
On the Formalization of Termination Techniques
based on Multiset Orderings∗

René Thiemann1, Guillaume Allais2, and Julian Nagele1

1 University of Innsbruck, 6020 Innsbruck, Austria
2 University of Strathclyde, Glasgow G1 1XQ, Scotland

Abstract
Multiset orderings are a key ingredient in certain termination techniques like the recursive path
ordering and a variant of size-change termination. In order to integrate these techniques in a
certifier for termination proofs, we have added them to the Isabelle Formalization of Rewriting.
To this end, it was required to extend the existing formalization on multiset orderings towards
a generalized multiset ordering. Afterwards, the soundness proofs of both techniques have been
established, although only after fixing some definitions.

Concerning efficiency, it is known that the search for suitable parameters for both techniques is
NP-hard. We show that checking the correct application of the techniques—where all parameters
are provided—is also NP-hard, since the problem of deciding the generalized multiset ordering
is NP-hard.

1998 ACM Subject Classification F.4.2 Grammars and Other Rewriting Systems

Keywords and phrases formalization, term rewriting, termination, orderings

Digital Object Identifier 10.4230/LIPIcs.RTA.2012.339

Category Regular Research Paper

1 Introduction

The multiset ordering has been invented in the ’70s to prove termination of programs [10]. It
is an ingredient for important termination techniques like the multiset path ordering (MPO)
[8], the recursive path ordering (RPO) [9], or recently [3, 6] it has been used in combination
with the size-change principle of [19], in the form of SCNP reduction pairs.

The original version of the multiset ordering w.r.t. some base ordering � can be defined
as M �ms N iff it is possible to obtain N from M by replacing at least one element of M by
several strictly smaller elements in N .

In other papers—like [3, 6, 22]—a generalization of the multiset ordering is used (denoted
by �gms). To define �gms one assumes that in addition to � there is a compatible non-strict
ordering %. Then �gms is like �ms, but in the multiset comparison it is additionally allowed
to replace each element by a smaller one (w.r.t. %). To illustrate the difference between �ms
and �gms, we take � and % as the standard orderings on polynomials over the naturals.
Then �gms is strictly more powerful than �ms: for example, {{x+ 1, 2y}} �gms {{y, x}} since
x+ 1 � x and 2y % y, but {{x+ 1, 2y}} �ms {{y, x}} does not hold, since 2y 6= y and also
2y 6� y as y can be instantiated by 0.

∗ This research is supported by FWF (Austrian Science Fund) project P22767.

© René Thiemann, Guillaume Allais, and JulianNagele;
licensed under Creative Commons License ND

23rd International Conference on Rewriting Techniques and Applications (RTA’12).
Editor: A. Tiwari; pp. 339–354

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.RTA.2012.339
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/dagpub/978-3-939897-38-5
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

340 On the Formalization of Termination Techniques based on Multiset Orderings

Note that �gms is indeed used in powerful termination tools like AProVE [11]. Hence, for
the certification of termination proofs which make use of SCNP reduction pairs or RPOs
which are defined via �gms, we need a formalization of this multiset ordering.

However, in the literature and in formalizations, often only �ms is considered. And even
those papers that use �gms only shortly list the differences between �ms and �gms—if at
all—and afterwards just assume that both multiset orderings have similar properties.

To change this situation, as one new contribution of this paper, we give the first formaliz-
ation of �gms, and could indeed show that �ms and �gms behave quite similar. However,
we also found one essential difference between both orderings. It is well known that deciding
�ms is easy, one just removes identical elements and afterwards has to find for each element
in the one set a larger element in the other. In contrast, we detected and proved that deciding
�gms is an NP-complete problem.

Note that the original definition of RPO misses a feature that is present in other orderings
like polynomial interpretations where it is possible to compare variables against a least
element: x % 0. This feature was already integrated in other orderings like KBO [17], and
it can also be integrated into RPO where one allows to compare x % c if c is a constant
of least precedence. For example, the internal definition of RPO in AProVE is the one of
[22]—which is based on �gms—with the additional inference rule of “x % c”. As a second
new contribution we formalized this RPO variant and fixed its definition, as it turned out
that it is not stable. Moreover, we show that the change from �ms to �gms increases the
complexity of RPO: From [18] it is known that deciding whether two terms are in relation
w.r.t. a given RPO or MPO is in P. However, if one uses the definitions of MPO and RPO in
this paper which are based on �gms, then the same decision problem becomes NP-complete.

As third new contribution we also give the first formalization of SCNP reduction pairs
where we could establish the main soundness theorem, although several definitions had to be
fixed. Again, we have shown that the usage of �gms makes certification for SCNP reduction
pairs an NP-complete problem. As a consequence, the search for suitable SCNP reduction
pairs and the problem whether two terms are in relation for a given SCNP reduction pair
belong to the same complexity class, as they are both NP-complete.

All our formalizations are using the proof assistant Isabelle/HOL [21]. They are available
within the IsaFoR library (Isabelle Formalization of Rewriting, [24]). The new parts of the
corresponding proof checker CeTA—which is just obtained by applying the code generator of
Isabelle [13] on IsaFoR—have been tested on the examples of the experiments performed in
[22]. After fixing some output bugs, eventually all proofs could be certified. Both IsaFoR and
CeTA are freely available at:

http://cl-informatik.uibk.ac.at/software/ceta

The paper is structured as follows. We give preliminaries and the exact definitions for
�ms and �gms in Sec. 2. Afterwards we discuss the formalization of �gms in Sec. 3. Different
variants of RPO are discussed in Sec. 4. Here, we also show that certifying constraints for
the RPO variant used in AProVE is NP-complete. In Sec. 5 we discuss the formalization of
SCNP reduction pairs. Finally, in Sec. 6 we elaborate on our certified algorithms for checking
whether two terms are in relation w.r.t. RPO or the orderings from an SCNP reduction pair,
and we report on our experimental results.

2 Preliminaries

We refer to [2] for basic notions and notations of rewriting. A signature is a set of symbols
F = {f, g, F,G, . . . }, each associated with an arity. We write T (F ,V) for the set of terms

http://cl-informatik.uibk.ac.at/software/ceta

R. Thiemann, G. Allais, and J. Nagele 341

over signature F and set of variables V . We write V(t) for the set of variables occurring in t.
A relation � on T (F ,V) is stable iff it is closed under substitutions, and it is monotone, iff it
is closed under contexts. A term rewrite system (TRS) is a set of rules `→ r. The rewrite
relation →R of a TRS R is the smallest stable and monotone relation containing R.

We write Id for the identity relation, and for each relation �, let � be its reflexive closure.

I Definition 2.1 (Ordering pair, reduction pair). The pair (%,�) is an ordering pair (over
carrier A) iff % is a quasi-ordering over A, � is a transitive and well-founded relation over A,
and � and % are compatible, i.e., � ◦% ⊆ � and % ◦ � ⊆ �.

The pair (%,�) is a non-monotone reduction pair iff (%,�) is an ordering pair over
T (F ,V) where both � and % are stable. If additionally % is monotone, then (%,�) is a
reduction pair, and if both � and % are monotone, then (%,�) is a monotone reduction pair.

