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—— Abstract

We study (un)soundness of transformations of conditional term rewriting systems (CTRSs) into
unconditional term rewriting systems (TRSs). The focus here is on analyzing (un)soundness
of so-called unravelings, the most basic and natural class of such transformations. We extend
our previous analysis from normal 1-CTRSs to the more general class of deterministic CTRSs
(DCTRSs) where extra variables in right-hand sides of rules are allowed to a certain extent. We
prove that the previous soundness results based on weak left-linearity and on right-linearity can
be extended from normal 1-CTRSs to DCTRSs. Counterexamples show that such an extension
to DCTRSs does not work for the previous criteria which were based on confluence and on non-
erasingness, not even for right-stable systems. Yet, we prove weaker versions of soundness criteria
based on confluence and on non-erasingness. Finally, we compare our approach and results with
other recently established soundness criteria for unraveling DCTRSs.
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1 Introduction and Overview

1.1 Background and Motivation

Unconditional term rewriting systems (TRSs) are very well studied and enjoy many nice
properties. However, often TRSs are insufficient to appropriately model computations or
specifications, since the applicability of rules is inherently conditional. Thus, conditional
term rewriting systems (CTRSs) naturally arise in many settings and examples. Since con-
ditional rewriting is known to be much more involved than unconditional rewriting, both in
theory and in practice, an attractive approach to analysis and implementation of CTRSs con-
sists in transforming them into unconditional TRSs where ordinary (unconditional) rewriting
can simulate the original conditional computations.

There exists abundant literature on conditional rewriting, cf. e.g. [16, 3] and also on
transforming CTRSs into TRSs, where computation is sometimes restricted by further mech-
anism like membership constraints, context-sensitivity or imposed reduction strategies so as
to avoid reductions which have no counterpart in the conditional setting (cf. e.g. [6, 8, 14, 13,
17, 19]). Typically, completeness of such transformations (w.r.t. reduction) is easily obtained
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and proved (by construction). However, soundness is much more difficult to analyze and to
achieve. The reason simply is that in the encoding much more fine-grained rewrite compu-
tations are possible and potentially dangerous, since they may lead to reductions between
terms in the original signature which have not been possible in the original CTRS.

Concerning soundness of transformations using restricted versions of unconditional re-
writing various positive and negative results are known. But concerning soundness of trans-
formation approaches using unrestricted unconditional rewriting little was known until re-
cently, and mostly only for the simplest class of CTRSs, namely oriented normal 1-CTRSs,
and only for the simplest class of such transformations, the unravelings ([10]).!

The first important soundness result for unravelings is due to Marchiori [10] who showed
that unraveling left-linear normal 1-CTRSs is sound (cf. also [16]). In [12] and — based on
this paper — recently in [15] Nishida et al. presented an analysis of (a slightly optimized
form of) unraveling deterministic CTRSs (DCTRSs), an interesting subclass of 3-CTRSs,
where they showed that soundness is guaranteed if the transformed system is either left-
linear or both right-linear and non-erasing. In [8] we have shown that a few other sufficient
soundness criteria for the case of normal 1-CTRSs exist, including confluence and non-
erasingness. Moreover, we could show there that instead of left-linearity even weak left-
linearity is sufficient for soundness. In weakly left-linear systems one may have non-left-
linear rules like eq(x, x) — true where the non-linear variables are erased.

Here we extend our analysis for normal 1-CTRSs also to the practically important class
of DCTRSs, and finally compare the approach and results with the ones of [15].

1.2 Contributions

First we discuss simultaneous versus sequential unravelings. A careful analysis reveals that
instead of simultaneously unraveling normal 1-CTRSs as in [16, 8], a sequential unraveling
is also perfectly possible thus enforcing a simulated evaluation of the conditions from left to
right. In the case of DCTRSs sequentially unraveling still yields an ordinary unconditional
TRS, although the original DCTRS may have extra variables in the right-hand sides and
the conditions of rules. A careful analysis reveals that for normal 1-CTRSs all soundness
results for the simultaneous case from [8] extend to the sequential case.

Our main results for transforming DCTRSs into TRSs via sequential unravelings are the
following:

We show that various tempting extensions of the soundness results for normal 1-CTRSs

to DCTRSs do not hold, even for quite restricted sub-classes of DCTRSs, in particular

potential criteria based on confluence and on non-erasingness (as in [8]), cf. Example

3.1).

Our main positive result is that weak left-linearity of a DCTRS is already sufficient for

soundness of its transformed version (Theorem 3.28).

For non-erasingness, we show that we obtain soundness only for a restricted class of

DCTRSs (Theorem 3.16).

Furthermore, we show that right-linearity of the transformed system is also a sufficient

condition for soundness (Theorem 3.11).

Regarding confluence, we only get a weaker soundness criterion w.r.t. reduction to normal

form (Theorem 3.11).

L The very idea of unravelings is actually much older and appears already e.g. in [4], though in a spe-
cialized form (for function definitions).
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The rest of the paper is structured as follows. In Section 2 we present the necessary technical
and conceptual background. The main Section 3 contains the soundness analysis. In Section
4 we discuss related work, especially [12, 15], and promising directions for future research.

Due to space restrictions, for some results we only sketch the proof or give its main idea
and the underlying intuition. Full proofs of these results are provided in the long Technical
Report version [9] of this paper.

2 Preliminaries

We assume familiarity with the basic concepts and notations of abstract reductions systems
(ARSs) and (conditional) term rewriting systems (CTRSs) (cf. e.g. [2], [16], [3]).

2.1 Basics

For the sake of readability we recall some notions and notations: The set of (non-variable,
variable) positions of a term s is denoted as Pos(s) (FPos(s), VPos(s)). root(s) denotes
the root symbol of the term s. Throughout the paper V denotes a countably infinite set of
variables. x,y, z denote variables from V. By Var(s) we denote the set of variables of a term
s. U X ={xy,...,2,} is a set of variables, we denote by X the sequence of all variables
in X in some arbitrary but fixed order (e.g. with: if X C Y, then X isa prefix of 17) By
[s1, ..., 8n|s we mean the number of occurrences of the (variable) symbol x in s1,. .., $p.

A term rewriting system R is a pair (F,R) of a signature and a set of rewrite rules
over this signature. Slightly abusing notation we also write R instead of R (leaving the
signature implicit). A rewrite system R is called non-erasing (NE) if Var(r) = Var(l) for all
Il = r eR, and left-linear (LL) (right-linear (RL)) if every x € Var(l) (z € Var(r)) occurs
exactly once in [ (r) for all rules I — r € R. The function lin : 7 — 7 renames non-linear
variables into fresh new variables while keeping the linear ones.

