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Abstract
The rho-calculi provide enlightening concepts for both computing and reasoning as well as their
combination. They consist in the generalization of lambda-calculus to structures like terms,
propositions or graphs and we will show how their interrelations with deduction provide powerful
frameworks for the next generation of proof assistants.
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It is reasonable to hope that the relationship between computation and mathematical
logic will be as fruitful in the next century as that between analysis and physics in the
last. The development of this relationship demands a concern for both applications
and for mathematical elegance.

John McCarthy
A Basis for a Mathematical Theory of Computation, 1963

1 Structures for computation

When one wants to caracterize informatics as a science, one main concept is prominent:
computation. When the computation of 2+2 leads to 4, this transformation can be described
and performed in many different ways, for instance using lambda-calculus or using rewriting.
If the structure of the information to be transformed is available, it is well known and
widely used that this may result in a huge difference in the complexity of the computation:
computing with Church numbers in the lambda-calculus is not the most efficient way to
implement arithmetic. Rewriting is one of the universal computational model that allows
the embedding of structures as a first class concept.

These structures can be very simple, yet quite useful, typically when just plain tree syntax
is used. But they can be also quite elaborated, for example when satisfying some theory like
associativity, commutativity, groups, list, arrays, arithmetic, . . .

To handle explicitly structures and fonctions, we defined the rho-calculus [11, 9] (also
called rewriting calculus) and indeed a family of such calculi [12, 10, 23, 2, 18, 22, 1] to
mention just a few. Related calculi should be mentioned like [21, 20].

These calculi, offering a natural integration of structures into the theory of functions
and in particular in lambda-calculus, provide a useful background for rewriting theory,
implementation and applications.
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But they offer also the right background to base the logical integration of computation
into deduction, a deep and non-trivial goal as emphasized by the quote of John McCarthy.

2 Computation for logic

The complementarity of computation and deduction is known and used since the rise of logic.
It has not always been well understood or accepted, like in the now settled controversy about
the use of computations in the proof of the fourth color theorem. A formal treatment of this
combination, called deduction modulo and initiated in [15], allows us to define deduction
systems like the sequent calculus or natural deduction modulo some congruence defined
by a theory implemented by a computational system such as rewriting. The consequences
of reasoning modulo are deep. Typically, cut elimination does no hold for any congruence
but sufficient conditions on the theories can be given [16, 8] allowing one to deal modulo
important theories [17, 14, 19]. The second fondamental consequence is that the deduction
modulo logical systems allow proving exactly the same theorems as when integrating the
modulo part in the theory, but the proof are extremely different. Indeed they can be in some
cases arbitrary shorter as shown in [7, 6].

An interesting point is that the proof terms representing proofs in deduction modulo
are rho-terms [5], thus providing a complete picture of the articulation between structures,
computations and proofs.

3 Next steps

This strong relationship between the rho-calculi and logic opens many research and application
tracks. One is related to the implementation of these concepts to design proof assistants
where the users are freed of the computational steps of the proof they are conducting, in
the lines of the prototypes https://www.rocq.inria.fr/deducteam/Dedukti [3] or http:
//rho.loria.fr/lemuridae.html [4]. The relationship between rho-calculi and rewriting
logic [13] has to be deepened. Challenging open questions like unification and matching in
rho-calculi will lead to better understanding of the automation of reasoning, opening new
trends for implementations and applications. Finally the relationship between computation
and deduction and in particular the relationship with proof complexity is a challenging open
research area.
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