Throughout this paper we only consider finite multisets {{x1, . . . , xn}} and we write P(A)
for the set of all multisets with elements from A. For every function f : A→ A and every
multiset M ∈ P(A) we define the image of f on M as f [M] = {{f(x) | x ∈M}}.

I Definition 2.2 (Multiset orderings). Let � and % be relations over A. We define the
multiset ordering (�ms), the generalized multiset ordering (�gms), and the corresponding
non-strict ordering (%gms) over P(A) as follows: M1 �ms / �gms / %gms M2 iff there are Si
and Ei such that M1 = S1 ∪ E1, M2 = S2 ∪ E2, and

conditions 1, 2, and 4 are satisfied: M �ms N
conditions 1, 3, and 4 are satisfied: M �gms N

conditions 1 and 3 are satisfied: M %gms N

where conditions 1–4 are defined by:
1. for each y ∈ S2 there is some x ∈ S1 with x � y
2. E1 = E2
3. E1 = {{x1, . . . , xn}}, E2 = {{y1, . . . , yn}}, and xi % yi for all 1 ≤ i ≤ n
4. S1 6= ∅
Whenever Mi is split into Si ∪ Ei we call Si the strict part and Ei the non-strict part.

Note that �gms indeed generalizes �ms, since �gms = �ms if % = Id.

3 Formalization of the Generalized Multiset Ordering

Replacing condition 2 by 3 makes the formalization of �gms a bit more involved than the one
of �ms: the simple operation of (multiset) equality E1 = E2 is replaced by demanding that
both E1 and E2 can be enumerated in such a way that xi % yi for all 1 ≤ i ≤ n. Note that
instead of enumerations one can equivalently demand that there is a bijection f : E1 → E2
such that for all x ∈ E1 we have x % f(x).

There is one main advantage of formalizing condition 3 via enumerations instead of
bijections. It will be rather easy to develop an algorithm deciding �gms. However, using
enumerations we also observe a drawback: the proof that �gms and %gms are compatible
and transitive orderings will be harder than using bijections since composing bijections is
easier than combining enumerations.

The formalization of the following (expected) properties for �gms and %gms has been
rather simple.

I Lemma 3.1. �gms and %gms have the following properties:
1. the empty set is the unique minimum of �gms and %gms
2. if % is reflexive then so is %gms

RTA’12

342 On the Formalization of Termination Techniques based on Multiset Orderings

3. if � is irreflexive and compatible with % then �gms is irreflexive
4. if � and % are closed under an operation op then �gms and %gms are closed under op[·].

In contrast, the formalization of transitivity and compatibility was more tedious.

I Lemma 3.2. If � and % are compatible and transitive then so are �gms and %gms.

Proof. For the sake of simplicity, we will work here with the definition of (�gms,%gms) using
bijections rather than enumerations: all technical details when using the representation with
enumerations are available in IsaFoR, theory Multiset-Extension. Given that this lemma states
four results that are pretty similar, we will only prove transitivity of %gms and let the reader
see how the proof could be slightly modified in the other cases.

Let M,N and P be three multisets such that M %gms N (1) and N %gms P (2). From (1)
we get the partitions M = M ′ ∪ E and N = N ′ ∪ F and the bijection fMN : E → F . From
(2) we get the partitions N = N ′′ ∪ F ′ and P = P ′ ∪G and the bijection fNP : F ′ → G. We
define the multiset I as I = F ∩F ′ and claim that the partitions M = (M \f−1

MN [I])∪f−1
MN [I]

and P = (P \ fNP [I]) ∪ fNP [I] and the bijection fNP ◦ fMN are the ones needed to prove
M %gms P .

If p ∈ P \ fNP [I] then we have to find some m ∈M \m /∈ f−1
MN [I] satisfying m � p. We

distinguish two cases. In the first case, p ∈ P ′ and thus there is an n ∈ N ′′ such that n � p
and n /∈ I. If n ∈ N ′ then by (1) there is some m ∈ M ′ with m � n and hence, m � p

by transitivity of �. Moreover, since M ′ ⊆ M \ f−1
MN [I] we found the desired element m.

Otherwise, n ∈ F and hence, for m = f−1
MN (n) we know m % n using (1). By compatibility,

also m � p. Again, m ∈ M \ f−1
MN [I] since n /∈ I. In the second case, p ∈ G and thus for

n = f−1
NP (p) we conclude n ∈ F ′′ \ I and n % p, and hence n /∈ F . Thus, there is an element

m ∈M ′ which satisfies m � n. By compatibility we again achieve m � p.
If p ∈ fNP [I], we have an element n ∈ F ′ such that n % p; n is also in F and therefore

we have an element m ∈ f−1
MN [I] such that m % n % p and hence, m % p. J

Here lies the main difference to the formalization of �ms in [16]. While just transitivity
needs to be shown for �ms, we had to show transitivity of both �gms and %gms as well
as compatibility from both sides. Moreover the formalized proofs of these facts get more
complicated since we cannot simply use bijections, set intersections, and differences, but have
to deal with enumerations.

After having established Lem. 3.1 and Lem. 3.2 it remains to prove the most interesting
and also most complicated property of �gms, namely strong normalization. In the remainder
of this section we assume that � and % are compatible and transitive, and that � is strongly
normalizing. Our proof is closely related to the one for �ms [20] which is due to Buchholz:
we first introduce a more atomic relation �gms-step which has �gms as its transitive closure.
Then it suffices to prove that �gms-step is well-founded.

I Definition 3.3. We define �gms-step as M �gms-step N iff M �gms N where in the split
M = S ∪ E the size of S is exactly one.

I Lemma 3.4. �gms is the transitive closure of �gms-step.

For strong normalization we perform an accessibility-style proof, i.e., we define A as the set
of strongly normalizing elements w.r.t. �gms-step and show that A contains all multisets. Note
that to show M ∈ A it suffices to prove strong normalization for all N with M �gms-step N .
Moreover, since �gms-step is strongly normalizing on A, one can use the following induction
principle to prove some property P for all elements in A.

(∀M.(∀N ∈ A.M �gms-step N → P (N))→ P (M))→ (∀M ∈ A.P (M)) (?)

R. Thiemann, G. Allais, and J. Nagele 343

We will later on apply this induction scheme using the first of the following two predicates:
P (x) is defined as ∀M.M ∈ A →M ∪ {{x}} ∈ A
Q(M,x) is defined as ∀b.x % b→M ∪ {{b}} ∈ A

For showing that all multisets belong to A, we will require the following technical lemma.

I Lemma 3.5. For all multisets M ∈ A and for all elements a, if ∀N.M �gms-step N →
Q(N, a) and ∀b.a � b→ P (b) then Q(M,a) holds.

Proof. To prove Q(M,a), let b be an element such that a % b where we have to show
M ∪ {{b}} ∈ A. To prove the latter, we consider an arbitrary N with M ∪ {{b}} �gms-step N

and have to show N ∈ A. From M ∪ {{b}} �gms-step N we obtain suitable m1, . . . ,mk,
n1, . . . , nk, m, and N ′ to perform the splits M ∪ {{b}} = {{m}} ∪ {{m1, . . . ,mk}} and
N = N ′ ∪ {{n1, . . . , nk}}. We distinguish two cases: either b is part of {{m1, . . . ,mk}} or
equal to m.