We denote a rewrite step from a term u to a term v at position p in a rewrite system R
with a rule o from R as u =, r o v. We skip p, R or « if they are clear from the context
or of no relevance. The parallel reduction at positions P C Pos(u) is denoted as u 4 pr v.

The set of one-step descendants of a (subterm) position p of a term u w.r.t. a (one-step)
reduction v = C[s], —, v is the set of positions in v given by {p}, if ¢ > p or ¢ || p;
{g.0'.p" | t|g =lo,l], € Var(l),q.0.p" =p,lo =r|s}, if ¢ < p and (a superterm of) s is bound
to a variable in the matching of u|, with the lhs of the applied rule; and ), otherwise. Slightly
abusing terminology, when u = Cls], —, v with set {p1,...,pr} of one-step descendants
of p in v, we also say that ul, has the one-step descendants v|p,
relation (w.r.t. given derivations) is obtained as the (reflexive-)transitive closure of the one-
step descendant relation. The relation of (one-step) ancestors of a subterm position (w.r.t.
a given reduction sequence) is the inverse relation of the (one-step) descendant relation.

A conditional term rewriting system R (over some signature F) consists of rules | —

in v. The descendant

r < ¢ where [ ¢ V and c¢ is a conjunction of equations s; = t;. Equality in the conditions
may be interpreted (recursively) e.g. as +»* (semi-equational case), as | (join case), or as
—* (oriented case). In the latter case, if all right-hand sides of conditions are ground terms
that are irreducible w.r.t. the unconditional version R, = {l - r |l = r < ¢ € R} of R,
the system is said to be a normal CTRS. Subsequently, unless otherwise stated, we will
always consider oriented CTRSs.

According to the distribution of variables, a conditional rule [ — r < ¢ may satisfy
(1) Var(r) U Var(c) C Var(l), (2) Var(r) C Var(l), (3) Var(r) C Var(l) U Var(c), or (4)
no variable constraints at all. If all rules of a CTRS R are of type (i), 1 < i < 4, we
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say that R is an i-CTRS. Given a conditional rewrite rule I — r < ¢ and a variable z
such that = € Var(r) U Var(c) but ¢ Var(l), we say that x is an extra variable. An
oriented 3-CTRS R is called deterministic if for every conditional rule | — r < s; —*
t1,...,8n —* t,, we have Var(s;) C Var(l,t1,...,t;—1). Note that a normal 1-CTRS is by
definition also a DCTRS. A DCTRS R is right-stable (RS, cf. [18]) if for every conditional
rule I = r < s =% t1,...,8, =% t, we have Var(l, s1,t1,...,8i—1,ti—1,8;) N Var(t;) = 0,
and t; is a linear constructor term or a ground R,-normal form for all 1 < i < n. To
simplify the presentation of some results we will sometimes denote conditional rules as

to = Sp+1 <= 51 —*t1, ..., 8, =" ty.
The rewrite relation of an oriented CTRS R is inductively defined as follows: Ry = 0,
Riz1={loc 5 ro|l—=r<s =% t,...,8, 2 t, € RASsio —>}J tio for all 1 < i < mn},

and = szo —R;-

2.2 Unravelings

There exists abundant literature on transforming CTRSs into unconditional systems. For
a unified parameterized approach to such transformations and the relevant terminology we
refer to [7]. Unravelings as introduced and investigated in [10] are the most simple and
intuitive ones. We present here a sequential version of unraveling for DCTRS.

» Definition 2.1 (sequential unraveling of DCTRSs, [16]). Let R be a DCTRS. For every

conditional rule a: | = r <= 51 =* t1,...,8, =" t, we use n new function symbols U

(i € {1,...,n}). Then « is transformed into a set of unconditional rules as follows:?
Useq(a) = {l = U (s1, X1) , UP(t1, X1) = US(s2,Xa) , .., US(tn, Xp) = 1}

where X; = Var(l,t1,...,t;—1). Any unconditional rule 8 of R is transformed into itself:

Useq(B) = {B}. The transformed system Use(R) = R, = (F', R') is obtained by trans-

forming each rule of R where F' is F extended by all new function symbols.

The simultaneous unraveling of a rule a from R as above just yields one introduction
rule and one elimination rule: Uy, (a) = {I = U%(s1,...,80,X) , U*(ty,... tn, X) = 1}
where X = Var(l,t1,...,th—1).

Unconditional rules remain invariant. The resulting (unraveled) TRS is denoted by
Usim(R) or R,
» Remark (simultaneous versus sequential unraveling). Note that for a normal 1-CTRS R,
Usim(R) is indeed a TRS. However, for a given DCTRS R its simultaneously unraveled
system Ug;, (R) does in general not satisfy the variable condition of TRSs Var(r) C Var(l)
for its rules [ — r.

In [15], an “optimized” version Uopt of Ugeq is presented. In U,y variable bindings are
only passed along the computation process if they are eventually used again. Intermediate
results in other variables bindings are dropped. The conditional rule « is thereby transformed
into Uppe(e) = {I = UP(s1,X1) , US(ty, X1) = US (52, X2) 5 .. , U(tn, X)) = 7} where
X; = V(J,’r‘(l7t1, - ,tl;l) N Var(ti, Sit1stitls - Sn,tn,T).

Symbols from F’ \ F are also called U-symbols. Terms rooted by such symbols are
called U-terms or U-rooted terms. Terms containing U-terms are mized terms (as opposed

2 Using Var(s) as sequence of the variables in s goes back to [16], whereas in [10] the sequence is
constructed from the multiset of variables in s. The former version appears to be generally preferable,
because it is more abstract and avoids additional complications due to “non-synchronization effects”.
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to original terms). Every U-symbol corresponds to a particular conditional rewrite rule of
the original CTRS according to Definition 2.1. Hence, we write U to indicate that Uf
corresponds to the rewrite rule a. Rewrite rules [ — r of an unraveled DCTRS are called
original unconditional rules if neither root(l) nor root(r) is a U-symbol, U-introduction rules
if root(1) is not a U-symbol and root(R) is a U-symbol, U-switch rules (or just switch rules)
if both root(l) and root(r) are U-symbols and U-elimination rules if root(l) is a U-symbol
and root(r) is not a U-symbol.

