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Abstract
It is known that the data complexity of a Conjunctive Query (CQ) is determined only by the way
its variables are shared between atoms, reflected by its hypergraph. In particular, Yannakakis [18,
3] proved that a CQ is decidable in linear time when it is α-acyclic, i.e. its hypergraph is α-acyclic;
Bagan et al. [2] even state:

Any CQ is decidable in linear time iff it is α-acyclic. (under certain hypotheses)
(By linear time, we mean a query on a structure S can be decided in time O(|S|))

A natural question is: since the complexity of a Negative Conjunctive Query (NCQ), a con-
junctive query where all atoms are negated, also only depends on its hypergraph, can we find a
similar dichotomy in this case?

To answer this question, we revisit a result of Ordyniak et al. [17] — that states that sat-
isfiability of a β-acyclic CNF formula is decidable in polynomial time — by proving that some
part of their procedure can be done in linear time. This implies, under an algorithmic hypothesis
(precisely: one cannot decide whether a graph is triangle-free in time O(n2 logn) where n is the
number of vertices.) that is likely true:

Any NCQ is decidable in quasi-linear time iff it is β-acyclic.
(By quasi-linear time, we mean a query on a structure S can be decided in time O(|S| log |S|))

We extend the easiness result to Signed Conjunctive Query (SCQ) where some atoms are
negated. This has great interest since using some negated atoms is natural in the frameworks of
databases and CSP. Furthermore, it implies straightforwardly the following:

Any β-acyclic existential first-order query is decidable in quasi-linear time.
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1 Introduction

This paper gives descriptive complexity results in a finite model theory framework. According
to [16], “Finite model theory studies the expressive power of logic on finite relational
structures.” Here we emphasize the complexity aspect of expressive power, in relation with
the considered (first-order) logic fragment.

A fragment of great interest is the primitive positive fragment, i.e. the set of sentences
one can build using only atoms — relations between variables —, the conjunction ∧ and
the existential quantifier ∃. This fragment, also known as Conjunctive Queries (CQ), is
fundamental in database theory (see [5] for example) and in Constraint Satisfaction Problems
(CSP) (see [7]). While general queries (first-order sentences) are PSpace-complete in terms
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of combined complexity, conjunctive queries are “only” NP-complete in terms of combined
complexity, or W[1]-Complete ([13]) in terms of parametrized complexity.

An important tractable class of conjunctive queries are the α-acyclic (or acyclic, for short)
conjunctive queries. They are tractable in a very strong sense: Yannakakis [18] proved that
an α-acyclic conjunctive query φ on a relational structure S can be decided in time O(|φ|.|S|);
in particular, it is fixed-parameter linear, i.e. it has linear data complexity. Bagan et al.([2])
even states (partially) that α-acyclicity is a necessary condition of linear data complexity.
Another result giving relevance to this class is that Gottlob et al. ([10]) proved α-acyclic CQ
to be LogCFL-complete for combined complexity.

Acyclic CQ have met a great interest essentially because they are the basis of important
tractable classes of queries: they have been extended to several notions of queries not-too-far
from α-acyclicity. In particular, this notion was extended to bounded treewidth CQ — a
notion of bounded distance from being a tree — leading to classification results, see [13];
and to the notion of bounded hyper-treewidth CQ[11], for example. These classes allow
polynomial reduction to acyclic CQ.

Nevertheless, in a database context, polynomiality is not a sufficient notion of tractability:
a quadratic dependency on the database size is often considered intractable. A more
reasonable notion would be quasi-linear time n(logn)O(1) (see [14]), which we take as a
definition of tractability. Notice that, according to this definition of tractability, tractable
CQ are still exactly CQ that have an α-acyclic hypergraph.

One can naturally ask oneself which queries, besides α-acyclic CQ, are tractable. Notice
that there are some obviously tractable queries that are not in CQ, in particular some sets
operations; e.g., the query ∃xR(x)∧¬S(x) that can be interpreted as “is RrS non-empty?”.
This example leads to a quite natural question: which extensions of CQ where some atoms
are negated, which we call Signed Conjunctive Queries (SCQ), are tractable?

In order to answer this question, we investigate a simpler question: Which queries that
are conjunctions of only negated atoms, that we call Negative Conjunctive Queries (NCQ),
are tractable? The advantage of this simpler case is that we can use the same tool as the
known CQ case: the notion of hypergraph. The hypergraph of a query is quite a simple
object reflecting the way variables are shared between atoms. It is a widespread intuitive
idea that the complexity of a CQ only depends on its hypergraph, and in fact it is easy to
prove this also holds in the case of NCQ.