If b = mi for some i then M �gms-step N \ {{ni}}. Thanks to the first hypothesis and the
fact that a % ni (because a % b = mi % ni), we can conclude that N ∈ A.

If b = m then one can prove that {{n1, . . . , nk}} ∈ A using the fact that {{m1, . . . ,mk}} =
M ∈ A and ∀i.mi % ni. By induction on the size of N ′ and thanks to the second hypothesis
and the fact that for any p ∈ N ′, a % b � p, we deduce that {{n1, . . . , nk}} ∪N ′ ∈ A which
concludes the proof. J

I Lemma 3.6. ∀M.M ∈ A.

Proof. The proof of the lemma is done by induction on the size of the multiset M .
If M is the empty multiset, then obviously, it is strongly normalizing (hence in A).
Otherwise we have to prove ∀a.∀M ∈ A.M ∪ {{a}} ∈ A which is the same as ∀a.P (a).

We perform a well-founded induction on a (w.r.t. �) using the property P and are left to
prove P (a) assuming that ∀b.a � b→ P (b) holds. We pick a multiset M ∈ A and perform
an induction on M using (?) to prove the property Q(M,a) (which entails P (a) because
% is reflexive): for any M ∈ A we have to prove Q(M,a) given the induction hypothesis
∀N.M �gms-step N → Q(N, a). But this result is a trivial application of Lem. 3.5 using the
two induction hypotheses that we just generated. J

Using Lem. 3.4 and Lem. 3.6, strong normalization of �gms immediately follows.

I Theorem 3.7. �gms is strongly normalizing.

4 Multiset and Recursive Path Ordering

In this section we study variations of MPO and RPO. To this end, throughout this section
we assume that > is some precedence for the signature F . We write > = > \6 for the strict
part of the precedence, and ≈ = > ∩6 for its equivalence relation.

A standard version of MPO allowing quasi-precedences can be defined by the following
inference rules.

si �mpo t
f(~s) �mpo t

{{~s}} �mpoms {{~t}}
f(~s) �mpo g(~t)

f ≈ g
f(~s) �mpo ti for all i

f(~s) �mpo g(~t)
f > g

For example for the precedence where g ≈ h we conclude that f(y, s(x)) �mpo f(x, y) and
g(s(x)) �mpo h(x), but f(g(y), s(x)) 6�mpo f(x, h(y)) since {{g(y), s(x)}} 6�mpoms {{x, h(y)}} as
g(y) 6�mpo h(y).

RTA’12

344 On the Formalization of Termination Techniques based on Multiset Orderings

To increase the power of MPO, the following inference rules are sometimes used which
generalize MPO by defining two orderings �gmpo and %gmpo where the multiset extension is
done via �gms. This variant of MPO is the one that is internally used within AProVE, and if
one removes the last inference rule (x %gmpo c), then it is equivalent to the MPO definition
of [22].

(1)
si %

gmpo t

f(~s) �gmpo t
(2)
{{~s}} �gmpogms {{~t}}
f(~s) �gmpo g(~t)

f ≈ g (3)
f(~s) �gmpo ti for all i

f(~s) �gmpo g(~t)
f > g

(4)
s �gmpo t
s %gmpo t

(5)
{{~s}} %gmpogms {{~t}}
f(~s) %gmpo g(~t)

f ≈ g (6)
x %gmpo c

if ∀f ∈ F : f > c

Hence, there are two differences between �gmpo (the reflexive closure of �gmpo) and %gmpo:
only in %gmpo one can compare multisets using the non-strict multiset ordering, and one
can compare variables against constants of least precedence. This latter feature is similar to
polynomial orderings where x > 0, and it was also added to the Knuth-Bendix-Ordering [17].

The increase of power of �gmpo in comparison to �mpo is due to both new features in the
non-strict relation. For example, using the same precedence as before, f(g(y), s(x)) �gmpo
f(x, h(y)) as g(y) %gmpo h(y) and s(x) �gmpo x. Moreover, f(f(y, z), s(x)) �gmpo f(x, f(a, z))
if a has least precedence, where this decrease is only possible due to the comparison y %gmpo a.

Note that %gmpo is a strict superset of the equivalence relation where equality is defined
modulo ≈ and modulo permutations. For this inclusion, indeed all three inference rules (4-6)
of %gmpo are essential. With (4) and (5) we completely subsume the equivalence relation, and
(6) exceeds the equivalence relation. However, then also (5) adds additional power by using
%gms instead of multiset equality w.r.t. the equivalence relation. As an example, consider
g(x) %gmpo g(a).

Finally note that our definition does not require any explicit definition of an equivalence
relation, one can just use %gmpo ∩ -gmpo. This is in contrast to the RPO in related
formalizations of CoLoR [5] and Coccinelle [7]. In Coccinelle first an equivalence relation
for RPO is defined explicitly, before defining the strict ordering,1 and the RPO of CoLoR
currently just supports syntactic equality.2

The reason that AProVE uses �gmpo for its MPO implementation is easily understood,
as �gmpo is more powerful than �mpo, and the SAT/SMT-encodings of �mpo and �gmpo
to find a suitable precedence are quite similar, so there is not much overhead. Hence, in
order to be able to certify AProVE’s MPO proofs—which then also allows to certify weaker
variants of MPO—we have formally proved that (%gmpo,�gmpo) is a monotone reduction
pair. Concerning strong normalization of �gmpo, we did not use Kruskal’s tree theorem,
but we performed a proof similar to the strong normalization proof of the (higher-order)
recursive path ordering as in [5,7, 15,16] (which is based on reducibility predicates of Tait
and Girard.) By following this proof and by using the results of Sec. 3, it was an easy—but
tedious—task to formalize the following main result. Here—as for the generalized multiset
ordering—the transitivity proof became more complex as one has to prove transitivity and
compatibility of %gmpo and �gmpo at the same time, i.e., within one large inductive proof.

I Theorem 4.1. The pair (%gmpo,�gmpo) is a monotone reduction pair.

Whereas Thm. 4.1 was to be expected—�gmpo is just an extension of �mpo, and it is
well known that (�mpo,�mpo) is a monotone reduction pair—we detected a major difference

1 See http://www.lri.fr/~contejea/Coccinelle/doc/term_orderings.rpo.html.
2 See http://color.inria.fr/doc/CoLoR.RPO.VRPO_Type.html.

http://www.lri.fr/~contejea/Coccinelle/doc/term_orderings.rpo.html
http://color.inria.fr/doc/CoLoR.RPO.VRPO_Type.html

R. Thiemann, G. Allais, and J. Nagele 345

when trying to certify existing proofs where one has to compute for a given precedence
whether two terms are in relation. This problem is in P for �mpo but it turns out to be
NP-complete for �gmpo.

I Theorem 4.2. Let there be some fixed precedence. The problem of deciding ` �gmpo r for
two terms ` and r is NP-complete.

Proof. Membership in NP is easily proved. Since the size of every proof-tree for ` �mpo r is
bounded by 2 · |`| · |r|, one can just guess how the inference rules for �mpo have to be applied;
and for the multiset comparisons one can also just guess the splitting.

To show NP-hardness we perform a reduction from SAT. So let φ be some Boolean
formula over variables {x1, . . . , xn} represented as a set of clauses {C1, . . . , Cm} where each
clause is a set of literals, and each literal l is variable xi or a negated variable xi. W.l.o.g. we
assume n ≥ 2.

