v′| = p are cyclic permutations of each other.

The following is easy and can be proved by induction using an Euclidean algorithm.

I Fact 2.3. If for two nontrivial strings s1, s2, the equation s1s2 = s2s1 holds, then there is
a nontrivial string t, and natural numbers m,n ≥ 1, such that s1 = tn, s2 = tm. Thus, |t| is
a period of s1s2 and also a divisor of gcd(|s1|, |s2|).

I Fact 2.4. Let w be a string that overlaps with itself, i.e. w = w1w2, and w2 is a prefix of
w. Then w is periodic with a period |w1|.

We will also use strings with variables. Let us assume that there are two kinds of variables:
(i) variables standing for characters and (ii) variables standing for strings. We assume that
substitutions respect the kind of variables. In the following, variables are character-variables,
if not stated otherwise.

2.2 Compression of Strings and Straight Line Programs
I Definition 2.5. A straight-line program (SLP) G (see [22, 23, 13]) is a context free grammar
with the following restrictions: Every nonterminal generates exactly one string, for every
nonterminal there is exactly one rule of one of the forms A → a for a ∈ Σ or A → A1A2,
where A,A1, A2 are nonterminals, and the grammar is not recursive. The generated string
for nonterminal A is denoted as val(A), and the string generated by the start nonterminal is
denoted as val(G). The size of G is the number of its rules, and the depth of G is the depth
of the derivation tree of the start nonterminal.

Note that |val(G)| may be as large as 2|G|, but not larger. Lempel-Ziv compression schemes
can be efficiently translated into SLPs [23]. However, SLP are more amenable to general
analyses and proofs about efficient algorithms for compressed strings.

I Lemma 2.6. (Plandowski [22]) Given two nonterminals A,B of an SLP G, it is decidable
in polynomially time in |G|, whether val(A) = val(B), where an efficient O(|G|3)-algorithm
was proposed in [17], and the recently proposed matching algorithm by Jez [12] further
improves the complexity.

The following operations, extensions and modifications of an SLP can be done efficiently (see
[15, 16, 11]).

RTA’12

276 Matching of Compressed Patterns with Character-Variables

I Lemma 2.7. Let G be an SLP. Then a sequence of m operations can be done in polynomial
time O(poly(|G|,m)), where poly is a polynomial and the operations may be the following:
1. Given a nonterminal A, and a prefix (or suffix) w of val(A), extend the SLP to G′ such

that there is a nonterminal B with val(B) = w. In this case the depth of the SPL G′ has
the same depth as G.

2. Given nonterminals A1, A2, extend the SLP to G′ by B → A1A2, where B is a fresh
nonterminal.

3. Given a nonterminal A, and a number n ≤ 2|G|, extend the SLP to G′ such that there is
a nonterminal B with val(B) = val(A)n.

Note that the complexity is not just m ∗ poly′(|G|), since the extensions iteratively increase
the size of intermediate grammars G.
Mainly based on Plandowski’s result [22], the following holds:

I Lemma 2.8. Let G be an SLP. Then the following can be performed in polynomial time:
1. Given a nonterminal A, compute the length |val(A)|.
2. Given two nonterminals A,B, check whether val(A) is a prefix (suffix) of val(B).

2.3 Equality of Compressed Strings
I Lemma 2.9. Equality up to renaming of variables of two compressed strings with variables
can be tested in polynomial time.

Proof. Let A,B be the nonterminals that represent the two strings that are to be compared,
where we assume for simplicity that there are no nonterminals shared in the derivation of A
and B. First we normalize the variable names and then we apply a compressed-equality test.
The normalization is top down in the grammar: For every variable x identify its leftmost
occurrence in val(A), and then replace it by yi, where i is the number of different variables
occurring to the left of this occurrence in val(A), and where yi is a unique name that is
used by the normalization. The yi can be seen as variables or as constants not occurring
in val(A) ∪ val(B). Then do the same for B. The number of variables is at most |G|, and
for every variable the normalization can be done in polynomial time. Note that there is no
size-change of G. Then use the equality-test for compressed strings. J

I Lemma 2.10. Let s be a string with character variables and t be a string, both compressed
with an SLP G. Then it is decidable in polynomial time whether there exists σ, such that
σ(s) = t.

Proof. Let there be n < |G| variables in s. It is sufficient to compute a single position
pi (say the leftmost one) for every variable xi in s for all i = 1, . . . , n. Then compute the
character ai at position pi of t. and perform the equality test of [a1/x1, . . . , an/xn]s = t. J

2.4 Submatching
I Definition 2.11. The compressed character-submatch (CCSM) problem for strings is
defined as follows. Let Σ be an alphabet, let G be an SLP over Σ, let t = val(T) where T
is a nonterminal of G, let s = val(G′) where G′ is an SLP over Σ ∪ V , where V is a set of
(character-)variable symbols.
Question: is there a substitution σ : V → Σ such that σ(s) is a substring of t? If every
variable occurs at most once in s, then it is called the linear compressed character submatch
(LCCSM) problem.

M. Schmidt-Schauß 277

Note that if σ can replace variables by strings, then even the following question is NP-complete:
Given uncompressed s, t, does there exists σ, such that σ(s) = t?
The following observations for special cases are easy to verify:

CSSM is in NP: guess the substitution σ and then use fully compressed pattern matching.
If there is only one variable x, then CSSM is in PTIME : try all possibilities for σ.
If there is a given number k that is an upper bound for |val(s)|, then CSSM is solvable in
polynomial time where k occurs in the exponent of the polynomial.

2.5 Remarks on Comparison with Other Approaches and Result
approximate matching with edit-distance. This is the question whether a variant s′ of the

string s occurs in t, where s′ and s differ by a form of edit-distance. This is also called
approximate matching. The investigations in the literature usually take a weaker form of
compression: LZ78, LZW, and the pattern s is not compressed. If s is not compressed,
then the approximate matching will also produce the matching solutions in case s has
character holes, but perhaps more, depending on the exact definition of edit-distance
used [4].

regular expression matching. Compression by SLP cannot be represented using a regular
expression. If the pattern has the form s = s1x1 . . . xnsn+1 and xi are character-variables
or string variables, and si are uncompressed and ground (no variables), then this can
be translated into a regular expression match question. If the regular expression syntax
also allows exponents wk for an integer k and a single string w, then it can also cover
special forms of compression, but not the general form. However, this syntax extension is
not discussed in [19]. It is not hard to see that in this case matching in SLP-compressed
strings is NP-hard (using NP-hardness of subsetsum and exploiting the union-operator).

3 The Linear Case: Partial Words

We mainly consider the linear compressed character submatch problem (LCCSM). A string
where every variable occurs at most once can also be seen as a string with several holes
where the holes represent single missing or unknown characters. We denote the hole with
◦, or with variable names x, y, z, depending on the context. In the literature these are also
called partial words, see for example [8, 5, 6].
If for a partial word s there is a number p < |s| such that s[i] = s[i + p] for all i, and
s[i], s[i+ p] are defined and are not holes, then we say that s is p-locally periodic with period
p. For example, the partial word ababa◦acac is 2-locally periodic. If there is a number
p < |s| such that i ≡ j mod p implies s[i] = s[j] for all 0 ≤ i, j ≤ |s| − 1 if s[i], s[j] are defined
and not holes, then s is called periodic (also strongly periodic), and p is a period of s. The
partial word ab◦bababa is 2-periodic. Note that p-periodic implies p-locally periodic, but the
converse might not hold, for example ab◦bb is 2-locally periodic, but not 2-periodic. Note
that p-periodic partial words can be made p-periodic strings by substituting characters into
the holes, whereas this is not the case for p-locally periodic partial words. We write s =h s

′

for two partial words s, s′ if |s| = |s′| and s, s′ are equal up to the occurrences of holes. Note
that =h is not transitive, for example a◦ =h ◦b, ◦b =h b◦, but a◦ 6=h b◦.
Equality =h of two partial words w,w′ that are SLP-compressed, and if holes are represented
as variables, can be checked polynomially in the size of the SLP and the number of holes of
w,w′. If holes were an extra symbol in the SLP, and there is no restriction on the number
of occurrences, then we could not find a polynomial algorithm to decide =h: adapting the

RTA’12

278 Matching of Compressed Patterns with Character-Variables

Plandowski-style algorithms is not possible, since periodicity lemmas fail in this case. The
only trivial information is that the problem is in co-NP.

3.1 Partial Words with One Hole
First we investigate some properties of (uncompressed) partial words with one hole. In the
following we fix an alphabet Σ. The inner structure of a p-locally periodic string is clarified:

I Lemma 3.1. Let s be a partial word with one hole at position r, and let s be p-locally
periodic. Then s is either p-periodic, or the following holds:

For all i, j : i ≡ j mod p and i 6≡ r mod p it holds that s[i] = s[j], if s[i], s[j] is defined;
s[0..r] as well as s[r..|s| − 1] are p-periodic.

An example for such a partial word is ababa◦acac, which is 2-locally periodic, but not
2-periodic, where ◦ represents the hole.
There are generalizations of the Fine and Wilf-theorem to partial words:

I Theorem 3.2. ([3, 8]) Let s be a partial word with one hole. If s is p-locally periodic and
q-locally periodic, p 6= q, and |s| ≥ p+ q, then s is also gcd(p, q)-periodic.

The bound |s| ≥ p+ q is sharp [3, 8].

I Definition 3.3. Let s be a partial word and n ≥ 2. An n-fold overlap of s (with itself)
is given by starting positions 0 ≤ p1 < p2 < p3 < . . . < pn ≤ |s| − 1, such that for all
i, j = 1, . . . , n and 0 ≤ k ≤ |s| − 1: if 0 ≤ k − pi, 0 ≤ k − pj , then s[k − pi] = s[k − pj],
provided neither s[k − pi] nor s[k − pj] is a hole.
In the following we let p1 = 0, if not stated otherwise.

The overlap of s with itself intuitively is only meant in the range of the left most occurrence,
left of the vertical line. There are no overlap conditions right of the vertical line. The reason
for this choice is our application to overlapping prefixes below. For example, for a 3-overlap,
equality of characters must hold on every position of the topmost occurrence of s.

s

p1 = 0 s
p2 s

p3

A simple example of an overlap is s = ab◦baba, n = 2 and p2 = 2. Another overlap is
s = a◦bbb, where n = 2 and p2 = 1.
The following shows that the periodicity claim in Fact 2.3 also holds if one of s1, s2 is a
partial word with one hole, and the other one is a word without holes.

I Lemma 3.4. Let s1, s2 be nontrivial strings, and let si,h, i ∈ {1, 2} be partial words with a
single hole such that si,h =h si, i ∈ {1, 2}. If s1s2 =h s2,hs1, or if s1s2 =h s2s1,h, then s1s2
is periodic with a period gcd(|s1|, |s2|).

Proof. We use induction on |s1s2|. The base case is |s1| = |s2|. In this case each equation
implies that s1 = s2, and the period has length |s1| = gcd(|s1|, |s2|).
Let |s1| 6= |s2|. We first consider the case s1s2 =h s2,hs1, the other case is symmetric. We
distinguish several cases:

s1 s2

s2h s1

s1 s2

s2h s1

M. Schmidt-Schauß 279

|s2| > |s1| and the hole is at a position ≤ |s2| − |s1|.
Then let s′2 be such that s′2s1 = s2. Let s′2,h such that s′2,hs1 := s2,h. The induc-
tion hypothesis can be applied to s1s

′
2 =h s

′
2,hs1, and shows that a period has length

gcd(|s1|, |s2|) = gcd(|s1|, |s′2|), and it is also the period of s1s2.
|s2| > |s1| and the hole is at a position ≥ |s2| − |s1|.
Then let s′2 be such that s′2s1 = s2. Let s′1,h be such that s2,h =h s′2s

′
1,h. The induc-

tion hypothesis can be applied to s1s
′
2 =h s

′
2s
′
1,h, and shows that a period has length

gcd(|s1|, |s2|) = gcd(|s1|, |s′2|), and it is also the period of s1s2.
|s1| > |s2|. This can be proved similarly as above where only the occurrence of the hole
is in different partial words. J

Lemma 3.4 and Theorem 3.2 imply:

I Corollary 3.5. Let s1, s2 be nontrivial strings, such that s1s2 is periodic with period p,
p ≤ 0.5|s1s2|, and let si,h, i ∈ {1, 2} be partial words with a single hole such that si,h =h si, i =
1, 2. If s1s2 =h s2,hs1 or s1s2 =h s2s1,h, then s1s2 is periodic with a period gcd(|s1|, |s2|, p).

I Lemma 3.6. Let w be a partial word with one hole, and assume that there is a 2-overlap
of w, starting at p1, p2. Then w is locally periodic with period p2 − p1.

Proof. The overlap immediately implies that w is locally periodic with period p2 − p1.
Lemma 3.1 provides information about the exact structure of w. J
The following lemma shows a part of Lemma 3.9, which is the the base case of the induction
proof in Theorem 3.10.

I Lemma 3.7. Let w be a partial word with one hole, and assume that we have a 3-overlap
of w, starting at 0 = p1 < p2 < p3. Let p = p2 − p1 and assume that |w| − p3 ≥ p, i.e., the
last p positions are common to all the three occurrences of w. Then the partial word w is
periodic, and a period is gcd(p2 − p1, p3 − p2). Moreover, the overlap is consistent with using
the same substitution for the single variable for every occurrence of w.

Proof.
p

p1

b

p2

p3

For the occurrences starting at p1, p2, Lemma 3.6 implies
that w is locally periodic with period p = p2−p1 = p2. Also,
if t1, t2 are substrings of length p of w, then either t1, t2 are
cyclic permutations of each other, or cyclic permutations up

to the occurrence of one character. Note that the overlap does not imply that w is (p3 − p2)-
locally periodic, since there is a cut at b, hence Theorem 3.2 is not applicable.

Let b := |w| − 1. If the third occurrence does not contain a hole in the overlap, i.e.
w[0..b− p3] does not contain a hole, then the string w[b− p3 − p+ 1..b− p3] is equal to a
substring of length p of the first or of the second occurrence, without hole. This equality
implies that there are two equal substrings t′1, t′2 of w, both of length p, where t′1 is left of
the hole and t′2 is right of the hole. By Lemma 3.6, this is only possible if w is periodic
with period p.
If the third occurrence contains a hole in the overlap, then there are two subcases: (i)
r ≥ p, where r is the hole position in w. Then let t1 be the substring a[r−p3−p..r−p3−1],
which is the substring of the third occurrence immediately left to the hole. Due to the
overlap this is equal to a substring t1 of length p in the first occurrence of w, which is a
substring in w right of the hole. Again, this implies that w is periodic with period p.
(ii) r < p, i.e. the hole is in the first p-period of w. Then w is periodic with period p.

RTA’12

280 Matching of Compressed Patterns with Character-Variables

Now it remains to show that also p3 − p2 is a period of w. If p is a divisor of p3 − p2, then
there is nothing to show, so let us assume that p is not a divisor of p3 − p2. Since w is
already periodic with period p, it is sufficient to show that a substring of w of length p is also
periodic with period p3−p2, and then apply Theorem 3.2. The prefix of the third occurrence,
i.e. w[0..p− 1] overlaps a part of the first occurrence: w[p3..p3 + p− 1]. Either w[0..p− 1]
contains a hole and w[p3..p3 + p − 1] does not contain a hole, or vice versa. Moreover,
due to p-periodicity of w, there are nontrivial s1, s2, s

′
1, s
′
2 such that s1s2 = w[0..p− 1] and

s′2s
′
1 = w[p3..p3 + p − 1] where |s1| = |s′1|, |s2| = |s′2|, and |s2| ≡ p3 − p2 mod p. Also,

depending on where the hole is, we have either
s1s2 = s′2s

′
1, s1 = s′1, s2 = s′2, or

s1s2 =h s
′
2s
′
1, s1 = s′1, s2 =h s

′
2, or

s1s2 =h s
′
2s
′
1, s1 =h s

′
1, s2 = s′2

Then Fact 2.3 shows the claim on periodicity in the first case, and Lemma 3.4 shows the
claim on periodicity in the other cases. J

I Remark 3.8. The number of common overlap positions in Lemma 3.7 is sharp. For
example, let w = bab◦bcb, and let p2 = 2, p3 = 6 with |w| = 7 be an overlap. Then only
one character position is common to all the three occurrences. The string bab◦bcb is not
2-periodic.

The following lemma is the base case of the induction proof in Theorem 3.10.

I Lemma 3.9. Let w be a partial word with one hole, and assume that we have an overlap of
k ≥ 3 occurrences of w starting at 0 = p1 < p2 < . . . < pk, respectively. Let p = p2 − p1 and
assume that the last p positions, i.e., |w|− p, . . . , |w|− 1 are common to all the k occurrences.
Then the partial word w is periodic, and a period is gcd(p2 − p1, p3 − p2, . . . , pk − pk−1).

Proof. This follows by a repeated application of Lemma 3.7 and Corollary 3.5 as follows, by
induction on the number n of overlaps:
Assume that for j ≥ 3 it is shown that the period is gcd(p2 − p1, p3 − p2, . . . , pj − pj−1).
Then consider the next occurrence of the partial word w, and focus on the overlap of the
occurrence j + 1 of w at positions |w| − p, . . . , |w| − 1 with the first or second occurrence of
w. We take the first one, if there is no hole in the interval w[|w| − p..|w| − 1], otherwise we
take the second one. Due to periodicity with period p, this leads to one of the equations
s1s2 = s2s1, or s1s2 =h s2,hs1 or s1s2 =h s2s1,h with si =h si,h for i = 1, 2, and |s1| ≡ pj

mod p. Simple computation with gcd now shows the claim. J
Now we are in a position to perform an induction proof for overlaps of any number of
occurrences of a partial word with several holes.

I Theorem 3.10. Let w be a partial word with n holes, and assume there is an
overlap of m ≥ n + 2 occurrences of w, starting at p1 < p2 . . . < pm. Let pmax be
max{pi+1 − pi | i = 1, . . . ,m− 1}, and |w| − pm ≥ 2n · pmax ; this means there are 2n · pmax
common positions of all occurrences of w.
Then the partial word w is periodic, and a period is pall :=
gcd(p2 − p1, p3 − p2, . . . , pm − pm−1). There is a unique string w′ that can be over-
lapped with w, starting at m ending at |w| − 1, that is periodic with the same period.
Moreover, the overlap is consistent with using the same substitution for every occurrence of
w.

Proof. By induction on the number of holes. If w has one hole (i.e. n = 1), and there are
m ≥ n+ 2 = 3 occurrences, then the claim follows from Lemma 3.9.

M. Schmidt-Schauß 281

Now assume that there are n > 1 holes in w. Let r be the position of the leftmost hole of w,
and let w′ be a partial word, v1 be a string, such that w = v1◦w′. There are two cases:
1. r < 2pmax . The overlap of m ≥ n+ 2 occurrences of w′ is constructed from the given

overlap by cutting away all prefixes of length r + 1. For convenience, we have different
starting positions p′i := pi + r+ 1. The number of holes is decreased by one, the maximum
pmax is unchanged, and the condition |w′| − pm + 1 ≥ 2n′ · pmax with n′ = (n− 1) holds.
Now we can use induction and obtain that w′ is periodic with the period as claimed. It
remains to show that this claim can be transferred to the full partial word w: We look
at the prefix w1 of the mth (the last) occurrence of w. This string w1 is positioned such
that there are at least n + 1 other occurrences of w with a common position. For the
position q = pm + r − 1 in the prefix v1 of the mth occurrence of w, there is at least one
index j(q), such that wj(q)[q− pj(q)+1] is not a hole. Thus this character is determined by
the overlap. We scan the positions from greater indices to smaller ones and observe that
for one period pall the suffix w1,1 of w1 is determined. It is also obvious that the partial
word w1,1◦w′ is pall-periodic. Now we repeat this process of determining w1 period-wise
and finally obtain that w is pall-periodic.

2. r ≥ 2pmax . This implies |v1| ≥ 2pmax . The length condition shows that in the overlap of
the m occurrences, there are overlaps of v1 with itself for all the indices i, i,+1 where the
shift in the overlap is pi+1−pi, and the overlapping part is longer than |v1|/2 ≥ pmax . Fact
2.4 shows that v1 is periodic with period pi+1−pi for all i, and since |v1|/2 ≥ pi+1−pi for
all i, we obtain that v1 has period pall by Theorem 2.1. Since the copies of v1 cover the
overlap for all positions 0..pm + |v1| − 1, we have already periodicity of w[0..pm + |v1| − 1]
with period pall . Similar as for the first item, we obtain also for all further positions of
w, that these satisfy the periodicity condition by iterating the following step: determine
the next pall characters of w using the observation that there is an overlap of at least
n+ 2 occurrences and that the focussed positions are in the part where all occurrences
overlap. Since at least one occurrence has a character at the questioned position, we see
that the next pall characters are determined and satisfy the period condition. Iterating
this implies that the periodicity condition holds for w.

Since m ≥ n + 2, the string starting at m to |w| − 1 that overlaps all occurrences of w is
uniquely defined and is periodic with the same period due to the previous arguments. The
periodicity of w, and since w contains hole-free substrings of lengths greater than the period
implies that the substitutions can be chosen consistently for all occurrences. J

I Corollary 3.11. Let w be a partial word with n ≥ 2 holes, let w be periodic with periods
p, q ≤ |w|/(3n). Then w is also gcd(p, q)-periodic.

Proof. The periodicity assumptions imply that there is an overlap of w with pi = ip as well
as pi = iq for i = 0, 1, 2, The upper bound permits to apply Theorem 3.10: Assume p < q

and that q is not a multiple of p. Then in the interval 0..|w|/(3n) at least n + 2 different
copies of w are starting. The prerequisite of the theorem holds: |w| − np ≥ 2n · p. The
derived period is gcd(p, q − p), which is the same as gcd(p, q). J
The corollary is too weak for n = 1, since Theorem 3.2 provides a better bound, which
indicates that there is space for improvements in the case n ≥ 2.

4 A Matching-Algorithm Using Dynamic Programming

Let Gs, Gt be SLPs for s and t, respectively, where s is a partial word with n holes, and t is
a string, and S is a nonterminal with val(S) = s. First we build two tables, a prefix-table and

RTA’12

282 Matching of Compressed Patterns with Character-Variables

a result-table as follows: The coordinate is T , for the nonterminals of Gt. Entries in the lists
may be (i) positions a, (ii) arithmetic progressions, represented by triples (a, b,m), where
a is the start position, b is the step length, and m is the number of steps, (iii) arithmetic
sequences without upper bound, represented by pairs (a, b). The result table contains a list
with entries a or (a, b,m), whereas the prefix table contains a list with entries a or (a, b).
These entries have the following semantics:

a represents that a prefix of val(S) is a suffix of val(T) where the suffix starts at position
a in val(T).
(a, b,m) represents prefixes of val(S) as suffixes of val(T), where the starts of the S-suffixes
are at positions a+ ib for i = 0, . . . ,m− 1 in val(T).
(a, b) is the same as (a, b,m) for the maximal possible m. Moreover, val(T) has a
periodic suffix: val(T)[a..|val(T)| − 1] is periodic with period b. The period string is
val(T)[a, a+ b− 1].

I Algorithm 4.1. The construction of the tables is as follows and works bottom-up in Gt,
where we fix S. For a nonterminal T with rule T → T1T2, we assume that the prefix tables
for T1 and T2 are already constructed. Then the prefix table of T will be constructed using
the entries in the prefix tables of T1 and T2. If the entries for T are constructed, then a
compaction step is applied to all entries for T . The result-table is like an output and will not
be used for further constructions. For every nonterminal T , the following is performed:
Simple cases:
1. If |val(T)| = 1: If |val(S)| > 1, and val(S) has val(T) as prefix, or if val(S) starts with

a hole, then there is an entry 0 in the prefix-table of T , otherwise there is no entry in the
prefix table. If |val(S)| = 1, and val(S) has val(T) as prefix, or if val(S) starts with a
hole, then the result-table entry is (0, 1), otherwise there is no entry.

2. Let T be a nonterminal with rule T → T1T2.
a. All entries a, (a, b) in the prefix table of T2 are inherited to the prefix table of T as
a+ q and (a+ q, b), respectively, where q = |val(T1)|.

b. An entry a of the prefix table of T2 is tested by first adding a nonterminal A representing
the prefix of val(S) as suffix of val(T1), then A′ → AT2 is added to the SLP. If val(A′)
is a proper prefix of val(S), then a is added to the prefix table of T . If val(S) is a
prefix of val(A′), then a is in the result table of T . Otherwise, no entry is inherited.

The complex case: Let T be a nonterminal with rule T → T1T2, and let there be an entry
(a, b) in the list of the prefix table of T1.
Let T ′1 be a nonterminal that represents the suffix of val(T1) starting at a. We determ-
ine the maximal number of periods corresponding to entry (a, b) that fit as prefix into
val(T2). Therefore construct the potential period string as a nonterminal P as representing
the string val(T1)[a, a + b − 1]. Then construct nonterminals P1 as a prefix and P2 as a
suffix of P , such that val(P) = val(P1P2) and val(T1)[a..|val(T1)| − 1] = val(P)kval(P1)
for some k. Then construct P ′ as P ′ → P2P1, and its powers on demand and use inter-
val bisection to find the maximal prefix of val(T2) that is periodic with period string P ′.

T ′1 T2a

P

b

P1 P2

P ′

A similar computation has to be done for S: using interval bisection in order to find the
maximal number k′ of periods such that a prefix of val(S) matches val(P)k′ . The possible
case and corresponding outcomes and actions are:

M. Schmidt-Schauß 283

1. val(T2) is periodic with period string val(P ′), and val(S) has a proper prefix that matches
the periodic string val(T ′1T2). The new entry for the prefix-table for T is (a, b). There
will be no entry for the result-table.

2. val(T2) is periodic with period string val(P ′), and val(S) matches a prefix of val(P)k,
and item (1) does not hold. This means val(S) is periodic as a partial word with period
string val(P).
Compute the number k by comparing the length of val(S) with the length of val(T ′1T2)
such that the arithmetic sequence a, a + b, . . . , a + (k − 1)b represents the positions in
val(T ′1T2) where S matches substrings of val(T ′1T2). The entry (a, b, k) is added to the
result-table of T . The pair (a+ bk, b) is added as entry to the prefix-table of T .

3. val(T2) is periodic with period string val(P ′), and val(S) has a proper prefix that matches
val(P)m for some m, but not the the full periodic substring val(T ′1T2). Then compute the
smallest k by simple arithmetic, such that a+ bk is position in val(T ′1T2), such that S
matches the substring starting there. The entry (a+ bk, b) is added to the prefix-table of
T . There is no result entry added.

4. val(T2) has a proper prefix that is periodic with string val(P ′), but val(T2) is not periodic
with period string val(P ′), and val(S) matches a prefix of val(P)k for some k.
This means val(S) is periodic as a partial word with period string val(P).
Compute the number k using arithmetic, and interval bisection for val(T ′1T2), such that
the arithmetic progression a, a+ b, . . . , a+ (k − 1)b represents the positions in val(T ′1T2)
where S matches substrings of val(T ′1T2). The entry (a, b, k) is added to the result-table
of T . There are no entries in the prefix-table of T .

5. val(T2) has a proper prefix that is periodic with string val(P ′), val(T2) is not periodic
with period string val(P ′), and val(S) does not match a prefix of val(P)k for any k.

T ′1 T2

T2,1 T2,2q

P
S1a′ S2

Then compute nonterminals S1, S2 extending the SLP, such that val(S1) is the maximal
prefix of val(S) that matches a prefix of val(P)m for some m, and val(S) = val(S1S2).
Also compute T2,1, T2,2 extending the SLP with val(T2) = val(T2,1)val(T2,2), and such
that val(T2,1) is the maximal prefix of val(T2) that is periodic with period string val(P ′).
Then there is at most one potential position for a matching occurrence (derived from the
entries in T1): val(T2,2) and val(S2) must start at the same position. Let the position q
be computed as q := a + |val(T1T2,1)|. If val(S2) matches a prefix of val(T2,2) or there
is a prefix of val(S2) that matches val(T2,2), and val(S1) matches a suffix of val(T ′1T2,1),
then we can proceed; otherwise, there is no entry. Let a′ be the starting occurrence of
val(S) in val(T ′1T2), i.e. a′ := q − |val(S1)|.
If S matches val(T1T2) at position a′ and is completely contained, then a′ is an entry in
the result-table for T . If a proper prefix of S matches val(T1T2) at position a′ and is not
completely contained, then a′ will be an entry in the prefix-table of T .

Compaction Finally, there is a compaction of the prefix table of T to keep the sum of the
sizes of all prefix-tables polynomial. The compaction takes the prefix table as computed above
as input and generates a completely new prefix table for T . Thereby it may generate also
entries for arithmetic progressions in the prefix-table.
Let h be the number of holes of val(S). Let c be the current position in val(T), where the

RTA’12

284 Matching of Compressed Patterns with Character-Variables

start is at position 0, and where the compaction stops if |val(T)| − c < h+ 3 and the input
positions are simply moved to the output in this case.
Let d := |val(T)| − c+ 1 and let e := bd/(2(h+ 2))c. If for val(T) in the (position) interval
c, c+ e− 1 there are at least h+ 3 positions for S including implicit positions from arithmetic
progression, then the leftmost h+ 2 entries in this interval are expanded, and b′ is computed
as the gcd of the position differences according to Theorem 3.10. If p′ is the (h+3)th position,
then the entry (p′, b′) is added to the output for T .
Then do the same for all intervals [c+ ie, c+ (i+ 1)e− 1] for i ∈ {1, . . . , h+ 1}. This covers
the left half of val(T)[d..|val(T)| − 1]. Continue with the same procedure for the right half of
val(T), but with refreshed c, d, e.

The two tables are a complete description of all occurrences of prefixes of val(S) as suffixes
of val(T) and of matching occurrences of S in T . The matching occurrences can be found in
the result table of minimal nonterminals: If T → T1T2, then only the occurrences of S in T
that cross the border between val(T1) and val(T2) are mentioned in the result-table of T .
Other occurrences are mentioned at T1, T2 or their descendents.

I Proposition 4.2. Let S be a nonterminal in Gs and T be a nonterminal in Gt, and
assume the two tables are constructed with Algorithm 4.1. Then the prefix-table is a complete
description of all occurrences of prefixes of val(S) as suffixes of val(T), and the result-tables
of the nonterminals contributing to T (including T) are a complete description of all matching
occurrences of S in T .

Proof. The argument is by induction: Let T → T1T2 be a rule in Gt: We assume that the
prefix-entries for T1 and T2 are complete, and then have to argue that the step of Algorithm
4.1 constructs a complete set of entries for T . This requires to verify that all the cases are
treated. This is done in the algorithm due to the exact knowledge about periodicities. J

I Proposition 4.3. The compaction step is correct. Also the semantics of the entries satisfied:
for a periodic entry (a, b), the suffix of val(T) is periodic with period b. Moreover, the period
is the optimal one, since the input contains all matching occurrences for prefixes of val(S).

Proof. This follows from Theorem 3.10. J

I Proposition 4.4. The construction of the prefix- and result-table requires at most polynomial
time in the size of G := Gs ∪Gt. For a fixed S, the size of the tables is of order O(|G|4).

Proof. The operations can all be done in polynomial time, and the table has a polynomial
number of places (see Lemma 2.7). What remains to be shown is that the number of entries
in the list for nonterminal T is polynomial. Let n be the size of the SLP G and h be the
number of holes of val(S), and assume that the rule for detection of arithmetic sequences
does not apply. Then we can determine an upper bound for the number of entries as follows:
Here a single entry and a pair for arithmetic sequences count as one entry. Let d = |val(T)|,
and let e = d/(2(h+ 2)). In the interval [0, e] at most h+ 3 are starting, since otherwise a
compaction step is possible. The same for all the intervals until [(h+ 1)e, (h+ 2)e]. Thus
there are at most (h+ 2)(h+ 3) entries in the left half of T . The same argument applies to
the right half in the role of T . Due to the generation of strings by an SLP not more than n
interval divisions by 2 are possible, hence at most n ∗ (h+ 2)(h+ 3) entries are in the table
for the nonterminal T . J

M. Schmidt-Schauß 285

4.1 Results for Matching of Strings with Holes
I Theorem 4.5. The LCCSM problem can be solved in polynomial time: If s is a string with
n holes, and t is a string, compressed by SLPs Gs and Gt, respectively, then a representation
of all the matching occurrences of s in t can be computed in polynomial time.

