
An Abstract Factorization Theorem for Explicit
Substitutions
Beniamino Accattoli

INRIA & LIX (École Polytechnique), France
beniamino.accattoli@inria.fr

Abstract
We study a simple form of standardization, here called factorization, for explicit substitutions
calculi, i.e. lambda-calculi where beta-reduction is decomposed in various rules. These calculi,
despite being non-terminating and non-orthogonal, have a key feature: each rule terminates
when considered separately. It is well-known that the study of rewriting properties simplifies in
presence of termination (e.g. confluence reduces to local confluence). This remark is exploited
to develop an abstract theorem deducing factorization from some axioms on local diagrams. The
axioms are simple and easy to check, in particular they do not mention residuals. The abstract
theorem is then applied to some explicit substitution calculi related to Proof-Nets. We show
how to recover standardization by levels, we model both call-by-name and call-by-value calculi
and we characterize linear head reduction via a factorization theorem for a linear calculus of
substitutions.

1998 ACM Subject Classification F.4.1 Mathematical Logic – Lambda calculus and related
systems, F.4.2 Grammars and Other Rewriting Systems

Keywords and phrases λ-calculus, Standardization, Explicit Substitutions, Abstract rewriting,
Diagrammatic reasoning

Digital Object Identifier 10.4230/LIPIcs.RTA.2012.6

Category Regular Research Paper

1 Introduction

Background. The study of the rewriting properties of a system S simplifies considerably if
there cannot be infinite reductions, i.e. if the rewriting relation→S associated to S is strongly
normalizing. The typical example is the study of confluence, which can be reduced to local
confluence in presence of strong normalization, thanks to Newman’s lemma. Unfortunately,
many interesting systems—λ-calculus for instance—do not enjoy strong normalization (SN)1.

There is a special class of non strongly normalizing rewriting systems which is given by
those systems having more than one rewriting rule and s.t. any of their rules is SN when
considered alone; they could be called locally terminating systems. Natural examples are
most λ-calculi where β-reduction is decomposed into a set of more atomic rules. This is
typically done by extending the syntax of λ-calculus with a new term constructor t[x/u]
(sometimes written let x = u in t) denoting a delayed or explicit substitution (ES), and
decomposing the β-rule:

(λx.t) u→β t{x/u}

1 λ-calculus is an orthogonal system, and so confluence of λ-calculus is easy for other reasons. But the
systems we will deal with in this paper are not orthogonal.

© Beniamino Accattoli;
licensed under Creative Commons License NC-ND

23rd International Conference on Rewriting Techniques and Applications (RTA’12).
Editor: A. Tiwari; pp. 6–21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.RTA.2012.6
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/dagpub/978-3-939897-38-5
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

B. Accattoli 7

into two rules:
(λx.t) u→B t[x/u]→s t{x/u}

In the ES-literature →s is in turn decomposed into a set of rules (see [22] for a survey), but
for the present discussion this is not relevant. Explicit substitutions were introduced to close
the gap between the theory of λ-calculus and implementations [1]. Their rewriting theory has
also been the subject of a lot of research, after Melliès showed the possibility of pathological
behaviors [25].

A similar decomposition of →β arise in many contexts, not necessarily in relation to
implementations and often without explicit reference to ES. Indeed, it can be found in studies
on call-by-value [19], complexity classes [32], linear systems [21], side-effects [20], etc. Usually,
these refined systems are not orthogonal nor strongly normalizing, and their rewriting theory
may be involved.

Local to global, via SN . In locally terminating systems termination of each rule
can sometimes be used to reduce global rewriting properties to a local form, similarly to
how Newman’s lemma reduces confluence to local confluence. The aim of the paper is to
reduce a simple form of standardization for ES-calculi to a local form, using as key ingredient
termination of each single rule.

Termination and confluence concern the existence and the uniqueness of normal forms,
which are the results of a computation. Standardization instead is about how to compute: it
identifies a specific class of reductions to which any other reduction can be transformed by
permuting its steps. It has many important corollaries, in particular it gives a normalizing
strategy for evaluation (see [9]).

Factorization in λ-calculus. It is well-known that in λ-calculus any reduction t→∗β u
can be re-organised so that

t→∗h→∗i u

i.e. by first reducing on the head (→∗h) and then everywhere else (→∗i). Concisely this is
expressed by →∗β= (→h ∪ →i)∗ ⊆→∗h→∗i . This is not exactly the standardization theorem:
it is an easier factorization theorem which can be inferred from standardization [27] or it
can be used to prove it [30, 9]. "Conceptually, the factorisation property means that the
efficient part of a computation can always be separated from its junk" [27]. Applications
of standardization often only require factorization, e.g. the operational characterization of
solvability for λ-calculus ([9]).

At first sight factorization is easy: a two-steps sequence as→i→h can always be permuted,
and the theorem seems to follow from this local permutation property. The swap is indeed
possible, but it is non-linear, i.e. it has the following general form →i→h⊆→+

h→∗i , which
can diagrammatically be represented as:

t −→i u99K

h+

⇒ −→

h
v 99K∗i w

Now, there are two easy abstract lemmas (Lemma 4.2 and 4.3), similar to Newman’s lemma,
which would imply the factorization theorem but only when either the sequence →+

h is
composed of at most one step or →h is strongly normalizing. Unfortunately, neither of these
conditions holds for λ-calculus. Indeed, consider the following diagram (where I = λy.y):

(λx.x x) (I I) −→i (λx.x x) I99K

h

⇒ −→

h
(I I) (I I) 99Kh I (I I) 99Ki I I

RTA’12

8 An abstract factorisation theorem for explicit substitutions

It shows that in general→+
h can have length greater than one2. And there exist→h-divergent

terms, for instance (λx.(x x)) λx.(x x). Therefore, factorization in non-terminating systems
is non-trivial.

The rewriting technique. Let us sketch the idea from which this paper stems. The
decomposition of β into B and s induces head (noted →B◦ and →s◦) and internal (→B• and
→s•) variants of B and s. The new head reduction →◦, given by →◦:=→B◦ ∪ →s◦, is not
strongly normalizing, but now it splits into two strongly normalizing reductions, →B◦ and
→s◦. The internal-head permutation splits into four diagrams (the dotted lines are not
specified on purpose):

t −→B• u99K

∗

⇒ −→

B◦
v 99K∗ w

t −→s• u99K

∗

⇒ −→

s◦
v 99K∗ w

t −→B• u99K

∗

⇒ −→

s◦
v 99K∗ w

t −→s• u99K

∗

⇒ −→

B◦
v 99K∗ w

These diagrams can now be studied one by one using strong normalization of →B◦ and
→s◦, which allows to apply the abstract lemmas (Lemma 4.2 and 4.3, and actually a
new abstract lemma, Lemma 4.4, is also needed). The obtained factorizations can then
easily be glued together, getting the factorization theorem for →◦. Therefore factorization—
surprisingly—turns out to be easier in ES-calculi than in λ-calculus. Actually, in λ-calculus
it is possible to prove factorization using some termination assumptions, by considering
complete developments of given sets of redexes, which are always finite (see [9], Chapter
11.4). However, this technique requires to define complex notions such as residuals and
developments, while our approach circumvents their need.