In the following we will construct one constraint ` �gmpo r for terms `, r ∈ T (F ,V)
where F = {a, f, g, h} and V = {x1, . . . , xn, y1, . . . , ym}. To this end, we define s(l, Cj) = yj ,
if l ∈ Cj , and s(l, Cj) = a, otherwise. Moreover, t+x = f(x, s(x,C1), . . . , s(x,Cm)), t−x =
f(x, s(x,C1), . . . , s(x,Cm)), tx = f(x, a, . . . , a). We define L = {{t+x1

, t−x1
, . . . , t+xn

, t−xn
}} and

R = {{tx1 , . . . , txn
, y1, . . . , ym}}. Finally, we define ` = g(L) and r = h(R)—where here we

abuse notation and interpret L and R as lists of terms.
We prove that φ is satisfiable iff ` �gmpo r for the precedence where a ≈ f ≈ g ≈ h.

For this precedence, ` �gmpo r iff L �gmpogms R since there is only one inference rule that
can successfully be applied. The reason is that f 6> g and for each term t±xi

of L we have
t±xi
6%gmpo r where t±xi

represents one of the terms t+xi
or t−xi

. To see the latter, assume
t±xi

%gmpo r would hold. Then {xi, y1, . . . , ym} ⊇ V(t±xi
) ⊇ V(r) ⊇ {x1, . . . , xn} being a

contradiction to n ≥ 2.
To examine whether L �gmpogms R can hold, let us consider an arbitrary splitting of R into a

strict part S′ and a non-strict part E′. Notice that t+x %gmpo tx and t−x %gmpo tx, but neither
t+x �gmpo tx nor t−x �gmpo tx: the reason is that for each l and Cj we get s(l, Cj) %gmpo a
but not s(l, Cj) �gmpo a. Hence, each tx of R must be contained in E′. As moreover,
t±xi
�gmpo yj iff t±xi

%gmpo yj we can w.l.o.g. assume that each yj ∈ S′. In total, if L �gmpogms R,
then R must be split into S′ ∪E′ where S′ = {{y1, . . . , ym}} and E′ = {{tx1 , . . . , txn}} and L
must be split into S ∪ E such that all conditions of �gmpogms are satisfied.

At this point we consider both directions to show that φ is satisfiable iff L �gmpogms R.
First assume that φ is satisfiable, so let α be some satisfying assignment. Then we choose

S = {{t+x | α(x) = >}}∪{{t−x | α(x) = ⊥}} and E = L \S. Notice that for each x exactly one
of t+x and t−x is in S, and the other is in E. Hence, for each tx ∈ E′ there is a corresponding
t±x ∈ E with t±x %gmpo tx. Next, we have to find for each yj ∈ S′ some term in S which
is larger than yj . To this end, notice that α is a satisfying assignment, thus there is some
literal xi or xi in Cj which evaluates to true. If xi ∈ Cj then α(xi) = > and hence, t+xi

∈ S
where t+xi

= f(. . . , yj , . . .) �gmpo yj . Otherwise, xi ∈ Cj and α(xi) = ⊥ and hence, t−xi
∈ S

where t−xi
= f(. . . , yj , . . .) �gmpo yj . Thus, in both cases there is some term in S being larger

than yj . Moreover, S 6= ∅ since |S| = n ≥ 2.
For the other direction assume that S and E could be found such that L = S ∪E and all

conditions of �gmpogms are satisfied. Hence for each txi
∈ E′ there is some term t ∈ E satisfying

t %gmpo txi
. Then, t can only be t+xi

or t−xi
since xi ∈ V(tx) and each other term t±xj

with
i 6= j does not contain the variable xi. Thus, for each i exactly one of the terms t+xi

and t−xi
is

contained in E and the other is contained in S. We define the assignment α where α(xi) = >
iff t+xi

∈ S. It remains to show that α is a satisfying assignment for φ. So let Cj be some

RTA’12

346 On the Formalization of Termination Techniques based on Multiset Orderings

clause of φ. Since yj ∈ S′ we know that there is some t ∈ S with t �gmpo yj , i.e., yj ∈ V(t).
There are two cases. First, if t = t+xi

for some i, then by the definition of t+ we know that
yj ∈ V(t+xi

) implies xi ∈ Cj , and hence Cj is evaluated to true, since α(xi) = > by definition
of α. Otherwise, t = t−xi

for some i where now xi ∈ Cj . Moreover, as t−xi
∈ S, we know that

t+xi
/∈ S and hence, α(xi) = ⊥. Together with xi ∈ Cj this again shows that Cj is evaluated

to true. Hence, all clauses evaluate to true using α which proves that φ is satisfiable. J

The following corollary states that NP-completeness is essentially due to fact that �gms
and %gms are hard to compute, even if all comparisons of the elements in the multiset are
given. It can be seen within the previous proof, where the important part of the reduction
from SAT was to define for each formula φ the multisets L and R such that φ is satisfiable
iff L �gmpogms R (and also iff L %gmpogms R).

I Corollary 4.3. Given two orderings � and %, two multisets M and N , and the set
{(x, y, x � y, x % y) | x ∈M,y ∈ N}, deciding M �gms N and M %gms N is NP-complete.

Of course, if the splitting for the multiset comparison is given, then deciding �gms and
%gms becomes polynomial.

All our results have also been generalized to RPO where for every function symbol there
is a status function τ which determines whether the arguments of each function f should be
compared lexicographically (τ(f) = lex) or via multisets (τ(f) = mul).3 Here, the existing
inference rules of �gmpo are modified that instead of f ≈ g it is additionally demanded
that τ(f) = τ(g) = mul. Moreover, there are two additional inference rules for f ≈ g and
τ(f) = τ(g) = lex , one for the strict ordering �grpo and one for the non-strict ordering %grpo.

Again, �grpo is used in AProVE instead of the standard definition of RPO (�rpo,[9]).
However, during our formalization we have detected that in contrast to (%gmpo,�gmpo),
the pair (%grpo,�grpo) is not a reduction pair, as the orderings are not stable. To see this,
consider a precedence where a and b have least precedence, and τ(a) 6= τ(b). Then x %grpo a,
but b 6%grpo a.

Our solution to this problem is to add the following further inference rules which allow
comparisons of terms f(~s) with g(~t) where τ(f) 6= τ(g). In detail, we require that ~t is empty
and for a strict decrease, additionally ~s must be non-empty.

|~s| > 0 |~t| = 0
f(~s) �grpo g(~t)

f ≈ g, τ(f) 6= τ(g)
|~t| = 0

f(~s) %grpo g(~t)
f ≈ g, τ(f) 6= τ(g)

If these inference rules are added, then indeed (%grpo,�grpo) is a monotone reduction pair.
As a consequence, one can interpret AProVE’s version of RPO as a sound, but non-stable
under-approximation of �grpo.

We also tried to to relax the preconditions further, e.g. by allowing vectors ~t of length at
most one. But no matter whether we also restrict the length of ~s in some way or not, and no
matter whether we compared the arguments ~s and ~t lexicographically or via multisets, the
outcome was always that transitivity or strong normalization are lost.