If a property P is satisfied in the transformed DCTRS Useq(R) (Uppi(R)) then R satisfies
the ultra-property, ultra-P w.r.t. Useq (Uope) (cf. [10]) or short U-P (U,p-P). Observe, that
U,p-P is in many cases different from U-P. While U-LL is equivalent to U,pe-LL, Ugpe-RL
and U,,.-NE are more general than U,e,-RL and Us.,-NE, respectively.

From now on, unless stated otherwise, U is the unraveling U,.,, R = (F, R) is a DCTRS
and R’ = (F', R') denotes its unraveled TRS (using U). By 7 we mean the terms over the
original signature F and by 7’ the terms over the extended signature F'.

For proof-technical reasons, in particular in order to show that unraveled systems are

)

not too general and do not enable “too many” reductions, we use a function that maps
mixed terms to original terms. The idea of this function is to recursively substitute for
each U-term the left-hand side of the corresponding conditional rule instantiated by the

substitution which is determined by the variable bindings stored in the U-term.

» Definition 2.2 (translate backwards (tb)). Let R = (F, R) be a DCTRS. The mapping
tb: 77 — T (read “translate back”) which is equivalent to Ohlebusch’s mapping V (]16,
Definition 7.2.53]) is defined as follows:

x ift=2€V
tb(t) = f(tb(tl), o ,tb(tar(f))) ift= f(tl, e 7tar(f)) and f e F

lo ift= Uja(u,vl, ...,vg) and ;o = tb(v;) for 1 <i <k
where « is the rule [ — r < c and Var(l) = 21,...,zp (1 <k <k).

Observe, that tb cannot be sensibly defined for U,,¢, since in U,,; not all variable bindings
of the left-hand side of rules are preserved in U-terms.

In this paper we focus on the property of soundness of unravelings which is dual to
the (easier to obtain) property of completeness. An unraveling is said to be complete for
reduction (or simulation-complete) for a class of CTRSs if for every CTRS R of this class,
u —% v for u,v € T implies u —%, v. An unraveling is sound for reduction (or simulation-
sound) if w —%, v implies u —% v. We use the notion of soundness for reduction to normal
form, which means that w —%, v with v being a normal form implies © =% v. Given a
particular CTRS R, we also say that the unraveling is complete (sound) for R or, slightly
abusing terminology, that R’ is complete (sound) w.r.t. R. For a more thorough discussion
of the terminology used for (preservation properties of) transformations we refer to [7].

3 Saufficient Criteria for Soundness of Unraveling DCTRSs

For the case of a normal 1-CTRS R it was shown in [8] that R can soundly be (simultan-
eously) unraveled provided that it is either confluent, or non-erasing, or weakly left-linear or
contains only ground conditions. A careful inspection of the proofs in [8] reveals that when
using sequential instead of simultaneous unraveling the same results can also be proved in
essentially the same way.
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The main additional complication is here that when analyzing reduction sequences in
the sequential unraveling case one now has not just one introduction and one elimination
step for a: l - r < sy =" t1,...,8, =" t,, but also n — 1 intermediate switch rule steps of
the shape U{’(ti,)?i) — U{j_l(siﬂ,)?wrl)-

When considering general DCTRSs instead of normal 1-CTRSs, there are two major
sources of complication. First, right-hand sides of conditions of rules in DCTRSs need not
be ground normal forms, and second, these right-hand sides may introduce extra variables
that do not occur in the left-hand side of the conditional rule. Both of these properties
indeed cause unsoundness in general even for e.g. confluent and U-NE systems (cf. Example
3.1 below). Thus, it is necessary to restrict our results to certain classes of DCTRSs (cf. e.g.
Theorems 3.6, 3.11 and 3.16 below).

3.1 Negative Results

Let us consider potential criteria for soundness of unraveling DCTRSs, namely confluent
(CR) DCTRSs and DCTRSs R where R’ is non-erasing (i.e., R is U-NE). Unfortunately,
both of these criteria do not extend to DCTRSs.

» Example 3.1. Consider the U-NE and RS DCTRS R = R; U Ry U R3 where

a—c  s(c) > tk) Ro ={g(z,z) = h(z, )}
Ri= X N\
b—d t(0) Rs = {f(z) = (z,y) = s(z) =" t(y)}

Unraveling of R yields R =Ry U Ro U {f(z) = Ud(s(x),x) , UX(t(y),z) — (x,y)}. R’
gives rise to the derivation

9(f(a), £(b)) 4 9(UT'(s(a), a), U
= h(U7(s(¢), ), Ui (s(c), d)) = h(UT (¢(k), d), U (t

=g
—
V)
—~
=
~
=
~—~
~—
*
<
—~
e
—
V)
—
)
~—
=
—
V)
—
)
~
N
~

However, to get this reduction g(f(a), f(b)) =* h({d, k), (d,l)) in R, we need a term v € T
such that (1) s(v) =% t(w) where w € {k,l}, (2) a =% v and b =% v, and (3) v =% d. By
(1) and (2) v = ¢, yet this contradicts (3).

The DCTRS RU{ ¢ — e+« d, k = e+ 1, s(e) = t(e) } is even confluent. Note
that this DCTRS is even operationally terminating (or, equivalently quasi-decreasing), cf.
[6, 17]. Although h((d, k), (d,1)) can now be reduced to h({e,e), (e, e)) and g(f(a), f(b)) =%
h({e,e), e e)), still g(f(a), f(b)) A% h({d,k),(d,1)) by the same argument as above.

Example 3.1 shows that neither confluence nor U-NE are sufficient for soundness of
unraveling DCTRSs, even if the system is right-stable and terminating.

For NE, the reason why an extension of the proof approach of [8] to (RS) DCTRSs is
not possible in the general case, lies in the fact that for the construction in [8] we used a
“translation forward” tf from reductions in the unraveled system to reductions in the original
system. From an intermediate stage of evaluating the conditions of the unraveled version
of some rule | — r <= ¢ we would need to calculate the final substitution for the right-hand
side. However, this is in general impossible due to the incremental left-to-right computation
character in DCTRSs. In fact, in Example 3.1, from the term Uf*(s(c),¢)) (with = ¢) we
get two possible instances for y, namely k£ and [. Therefore tf cannot be sensibly defined
here.
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3.2 Confluence

Considering again Example 3.1 (the confluent version), we see that in the unsound R'-
reduction g(f(a), f(b)) —% h({d,k),{(d,1)) the result is not a normal form. If we only
consider reduction from original terms to original terms which are normal forms then we
can indeed guarantee soundness in the case of confluent right-stable DCTRSs. The proof
works similar to the one for confluent normal 1-CTRSs, however, now instead of normality
we exploit the fact that the final result of the reduction considered is a normal form.