The main result of the paper is a set of axioms on local diagrams which imply the
factorization theorem. Despite being conceived for ES-calculi the axiomatization does not
rely on any particular feature of such calculi, it is simply formulated in terms of swaps
between reduction relations. Moreover, the axioms are simple and can be checked without
using heavy techniques as positions, labels or underlinings. Last, the theorem follows from
the axioms quite easily, once the right abstract lemmas for postponement have been isolated.

Applications. We developed the abstract result of this paper while studying standardiz-
ation for some λ-calculi related to Linear Logic Proof-Nets. Starting from these graphical
syntaxes, a new at a distance approach to explicit substitutions has recently been proposed
[5]. Distance-calculi are simpler than those of the earlier generation, in particular they have
less rules and they led to new results on λ-calculus [5, 6]. We present various concrete
applications of our abstract theorem to three such ES-calculi:
1. The substitution calculus λsub: the head reduction of λsub corresponds to reduction

at level 0 in Proof-Nets. We prove factorization and show how to iterate it in order to
get a standardization theorem by levels in the style of Linear Logic Proof-Nets.

2. The value substitution calculus λvsub, a call-by-value version of λsub. We factorize
λvsub reduction with respect to weak reduction, which plays the same role as head
reduction in the call-by-name case. We also factorize λvsub reduction with respect to
another scheme, obtained by mixing head and weak reduction. These factorizations have
been used in [8] to give a new characterization of call-by-value solvability.

3. The linear substitution λ-calculus λlsub: it is a a natural refinement of λsub where
explicit substitutions act on one occurrence at the time. It is also a slight variation over

2 It is enough to replace λx.x x with λx.(x x) x in the example to get that also →∗i has length greater
than one

B. Accattoli 9

a calculus proposed by Robin Milner (and related to Bigraphs and Pure Proof-Nets), and
a simplification of the structural calculus λj of [5]. Surprisingly, the reductions by levels
of λsub do not induce factorization nor standardization for λlsub. That approach is then
refined: the proper head reduction of λlsub is head linear reduction, an important notion
having strong connections with Krivine’s abstract machine (KAM) [14], Proof-Nets [23],
Geometry of Interaction [13], Game Semantics [12], Differential λ-calculus [16] and the
translation of λ-calculus into the π-calculus [24]. Ours is the first characterization of
linear head reduction from a rewriting point of view. Moreover, we generalize linear head
reduction into an indexed family of linear reductions, and give a generalized factorization
theorem for λlsub.

Related work. Standardization was first studied axiomatically by Gonthier, Levy and
Melliès in [18], and then further explored by Melliès [26, 28], who also gives axioms for
factorization in [27]. Our approach differs in two main points: 1) his theory is very general
and powerful, but also complex and difficult to apply, while ours, having been designed
around a specific class of systems, is easy to apply, but of course its scope is limited; 2) we
use factorization to prove standardization while he proceeds the other way around.

Road-map. In Section 2 we fix some terminology and notation. In Section 3 we define
the substitution calculus λsub and use it to introduce our axiomatics. Section 4 recalls and
develops some abstract tools about postponement of reductions. In Section 5 any system
satisfying the axioms is shown to enjoy a factorization theorem. In Section 6 we prove
two factorizations for the value-substitution calculus λvsub. Section 7 introduces the linear
substitution calculus λlsub, factorization with respect to linear head reduction, and then
generalizes linear head reduction. Section 8 concludes.

2 Notations and conventions

We follow a relational approach to abstract rewriting, i.e. we see a rewriting rule → on a set
S as a subset of →⊆ S ×S. Composition of rewriting steps is simple juxtaposition, therefore
→1→2 stands for a sequence like t→1 u→2 v. In the following we use →1→2⊆→3→4 as a
compact notation for a diagram like:

t −→1 u99K

3

⇒ −→

2
v 99K4 w

Composition of rewriting rules has precedence over union, i.e.→1→2 ∪ →3 should be read
as (→1→2)∪ →3. Given a rewriting relation → we note →+ and →∗ the transitive and
transitive-reflexive closure of→, respectively. We will note→◦ and→• the head and internal
variant of a given relation →. Unfortunately, the paper requires a huge number of rewriting
relations.

3 The substitution calculus λsub

The calculus λsub is given by the following syntax for terms:

t, u, s, v, r ::= x | λx.t | t u | t[x/u]

The constructor t[x/u] is called an explicit substitution. Both λx.t and t[x/u] bind x in
t. We use L to note a possibly empty list of explicit substitutions [x1/u1] . . . [xk/uk]. The

RTA’12

10 An abstract factorisation theorem for explicit substitutions

rewriting relation→λsub of λsub is given by the union of rules→dB and→s, which are obtained
as the context closure of following two root rules:

(λx.t)L s 7→dB t[x/s]L t[x/u] 7→s t{x/u}

Rule →dB is the rule labeled B at page 1 but here acting at a distance (which is the reason
for d): the function λx.t and the argument s can interact even if there is L between them.
This is motivated by the close relation between λsub and graphical formalisms as (Pure)
Proof-Nets or λj-dags, see [3, 4]. Morally, →dB (resp. →s) corresponds to the multiplicative
(resp. exponential) reduction of Proof-Nets. With different motivations this rule was also
considered by Curien, Hardin and Lévy in [11].

The substitution calculus may be suspected to be a useless modification of the λ-calculus,
because it has explicit substitutions but it executes them in just one shot. However, in [6]
λsub is the crucial tool in the proofs of some results on λ-calculus for which no other proof is
known. It should be taken as a tool to study λ-calculus rather than implementations.

The reduction relation →λsub of λsub is not SN , since →β⊆→λsub→λsub . However, both
→dB and →s are SN .

I Lemma 3.1 ([6]). The reductions →dB and →s are strongly normalizing and confluent.
Moreover, →λsub is confluent.

The literature on λ-calculus usually factors β reduction with respect to head and internal
reductions. We are going to do the same in λsub, but our notion of head reduction will be
slightly more liberal than the usual one. Head contexts H are defined by:

H ::= [·] | λx.H | H t | H[x/t]

The reductions →dB◦ and →s◦ are defined as the closure by head contexts of 7→dB and 7→s.
Then λsub head reduction is noted →λsub◦ and given by →dB◦ ∪ →s◦.

Our head reduction is a non-deterministic strategy. Consider:

(λx.y[y/I]) u dB ← (λx.(I I)) u →dB (I I)[x/u]

However, a simple case analysis shows that →λsub◦ enjoys the diamond property, which is
just a more abstract way to say that its non-determinism is harmless: it does not affect
reduction lengths and →λsub◦ normalizes weakly iff it normalizes strongly; in fact →λsub◦ can
be considered as a deterministic strategy. In particular, reducing →λsub◦ in an outermost way
recovers a more traditional formulation of head reduction. A motivation for our approach is
that →λsub◦ corresponds exactly to reduction at level 0 in Linear Logic Proof-Nets.