For example, if we add the inference rule that {{~s}} �grpogms {{~t}}, |~t| ≤ 1, f ≈ g, and
τ(f) 6= τ(g) implies f(s) �grpo g(t), then strong normalization is lost: assume the precedence

3 We do not consider permutations for lexicographic comparisons in the definition of RPO as this feature
can be simulated by generating reduction pairs using an RPO (without permutations) in combination
with argument filterings as defined in [1]. In this way, we only have to formalize permutations once and
we can reuse them for other orderings like KBO.

R. Thiemann, G. Allais, and J. Nagele 347

is defined by f ≈ g ≈ h and 3 > 2 > 1 > 0, and the status is defined by τ(f) = τ(h) = lex and
τ(g) = mul. Then f(0, 3) �grpo g(2) �grpo h(1) �grpo f(0, 3) clearly shows that the resulting
ordering is not strongly normalizing anymore.

To summarize, �gmpo and �grpo are strictly more powerful reduction orderings than the
standard definitions of MPO and RPO (�mpo and �rpo). The price for the increased power
is that checking constraints for �gmpo and �grpo becomes NP-complete whereas it is in P
for �mpo and �rpo.

Note that if one would provide all required splittings for the multiset comparisons in
�gmpo and �grpo, then constraint checking again becomes polynomial. However, this would
make certificates more bulky, and since in practice the arities of function symbols are rather
small, certification can efficiently be done even without additional splitting information.

5 SCNP Reduction Pairs

The size-change criterion of [19] to prove termination of programs can be seen as a graph-
theoretical problem: given a set of graphs—encoding for each recursive call the decrease
in size of each argument—one tries to decide the size-change termination condition (SCT
condition) on the graphs, namely that in every infinite sequence of graphs one can find an
argument whose size is strictly decreased infinitely often. If the condition is satisfied, then
termination is proved.

Concerning automation of the size-change principle, there are two problems: first, the
base ordering (or size-measure or ranking function) must be provided to construct the graphs,
and second, even for a given base ordering, deciding the SCT condition is PSPACE-complete.

To overcome these problems, in [3] and [6] sufficient criteria have been developed. They
approximate the SCT condition in a way that can be encoded into SAT.

Another benefit of [6] is an integration of the approximated SCT condition as a reduction
pair in the dependency pair framework (DP framework) [12], called SCNP reduction pair.

Although IsaFoR contains already a full formalization of size-change termination as it is
used in [23], an integration of SCNP reduction pairs in the certification process might be
beneficial for two reasons:

since deciding the SCT condition is PSPACE hard, whereas the approximated condition
can be encoded into SAT, the certificates might be easier to check
the approximated SCT condition is not fully subsumed by the SCT condition as only the
former allows incremental termination proofs in the DP framework

Before we describe our formalization of SCNP reduction pairs, we shortly recall some
notions of the DP framework, a popular framework to perform modular termination proofs
for TRSs. The main data structure are DP problems (P,R) consisting of two TRSs where
all rules in P are of the form F (. . .) → G(. . .) where F,G are symbols that do not occur
in R. The main task is to prove finiteness of the a given DP problem (P,R), i.e., absence
of infinite minimal chains s1σ → t1σ →∗R s2σ → t2σ . . . where all si → ti ∈ P and all tiσ
are terminating w.r.t. R. To this end, one uses various processors to simplify the initial DP
problem for a TRS until the P-component is empty.

One of the most important processors is the reduction pair processor [12, 14]—where
here we only present its basic version without other refinements like usable rules w.r.t. an
argument filtering [12]. It can remove strictly decreasing rules from P , provided that both P
and R are at least weakly decreasing.

I Theorem 5.1 (Reduction pair processor). Let (%,�) be a reduction pair. If P ⊆ �∪% and
R ⊆ % then (P,R) is finite if (P \ �,R) is finite.

RTA’12

348 On the Formalization of Termination Techniques based on Multiset Orderings

Hence, to prove termination it suffices to find different reduction pairs to iteratively
remove rules from P until all rules of P have been removed. Thus, with SCNP reduction
pairs it is possible to choose different base orderings to remove different rules of P.

In the following we report on details of SCNP reduction pairs as defined in [6] and on their
formalization. Essentially, SCNP reduction pairs are generated from reduction pairs (%,�)
via a multiset extension of a lexicographic combination of � with the standard ordering on
the naturals.

I Definition 5.2 (Multiset extension). We define that µ is a multiset extension iff for each
ordering pair (%,�) over A, the pair (%µ,�µ) is an ordering pair over P(A). Moreover,
whenever � and % are closed under an operator op (x (%)y implies op(x) (%)op(y) for all
x, y), then �µ and %µ must also be closed under the image of op on multisets (M (%)µ

N

implies op[M] (%)µ
op[N]).

We also call (%µ,�µ) the multiset extension of (%,�) w.r.t. µ.

For example, gms is a multiset extension and in [3] and [6] in total four extensions
are listed to compare multisets (gms, min, max, and dms). The extension dms is the
dual multiset extension [4] where our formulation is equivalent to the definition in [6].4
The strict relation is defined as M �dms N iff M = {{x1, . . . , xm}} ∪ {{z1, . . . , zk}}, N =
{{y1, . . . , yn}} ∪ {{z′1, . . . , z′k}}, n > 0, ∀i.zi % z′i, and ∀xi.∃yj .xi � yj ; the non-strict relation
%dms is defined like �dms except that the condition n > 0 is omitted.

For SCNP reduction pairs, multisets are compared via one of the four multiset extensions.
And to generate multisets from terms, the notion of a level mapping is used.

I Definition 5.3 (Level mapping [6]). For each f ∈ F with arity n, let π(f) ∈ P({1, . . . , n}×
N).5 We define the level-mapping L : T (F ,V)→ P(T (F ,V)× N) where L(f(s1, . . . , sn)) =
{{〈si, k〉 | (i, k) ∈ π(f)}}.6

I Definition 5.4. Let (%,�) be a reduction pair for terms in T (F ,V). Let µ be a multiset
extension. The ordering pair (%N,�N) over T (F ,V) × N is defined as the lexicographic
combination of (%,�) with the >-ordering on the naturals: 〈s, n〉 %N 〈t,m〉 iff s � t ∨ (s %
t ∧ n ≥ m), and 〈s, n〉 �N 〈t,m〉 iff s � t ∨ (s % t ∧ n > m). The ordering pair (%N

µ,�N
µ) is

defined as the multiset extension of (%N,�N) w.r.t. µ.

In principle, �N
µ∪%N

µ is the part of a SCNP reduction pair that should be used to compare
left- and right-hand sides of P within the reduction pair processor. However, one also needs
to orient the rules in R via %. To this end, two types are introduced in [6] so that the
final ordering incorporates both �N

µ ∪%N
µ for P and % for R. In detail, the signature F is

partitioned into Fb] F] consisting of base symbols Fb and tuple-symbols F]. The set of
base terms is T (Fb,V), and a tuple term is a term of the form F (t1, . . . , tn) where F ∈ F]
and each ti is a base term.

Notice that for a DP problem (P,R) all terms in P are tuple terms and all terms in R
are base terms if one chooses F] to be the set of root symbols of terms in P. Therefore,
SCNP reduction pairs are defined in a way that the ordering depends on whether tuple terms
or base terms are compared.