Due to the specific structure of rules in unraveled DCTRSs, whenever there is an R’

reduction D: s —* US(v, 21, ...,7,)0 where s € T, then intuitively the reduction sequences
5;0; — t;o;41 that explicitly satisfy the conditions s; —* ¢; for all 1 <14 < j of the conditional
rule a: | = r < sy =% t1,...,8, =" t, must have occurred as subreductions of D (for some

substitutions ¢; where xo; =%, xo;4+1 for all ¢ and all ). This observation is formalized in
the following lemma (which is used e.g. in the proof of Lemma 3.4 below).

» Lemma 3.2 (extraction of condition evaluation). Let R be a DCTRS. If u; =g/ us =g
R Uy RV (U €T ), vlp = U]‘?‘(vh...,vm) for some position p and o =1 — r &<
s =" t1,...,8, =" tn, then there exist substitutions oy,...,0; such that

S;05 —)i;z/ ti0itr1 fOT’ alll <1< 7, 505 —)%, v1; and

x € Dom(o;) N Dom(o;41) implies xo; =%, xoip1 for all1 <i < j; and

if US(tj,x,...,xm) is the left-hand side of the unique rule of R’ defining U, then

205 =5, v; for all2 <1 < m.
Moreover, for each single reduction step s =g/ t in the reductions s;0; =%, t;0i41, 5;0; =5/
V1, TO; =R TO41 and ;05 —R, Ui, there exists an index k < n and a position q such that
Uglg = 8 and Ugy1|q = T.

Proof. Straightforward by induction on the length of D. <

For the case of normal 1-CTRSs, confluence of a DCTRS R is a sufficient criterion for
soundness of R’ (cf. [8]). Normality of right hand-sides of conditions is vital for this result,
because it means that if a conditional rule a: | = r < s17 =" t1,...,s, = t, is applicable
to a term lo € T, then it is also applicable to a term lo’ € T if xo —% xo’ for all variables
x. This is because applicability of a to lo means that s;oc =% t; for all 1 <17 < n. Moreover,
we have s;0 =% s;0’ and thus by confluence and normality of ¢; we obtain s;0’ —% ¢; for
all1 <i<n.

This observation leads to the conjecture that confluence of a right-stable DCTRS is suf-
ficient for soundness of R’, because for right-stable DCTRSs right-hand sides of conditions
are either ground normal forms or constructor terms with fresh variables. Hence, we have
sio’ — t;0; for all 1 < ¢ < n and some substitution #, provided that | — r < s —*
t1,...,8, =™ t, is a right-stable rewrite rule, s,0c —% ;6 for all 1 <i <n and zoc —% zo’
for all variables z. Indeed, as the following lemmas and Theorem 3.6 below show, R’ is
sound w.r.t. reductions to normal forms, provided that R is confluent and right-stable.

The following lemma states a monotonicity property of tb w.r.t. joining reductions. It is
comparable to Lemma 3.8 in [8].

» Lemma 3.3. Let R = (F,R) be a DCTRS. If s =,/ t and tb(s|,) Ir tb(t|,), then
th(s|q) I= th(t|q) for every descendant t|g of s|q.

Proof Sketch. For the interesting case of p < p; we use induction on the length of ¢ where
p-9 = pi. |
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The next lemma is the key lemma for proving soundness of R’ for reduction to normal
form of confluent right-stable DCTRSs.

» Lemma 3.4 (technical key lemma). Let R = (F, R) be a confluent right-stable DCTRS and
let D:uy —p, R U2 —py R - —pn_1, R Un De a R’ reduction sequence where uq € T and
u; € T' for all 1 <i <n. Then tb(u;|p,) Ir tb(witilp,) for all1 <i < n.

Proof Sketch. Proof by induction on the length of D and case distinction on the rule applied
in the last step of D. <

» Lemma 3.5. Let R = (F,R) be a confluent right-stable DCTRS and let D: u; —p, =/
Uy —py R - —po_1 R Un be a R' reduction sequence where uy,u, € T, u; € T' for all
1 <i<n and u, is a normal form. Then u; —% tb(uy).

Proof. By Lemma 3.4, tb(u;|p,) = tb(uit1lp,) for all ¢ € {1,...,n — 1}. By Lemma 3.3,
tb(uile) dr tb(uit1le). Since wu, is a normal form and by confluence of R this implies
U =5 th(uy,). <

» Theorem 3.6. Let R be a confluent right-stable DCTRS. Then U, is sound for reduction
to normal form.

Proof. Straightforward by Lemma 3.5. |
Note that several results for verifying confluence of DCTRSs exist, cf. e.g. [18, 1].

» Example 3.7. Consider the DCTRS R = Rgijv U Rsup U Rieq Where

R div(0,5(y)) — (0,0)  div(s(z), s(y)) — (0,5(x)) <= leq(s(y), s(x)) =" false
T div(s(2), () — (s(a). ) < leq(s(y), s(x)) =" true, div(z — y, s(y)) =" {g.7)
Reww =1 s(x) —0— s(x) 0—s(y) —0 s(z) —s(y) >x—y }
Rieq = { leq(s(x),0) — false leq(0,s(y)) — true leq(s(x),s(y)) — leq(x,y) }
performing a simple division with remainder. Transforming the conditional rules yields
div(s(x), 5(v)) = U (lea(s(y), (@), 3,y)  div(s(@), s(v) = UL? (lea(s(y), 5(z)), 2, )
U™ (false, z,y) — (0, s(x)) Uy (true, z,y) — Uy (div(z — y, s(y)), =, y)
U;* (@, ), 2,y) — (s(q),7)
R is right-stable, left-linear, quasi-reductive (cf. [1, 17]), strongly deterministic ([1]) and

has infeasible critical pairs. Thus it is locally confluent and confluent (using either [18] or
[1]). Hence, by Theorem 3.6 we obtain that R’ is sound for reduction to normal form.

3.3 Right-Linearity

In the case of normal 1-CTRSs R it was shown in [8] that right-linearity of R’ implies that all
left-hand sides of conditions are ground terms. Moreover, since right-hand sides of conditions
in normal 1-CTRSs are ground terms as well, such systems are of limited practical interest.
For the case of DCTRSs, the situation is slightly more interesting, since, while left-hand
sides of conditions must still be ground terms in order to guarantee right-linearity of the
unraveled unconditional system, right-hand sides of conditions may contain variables. In
this section we show that for a DCTRS R, right-linearity of R’ implies soundness of R’.

