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Abstract
Propositional Satisfiability (SAT) is a keystone in the history of computer science. SAT was
the first problem shown to be NP-complete in 1971 by Stephen Cook [4]. Having passed more
than 40 years from then, SAT is now a lively research field where theory and practice have
a natural intermixing. In this talk, we overview the use of SAT in practical domains, where
SAT is thought in a broad sense, i.e. including SAT extensions such as Maximum Satisfiability
(MaxSAT), Pseudo-Boolean Optimization (PBO) and Quantified Boolean Formulas (QBF).
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1 Overview

Given a Boolean formula, the SAT problem is to find an assignment to the Boolean variables
such that the formula is satisfied or prove that no such assignment exists. Whereas SAT
is used for solving decision problems, extensions of SAT are used for solving optimization
problems. Interestingly, many implementations of SAT extensions make iterative calls to a
SAT solver. This means that SAT research has a direct impact on SAT extensions. Also
interesting is the fact that SAT solvers are also used by or have been an inspiration to other
paradigms. Well-known examples are Satisfiability Modulo Theories (SMT) [15], Answer Set
Programming (ASP) [11], model checking [3] and planning [10].

Currently, SAT is well known not only for its theoretical interest but also for the
effectiveness of modern SAT solvers. SAT solvers are reliable and easy to use as the result of
more than one decade accessing the status of SAT solvers in international competitions [9].
Modern SAT solvers find their roots in the seminal contributions made in the 60s with
the resolution based DP procedure [6] and the backtrack search based DPLL procedure [5].
DPLL has later been enhanced with a few techniques: clause learning [17] to reduce the
search space, search restarts [7] to diversify the search and lazy data structures [14] to reduce
the cost of propagation, among others.

SAT and SAT extensions are clearly application driven research fields. Advances are most
often motivated by real problems requiring a solution. Successful examples are haplotype
inference [12] and biological networks [8] in the field of biology, as well as upgrades in software
packages [1] in the field of software engineering, among many others. SAT is now used not
only by SAT researchers but also by other researchers who use a SAT solver as a black box.
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SAT solvers are not limited to providing a solution or proving that no such solution exists.
Another interesting topic in SAT is to reason over formulas. The motivation is to better
understand the structure of the formula either to improve the SAT solvers performance or to
better perceive the problem being encoded into SAT. For example, we may want to eliminate
redundant clauses, i.e. to get a minimal equivalent subformula (MES) [2]. In terms of
variables, one may be interested in identifying the backbones [13], i.e. the value assignments
that are common to all solutions, and the backdoors, i.e. a set of value assignments such
that the simplified formula can be solved by a poly-time algorithm [18]. As for unsatisfiable
formulas, it may be relevant to identify a minimal unsatisfiable subformula (MUS) [16].
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