In order to study factorization with respect to head reduction we need to define the
complements of →λsub◦,→dB◦ and →s◦. We define the internal reduction →λsub• as the
union of →dB• and →s•, where →dB•:=→dB \ →dB◦ and →s•:=→s \ →s◦. It is possible to
show that →dB• and →s• can be defined as the closure by internal contexts of 7→dB and 7→s,
where internal contexts I are defined by:

I ::= t C | t [x/C] | H[I]

where C is no matter which context (and the notation H[I] denotes the context obtained
substituting the hole of H with I). The reductions are summarized by the square in Fig. 1.a,
where each coordinate is equal to the union of the row/column it denotes.

The local internal-head permutations are given by the following lemma, proved by
induction on the internal reductions and by means of a substitution lemma (details in [2]):

B. Accattoli 11

a)

→λsub• →λsub◦
→dB →dB• →dB◦
→s →s• →s◦

b)

→• →◦
 • ◦
� �• �◦

Figure 1 Squares of reductions

I Lemma 3.2 (head-internal diagrams). The following swaps hold:
1. →dB•→dB◦⊆→dB◦→dB•.
2. →s•→s◦⊆→s◦→s◦→∗s• ∪ →s◦→∗s•.
3. →s•→dB◦⊆→dB◦→s•.
4. →dB•→s◦⊆→s◦→dB◦→∗dB• ∪ →s◦→∗dB•.

Points 1-3 give swaps for which we can apply some abstract lemmas in the literature,
since →dB◦ and →s◦ are strongly normalizing, and easily get factorization. However, Point 4
introduces a new behaviour: swapping →dB•→s◦ can yield →s◦→dB◦→∗dB•, i.e. a third kind
of reduction (→dB◦) can pop out. Let us give an example:

(x x)[x/(λz.z) y] −→dB• (x x)[x/z[z/y]]99K

s◦

⇒ −→

s◦
((λz.z) y) ((λz.z) y) 99KdB◦ z[z/y] ((λz.z) y) 99KdB• z[z/y] z[z/y]

Note that the diagram can be written as →dB•→s◦⊆→s◦→∗dB. This phenomenon cannot
happen in λ-calculus, where there is only one head and one internal rewriting relation. Other
explicit substitution calculi (e.g. those in Section 6 and 7) present similar (but not identical)
forms of permutations. They can be grouped together under the notion of square factorization
system.

Let us abstract →dB and →s as two reductions and�. Now, the square of reductions
becomes as in Fig. 1.b, where we use the notations →◦:= ◦ ∪�◦, →•:= • ∪�•. Let us
also set →:=→◦ ∪ →•= ∪�.

I Definition 3.3. A square factorization system (SFS) S is given by a set |S| and four
reduction relations (•, ◦,�•,�◦) on |S| s. t. the following conditions hold:
1. Termination: ◦ and �◦ are strongly normalizing.
2. Row-swap 1: • ◦⊆ +

◦
∗
•.

3. Row-swap 2: �•�◦⊆�+
◦�

∗
•.

4. Diagonal-swap 1: �• ◦⊆ ◦�∗.
5. Diagonal-swap 2: •�◦⊆�◦ ∗.
The names of axioms 2-5 refer to the square table in Fig. 1.b.

Note the presence of �=�◦ ∪�• in axiom 4 and = ◦ ∪ • in axiom 5: the diagonal
swaps are where a third reduction pops out. Interestingly, the axioms are symmetric, i.e.
swapping the roles of � and one still has a SFS.

In Section 5 we prove that any SFS enjoys a factorization theorem, i.e. →∗⊆→∗◦→∗• holds
for any SFS. The important assumption in order to handle the diagonal swaps is that the
anticipated relation (e.g. ◦ in axiom 4) occurs only once in the permuted reduction. Now,
lemmas 3.2 and 3.1 prove that (→dB•,→dB◦,→s•,→s◦) is a SFS, therefore by the abstract
factorization result in Section 5 (Theorem 5.2.2, page 15) it follows:

I Corollary 3.4. →∗λsub
⊆→∗λsub◦→

∗
λsub•.

RTA’12

12 An abstract factorisation theorem for explicit substitutions

It is natural to wonder if from factorization for λsub one can recover the usual factorization
for λ-calculus. Let us sketch an aswer. To every λsub term t one can associate the λ-
term s(t), which is the normal form with respect to →s and it is easy to show that if
t→λsub t

′ then s(t)→∗β s(t′). Such a projection does not map factorized reductions in λsub

to factorized reduction in λ-calculus, because internal steps may project on head steps .
Consider for instance the reduction t = x[x/I I]→dB• x[x/y[y/I]] = u whose projection is
s(t) = I I →h I = s(u). However, this mismatch arises only if reductions take place inside
explicit substitutions. Now, a reduction ρ in λ-calculus induces a reduction ρ′ in λsub where
every β-step is simulated by a →dB step followed by a →s step, and in ρ′ reductions never
take place inside substitutions. It is possible to show that the factorization of ρ′ gives a
reduction τ with the same properties of ρ′, whose projection is then a factorized reduction in
λ-calculus. But the proof of this fact is left to a longer version of this paper.

We now show how to generalize the factorization theorem for λsub into a standardization
theorem. In terms of Proof-Nets the factorization theorem says that it is always possible to
first reduce at level 0 and then inside arguments of applications and substitutions, which
in Proof-Nets are wrapped into !-boxes. The head factorization can be iterated, getting
standardization by levels in the style of Linear Logic Proof-Nets.

I Definition 3.5 (Boxed contexts). Boxed contexts are indexed by an integer i ∈ N called
the level of the boxed context and defined by:

B0 ::= H Bi+1 ::= t Bi | t[x/Bi] | B0[Bi+1]

The closure with respect to B0—which may be confusing—is used to assign level 1 to
contexts as (λx.t [·])[x/u], for instance. Now, define i→s:= Bi[7→s], i→dB:= Bi[7→dB] and
i→λsub :=

i→s ∪
i→dB. Moreover, define >i→s:= ∪j>i

j→s, and similarly for >i→dB and >i→λsub (and
for ≥). According to our definitions we have that →λsub◦=

0→λsub and →λsub•=
>0→λsub . Lemma

3.2 can be generalized as follows:

I Lemma 3.6 (Factorization by levels). The following swaps hold:
1. >i→dB

i→dB⊆
i→dB

>i→dB.
2. >i→s

i→s⊆
i→

+
s
>i→
∗
s.

3. >i→s
i→dB⊆

i→dB
>i→s.

4. >i→dB
i→s⊆

i→
+
s
>i→
∗
dB.

Thus (>i→dB,
i→dB,

>i→s,
i→s) is a SFS and ≥i→λsub=

i→
∗
λsub

>i→
∗
λsub

.