» Lemma 3.8. Let R = (F,R) be a DCTRS. If s =, r/ t and th(s|,) =% tb(t|,), then
tb(s|q) =% th(t|y) for every descendant t|y of s|q.
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Proof. Analogous to Lemma 3.8 in [8]. <

» Lemma 3.9. Let R = (F, R) be a DCTRS such that R’ is right-linear and let D: u; —p, »/
Ug —rpy R/ - —Ppn_1 R Un be a R’ reduction sequence where u; € T and u; € T’ for all
1 <i<mn. Then tb(uilp,) =% th(uit1lp,) for all 1 <i < n.

Proof Sketch. Proof by induction on the length of D and case distinction on the rule applied
in the first step of D. <

» Lemma 3.10. Let R = (F, R) be a DCTRS such that R’ is right-linear and let D: uy —p, »/
Us —p, R - —pa_ R Un be a R’ reduction sequence where wy € T, uw; € T’ for all
1 <i<mn. Then us —% tbh(u,).

Proof. By Lemmas 3.9 and 3.8 we obtain u; = tb(u1) =% tb(uz) =% ... =% th(u,). <«
» Theorem 3.11. Let R be a Useq-RL DCTRS. Then, Useq is sound for reduction.

Proof. Straightforward by Lemma 3.10. <

3.4 Non-Erasingness

In [8] we proved soundness of Ugy, for NE normal 1-CTRSs. For our proof it was essential
that U-terms are not erased but properly eliminated. In order to ensure this, U-NE is
sufficient (which is equivalent to NE for normal 1-CTRSs).

Yet, we cannot extend our result for normal 1-CTRSs to DCTRSs because we used a
translation forward (tf) that cannot be defined in an appropriate way if the rhs of a rule
contains extra variables. In order to prove soundness using tf we therefore restrict ourselves
to 2-DCTRSs. Example 3.1 shows indeed that U.,-NE (and also U,,:-NE) is not a sufficient
criterion for soundness.

U,pe-NE is more general than U-NE and tf can be properly defined for U, for 2-DCTRSs.
Hence, we show our result for U,p;. Since U is sound for a DCTRS R if U, is (cf. [15,
Theorem 4.19]), this also yields soundness of U.

Rules that use the same variable in the lhs and the rhs of conditions can still be a
source of unsoundness. A more thorough analysis of CTRSs containing such rules shows
that the following property is sufficient to exclude such cases of unsoundness: Var(t;) N
Var(tg, . ..,t;—1) = 0 for all conditional rules v : tyg — sp41 < 81 —* t1,...,8, = t,. This
property resembles right-stability but is slightly more general since it allows non-linear rhs’s
in conditions. In the following we will refer to DCTRSs with this property as right-separated
DCTRSs.

To prove soundness of U,y for Ugypi-NE, right-separated 2-DCTRSs we first define the
function “translate forward” for Ugp;:

» Definition 3.12 (translation forward). Let R = (F,R) be a 2-DCTRS. The mapping
tf: 7/ — T is defined by

x ift=xe€V
tf(t) = ¢ f(tF(t), ... tf(tacp))) it = f(t1,... tap)) and f € F

ro if t = Us*(u,v1,...,v) and ;0 = tf(v;) for 1 <i <k
where o is the rule | — r < s1 =% t1,...,8, =" tn, )?j = x(,...,7, and X; =
Var(lLty, ... tj—1) NVar(t;, Sj11,ti41, -5 Snytn,T).

By the definition of U,,;, X; contains all variables occurring in r for 2-DCTRSs so that
tf is well-defined. The proof now follows mainly the proof for NE 1-CTRSs in [8]:
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» Lemma 3.13 (monotony property of tf). Let R = (F,R) be a 2-DCTRS. If s —, g t for
s,t € T' and tf(s|,) =5 tf(t],), then tf(s|q) =% tf(t|y) for every descendants t|q of s|q.

Proof Sketch. Analogous to Lemma 3.13 in [8]. <

» Lemma 3.14 (technical key result for U,,,-NE right-separated 2-DCTRSs). Let R = (F, R)
be an U,p-NE and right-separated 2-DCTRS and let D : uy —p, m Uz —p, R/ -+ Up be
a derivation where u, € T and u1,...,un—1 € T, then tf(u;lp,) =% tf(wit1lp,) for all
ie{l,...,n—1}.

Proof Sketch. Proof by induction on n and case distinction on the rule applied in the first
rewrite step. The interesting case is where the first rewrite step is an introduction step of a
conditional rule « : tg — $p1+1 < 51 —* t1,...,8, —=* t,. Since R’ is NE, all U-terms are
eventually eliminated. By the induction hypothesis and Lemma 3.13, we inductively find
matchers such that all conditions are satisfied. Because of right-separateness there are no
conflicts with extra variables in the rhs of conditions. <

» Lemma 3.15. Let R be a Uype-NE, right-separated 2-DCTRS, and D : uy —p, »/ U2 —>py R
- uy be a derivation such that u, € T and uq, ..., up—1 € T', then tf(u1) =% Up.

Proof. By Lemma 3.14, tf(u;|p,) =% tf(uit1]p,) for all ¢ € {1,...,n — 1}. By Lemma 3.13,
tf(u;le) =5 tf(uit1]e). Since tf(uy,) = up, tf(u1) =% up. >

» Theorem 3.16 (Soundness for reduction for U,y ). Let R be an U,y -NE and right-separated
2-DCTRS, then Uyp: s sound for reduction.

Proof. Straightforward via Lemma 3.15. |

3.5 Weak Left-Linearity

In [8] the class of weakly left-linear (WLL) normal 1-CTRSs has been introduced. Weakly
left-linear normal 1-CTRSs may, in addition to left-linear rules, contain non-left-linear rules
provided the variables occurring more than once in the the lhs of such a rule do not occur in
its rhs at all. It was shown in [8] that for weakly left-linear normal 1-CTRSs Uy, is sound.

For a DCTRS R the situation is significantly more involved, since extra variables may
occur in rhs’s of multiple conditions of one conditional rewrite rule (which indeed can not be
the case for normal 1-CTRSs). In this case, R’ can be non-left-linear (indeed non-weakly-left-
linear according to Definition [8, 3.22]) even if R is left-linear and the rhs’s of all conditions
are linear. Hence, WLL of a DCTRS R does not necessarily imply WLL of R’ (and this is in
sharp contrast to the situation of normal 1-CTRSs).