4 There is a difference in the definition of the dual multiset extension in [3,4] to the definition in [6] which
is similar to the difference between �ms and �gms.

5 In [6] there was an additional condition that π(f) may not contain two entries 〈j, k1〉 and 〈j, k2〉. It
turned out that this condition is not required for soundness.

6 We use the notation L instead of ` for level mappings as in this paper, ` are left-hand sides of rules.

R. Thiemann, G. Allais, and J. Nagele 349

I Definition 5.5 (SCNP reduction pair [6]). Let µ be a multiset extension and L be a level
mapping. Let (%,�) be a reduction pair over T (F ,V). The SCNP reduction pair is the pair
(%L,µ,�L,µ) where the relations %L,µ and �L,µ over T (F ,V) are defined as follows. If t and
s are tuple terms, then t �L,µ s iff L(t) �N

µ L(s), and t %L,µ s iff L(t) %N
µ L(s). Otherwise,

if t and s are base terms, then t %L,µ s iff t % s, and t �L,µ s iff t � s.

Before stating the major theorem of [6] that SCNP reduction pairs are reduction pairs,
we first have to clarify the notion of reduction pair: In [6, Sec. 2] a non standard definition
of a reduction pair is used which differs from Def. 2.1. To distinguish between both kinds of
reduction pairs we call the ones of [6] typed reduction pairs.

I Definition 5.6 (Typed reduction pair [6]). A typed reduction pair is a reduction pair (%,�)
over T (F ,V) with the additional condition that % compares either two tuple terms or two
base terms.

So, the major theorem of [6] states that whenever (%,�) is a typed reduction pair, then
so is (%L,µ,�L,µ) where µ is one of the four mentioned multiset extensions.

The major problem in the formalization of exactly this theorem required a link between
the two notions of reduction pairs since all other theorems working with reduction pairs in
IsaFoR are using Def. 2.1.

At this point, it turned out that there are problems with Def. 5.6. Of course, to use
the major theorem of [6] one needs a typed reduction pair to start from. Unfortunately,
common reduction pairs like RPO are not typed reduction pairs w.r.t. Def. 5.6. For example,
if F ∈ F] then F (F (x)) %grpo F (F (x)), but then % does not satisfy the additional condition
of Def. 5.6, since here two terms are in relation which are neither base terms nor tuple terms.

A possible solution might be to require that (%,�) is just a reduction pair and then
show that (%L,µ,�L,µ) is a typed reduction pair. However, even with this adaptation the
problems remain, since Def. 5.6 itself is flawed: assume (%,�) is a typed reduction pair
and F is a non-constant tuple symbol. Since % is a quasi-ordering (on tuple-terms) it is
reflexive, and thus F (~t) % F (~t) for every list ~t of base terms. By monotonicity of % also
F (. . . , F (~t), . . .) % F (. . . , F (~t), . . .) must hold, in contradiction to the condition that %
only compares base terms or tuple terms. So, there is a severe problem in demanding both
monotonicity of % and the additional condition of Def. 5.6.

Repairing Def. 5.6 by only requiring monotonicity w.r.t. Fb is also no solution, since for
using reduction pairs in the reduction pair processor, it is essential that % is also closed
under F]-contexts.

For a proper fix of SCNP reduction pairs, note that the distinction between tuple terms
and base terms in [6] is solely performed, to have two kinds of orderings: % for orienting
rules in R, and %N

µ and �N
µ for orienting rules of P.

However, there is already a notion which allows the usage of different orderings for
orientation of P and R, namely reduction triples. The advantage of this notion is the fact
that it does not require any distinction between base and tuple terms.

I Definition 5.7 (Reduction triple, [14]). A reduction triple is a triple (%,%>,�>) such that
(%,�>) is a reduction pair and (%>,�>) is a non-monotone reduction pair.

Reduction triples can be used instead of reduction pairs in Thm. 5.1: in [14] it is shown
that whenever P ⊆ �> ∪ %> and R ⊆ % then P can be replaced by P \ �> in the DP
problem (P,R). The proof is similar to the one of Thm. 5.1 and also in IsaFoR it was easy
to switch from reduction pairs to reduction triples. Hence, the obvious attempt is to define
SCNP reduction pairs as reduction triples. As there is no distinction of base terms and tuple
terms, we will not run into problems that are caused by the required monotonicity of %.

RTA’12

350 On the Formalization of Termination Techniques based on Multiset Orderings

I Definition 5.8 (SCNP reduction triple). Let µ be a multiset extension and L be a level
mapping. Let (%,�) be a reduction pair.

We define %> and �> as t %> s iff L(t) %N
µ L(s), and t �> s iff L(t) �N

µ L(s). Then the
SCNP reduction triple is defined as (%,%>,�>).

If we are able to prove that every SCNP reduction triple is indeed a reduction triple, then
we are done. Unfortunately, it turns out that an SCNP reduction triple is not a reduction
triple, where the new problem is that compatibility between �> and % cannot be ensured.
As an example, consider a reduction pair (%,�) which is defined via an RPO with precedence
b > a and status τ(F) = lex . Moreover, let the level-mapping be defined via π(F) = {{〈2, 0〉}}
and take µ = gms. Then F (a, b) �> F (b, a) since L(F (a, b)) = {{〈b, 0〉}} �N

gms {{〈a, 0〉}} =
L(F (b, a)). Furthermore, F (b, a) % F (a, b). However, if �> and % were compatible, then we
would be able to conclude F (a, b) �> F (a, b), a contradiction.

To this end, we finally have defined a weaker notion than reduction triples which can still
be used like reduction triples.

I Definition 5.9 (Root reduction triple). A root reduction triple is a triple (%,%>,�>) such
that (%>,�>) is a non-monotone reduction pair, % is a stable and monotone quasi-ordering,
and whenever s % t then f(v1, . . . , vi−1, s, vi+1, . . . , vn) %> f(v1, . . . , vi−1, t, vi+1, . . . , vn).

Note that every reduction triple (%,%>,�>) is also a root reduction triple provided that
% ⊆ %>—and as far as we know this condition is satisfied for all reduction triples that are
currently used in termination tools. Moreover, root reduction triples can be used in the same
way as reduction triples to remove pairs which has been proved in IsaFoR.

I Theorem 5.10 (Root reduction triple processor). Let (%,%>,�>) be a root reduction triple.
Whenever P ⊆ �> ∪%>, R ⊆ %, and (P \ �>,R) is finite, then (P,R) is finite.

Hence, the notion of root reduction triple seems useful for termination proving. And
indeed, it turns out that each SCNP reduction triple is a root reduction triple which finally
shows that SCNP reduction triples can be used to remove pairs from DP problems.7

I Theorem 5.11. Every SCNP reduction triple is a root reduction triple.

Thm. 5.11 is formally proved within IsaFoR, theory SCNP. Note that this formalization was
straightforward, once the notion of root reduction triple was available: the whole formalization
takes only 310 lines. It also includes the feature of ε-arguments—an extension of size-change
graphs which is mentioned in both [23] and [6]—and it contains results on Ce-compatibility
and compatibility w.r.t. to argument filterings. The latter results are important when dealing
with usable rules, cf. [12] for further details.