Proof. We prove the first point, the others are proved analogously. If t j→dB u
i→dB v with

j > i then there are two cases. 1) there exists a context Bi s.t. t = Bi[w], u = Bi[w′] and
v = Bi[w′′] with w

i−j→ dB w
′ 0→dB w

′′, which is equivalent to w →dB• w
′ →dB◦ w

′′. By Lemma
3.2.1 we get w →dB◦→dB• w

′′, i.e. w 0→dB
>0→dB w

′′, and so t i→dB
>i→dB v. 2) There is no such

Bi, then the two steps are independent and permute. J

As a corollary we get the standardization theorem by levels for Linear Logic Proof-Nets
[15]. Define the level k of a term u as the maximum k s.t. u = Bk[v] for some v.

I Corollary 3.7 (standardization by levels). If t→∗λsub
u and k is the level of u then t 0→

∗
λsub

1→
∗
λsub

. . .
k−1→
∗
λsub

k→
∗
λsub

u.

B. Accattoli 13

Proof. By definition →∗λsub
=≥0→

∗
λsub

. By lemma 3.6 there exists u0 s.t. t 0→
∗
λsub

u0
>0→
∗
λsub

u.
Then we iterate on u0

>0→
∗
λsub

u, getting that there exists u1 s.t. u0
1→
∗
λsub

u1
>1→
∗
λsub

u, and
so on, until we get t 0→

∗
λsub

u0
1→
∗
λsub

u1 . . .
k−1→
∗
λsub

uk−1
k→
∗
λsub

uk
>k→
∗
λsub

u. Now, consider
uk

>k→
∗
λsub

u. This reduction is empty, otherwise u would have level greater than k, which is
absurd. J

The paper continues as follows: next section introduces some abstract lemmas for
postponements of reductions; Section 5 proves the factorization theorem for SFSs in an
abstract way. Sections 6 and 7 give some more applications of the factorization theorem.

4 An abstract toolbox for postponement

In this section we prove four abstract lemmas about permutation properties, which are used
to prove the abstract factorization theorem in Section 5. Let S be a rewriting system having
three reductions →1, →2, and →3, and for x, y ∈ {1, 2, 3} note →x,y=→x ∪ →y.

Let us recall some rewriting notions from [31]. What we call factorization is a form of
postponement: →2 postpones after →1 if →∗1,2⊆→∗1→∗2. Postponement is equivalent to
commutation. Two reductions →1 and →2 commute iff:

t →∗1 u t →∗1 u

↓∗2 implies ∃w s.t. ↓∗2 ↓∗2
v v →∗1 w

It is easy to show that →2 postpones after →1 iff →1 commutes with 2←. Therefore,
lemmas about commutations can be turned into lemmas about postponement, and conversely.
Commutation/postponement is a generalization of confluence, indeed a reduction → is
confluent iff it commutes with itself (iff ← postpones after →).

The first lemma proves postponement from a semi-local hypothesis, i.e. from a swap of
→∗2 and →1 (and not of →2 and →1). Afterwards, we show two different local conditions
for the semi-local hypothesis. This and the lemma which will follow are standard, we prove
them explicitely only to help the unacquainted reader.

I Lemma 4.1 (Semi-local condition for postponement). If →∗2→1⊆→∗1→∗2 then →∗1,2⊆→∗1→∗2.

Proof. By induction on the number k of →1 steps in τ : t →∗1,2 u. The case k = 0 is
trivial. Let k > 0. Then if τ is not of the form of the statement it has the following form:
t→∗1→+

2→1→∗1,2 u. Using the hypothesis we get: t→∗1→∗1→∗2→∗1,2 u. The i.h. on →∗2→∗1,2
gives: t→∗1→∗1→∗1→∗2 u and we conclude. J

The first local condition is that →2→1⊆→1→∗2. Note that one step of →1 on the left
becomes one step of →1 on the right. The right part can also be replaced by →1→∗2 ∪ →∗2,
but not by →∗1→∗2, otherwise the inductive argument does not work and it is not difficult to
build a counter-example (see [9]).

I Lemma 4.2 (Local condition for postponement). If →2→1⊆→1→∗2 then →∗2→1⊆→1→∗2
and so →∗1,2⊆→∗1→∗2.

Proof. We prove the first consequence, the second one follows from the first and Lemma
4.1. By induction on k, where t →k

2→1 u. The case k = 0 is trivial. Let k > 0. Then
t →k−1

2 →2→1 u and applying the hypothesis to the suffix we get t →k−1
2 →1→∗2 u. We

conclude applying the i.h. to the prefix →k−1
2 →1. J

RTA’12

14 An abstract factorisation theorem for explicit substitutions

In order to get a factorization theorem for SFSs we have to deal with permutations
of the form →2→1⊆→1→1→∗2, given for instance by Lemma 3.2.2. These commutations
are harmless if →1 is strongly normalizing, as next lemma shows. The lemma has been
independently proved by Geser in his Ph.D. thesis [17] and by Di Cosmo and Piperno in [10],
where it is presented for commutation, and it is here adapted to postponement. It can be
seen as a generalization of Newman’s lemma.

I Lemma 4.3 (Geser-Di Cosmo-Piperno’s lemma, adapted). If →2→1⊆→+
1→∗2 and →1 is

strongly normalizing then →∗2→+
1 ⊆→

+
1→∗2, and so →∗1,2⊆→∗1→∗2.

Proof. We prove the first consequence, the second one follows from the first and Lemma
4.1. Let τ : t →k

2→h
1 u. By induction3 on the pair (η(t), k), where η(t) is the length of

the maximal →1 reduction from t, ordered lexicographically. The case k = 0 is trivial,
then let k > 0. Now, if τ =→k−1

2 →2→1→h−1
1 then by applying the first hypothesis to the

central subesequence we get τ ⊆→k−1
2 →+

1→∗2→
h−1
1 . The measure of the prefix →k−1

2 →+
1 is

(η(t), k − 1) hence by i.h. we get τ ⊆→+
1→∗2→∗2→

h−1
1 . For the suffix →∗2→∗2→h−1

1 it is the
first component of the measure which decreases, since its starting term is obtained through a
→+

1 -reduction from t, so one can apply the i.h. and get τ ⊆→+
1→

+
1→∗2. J

The last abstract lemma we need is the one for the diagonal swaps, which has to
take into account the phenomenon of a third reduction popping out in the right part, i.e.
permutations of the form →2→1⊆→1→∗2,3 (given for instance by Lemma 3.2.4). We prove a
sort of generalization of Lemma 4.2 to this setting. This lemma is the key for the abstract
factorization theorem of next section. It is an original contribution of the paper.

I Lemma 4.4. If
1. →2→1⊆→1→∗2,3 and
2. →2→3⊆→+

3→∗2 and
3. →3 is strongly normalizing
then →∗2→∗1⊆→∗1,3→∗2.