Proof. Using Algorithm 4.1 for the construction of the result-table is complete and requires
polynomial time in |Gt|+ |Gs| by Proposition 4.4. J
Note that the number of matching occurrences may be exponential in |Gt| + |Gs|. The
computed table represents all occurrences in a compact way in polynomial space.
A representation of all periods of a compressed partial word s can be computed: Let S be
a nonterminal with val(S) = s. Compute nonterminals Si, i = 1, . . . ,m with m ≤ |G| that
represent the maximal hole-free substrings of s. Then compute all the periods of val(Si)
for i = 1 using a fully compressed matching algorithm [17], also Algorithm 4.1 could be
specialized to this. This results in a polynomial number of potential periods. Now test
every potential period p as follows: First compute a nonterminal S′ representing S where
the holes are instantiated by characters using the period p. Then compute a nonterminal P
with val(P) = val(S)[0..p− 1] and check whether val(P kP ′) =h val(S) where P ′ represents
a prefix of val(P) and |val(P kP ′)| = |val(S)|. For every period of val(S), at least one divisor
will be found, their number is at most polynomial and every check can be done in PTIME.
Note that Algorithm 4.1 cannot be used to find periodicities of S in S (see item 5.3).

I Proposition 4.6. All periods of an SLP-compressed string s can be computed in PTIME .

5 Extensions and Generalizations

5.1 Adding Variables Representing Strings
I Lemma 5.1. Let s be a string linear in the variables, every variable is a string-variable,
let t be a string, and assume that both are compressed by an SLP. Then the question whether
there exists a substitution σ, such that σ(s) occurs in t can be decided in polynomial time.

Proof. Let S, T be nonterminals with val(S) = s, val(T) = t. An eager left-to-right search is
sufficient: If val(S) = s1x1 . . . xnsn+1, where si are ground, then first construct nonterminals
Si with val(Si) = si for i = 1, . . . , n. Then identify the first occurrence of s1 in t. The next
step is to construct a nonterminal representing the suffix of t right to the occurrence and
repeat the search. This is a sequential algorithm, every step can be performed in polynomial
time, and the required SLP does not grow in size. Hence whether a match exists can be
decided in polynomial time, and a match can be computed as a side-effect. J
This can be generalized to a mix of string-variables and character-variables:

I Proposition 5.2. Let s be a string linear in the variables, which may be string-variables or
character-variables, let t be a string, and assume s, t are SLP-compressed. Then the question
whether there exists a substitution σ, such that σ(s) occurs in t can be decided in PTIME .

Proof. Similar to the previous proof: let s = s1x1 . . . xnsn+1, where xi are all the string-
variables, and si may contain character-variables. Then an eager left-to-right search will run
in polynomial time, using Theorem 4.5, similar as in the proof of Lemma 5.1. J

5.2 Nonlinear Patterns
Suppose, we permit multiple occurrences of the same character-variable in the pattern. Note
that the number of different variables is at most |Gs|, however, there may be an exponential

RTA’12

286 Matching of Compressed Patterns with Character-Variables

number of occurrences of variables in s. Unfortunately, Theorem 3.10 is no longer applicable.
If the number of occurrences is polynomial, then we can use our current method as follows:

I Proposition 5.3. Let the number of occurrences of variables in s be k. Then the pattern
match problem can be decided in time O(polyk(|Gs|, |Gt|)) where poly is a polynomial.

Proof. Linearize the pattern s giving s′, such that ρ(s′) = s for some variable-variable
substitution. Perform a pattern match using s′, resulting in a polynomially-sized result-table.
Then scan every entry: For single entries a, test whether s′ occurs in t at position a, which
is polynomial. For arithmetic sequences of length < k + 2 use the method for single entries,
otherwise a unique substitution can be computed from the sequence. Then test whether this
substitution is compatible with ρ. All the tests can be done in polynomial time. J

5.3 Further Possible Extension and Problems
Pattern Target is a Partial Word. If the target t of the pattern match is a partial word,

then our method does no longer work as expected, since the overlap-theorem can no
longer by applied. For example let s = aa◦bb, and t = aaa◦◦bb, then s matches t at
positions 0, 1, 2. However, the three occurrences of s do not overlap, and so the overlap
theorem cannot be used for compacting the entries in the prefix-table in Algorithm 4.1.

Compressed Partial Words Including Holes If holes are not seen as variables, but repres-
ented as an extra symbol, then compression can represent partial words with a larger
number of holes, up to an exponential number of holes. However, then our arguments fail,
in particular the application of the overlap-theorem 3.10 no longer helps in compacting
the prefix-table entries, since the number of holes is no longer O(|Gs|).

Term Matching Looking for submatching (or the encompassment relation) of terms as a
generalisation of strings is of course an interesting generalization. The technical report
[24] contains an approach to compressed term matching but has to leave open the issue
whether a single compressed term submatch can be performed in polynomial time and
even the question for terms with linear variable occurrence was left open.

6 Conclusion and Further Work

Future work is to analyze the CCSM problem for strings. Another important issue is to
analyze term-submatching, to generalize CCSM and LCCSM to terms, and then to improve
the algorithms in [24].

Acknowledgements I thank David Sabel for discussions on compressions and for reading
the paper.

References
1 D. Benanav, D. Kapur, and P. Narendran. Complexity of matching problems. J. Symb.

Comput., 3(1/2):203–216, 1987.
2 P. Berman, M. Karpinski, L. L. Larmore, W. Plandowski, andW. Rytter. On the complexity

of pattern matching for highly compressed two-dimensional texts. J. Comput. Syst. Sci.,
65(2):332–350, 2002.

3 J. Berstel and L. Boasson. Partial words and a theorem of Fine and Wilf. Theor. Comput.
Sci., 218(1):135–141, 1999.

M. Schmidt-Schauß 287

4 Ph. Bille, R. Fagerberg, and I. Li Gørtz. Improved approximate string matching and regular
expression matching on Ziv-Lempel compressed texts. ACM Transactions on Algorithms,
6(1), 2009.

5 F. Blanchet-Sadri. Periodicity on partial words. Comput. Math. Appl., 47:71–82, 2004.
6 F. Blanchet-Sadri. Algorithmic combinatorics on partial words. Chapman & Hall/CRC,

2008.
7 F. Blanchet-Sadri, D. Dakota Blair, and R. V. Lewis. Equations on partial words. In

MFCS, LNCS 4162 , pages 167–178. Springer, 2006.
8 F. Blanchet-Sadri and R. A. Hegstrom. Partial words and a theorem of Fine and Wilf

revisited. Theor. Comput. Sci., 270(1-2):401–419, 2002.
9 G. Busatto, M. Lohrey, and S. Maneth. Efficient memory representation of XML documents.

In Proceedings of DBPL 2005, LNCS 3774, pages 199–216, 2005.
10 N. J. Fine and H. S. Wilf. Uniqueness theorem for periodic functions. Proc. Am. Math.

Soc., 16:109–114, 1965.
11 A. Gascón, G. Godoy, and M. Schmidt-Schauß. Unification and matching on compressed

terms. ACM Trans. Comput. Log., 12(4):26:1–26:37, 2011.
12 A. Jez. Faster fully compressed pattern matching by recompression. CoRR, abs/1111.3244,

2011.
13 M. Karpinski, W. Rytter, and A. Shinohara. Pattern-matching for strings with short

description. In CPM ’95, LNCS 937, pages 205–214. Springer-Verlag, 1995.
14 M. Karpinski, W. Rytter, and A. Shinohara. An efficient pattern-matching algorithm for

strings with short descriptions. Nord. J. Comput., 4(2):172–186, 1997.
15 J. Levy, M. Schmidt-Schauß, and M. Villaret. Monadic second-order unification is NP-

complete. In RTA-15, LNCS 3091, pages 55–69. Springer, 2004.
16 J. Levy, M. Schmidt-Schauß, and M. Villaret. The complexity of monadic second-order

unification. SIAM J. of Computing, 38(3):1113–1140, 2008.
17 Y. Lifshits. Processing compressed texts: A tractability border. In CPM 2007, pages

228–240, 2007.
18 M. Lohrey. Word problems and membership problems on compressed words. SIAM Journal

on Computing, 35(5):1210–1240, 2006.
19 M. Lohrey. Compressed membership problems for regular expressions and hierarchical

automata. Int. J. Found. Comput. Sci., 21(5):817–841, 2010.
20 N. Markey and Ph. Schnoebelen. A PTIME-complete matching problem for SLP-

compressed words. Inf. Process. Lett., 90(1):3–6, 2004.
21 G. Navarro. Regular expression searching on compressed text. J. Discrete Algorithms,

1(5-6):423–443, 2003.
22 W. Plandowski. Testing equivalence of morphisms in context-free languages. In ESA 94,

volume 855 of Lecture Notes in Computer Science, pages 460–470, 1994.
23 W. Plandowski and W. Rytter. Complexity of language recognition problems for com-

pressed words. In Jewels are Forever, pages 262–272. Springer, 1999.
24 M. Schmidt-Schauß. Pattern matching of compressed terms and contexts and polynomial

rewriting. Frank report 43, Institut für Informatik. Goethe-Univ. Frankfurt am Main, 2011.
25 T. Yamamoto, H. Bannai, S. Inenaga, and M. Takeda. Faster subsequence and don’t-care

pattern matching on compressed texts. In 22nd CPM, LNCS 6661, pages 309–322. Springer,
2011.

26 J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE
Transactions on Information Theory, 23(3):337–343, 1977.

27 J. Ziv and A. Lempel. Compression of individual sequences via variable-rate coding. IEEE
Transactions on Information Theory, 24(5):530–536, 1978.

RTA’12

Meaningless Sets in Infinitary Combinatory Logic
Paula Severi1,2 and Fer-Jan de Vries1,3

1 Department of Computer Science, University of Leicester, UK
2 ps56@mcs.le.ac.uk
3 fdv1@mcs.le.ac.uk

Abstract
In this paper we study meaningless sets in infinitary combinatory logic. So far only a handful of
meaningless sets were known. We show that there are uncountably many meaningless sets. As an
application to the semantics of finite combinatory logics, we show that there exist uncountably
many combinatory algebras that are not a lambda algebra. We also study ways of weakening the
axioms of meaningless sets to get, not only sufficient, but also necessary conditions for having
confluence and normalisation.

1998 ACM Subject Classification F.4.1 Mathematical Logic, F.1.1 Models of Computation, I.2.2
Automatic Programming, I.2.3 Deduction and Theorem Proving, I.2.4 Knowledge Representation
Formalisms and Methods

Keywords and phrases infinitary rewriting, infinitary combinatory logic, meaningless set con-
fluence and normalisation

Digital Object Identifier 10.4230/LIPIcs.RTA.2012.288

Category Regular Research Paper

1 Introduction

In this paper, we study meaningless sets for infinitary combinatory logic [8, 5]. This is of in-
terest because for infinitary combinatory logic, only a handful of meaningless sets are known
so far, in stark contrast to the current situation for infinitary lambda calculus [14, 16]. Mean-
ingless sets play an important role in the construction of syntactic models of finite lambda
calculus and combinatory logic. The interpretation of a term is its infinitary normal form
and it is well-defined if the corresponding infinitary lambda calculus or infinitary rewriting
system is confluent and normalising. The extension with infinite terms and infinite reduc-
tions ruins the confluence property. We can recover confluence by extending the syntax with
a fresh symbol ⊥ and by extending the reduction rules with a ⊥-rule that can reduce terms
from a well chosen set U of meaningless terms to ⊥. The papers [8, 5] looked simultaneously
at orthogonal infinitary term rewriting systems and infinitary lambda calculus and gave a
sufficient set of conditions for U so that the corresponding infinitary term rewriting systems
or infinitary lambda calculi are confluent and normalising. Later for infinitary lambda cal-
culus it was found in [16] that there exists a set of necessary and sufficient conditions for
U such that the corresponding infinitary lambda calculus with β and ⊥-reduction is conflu-
ent and normalising. And in [14, 15] it has been shown that there are uncountably many
of such sets and hence uncountably many syntactic models of the lambda calculus. These
sufficient and necessary conditions in the case of lambda calculus do not immediately carry
over to orthogonal term rewriting systems. This hinges on the fact that in infinitary lambda
calculus the set of rootactive terms coincides with the set of hypercollapsing terms. This
is in general not the case for arbitrary orthogonal infinitary rewriting systems: infinitary

© Paula Severi and Fer-Jan de Vries;
licensed under Creative Commons License NC-ND

23rd International Conference on Rewriting Techniques and Applications (RTA’12).
Editor: A. Tiwari; pp. 288–304

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

P. Severi and F.-J. de Vries 289

combinatory logic is an example of an infinitary rewriting system with rootactive terms that
are not hypercollapsing. The reduction for combinatory logic is called w-reduction [1, 9].
In this paper we look at the following questions: what are the (necessary and) sufficient
conditions for the infinitary combinatory logic with w⊥-reduction to be (1) confluent?, (2)
normalising? and (3) the combination, confluent and normalising?.

Regarding confluence we will show that infinitary combinatory logic with w⊥-reduction
is confluent for the traditional set of axioms of meaningless sets without assuming the ax-
iom of rootactiveness. We give uncountably many examples of meaningless sets satisfying
rootactiveness. Each one gives rise to a model of finite combinatory logic, called combin-
atory algebra [1]. We also show that these models are not λ-algebras, i.e. there exist two
terms whose corresponding translations into lambda calculus are β-convertible but they have
different interpretation in the model.

By studying the overlap cases between w and ⊥-reduction, we realise that we can weaken
the axiom of overlap. Combining weak overlap with rootactiveness and the axioms of clos-
ure under reduction, expansion and indiscernibility gives a sufficient condition so that the
infinitary combinatory logic with w⊥-reduction is confluent and normalising. We also show
that the axioms of hypercollapseness, overlap and closure under reduction are necessary
conditions for confluence.

The paper is organised as follows. Section 2 gives a brief overview of infinitary rewrit-
ing in the setting of combinatory logic. Section 3 works out what the traditional theory
of meaningless sets means for infinitary combinatory logic. Section 4 studies the axioms of
closure under expansion and substitution. Section 5 gives concrete examples of meaningless
sets and describes some of the structure of the lattice of meaningless sets. Section 6 shows
an application to combinatory algebras. Section 7 explores sufficient and necessary condi-
tions for confluence. Section 8 discusses some open problems and shows an example of a
normalising infinitary combinatory logic that does not satisfy rootactiveness.

2 Infinitary Combinatory Logic

We will define infinitary combinatory logic assuming familiarity with basic notions and
notations from combinatory logic, lambda calculus [1, 9] and some familiarity of infinite
term rewriting [5]. The set CL of finite CL-terms is defined by induction from the following
grammar:

M ::= x | K | S |MM.

The set CL∞ of finite and infinite CL-terms over a given set of variables is defined by
coinduction from the same grammar.

I Definition 2.1 (w-reduction). The w-rules are extended to CL∞.

KMN →w M

SMNP →w MP (NP)

The w in→w stands for weak reduction [1, 3]. The first rule is called K-rule and the second
S-rule. A term is a K-redex (or S-redex) if it is of the form KMN (or SMNP).

Above we have presented CL in the traditional applicative format: this means that the
infix application symbol · is suppressed, outermost brackets dropped and the usual bracket
convention of association to the left is followed: e.g., xyz actually stands for ((x · y) · z).
Alternatively we could have presented the terms of CL and CL∞ and the two rules in the

RTA’12

290 Meaningless Sets in Infinitary Combinatory Logic

format of first order term rewriting by adding an explicit binary application symbol Ap
to the syntax M ::= x | K | S | Ap(M,N) with the proviso that we will read MN for
Ap(M,N) [9]. Terminology and notation for infinite term rewriting in the latter format
translate readily to CL presented in its applicative format. E.g. we say that S and x have
depth 3 in the term Sxyz, whereas the depth of y and z is respectively 1 and 2.

· 0

· z 1

· y 2

S x 3

The distance d(M,N) between two terms is defined as 2−n where n is the length of the
shortest common position p ofM and N such thatM and N differ at p. With this notion of
distance the set CL of finite terms becomes a metric space and CL∞ its metric completion.

Metavariables in (infinitary) combinatory logic will be denoted by M,N,P, . . . and con-
texts by C,D, Simultaneous substitution will be denoted by Mσ, where σ is a substitu-
tion of variables by terms.

One step reduction→w on CL and CL∞ is the smallest binary relation on CL, respectively
CL∞ containing the w-rules and closed under contexts. Let α be an ordinal.

I Definition 2.2 (Strongly converging reduction sequence). A strongly converging reduction
sequence of length α is a sequence of reduction steps (Mβ →w Mβ+1)β<α such that for every
limit ordinal λ ≤ α:
1. the sequence of terms (Mβ)β≤λ is a transfinite Cauchy sequence, that is

lim
β→λ

Mβ = Mλ

2. limβ→λ dβ =∞ where dβ is the depth of the redex contracted at Mβ →w Mβ+1.

We will denote this by M0 →→→α
w Mα (or just M0 →→→w Mα). We will use the notation

M →→w N for a finite reduction from M to N .
Because CL is a left-linear system the Compression Lemma holds, which says that

whenever M0 →→→α
w Mα then M0 →→→≤ωw Mα, i.e. there is an strongly converging reduction

from M0 to Mα of length at most ω.
We will use the following abbreviations for terms:

I = SKK, Ω = SII(SII),
Mω = M(M(M(. . .))) Cω = C[C[C[. . .]]] if C[] is a context.

Although the names I and Ω may feel familiar from lambda calculus, one should beware
that their reduction behaviour is slightly different: Ix→→w x takes two steps, while Ω→→w Ω
takes five. For the complete reduction graph of Ω in CL see, see [9]. We give some examples
of interesting infinite terms.

I Example 2.3. 1. It is easy to verify that the infinite term Y = (SI)ω is an infinite fixed
point combinator

(SI)ωM = SI(SI)ωM →w IM((SI)ωM)→w M((SI)ωM).

To verify that a finite term is a fixed point combinators usually takes more steps to
prove. See for instance the shortest fixed point combinator [17].

YTromp = SSK(S(K(SS(S(SSK))))K).

P. Severi and F.-J. de Vries 291

The infinite term (SI)ω can be obtained as limit of a strongly convergent reduction
starting from the finite term YTromp(SI).

2. Since Y(SII) →→w (Y(SII))(Y(SII)) we find that if we continue this process, Y(SII)
strongly converges to an infinite normal form, the binary tree of applications:

X = (((. . .)(. . .))((. . .)(. . .)))(((. . .)(. . .))((. . .)(. . .))).

3. The term SωXX is self-looping: SωXX = S(Sω)XX→w (Sω)X(XX) = SωXX.
4. Let CM [] abbreviate the context K[]M . Then CωM is self-looping for any M . Redexes

of the form CM [x]→w x are called collapsing.

Let Λ∞ is defined by coinduction from the following grammar.

M ::= ⊥ | x | (λxM) | (MM)

Combinator terms translate directly into lambda terms.

I Definition 2.4 (Translation from CL∞ to Λ∞). For M ∈ CL∞ we define Mλ ∈ Λ∞ by
coinduction as follows: xλ = x, Kλ = λxy.x, Sλ = λxyz.xz(yz), (PQ)λ = PλQλ.

We define →h
w as the restriction of →w to w-redexes in the head position where M is in

the head position of N if N = MP1 . . . Pn.

I Definition 2.5 (Skeleton). We define the skeleton of a term by corecursion as follows.

skel(M) = N if M →→h
w N , and N is either x, K or S

skel(M) = skel(N)skel(P) if M →→h
w NP , while NP 6→→h

w Q for any w-redex Q
skel(M) = M otherwise

The skeleton of a term can be computed by a depth-first leftmost strategy that contracts
all w-redexes not contained in a rootactive term (see Definition 3.4). We have that M →→→w

skel(M).

3 Axioms of Meaningless Sets in Infinitary Combinatory Logic

Finite combinatory logic CL is confluent for finite w-reduction. In contrast infinitary com-
binatory logic CL∞ is not confluent for strongly converging w-reduction. The reason be-
hind this negative result is that the K-rule is a collapsing rule with a multivariable left-
hand side. The infinite tower of collapsing redexes Cx[Cy[Cx[Cy[. . .]]]], that is the term
K(K(K(K(. . .)y)x)y)x, can strongly converge to both Cωx and Cωy , which are self-looping
by Example 2.3. Hence Cωx and Cωy can not reduce further to a common reduct [6].

I Definition 3.1 (Hypercollapsing Term). We say that a term M ∈ CL∞⊥ is hypercollapsing,
if any reduct of M can further reduce to a collapsing redex. We denote the set of hypercol-
lapsing terms by H.

Confluence can be restored if we identify hypercollapsing terms with ⊥ [8]. For this, we
extend CL∞ with a fresh symbol ⊥. We define CL∞⊥ by coinduction from the grammar:
M ::= x | ⊥ | K | S | MN . We also add a reduction rule →⊥U that allows us reduce terms
from a chosen subset U ⊆ CL∞ to ⊥. This is reminiscent to BΩ-reduction in [1] where the
unsolvables play the role of undefined terms. We need some notation to define this ⊥-rule.

RTA’12

292 Meaningless Sets in Infinitary Combinatory Logic

I Definition 3.2 (⊥-instance). Let U ⊆ CL∞ and M,N ∈ CL∞⊥ . We say that M is a ⊥-
instance of N , notation M �U N , if M is obtained from N by replacing some (possibly
infinitely many) subterms of N in U by ⊥. We define U⊥ ⊆ CL∞⊥ as U⊥ = {M | ∃N ∈
U .M �U N}.

I Definition 3.3 (⊥U -reduction). Let U ⊆ CL∞. We define the ⊥U -rule on CL∞⊥ : M → ⊥ if
M ∈ U⊥ andM 6= ⊥. The one step reduction→⊥U is the smallest binary relation containing
⊥U and closed under contexts and substitutions.

Occasionally, we may denote ⊥U just by ⊥. We denote finite ⊥-reductions by →→⊥ and
strongly convergent reductions by →→→⊥.

I Definition 3.4 (Rootactive Term). We say that a term M ∈ CL∞⊥ is rootactive, if any
reduct of M can further reduce to a redex, i.e. either a K or an S-redex. We denote the set
of rootactive terms by R.

All hypercollapsing terms are rootactive. The converse is not true. Examples of terms
that are rootactive but not hypercollapsing are the term Ω, any term of the form SωMN

(in particular, the term SωXX) and terms of the form DωM (where Dω is the infinite tower
of contexts of the form S(K[])I)) for any M .

Note that unlike in lambda calculus [7, 8] we have that in combinatory logic the set of
hypercollapsing terms does not coincide with the rootactive terms..

I Definition 3.5 (Hypercollapseness). We say that a set U ⊆ CL∞ satisfies the Axiom of
hypercollapseness if H ⊆ U .

I Definition 3.6 (Rootactiveness). We say that a set U ⊆ CL∞ satisfies the Axiom of
rootactiveness if R ⊆ U .

I Definition 3.7 (U←→ and U=). Let M,N ∈ CL∞⊥ . We write M U←→ N , if N can be obtained
from M by replacing some (possibly infinitely many) subterms of M in U by other terms in
U . We write t U= s for the transitive closure of U←→.

I Definition 3.8 (Indiscernibility). We say that a set U ⊆ CL∞ satisfies the Axiom of indis-
cernibility if for all M,N ∈ CL∞ such that M U←→ N , we have that M ∈ U iff N ∈ U .

I Definition 3.9 (Closure under w-reduction). We say that a set U ⊆ CL∞ satisfies the Axiom
of closure under w-reduction if M ∈ U and M →→→w N implies N ∈ U for all M,N ∈ CL∞.

The general formulation of the next axiom of overlap says that if a redex M overlaps a
subterm, and this subterm is in U thenM ∈ U . For combinatory logic this means concretely:

I Definition 3.10 (Overlap). We say that a set U ⊆ CL∞ satisfies the axiom of overlap if
the following conditions holds for all M,N,P ∈ CL∞:
1. If K ∈ U or KM ∈ U then KMN ∈ U .
2. If S ∈ U , SM ∈ U or SMN ∈ U then SMNP ∈ U .

I Definition 3.11 (Meaningless Set). A set U ⊆ CL∞ is called a set of meaningless terms
(meaningless set for short), if it satisfies the axioms of hypercollapseness, closure under
w-reduction, indiscernibility and overlap. These four axioms are called the axioms of mean-
inglessness.

I Theorem 3.12 (Meaninglessness implies Confluence modulo U [8, 5]). If U is a set of
meaningless terms, then (CL∞⊥ ,→→→w) is confluent modulo U , i.e. if M ←←←w

U=→→→w N implies
P →→→w

U=←←←w Q.

P. Severi and F.-J. de Vries 293

I Theorem 3.13 (Indiscernibility implies Confluence of ⊥U -reduction [8, 5]). Let U ⊆ CL∞.
If U satisfies indiscernibility then (CL∞⊥ ,→→→⊥U) is confluent.

I Theorem 3.14 (Postponement [8, 5]). Let U ⊆ CL∞. If M →→→w⊥U N then there exists P
such that M →→→w P →→→⊥U N . (No properties of U need to be assumed.)

I Theorem 3.15 (Rootactiveness implies Normalization [8, 5]). If U ⊆ CL∞ satisfies rootact-
iveness, then (CL∞⊥ ,→→→w⊥U) is normalising.

I Theorem 3.16 (Rootactiveness and Meaninglessness implies Confluence [8, 5]). If U ⊆ CL∞
is a meaningless set that satisfies rootactiveness, then (CL∞⊥ ,→→→w⊥U) is confluent.

I Notation 3.17 (Normal Form). If (CL∞⊥ ,→→→w⊥U) is confluent and normalising, then every
term M in CL∞⊥ has a unique normal form, that we denote by nfU (M). We also write
nfU (X) = {nfU (M) |M ∈ X} for X ⊆ CL∞⊥ .

Next we prove that (CL∞⊥ ,→→→w⊥U) is confluent for meaningless sets U that do not ne-
cessarily satisfy rootactiveness with tools from from [8, 5]. The earlier papers bypassed this
result, because their interest lay in extensions (CL∞⊥ ,→→→w⊥U) that are both confluence and
normalising.

I Theorem 3.18 (Meaninglessness implies Confluence). If U is a meaningless set, then
(CL∞⊥ ,→→→w⊥U) is confluent.

Proof. Let M outU−→w N denote one w-step where the contracted redex in M →w N is not
contained in any subterm P of M which is in U .

M

w

����
��(1)

w

�� ��
�� (1)

w⊥U

{{{{ {{

w⊥U

####•
w
����
�� (3)

•⊥Uoooo oo

w outU����
��

(2) • ⊥U // ////

outU w
����
�� (3)

•
w
����
��

•
⊥U �� ��
��

(4)

•⊥U
oooo oo

�� ��
��

• ⊥U
// ////

⊥U ⊥U

����
��

(4)

•
⊥U����
��

•

⊥U && &&&&

•⊥U
oooo oo

⊥U
// ////

(4)

•

⊥Uxxxx xx•

Suppose we are given two w⊥U -reductions starting from M . Using Postponement The-
orem 3.14 we factor both reductions in a w-reduction followed by a ⊥U reduction. This
gives us the two triangles (1). Next, from Theorem 3.12, we find two w-reductions ending
in terms that are identical up to subterms in U . If we factor both reductions into an outside
U w-reduction (Lemma 12.9.20 in [5], which needs overlap and closure under reduction),
followed by an inside U w-reduction we obtain (2). And (3) follows from commutation of
outside U w-reduction with →→→⊥U (Lemma 12.9.19 in [5], which needs overlap), while (4) is
implied by Theorem 3.13 (confluence of →→→⊥). J

Note that the previous theorem and proof holds for arbitrary orthogonal term rewriting
systems as well.

RTA’12

294 Meaningless Sets in Infinitary Combinatory Logic

I Remark. In [16], we could prove that confluence implies normalisation for infinitary lambda
calculus with β⊥U -reduction defined with any set of finite and infinite terms U ⊆ Λ∞. In the
case of combinatory logic, this does not hold. For example, take U = H. By Theorem 3.18
we have that (CL∞⊥ ,→→→w⊥H) is confluent. But it is not normalising, because the term Ω,
which is rootactive but not hypercollapsing, is not normalising.

4 Axioms of Closure under Expansion and Substitution

We now introduce and study some axioms involving closure under expansion and substitu-
tion.

I Definition 4.1 (Closure under Expansion and Substitution). Let U ⊆ CL∞.

1. U satisfies the axiom of closure under w-expansion, if for all M ∈ U N ∈ U whenever
M →→→w N .

2. U satisfies the axiom of closure under substitution, if M ∈ U implies Mσ ∈ U for all
M ∈ CL∞ and substitutions σ from variables to terms in CL∞.

3. We say that U satisfies the axiom of closure under w⊥-expansion from ⊥, if for all M ∈
CL∞, if M →→→w⊥U ⊥ then M ∈ U .

I Lemma 4.2. Let U be a subset of CL∞. Then U satisfies both the axiom of indiscernibility
and the axiom of closure under w-expansion if and only if satisfies the axiom of closure under
w⊥-expansion from ⊥.

Proof. Assume M →→→w⊥ ⊥ for some M ∈ CL∞. Then M →→→w N →→→⊥U ⊥ for some
N ∈ CL∞⊥ by postponement. We prove that N ∈ U by induction on the length β of
N →→→⊥U ⊥. Note that the last step should be a successor ordinal β = α + 1. Hence,
N →→→⊥ N ′ →⊥ ⊥ for some N ′. Let N |p denote the subterm of N at position p. For every
position p of N ′ such that N ′|p = ⊥, we have that N |p →→→⊥ ⊥ is shorted than β. By
induction hypothesis, N |p ∈ U . By indiscernibility, N ∈ U . Closure under w-expansion
then gives us the desired M ∈ U . For the converse, assume first that M,N ∈ CL∞ such
that M U←→ N . There exists P such that P �U M and P �U N . If M ∈ U then P →⊥ ⊥.
Hence, N →→→⊥ P →⊥ ⊥. Since U satisfies closure under w⊥-expansion from ⊥, we get
N ∈ U . Hence indiscernibility holds. Second, assuming that M →→→w N and N ∈ U , we get
M →→→w N →⊥U ⊥. By closure under w⊥-expansion from ⊥ we can concludeM ∈ U . Hence
closure under w-reduction holds. J

I Lemma 4.3. If a meaningless set U ⊆ CL∞ satisfies the axiom of closure under w⊥-
expansion from ⊥, then it also satisfies closure under substitution.

Proof. Suppose M ∈ U . Then M →⊥ ⊥. Because the reduction →⊥ is closed under
substitution by definition we get Mσ →⊥ ⊥. But then Mσ ∈ U follows from closure under
w⊥-expansion from ⊥. J

I Definition 4.4 (Set of w⊥-expansions from ⊥). Let U ⊆ CL∞. We define U = {M ∈
CL∞ |M →→→w⊥U ⊥}.

It is a immediate that U satisfies closure under w⊥-expansion from ⊥.

I Lemma 4.5 (U and U define the same reduction). Let U be a meaningless set. We have
that M →→→w⊥U

N iff M →→→w⊥U N .

P. Severi and F.-J. de Vries 295

Proof. By induction on the length of the reduction sequence. We only show the case when
the length is one. Let M = C[P]→⊥U

C[⊥] = N . Then, P �U Q and Q ∈ U . By definition
of U , we have that Q →→→w⊥U ⊥. Since P �U Q, we have that P is obtained from Q by
replacing some of its subterms in U by ⊥. Each of these subterms w⊥U -reduces to ⊥ so
that we can construct a reduction sequence Q →→→w⊥U P . By Confluence (Theorem 3.13),
we have that P →→→w⊥U ⊥. Hence, C[P]→→→w⊥U C[⊥]. The converse is trivial. J

As consequence of this lemma we have U = U and we obtain the corollary:

I Corollary 4.6. If U is meaningless then (CL∞⊥ ,→→→w⊥U
) is confluent. Moreover, if U

satisfies rootactiveness, then (CL∞⊥ ,→→→w⊥U
) is normalising.

5 Meaningless Sets

In this section we will show that there are uncountably many meaningless sets in infinitary
combinatory logic. This contrasts with the handful of meaningless sets (among which the
rootactive terms) known for orthogonal infinitary term rewriting systems [8].

We will identify sets of meaningless terms that define the same reduction. Hence, by
Lemma 4.5, we will consider those sets of meaningless terms that satisfy U = U . Or,
equivalently, using Lemma 4.2, we will restrict ourselves to sets of meaningless terms that
satisfy the extra axiom of closure under w-expansion.

We will show that the class LCL of sets of meaningless terms that satisfy w-expansion
is a bounded lattice ordered by set inclusion. The meet (denoted by u) coincides with the
intersection. The join U t V is the least meaningless set containing U ∪ V. By construction
the set CL∞ is the largest element of LCL and H the smallest one.

The lattice LCL has a somewhat richer structure than the corresponding lattice of mean-
ingless sets of lambda calculus [16]. Below CL∞ we find the unsolvables as the next largest
set, as the notion of solvability for finite combinatory logic extends to CL∞ and CL∞⊥ [1, 3].