Regarding the formalization of multiset extensions—which is orthogonal to the formal-
ization of SCNP reduction triple—we were able to integrate three of the four mentioned
multiset extensions. However, for the multiset extension dms it is essential that the signature
F is finite as otherwise strong normalization is not necessarily preserved, cf. Ex. 5.12. Here,
the essential issue is that without an explicit bound on the sizes of the multiset, strong
normalization is lost (such a bound is explicitly demanded in [3], but not in [6]).

I Example 5.12. In [6] it is assumed that the initial TRS is finite. Hence, also the initial
signature is finite which in turn gives a bound on the sizes of the constructed multisets.

7 An alternative—but unpublished—fix to properly define SCNP reduction pairs has been developed by
Carsten Fuhs. It is based on typed term rewriting. (private communication)

R. Thiemann, G. Allais, and J. Nagele 351

However, for the soundness of SCNP reduction pairs it is essential that the signature of the
current system is finite, since otherwise the following steps would be a valid termination
proof for the TRS R = {a→ a} as there is no bound on the sizes of multisets.

Build the initial DP problem ({A→ A},R).
Replace this DP problem by the DP problem D = ({Ai(x, . . . , x)→ Ai+1(x, . . . , x) | i ∈
N}, ∅) where the arity of each Ai is i. This step is sound, as D is not finite.
Replace D by (∅, ∅). This can be done using the SCNP reduction pair where µ = dms,
π(Ai) = {〈j, 0〉 | 1 ≤ j ≤ i}, and (%,�) is any reduction pair. The reason is that

{{〈x, 0〉, . . . , 〈x, 0〉︸ ︷︷ ︸
i times

}} �dms {{〈x, 0〉, . . . , 〈x, 0〉︸ ︷︷ ︸
i + 1 times

}}.

The demand for a bound on the signature for dms resulted in a small problem in our
formalization, since in IsaFoR we never have finite signatures: for each symbol f we directly
include infinitely many f ’s, one for each possible arity in N. So, in principle there might not
be any bound on the size of the multisets that are constructed by the level mapping. Hence,
we use a slightly different version of dms which includes some fixed bound n on the size of
the multisets: we define M (%) dms-n N iff M (%) dms N and |N | ≤ n ∨ |N | = |M |. Hence,
dms-n is a restriction of dms where either the sizes of the multisets are bounded by n or
where multisets of the same sizes are compared.

Note that the additional explicit restriction of |N | ≤ n ensures strong normalization
even for infinite F or unbounded multisets. The other alternative |N | = |M | is added, as
otherwise reflexivity of %dms-n is lost, for example {{x, . . . , x︸ ︷︷ ︸

n+1

}} %dms-n {{x, . . . , x︸ ︷︷ ︸
n+1

}} would no
longer hold.

In practice, the difference between dms and dms-n can be neglected. As for the certification
we only consider finite TRSs, we just precompute a suitable large enough number n such
that for the resulting constraints dms and dms-n coincide.

We conclude this section by showing that certification of SCNP reduction triples is
NP-hard in the case of µ ∈ {gms, dms} which also implies that deciding �dms is NP-hard.

I Theorem 5.13. Given a SCNP reduction triple (%,%>,�>) and µ ∈ {gms, dms}, the
problem of deciding ` �> r for two terms ` and r is NP-hard.

Proof. For µ = gms we use nearly the identical reduction from SAT as we used in the proof
of Thm. 4.2. To be more precise, for each formula φ we use the exactly the same terms `
and r and the same multisets L and R as before. Moreover, we define the level-mapping
by choosing π(g) = {〈i, 0〉 | 1 ≤ i ≤ 2n} and π(h) = {〈i, 0〉 | 1 ≤ i ≤ n + m}. Then for
L′ = {{〈s, 0〉 | s ∈ L}} and R′ = {{〈s, 0〉 | s ∈ R}} we obtain ` �> r iff L′ �N

gms R
′ iff

L �gms R. It remains to choose � as the MPO within the proof of Thm. 4.2. Then L �gms R

iff φ is satisfiable, so in total, ` �> r iff φ is satisfiable.
Furthermore, it can easily be argued that NP-hardness is not a result of our extended

definition of MPO: we also achieve L �gms R iff φ is satisfiable if we define � by a polynomial
interpretation Pol with Pol(f(x0, . . . , xm)) = 1 + x0 + · · ·+ xm and Pol(a) = 0.

For µ = dms one can use a similar reduction from SAT: satisfiability of φ is equivalent
to ` �> r using the same level-mapping as before, but where now ` = h(x1 ∨ x1, . . . , xn ∨
xn, s(C ′1), . . . , s(C ′m)), r = g(x1, x1, . . . , xn, xn), and � is defined as the polynomial interpret-
ation Pol where Pol(s(x)) = 1 + x and Pol(x∨ y) = x+ y. Here, each C ′i is a representation
of clause Ci as disjunction. J

RTA’12

352 On the Formalization of Termination Techniques based on Multiset Orderings

6 Certification Algorithms

For the certification of existing proofs using RPO and SCNP reduction pairs there are in
principle two possibilities, which we will explain using RPO.

The first solution for certifying s �grpo t is to use a shallow embedding. In this approach,
some untrusted tool figures out how the inference rules of RPO have to be applied and
generates a proof script that can then be checked by the proof assistant. This solution cannot
be used in our case, since CeTA is obtained from IsaFoR via code generation.

The second solution is to use a deep embedding where an algorithm for deciding RPO
is developed within the proof assistant in combination with a soundness proof. Then this
algorithm is amenable for code generation, and such an algorithm is also used in related
certifiers [5, 7] where it is accessible via reflection. Hence, we had to develop a function for
deciding RPO constraints within Isabelle. In our case, we have written a function grpoτ> for
RPO, which is parametrized by a precedence > and a status τ . It takes two terms s and t as
input and returns the pair (s �grpo t, s %grpo t). In fact, we even defined RPO via grpoτ>
and only later on derived the inference rules that have been presented in Sec. 4.

Since we proved several properties of RPO directly via grpoτ> (theory RPO), we im-
plemented grpoτ> in a straightforward way as recursive function. As a result, grpoτ> has
exponential runtime, since no sharing of identical subcalls is performed. To this end, we
developed a second function for RPO, that has been proved to be equivalent to grpoτ>, but
where memoization is integrated—a well known technique where intermediate results are
stored to avoid duplicate computations. In principle, this is an easy programming task, but
since we use a deep embedding, we had to formally prove correctness of this optimization.

To stay as general as possible, the memoized function was implemented independent of
the actual data structure used as memory. The interface we use for a memory is as follows.
We call a memory valid w.r.t. to a function f if all entries in the memory are results of f .
Moreover we require functionality for looking up a result in the memory and for storing a
new result with the obvious soundness properties: storing a correct entry in a valid memory
yields a valid memory and looking up an entry in a valid memory returns a correct result,
i.e., the same result that would have been computed by f .

Assuming we have such a memory at our disposal the idea of memoizing is straightforward:
before computing a result we do a lookup in the memory and if an entry is found we return
it and leave the memory unchanged. Otherwise we compute as usual, store the result in the
memory and return both.