Proof. First of all note that the second and third hypothesis allow to apply Lemma 4.3 and
get →∗2,3⊆→∗3→∗2, let us call this fact property (#). The proof is by induction on (h, k),
where →k

2→h
1 , ordered lexicographically. If k = 0 or h = 0 it is trivial. If k > 0 and h > 0

then applying the first hypothesis to the central part of τ :→k−1
2 →2→1→h−1

1 we get:

τ ⊆→k−1
2 →1→∗2,3→h−1

1 ⊆(#)→k−1
2 →1→∗3→∗2→h−1

1

Then by applying the i.h. to the prefix →k−1
2 →1 we get:

τ ⊆→∗1,3 →∗2→∗3→∗2︸ ︷︷ ︸
→∗

2,3

→h−1
1 ⊆(#) →∗1,3→∗3︸ ︷︷ ︸

→∗
1,3

→∗2→h−1
1 ⊆→∗1,3→∗2→h−1

1

Now by applying the i.h. to the suffix→∗2→h−1
1 we conclude with τ ⊆ →∗1,3→∗1,3︸ ︷︷ ︸

→∗
1,3

→∗2⊆→∗1,3→∗2

J

3 For the sake of simplicity the proof implicitly assumes that S is a finitely branching rewriting system.
This assumption can be dropped by replacing the induction on η(t) with an induction on the well-founded
order on the elements of S induced by →1 (because of strong normalization). We learned this from
Roberto Di Cosmo.

B. Accattoli 15

5 Abstract Standardization

In this section we prove that any square factorization system enjoys a factorization theorem.
Let us recall the definition from Section 3.

I Definition. A square factorization system (SFS) S is given by a set |S| and four
reduction relations (•, ◦,�•,�◦) on |S| s. t. the following conditions hold (remember
that := ◦ ∪ •, �:=�◦ ∪�•, →◦:= ◦ ∪�◦, →•:= • ∪�• and →:= ∪�):
1. Termination: ◦ and �◦ are strongly normalizing.
2. Row-swap 1: • ◦⊆ +

◦
∗
•.

3. Row-swap 2: �•�◦⊆�+
◦�

∗
•.

4. Diagonal-swap 1: �• ◦⊆ ◦�∗.
5. Diagonal-swap 2: •�◦⊆�◦ ∗.

The proof relies on the abstract lemmas of the previous sections and is simple. We just
lift the local permutations demanded to a SFS to sequences of steps (Points 1.a, 1.b, 2.a, 2.b
below) and then glue them together (Points 1.c and 2.c).

I Lemma 5.1 (Induced permutations of •∗ and ◦∗). Let S = { •, ◦,�•�◦} be a square
factorization system. The following inclusions hold:

1) Swap of �∗• and →∗◦: 2) Swap of ∗• and →∗◦:
a) Diagonal: �∗• ∗◦⊆→∗◦�∗•. a) Diagonal: ∗•�∗◦⊆→∗◦ ∗•.
b) Row: �∗•�∗◦⊆�∗◦�∗•. b) Row: ∗• ∗◦⊆ ∗◦ ∗•.
c) Diagonal + Row: �∗•→∗◦⊆→∗◦�∗•. c) Diagonal + Row: ∗•→∗◦⊆→∗◦ ∗•.

Proof. 1.a) Conditions 4 (�• ◦⊆ ◦�∗), 3 (�•�◦⊆�+
◦�

∗
•) and 1 (◦ is strongly

normalizing) for SFS satisfy the hypothesis of Lemma 4.4 (with→1= ◦, →2=�•, →3=�◦,
→2,3= (�• ∪ �◦) =� and →1,3= (�◦ ∪ ◦) =→◦). Hence, we get that �∗• ∗◦ is
included in →∗◦�∗•.
1.b) Conditions 1 (�◦ is strongly normalizing) and 3 (�•�◦⊆�+

◦�
∗
•) for SFS satisfy the

hypothesis of Lemma 4.3 (with →1=�◦, →2=�•). Hence, we get (�◦ ∪�•)∗ ⊆�∗◦�∗•.
We conclude, since �∗•�∗◦ is included in (�◦ ∪�•)∗ and thus in �∗◦�∗•.
1.c) From 1.a and 1.b we get �∗• ◦⊆→∗◦�∗• and �∗•�◦⊆�∗◦�∗•, hence �∗•→◦⊆→∗◦�∗•.
By Lemma 4.1 we get (→◦ ∪�•)∗ ⊆→∗◦�∗• and we conclude, since �∗•→∗◦⊆ (→◦ ∪�•)∗.
2.a) Conditions 5 (•�◦⊆�◦ ∗), 2 (• ◦⊆ +

◦
∗
•) and 1 (�◦ is strongly normalizing)

for SFS satisfy the hypothesis of Lemma 4.4 (with →1=�◦, →2= •, →3= ◦, →2,3= (•
∪ ◦) = and →1,3= (�◦ ∪ ◦) =→◦). Hence, we get that ∗•�∗◦ is included in →∗◦ ∗•.
2.b) Conditions 1 (◦ is strongly normalizing) and 2 (• ◦⊆ +

◦
∗
•) for SFS satisfy the

hypothesis of Lemma 4.3 (with →1= ◦, →2= •). Hence, we get (◦ ∪ •)∗ ⊆ ∗◦ ∗•.
We conclude, since ∗• ∗◦ is included in (◦ ∪ •)∗ and thus in ∗◦ ∗•.
2.c) From 2.a and 2.b we get ∗•�◦⊆→∗◦ ∗• and ∗• ◦⊆ ∗◦ ∗•, hence ∗•→◦⊆→∗◦ ∗•. By
Lemma 4.1 we get (→◦ ∪ •)∗ ⊆→∗◦ ∗• and we conclude, since ∗•→∗◦⊆ (→◦ ∪ •)∗. J

It is now easy to conclude.

I Theorem 5.2. Let S = { •, ◦,�•�◦} be a square factorization system. Then:
1. Swap of • and ◦∗: →•→∗◦⊆→∗◦→∗•.
2. Factorization: →∗⊆→∗◦→∗•.

Proof. 1. From points 1.c and 2.c of Lemma 5.1 we get�•→∗◦⊆→∗◦�∗• and •→∗◦⊆→∗◦ ∗•,
hence →•→∗◦⊆→∗◦→∗•.

RTA’12

16 An abstract factorisation theorem for explicit substitutions

2. By induction on the length k of →∗. The case k = 0 is trivial, then let k > 0. By i.h.
we get →→k−1⊆→→∗◦→∗•. If the first step is a →◦ step then there is nothing to prove.
Otherwise, by the previous point we get →•→∗◦→∗•⊆→∗◦→∗•→∗• and conclude.

J

All SFSs in the paper are composed of four rules. But some substitution calculi have
many rules, in particular a set of rules for substitutions. To apply the theorem is enough
to identify this set with �, and to split each rule accordingly. Similarly, there can also be
various rules for creating substitutions, whose union would be . The axioms for a SFS are
symmetric, so the choice between � or for one or the other set does not really matter.