Hence, the notion of WLL from [8] is inadequate for our treatment of DCTRSs and we
instead introduce and use a generalized notion of WLL. The basic idea of our definition of
WLL for DCTRSs is to count simultaneous occurrences of variables in the rhs’s of conditions
and the lhs of a conditional rule, thus anticipating non-left-linear rules in the transformed
systems. Variables that occur more than once in the lhs of a conditional rule and the rhs’s
of conditions should not occur at all in lhs’s of conditions or the rhs of the conditional rule:

» Definition 3.17 (Weakly left-linear DCTRSs). A DCTRS R is weakly left-linear (WLL) if
for every rule a : tg = Spo4+1 <= S1 =" t1,...,8n, = tn, in R and all variables x € Var(a),
lto, - - - atna‘x >1 = x¢Var(sy,... 75na+1)-
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Note that the version of weak left-linearity of [8] and the one from Definition 3.17 are
compatible in the sense that WLL normal 1-CTRSs according to [8] are also WLL according
to Definition 3.17. Hence, whenever we speak of WLL we mean the notion of Definition 3.17.

Given a WLL DCTRS R, R’ is not necessarily WLL (according to Definition 3.17). How-
ever, WLL of a DCTRS R does imply that in introduction or switch rules I — r, every
non-linear variable in [ is linear in r, and elimination rules I — r erase all such variables.

In [8], we showed soundness of WLL normal 1-CTRSs by using a back translation w.r.t.
derivations called tbp to translate derivations in the transformed CTRS into derivations in
the original CTRS. For DCTRSs R, we are using a slightly modified version of tbp that
takes into account potential non-weak left-linearity of R’:

» Definition 3.18 (th). Let D :uy —p1, R U2 Ppa R pa_1, R Un (U1 S T), then tbp
is defined as
x if u;|, =2 €V
tbp(i —1,p") if root(u;|p) = US* and p’ is the unique one-step-ancestor of p
tbp(i,p) = ¢ f(tbp(i,p.1),...,tbp(i,p.ar(f))  if root(u;|,) = f, f € F, and
tbp(i,p.1),...,tbp(i,p.ar(f)) are defined
undefined otherwise

tbp is undefined for U-terms with multiple one-step ancestors or terms containing such
U-terms. This can happen if we apply a non-left-linear introduction or switch rule. After
applying an introduction rule I[z;, z;] — U{(s1,21,...,2k), tbp would be undefined for
U-terms in the ¢ + 1st argument in U{*-rooted terms. In the following, we will refer to such
arguments in U-terms as non-traceable arguments for Uf*.

Formally, the ith argument of the symbol U* is a non-traceable argument for U, if in the
introduction or switch rule I — Uf(sj,21,...,2x) in R', |l|,_, > 1, or the rule is a switch
rule, | = US4 (tj—1,21,..., 7)) and the ith argument of Us* | is a non-traceable argument
for Us_ ;. If the ith argument of Uy* (2 < i < ar(U;")) is not a non-traceable argument, it
is a traceable argument (for Ug). Analogously, a term ul,; (i € N) is a (non-)traceable
argument, if root(ul,) = U;* and the ith argument of U is a (non-)traceable argument.

Our goal is to show that we can translate a derivation D of a transformed WLL DCTRS
R’ into a derivation of the original DCTRS using tbp. Yet, tbp might be undefined for
terms occurring in D. To illustrate this problem, consider a (introduction or switch) rule
l[z,x] — Uf(sj, ) (such that either j = 1, or = is not a non-traceable argument for U ;).
Consider the derivation l[u,u] =g/ U (s,u) =g/ Uf(s,v). tbp is not defined for U-terms
in v and v. We therefore cannot backtranslate the rewrite step u — v using tbp.

Our basic idea to remedy this problem is to show that arbitrary R’ reductions (starting
from old terms) can be reconstructed into R’ reductions (having the same starting and
end term) such that no rewrite step occurs in a non-traceable argument (of any U-term).
Intuitively, a derivation I[u,u] — Uf(s,u) — U*(s,v) is rebuilt by moving rewrite steps in
non-traceable arguments ahead: l[u, u] 4 l[v, v] — Uf*(s,v).

However, in general we cannot rebuild all derivations in WLL DCTRSs in this way: If
a non-traceable argument has multiple descendants, we cannot move such rewrite steps
ahead because they are not unique: Consider the rule I'[z] — '[2,2] and the derivation
Ullfu, u]] = V[U(s,u)] = 7'[US(s,u), U (s, u)] p 7'[US(s,v1), Ust (s, v2)].

The rewrite steps u — v; and w — vy occur in non-traceable argument positions of
Us*. In order to move these rewrite steps ahead, we first have to avoid rewrite steps that
duplicate non-traceable arguments of U-terms. To achieve this, we further rearrange re-
duction sequences by moving applications of duplicating rewrite rules ahead of reductions
in non-traceable arguments of involved U-terms. For instance, in a derivation I'[l[u, u]] —
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VU (s,u)] = r'[US(s,u), Us* (s, u)] we shift the rewrite step multiplying the U-terms ahead
in the following way: I'[I[u, u]] — 7'[[[u, u], [[u, u]] 4 r'[US*(s,u), U (s,u)]. Then we trans-
form 7' [I[u, u], lu, u]] 4p 7'[US (s, u), U (s, w)] 4p 7'[US(s,v1), U (s, v2)] into 7' [I[w, u], [[u, u]]
1 7' [lvr, v, v, vo]] Hp 7'[US(s,v1), Us*(s,v2)]. Note that in the final reduction sequence
no rewrite steps take place in non-traceable arguments of any U-term.

The following Lemma shows that we can transform a derivation s[u] — s[v] — t[v,v]
that duplicates a U-term containing a non-traceable argument into s[u] — t[u, u] 4 t[v,v].

» Lemma 3.19 (shifting ahead rewrite steps duplicating U-terms). Let R be a WLL DCTRS,
u,v,w € T’ be such that D : uw —, g+ v —4r W where v|, ,; is a non-traceable argument,
p' <p, either q || p’ or g < p', and such that there are no one-step descendants of v|, inside
a non-traceable argument. Then, there is a derivation u —g/ wlulylp Hr/ wVlplp = w
where P is the set containing all one-step descendants of v|, in D.