I Definition 5.1 (Solvable Term). Let M ∈ CL∞⊥ .
1. A closed term M is solvable if there exist P1 . . . Pk such that MP1 . . . Pk →→w I.
2. A term M is solvable if Mσ is solvable for some substitution σ replacing all variables in

M by closed terms from CL∞. Terms that are not solvable are called unsolvable.
3. NS = {M ∈ CL∞ |M is not solvable}.
We will first show that NS is indeed an element of LCL, before showing that NS is the
largest element in LCL below CL∞. We need some useful lemmas to do so. The first lemma
follows by induction on the length of the reduction sequence and it holds for any set U .

I Lemma 5.2. If P →→→w P
′ and P �U M then M →→→w M

′ and P ′ �U M ′ for some M ′

I Lemma 5.3. If Q �NS N and N →→w I then Q→→w I.

Proof. By induction on the length n of the reduction sequence. If n = 0 then Q �NS N = I
and Q = I. If n > 0 then we can only have that either N = KN1 . . . Nk or N = SN1 . . . Nk+1
with k ≥ 2 because the normal form of N is I. We do the case N = SN1 . . . Nk with k ≥ 3
where the reduction sequence is N = SN1 . . . Nk →w N1N3(N2N3)N4 . . . Nk →→w I. Hence
N and all its prefixes SN1 . . . Ni for i ≤ k are solvable. If Q �NS N then Q = SQ1 . . . Qk
with Qi �NS Ni for 1 ≤ i ≤ k. By IH, Q1Q3(Q2Q3)Q4 . . . Qk →→w I. Hence Q→→w I. J

I Lemma 5.4. Let P ∈ CL∞⊥ such that P �NS M . Then, P is solvable iff M is solvable.

RTA’12

296 Meaningless Sets in Infinitary Combinatory Logic

Proof. Suppose P is solvable. Then there exist a substitution σ and terms Q1, . . . , Qn such
that PσQ1 . . . Qn →→w I. By Lemma 5.2, MσQ1 . . . Qn →→w I. Hence, M is solvable.

Suppose M is solvable. Then, there exist a substitution σ and terms Q1, . . . Qn such
thatMσQ1 . . . Qn →→w I. Assume that P is unsolvable. Then whenever PσQ1 . . . Qn →→w Q

it follows that Q 6= I. Since PσQ1 . . . Qn �NS MσQ1 . . . Qn we get by Lemma 5.2 that
MσQ1 . . . Qn →→w N for some Q �NS N . By confluence of w⊥R-reduction, we have that
N →→→w⊥R I. Hence by postponement we can factor this reduction into a w-reduction
followed by a ⊥U -reduction to I. Because I does not contain any ⊥, the latter must be
necessarily must be of zero length. Hence N →→w I. Applying Lemma 5.3, we find that then
also Q→→w I. Hence P is solvable as well. J

I Lemma 5.5. If M ∈ U and MP1 . . . Pn →→w Q then Q = NPi+1 . . . Pn where N ∈ U .

Proof. This is proved by induction on the length of the reduction. It is enough to consider
one step MP1 . . . Pn →w Q. If the w-redex is inside M or one of the Pi’s, the claim is
immediate. If the w-redex is of the form MP1 . . . Pi for i > 0 then by overlap, we have that
MP1 . . . Pi ∈ U . By closure under reduction, the contracted redex is in U . J

I Theorem 5.6 (Meaningless Set NS). The set NS is a meaningless set. Moreover, it is the
largest meaningless set satisfying the axiom of closure under w-expansion which is a proper
subset of CL∞. In particular, NS = NS ⊂ CL∞.

Proof. Let R be a rootactive term and σ a substitution. Then Rσ is also rootactive and
RσP1 . . . Pn can not reduce to I. Therefore all rootactive terms are unsolvable and NS
satisfies rootactiveness.

To prove closure under w-reduction, suppose M is unsolvable and M →→→w N . Assume
N is solvable. Then NσP1 . . . Pn →→→w I for some σ, P1, . . . , Pn. Now M is solvable too,
because MσP1 . . . Pn →→→w N

σP1 . . . Pn →→→w I. Contradiction. Hence N is unsolvable.
Overlap is also easy to prove. Suppose SMNP is solvable. Then there exist σ,Q1, . . . , Qn

such that (SMNP)σQ1 . . . Qn →→→w I. Hence, S, SM and SMN are also solvable. Overlap
with K goes similar.

We now prove indiscernibility. If M N S←→ N , then both P �NS M and P �NS N for
some P ∈ CL∞⊥ . It follows from Lemma 5.4 that M ∈ NS iff N ∈ NS.

Next we prove that NS is closed under under w-expansion. SupposeM →→→w N . Assume
M is solvable. If we show that N is solvable, then closure under w-reduction follows by
contraposition. Solvability of M implies that MP1 . . . Pn →→→w I for some Pi. Applying
Theorem 3.12 on confluence modulo hypercollapsing terms, we get N →→→w I, as I does not
contain any hypercollapsing subterms. Hence N is solvable.

Finally we prove that NS is the largest meaningless set closed under under w-expansion,
which is a proper subset of CL∞. Now, suppose that M ∈ U and M 6∈ NS. Hence, there
exists a substitution σ and terms P1, . . . Pn such that MσP1 . . . Pn →→w I = SKK. By
Lemma 5.5, we have that either S, SK or SKK are in U . For any term N , we have that
SKKN →→w N . By the axioms of overlap and closure under reduction, N ∈ U . J

Note that a term in CL∞ has either one of the following forms: (1) S, SP , SPQ, K, KP

or KPQ; (2) xP1 . . . Pn for n ≥ 0; (3) ((. . .)P2)P1; (4) SP1 . . . Pn for n ≥ 3; (5) KP1 . . . Pn
for n ≥ 2. Having this in mind we give the following definition, reminiscent of the analogous
Definition 4.1 in [16] for infinitary lambda calculus.

I Definition 5.7 (Head Normal Form). Let M ∈ CL∞⊥ .

P. Severi and F.-J. de Vries 297

RtK∞ t S∞ t A∞
OO

RtK∞ t S∞
iq

OO

Rt S∞ t A∞

44

OO

Rt S∞
iq

77

OO

RtK∞ t A∞

RtK∞
iq

NHF = RtA∞

44

AR
iq

2:

88

R

ck

Figure 1 A fragment of LCL: single (double) arrows indicate that the corresponding open
intervals are singletons (uncountable). A similar fragment can be built by replacing R by H in the
above diagram.

1. M is in head normal form (hnf or w-hnf) if it is one of the forms K, KP , S, SP , SPQ
or xP1 . . . Pn.

2. NHF = {M ∈ CL∞ | there is no N such that M →→→w N and N is in hnf}.
The set NHF is a set of meaningless terms that satisfies closure under w-expansion.

Terms in NHF are exactly the opaque terms, i.e. their reducts cannot overlap any redex [8].
Unlike lambda calculus, terms with head normal forms do not correspond to solvable terms
in combinatory logic. For example, the head normal form KΩ is unsolvable in combinatory
logic. The reason is that head normal forms in combinatory logic are related to weak head
normal forms in lambda calculus: M is a hnf in combinatory logic iff Mλ is a weak head
normal form in lambda calculus [4]. To define many more elements of LCL we define the
following forms and sets:

I Definition 5.8. 1. AYX = {M ∈ CL∞ | M →→→w N and N is a X,Y -ha} where M is a
head active form relative to X and Y (X,Y -ha) if M = RP1 . . . Pk, R ∈ Y and Pi ∈ X
for 1 ≤ i ≤ k.

2. A∞X = {M ∈ CL∞ | M →→→w N and N is a X-il } where M is an infinite left spine form
relative to X (X-il) if M = (. . . P2)P1 and Pi ∈ X for all i.

3. K∞ = {M ∈ CL∞ |M →→→w Kω} where Kω = K(K(K(. . .))).
4. S∞ = {M ∈ CL∞ |M →→→w Sω} where Sω = S(S(S(. . .))).

When X = CL∞ in AYX or A∞X we drop the phrase relative to X and the subscript X.

Using the H or R as a base we can make two sublattices of LCL as depicted in Figure 1.
The top elements of these fragments, RtK∞tS∞tA∞ and HtK∞tS∞tA∞ are proper
subsets of NS, because neither of the two sets contain the unsolvable S(K(S(K(. . .)))).
Note that NHF = AR ∪ A∞ = R t A∞. The intervals of Figure 1 that have uncountable
cardinality, indicated by ⇒, follow from Theorem 5.9 and the fact that nfNS(CL∞) ∩ CL∞
is uncountable.

I Theorem 5.9 (Meaningless Sets). Let X ⊆ nfNS(CL∞) ∩ CL∞ and Y ∈ {R,H}. The
following sets are sets of meaningless terms that are closed under w-expansion: AYX , AYX ∪
A∞X , AY ∪ A∞X , AY ∪ K∞ ∪ A∞X , AY ∪ S∞ ∪ A∞X and AY ∪ S∞ ∪ K∞ ∪ A∞X .

RTA’12

298 Meaningless Sets in Infinitary Combinatory Logic

Proof. It is straightforward to show that these sets satisfy rootactiveness, overlap, closure
under w-reduction and closure under w-expansion. We show that U = ARX satisfies indis-
cernibility for X ⊆ nfNS(CL∞)∩ CL∞. If M U←→ N then there exists P such that P �U M
and P �U N . By Lemma 5.2, we can assume that P = skel(P). We discuss cases according
to the shape of P . The interesting case is when P = ⊥P1 . . . Pn. Then M = M0M1 . . .Mn

and N = N0N1 . . . Nn. Since X ⊆ nfNS(CL∞), we have that Pi = Mi = Ni for all 1 ≤ i ≤ n.
It is clear that M ∈ ARX iff N ∈ ARX . J

6 Application to Combinatory Algebras

Models for combinatory logic have a simple structure: they are combinatory algebras. Models
for lambda calculus are λ-algebras which are combinatory algebras that satisfy some further
properties. We show that there is an uncountable number of combinatory algebras that are
not λ-algebras. We recall the definition of combinatory and λ-algebras from [1].

I Definition 6.1 (Combinatory Algebra). A combinatory algebra is a structure (X, ·, k, s)
where · is a binary operation on X and k, s ∈ X satisfy kxy = x and sxyz = xz(yz).

Given a valuation ρ mapping variables to terms in X we interpret terms of CL in a com-
binatory algebra (X, ·, k, s) as follows: [[x]]ρ = ρ(x), [[K]]ρ = k, [[S]]ρ = s and [[MN]]ρ =
[[M]]ρ · [[N]]ρ.

I Definition 6.2 (Lambda Algebra). A combinatory algebra is a λ-algebra ifMλ =β Nλ then
[[M]]ρ = [[N]]ρ for all M,N ∈ CL.

I Theorem 6.3 (Combinatory Algebra induced by Infinitary Combinatory Logic). Let U ⊂ CL∞
be closed under w⊥-expansions from ⊥. If (CL∞⊥ ,→→→w⊥U) is confluent and normalising, it
induces a combinatory algebra that is not a λ-algebra which is given by (nfU (CL∞), ·,K,S)
where M ·N = nfU (MN).

Proof. Assume U ⊂ CL∞. A term is interpreted by its normal form. In a λ-algebra, the
term K should be equal to S(S(KS)(S(KK)K))(K(S(KK)). Since these two terms are in
w-normal form, they will have the same w⊥U -normal form only if they both reduce to ⊥.
This is not possible, as then K should belong to U , which would imply by Lemma 7.2 that
U = CL∞. Contradiction. J

I Corollary 6.4 (Uncountable Combinatory Algebras). There is an uncountable number of
combinatory algebras that are not λ-algebras.

Proof. By Theorem 5.9, there are uncountably many meaningless sets satisfying rootactive-
ness. Each of them gives rise to a different, confluent and normalising infinitary ⊥-extension
of CL by Theorems 5.9 and 3.16. By Theorem 6.3 none of the induced combinatory algebras
is a λ-model. J

7 Weakening the Axioms of Meaningless Terms

In this section, we first show that confluence implies hypercollapseness, closure under w-
reduction, indiscernibility and a weaker form of overlap. We can prove the converse only
under the extra condition of rootactiveness.

P. Severi and F.-J. de Vries 299

To weaken the axiom of overlap, we inspect when overlap between ⊥-reduction and w-
reduction occurs. Overlap happens when the ⊥-redex is of the form KM , SM or SMN .
This gives a divergence that can be resolved with the axiom of overlap, e.g.

SMNP
⊥
yy

w
''

⊥P
⊥ %%

MP (NP)
⊥

ww⊥

There is, however, another way of resolving this divergence. Suppose that M = (KW) for
some W ∈ U and N = I. Then, we have that S(KW)IP →→w WP →⊥ ⊥. This is not
the only alternative to resolve the divergence. Suppose M = S(KK)W for some W ∈ U ..
Then, we have that S(S(KK)W)NP →→w WP →⊥ ⊥. In general, there is an alternative
resolution of the divergence whenever there exists a W ∈ U such that MP (NP)→→→w WP .

I Definition 7.1 (Weak Overlap). Let U ⊆ CL∞. We say that U satisfies the axiom of weak
overlap if we have that for all M,N,P ∈ CL∞:
1. If K or KM ∈ U then KMN ∈ U .
2. If S or SM ∈ U then SMN ∈ U or SMNP ∈ U .
3. If SMN ∈ U then SMNP ∈ U ∪ R or SMNP →w MP (NP) →→→w WP and W ∈
U ∩ (AR ∪ A∞).

Clearly, overlap implies weak overlap.

I Lemma 7.2 (K or S in U implies all Terms are in U). Let U ⊆ CL∞ satisfy closure under
w⊥-expansion from ⊥ and (CL∞⊥ ,→→→w⊥U) be confluent. If K ∈ U or S ∈ U then U = CL∞.

Proof. Suppose that K ∈ U . Kxy reduces to ⊥xy and to x. By confluence, these two terms
should have a common reduct. The only possibility is that this reduct is ⊥. By closure
under w⊥-expansion from ⊥, x ∈ U . By Lemma 4.3, M ∈ U for all M ∈ CL∞. Suppose
now that S ∈ U . We have that SKxy →→w y and SKxy →⊥ ⊥Kxy. By confluence, y and
⊥Kxy have a common reduct Q. The only possibility is that Q = ⊥. Hence, y ∈ U . By
Lemma 4.3, U satisfies closure under substitution and hence, M ∈ U for all M ∈ CL∞. J

The next lemma is proved by induction on the length of the reduction sequence.

I Lemma 7.3. If M →→→w N and all occurrences of x in M are in a term of the form xy

then so are all occurrences of x in N .

I Theorem 7.4 (Necessary Conditions for Confluence). Let U ⊆ CL∞ be closed under w⊥-
expansion from ⊥. If (CL∞⊥ ,→→→w⊥U) is confluent, then U satisfies the axioms of hypercol-
lapseness, closure under w-reduction, indiscernibility and weak overlap.

Proof. If U = CL∞ then it satisfies all the axioms. From now on, suppose that U (CL∞.
We have that U satisfies indiscernibility by Lemma 4.2.

We now prove that U satisfies closure under w-reduction as follows. Suppose M →→→w N

and M ∈ U . It follows from M →⊥ ⊥ and confluence that N →→→w⊥U ⊥. By closure under
w⊥-expansion from ⊥, we have that N ∈ U .

We prove that U satisfies hypercollapseness by showing that all hypercollapsing terms
reduce to ⊥. The infinite term Cx[Cy[Cx[Cy[. . .]]]] can reduce to both Cω

x and Cω
y . By

confluence, both Cω
x and Cω

y reduce to some common term Q. By postponement, Cω
x →→→⊥ Q

RTA’12

300 Meaningless Sets in Infinitary Combinatory Logic

and Cω
y →→→⊥ Q because Cω

x and Cω
y can only ω-reduce to themselves. Since Cx and Cy

have no prefix in common, Q should be ⊥.
Now suppose P is an arbitrary hypercollapsing term. Then, we have P →→→ CM1 [CM2 [. . .]]

where CMi [] = (K[]Mi) for some collapsing tower CM1 [CM2 [. . .]]. The infinite collapsing
tower CM1 [Cx[CM2 [Cx[. . .]]]] can reduce both to CM1 [CM2 [. . .]] and Cx[Cx[. . .]]. Since
Cx[Cx[. . .]] reduces to ⊥, we find that by confluence, also CM1 [CM2 [. . .]] should reduce to
⊥. Hence, all the hypercollapsing terms reduce to ⊥. By closure under ω⊥-expansion from
⊥, we have that H ⊆ U .

We prove that U satisfies weak overlap by proving the clauses of Definition 7.1.
1. If K ∈ U then by Lemma 7.2, we would have U = CL∞. Assume KM ∈ U . Then,

KMN →w M and KMN →⊥ ⊥N for all N . Hence by confluence M and ⊥N must
have a common reduct for any N . Hence in particular ⊥x and ⊥y must have a common
reduct, which can only be ⊥. Hence also M reduces to ⊥ and therefore we see that
KMN ∈ U by closure under w-expansion.

2. If S ∈ U then by Lemma 7.2 we would have U = CL∞. Suppose SM ∈ U and x, y

do not occur in M . Then, SMxy reduces to ⊥xy and to My(xy). They should both
have a common reduct N . We have three cases. The first case is when N = ⊥xy.
Then, My(xy) →→→w Wxy for some W ∈ U . By Lemma 7.3, this is not possible. The
second case is when N = ⊥y. By closure under w⊥-expansion from ⊥, SMx ∈ U . By
Lemma 4.3, SMN ∈ U for all N ∈ U . The third case is when N = ⊥. By closure under
w⊥-expansion from ⊥, SMxy ∈ U . By Lemma 4.3, SMNP ∈ U for all N,P ∈ CL∞.

3. By closure under substitutions (Lemma 4.3), it is enough to consider P = x. Assume
SMN ∈ U and SMNx 6∈ U . By confluence, ⊥x and skel(SMNx) must have a common
reduct. This common reduct cannot be ⊥ because SMNx 6∈ U . Then, the common
reduct should be ⊥x, i.e. skel(SMNx)→→→w⊥U ⊥x. By postponement, skel(SMNx)→→→w

Q→→→⊥ ⊥x. Hence, Q = Wx andW →→→⊥ ⊥. By closure under expansion from⊥,W ∈ U .
Suppose skel(SMNx) is not rootactive, then it has one of the following forms:

a. skel(SMNx) is yP1 . . . Pk. Then, Pk = x and yP1 . . . Pk−1 ∈ U . It is not difficult to
show that U = CL∞.

b. skel(SMNx) is K or S. This case is impossible because K or S cannot reduce to ⊥x.
c. skel(SMNx) is KP or SP . Then P = x and either W ∈ U is K or S. By Lemma 7.2

we would have U = CL∞.
d. skel(SMNx) is SP1P2. Then, P2 = x and SP1 →→→w W . By closure under w-expansion,

SP1 ∈ U . Similarly to case 3), we have that SP1x ∈ U and hence, SMNx→→→w⊥U ⊥.
By closure under w⊥-expansion from ⊥, SMNx ∈ U . This is a contradiction.

e. skel(SMNx) is either a head active form or a infinite left spine. So is W . Hence,
W ∈ U ∩ (AR ∪ A∞).

J

We do not know whether it is possible to prove the converse. However, we can prove
that under the extra condition of rootactiveness the conditions necessary for confluence are
also sufficient for confluence. The following lemma plays a crucial role in the proof of this
result. In a similar scenario for lambda calculus this role was played by Lemma 5.5 in [16].

I Lemma 7.5. Let U ⊆ CL∞ satisfy rootactiveness, closure under w-reduction, indiscernib-
ility and weak overlap. If M →→→⊥U N and N is a w⊥U -normal form, then nfR(M)→→→⊥U N .

P. Severi and F.-J. de Vries 301

Proof. We can suppose that U 6= CL∞ and M →→→out
⊥U N . Then, M is obtained from N by

replacing some ⊥’s by terms in U⊥. We consider the set of terms

W = {W |W is a maximal subterm of M such that W ∈ U⊥}

Each subterm W ∈ W of M will be replaced by nfR(W) in depth-first leftmost order. We
obtain a term M0 such that M →→→w⊥R M0. We have that W →→→w W0 →→→⊥R nfR(W). By
closure under w-reduction, W0 ∈ U . By rootactiveness, nfR(W) �U W0. By definition of
⊥, nfR(W) →⊥U ⊥. Hence, M0 →→→⊥U N . Since N is a w⊥U -normal form, if an w-redex
occurs in M0 then it either occurs in some subterm W ∈ W or it overlaps some subterm
W ∈ W. By replacing W by nfR(W), we remove all the possible w-redexes that are in W .
We may still have w-redexes that overlap a term in U . Suppose nfR(W) overlaps a w-redex
of the form nfR(W)N1 . . . Nk in M0. Then WN1 . . . Nk is a w-redex in M . We have that
nfR(W)N1 . . . Nk 6∈ U⊥ because otherwise by indiscernibilityWN1 . . . Nk ∈ U⊥ and N would
not be in w⊥U -normal form. By weak overlap, nfR(W) cannot be K, S, KP or SP . By
weak overlap, the only possibility is that nfR(W) = SPQ, k = 1 and SPQN1 →→→w W1N1
where W1 ∈ U ∩ (AR ∪A∞). In this case, to remove the w-redex, we replace the term W in
M by nfR(W1) instead of replacing it by nfR(W). The fact that W is either a head active
term or an infinite left spine ensures that the normal form of WP can be calculated as the
application of the normal forms of W and P . In other words, we have that

nfR(WN1) = nfR(W1)nfR(N1)

Since nfR(W1) �R W1, we have that nfR(W1)→⊥U ⊥.
By replacing all terms in W in the fashion described above, we obtain a term M1 in

w⊥R-normal form such that M →→→w⊥R M0 →→→w⊥R M1 and M1 →→→⊥U N . By confluence of
w⊥R-reduction, we have that M1 = nfR(M). J

I Theorem 7.6 (Confluence). Let U ⊆ CL∞. If U is satisfies rootactiveness, closure under
w-reduction, indiscernibility and weak overlap then (CL∞⊥ ,→→→w⊥U) is confluent.

Proof. The proof is described in the following diagram.

M

wzzzz zz
w $$ $$$$

w⊥U

tttt tt

w⊥U

** ****
M1

w⊥U

����
��

(1) L1

⊥U

����
��

w⊥R $$ $$$$

(2) L2

⊥U

�� ��
��

w⊥Rzzzz zz

M2

w⊥U

����
��

(1)

nfR(M)(3) (3)

⊥U
tttt tt

⊥U
** ****N1 (4)

⊥U

N2

⊥U
N1 = N2

Suppose we have a divergence M1 ←←←w⊥ M →→→w⊥ M2. By rootactiveness for U , we can re-
duceM1 andM2 further to their respective w⊥U -normal forms N1 and N2 by Theorem 3.15.
(1) By closure under substitution for U and Theorem 3.14 we find L1 and L2 such that
M →→→w L1 →→→⊥U N1 and M →→→w L2 →→→⊥U N2. (2) By Theorems 3.16 and 3.15, we
construct the reductions L1 →→→w⊥U nfR(M) and L2 →→→w⊥U nfR(M). (3) By Lemma 7.5
we then find the reductions nfR(L1) →→→⊥U N1 and nfR(L2) →→→⊥U N2. By normalisation

RTA’12

302 Meaningless Sets in Infinitary Combinatory Logic

and confluence of (CL∞,→→→w⊥R), we have nfR(M) = nfR(L1) = nfR(L2). (4) Finally The-
orem 3.13 on confluence of ⊥U and the fact that N1 and N2 are by construction normal
forms for ⊥U -reduction implies that N1 and N2 are identical. J

I Example 7.7. Let U ⊆ CL∞. We construct the following sets:

U∗ = U ∪ {M ∈ CL∞ |M →→→w S(KW)I and W ∈ U}
U∗∗ = U ∪ {M ∈ CL∞ |M →→→w S(S(KK)W)N,W ∈ U and N ∈ CL∞}

If U is a set of meaningless terms that contains R and it is closed under w-expansion, then
U∗ and U∗∗ satisfy rootactiveness, indiscernibility, closure under w-reduction, w-expansion
and weak overlap. They do not satisfy overlap and hence, they are not meaningless. Yet the
corresponding infinitary combinatory logics are confluent and normalising by Theorems 7.6
and 3.15. There are uncountably many such sets.
The constructions U∗ and U∗∗ are related to the set Uη of weakly meaningless terms defined
for infinitary lambda calculus in [16] where Uη = U ∪ {M ∈ Λ∞ | M →→→β λx.Wx and W ∈
U}. It is easy to see that (S(KW)I)λ and (S(S(KK)W)N)λ both β-reduce to λx.Wλx.

I Remark. Note that Theorem 7.6 could not be proved using the schema of the proof of
Theorem 3.18 since commutation of ⊥-reduction and w-reduction outside U may not hold.
To see this, take R∗∗ defined in Example 7.7 and M = (S(KK)W). Then, the only way to
join ⊥P ←⊥U SMNP →w MP (NP) is by w⊥-reducing MP (NP) to ⊥P .

8 Related and Future Work

Sufficient and Necessary Condition for Confluence. In [16], we define a notion of
weak meaningless set for infinitary lambda calculus and prove that this is a sufficient and
necessary condition for confluence of β⊥-reduction . In the case of infinitary combinatory
logic, it remains open to give a sufficient and necessary condition for confluence of w⊥-
reduction. We think that hypercollapseness, closure under w-reduction, weak overlap and
indiscernibility should be sufficient condition for confluence besides of being necessary (The-
orem 7.4) but also sufficient. In other words, it remains open to prove Theorem 7.6 assuming
only hypercollapseness instead of rootactiveness.

Sufficient and Necessary Condition for Normalisation. In [16] we show that
normalisation implies rootactiveness for infinitary lambda calculus with β⊥-reduction. This
does not hold in the setting of combinatory logic with w⊥-reduction as witness by the follow-
ing example of normalising infinitary combinatory logic that does not satisfy rootactiveness.
Let D[] = S(K[])I. Note that DωP , the infinite nesting of such contexts applied to P is
rootactive and reduces to itself for all P . Define:

D = {M ∈ R | ∀P ∈ CL∞ ·M 6→→→w DωP} ∪ {M ∈ CL∞ |M →→→w Dω}.

To construct the normal form of a term M ∈ CL∞⊥ for w⊥D-reduction we first →w-reduce
M to its skeleton N . Next in the depth-first left-most order, we replace rootactive subterms
that can not reduce to a term of the form DωP by ⊥; and we replace rootactive subterms
that reduce to a term of the form DωP by ⊥P . Then we repeat the procedure ad infinitum
on these latter terms P that still may contain untreated rootactive terms. The resulting
reduction is strongly converging and its limit is a normal form in CL∞⊥U .

It remains open to find a sufficient and necessary condition for having a normalising infin-
itary combinatory logic (CL∞⊥ ,→→→w⊥U). This condition is necessarily weaker than rootact-
iveness.

P. Severi and F.-J. de Vries 303

Generalisation to Infinitary Term Rewriting and Combinatory Reduction
Systems. A further next step following the explorations in lambda calculus and combinat-
ory logic would be to investigate sufficient and necessary conditions for having confluence and
normalisation in the wider context of orthogonal term rewriting systems and combinatory
reduction systems.

Combinatory Algebras. Bethke, Klop and de Vrijer show that not every partial
combinatory algebra can be completed [2]. We could define a partial combinatory algebra
from the set of w-normal forms in CL∞. The interpretation of a term M is N if M →→→w N

and N in w-normal form. The fact that this is a partial combinatory algebra follows from
the normal form property [6]. This partial combinatory algebra is made complete by adding
⊥. Since there are many sets of meaningless terms, we have many ways of completing it.

Selinger shows that the standard term algebra as a combinatory algebra cannot be
ordered, i.e. every compatible partial order on it is trivial [13]. Lusin and Salibra show
that there exists a wide class of combinatory algebras that admit extensions with a non-
trivial compatible partial order [10]. Salibra shows that there is a continuum of unorderable
lambda models [12]. In [14] we study orderability on the lambda models induced by the in-
finitary lambda calculus. It will also be interesting to study orderability on the combinatory
algebras induced by the infinitary combinatory logic. This may shed new light on Plotkin’s
conjecture saying that an absolutely unorderable combinatory algebra exists, i.e. it cannot
be embedded in any combinatory algebra admitting a non-trivial partial order [11].

Acknowledgements
We would like to thank the reviewers for detailed comments and helpful suggestions.

References
1 H.P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-Holland, Ams-

terdam, Revised edition, 1984.
2 I. Bethke, J. W. Klop, and R. C. de Vrijer. Extending partial combinatory algebras.

Mathematical Structures in Computer Science, 9(4):483–505, 1999.
3 J.R. Hindley and Seldin J.P. Introduction to Combinators and λ-calculus. Cambridge

University Press, 1988.
4 B. Intrigila and R. Statman. Solution to the range problem for combinatory logic. Funda-

menta Informaticae, 111(2):203—-222, 2011.
5 J.R. Kennaway and F.J. de Vries. Infinitary rewriting. In Terese, editor, Term Rewriting

Systems, volume 55 of Cambridge Tracts in Theoretical Computer Science, pages 668–711.
Cambridge University Press, 2003.

6 J.R. Kennaway, J.W. Klop, M.R. Sleep, and F.J. de Vries. Transfinite reductions in ortho-
gonal term rewriting systems. Information and Computation, 119(1):18–38, 1995.

7 J.R. Kennaway, J.W. Klop, M.R. Sleep, and F.J. de Vries. Infinitary lambda calculus.
Theoretical Computer Science, 175(1):93–125, 1997.

8 J.R. Kennaway, V. van Oostrom, and F.J. de Vries. Meaningless terms in rewriting. Journal
of Functional and Logic Programming, Article 1:35 pp, 1999.

9 J.W. Klop and R. de Vrijer. First-order term rewriting systems. In Terese, editor, Term
Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical Computer Science, pages
24–59. Cambridge University Press, 2003.

10 S. Lusin and A. Salibra. A note on absolutely unorderable combinatory algebras. J. Log.
Comput., 13(4):481–502, 2003.

11 G. D. Plotkin. On a question of H. Friedman. Inf. Comput., 126(1):74–77, 1996.

RTA’12

304 Meaningless Sets in Infinitary Combinatory Logic

12 A. Salibra. Topological incompleteness and order incompleteness of the lambda calculu.
ACM Trans. Comput. Log., 4(3):379–401, 2003.

13 P. Selinger. Order-incompleteness and finite lambda reduction models. Theor. Comput.
Sci., 309(1-3):43–63, 2003.

14 P.G. Severi and F.J. de Vries. Order Structures for Böhm-like models. In CSL, volume
3634 of LNCS, pages 103–116. Springer, 2005.

15 P.G. Severi and F.J. de Vries. Decomposition and cardinality of intervals in the lattice of
meaningless sets. In WOLLIC, volume 6642 of LNAI, pages 210–227. Springer, 2011.

16 P.G. Severi and F.J. de Vries. Weakening the Axiom of Overlap in the Infinitary Lambda
Calculus. In RTA, volume 10, pages 313–328. LIPIcs, 2011.