6 The value-substitution calculus λvsub

The value-substitution calculus λvsub has the same syntax as λsub, but we distinguish the
syntactic category of values:

v = x | λx.t

The rewriting relation →λvsub is defined as the union of →dB (defined as before) and →vs,
which is the context closure of:

t[x/vL] 7→vs t{x/v}L

Remark rule 7→vs: there is no typo, in the left-hand side L is inside [x/vL] and in the right-
hand side it is outside {x/v}. A detailed account of the value-substitution calculus, which is
confluent, can be found in [8]. For λvsub we are going to prove two different factorization
theorems, both based on the following property.

I Lemma 6.1 ([8]). →dB and →vs are strongly normalizing and confluent.

The first factorization scheme for →λvsub is given by weak reduction (i.e. reductions out of
lambdas) and non-weak reductions, playing for λvsub the role of head and internal reductions
for λsub. Weak contexts are contexts whose hole is not under an abstraction:

W ::= [·] |W t | t W |W [x/t] | t[x/W]

Weak reduction ⇀◦ is defined as the union of ⇀dB◦ and ⇀vs◦, which are obtained as the
closure by weak contexts of 7→dB and 7→vs. Note that the reductions ⇀vs◦ and ⇀dB◦ are
strongly normalizing because their unrestricted versions are. Weak reduction ⇀◦ has the
diamond property [8].

In order to obtain a square factorization system we need to define the complements
of ⇀◦,⇀dB◦ and ⇀vs◦. We define ⇀• as the union of ⇀dB•:=→dB \ ⇀dB◦ and ⇀vs•:=→vs

\ ⇀vs◦, which are easily seen to be also definable via non-weak contexts, given by
W ::= λx.C |W [W]. Two examples:

(λx.t)[x/v[y/u]] s ⇀vs◦ (λx.t){x/v}[y/u] s t λx.(s[x/v]) ⇀vs• t λx.(s{x/v})

The following theorem is proved by means of a substitution lemma and an induction on
the rewriting relations (details in [2]).

I Theorem 6.2 (weak factorization). The following inclusions hold:
1. Row 1: ⇀dB•⇀dB◦⊆⇀dB◦⇀dB• ∪⇀dB◦⇀dB◦.
2. Row 2: ⇀vs•⇀vs◦⊆⇀vs◦⇀

∗
vs•.

B. Accattoli 17

3. Diagonal 1: ⇀vs•⇀dB◦⊆⇀dB◦⇀vs◦ ∪⇀dB◦⇀vs•.
4. Diagonal 2: ⇀dB•⇀vs◦⊆⇀vs◦⇀

∗
dB•.

Thus (⇀dB•,⇀dB◦,⇀vs•,⇀vs◦) is a SFS and →∗λvsub
=⇀∗◦⇀∗•.

We invite the reader to compare the diagrams of λsub (Lemma 3.2) and λvsub (Theorem
6.2): they are similar and yet different, despite both are SFS.

At this point we could iterate the factorization as for λsub, but we prefer to show another
factorization scheme obtained by combining head reduction and weak reduction in a new
interesting way. The following grammar defines stratified-weak contexts SW :

SW ::= W | SW t | λx.SW | SW [t/x]

Note that equivalently SW ::= H[W]. Stratified-weak reduction ⇁◦ is defined as the union
of ⇁dB◦ and ⇁vs◦ the closures by stratified-weak contexts 7→dB and 7→vs. Stratified-weak
reduction ⇁◦ has the diamond property [8]. We also need the complements of ⇁◦,⇁dB◦
and ⇁vs◦. Let us set: ⇁•:=→ \ ⇁◦, ⇁dB•:=→dB \ ⇁dB◦ and ⇁vs•:=→vs \ ⇁vs◦. Two
examples:

λx.(s[x/v]) ⇁vs◦ λx.(s{x/v}) t[y/λx.(s[x/v])] ⇁vs• t[y/λx.(s{x/v})]

The following theorem is proved by means of a substitution lemma and by induction on
the rewriting relations (details in [2]).

I Theorem 6.3 (stratified-weak factorization). The following inclusions hold:
1. Row 1: ⇁dB•⇁dB◦⊆⇁dB◦⇁dB• ∪⇁dB◦⇁dB◦.
2. Row 2: ⇁vs•⇁vs◦⊆⇁vs◦⇁

∗
vs• ∪⇁vs◦⇁vs◦⇁

∗
vs•.

3. Diagonal 1: ⇁vs•⇁dB◦⊆⇁dB◦⇁vs• ∪⇁dB◦⇁vs◦.
4. Diagonal 2: ⇁dB•⇁vs◦⊆⇁vs◦⇁dB◦⇁

∗
dB• ∪⇁vs◦⇁

∗
dB•.

Thus (⇁dB•,⇁dB◦,⇁vs•,⇁vs◦) is a SFS and →∗λvsub
=⇁∗◦⇁∗•.

Note that once again the permutations are different from the previous cases, and yet
caught by the axioms for a SFS. The two factorization theorems for λvsub have been used in
[8] to give a new operational characterization of call-by-value solvability.

7 The linear substitution calculus λlsub

In this section we apply the factorization theorem to a finer calculus of explicit substitutions,
the linear substitution calculus λlsub, a slight variation over a calculus introduced by Robin
Milner in [29], which can also be seen as a simplification of the structural λ-calculus λj [5].
The linear substitution calculus has the the same syntax as λsub. The rewriting rules of λlsub

are →dB (defined as before), →ls and →gc, which are defined as the context closures of:

C[x][x/u] 7→ls C[u][x/u] t[x/u] 7→gc t if x /∈ fv(t)

Rule 7→ls uses contexts: whenever we write C[x][x/u] we implicitly assume that C does not
capture x, despite the fact that in general (for instance in the context closure of the rules)
contexts may capture variables. We also note →λlsub=→dB ∪ →ls ∪ →gc. Note that λlsub

is obtained from λsub by decomposing the substitution rule in two more atomic rules. The
difference between λlsub and the original calculus of Milner [29] is rule →dB, which is not at
a distance in Milner’s calculus (i.e. it has the form of the B-rule in the introducion).

The linear substitution calculus enjoys all properties demanded to explicit substitution
calculi, obtained by easy adaptations of the proofs for λj in [5]. In particular, it is confluent
and preserves β-strong normalization. We will use the following property:

RTA’12

18 An abstract factorisation theorem for explicit substitutions

I Lemma 7.1. →dB, →ls, →gc are strongly normalizing and confluent.

Another important property is that garbage collection can be postponed.

I Lemma 7.2. Let →¬gc be →dB ∪ →ls, i.e. the complement of →gc with respect to →λlsub .
1. Local postponement of garbage collection: →gc→¬gc⊆→¬gc→∗gc.
2. Postponement of garbage collection: →∗λlsub

⊆→∗¬gc→∗gc.