Proof Sketch. In the interesting case that g < p’, the rule [ — r applied in the rewrite step
v — w is linear for v|,. We therefore can apply | — 7 to ul,. |

In the following lemma, we show that we can transform a derivation su, u] — t[u] — ¢[v]
into s[u,u] 4 s[v,v] — t[v], thereby eliminating the rewrite step in the non-traceable
argument in ¢.

» Lemma 3.20 (shifting ahead rewrite steps in non-traceable arguments). Let R be a WLL
DCTRS, u,v,w € T’ be such that D: v —p g/ v —qr’ w where v|g,; (¢'.i < q) is a non-
traceable argument and the only one-step-descendant of all its one-step-ancestors, and either
p<q.iorpl ¢.i. Then, there is a derivation u 4pr: ulw|so —pr vw|glq = w where Q
is the set containing all one-step ancestors of v|q in D.

Proof Sketch. In the interesting case that p < ¢'.i, the rule | — r applied in the rewrite
step u — v is right-linear for v|,, so that can apply the rewrite step v|, — w|, to all one-step
ancestors of v|,, and then apply [ — . |

By repeatedly applying these two Lemmata, we can eliminate all rewrite steps in non-
traceable arguments:

» Lemma 3.21 (elimination of rewrite steps in non-traceable arguments). Let D : u3 —p, »
Up —p, R Uy e a derivation in R', then there is a derivation D': uy = u) —, 'R
ubh —pl R/ ceeuh, =y, such that there are no rewrite steps in non-traceable arguments.

Proof Sketch. We prove this result by an inductive argument over the number of rewrite

th rewrite step is the first one inside

steps in non-traceable arguments in D: Assume the m
a non-traceable argument. We repeatedly apply Lemma 3.19 to the derivation D : u; —%
Um+1 and obtain a new derivation D’ : u; —%, u}, 4pr’ wm+1 such that no non-traceable
arguments are duplicated. We then can repeatedly apply Lemma 3.20 and thereby eliminate

all rewrite steps in non-traceable arguments. <

The following example shows how we can rebuild a complex derivation such that it does
not contain rewrite steps in non-traceable arguments:

» Example 3.22. Consider the WLL DCTRS R = R1 U Rs where

R1 = {between(z,y, z) — true < up(z) =" y,down(z) =" y}

R, — {up(x) —x down(zx) — dup(z) — <x,x>}
up(x) — up(s(x)) down(s(z)) — down(x)
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between(zx,y,z) — U (up(x), x,y, z)
It is unraveled into R’ = Uiy, z,y, z) = Us (down(z),x,y,2) p UR2
Us'(y,x,y, z) — true

We obtain the derivation

dup(between(0,up(0), s(0))) — dup(ui (up(0), 0, up(0), s(0))) —
= dup(uz(down(s(0)),0,up(0),s(0))) —
= (ua(down(s(0)),0,up(0), s(0)), uz(down(s(0)), 0, up(O), (0))) —*
—*  (uz(down(s(0)),0,0, s(0)), uz(down(s(0)), 0, s(0), s(0)))

We want to move the rewrite steps in the non-traceable argument ahead of the application
of the non-left-linear rule. Yet, the term up(0) has two different descendants 0 and s(0) in
the last term of the derivation. In order to obtain a derivation without rewrite steps in
non-traceable arguments, we move the introduction of the non-traceable argument behind
the application of the duplicating rule (repeated application of Lemma 3.19). Then, we
delay the introduction of the non-traceable argument (repeated application of Lemma 3.20):

dup(between (0, up(0), s(0)))
dup(between(0, up(0), s(0))) / \

(between(0, up(0), s(0)), between(0, up(0), s(0)))

\

dup(uy (up(0),0,up(0), 5(0)))
\ (between(0, 0, s(0)), between(0, s(0), s(0)))
dup(uz(down(s(0)),0,up(0), s(0)))

/ \ - (UI(UP(& ): 0/0 5(0)), ul(u7( ),0, s

(ua(down(s(0)), 0, up(0), s(0)), uz(down(s(0)), 0, up(0), s(0)))

,'\/

5(0), 5(0)))

(u1(0,0,0, 5(0)) ),0,5(0),5(0)))

(uz(down(s(0)),0,0,s(0)), uz(down(s(0)), 0, s(0), s(0))) \
(uz(down(s(0)),0,0,5(0)), uz(down(s(0)), 0, s(0), s(0)))

After rebuilding the derivation, we can use the same proof structure we already used in
[8], although we have to consider switch rules and take care that tbp is still undefined for
U-terms in non-traceable arguments. Lemma 3.25 shows that we can use tb for such cases.

First we show monotony of tbp:

» Lemma 3.23 (monotony of thp). Let D: uy —p, r U2 —ps R *** —p,_, R’ Un bE @
derivation without rewrite steps in non-traceable arguments such that tbp(i,p;) =75 tbp(i+
L,p;) forallie{l,...,n—1}. If u|, (p € Pos(u;)) has a one-step-descendant w;+1|, and
tbp(i + 1,p’) is defined, then tbp(i,p) —% tbp(i + 1,p).

Proof Sketch. By case distinction on p and p;. For the interesting case p < p;, we use
induction on the length of ¢, determined by p.q = p;. |

The next auxiliary lemma helps us to extract derivations inside U-terms:

» Lemma 3.24 (Extraction of U-terms). Let D: uy —p, ' Uz —p, R —Ppp_1, R Un
be a derivation without rewrite steps in non-traceable arguments such that tbp(i,p;) —%
tbp(i+1,p;) foralli € {1,...,n—1}. Let upm|q = U (v, 217, ..., 2x,T) such that tbp(m, q)
is defined, then (1) (extraction of [extra] variables) if tbp(m,q.(i + 1)) is defined, then
tbp(m —1,q;) =% tbp(m,q.(i+1)) where q; is a one-step ancestor of um|q.it1) = ;7 (1 <
i < |Xj]), and (2) (extraction of conditional arguments) if um—1ly = U (u,x10,...,210),
then tbp(m —1,¢'.1) =% thp(m,q.1).

Proof. Straightforward via Lemma 3.23. |
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Although we can prevent that there are rewrite steps applied in non-traceable arguments
we still might obtain terms for which tbp is undefined, namely terms in non-traceable
arguments containing U-terms. For such terms we can use tb instead of tbp as the following
result shows.