17 J. Tromp. Kolmogorov complexity in combinatory logic, 1999.
http://homepages.cwi.nl/˜tromp/cl/cl.html.

A Rewriting Framework for Activities Subject to
Regulations
Max Kanovich1, Tajana Ban Kirigin2, Vivek Nigam3,
Andre Scedrov4, Carolyn Talcott5, and Ranko Perovic6

1 Queen Mary, University of London, UK, e-mail: mik@eecs.qmul.ac.uk
2 University of Rijeka, HR, e-mail: bank@math.uniri.hr
3 Ludwig-Maximilians-Universität, Germany, e-mail: vivek.nigam@ifi.lmu.de
4 University of Pennsylvania, USA, e-mail: scedrov@math.upenn.edu
5 SRI International, USA, e-mail: clt@csl.sri.com
6 Senior Clinical Trial Specialist, e-mail: perovicrankomd@gmail.com

Abstract
Activities such as clinical investigations or financial processes are subject to regulations to ensure
quality of results and avoid negative consequences. Regulations may be imposed by multiple
governmental agencies as well as by institutional policies and protocols. Due to the complexity
of both regulations and activities there is great potential for violation due to human error, mis-
understanding, or even intent. Executable formal models of regulations, protocols, and activities
can form the foundation for automated assistants to aid planning, monitoring, and compliance
checking. We propose a model based on multiset rewriting where time is discrete and is specified
by timestamps attached to facts. Actions, as well as initial, goal and critical states may be
constrained by means of relative time constraints. Moreover, actions may have non-deterministic
effects, i.e., they may have different outcomes whenever applied. We demonstrate how specifica-
tions in our model can be straightforwardly mapped to the rewriting logic language Maude, and
how one can use existing techniques to improve performance. Finally, we also determine the
complexity of the plan compliance problem, that is, finding a plan that leads from an initial state
to a desired goal state without reaching any undesired critical state. We consider all actions
to be balanced, i.e., their pre and post-conditions have the same number of facts. Under this
assumption on actions, we show that the plan compliance problem is PSPACE-complete when
all actions have only deterministic effects and is EXPTIME-complete when actions may have
non-deterministic effects.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity,
F.4 Mathematical Logic and Formal Languages, J.3 Life and Medical Sciences

Keywords and phrases Multiset Rewrite Systems, Collaborative Systems, Applications of Re-
write Systems, Clinical Investigations, Maude

Digital Object Identifier 10.4230/LIPIcs.RTA.2012.305

Category Regular Research Paper

1 Introduction

While carrying out a clinical investigation (CI)—that is, a set of procedures in medical research
and drug development, to test a new drug or other intervention on human subjects, it is
important that conclusive data is collected and that the health of the subjects participating
in the CI is not compromised. In order to collect the most conclusive data, for instance,
drug samples have to be taken and all the necessary tests have to be carried out in well

© M. Kanovich, T. Ban Kirigin, V. Nigam, A. Scedrov, C. Talcott, and R. Perovic;
licensed under Creative Commons License NC-ND

23rd International Conference on Rewriting Techniques and Applications (RTA’12).
Editor: A. Tiwari; pp. 305–322

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

306 A Rewriting Framework for Activities Subject to Regulations

defined periods of time. Moreover, since these experiments might compromise the health
of subjects, CIs are rigorously regulated by policies elaborated by governmental agencies
such as the Food and Drug Administration (FDA) [13]. These regulations require prompt
action whenever a serious and unexpected problem with any subject is reported. In the
current state of affairs, there is little to almost no automation in the management of CIs
and therefore the process is prone to human error. As described in [23], there is plenty of
room for the use of automated assistants to help reduce human mistakes from happening.
For instance, a computer assistant can automatically generate plans that guide the clinical
staff on how a CI has to be carried out. An assistant can also monitor the execution of a CI
and signal alarms whenever a deviation to the specification is detected.

This paper proposes a rewriting framework that can be used to specify collaborative
systems, such as CIs, and can be used as the foundations for building automated assistants.
Our model is an extension of the systems used for modelling collaborative systems proposed
in [18] with explicit time. An important feature of our model is that its specifications can
be directly written and executed in Maude [6], a powerful tool based on rewrite logic [21].
By using its search mechanisms, Maude can be used to automatically generate plans from
a specification. Moreover, one can rely on all the existing machinery and optimizations
implemented in Maude. For instance, since Maude implements rewriting modulo axioms, the
execution of systems with commutative and associative constructors, such as those building
multisets, is greatly improved when using Maude.

A second feature of our framework is that its specifications can mention time explicitly.
Time is often a key component used in policies specifying the rules and the requirements
of a collaboration. For a correct collaboration and to achieve a common goal, participants
should usually follow strict deadlines and should have quick reactions to some (unexpected)
event. For instance, the paragraph 312.32 on Investigational New Drug Application (IND)
safety [13] includes explicit time intervals that must be followed in case of any unexpected,
serious or life-threatening adverse drug experience: (The emphasis in the text is ours.)

“ (c) IND safety reports
(1) Written reports –(i) The sponsor shall notify FDA and all participating investigators
in a written IND safety report of: (A) Any adverse experience associated with the use
of the drug that is both serious and unexpected; [· · ·] Each notification shall be made
as soon as possible and in no event later than 15 calendar days after the sponsor’s
initial receipt of the information [· · ·]
(2) Telephone and facsimile transmission safety reports. The sponsor shall also
notify FDA by telephone or by facsimile transmission of any unexpected fatal or
life-threatening experience associated with the use of the drug as soon as possible
but in no event later than 7 calendar days after the sponsor’s initial receipt of the
information.”

The clause above explicitly mentions two different time intervals. The first one specifies
that a detailed safety report must be sent to the FDA within 15 days after a serious and
unexpected event is detected, while the second specifies the obligation of notifying FDA of
such an event within 7 days.

In order to accommodate explicit time, we attach to facts a natural number called
timestamp. Timestamps can be used in different ways depending on the system being
modeled. In the example above, the timestamp t of the fact Dose(id)@t could denote that
the subject with anonymous identification number id received a dose at time t. Alernatively,
the timestamp, t2, of the fact Deadline@t2 could denote the time of when some activity

M. Kanovich, T. Ban Kirigin, V. Nigam, A. Scedrov, C. Talcott, and R. Perovic 307

should end. Moreover, we keep track of time by assuming a discrete global time, using the
special fact Time@t, which denotes that the current time is t. The global time advances by
replacing Time@t by Time@(t+ 1).

Agents change the state of the system by performing actions. In order to specify the type
of time requirements illustrated above, a set of time constraints may be attached to actions
This set acts as a guard of the action. A time constraint is a comparison involving exactly
two timestamps, e.g., T1 ≤ T2 + 7 (see Eq. 1).

Besides allowing guards with time constraints, we also allow actions to have non-
deterministic effects. In particular, actions are allowed to have a finite number of post-
conditions specifying a finite number of possible resulting states. These actions are useful
when specifying systems, such as CIs, whose actions may lead to different outcomes, but it is
not certain beforehand which one of the outcomes will actually occur. For instance, when
carrying out a blood test for the presence of some substance, it is not clear a priori what
the test result will be. However, one can classify any result as either positive or negative.
Depending on this result, one would need to take a different set of future actions. For
example, if the blood test is positive, then one might not be suitable for participating as a
subject in a particular CI, but may be suitable for other CIs. We classify actions that have
more than one outcome as branching actions.

Finally, in collaborative systems agents collaborate in order to achieve a common goal,
but they should also avoid critical states that, for example, violate policies. An example of a
goal state for CIs would be to collect conclusive data without compromising the health of
subjects, while a critical state would be a state that violates the FDA policies. In our model,
critical, goal and initial states can also mention time explicitly by using time constraints.

This paper’s contribution is twofold.
1. We determine the complexity of the plan compliance problem [18], that is, the problem

of determining whether there is a plan where the collaboration achieves the common goal
and in the process no critical state is reached. It has been shown that the plan compliance
problem is undecidable in general [16]. However, we get decidability in the important
case when all actions are balanced, i.e., pre and post-conditions of actions have the same
number of facts. Intuitively, this restriction bounds the memory of agents, as they can
remember at any point only a bounded number of facts. Additionally, we assume that
the facts created by an action, that is, the new facts that appear in its postcondition,
can only have timestamps of the form T + d, where T is the current global time and d
a natural number. Under these two assumptions on actions, we show that (1) the plan
compliance problem is PSPACE-complete if no branching actions are allowed and (2) is
EXPTIME-complete if branching actions are allowed.

2. We describe a Maude implementation of a small scenario of a clinical investigation visit
specified in our rewriting model. We show how the search capabilities of Maude can be
used for planning and compliance checking (run-time monitoring). Furthermore, we show
how to improve execution performance by using two existing optimizations. The first
optimization was proposed in [25], where it is shown how one can reduce search space
due to interleavings by merging a collection of (small-step) rules that do not interfere
with each other into a single (big-step) rule. The second optimization is to reduce the
state space by declaring plan branch formation to be commutative as Maude works on
equivalence classes modulo axioms. Our experiments demonstrate that it is possible to
reduce in average the number of states to be traversed by a factor of 58 and search time
by a factor of 118 when using such optimizations.

Regarding contribution 1 described above, even in the case of balanced actions, we have

RTA’12

308 A Rewriting Framework for Activities Subject to Regulations

to deal with the problem that a plan can generate unbounded timestamps T . In particular,
the state space is internally infinite since an arbitrary number of time advances can occur
(as illustrated at the beginning of Section 4). In our previous work [15] we were able to solve
a similar unboundedness problem caused by the presence of freshly created objects that are
called nonces in protocol security literature. However, the solution proposed in [15] is not
applicable to the problem of unboundedness of time. As a result, in this paper we have made
special precautions in our choice of a novel equivalence relation among states based on the
time differences of the timestamps of facts. This allows us to cover all plans of unbounded
length caused by uncontrolled time advances, with providing our upper bounds for the timed
collaborative systems (Theorem 6). We also show that our new technique introduced in this
paper can be combined with the technique introduced in [15] to solve the unboundedness for
both time and nonces in timed systems. In our experiments, we used this novel equivalence
relation among states.

The paper is organized as follows. Section 2 introduces the formal model for timed
collaborative systems called Timed Local State Transition Systems (TLSTS) as well as the
plan compliance problem described above. (In [23], TLSTSes were only mentioned, but
not formally introduced.) Section 3 expands the discussion in [23] on how to implement
TLSTS specifications in Maude. Section 4 introduces an equivalence relation between states
of the system that allows us to handle the unboundedness of time with finite space. The
machinery introduced in this section is used in Section 5 to demonstrate the decidability of
the plan compliance problem, and in our experiments in Section 6. Section 5 contains the
complexity results mentioned above. Section 6 explains the scenario and the experimental
results obtained. Finally in Sections 7 and 8 we discuss related and future work.

2 Basic Definitions

At the lowest level, we have a first-order alphabet Σ that consists of a set of predicate symbols
P1, P2, . . ., function symbols f1, f2, . . ., constant symbols c1, c2, . . ., and variable symbols
x1, x2, . . . all with specific sorts (or types). The multi-sorted terms over the alphabet are
expressions formed by applying functions to arguments of the correct sort. Since terms may
contain variables, all variables must have associated sorts. A fact is an atomic predicate over
multi-sorted terms.

In order to accommodate time in our model, we associate to each fact a timestamp.
Timestamped facts are of the form P (t1, . . . , tn)@t, where t is the timestamp of the fact
P (t1, . . . , tn). Among the set of predicates, we distinguish the zero arity predicate Time,
which intuitively denotes the current global time of the system. For instance, the fact
Time@2 denotes that the global time is 2. Here, we assume that timestamps are natural
numbers. The intuitive meaning of a timestamp may depend on the system one is modeling.
For instance, in our clinical investigations example, the timestamp associated to a fact could
denote the time when a problem with a subject has been detected.

The size of a fact, P , denoted by |P |, is the total number of symbols it contains. We
count one for each constant, variable, predicate, and function symbols, e.g., |P (x, c, x)| = 4,
and |P (f(x))| = 3. For our complexity results, we assume an upper bound on the size of
facts, as in [12, 18, 15]. This means that for all facts, P (t1, . . . , tn)@t, the arity of symbols,
n, and the depth of terms, t1, . . . , tn, are bounded. However, we make no assumptions on
the depth of timestamps, t, that is, the size of timestamps may be unbounded.

A state, or configuration of the system is a finite multiset, Q1@t1, . . . , Qn@tn, of grounded
timestamped facts, i.e., timestamped facts not containing variables. Configurations are

M. Kanovich, T. Ban Kirigin, V. Nigam, A. Scedrov, C. Talcott, and R. Perovic 309

assumed to contain exactly one occurrence of the predicate Time. We use W,X to denote
the multiset resulting from the multiset union of W and X. For instance, the configuration
{Time@5,Blood(id1, scheduled)@7,Dose(id1)@5,Status(id1,normal)@5}

denotes that that current time is 5, that the blood test for subject identified by id1 should
be taken on time 7, that the same subject took a dose of the drug at time 5, and his status
is normal, i.e., no problem has been detected.

Following [18], we assume that the global configuration is partitioned into different
local configurations each of which is accessible only to one agent. There is also a public
configuration, which is accessible to all agents. This separation of the global configuration is
done by partitioning the set of predicate symbols in the alphabet and it will be usually clear
from the context. The time predicate Time is assumed to be public. For instance, in the
configuration above all facts, except Time, belong to the health institution monitoring the
subject id1 .

Time constraints. The time requirements of a system are specified by using time
constraints. Time constraints are arithmetic comparisons involving exactly two timestamps:

T1 = T2 ± d, T1 > T2 ± d, or T1 ≥ T2 ± d, (1)

where d is a natural number and T1 and T2 are time variables, which may be instantiated by
the timestamps of any fact including the global time.

A concrete motivation for time constraints to be relative is that, as in physics, the rules
of a collaboration are also not affected by time shifts. If we shift the timestamps of all facts
by the same value, the same rules and conditions valid with respect to the original state are
also valid with respect to the resulting state. If time constraints were not relative, however,
then one would not be able to establish this important invariant. Indeed, as we show in the
companion technical report [22], the reachability problem is undecidable for systems with
non-relative time constraints.

Branching Actions and Branching Plans. Actions work as multiset rewrite rules.
As in [18, 15] we assume that each agent has a finite set of actions. However, we extend
actions in two different ways by adding guards to actions and by allowing actions to have
non-deterministic effects.

In their most general form, actions have the following shape:

W | Υ −→A [∃ ~x1.W1]⊕ · · · ⊕ [∃ ~xn.Wn] (2)

The subscript A is the name of the agent that owns this action. W is the pre-condition of
this rule, while W1, . . . ,Wn are its post-conditions. All facts in W,W1, . . . ,Wn are public
and/or belong to the agent A. Υ is the guard of the action consisting of a finitely many
time constraints. The existentially quantified variables specify the creation of fresh values,
also known as nonces in protocol security literature. If n > 1, then we classify this action as
branching, otherwise when n = 1 we classify this action as non-branching.

A branching plan is a tree whose nodes are configurations and whose edges are labeled
with a pair consisting of an action and a number, 〈α, i〉. A plan is constructed by applying
an action to one of its leaves. Formally, when a branching action α of the form shown in
Eq. 2 is applied to a leaf of a plan labeled with WI , the corresponding branch of the plan is
extended by adding n leaves. The configuration labeling the ith leaf is obtained by replacing
α’s pre-condition W in WI by the post-condition Wi of α. The edge connecting WI with
ith new leaf is labeled with 〈α, i〉. In the process fresh values are created, which replace the

RTA’12

310 A Rewriting Framework for Activities Subject to Regulations

existentially quantified variables, ~xi.1
For example, let {Time@6, P (t1)@1, Q(t2)@4} be a configuration appearing in the leaf of

a plan P. Then the following branching action is applicable:
Time@T, Q(Y)@T1 | {T > T1 + 1} −→A [∃x.Time@T, R(Y, x)@T]⊕ [Time@T, S(Y)@T]

and it extends the plan P creating the following two leaves {Time@6, P (t1)@1, R(t2, n)@6}
and {Time@6, P (t1)@1, S(t2)@6}, where n is a fresh value.

We will assume that the only action that can change the global time is the following
action belonging to the special agent clock:

Time@T | {} →clock Time@(T + 1). (3)

The action above does not have any constraints, which is specified by the empty set {}. It is
the only action of the agent clock.

For the actions belonging to the remaining agents, we will further impose the following
two conditions on actions depicted in Eq. 2. Firstly, the global time Time@T appears in the
pre-condition, W , and in each of the post-conditions W1, . . . ,Wn exactly once. Secondly, if
Time@T is in the pre-condition W , then all facts created in the post-conditions W1, . . . ,Wn

are of the form P@(T + d), where d is a natural number, possibly zero. That is, all the
created facts have timestamps greater or equal to the global time. Notice that in this type
of actions the timestamp of Time does not change, that is, actions are instantaneous. For
instance, the following action is not allowed:

Time@T,R@T1, P@T2 | T1 < T −→A Time@T,R@T1, S@T1
because the timestamp of the created fact S@T1 is not of the form (T + d). That is, actions
are only allowed to create facts whose timestamps are in the present or in the future.

I Definition 1. A timed local state transition system (TLSTS) T is a tuple 〈Σ, I, RT 〉, where
Σ is the alphabet of the language, I is a set of agents, such that clock ∈ I, and RT is a finite
set of actions owned by the agents in I of the two forms described above.

We classify an action as balanced if its post-conditions, Wi, and the pre-condition, W ,
have the same number of facts (see Eq. 2). As discussed in [18], if all actions in a system
are balanced, then the size of all configurations in a plan remains the same as in the initial
configuration. Since we assume facts to have a bounded size, the use of balanced actions
imposes a bound on the storage capacity of the agents in the system.

Timed Initial, Goal and Critical Configurations. In a collaboration, agents
interact in order to achieve some common goal. However, since they do not trust each
other completely, they also want to avoid some critical situations. Often these goals and
critical situations mention time explicitly. For instance, in clinical investigations example
discussed in the Introduction, the participants want to collect conclusive data without
violating regulations. The sponsor should send a safety report to the FDA whenever a serious
and unexpected problem is detected within 15 days. Otherwise, the sponsor can be severely
penalized.

In order to formalize such aspects of a collaboration, we extend the notion of initial,
goal and critical configurations proposed in [18] by attaching a set of time constraints. In
particular, timed initial, goal and critical configurations have the following form:
{Q1@T1, Q2@T2, . . . , Qn@Tn} | Υ

1 Fresh values are often used in administrative processes, such as when a transaction number is issued. In
particular, the transaction number has to be fresh. For a more detailed account for nonce see [15].

M. Kanovich, T. Ban Kirigin, V. Nigam, A. Scedrov, C. Talcott, and R. Perovic 311

where Υ is a finite set of time constraints as shown in Eq. 1 and whose variables are in
T1, T2, . . . , Tn.

For instance, in the clinical investigations example, a possible goal configuration is when
the data of a subject is collected in specified intervals for some number of times. The following
goal configuration specifies that the goal is to collect the data of a subject 25 times in intervals
of 28 days, but with a tolerance of 5 days: {Time@T,Data(Id, 1)@T1, . . . ,Data(Id, 25)@T25}
with the time constraints Ti + 23 ≤ Ti+1 ≤ Ti + 33 and that T > Ti, for 1 ≤ i ≤ 25. Formally,
any instantiation of the variables T1, . . . , T25 that satisfy the set of constraints above is
considered a goal configuration.

Similarly, a configuration is critical for the participants of a clinical investigation when
a problem is detected at time T1, but the written report is not sent to the FDA on time,
i.e., within 15 days after the problem is detected: {Detect(Id)@T1,Report(Id)@T2} | {T2 >

T1 + 15}.
Adding time constraints to configurations is not a restriction of the model. Quite the

contrary, we provide much more flexibility within our formalism by either not constraining con-
figurations at all or by providing a kind of temporal interference to specify initial/goal/critical
configurations, in addition to the timestamps given separately.

For simplicity, we often omit the word "timed" in initial/goal/critical configurations
regardless of time constraints being attached or not.

Planning Problem. In [16], three compliance problems were introduced in the setting
without explicit time or branching (actions with non-deterministic effects). We now restate
one of these problems, called plan compliance problem in our setting with explicit time and
branching. The remaining problems are dealt in detail in the technical report [22].

Given an initial configurationW and a finite set of goal and critical configurations, we call
a branching plan P compliant if it does not contain any critical configurations and moreover
if all branches of P lead from configuration W to a goal configuration.

(Plan compliance problem) Given a timed local state transition system T , an initial
configuration W consisting of grounded timestamped facts and a finite, possibly empty, set
of time constraints, a finite set of goal and a finite set of critical configurations, is there a
compliant plan?

3 Implementing a TLSTS in Maude

The general-purpose computational tool Maude [6] provides all the machinery necessary to
implement directly TLSTS specifications. As Maude is based on rewriting, the Maude code
looks similar to the specification itself. We now illustrate by using examples of how the
encoding works.

Configurations. We start by specifying the signature of a TLSTS, i.e., the set of
constants and predicate symbols. For instance, the code below specifies that the zero arity
fact time is of sort (or type) Fact and that blood is a binary fact whose argument is of sort
Id and Result.

op time : -> Fact . op blood : Id Result -> Fact .
Other predicates of the sort Fact can be specified in a similar fashion.
We specify as follows the operator @ which attaches a natural number to facts and are

used to specify timestamped facts which are of sort TFact.
op _@_ : Fact Nat -> TFact .

To encode configurations, we first specify that timestamped facts is a subsort of config-
uration, denoted by the symbol <, that the empty set is a configuration, specified by the

RTA’12

312 A Rewriting Framework for Activities Subject to Regulations

operator none, and that the juxtaposition of two configurations is also a configuration.
subsort TFact < Conf .
op none : -> Conf . op _ _ : Conf Conf -> Conf [assoc comm id: none] .

The last statement also specifies that configurations are multisets by attaching the
keywords assoc and comm, which specify that the operator constructing configurations is
both associative and commutative. Hence, when Maude checks whether an action (spe-
cified below) is applicable, Maude will consider all possible permutations of elements un-
til it finds a match which satisfies the action’s pre-condition as well as its guard. Fi-
nally, the keyword id: none specifies that the constructor none, specifying the empty
set, is the identity of an operator. For instance, it is used to identify the configurations
none (time@2) none (blood(id1,positive)@3) and (time@2) (blood(id1,positive)@3)).

Timed Critical and Timed Goal Configurations. Timed critical and timed goal
configurations are specified as equational theories. For instance, the following equational
theory specifies in Maude the critical configuration when the FDA is not notified 7 days after
a serious and unexpected problem is detected. Here Num is the fresh value, e.g., a number,
uniquely identifying a serious and unexpected event with subject identified by Id.
ceq critical((C:Conf)(time@T)(detected(Id,Num)@T1)(fda(Id,no,Num)@T2))

= true if T > T1 + 7
Maude automatically replaces critical(C) by the boolean true if the configuration C

satisfies the condition specified by the equation above. Timed goal configurations are also
specified as equational theories in a similar way, only that we use the predicate goal, instead
of critical to specify goal configurations.

Branching Actions and Searching for Compliant Plans. Whereas critical and
goal configurations are specified by using equational theories, actions are specified as rewrite
rules in Maude. To accommodate branching actions, we use three new operators noPlan,
denoting when a branching plan has no leaves, brackets used to mark a leaf of a plan, and
+ used to construct the list of leaves of a branching plan. The leaves of a branching plan
belong to the sort Plan.

op noPlan : -> Plan .
op {_} : Conf -> Plan . op _+_ : Plan Plan-> Plan [assoc id:noPlan] .

The operator + is also used to specify the different outcomes of an action. For instance,
the following conditional rule specifies that there are two possible outcomes when a blood
test scheduled at time T1 is carried out, namely, the blood test is positive or negative.
Moreover, the boolean conditions specifies that test can only be carried out at the same day
when it was scheduled and if none of its outcomes is a critical configuration.

crl[blood]: {(C:Conf)(time@T)(blood(Id,scheduled)@T1)} =>
{(C:Conf)(time@T)(blood(Id,positive)@T)} +
{(C:Conf) (time@T) (blood(Id,negative)@T)}

if T1 = T ∧ not (critical((C:Conf)(time@T)(blood(Id,positive)@T))) ∧
not (critical((C:Conf)(time@T)(blood(Id,negative)@T)))

Formally, when this rule is applied then two different leaves are created, one for each
possible result. The remaining facts appearing in the configuration C are left untouched.

Notice that the definition of the _+_ operator does not specify it to be commutative.
However, regarding the compliance problem that we are interested on (described in Section 2),
changing the order of the branches of a plan preserves its compliance as the resulting plan
does not reach any critical configuration and each of its leaves are goal configurations. Thus,
we can safely change the definition of _+_ to also be commutative. As we demonstrate in
Section 6, this change reduces in average by a factor of 8 the number of possible states.

As in the rule above, we allow a rule to be applied only if all its outcomes are not critical

M. Kanovich, T. Ban Kirigin, V. Nigam, A. Scedrov, C. Talcott, and R. Perovic 313

configurations. For instance, the action that advances time (Eq. 3) is specified in Maude with
an extra condition allowing the time to be incremented only if the resulting configuration is
not critical:

crl[time]: {(C:Conf)(time@T)} => {(C:Conf)(time@(T+1))}
if not (critical((C:Conf)(time@(T+1))))

This means that it is not possible to reach a critical configuration when using the rules
as encoded above. Therefore, in order to search for a compliant plan, one does not need
to care whether a critical configuration is reached, as this is not possible, but only check
whether there is a plan from an initial configuration to a goal configuration obtained by
using the actions as mentioned above. Maude can automatically perform this search by using
a command of the following form:

search in MODULE_NAME : I =>+ P:Plan such that goals(P:Plan) = true .
where I is the initial configuration, MODULE_NAME is the name of the Maude module

containing all the rules of the TLSTS, and finally goals is an equational theory that returns
true when given {C1} + · · · + {Cn} of type Plan only if goal(Ci) evaluates to true for all
1 ≤ i ≤ n.

It is often possible to demonstrate the non-interference of two actions, α and β, syntactic-
ally. For instance, if there is no intersection between the facts modified by α and β, these
actions do not interfere between each other as they mention different parts of a configuration.
The following action specifying a vital sign test does not interfere with the action above
specifying a blood test:

crl[vital]: {(C:Conf)(time @ T)(vital(I,ID,false)@T1))} =>
{(C:Conf)(time @ T)(vital(I,ID,true)@T)}

if T1 = T ∧ not (critical((C:Conf)(time@T)(vital(I,ID,true)@T))
This means that a compliant plan containing a sequence of actions α;β can be replaced

by another compliant plan where the order is inverted β;α. In our example scenario, such
interleavings increase the number os states Maude must explore by a factor of 23. A better
approach would be to merge these actions into a (big-step) action. For example, the big-step
action obtained from the two actions above would specify the actions of performing the vital
signs and blood test at the same time. For instance, one of its post-conditions specifies when
the blood test is positive:

{(C:Conf)(time @ T)(vital(I,ID,true)@T)(blood(Id,positive)@T)}.
Finally, besides searching for plans, the same theory can also be used for monitoring CI

executions. For instance, by using the equational theory specifying critical configurations,
one can detect when a deviation has occurred and send alarms to the responsible agents.
After a CI has been carried out, one could also use the actual plan carried out to study how
CIs have been executed.

4 Dealing with the Unboundedness of Time

Comparing our timed collaborative models introduced here with the results on the untimed
collaborative systems in our previous work, we meet with a number of the crucial difficulties.
In the case of planning problems for the untimed systems with balanced actions, we are
dealing with a finite (though huge) state space. Here the state space is internally infinite,
since an arbitrary number of time advances is allowed in principle. For a straightforward
example, consider a plan where time is eagerly advanced. That is, consider a plan with a
single branch where time advances constantly:

Time@0,W −→clock Time@1,W −→clock Time@2,W −→clock · · ·

RTA’12

314 A Rewriting Framework for Activities Subject to Regulations

Since there are no bounds on the length nor depth of plans, the final value of the global time
cannot be bounded in advance.

This section describes how to overcome the problem above by proposing an equivalence
relation between configurations. The key idea is that since time constraints are relative, that
is, they involve the difference of two timestamps, we do not need to keep track of the values
for timestamps separately, in order to determine whether our time constraints are satisfied
or not.

Truncated time differences. In particular, we will store the time differences among
the facts, but truncated by an upper bound. Formally, assume Dmax be an upper bound on
the numbers appearing explicitly in a given planning problem with the model T - that is,
the numbers in the actions and time constraints in T , and in the initial, goal and critical
configurations, for instance, the d in Eq. 1. Then the truncated time difference of two timed
facts P@T1 and Q@T2 with T1 ≤ T2, denoted by δP,Q, is defined as follows:

δP,Q =
{
T2 − T1, provided T2 − T1 ≤ Dmax

∞, otherwise
Intuitively, we can truncate time differences without sacrificing soundness nor completeness
because time constraints are relative as shown in Eq. 1. Hence, if the time difference of
two facts is greater than the upper bound Dmax, then it does not really matter how much
greater it is, but just that it is greater. For instance, consider the time constraint t1 ≥ t2 + d

involving the timestamps of the facts P@t1 and Q@t2. If δQ,P =∞, this time constraint is
necessarily satisfied.

Equivalence between configurations. We use the notion of truncated time differences
introduced above to formalize the following equivalence relation among configurations.

I Definition 2. Given a planning problem with the TLSTS T , let Dmax be an upper bound
on the the numeric values appearing in T and in the initial, goal and critical configurations.
Let
S = Q1@T1, Q2@T2, . . . , Qn@Tn and S̃ = Q1@T̃1, Q2@T̃2, . . . , Qn@T̃n

be two configurations written in canonical way where the two sequences of timestamps
T1, . . . , Tn and T̃1, . . . , T̃n are non-decreasing. (For the case of equal timestamps, we sort the
facts in alphabetical order, if necessary.) Then S and S̃ are equivalent if for any 1 ≤ i < n

either of the following holds: Ti+1 − Ti = T̃i+1 − T̃i ≤ Dmax or both Ti+1 − Ti > Dmax and
T̃i+1 − T̃i > Dmax.

To illustrate the equivalence above, assume that Dmax = 3 and consider the following two
configurations: {R@3, P@4,Time@11, Q@12, S@14} and {R@0, P@1,Time@6, Q@7, S@9}.
According to the definition above, these configurations are equivalent since their truncated
time differences are the same. This can be observed by the following canonical representation,
called δ-representation. A δ-representation is constructed from a given configuration by sorting
its facts according to their timestamps and sorting facts in alphabetical order as tie-breaker.
Then we compute the time difference among two consequent facts, δQi,Qi+1 . For instance,
both configurations above have the following δ-representation: 〈R, 1, P,∞,Time, 1, Q, 2, S〉

Here a value appearing between two facts, Qi and Qi+1, is the truncated time difference
of the corresponding facts, δQi,Qi+1 , e.g., δR,P = 1 and δP,Time =∞. It is also easy to see
that from the tuple above, one can compute the remaining truncated time differences. For
instance, δTime,S = 3, since 1 + 2 = 3, while δR,Q =∞, since 1 +∞+ 1 =∞.

We now formalize the intuition described above that using time differences that are
truncated by an upper bound is enough to determine whether a time constraint is satisfied
or not.

M. Kanovich, T. Ban Kirigin, V. Nigam, A. Scedrov, C. Talcott, and R. Perovic 315

I Lemma 3. Let S and S̃ be two equivalent configurations from Definition 2.
S = Q1@T1, Q2@T2, . . . , Qn@Tn and S̃ = Q1@T̃1, Q2@T̃2, . . . , Qn@T̃n.

Then the following holds for all i and j such that i > j, and for all a ≤ Dmax:
Ti − Tj = a if and only if T̃i − T̃j = a

Ti − Tj < a if and only if T̃i − T̃j < a

Ti − Tj > a if and only if T̃i − T̃j > a

Proof The only interesting case is the last one, which can be proved by using the
fact that a ≤ Dmax and that S and S̃ are equivalent. Hence, Ti − Tj > Dmax > a is true
if and only if T̃i − T̃j > Dmax > a is true, and Dmax ≥ Ti − Tj > a is true if and only if
Dmax ≥ T̃i − T̃j > a, since Ti − Tj = T̃i − T̃j . J

Handling time advances and action applications. Our next task is to show that
our equivalence relation using truncated time differences is well-defined with respect to
actions. That is, we show that actions preserve the equivalence among configurations. This
will allow us to represent plans using δ-representations only.

However, in order to prove such a result, we need yet another assumption on configurations
in order to faithfully handle time advances. The problem lies with the future facts, that is,
those facts whose timestamps are greater than the global time. If there is a future fact P
such that δTime,P =∞, then it is not the case that equivalence is preserved when we advance
time. For example, consider the following two configurations equivalent under the upper
bound Dmax = 3:
S1 = {Time@0, P@5} and S2 = {Time@0, P@4}.
If we advance time on both configurations, then the resulting configurations, S ′1 and

S ′2, are not equivalent. This is because the truncated time difference δTime,P is still ∞ in
S ′1, while it changes to 3 in S ′2. Notice that the same problem does not occur neither with
present nor past facts, i.e., those facts whose timestamps are less or equal to the global time.

I Definition 4. Given an upper bound Dmax in a planning problem (as per Definition 2),
a configuration S is called future bounded if for any future fact P in S, the time difference
δTime,P ≤ Dmax.

Recall from Section 2 that there are two types of actions, namely, the action that advances
time and instantaneous actions belonging to agents. Moreover, recall that the latter actions
are restricted in such a way that all created facts have timestamps of the form T + d, where
T is the global time. This restriction allows us to show that actions preserve the future
boundedness of configurations as states the following result.

I Lemma 5. Let T be a TLSTS and S be a future bounded configuration. Let S ′ be the
configuration obtained from S by applying an arbitrary action in T . Then S ′ is also future
bounded.

As per Definition 2 the initial configuration in a planning problem is future bounded,
which from the lemma above implies that all configurations in a plan are also future bounded.
Notice that even if we relax the assumption that the initial configuration is future bounded,
we can make it be future bounded by setting the value of Dmax to be the greatest timestamp
in the initial configuration, i.e., Dmax is the upper bound on the values of the given TLSTS

and in the initial, goal, and critical configurations. The important result is the lemma above
that states that future boundedness is preserved by actions.

We are now ready to show the main result of this section.

RTA’12

316 A Rewriting Framework for Activities Subject to Regulations

Table 1 Summary of the complexity results for the plan compliance problem. We mark the new
results appearing here with a ?. For the undecidability result, [16] shows that the plan compliance
problem is undecidable even when actions are not allowed to create fresh values.