Proof. 1) By induction on →gc. 2) It follows from the previous point and Lemma 4.2. J

Interestingly, if one defines head reduction as for λsub, i.e. as the closure by head contexts
of the root rewriting rules, the factorization theorem does not hold. Consider this reduction:

x[x/y[y/z]][z/u]→ls x[x/z[y/z]][z/u]→ls x[x/u[y/z]][z/u]

the first step has box level 1, while the second has box level 0, but they cannot be permuted4.
As we will see later, the notion of level of the linear substitution calculus is more subtle.

In λlsub it is possible to reformulate what in the Linear Logic literature is called linear
head reduction [23], and to prove factorization of →¬gc with respect to it. Note that in a
→ls step contexts are involved twice: to close the rule and to select the variable occurrence
to substitute for. For a head linear →ls step both contexts have to be head.

I Definition 7.3 (head linear reduction). Head linear reduction (◦ is defined as the
union of (dB◦:= H[7→dB] and (ls◦:= H[(̂ls], where (̂ls is given by:

H[x][x/u] (̂ls H[u][x/u]

Internal linear reduction(• is defined as the union of(dB•:=→dB \(dB◦ and(ls•:=→ls

\(ls◦. Two examples:

(y y)[y/z](ls◦ (z y)[y/z] (y y)[y/z](ls• (y z)[y/z]

With these definitions we get the following theorem, proved at the end of the section:

I Theorem 7.4. ((dB•,(dB◦,(ls•,(ls◦) is a SFS for →¬gc, and so →∗¬gc⊆(
∗
◦(
∗
•.

To our knowledge this is the first result formally proving factorization with respect to
linear head reduction. We recall that head linear reduction can be seen as an abstraction of
Krivine’s abstract machine [14]. Therefore, when β-reduction is decomposed in more atomic
rules, the factorization theorem becomes a method to derive abstract machines.

The relation between head linear reduction and the head reduction of λ-calculus has been
studied in depth in [7].

It is possible to generalize head linear reduction (◦ into a family {
i
(}i∈N of reductions

by levels, in which (◦ corresponds to
0
(. We still use contexts to define the level of a step,

but the notion of level used here differs from the one used for λsub: the index counts the
arguments of applications only. Contexts whose hole is inside a substitution are noted H∞.
Leveled contexts are defined as follows:

H0 ::= H Hi+1 ::= t Hi | H0[Hi+1] H∞ ::= t [x/C] | Hi[H∞]

4 A note for Proof-Nets experts: this phenomenon is at first sight surprising, but it is not due to our
formalism and we are not the firsts to point it out: working at the same time with small-steps rules
(as in λlsub) and freely permutating contraction with !-boxes (which is implicit using terms) breaks
standardization by levels also in a traditional Proof-Nets syntax, see Tranquilli’s thesis [33], p. 133.

B. Accattoli 19

In order to define linear reduction by levels we fix some conventions. We will need to sum
indexes, and for ∞ we use the equalities ∞+ i =∞ and ∞+∞ =∞. Moreover, we note
N∞ = N ∪ {∞} and consider i <∞ for all i ∈ N.

I Definition 7.5. The linear reduction
i
(is the union of

i
(dB and

i
(ls, defined as follows.

For i ∈ N∞ the reduction
i
(dB is the closure by Hi-contexts of 7→dB. The case of →ls is a

bit more complex. Let j7→ls be defined by the rule:

Hj [x][x/u] j7→ls Hj [u][x/u]

Then define
i
(ls:= Hl[

j7→ls], where i = l + j. Define also
>i
(ls:= ∪j>i

j
(ls and similarly for

>i
(dB,

>i
(and for ≥. Some examples of

i
(ls reductions:

(y y)[y/z]
0
(ls (z y)[y/z] (y y)[y/z]

1
(ls (y z)[y/z] y[y/z[z/s]]

∞
(ls y[y/s[z/s]]

(x (y y)[y/z])
2
(ls (x (y z)[y/z]) (x (y y)[y/z])[z/s]

∞
(ls (x (y y)[y/s])[z/s]

Note that when t
i
(ls s then exists Hi s.t. t = Hi[x]

i
(ls Hi[u] with respect to some

substitution [x/u] in Hi.
The following lemma gives a detailled analysis of leveled diagrams for the linear substitu-

tion calculus. It is proved by an analysis of diagrams relying on some technical lemmas on
leveled contexts (details in [2]).

I Lemma 7.6. Let i < j <∞. Then:
1) Row 1a:

j
(dB

i
(dB⊆

i
(dB

j
(dB ∪

i
(dB

∞
(dB. 4) Diagonal 1a:

j
(ls

i
(dB⊆

i
(dB

j
(ls ∪

i
(dB

∞
(ls.

2) Row 1b:
∞
(dB

i
(dB⊆

i
(dB

∞
(dB. 5) Diagonal 1b:

∞
(ls

i
(dB⊆

i
(dB

∞
(ls.

3) Row 2a:
j
(ls

i
(ls⊆

i
(ls

j
(ls. 6) Diagonal 2a:

j
(dB

i
(ls⊆

i
(ls

j
(dB.

7) Row 2b:
∞
(ls

i
(ls⊆

i
(ls

∞
(ls ∪

i
(ls

i+k
(ls

∞
(ls ∪

i
(ls

∞
(ls

∞
(ls, with k ∈ N.

8) Diagonal 2b:
∞
(dB

i
(ls⊆

i
(ls

∞
(dB ∪

i
(ls

i+k
(dB

∞
(dB ∪

i
(ls

∞
(dB

∞
(dB, with k ∈ N.

The lemma implies factorization by levels analogous to the one of λsub (but with respect
to different leveled reductions).

I Corollary 7.7 (Factorization by levels). (
>i
(dB,

i
(dB,

>i
(ls,

i
(ls) is a SFS for every i ∈ N,

and so
≥i
(∗ ⊆

i
(∗ >i(∗.

Proof. The first axiom (termination) follows from Lemma 7.1. The second from points 1
and 2 of Lemma 7.6. The third form points 3 and 7. The fourth from points 4 and 5. The
fifth from points 6 and 8. J

We can now easily prove Theorem 7.4, just note that ((dB•,(dB◦,(ls•,(ls◦) is nothing
but (

>0
(dB,

0
(dB,

>0
(ls,

0
(ls). We conclude with a standardization theorem. Define the linear

level of a term t as the maximum i ∈ N s.t. t = Hi[u] for some u.

I Theorem 7.8 (Standardization by levels). Let t→∗λlsub
u and k is the linear level of u. Then

t
0
(∗ 1

(∗ . . .
k−1
(∗ k

(∗ ∞(∗ →∗gc u.

RTA’12

20 An abstract factorisation theorem for explicit substitutions

Proof. Remark that
∞
(and →gc cannot change the linear level of a term and that t

i
(v

for i finite implies that both t and v have linear level at least i. From Lem. 7.2.2 we get
that there exists v s.t. t →∗¬gc v →∗gc u. By the remark v has linear level k, the same of
u. By iterating the use of Corollary 7.7 as in the proof of Corollary 3.7 we factor →∗¬gc as

t
0
(∗ 1

(∗ . . .
k−1
(∗ k

(∗ >k(∗ v. Now, consider
>k
(∗. By the remark

>k
(∗ has to be a

∞
(∗

sequence and so we conclude. J

Theorem 7.8 provides a sharp decomposition of λlsub-reductions. It is easy to prove
that

j
(has the diamond property, for every j ∈ N. However, the theorem can certainly be

strengthened, as it says nothing about
∞
((which does not enjoy the diamond property),

whose analysis requires further factorizations, left to future work.