The main difficulty was that all recursive calls of grpoτ> are indirect via higher-order
functions like the computation of the multiset- and lexicographic extension of a relation.
Consequently results of recursive calls to RPO are not available directly, but only in these
higher-order functions. Thus, they have to take care of storing results in the memory and of
passing it on to the next RPO call. Hence, new memoizing versions of all these higher-order
functions had to be implemented and their soundness had to be proved. Soundness meaning
that, when given equivalent functions as arguments, they compute the same results as their
counterparts without memory handling, and that given a valid memory as input they return a
valid memory in addition to their result. For further details we refer to theory Efficient-RPO.

Concerning the required decision procedures for gms and dms which have to find suitable
splittings, we used a branch-and-bound approach.

We tested our certification algorithms by rerunning all experiments that have been
performed in [6]. Here, AProVE tries to prove termination of 1,381 TRSs from the termination
problem database (TPDB version 7.0) using 20 different strategies where in 12 cases SCNP

R. Thiemann, G. Allais, and J. Nagele 353

reduction pairs are used and full size-change termination is tried 4 times. Here, in 16
strategies RPO or weaker orderings have been tried. As in [6] we used a timeout of 60
seconds and although we used a different computer than in [6], on the 20× 1, 381 termination
problems, there are only 8 differences in both experiments—all due to a timeout.

By performing the experiments we were able to detect a bug in the proof output of
AProVE—the usable rules have not been computed correctly. After a corresponding fix indeed
all 9,025 generated proofs could be certified by CeTA (version 2.2).

The experiments contain 432 proofs where the usage of �gms and %gms was essential, i.e.,
where the constraints could not be oriented by �ms and �ms. If one allows equality modulo
the equivalence relation induced by the ordering, then still 39 proofs require �gms and %gms.

Regarding the time required for certification, although it is NP-complete, in our experi-
ments, certification is much faster than proof search. The reason is that our certification
algorithms are only exponential in the arity of the function symbols, and in the experiments
the maximal arity was 7. In numbers: AProVE required more than 31 hours (≈ 4 seconds
per example) whereas CeTA was done in below 6 minutes (≈ 0.04 seconds per example).

The experiments also show that proofs using SCNP reduction pairs can indeed be certified
faster than proofs using full size-change termination. In average, the latter proofs require
50 % more time for certification than the former.

All details of our experiments are available at http://cl-informatik.uibk.ac.at/
software/ceta/experiments/multisets/.

7 Summary

We have studied the generalization of the multiset ordering which is generated by two
orderings: a strict one and a compatible non-strict one. Indeed this generalization preserves
most properties of the standard multiset ordering, where we only detected one difference:
the decision problem becomes NP-complete.

Concerning termination techniques that depend on multiset orderings, we formalized and
corrected an extended variant of RPO that is used within AProVE, and we formalized and
corrected SCNP reduction pairs. Certification of both techniques is NP-hard.

Acknowledgments
We thank Carsten Fuhs for helpful discussions and his support in the experiments, and we
thank the anonymous referees for their helpful comments.

References
1 T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. Theor. Comput.

Sci., 236(1-2):133–178, 2000.
2 F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,

Cambridge, 1998.
3 A. M. Ben-Amram and M. Codish. A SAT-based approach to size change termination with

global ranking functions. In Proc. TACAS ’08, volume 4963 of LNCS, pages 218–232, 2008.
4 A. M. Ben-Amram and C. Soon Lee. Program termination analysis in polynomial time.

ACM Trans. Program. Lang. Syst., 29(1), 2007.
5 F. Blanqui and A. Koprowski. CoLoR: a Coq library on well-founded rewrite relations

and its application on the automated verification of termination certificates. Mathematical
Structures in Computer Science, 21(4):827–859, 2011.

RTA’12

http://cl-informatik.uibk.ac.at/software/ceta/experiments/multisets/
http://cl-informatik.uibk.ac.at/software/ceta/experiments/multisets/

354 On the Formalization of Termination Techniques based on Multiset Orderings

6 M. Codish, C. Fuhs, J. Giesl, and P. Schneider-Kamp. Lazy abstraction for size-change
termination. In Proc. LPAR ’10, volume 6397 of LNCS, pages 217–232, 2010.

7 E. Contejean, P. Courtieu, J. Forest, O. Pons, and X. Urbain. Certification of automated
termination proofs. In Proc. FroCoS ’07, volume 4720 of LNAI, pages 148–162, 2007.

8 N. Dershowitz. Orderings for term-rewriting systems. Theor. Comput. Sci., 17:279–301,
1982.

9 N. Dershowitz. Termination of rewriting. J. Symb. Comp., 3(1-2):69–116, 1987.
10 N. Dershowitz and Z. Manna. Proving termination with multiset orderings. Comm. ACM,

22(8):465–476, 1979.
11 J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic termination proofs

in the dependency pair framework. In Proc. IJCAR ’06, volume 4130 of LNAI, pages 281–
286, 2006.

12 J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and improving
dependency pairs. J. Autom. Reason., 37(3):155–203, 2006.

13 F. Haftmann and T. Nipkow. Code generation via higher-order rewrite systems. In Proc.
FLOPS ’10, volume 6009 of LNCS. Springer, 2010.

14 N. Hirokawa and A. Middeldorp. Tyrolean Termination Tool: Techniques and features. Inf.
Comput., 205(4):474–511, 2007.

15 J.-P. Jouannaud and A. Rubio. The higher-order recursive path ordering. In Proc. LICS ’99,
pages 402–411. IEEE Computer Society Press, 1999.

16 A. Koprowski. Coq formalization of the higher-order recursive path ordering. Appl. Algebra
Eng. Commun. Comput., 20(5-6):379–425, 2009.

17 K. Korovin and A. Voronkov. Orienting rewrite rules with the Knuth-Bendix order. Inf.
Comput., 183(2):165–186, 2003.

18 M. S. Krishnamoorthy and P. Narendran. On recursive path ordering. Theor. Comput.
Sci., 40:323–328, 1985.

19 C. S. Lee, N. D. Jones, and A. M. Ben-Amram. The size-change principle for program
termination. In Proc. POPL ’01, pages 81–92, 2001.

20 T. Nipkow. An inductive proof of the wellfoundedness of the multiset order, 1998. Available
at http://www4.in.tum.de/~nipkow/misc/multiset.ps.

21 T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL – A Proof Assistant for Higher-Order
Logic, volume 2283 of LNCS. Springer, Berlin-Heidelberg, 2002.

22 P. Schneider-Kamp, R. Thiemann, E. Annov, M. Codish, and J. Giesl. Proving termination
using recursive path orders and SAT solving. In Proc. FroCoS ’07, volume 4720 of LNAI,
pages 267–282, 2007.

23 R. Thiemann and J. Giesl. The size-change principle and dependency pairs for termination
of term rewriting. Appl. Alg. Eng. Comm. Comput., 16(4):229–270, 2005.

24 R. Thiemann and C. Sternagel. Certification of termination proofs using CeTA. In Proc.
TPHOLs ’09, volume 5674 of LNCS, pages 452–468, 2009.

http://www4.in.tum.de/~nipkow/misc/multiset.ps

	Introduction
	Preliminaries
	Formalization of the Generalized Multiset Ordering
	Multiset and Recursive Path Ordering
	SCNP Reduction Pairs
	Certification Algorithms
	Summary