Balanced Actions Non-Branching PSPACE-complete?

Possibly Branching EXPTIME-complete?

Not Necessarily Balanced Actions Undecidable [16]

I Theorem 6. For any given planning problem the equivalence relation between configurations
given by Definition 2 is well-defined with respect to the actions of the system (including
time advances) and goal and critical configurations. Any plan starting from the given initial
configuration can be conceived as a plan over δ-representations.

Proof (Sketch) Let S and S̃ be two equivalent configurations. Assume that S is transformed
in S ′ by means of an action α. By Lemma 3 the configuration S̃ also complies with the time
constraints required in α, and hence the action α will transform S̃ into some S̃ ′. It remains
to show that S̃ ′ is equivalent to S ′.

We consider our two types of actions. Let the time advance transform S into S ′, and S̃
into S̃ ′. From Lemma 5, we have that both S ′ and S̃ ′ are future bounded and therefore S ′
and S̃ ′ are trivially equivalent. For the second type of actions, namely the instantaneous
actions belonging to agents, the reasoning is similar. Each created fact in the configuration
S ′ and S̃ ′ will be of the form P@(T + d) and P@(T̃ + d), where T and T̃ are the global time
in S and S̃, respectively. Therefore each created fact has the same difference d to the global
time, which implies that these created facts have the same truncated time differences to the
remaining facts. Hence S ′ and S̃ ′ are equivalent.

Finally, also from Lemma 3, S is a goal (respectively, critical) configuration if and only if
S̃ is a goal (respectively, critical) configuration. J

The theorem above establishes that using δ-representations for writing plans is well
defined, but it does not establish a bound on the number of δ-representations. To achieve
this, we need the further assumption that all actions are balanced. Recall that balanced
actions are actions that have the same number of facts in their pre and post-conditions. By
using balanced actions, the number of facts in any configuration of a plan is the same as the
number of facts in the plan’s initial configuration. Hence, we can also establish that there is
a finite number of δ-representations. Later in the Section 5 we provide more precise bounds.

I Corollary 7. In the case of a model T with balanced actions, we can deal the planning
problem with the finite space of representatives of the form

(Q1, δ12, Q2, δ23, Q3, . . . , Qi, δi,i+1, Qi+1, . . . , Qm, δm,m+1, Qm+1).
The size of each of the representatives is polynomial with respect to m, k, and log2 Dmax,
where m is the number of facts in the initial configuration, k is the upper bound on the size
of facts, and Dmax is the upper bound on the numeric values appearing in T and in the
initial, goal and critical configurations.

5 Complexity Results

This section enters into the details of the complexity of the plan compliance problem described
at the end of Section 2. Throughout this section, we assume that all actions are balanced,
i.e., actions have the same number of facts in their pre and post-conditions.

Our main results are summarized in Table 1.

M. Kanovich, T. Ban Kirigin, V. Nigam, A. Scedrov, C. Talcott, and R. Perovic 317

Plan Compliance with Non-Branching Actions only. We consider the plan
compliance problem when actions are non-branching and balanced and when the size of facts
is bounded. We show that this problem is PSPACE-complete.

PSPACE-hardness: It was shown in [15] that one can faithfully encode a Turing machine
with tape of size n using systems with balanced actions. The same idea works in our setting
with time. It is easy to modify the encoding in [15]. Timestamps do not play any important
role in such encoding.

PSPACE upper bound: It is more interesting to show that the plan compliance problem is
in PSPACE when the size of facts is bounded and actions are non-branching and balanced. In
particular, we will now use all the machinery introduced in Section 4 by using δ-representations
of configurations to search for compliant plans.

In order to determine the existence of a compliant plan, it is enough to consider plans
that never reach configurations with the same δ-configuration twice. If a plan reaches to a
configuration whose δ-representation is the same as a previously reached configuration, there
is a cycle of actions which could have been avoided. The following lemma imposes an upper
bound on the number of different δ-representations in a plan given an initial finite alphabet.
Such an upper bound provides us with the maximal length of a plan one needs to consider.

I Lemma 8. Given a TLSTS T under a finite alphabet Σ, an upper bound on the size of
facts, k, and an upper bound, Dmax, on the numeric values appearing in the planning problem,
namely, in T and in the initial, goal and critical configurations, then the number of different
δ-representations, denoted by LT (m, k,Dmax), with m facts (counting repetitions) is such
that LT (m, k,Dmax) ≤ (Dmax + 2)(m−1)Jm(D + 2mk)mk, where J and D are, respectively,
the number of predicate and the number of constant and function symbols in the initial
alphabet Σ.

Proof Let 〈Q1, δQ1,Q2 , Q2, . . . , Qm−1, δQm−1,Qm
, Qm〉 be a δ-representation with m facts.

There are m slots for predicate names and at most mk slots for constants and function
symbols. Constants can be either constants in the initial alphabet Σ or names for fresh
values (nonces). Following [15], we need to consider only 2mk names for fresh values (nonces).
Finally, only time differences up to Dmax have to be considered together with the symbol ∞
and there are m− 1 slots for time differences in a δ-representation. J

Intuitively, our upper bound algorithm keeps track of the length of the plan it is con-
structing and if its length exceeds LT (m, k,Dmax), then it knows that it has reached the
same δ-representation twice. This is possible in PSPACE since the number above, when
stored in binary, occupies only polynomial space with respect to its parameters. For the
result below, we assume that it is possible to check in polynomial space when a configuration
is critical, when it is a goal configuration, and when an action is applicable in a configuration.

I Theorem 9. Let T be a model with balanced non-branching actions. Then the plan
compliance problem is in PSPACE with respect to m, k, and log2 Dmax, where m is the
number of facts in the initial configuration, k is the upper bound on the size of facts, and
Dmax is the upper bound on the numeric values appearing in the model T , and in the initial,
goal and critical configurations.

Plan Compliance with possibly Branching Actions. We now consider the plan
compliance problem when actions may also be branching. In particular, we show that when
actions are balanced then the plan compliance problem is EXPTIME-complete with respect
to the number of facts, m, in the initial configuration, the upper bound, k, on the size of
facts, the upper bound, Dmax, on the numbers explicitly appearing in the planning problem,
and the upper bound, p, on the number of post-conditions of an action.

RTA’12

318 A Rewriting Framework for Activities Subject to Regulations

EXPTIME-hardness: The lower bound for the plan compliance problem can be inferred
from a similar lower bound described in [19]. It was shown that one can encode alternating
Turing machines [5] by using propositional actions that are balanced and branching. Time
does not play an important role for that encoding.

EXPTIME upper bound: Our upper bound algorithm uses an alternating Turing ma-
chine. In particular, we show that the plan compliance problem is in alternating-PSPACE
(APSPACE) with respect to the number of facts, m, in the initial configuration, the upper
bound, Dmax, on the numbers appearing explicitly in the planning problem, and the upper
bound, p, on the number of post-conditions of any action. That is, an alternating Turing
machine can solve the plan compliance problem using polynomial space. From the equivalence
between APSPACE and EXPTIME shown in [5], we can infer that the plan compliance
problem is in EXPTIME with respect the same parameters.

I Theorem 10. Let T be a model with balanced actions. Then the plan compliance problem
is in EXPTIME with respect to m, k, and log2 Dmax, and p, where m is the number of facts
in the initial configuration, k is the upper bound on the size of facts, and Dmax is the upper
bound on the numeric values appearing in the model T , and in the initial, goal and critical
configurations, and p is the upper bound on the number of post-conditions of actions in T .

6 Scenario Implemented and Experimental Results Summary

We implemented a small scenario simulating a visit of a subject in a clinical investigation. In
this scenario, a subject has to undergo three tests, namely, vital signs, hematology, and urine
tests and in some cases a further nephrology test. The first three tests have to be performed
at the same day of the subject’s visit. While the vital signs and hematology tests have a
single outcome, where the data is collected, the results of the urine test may be classified in
three levels: normal, high, or very high (typically over three times the normal upper bound).
That is, the urine test has three outcomes according to the urine test result. If the result
is very high, the urine test must be repeated within five days, in order to be sure that the
first result is not an isolated result. Moreover, if the result of the second urine test is either
high or very high, then an extra nephrology test must be performed on the same day as the
second urine test. The visit is over when all necessary tests have been carried out.

As described in Section 3, tests are specified as a rewrite theory specifying an action,
while the time conditions in the scenario are specified using the equational theory for critical
configurations. In particular, the action for urine test has three outcomes, one for each
possible result of the test. We have also implemented the machinery described in Section 4.
For this example, it is enough to compute the canonical form whenever time advances.

For our experiments using Maude, we considered the following two optimizations. Since
the order in which the leaves of a plan appear do not really matter, we can specify the + to
be also commutative by adding the attribute comm to its definition. Since Maude implements
rewriting modulo axioms, this reduces both the state space and the number of solutions.
The second optimization, on the other hand, follows the lines described in [25] and involves
avoiding interleavings of actions by merging (small-step) actions into larger (big-step) actions.
However, in order to be sound and complete, such a merging of actions can only involve
actions that are mutually independent. For instance, the order in which one performs the
vital signs, the hematology and the first urine test is not important. Hence, instead of
specifying each test as a different action, we can execute all three tests as a single action.
Moreover, since the urine test has three possible outcomes, while the other test have only
one outcome, the resulting (big-step) action will also have three possible outcomes.

M. Kanovich, T. Ban Kirigin, V. Nigam, A. Scedrov, C. Talcott, and R. Perovic 319

Table 2 Summary of our experimental results with different optimizations, e.g., big-step rules and
commutative +. An entry of the form n / t / s denotes that the search space had a total of n states
and it took Maude t seconds to traverse all states finding s solutions. DNF denotes that Maude did
not terminate after 40 minutes, C denotes Commutative and NC denotes Non-Commutative.

Dmax 0 2 4 6 8

Small NC 63k / 91 / 6 166k / 263 / 364 373k / 603 / 4k 755k / 1651 / 19k DNF
Step C 43k / 71 / 6 83k / 119 / 56 141k / 188 / 252 222k / 340 / 792 332k / 640 / 2k

Big NC 3k / 3 / 6 14k / 14 / 364 51k / 67 / 4k 140k / 220 / 19k 329k / 508 / 66k
Step C 1k / 1 / 6 3k / 2 / 56 6k / 5 / 252 13k / 13 / 792 23k / 26 / 2k

Table 2 summarizes our main experimental results for the scenario described above when
using different parameters Dmax with the upper-bound of numbers appearing anywhere in
the theory (see Section 4) as well as the two optimizations described above. We performed
these experiments on an Ubuntu machine (Kernel 2.6.32-37) with 3.7 Gb memory and 4
processors of 2.67 GHz (Intel Core i5). We observed that using a commutative + reduced in
average the number of states by a factor of 8, search time by a factor of 11, and the number
of solutions by a factor of 16. The use of big-step rules, on the other hand, did not affect the
number of solutions found, but reduced considerably the number of states, by a factor of 23,
and search time, by a factor 40. The accumulated reduction when using both optimizations
was of a factor 58 on the number of states, 118 on search time, and 16 on the number of
solutions.

The Maude code for this scenario using all combinations of the two optimizations described
above as well as their experimental results can be found in [22].

7 Related Work

The specification of regulations has been topic of many recent works. In [3, 4, 20], a temporal
logic formalism for modeling collaborative systems is introduced. In this framework, one
relates the scope of privacy to the specific roles of agents in the system. For instance, a
patient’s test results, which normally should not be accessible to any agent, are accessible
to the agent that has the role of the patient’s doctor. We believe that our system can be
adapted or extended to accommodate such roles depending on the scenario considered. In
particular, it also seems possible to specify in our framework the health insurance scenario
discussed in [20]. De Young et al. describe in [8] the challenges of formally specifying the
temporal properties of regulations, such as HIPAA and GLPA. They extend the temporal
logic introduced in [3] with fixed point operators, which seem to be required in order to
specify these regulations. A temporal logic to specify regulations, such as the FDA Code of
Federal Regulations (CFR), as properties of traces abstractly representing the operations of
an organization is given in [10]. Notions of permissions and obligations are introduced to
deal with regulatory sentences as conditions or exceptions to others. An algorithm to check
conformance of audit logs to security and privacy policies expressed in a first-order logic with
restricted quantification is presented in [14]. In the case of incomplete logs a residual policy
is returned.

Temporal logics are suitable for specifying the temporal properties that need to be satisfied
by the traces of a system’s operation. Our approach starts with an executable specification of
a system using rewriting logic, combined with a mechanism to specify and check properties
of executions. Specifically, critical and goal configurations defined in the equational sublogic

RTA’12

320 A Rewriting Framework for Activities Subject to Regulations

allow us to express properties needed for generating plans for patient visits, and for monitoring
clinical investigations including FDA reporting regulations. Timestamps allow us to express
both temporal properties and timing constraints. Moreover, this approach allows us to use
existing rewriting tools, such as Maude [6], to implement our specifications and analyses.

The Petri nets (PNs) community has investigated many related problems involving time.
In particular, the coverability problem of PNs is related to our partial goal reachability
problem for TLSTSes of a simple form - without branching actions, or critical states, or
fresh values [16]. In [7], de Frutos Escrig et al. show decidability results for the coverability
problem of a type of Timed PNs with discrete time. There seem to be connections between
our timestamps of facts and their time (age) associated to tokens as well as connections
between our time constraints and their time intervals labeling the arcs in these PNs. However,
the complexity of their decision procedures is extremely high, as compared with our upper
bounds. Notice that branching actions and critical states are not considered there. Despite
these connections, we did not find any work that captures exactly the model presented in
this paper.

Real time systems differ from our setting in that dense time domains, such as the real
numbers, are required, while in our intended applications, such as clinical investigations,
discrete numbers suffice. The models introduced in [1, 17, 24] deal with the specification of
real time systems and also explore the complexity of some problems.

Kanovich et al. in [17] propose a linear logic based framework for specifying and model-
checking real time systems. In particular, they demonstrate fragments of linear logic for
which safety problems are PSPACE-complete. Interestingly, their examples are all balanced
which is in accordance to some of our conditions. However, as discussed in [9], their model is
limited since one is not allowed to specify properties which involve different timestamps. In
our formalism, such properties can be specified using time constraints. In [24] conditions are
identified for which the problem of checking whether a system satisfies a property, specified
in linear temporal logic, is decidable. As their main application is for real time systems, they
also assume dense time domains, although discrete time domains can also be accommodated.
They identify non-trivial conditions on actions which allow one to abstract time and recover
completeness. We are currently investigating whether a simpler definition of balanced actions
and relative time constraints can provide more intuitive abstractions for systems with dense
times.

Finally, there is a large body of work on Timed Automata. (See [1] for a survey.) While
we extend multiset rewriting systems with time, Timed Automaton extend automaton with
real-time clocks. Although timed automaton seem suitable for modeling real-time systems,
such as circuits, it is not yet clear whether it is also suitable for modeling collaborative
systems with explicit time. We are currently investigating connections between our formalism
and Timed Automata.

8 Conclusions and Future Work

This paper introduced a model based on multiset rewriting that can be used for specifying
policies and systems which mention time explicitly. We have shown that the plan compliance
problem for balanced systems not containing branching actions is PSPACE-complete and
the same problem for balanced systems possibly containing branching actions is EXPTIME-
complete.

There are many directions which we intend to follow. In [23], we describe how an assistant
can help the participants of clinical investigations to reduce mistakes and comply with

M. Kanovich, T. Ban Kirigin, V. Nigam, A. Scedrov, C. Talcott, and R. Perovic 321

policies. We are currently extending our current implementation into a small scale prototype
in Maude in order to collect more feedback from the health care community. One main
challenge, however, is to specify procedures in a modular fashion. One might need to specify
intermediate languages that are closer to the terminology and format used in the specification
of CIs, but that are still precise enough to translate them to a TLSTS. We hope that the
work described in [11] may help us achieve this goal.

We would also like to extend our model to include dense times. This would allow us to
specify policies for which real-times are important. For instance, [2] describes how one can
reduce human errors by connecting medical devices and configuring them according to some
hospital policies.

Another interesting problem to explore is checking whether a given plan, for example, a
plan embedded in a protocol, complies with regulations no matter how it is executed. Such
checks would help protocol design and review, and FDA audits as well as sponsors to monitor
CIs and detect mistakes as early as possible.

Acknowledgments: We thank Anupam Datta, Nikhil Dinesh, Deepak Garg, Insup Lee, John
Mitchell, Grigori Mints, Oleg Sokolsky, and Martin Wirsing for helpful discussions. This
material is based upon work supported by the MURI program under AFOSR Grant No:
FA9550-08-1-0352 and upon work supported by the MURI program under AFOSR Grant
"Science of Cyber Security: Modeling, Composition, and Measurement". Additional support
for Scedrov from NSF Grant CNS-0830949 and from ONR grant N00014-11-1-0555. Nigam
was supported by the Alexander von Humboldt Foundation. Kanovich was partly supported
by the EPSRC.

References

1 R. Alur and P. Madhusudan. Decision problems for timed automata: A survey. In SFM.
2004.

2 D. Arney, M. Pajic, J. M. Goldman, I. Lee, R. Mangharam, and O. Sokolsky. Toward
patient safety in closed-loop medical device systems. In ICCPS ’10, 2010.

3 A. Barth, A. Datta, J. C. Mitchell, and H. Nissenbaum. Privacy and contextual integrity:
Framework and applications. In IEEE Symposium on Security and Privacy, pages 184–198,
2006.

4 A. Barth, J. C. Mitchell, A. Datta, and S. Sundaram. Privacy and utility in business
processes. In CSF, pages 279–294, 2007.

5 A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. J. ACM, 28:114–133,
1981.

6 M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and C. Talcott. All
About Maude: A High-Performance Logical Framework. Springer, 2007.

7 D. de Frutos Escrig, V. V. Ruiz, and O. M. Alonso. Decidability of properties of timed-arc
petri nets. In In ICATPN’00, pages 187–206. Springer-Verlag, 2000.

8 H. DeYoung, D. Garg, L. Jia, D. K. Kaynar, and A. Datta. Experiences in the logical
specification of the HIPAA and GLBA privacy laws. In WPES, pages 73–82, 2010.

9 H. DeYoung, D. Garg, and F. Pfenning. An authorization logic with explicit time. In CSF,
pages 133–145, 2008.

10 N. Dinesh, A. K. Joshi, I. Lee, and O. Sokolsky. Reasoning about conditions and exceptions
to laws in regulatory conformance checking. In DEON, pages 110–124, 2008.

11 N. Dinesh, A. K. Joshi, I. Lee, and O. Sokolsky. Permission to speak: A logic for access
control and conformance. J. Log. Algebr. Program., pages 50–74, 2011.

RTA’12

322 A Rewriting Framework for Activities Subject to Regulations

12 N. A. Durgin, P. Lincoln, J. C. Mitchell, and A. Scedrov. Multiset rewriting and the
complexity of bounded security protocols. Journal of Computer Security, 12(2):247–311,
2004.

13 FDA. Code of federal regulations, Title 21, Chapter 1, Subchapter D, Part 312: Invest-
igational new drug application. Available at http://www.accessdata.fda.gov/scripts/
cdrh/cfdocs/cfcfr/ CFRSearch.cfm?CFRPart=312.

14 D. Garg, L. Jia, and A. Datta. Policy auditing over incomplete logs: Theory, implementa-
tion and applications. In CCS’11, 2011.

15 M. Kanovich, T. B. Kirigin, V. Nigam, and A. Scedrov. Bounded memory Dolev-Yao
adversaries in collaborative systems. In FAST, 2010.

16 M. Kanovich, P. Rowe, and A. Scedrov. Policy compliance in collaborative systems. In
CSF ’09.

17 M. I. Kanovich, M. Okada, and A. Scedrov. Specifying real-time finite-state systems in
linear logic. Electr. Notes Theor. Comput. Sci., 16(1), 1998.

18 M. I. Kanovich, P. Rowe, and A. Scedrov. Collaborative planning with confidentiality. J.
Autom. Reasoning, 46(3-4):389–421, 2011.

19 M. I. Kanovich and J. Vauzeilles. The classical ai planning problems in the mirror of horn
linear logic: semantics, expressibility, complexity. Mathematical Structures in Computer
Science, 11(6):689–716, 2001.

20 P. E. Lam, J. C. Mitchell, and S. Sundaram. A formalization of HIPAA for a medical
messaging system. In TrustBus, 2009.

21 J. Meseguer. Conditional Rewriting Logic as a unified model of concurrency. Theoretical
Computer Science, 96(1):73–155, 1992.

22 V. Nigam, T. B. Kirigin, A. Scedrov, C. Talcott, M. Kanovich, and R. Perovic. Timed collab-
orative systems. http://www2.tcs.ifi.lmu.de/~vnigam/docs/TR-TLSTS/, June 2011.

23 V. Nigam, T. B. Kirigin, A. Scedrov, C. Talcott, M. Kanovich, and R. Perovic. Towards an
automated assistant for clinical investigations. In International Health Informatics Sym-
posium, 2012.

24 P. C. Ölveczky and J. Meseguer. Abstraction and completeness for Real-Time Maude.
Electr. Notes Theor. Comput. Sci., 176(4):5–27, 2007.

25 S. F. Smith and C. L. Talcott. Specification diagrams for actor systems. Higher-Order and
Symbolic Computation, 15(4):301–348, 2002.

Semantic Evaluation, Intersection Types and
Complexity of Simply Typed Lambda Calculus
Kazushige Terui1

1 RIMS, Kyoto University
Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
terui@kurims.kyoto-u.ac.jp

Abstract
Consider the following problem: given a simply typed lambda term of Boolean type and of order
r, does it normalize to “true”? A related problem is: given a term M of word type and of
order r together with a finite automaton D, does D accept the word represented by the normal
form of M? We prove that these problems are n-EXPTIME complete for r = 2n + 2, and
n-EXPSPACE complete for r = 2n+ 3.

While the hardness part is relatively easy, the membership part is not so obvious; in particular,
simply applying β reduction does not work. Some preceding works employ semantic evaluation
in the category of sets and functions, but it is not efficient enough for our purpose.

We present an algorithm for the above type of problem that is a fine blend of β reduction,
Krivine abstract machine and semantic evaluation in a category based on preorders and order
ideals, also known as the Scott model of linear logic. The semantic evaluation can also be
presented as intersection type checking.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases simply typed lambda calculus, computational complexity, denotational
semantics, intersection types

Digital Object Identifier 10.4230/LIPIcs.RTA.2012.323

Category Regular Research Paper

1 Introduction

Beta reduction vs. semantic evaluation. Let us begin with a simple puzzle. Consider
the simply typed lambda calculus. For every simple type σ, let N(σ) := (σ → σ)→ (σ → σ).
Then every Church numeral n has type N(σ), and the exponentiation function 2x has type
N(σ → σ)→ N(σ) for an arbitrary σ. Let B := o→ o→ o (where o is the base type) and
tt := λxy.x : B.

Now the question is as follows. Fix a type σ and a closed term M of type N(σ) → B.
Then what is the computational complexity of deciding whether Mn =β tt, when n ranges
over the set N of natural numbers?

Since arbitrary hyperexponential functions are available in M , one might be tempted to
answer that it requires hyperexponential time in n in general. Although it is true if one uses
β reduction, there is actually a much more efficient algorithm, according to which it can be
decided in linear time in n, for fixed M , with a huge coefficient depending only on σ.

Such an algorithm is most easily provided by semantic evaluation in the category Set of
sets and functions. Define [[o]] = {0, 1} and [[σ → τ]] = [[τ]][[σ]]. The denotation [[n]] of n can
be computed by induction on n, and each inductive step requires only constant time (which

© Kazushige Terui;
licensed under Creative Commons License NC-ND

23rd International Conference on Rewriting Techniques and Applications (RTA’12).
Editor: A. Tiwari; pp. 323–338

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

324 Complexity of Simply Typed Lambda Calculus

Order 2 3 4 5 6 7
Complexity P PSPACE EXPTIME EXPSPACE 2-EXPTIME 2-EXPSPACE

Figure 1 Time-space alternation in simply typed lambda calculus.

depends on σ). We then apply the function [[M]] (which may be precomputed independently
of n) to [[n]]. Since the semantics is sound and [[tt]] 6= [[ff]], we can check if Mn =β tt by
comparing [[Mn]] with [[tt]]. Clearly the total runtime is linear in n.

This demonstrates that β reduction is desperately inefficient for computing a finite-valued
function in simply typed lambda calculus. It may be ascribed to the fact that β reduction is
a versatile machinery independent of typing, so that it does not take advantage of the type
information at all. In contrast, semantic evaluation fully exploits the type information and
that is the main reason why it is so efficient for some problems.

Order and complexity. Turing to a more general situation, it has been observed by
Statman [20] that the problem of deciding β-equivalence (or βη-equivalence) of two simply
typed terms is not elementary recursive. The explosion of complexity is caused by the
increase of the order of the input terms. Hence it is interesting to study the complexity of
Statman’s problem with restricted order. In this context, Schubert [19] has shown that the
problem of deciding β-equivalence is PTIME complete for terms of order up to 2, and is
PSPACE complete for terms of order up to 3, provided that one of the input terms is in
normal form.

In the meantime, a curious phenomenon on the order and complexity has been observed
in some extensions of simply typed lambda calculus. Goerdt and Seidl [8] have studied
interpretations of higher type primitive recursive definitions (i.e. System T terms) in fi-
nite structures, and proved that terms of order 2r+2 characterize r-EXPTIME predicates,
while terms of order 2r+3 characterize r-EXPSPACE predicates. Namely, time and space
complexity classes alternate when the order increases. Similar results have been shown by
Kristiansen and Voda [14, 13] for System T withour successor and by Hillebrand and Kanel-
lakis [9] for simply typed lambda calculus with equality test. A remarkable similarity among
all these works is that they employ a hybrid algorithm that mixes β reduction and semantic
evaluation in Set.

About this paper. The goal of this paper is to show a similar time-space alternation
result in plain simply typed lambda calculus. We consider the following decision problems
(see the next section for precise definitions of order r and word type W).
1. Bool(r): Given a closed term M : B of order r, does M reduce to tt?
2. RegLang(r): Given a closed term M : W of order r and a nondeterministic finite

automaton D, does D accept the word represented by the normal form of M? (The size
of D is defined to be the number of states.)

3. Term(r): Given a closed term M : τ of order r and another term N : τ in normal form,
do we have M =βη N?

We prove:

I Theorem 1 (Time-Space Alternation).
1. Bool(2r + 2) and RegLang(2r + 2) are complete for r-EXPTIME.
2. Bool(2r + 3) and RegLang(2r + 3) are complete for r-EXPSPACE (see Figure 1).

The third problem, that is essentially Schubert’s problem, is subtle and will be discussed
in Section 5.

K. Terui 325

To show the membership part, we basicaly follow [8, 9, 14] and employ a hybrid algorithm.
However, it turns out that evaluation in the category Set is not efficient enough for our
purpose (see Subsection 4.2). We are thus led to work in another cartesian closed category
that arises by the Kleisli construction from a model of linear logic based on prime algebraic
complete lattices and lub-preserving maps [10], or equivalently based on preorders and order
ideals [23, 24]. It is simply called the Scott model of linear logic in [6]. Evaluation in this
category can be expressed as type checking in an intersection type system that is essentially
due to [18], and is similar to the essential type assignment system [21, 22]. Our algorithm
also employs the mechanism of Krivine’s abstract machine (KAM, [15]).

The rest of this paper is organized as follows. Section 2 is a preliminary, Section 3
introduces the semantics and the associated intersection type system, and Section 4 discusses
some optimization techniques. Sections 5 proves the membership part of Theorem 1, while
Section 6 proves the hardness part. Finally, Section 7 concludes the paper.

2 Preliminary

Given a set Q,]Q denotes its cardinality. Similarly,]Γ denotes the length if Γ is a list. The
hyperexponential function hyp is defined by: hyp(0, n) := n and hyp(r + 1, n) := 2hyp(r,n).
We let hyp(−1, n) := logn for convenience.

We write poly(x) to denote a function bounded by some polynomial in x that depends
on the context. The hyperexponential complexity classes are defined by r-EXPTIME :=⋃
c>0 DTIME[hyp(r, nc)] and r-EXPSPACE :=

⋃
c>0 DSPACE[hyp(r, nc)]. In particular,

we have 0-EXPTIME = P and 0-EXPSPACE = PSPACE. The classes r-AEXPTIME
and r-AEXPSPACE are similarly defined by means of alternating Turing machines. The
following relations are fundamental:

r-AEXPTIME = r-EXPSPACE, r-AEXPSPACE = r + 1-EXPTIME.

We work on the simply typed lambda calculus with a single base type o and without
any term constants; the restriction to the single base type is inessential. So types are of the
form o or σ → τ . Provided that countably many variables xσ, yσ, zσ, . . . are given for each
type σ, terms are generated by the following rules, where x �M : τ indicates that M is a
term of type τ whose free variables are among the list x:

x = xσ1
1 , . . . , xσn

n

x� xi : σi
x, yσ �M : τ

x� λyσ.M : σ → τ
x�M : σ → τ x�N : σ

x�MN : τ

We often omit type superscripts and adopt the variable convention. We write M : σ or Mσ

to indicate that M is of type σ. By a subtype of σ, we simply mean a type occurring in σ as
a subexpression (which has nothing to do with subtyping disciplines). We omit parentheses
in the standard way, and write σn → τ for σ → · · ·σ → τ (n times).

Data types for Boolean values, natural numbers and binary words are given by:

B := o→ o→ o tt := λxy.x : B
ff := λxy.y : B

N := (o→ o)→ (o→ o) n := λfx.fnx : N
W := (o→ o)2 → (o→ o) w := λf0f1x.fin(· · · fi2(fi1x) · · ·) : W.

where n ∈ N and w = i1 · · · in ∈ {0, 1}∗.
Suppose that a term M has a subterm of type σ, and τ is a subtype of σ. The set of all

such subtypes τ is denoted by Type(M).

RTA’12

326 Complexity of Simply Typed Lambda Calculus

The order and arity of a type σ are inductively defined by:

Order(o) := 0 Order(σ → τ) := max(Order(σ) + 1, τ)
Arity(o) := 1 Arity(σ → τ) := Arity(τ) + 1.

(We define Arity(o) = 1 rather than 0 just to make calculation easier.)
The order (resp. arity) of a term M is the maximal order (resp. arity) of any type in

Type(M). The size |M | of M is the number of nodes in the term formation tree for M . |σ|
is similarly defined. We denote by Λ(s, a, r) the set of terms of size ≤ s, arity ≤ a and order
≤ r.

Let M : σ. Our definition of |M | does not take into account the size of a type occurring
in it. However, this does not cause any practical problem, since the size of such a type can
be bounded, up to some optimization, in terms of |M |, |σ| and the order of M . In more
detail, let τ1 → τ2 ∈ Type(M). Suppose that τ1 → τ2 is not a subtype of σ, and that M
does not contain any subterm of the form (λx.N)τ1→τ2 nor Nτ1→τ2Kτ1 . In that case, we
may safely replace τ1 → τ2 occurring in M by o preserving the type of M . Repeat this until
such a type τ1 → τ2 does not exist in Type(M). The resulting term is said to be optimally
typed (it has to do with principal typing).

I Lemma 2. Let M : σ be an optimally typed term of arity a and of order r. Then we have
a ≤ |M |+ 3|σ|. As a consequence, for any τ ∈ Type(M) we have |τ | ≤ ar ≤ (|M |+ 3|σ|)r.

Hereafter we assume that terms are optimally typed. In practice, the result type σ and
the order r will be fixed. Hence the actual size ofM taking types into account is polynomial
in |M |. Since we are only interested in complexity classes above P, we may safely ignore
the size of a type occurring in a term.

Given a term M , we denote by 〈〈M〉〉r the term of order r obtained by reducing all the
redexes of order > r in M . The following result is standard.

I Lemma 3. Suppose that M : σ and Order(σ) ≤ r. If M ∈ Λ(s, a, r + 1), then 〈〈M〉〉r ∈
Λ(2s, a, r). 〈〈M〉〉r can be computed in time 2O(s).

See [2] for a precise analysis of β reduction length in simply typed lambda calculus.

3 Semantic evaluation and intersection types

3.1 Category of preorders and order ideals
We now introduce a cartesian closed category ScottL! (the notation is taken from [6]).
While it can be directly presented as the category of prime algebraic complete lattices and
Scott continuous functions, we prefer a more elementary description due to Winskel [23]
(see also [24, 6]), which immediately suggests a correspondence with intersection types. We
first explain, assuming some acquaintance with models of linear logic (see, e.g., [3, 17]), how
it naturally arises from simple building blocks. But this part is not needed for the rest.
We later describe an interpretation of simply typed lambda calculus in ScottL! concretely,
which can be understood without any prerequisite.