8 Conclusions

We presented an abstract factorization theorem for explicit substitution (ES) calculi, with
applications to ES-calculi related to Proof-Nets. The abstract technique is simple. The
theorem is applied more than once to every calculus, getting different factorizations, showing
the flexibility of the abstract approach. It captures both call-by-name and call-by-value
dynamics. We are convinced that the theorem applies to many other calculi, not related to
Proof-Nets, despite this verification is left to future work.

We believe that our study of linear head reduction is a contribution: our presentation is
simpler than the usual one [14], and the lack of a rewriting characterization for this important
notion was a hole in the literature. A more detailed study of the linear substitution calculus,
by means of residuals and permutation equivalence is an interesting research direction. It
is also interesting to find other rewriting properties which can take advantage of the local
termination nature of explicit substitution calculi.

Acknowledgements I want to thank Delia Kesner for many discussions on the subject and
for her encouragement to try to publish this work. I also want to thank Flavio C. de Moura,
Luca Paolini, Paul-André Melliès, Willem Heijltjes, and the anonymous referees.

References
1 M. Abadi, L. Cardelli, P. L. Curien, and J. J. Levy. Explicit substitutions. Journal of

Functional Programming, 1:31–46, 1991.
2 B. Accattoli. An abstract factorisation theorem for explicit substitutions (extended version).

available at https://sites.google.com/site/beniaminoaccattoli/tech-report.pdf.
3 B. Accattoli. Jumping around the box: graphical and operational studies on Lambda Cal-

culus and Linear Logic. Ph.D. Thesis, Università di Roma La Sapienza, 2011.
4 B. Accattoli and S. Guerrini. Jumping boxes. representing λ-calculus boxes by jumps. In

CSL, volume 5771 of LNCS, pages 55–70. Springer, 2009.
5 B. Accattoli and D. Kesner. The structural λ-calculus. In Computer Science Logic (CSL),

volume 6247 of Lecture Notes in Computer Science, pages 381–395. Springer, 2010.
6 B. Accattoli and D. Kesner. The permutative -calculus. In LPAR, pages 23–36, 2012.
7 B. Accattoli and U. Dal Lago. On the invariance of the unitary cost model for head

reduction. Accepted at RTA 2012.
8 B. Accattoli and L. Paolini. Call-by-value solvability, revisited. Accepted to FLOPS 2012,

available at https://sites.google.com/site/beniaminoaccattoli/solvability.pdf.

https://sites.google.com/site/beniaminoaccattoli/tech-report.pdf
https://sites.google.com/site/beniaminoaccattoli/solvability.pdf

B. Accattoli 21

9 H. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-Holland, Amster-
dam, revised edition, 1984. (First edition, 1981).

10 R. Di Cosmo and A. Piperno. Expanding extensional polymorphism. In TLCA, pages
139–153, 1995.

11 Pierre-Louis Curien, Thérèse Hardin, and Jean-Jacques Lévy. Confluence properties of
weak and strong calculi of explicit substitutions. J. ACM, 43(2):362–397, 1996.

12 V. Danos, H. Herbelin, and L. Regnier. Game semantics & abstract machines. In LICS,
pages 394–405, 1996.

13 V. Danos and L. Regnier. Reversible, irreversible and optimal lambda-machines. Electr.
Notes Theor. Comput. Sci., 3, 1996.

14 V. Danos and L. Regnier. Head linear reduction. Technical report, 2004.
15 D. de Carvalho, M. Pagani, and L. Tortora de Falco. A semantic measure of the execution

time in linear logic. TCS, Special issue Girard’s Festschrift, 412(20):1884–1902, 2011.
16 T. Ehrhard and L. Regnier. Böhm trees, krivine’s machine and the taylor expansion of

lambda-terms. In CiE, pages 186–197, 2006.
17 A. Geser. Relative Termination. Ph.d. thesis, Fakultät fürMathematik und Informatik,

Universität Passau, Germany, 1990.
18 Georges Gonthier, Jean-Jacques Lévy, and Paul-André Melliès. An abstract standardisation

theorem. In LICS, pages 72–81, 1992.
19 H. Herbelin and S. Zimmermann. An operational account of call-by-value minimal and

classical lambda-calculus in "natural deduction" form. In TLCA, pages 142–156, 2009.
20 R. E. Møgelberg J. Egger and A. Simpson. Enriching an effect calculus with linear types.

In CSL, pages 240–254, 2009.
21 D. N. Turner J. Maraist, M. Odersky and P. Wadler. Call-by-name, call-by-value, call-by-

need and the linear lambda calculus. Theor. Comput. Sci., 228(1-2):175–210, 1999.
22 D. Kesner. The theory of calculi with explicit substitutions revisited. In CSL, pages 238–

252, 2007.
23 G. Mascari and M. Pedicini. Head linear reduction and pure proof net extraction. Theor.

Comput. Sci., 135(1):111–137, 1994.
24 D. Mazza. Pi et lambda. Une étude sur la traduction des lambda-termes dans le pi-calcul.

Memoire de DEA (in french), 2003.
25 P.-A. Melliès. Typed lambda-calculi with explicit substitutions may not terminate. In

TLCA, pages 328–334, 1995.
26 P.-A. Melliès. Description axiomatique des systèmes de réécriture. Phd thesis, Université

Paris VII, 1996.
27 P.-A. Melliès. A factorisation theorem in rewriting theory. In Category Theory and Com-

puter Science, pages 49–68, 1997.
28 P.-A. Melliès. Axiomatic rewriting theory I: A diagrammatic standardization theorem. In

Processes, Terms and Cycles, pages 554–638, 2005.
29 R. Milner. Local bigraphs and confluence: Two conjectures: (extended abstract). Electr.

Notes Theor. Comput. Sci., 175(3):65–73, 2007.
30 M. Takahashi. Parallel reductions in lambda-calculus. Inf. Comput., 118(1):120–127, 1995.
31 Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical Computer

Science. Cambridge University Press, 2003.
32 K. Terui. Light affine lambda calculus and polynomial time strong normalization. Arch.

Math. Log., 46(3-4):253–280, 2007.
33 P. Tranquilli. Nets Between Determinism and Nondeterminism. Ph.d. thesis, Università

degli Studi Roma Tre/Université Paris Diderot (Paris 7), 2009.

RTA’12

	Introduction
	Notations and conventions
	The substitution calculus sub
	An abstract toolbox for postponement
	Abstract Standardization
	The value-substitution calculus vsub
	The linear substitution calculus lsub
	Conclusions