» Lemma 3.25 (tbp to tb). Let D: ui —p, » U2 —p, R+ —p._1, R Un e a derivation
without rewrite steps in non-traceable arguments such that tbp (i, p;) =% tbp(i+1, p;) for all
it e{l,...,n—1}. Then, tbp(m,q) =% tb(uml|s) for allm € {1,...,n} and all ¢ € Pos(u)
such that tbp(m, q) is defined.

Proof Sketch. By induction on the term depth of u,,|,. In the interesting case that w,,|, is
a U-term, tbp(m, ¢) = lin(l)o and tb(u,|q) = I7. By repeated application of Lemma 3.24 we
obtain xo —% x7 for traceable arguments. If tbp(m, ¢.7) is undefined (i.e., um|q.; is a non-
traceable arguments), we exploit the fact that there are no rewrite steps in non-traceable
arguments. We then obtain tbp(k,¢") —* tb(uk|y) = th(umlq.i) for ancestors ug|y of wm|q.s
such that tbp(k, ¢') is defined. <

The following is our key result for WLL DCTRSs:

» Lemma 3.26 (technical key result). Let R be a WLL DCTRS and D : u; —p, g/ U1 —p,, R
cee—=p R Un (U1 € T) be a derivation without rewrite steps in non-traceable arguments,
then tbp (i, p;) =% tbp(i +1,p;).

Proof Sketch. By induction on n and a case distinction on the type of rule applied in the last
rewrite step. The interesting case is the application of the elimination rule of the conditional
rule tg = sp41 < s1 =" t1,..., 8, =" tr. In this case tbp(n — 1,p,—1) = lin(tg)or and
tbp(n,pn—1) = Sk+17k. By Lemma 3.24 and the induction hypothesis we obtain derivations
8iTi =R lin(t;)o;0; where o; is the matcher for variables containing traceable arguments
in ¢; and o] for variables containing non-traceable arguments. Observe, that Dom(r;) N
Dom(oé») = (). By Lemma 3.24, xo; —* x7; so that s;o1...0;,_1 —=* s5;7;. By Lemma 3.25,
lin(t;)oir107,, —* tiosy17{; where 7/, contains the tb-backtranslation of the non-traceable
arguments in ¢; (since there are no rewrite steps in non-traceable arguments, there are no
rewrite steps in 77). Let now o = oy ...0% 1171 ... 74, ;. Observe, that s;o1...0; = s;o and
t7;01'+1’7'il+1 = t;0, so that tgo —r sir10. Finally, repeated application of Lemma 3.24 yields
Sk+10 —)% Sk4-1Tk+1- |

Finally, we obtain soundness for WLL DCTRSs:

» Lemma 3.27 (Soundness for weakly left-linear DCTRSs). Let R be a WLL DCTRS and
D:up —p, R UL —py R —pn 1 R Un (U1 € T) then ug —% th(uy,).

Proof. By Lemma 3.21, there is a derivation D’: u1 —%, u, without rewrite steps in non-
traceable arguments. In D’, tbp(n,€) is defined so that via Lemma 3.26 and repeated
application of Lemma 3.23 we obtain u; —% tbp(n,€). By Lemma 3.25 we finally get
tbp(n,€) =% tb(u,). <

» Theorem 3.28 (Soundness for reduction of weakly left-linear DCTRSs). The unraveling is
sound for reduction w.r.t. weakly left-linear DCTRSs.

Proof. Straightforward via Lemma 3.27. <

The definition of WLL DCTRSs allows conditional non-left-linear rules so that this result
is more general than our result in [8] even for normal 1-CTRSs.
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4 Discussion, Perspectives and Related Work

We have shown that the main ideas and approaches of [8] for soundness of normal 1-CTRSs
also extend to DCTRSs, but with a couple of complications and subtleties. We think that es-
pecially the results involving weak left-linearity, non-erasingness and confluence as sufficient
conditions for soundness (in the case of confluence restricted to soundness for reductions to
normal forms) are quite interesting and practically relevant.

We are not aware of many related works on DCTRS or other classes of 3- or 4-CTRSs.
An early one is [11] (which contains only a claim but no proofs). Yet, there is a notable
exception. In [12] and, building on that paper, in [15] by the same authors closely related
questions are investigated and similar soundness results for U,,; are obtained using quite
different proof techniques.

More precisely, the main results of [15] are:

(a) U,ype is sound for U,p-LL (and for U-LL) DCTRSs([15, Theorem 4.5]).
(b) Ugype is sound for U,,,-RL-NE DCTRSs([15, Theorem 4.12]).
(c) If Upypy is sound w.r.t. R, then U is so, too ([15, Theorem 4.19]).

Result (a) is of course important and practically relevant, since (U~ or U-)LL are reasonable
requirements for DCTRSs. It is subsumed by our result on weak left-linearity (WLL) as
sufficient criterion for soundness of U (Theorem 3.28). As Example 4.1 shows, U,y is
unsound even for WLL normal 1-CTRSs.

Result (b) resembles our Theorem 3.16, since it also requires U,,,-NE. However, our
result additionally forbids extra variables on rhs’s. On the other hand, being right-separated
is a much less restrictive property than U,,;-RL. Proof-technically, the approach for (b) in
[15] is remarkable and elegant. The proof works by reduction to the proof of (a) using the
inverse reduction relation.

Result (c) is of particular interest, since via U,y certain properties (e.g. soundness cri-
teria) like NE become more likely to be satisfied. However, the reverse of (c) does not hold
in general. In particular, we cannot reproduce our soundness results for WLL and CR (in
the latter case w.r.t. soundness for reductions to normal forms) for U,p,:

» Example 4.1 (unsoundness of Uy,,;). Consider the WLL and confluent normal 1-CTRS R
consisting of the rules or(x,y) — true < x —* true and eq(x,z) — true. R is unraveled
using U,y into Ry, = {or(x,y) — Uf*(z) , U (true) — true , eq(x,x) — true}.

In ’Rgpt,
so that eq(or(false, true), or(false, false)) —>§€,Opt true.

Yet, or(false, true) and or(false, false) are irreducible (and therefore not joinable) in R
so that eq(or(false, true), or(false, false)) /% true. Therefore, U,y is not sound for R.

In future work we will try to improve the (un)soundness analysis for DCTRSs (e.g. by
isolating abstract principles or characterization results), apply the sondness criteria for de-
riving properties of the original systems, and exploit / transfer the analysis and criteria for
other well-known transformation approaches from CTRSs to TRSs.

Acknowledgements: We are grateful to the anonymous reviewers for their detailed and
helpful comments and criticisms!

or(false, true) and or(false, false) both rewrite to the irreducible U-term U{* (false),
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