Let ScottL be the category in which each object is a preorder A = (A,wA) and each
morphism R : A −7→ B is an order ideal, that is a binary relation R ⊆ A × B such that
a′ wA a R b wB b′ implies a′ R b′. Composition of relations is standard, while the identity
1A : A −7→ A on object A is given by wA. ScottL is a compact closed category with

K. Terui 327

biproducts, where the dual A∗, the tensor product A⊗B, the unit I, the biproduct A&B

and the zero object > for A = (A,wA) and B = (B,wB) are given by:

A∗ := (A,vA) A⊗B := (A×B,wA × wB) I := ({∗},=)
A&B := (A]B,wA] wB) > := (∅, ∅),

where] denotes the disjoint union (see, e.g., [3]).
Up to now, ScottL looks an obvious variant of the category Rel of sets and relations.

A great advantage of ScottL is that it naturally admits a set-based (rather than multiset-
based) interpretation of exponentials, in contrast to Rel (see [17] for discussion; see also [6]
which shows that ScottL is the extensional collapse of Rel). This allows us to evaluate
terms in finite structures.

Specifically, given a set X and a binary relation R ⊆ A × B, PfX denotes the set of
finite subsets of X and PfR ⊆ PfA× PfB is defined by

Y PfR X ⇐⇒ ∀α ∈ X ∃β ∈ Y. β R α.

A comonad (!, ε, δ) in ScottL as well as Seely isomorphisms m2
A,B , m0 (i.e., exponential

isomorphisms) are given as follows (where A = (A,wA) and R : A −7→ B):

!A := (PfA,Pf wA)
!R := PfR : !A −7→!B
εA := {(X,α) : ∃α′. X 3 α′ wA α} : !A −7→ A

δA := {(X, {Y1, . . . , Yn}) : X w!A Y1 ∪ · · · ∪ Yn} : !A −7→!!A
m2
A,B := {((X,Y), Z) : X] Y w!(A&B) Z} : !A⊗!B −7→!(A&B)
m0 := {(∗, ∅)} : I −7→!>.

It is routine to verify that these data indeed define a model of linear logic (a Seely category
[17]). Hence by the Kleisli construction, we obtain a cartesian closed category ScottL!.

Rather than specifying the exact structure of ScottL!, we will concretely describe how
to interpret lambda terms in it.

Let Q be a finite set. To each type σ, we associate a poset [[σ]]Q = ([[σ]]Q,wσ) as follows
(we omit subscript Q for readability).

[[o]] := (Q,=), [[σ → τ]] := (Pf [[σ]]× [[τ]], (Pf wσ)−1× wτ).

Concretely, we have (X,α) wσ→τ (Y, β) iff ∀γ ∈ X ∃δ ∈ Y. γ vσ δ and α wτ β. In
particular, X ⊆ Y implies (X,α) wσ→τ (Y, α). We occasionally write X → α to denote a
pair (X,α), and (X1, . . . , Xn � α) to denote an n+ 1 tuple (X1, . . . , Xn, α).

To each x�M : τ with x = xσ1
1 . . . , xσn

n , we associate a set

[[x�M]] ⊆ Pf [[σ1]]× · · · × Pf [[σn]]× [[τ]]

as follows.

[[x� xi]] := {(X � α) : ∃α′ ∈ [[σi]]. Xi 3 α′ wσi
α}

[[x� λyσ.M]] := {(X � Y → α) : (X,Y � α) ∈ [[x, yσ �M]]}
[[x�Mσ→τNσ]] := {(X � α) : ∃Y ∈ Pf [[σ]].(X � Y → α) ∈ [[x�M]] and

∀β ∈ Y.(X � β) ∈ [[x�N]]}
We write [[M]] instead of [[�M]] when M is closed. Since ScottL! is cartesian closed, we
have:

I Theorem 4. If Mσ =βη N
σ, then [[x�M]] = [[x�N]].

RTA’12

328 Complexity of Simply Typed Lambda Calculus

3.2 ScottL! as an intersection type system
As the notation suggests, an element X → α ∈ [[σ → τ]] can be seen as an implication. When
X is a set {β1, . . . , βn}, it is natural to think of it as an intersection type β1 ∧ · · · ∧ βn → α.

More precisely, we rewrite a statement

(X1, . . . , Xn � α) ∈ [[xσ1
1 , . . . , xσn

n �Mσ]],

where Xi ∈ Pf [[σi]] and α ∈ [[σ]], as a typing judgement

xσ1
1 : X1, . . . , x

σn
n : Xn `M : α.

The inductive definition of [[x�M]] may be rewritten as the following type inference rules:

∃α′. Xi 3 α′ wσi
α

xσ1
1 : X1, . . . , x

σn
n : Xn ` xσi

i : α (var) Γ, yσ : Y `M : α
Γ ` λyσ.M : Y → α

(abs)

Γ `M : X → α Γ ` N : β for every β ∈ X
Γ `MN : α (app), in particular Γ `M : ∅ → α

Γ `MN : α (app)

α wo α
∀α ∈ X ∃β ∈ Y. β wσ α

Y w!σ X

Y w!σ X α wτ β
X → α wσ→τ Y → β

Since the type system comes from a cartesian closed category, typing is preserved under
βη equivalence. Also, xσ : X ` Mτ : α, Y w!σ X and α wτ β imply x : Y ` M : β, since
[[x�M]] is a morphism in ScottL!.
I Remark. The above type system is essentially the same as that of [18]. It is also very close
to the essential type assignment of [21], although we only deal with simply typed lambda
terms, and thus our intersection types always conform to the shape of simple types; for
instance, we do not have a type like p ∧ (q → r). It is for this reason that our types are
preserved under η expansion, which does not usually hold for intersection types. It should
be noted that a reversed notation is very often used for subsumption: our a w b corresponds
to a 6 b of [21].

It has been observed by Carvalho [4] that Rel leads to a (useful) intersection type
system. More recently, ScottL! is presented as an intersection type system by Ehrhard,
that is similar to ours but for a different purpose. It could be interesting to explore this
connection between relation-based semantics and intersection type systems from a more
general perspective. Notice that this connection is entirely different from that between
intersection types and filter models (see, e.g., [22]).

3.3 Applications
Let us illustrate the use of ScottL! and the companion intersection type system by three
examples.

1. Suppose that [[o]] = Q = {∗}. Then both True := {∗} → ∅ → ∗ and False := ∅ →
{∗} → ∗ belong to [[B]]. We have True ∈ [[tt]] but not True ∈ [[ff]]. As a consequence:

I Theorem 5. Let M be a closed term of type B. Then M =βη tt iff True ∈ [[M]].

In this way checking βη equivalence boils down to checking membership in ScottL!, or
equivalently to type checking in the intersection type system.

2. Let D = (Q, {0, 1}, δ, q0, qf) be a nondeterministic finite automaton (NFA) where Q
is the set of states, δ ⊆ {0, 1} ×Q×Q is the transition relation, q0, qf ∈ Q are respectively

K. Terui 329

(a)

// q0

0

�� 1 //
q1

0
oo

1 // q2

0,1

��

(b)

F1 3 {q1} → q2

Γ ` f1 : {q1} → q2

F1 3 {q0} → q1

Γ ` f1 : {q0} → q1

{q0} 3 q0
Γ ` x : q0

Γ ` f1x : q1

Γ ` f1(f1x) : q2
` 11 : D0

Figure 2 (a) Finite automaton D0. (b) A derivation (where Γ = f0 : F0, f1 : F1, x : {q0}).

the initial and final states (we may assume w.l.o.g. that an NFA has exactly one final state).
This can be expressed by an element

D := X0 → X1 → q0 → qf ∈ [[W]]Q,

where X0 = {{qi} → qj : (0, qi, qj) ∈ δ}, and X1 = {{qi} → qj : (1, qi, qj) ∈ δ}.
For instance, to the automaton D0 = ({q0, q1, q2}, {0, 1}, δ, q0, q2) described in Figure 2

(a) corresponds the element D0 := F0 → F1 → {q0} → q2, where F0 = {{q0} → q0, {q1} →
q0, {q2} → q2} and F1 = {{q0} → q1, {q1} → q2, {q2} → q2}.

Corresponding to the run accepting the word 11, we have D0 ∈ [[11]], i.e., ` 11 : D0, as
demonstrated by the derivation in Figure 2 (b); recall that 11 = λf0f1x.f1(f1x). Conversely,
given a derivation for ` w : D0, we can read off a successful run on w. Hence we have:
I Theorem 6. Let D be a nondeterministic finite automaton and w ∈ {0, 1}∗. Then D

accepts w iff D ∈ [[w]]. Hence ifM is a closed term of type W, D accepts the word represented
by the normal form of M iff D ∈ [[M]].
I Remark. We can conversely show that every element of [[w]] corresponds to an NFA
accepting w. So the set

⋃
Q:finite[[w]]Q can be thought of as the set of NFA’s accepting w.

The same idea is behind Kobayashi’s use of intersection types for model checking higher
order recursion schemes [11]. Adapted to the current setting, it amounts to the following.
Let M be a closed term of infinite tree type Tω := (o2 → o)2 → o, involving the fixpoint
operator µ. Then M possibly describes an infinite binary tree 〈〈M〉〉 labelled with {0, 1}.
For every tree automaton D with a trivial acceptance condition [1], there is an element
D ∈ [[Tω]] such that 〈〈M〉〉 is accepted by D iff D ∈ [[M]].

The intersection type system of [11] is later expanded by [12] so that the new type system
covers all the properties expressible by modal µ-calculus formulas. It would be interesting
to see whether the latter can also be seen as a model of lambda calculus like ScottL!.

3. Given a closed term N in η-long normal form, let Q = {L1, . . . , Lm} be the set of
symbols, each Li corresponding to a subterm occurrence of base type o in N . We can then
associate an element M ∈ [[σ]]Q to each subterm occurrence Mσ in N by induction on the
structure of M . If M = xK1 · · ·Kj that is a subterm of Loi = xK1 · · ·Kn (0 ≤ j < n),
we define M := {Kj+1} → · · · {Kn} → Li. In particular, x := {K1} → · · · {Kn} → Li.
If M = λx.K and x(1), · · · , x(n) are the occurrences of variable x in K, we define M :=
{x(1), · · · , x(n)} → K.

For instance, consider the Kirstead terms:

K1 := λf.f(λy.f(λz.y)), K2 := λf.f(λy.f(λz.z)) : ((o→ o)→ o)→ o.

Let F1 := f(λz.y), G1 := f(λy.f(λz.y)), F2 := f(λz.z) and G2 := f(λy.f(λz.z)). We have

K1 := {{∅ → y} → F1, {{y} → F1} → G1} → G1,

K2 := {{{z} → z} → F2, {∅ → F2} → G2} → G2.

RTA’12

330 Complexity of Simply Typed Lambda Calculus

We can verify that these elements distinguish K1 from K2, as ` Ki : Kj holds iff i = j. More
generally, we have the following theorem, which is due to Salvati [18].

I Theorem 7. Let N be a closed term of type σ in η-long normal form. For every closed
term K of type σ, K =βη N iff N ∈ [[K]].

As a consequence, interpretation of lambda terms in ScottL! is injective:

I Corollary 8. Let M and N be closed terms of the same type. Then M =βη N iff [[M]]Q =
[[N]]Q holds for all finite sets Q iff [[M]]Q = [[N]]Q holds for an infinite set Q.

Notice that injectivity also holds for Set [7], Rel and Coh (the category of coherent
spaces and stable maps) [5].

4 Optimizations

4.1 Krivine type system
The type inference rules in the previous subsection suggest a natural alternating algorithm
for type checking. For instance, the rule (app) says that Γ ` MN : α holds iff there exists
a set X such that Γ ` M : X → α and for every β ∈ X, Γ ` N : β. Unfortunately, the
algorithm is not efficient enough. The reason is that, when applying the rule (app) bottom-
up, we have to guess a set X, which is sometimes too big. To avoid a too big guess, we
incorporate the mechanism of Krivine’s abstract machine [15] into the type system.

Throughout this subsection, we fix a set Q, r ∈ N, and only consider types and terms of
order ≤ r+ 1. First, for each simple type σ, let CL(σ) be the set {(n,N) : n ∈ N, N : σ} of
closures. Next, notice that each simple type σ of order ≤ r + 1 can be uniquely written as
σ = σ1 → · · ·σk → τ with Order(σk → τ) = r+1 and Order(τ) ≤ r (k = 0 if Order(σ) ≤ r).
We define the set ST (σ) of stacks by:

ST (σ) := {(n1, N1)→ · · · (nk, Nk)→ α : (ni, Ni) ∈ CL(σi) for 1 ≤ i ≤ k and α ∈ [[τ]]}.

An environment Γ is a list of the form xσ1
1 : C1, . . . , x

σn
n : Cn with Order(σi) ≤ r such that

Ci ∈ CL(σi) if Order(σi) = r and Ci ∈ CL(σi)∪Pf [[σi]] if Order(σi) < r for every 1 ≤ i ≤ n.
A judgement is of the form Γ `r M : S with M : σ, Order(σ) ≤ r+ 1 and S ∈ ST (σ). Here
we put subscript r to emphasize that the definition depends on the order r.

The following rules define the Krivine type system:

∃α′. X 3 α′ wσ α
∆, xσ : X,Σ `r xσ : α (var 1) Γ `r N : α

Γ,∆, xσ : (]Γ, N),Σ `r xσ : α (var 2)

Γ, xσ : X `r M : α
Γ `r λxσ.M : X → α

(abs 1)
Γ, xσ : (n,N) `r M : S

Γ `r λxσ.M : (n,N)→ S
(abs 2)

Γ `r M : X → α Γ `r N : β (∀β ∈ X)
Γ `r MN : α (app 1)

Γ `r M : (]Γ, N)→ S

Γ `r MN : S (app 2)

Note that the system is syntax-directed, in the sense that at most one rule can be applied
bottom-up to each judgement.

The main purpose of the above system is to avoid guessing a set X ∈ Pf [[σ]] when
Order(σ) = r in the case of application. We instead invoke a KAM computation. Judge-
ments correspond to KAM states, and rules (var 2), (abs 2) and (app 2) correspond to KAM
transition rules. Indeed, when read bottom-up, (app 2) forms a closure (Γ, N) and pushes it

K. Terui 331

to the stack, and (abs 2) pops a closure (Γ, N) from the stack and updates the environment
with x : (Γ, N). Finally, (var 2) looks up the value of x in the current environment.

The only difference is that our closure does not record an environment Γ itself, but only
its length]Γ. Due to our restricted use of KAM, the former can be recovered from the latter.
Formally, let us call a judgement Γ `r M : S well-formed when the following holds:
1. If Γ = ∆, x : (n,N),Σ then n ≤]∆.
2. If (n,N) occurrs in S, then n ≤]Γ.
One can immediately see that if a well-formed judgement is derivable, then it always has a
derivation in which all judgements are well-formed.

The two derivations below, the left one in the previous system and the right one in the
new system, illustrate how the KAM machinery works effectively (recall that Γ ` N : β and
β w β′ imply Γ ` N : β′):

X 3 β w β′
Γ, x : X,∆ ` x : β′....
Γ, x : X `M : α

Γ ` λx.M : X → α

....
Γ ` N : β (∀β ∈ X)

Γ ` (λx.M)N : α

=⇒

....
Γ `r N : β′

Γ, x : (]Γ, N),∆ `r x : β′....
Γ, x : (]Γ, N) `r M : α

Γ `r λx.M : (]Γ, N)→ α

Γ `r (λx.M)N : α

I Theorem 9. Let M : σ be a closed term of order r + 1 and α ∈ [[σ]]. Then α ∈ [[M]] iff
`r M : α is derivable in the Krivine type system.

Proof. Recall that α ∈ [[M]] iff ` M : α holds in the intersection type system in Sub-
section 3.2. For the forward direction, we tentatively work in an intermediate system
in which the definition of ST (σ) is relaxed to ST (σ) := {C1 → · · ·Cn → α : Ci ∈
CL(σi) ∪ Pf [[σi]] for 1 ≤ i ≤ n and α ∈ [[o]]} for σ = σ1 → · · ·σn → o. Suppose that
Γ ` N : β holds for every β ∈ X. We then have:
1. If Γ,∆, x : X,Σ ` M : S is derivable in the intermediate system, then so is Γ,∆, x :

(]Γ, N),Σ `M : S.
2. If Γ,∆ ` M : C → X → S is derivable in the intermediate system (where C is a list of

closures/intersection types), then so is Γ,∆ `M : C → (]Γ, N)→ S.
We can now replace each instance of (app 1) in a derivation with that of (app 2). Indeed, if
we have Γ ` M : X → S and Γ ` N : β for every β ∈ X, then Γ ` M : (]Γ, N) → S holds
by 2 above, so Γ `MN : S holds by (app 2).

For the backward direction, we evaluate terms M in environments Γ. Given an environ-
ment Γ and k ≤]Γ, we write Γk to denote its initial segment of length k, and Γ̂ to denote
Γ with all members of the form x : (n,N) removed. We define evaluation M [Γ] by:

M [∅] := M, M [Γ, x : X] := M [Γ], M [Γ, x : (k,N)] := (M [Γ])[N [Γk] /x],

where [N/x] denotes the standard substitution. We then have the following property.
If a well-formed judgement Γ `r M : (n1, N1)→ · · ·M : (nk, Nk)→ α is derivable in the
Krivine type system, then Γ̂ ` M [Γ]N1[Γn1] · · ·Nk[Γnk

] : α is derivable in the previous
type system.

The proof employs the fact that typing is preserved by β equivalence. J

4.2 Thin types
To give an efficient algorithm for problems Bool(r) and RegLang(r), it is useful to restrict
the set of elements in [[σ]] (= intersection types) slightly. Let σ = σ1 → · · ·σm → ok → o

RTA’12

332 Complexity of Simply Typed Lambda Calculus

with σm 6= o (or σ = ok → o and m = 0). An intersection type β = X1 → · · ·Xm+k → α in
[[σ]] is said to be thin if

⊎
1≤i≤kXm+i is either empty or a singleton, and X1, . . . , Xm consist

of thin types (whenever m > 0). The set of all thin elements in [[σ]] is denoted by [[σ]]∗.
For instance, both True = {∗} → ∅ → ∗ and False = ∅ → {∗} → ∗ are thin, while

{∗} → {∗} → ∗ is not. The type D ∈ [[W]] for a finite automaton D is also thin.

I Lemma 10. Let σ be either B or W. Then for every closed term M : σ and α ∈ [[σ]]∗,
`r M : α holds if and only if it has a thin derivation (i.e., a derivation which involves only
thin types).

Proof. We prove the lemma for the intersection type system in Subsection 3.2. We can
then transform the derivation into that of the Krivine type system without introducing a
non-thin type (see the proof of Theorem 9). For simplicity, we only consider the case σ = B.

Suppose that `M : B holds but it does not admit a thin derivation. By strong nomaliza-
tion, we may assume thatM has exactly one redex (λx1.K)N1, and its reduct admits a thin
derivation. Observe that λx1.K, which is responsible for non-thinness, is of type ok → o,
and that substituting N1 for the variable x1 of type o does not create a new redex in K. As
a consequence,M actually contains a generalized redex (λxo1 · · ·xok.K0)N1 · · ·Nl (1 ≤ l ≤ k),
and it reduces to a subterm of tt or ff after l steps of β reduction. Hence K0, N1, . . . , Nl
are variables of type o. But then we can directly verify that (λxo1 · · ·xok.K0)N1 · · ·Nl admits
a thin derivation, contradicting the assumption. J

I Lemma 11. Let Q be a finite set such that]Q = q, σ be a simple type of order r ≥ 1 and
of arity a. Then][[σ]]∗Q ≤ hyp(r−1, O(a2q2)). Hence each element in [[σ]]∗Q can be effectively
coded by a string of length hyp(r − 2, O(a2q2)).

Proof. If r = 1, then σ is of the form ok → o. Since we only count thin types,][[σ]]∗ =
kq2 + q ≤ aq2. If r = 2 and σ = σ1 → · · ·σk → o, then

][[σ]]∗ ≤ 2][[σ1]]∗+···+][[σk]]∗ · q ≤ 2(a−1)(aq2)+log q ≤ 2a
2q2
.

The rest can be calculated by induction. J

I Remark. If we naively interpret types in Set, the upper bound on the number of elements
in [[σ]] would be something like: qqa for Order(σ) = 1, and qqqa log a

for Order(σ) = 2, that is
too much sensitive to the arity a. This is the main reason why we work with ScottL! rather
than Set.

Restriction to thin elements only works for “unary” data types such as B, N and W;
typically, it does not work for tree type T := (o2 → o)2 → o2 → o, since tree automata
cannot be expressed by thin types.

5 Complexity of evaluation

5.1 Order 2r + 3
We are now ready to estimate the complexity of semantic evaluation in ScottL!.

I Theorem 12. Let M : σ be a closed term in Λ(s, a, r+ 3), where σ is either B or W and
r ≥ 0. Let α ∈ [[σ]]∗Q and q =]Q. Then it can be decided by an alternating algorithm in time
s3 · hyp(r,O(a2q2)) whether `r+2 M : α holds or not.

K. Terui 333

(a)
λx
��

@

��

""
@
}} ��

λy
��

x

@

��

""
@
}} ��

λz
��

y

z

(b)
1
##

2
��

3
{{

@
}}

4
��

5
��

λx

��
N

M
}} �� !!

x x x

=⇒

1

2
��

3
{{

M

&& ''

4

��

5

��
N

Figure 3 (a) A dag-representation of λx.(λy.(λz.z)((λz.z)y))((λy.(λz.z)((λz.z)y))x).
(b) A graph rewriting rule corresponding to (λx.M)N −→M [N/x].

Proof. We apply the natural alternating algorithm inherent to the definition of the Krivine
type system, where stacks are built upon thin types.

It is clear that the height of any derivation is at most s+ar, where ar takes into account
the height of subderivations for subsumption. Each step of applying a rule (bottom up)
costs linear time in the size of a judgement. Hence it suffices to give an upper bound to the
size of any judgement occurring in an (attempted) derivation of `r+2 M : α. Let

xσ1
1 : C1, · · · , xσm

m : Cm `r+2 N
σ : Cm+1 → · · ·Cn → α

be such a judgement, where σ = σm+1 → · · ·σn → o and Order(σ) ≤ r + 3. We have
either Ci ∈ Pf [[σi]]∗ with Order(σi) ≤ r + 1, or Ci = (k,K) ∈ CL(σi). In the former
case, Ci can be coded by a string of length hyp(r,O(a2q2)), while in the latter case the
size is at most 2s. Since n is bounded by s + a, the total size of the judgement is (s + a) ·
max(hyp(r,O(a2q2)), 2s) + s = s2 · hyp(r,O(a2q2)) (note that a = O(s) by Lemma 2).

Therefore, the algorithm runs in time s3 · hyp(r,O(a2q2)). J

I Corollary 13. Both Bool(2r + 3) and RegLang(2r + 3) belong to r-EXPSPACE.

Proof. Let us consider Bool(2r + 3). Given an (optimally typed) closed term M : B of
size s and of order 2r + 3, we compute M ′ = 〈〈M〉〉r+3, and check if `r+2 M

′ : True with
Q = {∗}. The algorithm is correct since we have M =βη tt iff M ′ =βη tt iff True ∈ [[M ′]] iff
`r+2 M

′ : True by Theorems 5 and 9.
The cost of computing M ′ is hyp(r,O(s)) and M ′ ∈ Λ(hyp(r, s), a, r + 3) by Lemma

3. Type checking of `r+2 M ′ : True costs alternating time hyp(r, s)3 · hyp(r,O(a2)) =
hyp(r, poly(s)) by Theorem 12. Hence the whole algorithm works in alternating time
hyp(r, poly(s)), so in deterministic space hyp(r, poly(s)).

The problem RegLang(2r + 3) can be decided similarly; this time the polynomial also
depends on q, the number of states of the input automaton D (see Theorem 6). J

5.2 Order 2r + 2
Let us now address the problems Bool(2r + 2) and RegLang(2r + 2). Here a more del-
icate space management is required. In particular, type checking has to be done with
dag-representations of terms (see Figure 3(a)).

A term M is of dag-size s, if M can be represented as a directed acyclic graph which
has s vertices. Let us denote by Λdag(s, a, r) the set of terms of dag-size ≤ s, arity ≤ a and
order ≤ r. Lemma 3 can be refined as follows:

RTA’12

334 Complexity of Simply Typed Lambda Calculus

I Lemma 14. Suppose that M : σ and Order(σ) ≤ r. If M ∈ Λ(s, a, r + 1), then 〈〈M〉〉r ∈
Λdag(s, a, r). Given an ordinary representation of M , a dag-representation of 〈〈M〉〉r can be
computed in time O(s2).

Proof. RepresentM as a tree, and successively apply the graph rewriting rule of Figure 3(b)
(that corresponds to β reduction) to each “redex” of order r+1. The rule is sound, provided
that (*) the indicated vertex λx (of order r + 1) does not have any incoming edge other
than the indicated one from @. This property (*) is indeed maintained during the whole
process of reduction, since the reduction rule applied to a redex of order r+ 1 never creates
a vertex of order r + 1 with multiple incoming edges. Since the reduction strictly decreases
the number of vertices, the computation terminates in s steps, so in time O(s2). J

Below, we suppose that the Krivine type system operates on terms represented as dags.

I Theorem 15. Let M : σ be a closed term in Λdag(s, a, r + 3), where σ is either B or W,
and r ≥ 0. Let α ∈ [[σ]] and q =]Q. Then it can be decided by an alternating algorithm in
space s2 · hyp(r,O(a2q2)) whether `r+2 M : α holds or not.

Proof. It suffices to show that each judgement Γ ` N : S occurring in the derivation has
size s2 · hyp(r,O(a2q2)). The only delicate point is to show that the length of Γ is bounded
by s, the dag-size of M . To see this, notice that we can identify a subterm of M with a
vertex in the dag-representation of M . Then a thread of a derivation in the type system of
Subsection 3.2 corresponds to a path in the dag. Now the length of an environment increases
only when a vertex with label λx is visited, but the same vertex cannot be visited twice due
to acyclicity. Hence it is bounded by s. The derivation can be then translated into one in
the Krivine type system keeping the length bound (see the proof of Theorem 9). J

I Corollary 16. Both Bool(2r + 2) and RegLang(2r + 2) belong to r-EXPTIME.

Proof. Let us consider Bool(2r + 2). Since the case r = 0 can be easily decided by simple
graph rewriting [19], we assume r = r′ + 1, so that 2r + 2 = 2r′ + 4.

Given a closed termM : B of size s and of order 2r′+4, we first computeM ′ := 〈〈M〉〉r′+4,
then a dag representation of M ′′ := 〈〈M ′〉〉r′+3, and check if `r′+2 M

′′ : True with Q = {∗}.
The cost of computing M ′ is as before, while M ′′ can be computed in space hyp(r′, O(s2)),
and M ′′ ∈ Λdag(hyp(r′, s), a, r′ + 3) by Lemma 14. Type checking of `r′+2 M ′′ : True
costs alternating space hyp(r′, s)2 · hyp(r′, O(a2)) = hyp(r′, poly(s)) by Theorem 15. Hence
the whole algorithm works in alternating space hyp(r′, poly(s)), so in deterministic time
hyp(r, poly(s)). J

I Remark. Theorem 15 nearly (though not exactly) conforms to the puzzle at the beginning
of the introduction. The trick there is indeed that the arity is constant for all Mn when M
is fixed, so that the number hyp(r,O(a2q2)) in Theorem 15 becomes a constant. Hence the
computation can be done in alternating space O(s2), that is in deterministic time 2O(s).

Finally, let us discuss the problem Term(r). Since we cannot assume that types are thin
in general, the upper bounds on the number and size of intersection types get worse than
estimated by Lemma 11. Namely, if σ is of order r ≥ 1 and arity a, then][[σ]] ≤ hyp(r,O(aq)),
and the size of each α ∈ [[σ]] is hyp(r − 1, O(aq)).

In addition, the Krivine type system `r does not work when the order of the type of
input terms M,N is greater than r + 1. Hence natural complexity bounds are as follows.

I Theorem 17. Under the assumption that the type of input terms M,N is of order ≤ r+1:
1. Term(2r + 1) belongs to r-EXPTIME.

K. Terui 335

2. Term(2r + 2) belongs to r-EXPSPACE.

It can be proved by employing Theorem 7; just notice that q is bounded by the size of
the η-long normal form of N .
I Remark. Schubert [19] proved that Term(2) is complete for P and Term(3) is complete
for PSPACE, which are sharper than our results. We leave it open whether we may extend
the sharper bounds of [19] to higher order.

6 Hardness

6.1 Encoding of Turing machines
Let us outline a proof of the hardness part of Theorem 1. For orders 2 and 3, it can be easily
proved by encoding Boolean circuits into order 2 terms, and quantified Boolean circuits into
order 3 terms, respectively.

¬ := λbxy.byx : B→ B
∧ := λb1b2xy.b1(b2xy)y : B2 → B
∀ := λF.F tt ∧ Fff : (B→ B)→ B

Beyond order 3, we encode Turing machines with bounded time and space. In contrast
to [8, 9, 14], which represent each TM by a single program, we just need to encode a TM
by a family of lambda terms, one for each input length. A similar encoding was given by
[16], but ours is more efficient with respect to the order (though less uniform). Encoding is
even easier if we have product types. So we first outline an encoding with product types,
and then explain how to eliminate them in the next subsection.

In the following, we write σ × τ for a product type, 〈Mσ, Nτ 〉σ×τ for a pair, and
πi(Mσ1×σ2)σi for a projection (i = 1, 2). The definition of order is extended by Order(σ ×
τ) := max(Order(σ),Order(τ)).

Define N0 := N and Nr+1 := Nr → Nr, and let Nr(σ) be Nr with the base type o
replaced by σ. Observe that Order(Nr(σ)) = r + 2 + Order(σ). A natural number k = 2n
can be succinctly represented by n2 : Nr with n : Nr+1 and 2 : Nr, or by 2 ◦ · · · ◦ 2 : Nr (n
times) with 2 : Nr (where N ◦M := λz.N(Mz) with z fresh). Hence the number hyp(r, n)
can be represented by

hyp(r, n) := (2 ◦ · · · ◦ 2︸ ︷︷ ︸
n times

) 2 · · ·2︸ ︷︷ ︸
r−1 times

: N0(σ)

for every type σ, where the highest order subterms are 2 ◦ · · · ◦ 2 (k ≤ n times) of type
Nr−1(σ), whose order is r + 1 + Order(σ).

Let Bn := on → o and i := λx1 · · ·xn.xi : Bn. We have B = B2.
For every r, n ≥ 1, define a type Addrr,n (for addresses) of order r by:

Addr1,n := B× · · · ×B (n times), Addrr+1,n := Addrr,n → B.

Each Addrr,n represents the set of natural numbers below hyp(r, n) in binary. For r =
1, k < 2n is represented by k1,n := 〈i1, · · · , in〉 : Addr1,n, where i1 · · · in is the binary
representation of k. For r = r′ + 1, k < hyp(r, n) is represented by the closed normal term
kr,n : Addrr,n such that kr,nir′,n gives the ith bit of k for every i < hyp(r′, n).

I Lemma 18. For every r, n ≥ 1, there are closed terms

sucr,n, predr,n : Addrr,n → Addrr,n, <r,n: Addrr,n ×Addrr,n → B

of size O(n2) and order 2r, representing successor and predecessor modulo hyp(r, n) and <.

RTA’12

336 Complexity of Simply Typed Lambda Calculus

Proof. It is easy for r = 1. For r = r′+ 1, we first build a term Gf,a0 : B with free variables
f : Addrr,n and a0 : Addrr′,n, which computes the carry to the a0th bit when computing
f + 1. The idea is to iterate the step function Ff,a0 : B × Addrr′,n → B × Addrr′,n
defined by Ff,a0 := λca. if a <r′,n a0 then 〈c ∧ f(a), sucr′,n(a)〉 else 〈c, a〉. We thus
define Gf,a0 := π1(hyp(r′, n) Ff,a0 〈1,0r′,n〉), and finally sucr,n := λfa0.f(a0) ⊕ Gf,a0 :
Addrr,n → Addrr,n. The highest order subterm is hyp(r′, n) : N0(Addrr′,n ×B), which
is of order r′ + 1 + r′ ≤ 2r. predr,n and <r,n are defined similarly. J

I Theorem 19. Let TM be a deterministic Turing machine with 1 tape and q states which
works in space hyp(r, n) and in time hyp(r′, n) with 1 ≤ r ≤ r′. Then there exists a term
tmr,r′,n : Bn → B of order r+ r′+ 2 such that for every w ∈ {0, 1}n, tmr,r′,n(w1,n) =βη tt
iff TM accepts w. The term tmr,r′,n(w1,n) can be constructed in time polynomial in n.

Proof. Define types Tape := Addrr,n → B3 and Config := Tape×Addrr,n ×Bq. Each
〈t,k, i〉 : Config represents the configuration with tape content t, head position k and state
i. Note that Order(Config) = r + 1.

With the help of sucr,n, predr,n and <r,n, it is easy to represent the one-step transition
of TM by a term tran : Config→ Config of size O(n2) and order 2r.

Now the result of the computation after hyp(r′, n) steps can be computed by the term
tmr,r′,n := λx.output(hyp(r′, n) tran init(x)) : Bn → B where init : Bn → Config and
output : Config→ B are suitable terms for initialization and output extraction. hyp(r′, n)
is considered to be of type N0(Config), thus of order r′ + 1 + Order(Config) = r + r′ + 2.
Since r′ ≥ r, this dominates the order 2r of tran.

It remains to show that product types can be eliminated from the encoding with at most
polynomial size overhead, that will be discussed in the next subsection. J

I Corollary 20.
1. Both Bool(2r + 2) and RegLang(2r + 2) are hard for r-EXPTIME.
2. Both Bool(2r + 3) and RegLang(2r + 3) are hard for r-EXPSPACE.

Proof. Let r′ = r for Bool(2r + 2) and r′ = r + 1 for Bool(2r + 3). It is straightforward
to reduce Bool(r) to RegLang(r). J

6.2 Elimination of product types
The elimination is based on two isomorphisms:

σ1 × σ2 → τ ∼= σ1 → σ2 → τ, τ → σ1 × σ2 ∼= (τ → σ1)× (τ → σ2).

For each type σ, we define a number b(σ) (the breadth) and a list σ of length b(σ) below.
The ith member of the list σ will be denoted by (σ)i.

b(o) := 1 o := o

b(σ → τ) := b(τ) σ → τ := σ → (τ)1, . . . , σ → (τ)m
b(σ × τ) := b(σ) + b(τ) σ × τ := σ, τ ,

where m = b(τ), and σ → (τ)i is a shorthand for (σ)1 → · · · (σ)k → (τ)i (with k = b(σ)).
For each term M : σ, we define a list M of length b(σ) such that (M)i (the ith member)

is of type (σ)i. In the following, we assume that b(σ) = m and b(τ) = k.

xσ := x
(σ)1
1 , . . . , x

(σ)m
m 〈M,N〉 := M,N

λxσ.Mτ := λxσ.(M)1, . . . , λxσ.(M)k π1(Mσ×τ) := (M)1, . . . , (M)m
Mσ→τNσ := (M)1N, . . . , (M)kN π2(Mσ×τ) := (M)m+1, . . . , (M)m+k,

K. Terui 337

where x1, . . . , xm are new variables associated to x, λxσ.(M)i and (Mi)N are respectively
shorthands for λx1 · · ·xm.(M)i and (Mi)(N)1 · · · (N)m.

The translation preserves βη-equality:

I Theorem 21. If M : σ and M =βη N , then (M)i =βη (N)i for every 1 ≤ i ≤ b(σ).

Therefore, when applied to tmr,r′,n(u1,n) : B, the translated term returns the correct
output. However, we have to be careful for size. Indeed, if n : N(σ), we have |(n)i| =
O(b(σ)n). To avoid such an unexpected explosion, we define the depth d(M) of each term
M as follows:

d(x) := 1 d(λx.M) := d(M) d(〈M,N〉) := max(d(M), d(N))
d(MN) := max(d(M), d(N) + 1) d(πiM) := d(M).

We can now estimate the size after translation.

I Lemma 22. Let M : σ, m = max{b(τ) : τ ∈ Type(M)} and d = d(M). Then |(M)i| ≤
md · |M | for every 1 ≤ i ≤ b(σ).

For instance, d(n) = O(n) and this is the reason of the exponential explosion. It is
important for our purpose that the order of association matters for iterated multiplications
2 ◦ · · · ◦ 2 (n times). Depending on whether we associate them to the right or to the left,
the depth changes significantly:

d(2 ◦ (· · · (2 ◦ (2 ◦ 2)))) = O(n), d((((2 ◦ 2) ◦ 2) · · ·) ◦ 2) = O(1).

Hence if we choose the second one for the definition of hyp(r, n) that appears in tmr,r′,n,
then the depth stays constant (as far as r, r′ are fixed), so that we obtain a term of polynomial
size by translation. Therefore, Theorem 19 holds without product types.

7 Conclusion

We have studied the computational complexity of evaluating simply typed lambda terms of
bounded order. As observed by [8, 9, 14], efficiency is achieved by mixing β reduction and
semantic evaluation. In comparison with these previous works, the crux of our work lies
in the use of ScottL! rather than Set. Indeed, the former has led to an intersection type
system, and thus provided a natural alternating algorithm. Moreover, it is flexible enough to
incorporate Krivine’s machinery and restriction to thin types. All these ideas combine into
an optimal algorithm that comforms to the completeness results for the problems Bool(r)
and RegLang(r), although there still remains a gap for Term(r).

It should be mentioned that semantic evaluation is also quite effective in the setting of
infinitary lambda calculus [1]. Incidentally, [11] refines [1] by replacing semantic evaluation
in Set by intersection typing. This is strictly parallel to our shift from Set to ScottL!.

We believe that this way of using semantics for computation should be further developed,
so let us conclude with a slogan: better semantics, faster computation.

Acknowledgements We would like to thank Masahito Hasegawa, Naohiko Hoshino and
Shin’ya Katsumata for pointers to the literature, and anonymous referees for a lot of useful
comments. This work is supported by JSPS KAKENHI 21700041.

RTA’12

338 Complexity of Simply Typed Lambda Calculus

References
1 Klaus Aehlig. A finite semantics of simply-typed lambda terms for infinite runs of automata.

Logical Methods in Computer Science, 3(3), 2007.
2 Arnold Beckmann. Exact bounds for lengths of reductions in typed lambda-calculus. J.

Symb. Log., 66(3):1277–1285, 2001.
3 Richard Blute and Philip Scott. Category theory for linear logicians. In Linear Logic in

Computer Science, LMS 316. Cambridge University Press, 2004.
4 Daniel de Carvalho. Execution time of lambda-terms via denotational semantics and in-

tersection types. Mathematical Structures in Computer Science, to appear.
5 Lorenzo Tortora de Falco. Obsessional experiments for linear logic proof-nets. Mathematical

Structures in Computer Science, 13(6):799–855, 2003.
6 Thomas Ehrhard. The scott model of linear logic is the extensional collapse of its relational

model. Theor. Comput. Sci., to appear.
7 Harvey Friedman. Equality between functionals. In Proceedings of Logic Colloquium’73,

LNM 453, pages 22–37, 1975.
8 Andreas Goerdt and Helmut Seidl. Characterizing complexity classes by higher type prim-

itive recursive definitions, Part II. In Proc. 6th IMYCS, LNCS 464, pages 148–158, 1990.
9 Gerd G. Hillebrand and Paris C. Kanellakis. On the expressive power of simply typed and

let-polymorphic lambda calculi. In Proceedings of 11th LICS, pages 253–263, 1996.
10 Michael Huth. Linear domains and linear maps. In Proceedings of 9th MFPS, LNCS 802,

pages 438–453, 1993.
11 Naoki Kobayashi. Types and higher-order recursion schemes for verification of higher-order

programs. In Proceedings of 36th POPL, pages 416–428, 2009.
12 Naoki Kobayashi and C.-H. Luke Ong. A type system equivalent to the modal mu-calculus

model checking of higher-order recursion schemes. In Proceedings of 24th LICS, pages
179–188, 2009.

13 Lars Kristiansen. Complexity-theoretic hierarchies induced by fragments of Gödel’s T.
Theory Comput. Syst., 43(3-4):516–541, 2008.

14 Lars Kristiansen and Paul J. Voda. Programming languages capturing complexity classes.
Nord. J. Comput., 12(2):89–115, 2005.

15 Jean-Louis Krivine. A call-by-name lambda-calculus machine. Higher-Order and Symbolic
Computation, 20(3):199–207, 2007.

16 Harry G. Mairson. A simple proof of a theorem of Statman. Theor. Comput. Sci.,
103(2):387–394, 1992.

17 Paul-Andre Mellies. Categorical semantics of linear logic. In Interactive models of compu-
tation and program behaviour, Panoramas et Syntheses 27. Soc. Math. de France, 2009.

18 Sylvain Salvati. On the membership problem for non-linear abstract categorial grammars.
Journal of Logic, Language and Information, 19(2):163–183, 2010.

19 Aleksy Schubert. The complexity of β-reduction in low orders. In Proceedings of 5th TLCA,
LNCS 2044, pages 400–414, 2001.

20 Richard Statman. The typed lambda-calculus is not elementary recursive. Theor. Comput.
Sci., 9:73–81, 1979.

21 Steffen van Bakel. Intersection type assignment systems. Theor. Comput. Sci., 151(2):385–
435, 1995.

22 Steffen van Bakel. Strict intersection types for the lambda calculus. ACM Comput. Surv.,
43(3):20, 2011.

23 Glynn Winskel. A linear metalanguage for concurrency. In Proceedings of 7th AMAST,
LNCS 1548, pages 42–58, 1998.

24 Glynn Winskel. Linearity and non linearity in distributed computation. In Linear Logic in
Computer Science, LMS 316. Cambridge University Press, 2004.

On the Formalization of Termination Techniques
based on Multiset Orderings∗

René Thiemann1, Guillaume Allais2, and Julian Nagele1

1 University of Innsbruck, 6020 Innsbruck, Austria
2 University of Strathclyde, Glasgow G1 1XQ, Scotland

Abstract
Multiset orderings are a key ingredient in certain termination techniques like the recursive path
ordering and a variant of size-change termination. In order to integrate these techniques in a
certifier for termination proofs, we have added them to the Isabelle Formalization of Rewriting.
To this end, it was required to extend the existing formalization on multiset orderings towards
a generalized multiset ordering. Afterwards, the soundness proofs of both techniques have been
established, although only after fixing some definitions.

Concerning efficiency, it is known that the search for suitable parameters for both techniques is
NP-hard. We show that checking the correct application of the techniques—where all parameters
are provided—is also NP-hard, since the problem of deciding the generalized multiset ordering
is NP-hard.

1998 ACM Subject Classification F.4.2 Grammars and Other Rewriting Systems

Keywords and phrases formalization, term rewriting, termination, orderings

Digital Object Identifier 10.4230/LIPIcs.RTA.2012.339

Category Regular Research Paper

1 Introduction

The multiset ordering has been invented in the ’70s to prove termination of programs [10]. It
is an ingredient for important termination techniques like the multiset path ordering (MPO)
[8], the recursive path ordering (RPO) [9], or recently [3, 6] it has been used in combination
with the size-change principle of [19], in the form of SCNP reduction pairs.

The original version of the multiset ordering w.r.t. some base ordering � can be defined
as M �ms N iff it is possible to obtain N from M by replacing at least one element of M by
several strictly smaller elements in N .

In other papers—like [3, 6, 22]—a generalization of the multiset ordering is used (denoted
by �gms). To define �gms one assumes that in addition to � there is a compatible non-strict
ordering %. Then �gms is like �ms, but in the multiset comparison it is additionally allowed
to replace each element by a smaller one (w.r.t. %). To illustrate the difference between �ms
and �gms, we take � and % as the standard orderings on polynomials over the naturals.
Then �gms is strictly more powerful than �ms: for example, {{x+ 1, 2y}} �gms {{y, x}} since
x+ 1 � x and 2y % y, but {{x+ 1, 2y}} �ms {{y, x}} does not hold, since 2y 6= y and also
2y 6� y as y can be instantiated by 0.

∗ This research is supported by FWF (Austrian Science Fund) project P22767.

© René Thiemann, Guillaume Allais, and JulianNagele;
licensed under Creative Commons License ND

23rd International Conference on Rewriting Techniques and Applications (RTA’12).
Editor: A. Tiwari; pp. 339–354

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

340 On the Formalization of Termination Techniques based on Multiset Orderings

Note that �gms is indeed used in powerful termination tools like AProVE [11]. Hence, for
the certification of termination proofs which make use of SCNP reduction pairs or RPOs
which are defined via �gms, we need a formalization of this multiset ordering.

However, in the literature and in formalizations, often only �ms is considered. And even
those papers that use �gms only shortly list the differences between �ms and �gms—if at
all—and afterwards just assume that both multiset orderings have similar properties.

To change this situation, as one new contribution of this paper, we give the first formaliz-
ation of �gms, and could indeed show that �ms and �gms behave quite similar. However,
we also found one essential difference between both orderings. It is well known that deciding
�ms is easy, one just removes identical elements and afterwards has to find for each element
in the one set a larger element in the other. In contrast, we detected and proved that deciding
�gms is an NP-complete problem.

Note that the original definition of RPO misses a feature that is present in other orderings
like polynomial interpretations where it is possible to compare variables against a least
element: x % 0. This feature was already integrated in other orderings like KBO [17], and
it can also be integrated into RPO where one allows to compare x % c if c is a constant
of least precedence. For example, the internal definition of RPO in AProVE is the one of
[22]—which is based on �gms—with the additional inference rule of “x % c”. As a second
new contribution we formalized this RPO variant and fixed its definition, as it turned out
that it is not stable. Moreover, we show that the change from �ms to �gms increases the
complexity of RPO: From [18] it is known that deciding whether two terms are in relation
w.r.t. a given RPO or MPO is in P. However, if one uses the definitions of MPO and RPO in
this paper which are based on �gms, then the same decision problem becomes NP-complete.

As third new contribution we also give the first formalization of SCNP reduction pairs
where we could establish the main soundness theorem, although several definitions had to be
fixed. Again, we have shown that the usage of �gms makes certification for SCNP reduction
pairs an NP-complete problem. As a consequence, the search for suitable SCNP reduction
pairs and the problem whether two terms are in relation for a given SCNP reduction pair
belong to the same complexity class, as they are both NP-complete.

All our formalizations are using the proof assistant Isabelle/HOL [21]. They are available
within the IsaFoR library (Isabelle Formalization of Rewriting, [24]). The new parts of the
corresponding proof checker CeTA—which is just obtained by applying the code generator of
Isabelle [13] on IsaFoR—have been tested on the examples of the experiments performed in
[22]. After fixing some output bugs, eventually all proofs could be certified. Both IsaFoR and
CeTA are freely available at:

http://cl-informatik.uibk.ac.at/software/ceta

The paper is structured as follows. We give preliminaries and the exact definitions for
�ms and �gms in Sec. 2. Afterwards we discuss the formalization of �gms in Sec. 3. Different
variants of RPO are discussed in Sec. 4. Here, we also show that certifying constraints for
the RPO variant used in AProVE is NP-complete. In Sec. 5 we discuss the formalization of
SCNP reduction pairs. Finally, in Sec. 6 we elaborate on our certified algorithms for checking
whether two terms are in relation w.r.t. RPO or the orderings from an SCNP reduction pair,
and we report on our experimental results.

2 Preliminaries

We refer to [2] for basic notions and notations of rewriting. A signature is a set of symbols
F = {f, g, F,G, . . . }, each associated with an arity. We write T (F ,V) for the set of terms

R. Thiemann, G. Allais, and J. Nagele 341

over signature F and set of variables V . We write V(t) for the set of variables occurring in t.
A relation � on T (F ,V) is stable iff it is closed under substitutions, and it is monotone, iff it
is closed under contexts. A term rewrite system (TRS) is a set of rules `→ r. The rewrite
relation →R of a TRS R is the smallest stable and monotone relation containing R.

We write Id for the identity relation, and for each relation �, let � be its reflexive closure.

I Definition 2.1 (Ordering pair, reduction pair). The pair (%,�) is an ordering pair (over
carrier A) iff % is a quasi-ordering over A, � is a transitive and well-founded relation over A,
and � and % are compatible, i.e., � ◦% ⊆ � and % ◦ � ⊆ �.

The pair (%,�) is a non-monotone reduction pair iff (%,�) is an ordering pair over
T (F ,V) where both � and % are stable. If additionally % is monotone, then (%,�) is a
reduction pair, and if both � and % are monotone, then (%,�) is a monotone reduction pair.

Throughout this paper we only consider finite multisets {{x1, . . . , xn}} and we write P(A)
for the set of all multisets with elements from A. For every function f : A→ A and every
multiset M ∈ P(A) we define the image of f on M as f [M] = {{f(x) | x ∈M}}.

I Definition 2.2 (Multiset orderings). Let � and % be relations over A. We define the
multiset ordering (�ms), the generalized multiset ordering (�gms), and the corresponding
non-strict ordering (%gms) over P(A) as follows: M1 �ms / �gms / %gms M2 iff there are Si
and Ei such that M1 = S1 ∪ E1, M2 = S2 ∪ E2, and

conditions 1, 2, and 4 are satisfied: M �ms N
conditions 1, 3, and 4 are satisfied: M �gms N

conditions 1 and 3 are satisfied: M %gms N

where conditions 1–4 are defined by:
1. for each y ∈ S2 there is some x ∈ S1 with x � y
2. E1 = E2
3. E1 = {{x1, . . . , xn}}, E2 = {{y1, . . . , yn}}, and xi % yi for all 1 ≤ i ≤ n
4. S1 6= ∅
Whenever Mi is split into Si ∪ Ei we call Si the strict part and Ei the non-strict part.

Note that �gms indeed generalizes �ms, since �gms = �ms if % = Id.

3 Formalization of the Generalized Multiset Ordering

Replacing condition 2 by 3 makes the formalization of �gms a bit more involved than the one
of �ms: the simple operation of (multiset) equality E1 = E2 is replaced by demanding that
both E1 and E2 can be enumerated in such a way that xi % yi for all 1 ≤ i ≤ n. Note that
instead of enumerations one can equivalently demand that there is a bijection f : E1 → E2
such that for all x ∈ E1 we have x % f(x).

There is one main advantage of formalizing condition 3 via enumerations instead of
bijections. It will be rather easy to develop an algorithm deciding �gms. However, using
enumerations we also observe a drawback: the proof that �gms and %gms are compatible
and transitive orderings will be harder than using bijections since composing bijections is
easier than combining enumerations.

The formalization of the following (expected) properties for �gms and %gms has been
rather simple.

I Lemma 3.1. �gms and %gms have the following properties:
1. the empty set is the unique minimum of �gms and %gms
2. if % is reflexive then so is %gms

RTA’12

342 On the Formalization of Termination Techniques based on Multiset Orderings

3. if � is irreflexive and compatible with % then �gms is irreflexive
4. if � and % are closed under an operation op then �gms and %gms are closed under op[·].

In contrast, the formalization of transitivity and compatibility was more tedious.

I Lemma 3.2. If � and % are compatible and transitive then so are �gms and %gms.

Proof. For the sake of simplicity, we will work here with the definition of (�gms,%gms) using
bijections rather than enumerations: all technical details when using the representation with
enumerations are available in IsaFoR, theory Multiset-Extension. Given that this lemma states
four results that are pretty similar, we will only prove transitivity of %gms and let the reader
see how the proof could be slightly modified in the other cases.

Let M,N and P be three multisets such that M %gms N (1) and N %gms P (2). From (1)
we get the partitions M = M ′ ∪ E and N = N ′ ∪ F and the bijection fMN : E → F . From
(2) we get the partitions N = N ′′ ∪ F ′ and P = P ′ ∪G and the bijection fNP : F ′ → G. We
define the multiset I as I = F ∩F ′ and claim that the partitions M = (M \f−1

MN [I])∪f−1
MN [I]

and P = (P \ fNP [I]) ∪ fNP [I] and the bijection fNP ◦ fMN are the ones needed to prove
M %gms P .

If p ∈ P \ fNP [I] then we have to find some m ∈M \m /∈ f−1
MN [I] satisfying m � p. We

distinguish two cases. In the first case, p ∈ P ′ and thus there is an n ∈ N ′′ such that n � p
and n /∈ I. If n ∈ N ′ then by (1) there is some m ∈ M ′ with m � n and hence, m � p

by transitivity of �. Moreover, since M ′ ⊆ M \ f−1
MN [I] we found the desired element m.

Otherwise, n ∈ F and hence, for m = f−1
MN (n) we know m % n using (1). By compatibility,

also m � p. Again, m ∈ M \ f−1
MN [I] since n /∈ I. In the second case, p ∈ G and thus for

n = f−1
NP (p) we conclude n ∈ F ′′ \ I and n % p, and hence n /∈ F . Thus, there is an element

m ∈M ′ which satisfies m � n. By compatibility we again achieve m � p.
If p ∈ fNP [I], we have an element n ∈ F ′ such that n % p; n is also in F and therefore

we have an element m ∈ f−1
MN [I] such that m % n % p and hence, m % p. J

Here lies the main difference to the formalization of �ms in [16]. While just transitivity
needs to be shown for �ms, we had to show transitivity of both �gms and %gms as well
as compatibility from both sides. Moreover the formalized proofs of these facts get more
complicated since we cannot simply use bijections, set intersections, and differences, but have
to deal with enumerations.

After having established Lem. 3.1 and Lem. 3.2 it remains to prove the most interesting
and also most complicated property of �gms, namely strong normalization. In the remainder
of this section we assume that � and % are compatible and transitive, and that � is strongly
normalizing. Our proof is closely related to the one for �ms [20] which is due to Buchholz:
we first introduce a more atomic relation �gms-step which has �gms as its transitive closure.
Then it suffices to prove that �gms-step is well-founded.

I Definition 3.3. We define �gms-step as M �gms-step N iff M �gms N where in the split
M = S ∪ E the size of S is exactly one.

I Lemma 3.4. �gms is the transitive closure of �gms-step.

For strong normalization we perform an accessibility-style proof, i.e., we define A as the set
of strongly normalizing elements w.r.t. �gms-step and show that A contains all multisets. Note
that to show M ∈ A it suffices to prove strong normalization for all N with M �gms-step N .
Moreover, since �gms-step is strongly normalizing on A, one can use the following induction
principle to prove some property P for all elements in A.

(∀M.(∀N ∈ A.M �gms-step N → P (N))→ P (M))→ (∀M ∈ A.P (M)) (?)

R. Thiemann, G. Allais, and J. Nagele 343

We will later on apply this induction scheme using the first of the following two predicates:
P (x) is defined as ∀M.M ∈ A →M ∪ {{x}} ∈ A
Q(M,x) is defined as ∀b.x % b→M ∪ {{b}} ∈ A

For showing that all multisets belong to A, we will require the following technical lemma.

I Lemma 3.5. For all multisets M ∈ A and for all elements a, if ∀N.M �gms-step N →
Q(N, a) and ∀b.a � b→ P (b) then Q(M,a) holds.

Proof. To prove Q(M,a), let b be an element such that a % b where we have to show
M ∪ {{b}} ∈ A. To prove the latter, we consider an arbitrary N with M ∪ {{b}} �gms-step N

and have to show N ∈ A. From M ∪ {{b}} �gms-step N we obtain suitable m1, . . . ,mk,
n1, . . . , nk, m, and N ′ to perform the splits M ∪ {{b}} = {{m}} ∪ {{m1, . . . ,mk}} and
N = N ′ ∪ {{n1, . . . , nk}}. We distinguish two cases: either b is part of {{m1, . . . ,mk}} or
equal to m.

If b = mi for some i then M �gms-step N \ {{ni}}. Thanks to the first hypothesis and the
fact that a % ni (because a % b = mi % ni), we can conclude that N ∈ A.

If b = m then one can prove that {{n1, . . . , nk}} ∈ A using the fact that {{m1, . . . ,mk}} =
M ∈ A and ∀i.mi % ni. By induction on the size of N ′ and thanks to the second hypothesis
and the fact that for any p ∈ N ′, a % b � p, we deduce that {{n1, . . . , nk}} ∪N ′ ∈ A which
concludes the proof. J

I Lemma 3.6. ∀M.M ∈ A.

Proof. The proof of the lemma is done by induction on the size of the multiset M .
If M is the empty multiset, then obviously, it is strongly normalizing (hence in A).
Otherwise we have to prove ∀a.∀M ∈ A.M ∪ {{a}} ∈ A which is the same as ∀a.P (a).

We perform a well-founded induction on a (w.r.t. �) using the property P and are left to
prove P (a) assuming that ∀b.a � b→ P (b) holds. We pick a multiset M ∈ A and perform
an induction on M using (?) to prove the property Q(M,a) (which entails P (a) because
% is reflexive): for any M ∈ A we have to prove Q(M,a) given the induction hypothesis
∀N.M �gms-step N → Q(N, a). But this result is a trivial application of Lem. 3.5 using the
two induction hypotheses that we just generated. J

Using Lem. 3.4 and Lem. 3.6, strong normalization of �gms immediately follows.

I Theorem 3.7. �gms is strongly normalizing.

4 Multiset and Recursive Path Ordering

In this section we study variations of MPO and RPO. To this end, throughout this section
we assume that > is some precedence for the signature F . We write > = > \6 for the strict
part of the precedence, and ≈ = > ∩6 for its equivalence relation.

A standard version of MPO allowing quasi-precedences can be defined by the following
inference rules.

si �mpo t
f(~s) �mpo t

{{~s}} �mpoms {{~t}}
f(~s) �mpo g(~t)

f ≈ g
f(~s) �mpo ti for all i

f(~s) �mpo g(~t)
f > g

For example for the precedence where g ≈ h we conclude that f(y, s(x)) �mpo f(x, y) and
g(s(x)) �mpo h(x), but f(g(y), s(x)) 6�mpo f(x, h(y)) since {{g(y), s(x)}} 6�mpoms {{x, h(y)}} as
g(y) 6�mpo h(y).

RTA’12

344 On the Formalization of Termination Techniques based on Multiset Orderings

To increase the power of MPO, the following inference rules are sometimes used which
generalize MPO by defining two orderings �gmpo and %gmpo where the multiset extension is
done via �gms. This variant of MPO is the one that is internally used within AProVE, and if
one removes the last inference rule (x %gmpo c), then it is equivalent to the MPO definition
of [22].

(1) si %gmpo t
f(~s) �gmpo t (2) {{~s}} �

gmpo
gms {{~t}}

f(~s) �gmpo g(~t)
f ≈ g (3) f(~s) �gmpo ti for all i

f(~s) �gmpo g(~t)
f > g

(4) s �
gmpo t

s %gmpo t (5) {{~s}} %
gmpo
gms {{~t}}

f(~s) %gmpo g(~t)
f ≈ g (6)

x %gmpo c if ∀f ∈ F : f > c

Hence, there are two differences between �gmpo (the reflexive closure of �gmpo) and %gmpo:
only in %gmpo one can compare multisets using the non-strict multiset ordering, and one
can compare variables against constants of least precedence. This latter feature is similar to
polynomial orderings where x > 0, and it was also added to the Knuth-Bendix-Ordering [17].

The increase of power of �gmpo in comparison to �mpo is due to both new features in the
non-strict relation. For example, using the same precedence as before, f(g(y), s(x)) �gmpo
f(x, h(y)) as g(y) %gmpo h(y) and s(x) �gmpo x. Moreover, f(f(y, z), s(x)) �gmpo f(x, f(a, z))
if a has least precedence, where this decrease is only possible due to the comparison y %gmpo a.

Note that %gmpo is a strict superset of the equivalence relation where equality is defined
modulo ≈ and modulo permutations. For this inclusion, indeed all three inference rules (4-6)
of %gmpo are essential. With (4) and (5) we completely subsume the equivalence relation, and
(6) exceeds the equivalence relation. However, then also (5) adds additional power by using
%gms instead of multiset equality w.r.t. the equivalence relation. As an example, consider
g(x) %gmpo g(a).

Finally note that our definition does not require any explicit definition of an equivalence
relation, one can just use %gmpo ∩ -gmpo. This is in contrast to the RPO in related
formalizations of CoLoR [5] and Coccinelle [7]. In Coccinelle first an equivalence relation
for RPO is defined explicitly, before defining the strict ordering,1 and the RPO of CoLoR
currently just supports syntactic equality.2

The reason that AProVE uses �gmpo for its MPO implementation is easily understood,
as �gmpo is more powerful than �mpo, and the SAT/SMT-encodings of �mpo and �gmpo
to find a suitable precedence are quite similar, so there is not much overhead. Hence, in
order to be able to certify AProVE’s MPO proofs—which then also allows to certify weaker
variants of MPO—we have formally proved that (%gmpo,�gmpo) is a monotone reduction
pair. Concerning strong normalization of �gmpo, we did not use Kruskal’s tree theorem,
but we performed a proof similar to the strong normalization proof of the (higher-order)
recursive path ordering as in [5,7, 15,16] (which is based on reducibility predicates of Tait
and Girard.) By following this proof and by using the results of Sec. 3, it was an easy—but
tedious—task to formalize the following main result. Here—as for the generalized multiset
ordering—the transitivity proof became more complex as one has to prove transitivity and
compatibility of %gmpo and �gmpo at the same time, i.e., within one large inductive proof.

I Theorem 4.1. The pair (%gmpo,�gmpo) is a monotone reduction pair.

Whereas Thm. 4.1 was to be expected—�gmpo is just an extension of �mpo, and it is
well known that (�mpo,�mpo) is a monotone reduction pair—we detected a major difference

1 See http://www.lri.fr/~contejea/Coccinelle/doc/term_orderings.rpo.html.
2 See http://color.inria.fr/doc/CoLoR.RPO.VRPO_Type.html.

R. Thiemann, G. Allais, and J. Nagele 345

when trying to certify existing proofs where one has to compute for a given precedence
whether two terms are in relation. This problem is in P for �mpo but it turns out to be
NP-complete for �gmpo.

I Theorem 4.2. Let there be some fixed precedence. The problem of deciding ` �gmpo r for
two terms ` and r is NP-complete.

Proof. Membership in NP is easily proved. Since the size of every proof-tree for ` �mpo r is
bounded by 2 · |`| · |r|, one can just guess how the inference rules for �mpo have to be applied;
and for the multiset comparisons one can also just guess the splitting.

To show NP-hardness we perform a reduction from SAT. So let φ be some Boolean
formula over variables {x1, . . . , xn} represented as a set of clauses {C1, . . . , Cm} where each
clause is a set of literals, and each literal l is variable xi or a negated variable xi. W.l.o.g. we
assume n ≥ 2.

In the following we will construct one constraint ` �gmpo r for terms `, r ∈ T (F ,V)
where F = {a, f, g, h} and V = {x1, . . . , xn, y1, . . . , ym}. To this end, we define s(l, Cj) = yj ,
if l ∈ Cj , and s(l, Cj) = a, otherwise. Moreover, t+x = f(x, s(x,C1), . . . , s(x,Cm)), t−x =
f(x, s(x,C1), . . . , s(x,Cm)), tx = f(x, a, . . . , a). We define L = {{t+x1 , t

−
x1 , . . . , t

+
xn
, t−xn
}} and

R = {{tx1 , . . . , txn
, y1, . . . , ym}}. Finally, we define ` = g(L) and r = h(R)—where here we

abuse notation and interpret L and R as lists of terms.
We prove that φ is satisfiable iff ` �gmpo r for the precedence where a ≈ f ≈ g ≈ h.

For this precedence, ` �gmpo r iff L �gmpogms R since there is only one inference rule that
can successfully be applied. The reason is that f 6> g and for each term t±xi

of L we have
t±xi
6%gmpo r where t±xi

represents one of the terms t+xi
or t−xi

. To see the latter, assume
t±xi
%gmpo r would hold. Then {xi, y1, . . . , ym} ⊇ V(t±xi

) ⊇ V(r) ⊇ {x1, . . . , xn} being a
contradiction to n ≥ 2.

To examine whether L �gmpogms R can hold, let us consider an arbitrary splitting of R into a
strict part S′ and a non-strict part E′. Notice that t+x %gmpo tx and t−x %gmpo tx, but neither
t+x �gmpo tx nor t−x �gmpo tx: the reason is that for each l and Cj we get s(l, Cj) %gmpo a
but not s(l, Cj) �gmpo a. Hence, each tx of R must be contained in E′. As moreover,
t±xi
�gmpo yj iff t±xi

%gmpo yj we can w.l.o.g. assume that each yj ∈ S′. In total, if L �gmpogms R,
then R must be split into S′ ∪E′ where S′ = {{y1, . . . , ym}} and E′ = {{tx1 , . . . , txn}} and L
must be split into S ∪ E such that all conditions of �gmpogms are satisfied.

At this point we consider both directions to show that φ is satisfiable iff L �gmpogms R.
First assume that φ is satisfiable, so let α be some satisfying assignment. Then we choose

S = {{t+x | α(x) = >}}∪{{t−x | α(x) = ⊥}} and E = L \S. Notice that for each x exactly one
of t+x and t−x is in S, and the other is in E. Hence, for each tx ∈ E′ there is a corresponding
t±x ∈ E with t±x %gmpo tx. Next, we have to find for each yj ∈ S′ some term in S which
is larger than yj . To this end, notice that α is a satisfying assignment, thus there is some
literal xi or xi in Cj which evaluates to true. If xi ∈ Cj then α(xi) = > and hence, t+xi

∈ S
where t+xi

= f(. . . , yj , . . .) �gmpo yj . Otherwise, xi ∈ Cj and α(xi) = ⊥ and hence, t−xi
∈ S

where t−xi
= f(. . . , yj , . . .) �gmpo yj . Thus, in both cases there is some term in S being larger

than yj . Moreover, S 6= ∅ since |S| = n ≥ 2.
For the other direction assume that S and E could be found such that L = S ∪E and all

conditions of �gmpogms are satisfied. Hence for each txi
∈ E′ there is some term t ∈ E satisfying

t %gmpo txi
. Then, t can only be t+xi

or t−xi
since xi ∈ V(tx) and each other term t±xj

with
i 6= j does not contain the variable xi. Thus, for each i exactly one of the terms t+xi

and t−xi
is

contained in E and the other is contained in S. We define the assignment α where α(xi) = >
iff t+xi

∈ S. It remains to show that α is a satisfying assignment for φ. So let Cj be some

RTA’12

346 On the Formalization of Termination Techniques based on Multiset Orderings

clause of φ. Since yj ∈ S′ we know that there is some t ∈ S with t �gmpo yj , i.e., yj ∈ V(t).
There are two cases. First, if t = t+xi

for some i, then by the definition of t+ we know that
yj ∈ V(t+xi

) implies xi ∈ Cj , and hence Cj is evaluated to true, since α(xi) = > by definition
of α. Otherwise, t = t−xi

for some i where now xi ∈ Cj . Moreover, as t−xi
∈ S, we know that

t+xi
/∈ S and hence, α(xi) = ⊥. Together with xi ∈ Cj this again shows that Cj is evaluated

to true. Hence, all clauses evaluate to true using α which proves that φ is satisfiable. J

The following corollary states that NP-completeness is essentially due to fact that �gms
and %gms are hard to compute, even if all comparisons of the elements in the multiset are
given. It can be seen within the previous proof, where the important part of the reduction
from SAT was to define for each formula φ the multisets L and R such that φ is satisfiable
iff L �gmpogms R (and also iff L %gmpogms R).

I Corollary 4.3. Given two orderings � and %, two multisets M and N , and the set
{(x, y, x � y, x % y) | x ∈M,y ∈ N}, deciding M �gms N and M %gms N is NP-complete.

Of course, if the splitting for the multiset comparison is given, then deciding �gms and
%gms becomes polynomial.

All our results have also been generalized to RPO where for every function symbol there
is a status function τ which determines whether the arguments of each function f should be
compared lexicographically (τ(f) = lex) or via multisets (τ(f) = mul).3 Here, the existing
inference rules of �gmpo are modified that instead of f ≈ g it is additionally demanded
that τ(f) = τ(g) = mul. Moreover, there are two additional inference rules for f ≈ g and
τ(f) = τ(g) = lex , one for the strict ordering �grpo and one for the non-strict ordering %grpo.

Again, �grpo is used in AProVE instead of the standard definition of RPO (�rpo,[9]).
However, during our formalization we have detected that in contrast to (%gmpo,�gmpo),
the pair (%grpo,�grpo) is not a reduction pair, as the orderings are not stable. To see this,
consider a precedence where a and b have least precedence, and τ(a) 6= τ(b). Then x %grpo a,
but b 6%grpo a.

Our solution to this problem is to add the following further inference rules which allow
comparisons of terms f(~s) with g(~t) where τ(f) 6= τ(g). In detail, we require that ~t is empty
and for a strict decrease, additionally ~s must be non-empty.

|~s| > 0 |~t| = 0
f(~s) �grpo g(~t)

f ≈ g, τ(f) 6= τ(g)
|~t| = 0

f(~s) %grpo g(~t)
f ≈ g, τ(f) 6= τ(g)

If these inference rules are added, then indeed (%grpo,�grpo) is a monotone reduction pair.
As a consequence, one can interpret AProVE’s version of RPO as a sound, but non-stable
under-approximation of �grpo.

We also tried to to relax the preconditions further, e.g. by allowing vectors ~t of length at
most one. But no matter whether we also restrict the length of ~s in some way or not, and no
matter whether we compared the arguments ~s and ~t lexicographically or via multisets, the
outcome was always that transitivity or strong normalization are lost.

For example, if we add the inference rule that {{~s}} �grpogms {{~t}}, |~t| ≤ 1, f ≈ g, and
τ(f) 6= τ(g) implies f(s) �grpo g(t), then strong normalization is lost: assume the precedence

3 We do not consider permutations for lexicographic comparisons in the definition of RPO as this feature
can be simulated by generating reduction pairs using an RPO (without permutations) in combination
with argument filterings as defined in [1]. In this way, we only have to formalize permutations once and
we can reuse them for other orderings like KBO.

R. Thiemann, G. Allais, and J. Nagele 347

is defined by f ≈ g ≈ h and 3 > 2 > 1 > 0, and the status is defined by τ(f) = τ(h) = lex and
τ(g) = mul. Then f(0, 3) �grpo g(2) �grpo h(1) �grpo f(0, 3) clearly shows that the resulting
ordering is not strongly normalizing anymore.

To summarize, �gmpo and �grpo are strictly more powerful reduction orderings than the
standard definitions of MPO and RPO (�mpo and �rpo). The price for the increased power
is that checking constraints for �gmpo and �grpo becomes NP-complete whereas it is in P
for �mpo and �rpo.

Note that if one would provide all required splittings for the multiset comparisons in
�gmpo and �grpo, then constraint checking again becomes polynomial. However, this would
make certificates more bulky, and since in practice the arities of function symbols are rather
small, certification can efficiently be done even without additional splitting information.

5 SCNP Reduction Pairs

The size-change criterion of [19] to prove termination of programs can be seen as a graph-
theoretical problem: given a set of graphs—encoding for each recursive call the decrease
in size of each argument—one tries to decide the size-change termination condition (SCT
condition) on the graphs, namely that in every infinite sequence of graphs one can find an
argument whose size is strictly decreased infinitely often. If the condition is satisfied, then
termination is proved.

Concerning automation of the size-change principle, there are two problems: first, the
base ordering (or size-measure or ranking function) must be provided to construct the graphs,
and second, even for a given base ordering, deciding the SCT condition is PSPACE-complete.

To overcome these problems, in [3] and [6] sufficient criteria have been developed. They
approximate the SCT condition in a way that can be encoded into SAT.

Another benefit of [6] is an integration of the approximated SCT condition as a reduction
pair in the dependency pair framework (DP framework) [12], called SCNP reduction pair.

Although IsaFoR contains already a full formalization of size-change termination as it is
used in [23], an integration of SCNP reduction pairs in the certification process might be
beneficial for two reasons:

since deciding the SCT condition is PSPACE hard, whereas the approximated condition
can be encoded into SAT, the certificates might be easier to check
the approximated SCT condition is not fully subsumed by the SCT condition as only the
former allows incremental termination proofs in the DP framework

Before we describe our formalization of SCNP reduction pairs, we shortly recall some
notions of the DP framework, a popular framework to perform modular termination proofs
for TRSs. The main data structure are DP problems (P,R) consisting of two TRSs where
all rules in P are of the form F (. . .) → G(. . .) where F,G are symbols that do not occur
in R. The main task is to prove finiteness of the a given DP problem (P,R), i.e., absence
of infinite minimal chains s1σ → t1σ →∗R s2σ → t2σ . . . where all si → ti ∈ P and all tiσ
are terminating w.r.t. R. To this end, one uses various processors to simplify the initial DP
problem for a TRS until the P-component is empty.

One of the most important processors is the reduction pair processor [12, 14]—where
here we only present its basic version without other refinements like usable rules w.r.t. an
argument filtering [12]. It can remove strictly decreasing rules from P , provided that both P
and R are at least weakly decreasing.

I Theorem 5.1 (Reduction pair processor). Let (%,�) be a reduction pair. If P ⊆ �∪% and
R ⊆ % then (P,R) is finite if (P \ �,R) is finite.

RTA’12

348 On the Formalization of Termination Techniques based on Multiset Orderings

Hence, to prove termination it suffices to find different reduction pairs to iteratively
remove rules from P until all rules of P have been removed. Thus, with SCNP reduction
pairs it is possible to choose different base orderings to remove different rules of P.

In the following we report on details of SCNP reduction pairs as defined in [6] and on their
formalization. Essentially, SCNP reduction pairs are generated from reduction pairs (%,�)
via a multiset extension of a lexicographic combination of � with the standard ordering on
the naturals.

I Definition 5.2 (Multiset extension). We define that µ is a multiset extension iff for each
ordering pair (%,�) over A, the pair (%µ,�µ) is an ordering pair over P(A). Moreover,
whenever � and % are closed under an operator op (x (%)y implies op(x) (%)op(y) for all
x, y), then �µ and %µ must also be closed under the image of op on multisets (M (%)µ

N

implies op[M] (%)µ
op[N]).

We also call (%µ,�µ) the multiset extension of (%,�) w.r.t. µ.

For example, gms is a multiset extension and in [3] and [6] in total four extensions
are listed to compare multisets (gms, min, max, and dms). The extension dms is the
dual multiset extension [4] where our formulation is equivalent to the definition in [6].4
The strict relation is defined as M �dms N iff M = {{x1, . . . , xm}} ∪ {{z1, . . . , zk}}, N =
{{y1, . . . , yn}} ∪ {{z′1, . . . , z′k}}, n > 0, ∀i.zi % z′i, and ∀xi.∃yj .xi � yj ; the non-strict relation
%dms is defined like �dms except that the condition n > 0 is omitted.

For SCNP reduction pairs, multisets are compared via one of the four multiset extensions.
And to generate multisets from terms, the notion of a level mapping is used.

I Definition 5.3 (Level mapping [6]). For each f ∈ F with arity n, let π(f) ∈ P({1, . . . , n}×
N).5 We define the level-mapping L : T (F ,V)→ P(T (F ,V)× N) where L(f(s1, . . . , sn)) =
{{〈si, k〉 | (i, k) ∈ π(f)}}.6

I Definition 5.4. Let (%,�) be a reduction pair for terms in T (F ,V). Let µ be a multiset
extension. The ordering pair (%N,�N) over T (F ,V) × N is defined as the lexicographic
combination of (%,�) with the >-ordering on the naturals: 〈s, n〉 %N 〈t,m〉 iff s � t ∨ (s %
t ∧ n ≥ m), and 〈s, n〉 �N 〈t,m〉 iff s � t ∨ (s % t ∧ n > m). The ordering pair (%N

µ,�N
µ) is

defined as the multiset extension of (%N,�N) w.r.t. µ.

In principle, �N
µ∪%N

µ is the part of a SCNP reduction pair that should be used to compare
left- and right-hand sides of P within the reduction pair processor. However, one also needs
to orient the rules in R via %. To this end, two types are introduced in [6] so that the
final ordering incorporates both �N

µ ∪%N
µ for P and % for R. In detail, the signature F is

partitioned into Fb] F] consisting of base symbols Fb and tuple-symbols F]. The set of
base terms is T (Fb,V), and a tuple term is a term of the form F (t1, . . . , tn) where F ∈ F]
and each ti is a base term.

Notice that for a DP problem (P,R) all terms in P are tuple terms and all terms in R
are base terms if one chooses F] to be the set of root symbols of terms in P. Therefore,
SCNP reduction pairs are defined in a way that the ordering depends on whether tuple terms
or base terms are compared.

4 There is a difference in the definition of the dual multiset extension in [3,4] to the definition in [6] which
is similar to the difference between �ms and �gms.

5 In [6] there was an additional condition that π(f) may not contain two entries 〈j, k1〉 and 〈j, k2〉. It
turned out that this condition is not required for soundness.

6 We use the notation L instead of ` for level mappings as in this paper, ` are left-hand sides of rules.

R. Thiemann, G. Allais, and J. Nagele 349

I Definition 5.5 (SCNP reduction pair [6]). Let µ be a multiset extension and L be a level
mapping. Let (%,�) be a reduction pair over T (F ,V). The SCNP reduction pair is the pair
(%L,µ,�L,µ) where the relations %L,µ and �L,µ over T (F ,V) are defined as follows. If t and
s are tuple terms, then t �L,µ s iff L(t) �N

µ L(s), and t %L,µ s iff L(t) %N
µ L(s). Otherwise,

if t and s are base terms, then t %L,µ s iff t % s, and t �L,µ s iff t � s.
Before stating the major theorem of [6] that SCNP reduction pairs are reduction pairs,

we first have to clarify the notion of reduction pair: In [6, Sec. 2] a non standard definition
of a reduction pair is used which differs from Def. 2.1. To distinguish between both kinds of
reduction pairs we call the ones of [6] typed reduction pairs.

I Definition 5.6 (Typed reduction pair [6]). A typed reduction pair is a reduction pair (%,�)
over T (F ,V) with the additional condition that % compares either two tuple terms or two
base terms.

So, the major theorem of [6] states that whenever (%,�) is a typed reduction pair, then
so is (%L,µ,�L,µ) where µ is one of the four mentioned multiset extensions.

The major problem in the formalization of exactly this theorem required a link between
the two notions of reduction pairs since all other theorems working with reduction pairs in
IsaFoR are using Def. 2.1.

At this point, it turned out that there are problems with Def. 5.6. Of course, to use
the major theorem of [6] one needs a typed reduction pair to start from. Unfortunately,
common reduction pairs like RPO are not typed reduction pairs w.r.t. Def. 5.6. For example,
if F ∈ F] then F (F (x)) %grpo F (F (x)), but then % does not satisfy the additional condition
of Def. 5.6, since here two terms are in relation which are neither base terms nor tuple terms.

A possible solution might be to require that (%,�) is just a reduction pair and then
show that (%L,µ,�L,µ) is a typed reduction pair. However, even with this adaptation the
problems remain, since Def. 5.6 itself is flawed: assume (%,�) is a typed reduction pair
and F is a non-constant tuple symbol. Since % is a quasi-ordering (on tuple-terms) it is
reflexive, and thus F (~t) % F (~t) for every list ~t of base terms. By monotonicity of % also
F (. . . , F (~t), . . .) % F (. . . , F (~t), . . .) must hold, in contradiction to the condition that %
only compares base terms or tuple terms. So, there is a severe problem in demanding both
monotonicity of % and the additional condition of Def. 5.6.

Repairing Def. 5.6 by only requiring monotonicity w.r.t. Fb is also no solution, since for
using reduction pairs in the reduction pair processor, it is essential that % is also closed
under F]-contexts.

For a proper fix of SCNP reduction pairs, note that the distinction between tuple terms
and base terms in [6] is solely performed, to have two kinds of orderings: % for orienting
rules in R, and %N

µ and �N
µ for orienting rules of P.

However, there is already a notion which allows the usage of different orderings for
orientation of P and R, namely reduction triples. The advantage of this notion is the fact
that it does not require any distinction between base and tuple terms.

I Definition 5.7 (Reduction triple, [14]). A reduction triple is a triple (%,%>,�>) such that
(%,�>) is a reduction pair and (%>,�>) is a non-monotone reduction pair.

Reduction triples can be used instead of reduction pairs in Thm. 5.1: in [14] it is shown
that whenever P ⊆ �> ∪ %> and R ⊆ % then P can be replaced by P \ �> in the DP
problem (P,R). The proof is similar to the one of Thm. 5.1 and also in IsaFoR it was easy
to switch from reduction pairs to reduction triples. Hence, the obvious attempt is to define
SCNP reduction pairs as reduction triples. As there is no distinction of base terms and tuple
terms, we will not run into problems that are caused by the required monotonicity of %.

RTA’12

350 On the Formalization of Termination Techniques based on Multiset Orderings

I Definition 5.8 (SCNP reduction triple). Let µ be a multiset extension and L be a level
mapping. Let (%,�) be a reduction pair.

We define %> and �> as t %> s iff L(t) %N
µ L(s), and t �> s iff L(t) �N

µ L(s). Then the
SCNP reduction triple is defined as (%,%>,�>).

If we are able to prove that every SCNP reduction triple is indeed a reduction triple, then
we are done. Unfortunately, it turns out that an SCNP reduction triple is not a reduction
triple, where the new problem is that compatibility between �> and % cannot be ensured.
As an example, consider a reduction pair (%,�) which is defined via an RPO with precedence
b > a and status τ(F) = lex . Moreover, let the level-mapping be defined via π(F) = {{〈2, 0〉}}
and take µ = gms. Then F (a, b) �> F (b, a) since L(F (a, b)) = {{〈b, 0〉}} �N

gms {{〈a, 0〉}} =
L(F (b, a)). Furthermore, F (b, a) % F (a, b). However, if �> and % were compatible, then we
would be able to conclude F (a, b) �> F (a, b), a contradiction.

To this end, we finally have defined a weaker notion than reduction triples which can still
be used like reduction triples.

I Definition 5.9 (Root reduction triple). A root reduction triple is a triple (%,%>,�>) such
that (%>,�>) is a non-monotone reduction pair, % is a stable and monotone quasi-ordering,
and whenever s % t then f(v1, . . . , vi−1, s, vi+1, . . . , vn) %> f(v1, . . . , vi−1, t, vi+1, . . . , vn).

Note that every reduction triple (%,%>,�>) is also a root reduction triple provided that
% ⊆ %>—and as far as we know this condition is satisfied for all reduction triples that are
currently used in termination tools. Moreover, root reduction triples can be used in the same
way as reduction triples to remove pairs which has been proved in IsaFoR.

I Theorem 5.10 (Root reduction triple processor). Let (%,%>,�>) be a root reduction triple.
Whenever P ⊆ �> ∪%>, R ⊆ %, and (P \ �>,R) is finite, then (P,R) is finite.

Hence, the notion of root reduction triple seems useful for termination proving. And
indeed, it turns out that each SCNP reduction triple is a root reduction triple which finally
shows that SCNP reduction triples can be used to remove pairs from DP problems.7

I Theorem 5.11. Every SCNP reduction triple is a root reduction triple.

Thm. 5.11 is formally proved within IsaFoR, theory SCNP. Note that this formalization was
straightforward, once the notion of root reduction triple was available: the whole formalization
takes only 310 lines. It also includes the feature of ε-arguments—an extension of size-change
graphs which is mentioned in both [23] and [6]—and it contains results on Ce-compatibility
and compatibility w.r.t. to argument filterings. The latter results are important when dealing
with usable rules, cf. [12] for further details.

Regarding the formalization of multiset extensions—which is orthogonal to the formal-
ization of SCNP reduction triple—we were able to integrate three of the four mentioned
multiset extensions. However, for the multiset extension dms it is essential that the signature
F is finite as otherwise strong normalization is not necessarily preserved, cf. Ex. 5.12. Here,
the essential issue is that without an explicit bound on the sizes of the multiset, strong
normalization is lost (such a bound is explicitly demanded in [3], but not in [6]).

I Example 5.12. In [6] it is assumed that the initial TRS is finite. Hence, also the initial
signature is finite which in turn gives a bound on the sizes of the constructed multisets.

7 An alternative—but unpublished—fix to properly define SCNP reduction pairs has been developed by
Carsten Fuhs. It is based on typed term rewriting. (private communication)

R. Thiemann, G. Allais, and J. Nagele 351

However, for the soundness of SCNP reduction pairs it is essential that the signature of the
current system is finite, since otherwise the following steps would be a valid termination
proof for the TRS R = {a→ a} as there is no bound on the sizes of multisets.

Build the initial DP problem ({A→ A},R).
Replace this DP problem by the DP problem D = ({Ai(x, . . . , x)→ Ai+1(x, . . . , x) | i ∈
N}, ∅) where the arity of each Ai is i. This step is sound, as D is not finite.
Replace D by (∅, ∅). This can be done using the SCNP reduction pair where µ = dms,
π(Ai) = {〈j, 0〉 | 1 ≤ j ≤ i}, and (%,�) is any reduction pair. The reason is that

{{〈x, 0〉, . . . , 〈x, 0〉︸ ︷︷ ︸
i times

}} �dms {{〈x, 0〉, . . . , 〈x, 0〉︸ ︷︷ ︸
i + 1 times

}}.

The demand for a bound on the signature for dms resulted in a small problem in our
formalization, since in IsaFoR we never have finite signatures: for each symbol f we directly
include infinitely many f ’s, one for each possible arity in N. So, in principle there might not
be any bound on the size of the multisets that are constructed by the level mapping. Hence,
we use a slightly different version of dms which includes some fixed bound n on the size of
the multisets: we define M (%) dms-n N iff M (%) dms N and |N | ≤ n ∨ |N | = |M |. Hence,
dms-n is a restriction of dms where either the sizes of the multisets are bounded by n or
where multisets of the same sizes are compared.

Note that the additional explicit restriction of |N | ≤ n ensures strong normalization
even for infinite F or unbounded multisets. The other alternative |N | = |M | is added, as
otherwise reflexivity of %dms-n is lost, for example {{x, . . . , x︸ ︷︷ ︸

n+1

}} %dms-n {{x, . . . , x︸ ︷︷ ︸
n+1

}} would no
longer hold.

In practice, the difference between dms and dms-n can be neglected. As for the certification
we only consider finite TRSs, we just precompute a suitable large enough number n such
that for the resulting constraints dms and dms-n coincide.

We conclude this section by showing that certification of SCNP reduction triples is
NP-hard in the case of µ ∈ {gms, dms} which also implies that deciding �dms is NP-hard.

I Theorem 5.13. Given a SCNP reduction triple (%,%>,�>) and µ ∈ {gms, dms}, the
problem of deciding ` �> r for two terms ` and r is NP-hard.

Proof. For µ = gms we use nearly the identical reduction from SAT as we used in the proof
of Thm. 4.2. To be more precise, for each formula φ we use the exactly the same terms `
and r and the same multisets L and R as before. Moreover, we define the level-mapping
by choosing π(g) = {〈i, 0〉 | 1 ≤ i ≤ 2n} and π(h) = {〈i, 0〉 | 1 ≤ i ≤ n + m}. Then for
L′ = {{〈s, 0〉 | s ∈ L}} and R′ = {{〈s, 0〉 | s ∈ R}} we obtain ` �> r iff L′ �N

gms R
′ iff

L �gms R. It remains to choose � as the MPO within the proof of Thm. 4.2. Then L �gms R

iff φ is satisfiable, so in total, ` �> r iff φ is satisfiable.
Furthermore, it can easily be argued that NP-hardness is not a result of our extended

definition of MPO: we also achieve L �gms R iff φ is satisfiable if we define � by a polynomial
interpretation Pol with Pol(f(x0, . . . , xm)) = 1 + x0 + · · ·+ xm and Pol(a) = 0.

For µ = dms one can use a similar reduction from SAT: satisfiability of φ is equivalent
to ` �> r using the same level-mapping as before, but where now ` = h(x1 ∨ x1, . . . , xn ∨
xn, s(C ′1), . . . , s(C ′m)), r = g(x1, x1, . . . , xn, xn), and � is defined as the polynomial interpret-
ation Pol where Pol(s(x)) = 1 + x and Pol(x∨ y) = x+ y. Here, each C ′i is a representation
of clause Ci as disjunction. J

RTA’12

352 On the Formalization of Termination Techniques based on Multiset Orderings

6 Certification Algorithms

For the certification of existing proofs using RPO and SCNP reduction pairs there are in
principle two possibilities, which we will explain using RPO.

The first solution for certifying s �grpo t is to use a shallow embedding. In this approach,
some untrusted tool figures out how the inference rules of RPO have to be applied and
generates a proof script that can then be checked by the proof assistant. This solution cannot
be used in our case, since CeTA is obtained from IsaFoR via code generation.

The second solution is to use a deep embedding where an algorithm for deciding RPO
is developed within the proof assistant in combination with a soundness proof. Then this
algorithm is amenable for code generation, and such an algorithm is also used in related
certifiers [5, 7] where it is accessible via reflection. Hence, we had to develop a function for
deciding RPO constraints within Isabelle. In our case, we have written a function grpoτ> for
RPO, which is parametrized by a precedence > and a status τ . It takes two terms s and t as
input and returns the pair (s �grpo t, s %grpo t). In fact, we even defined RPO via grpoτ>
and only later on derived the inference rules that have been presented in Sec. 4.

Since we proved several properties of RPO directly via grpoτ> (theory RPO), we im-
plemented grpoτ> in a straightforward way as recursive function. As a result, grpoτ> has
exponential runtime, since no sharing of identical subcalls is performed. To this end, we
developed a second function for RPO, that has been proved to be equivalent to grpoτ>, but
where memoization is integrated—a well known technique where intermediate results are
stored to avoid duplicate computations. In principle, this is an easy programming task, but
since we use a deep embedding, we had to formally prove correctness of this optimization.

To stay as general as possible, the memoized function was implemented independent of
the actual data structure used as memory. The interface we use for a memory is as follows.
We call a memory valid w.r.t. to a function f if all entries in the memory are results of f .
Moreover we require functionality for looking up a result in the memory and for storing a
new result with the obvious soundness properties: storing a correct entry in a valid memory
yields a valid memory and looking up an entry in a valid memory returns a correct result,
i.e., the same result that would have been computed by f .

Assuming we have such a memory at our disposal the idea of memoizing is straightforward:
before computing a result we do a lookup in the memory and if an entry is found we return
it and leave the memory unchanged. Otherwise we compute as usual, store the result in the
memory and return both.

The main difficulty was that all recursive calls of grpoτ> are indirect via higher-order
functions like the computation of the multiset- and lexicographic extension of a relation.
Consequently results of recursive calls to RPO are not available directly, but only in these
higher-order functions. Thus, they have to take care of storing results in the memory and of
passing it on to the next RPO call. Hence, new memoizing versions of all these higher-order
functions had to be implemented and their soundness had to be proved. Soundness meaning
that, when given equivalent functions as arguments, they compute the same results as their
counterparts without memory handling, and that given a valid memory as input they return a
valid memory in addition to their result. For further details we refer to theory Efficient-RPO.

Concerning the required decision procedures for gms and dms which have to find suitable
splittings, we used a branch-and-bound approach.

We tested our certification algorithms by rerunning all experiments that have been
performed in [6]. Here, AProVE tries to prove termination of 1,381 TRSs from the termination
problem database (TPDB version 7.0) using 20 different strategies where in 12 cases SCNP

R. Thiemann, G. Allais, and J. Nagele 353

reduction pairs are used and full size-change termination is tried 4 times. Here, in 16
strategies RPO or weaker orderings have been tried. As in [6] we used a timeout of 60
seconds and although we used a different computer than in [6], on the 20× 1, 381 termination
problems, there are only 8 differences in both experiments—all due to a timeout.

By performing the experiments we were able to detect a bug in the proof output of
AProVE—the usable rules have not been computed correctly. After a corresponding fix indeed
all 9,025 generated proofs could be certified by CeTA (version 2.2).

The experiments contain 432 proofs where the usage of �gms and %gms was essential, i.e.,
where the constraints could not be oriented by �ms and �ms. If one allows equality modulo
the equivalence relation induced by the ordering, then still 39 proofs require �gms and %gms.

Regarding the time required for certification, although it is NP-complete, in our experi-
ments, certification is much faster than proof search. The reason is that our certification
algorithms are only exponential in the arity of the function symbols, and in the experiments
the maximal arity was 7. In numbers: AProVE required more than 31 hours (≈ 4 seconds
per example) whereas CeTA was done in below 6 minutes (≈ 0.04 seconds per example).

The experiments also show that proofs using SCNP reduction pairs can indeed be certified
faster than proofs using full size-change termination. In average, the latter proofs require
50 % more time for certification than the former.

All details of our experiments are available at http://cl-informatik.uibk.ac.at/
software/ceta/experiments/multisets/.

7 Summary

We have studied the generalization of the multiset ordering which is generated by two
orderings: a strict one and a compatible non-strict one. Indeed this generalization preserves
most properties of the standard multiset ordering, where we only detected one difference:
the decision problem becomes NP-complete.

Concerning termination techniques that depend on multiset orderings, we formalized and
corrected an extended variant of RPO that is used within AProVE, and we formalized and
corrected SCNP reduction pairs. Certification of both techniques is NP-hard.

Acknowledgments
We thank Carsten Fuhs for helpful discussions and his support in the experiments, and we
thank the anonymous referees for their helpful comments.

References
1 T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. Theor. Comput.

Sci., 236(1-2):133–178, 2000.
2 F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,

Cambridge, 1998.
3 A. M. Ben-Amram and M. Codish. A SAT-based approach to size change termination with

global ranking functions. In Proc. TACAS ’08, volume 4963 of LNCS, pages 218–232, 2008.
4 A. M. Ben-Amram and C. Soon Lee. Program termination analysis in polynomial time.

ACM Trans. Program. Lang. Syst., 29(1), 2007.
5 F. Blanqui and A. Koprowski. CoLoR: a Coq library on well-founded rewrite relations

and its application on the automated verification of termination certificates. Mathematical
Structures in Computer Science, 21(4):827–859, 2011.

RTA’12

354 On the Formalization of Termination Techniques based on Multiset Orderings

6 M. Codish, C. Fuhs, J. Giesl, and P. Schneider-Kamp. Lazy abstraction for size-change
termination. In Proc. LPAR ’10, volume 6397 of LNCS, pages 217–232, 2010.

7 E. Contejean, P. Courtieu, J. Forest, O. Pons, and X. Urbain. Certification of automated
termination proofs. In Proc. FroCoS ’07, volume 4720 of LNAI, pages 148–162, 2007.

8 N. Dershowitz. Orderings for term-rewriting systems. Theor. Comput. Sci., 17:279–301,
1982.

9 N. Dershowitz. Termination of rewriting. J. Symb. Comp., 3(1-2):69–116, 1987.
10 N. Dershowitz and Z. Manna. Proving termination with multiset orderings. Comm. ACM,

22(8):465–476, 1979.
11 J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic termination proofs

in the dependency pair framework. In Proc. IJCAR ’06, volume 4130 of LNAI, pages 281–
286, 2006.

12 J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and improving
dependency pairs. J. Autom. Reason., 37(3):155–203, 2006.

13 F. Haftmann and T. Nipkow. Code generation via higher-order rewrite systems. In Proc.
FLOPS ’10, volume 6009 of LNCS. Springer, 2010.

14 N. Hirokawa and A. Middeldorp. Tyrolean Termination Tool: Techniques and features. Inf.
Comput., 205(4):474–511, 2007.

15 J.-P. Jouannaud and A. Rubio. The higher-order recursive path ordering. In Proc. LICS ’99,
pages 402–411. IEEE Computer Society Press, 1999.

16 A. Koprowski. Coq formalization of the higher-order recursive path ordering. Appl. Algebra
Eng. Commun. Comput., 20(5-6):379–425, 2009.

17 K. Korovin and A. Voronkov. Orienting rewrite rules with the Knuth-Bendix order. Inf.
Comput., 183(2):165–186, 2003.

18 M. S. Krishnamoorthy and P. Narendran. On recursive path ordering. Theor. Comput.
Sci., 40:323–328, 1985.

19 C. S. Lee, N. D. Jones, and A. M. Ben-Amram. The size-change principle for program
termination. In Proc. POPL ’01, pages 81–92, 2001.

20 T. Nipkow. An inductive proof of the wellfoundedness of the multiset order, 1998. Available
at http://www4.in.tum.de/~nipkow/misc/multiset.ps.

21 T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL – A Proof Assistant for Higher-Order
Logic, volume 2283 of LNCS. Springer, Berlin-Heidelberg, 2002.

22 P. Schneider-Kamp, R. Thiemann, E. Annov, M. Codish, and J. Giesl. Proving termination
using recursive path orders and SAT solving. In Proc. FroCoS ’07, volume 4720 of LNAI,
pages 267–282, 2007.

23 R. Thiemann and J. Giesl. The size-change principle and dependency pairs for termination
of term rewriting. Appl. Alg. Eng. Comm. Comput., 16(4):229–270, 2005.

24 R. Thiemann and C. Sternagel. Certification of termination proofs using CeTA. In Proc.
TPHOLs ’09, volume 5674 of LNCS, pages 452–468, 2009.

	i - Frontmatter
	v - Table of Contents
	vii - Preface
	ix - Conference Organization
	xi - External Reviewers
	xiii - Author Index
	1 - Anai
	2 - Kirchner
	5 - Maneth
	6 - Accattoli
	22 - Accattoli/Dal Lago
	38 - Al-Hassani et al.
	53 - Bjerg Andersen/Grue Simonsen
	69 - Bahr
	85 - Balabonski
	101 - Bertrand et al.
	117 - Bonelli et al.
	133 - Cousineau/Hermant
	149 - Creus/Gascon/Godoy
	165 - Felgenhauer
	176 - Fuhs/Kop
	193 - Gmeiner/Gramlich/Schernhammer
	209 - Ketema
	225 - Lisitsa
	240 - van Oostrom/Zantema
	256 - Sattler/Balestrieri
	272 - Schmidt-Schauß
	288 - Severi/deVries
	305 - Kanovich et al.
	323 - Terui
	339 - Thiemann/Allais/Nagele