One might think that a NCQ can be immediately reduced to a CQ by complementing
the relations. However, computing the complement is clearly not in FPT, and a fortiori not
in quasi-linear time.

We will prove for this case a dichotomy similar to the one known for CQ: a NCQ is
tractable iff it is β-acyclic, which means that its hypergraph is β-acyclic. We finally extend
the easiness result by proving that β-acyclic SCQ are tractable.

Structure of this Paper

This paper is organized as follows:
Section 1 introduces the main definitions and states the results;
Section 2 refines a result from Ordyniak et al. [17] by proving Davis-Putnam resolution
w.r.t. a variable that is a nest point is done in linear time;
Section 3 proves the easiness result;
Section 4, after introducing some technical points, establishes the hardness result.
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2 Preliminaries and Results

We introduce here the respective statements of the two results with all necessary definitions.

2.1 Preliminaries
I Definition 1 (sentence, structure, query, CQ, NCQ, SCQ). A signature σ is:

a set of relation symbols,
and an arity Ar that associates a number to each symbol R, denoted Ar (R).

A σ-structure S consists in associating a set of Ar(R)-tuples to each of the relation symbols
R of σ which is called the interpretation of R in S, and denoted RS . Some relation symbols
of arity 1 may be used in a particular way, and are then called domain symbols.

An existential first-order sentence, or sentence for short, is a usual existential first-order
sentence where each variable has a distinct associated domain symbol Di. More formally, a
σ-sentence has the form ∃x1∈D1 . . . ∃xn∈Dn ψ where Di is a domain symbol belonging to
σ and ψ is a usual quantifier-free σ′-formula where σ′ is σ without the D1, . . . , Dn previously
mentioned. In the whole document, ψ will refer to the quantifier-free part of φ.

We call query of a sentence φ, denoted DecideQ(φ), the problem of, given a structure S,
deciding whether φ holds in S. Depending on the quantifier-free formula ψ, we define classes
of queries of interest:

when ψ =
∧
iRi

(
xi0 , . . . , xiAr(Ri)

)
, DecideQ(φ) ∈ CQ the existential Conjunctive Queries;

when ψ =
∧
i ¬Ri

(
xi0 , . . . , xiAr(Ri)

)
, DecideQ(φ) ∈ NCQ the existential Negative Con-

junctive Queries;
when ψ =

∧
i σiRi

(
xi0 , . . . , xiAr(Ri)

)
, where σi is either ¬ or ε (nothing), DecideQ(φ) ∈

SCQ the existential Signed Conjunctive Queries;
when ψ is unrestricted, i.e. written using any connectives (∧, ∨,→, ¬, etc.) DecideQ(φ) ∈
EQ the existential Queries.

Considering the particular form of the first three classes, we may consider these formulas as
conjunctions of so-called conjuncts, i.e. when ψ is in the form: ψ =

∧
i σiRi

(
xi0 , . . . , xiAr(Ri)

)
each Ci = σiRi

(
xi0 , . . . , xiAr(Ri)

)
is a conjunct. When σ(i) is ε (resp. ¬), we say Ci is a

positive (resp. negative) conjunct.

I Remark. Defining sentences with distinguished domains symbols attached to variables is a
bit unusual. Let us justify it briefly through a simple example. Consider:

φ1 = ∃x1∃x2∃x3∃x4 R(x1, x2) ∧R(x3, x2) ∧R(x1, x4) ∧R(x3, x4)
φ2 = ∃x1∃x2∃x3∃x4 R(x1, x2) ∧R(x2, x3) ∧R(x4, x1) ∧R(x3, x4)

The sentences φ1 and φ2 obviously have the same hypergraph (see below) but DecideQ(φ1) is
obviously easy (it consists in deciding whether a directed graph has at least one edge), while
DecideQ(φ2) is presumably not as easy (it consists in deciding whether a directed graph has
a circuit of size 4). Using our formalism guarantees that:

the complexity of a CQ (or a NCQ) depends only on its hypergraph, and
the easiness results (of α-acyclic CQ and β-acyclic SCQ) still hold with the usual definition,
i.e. when the variables all have the same domain.

I Definition 2 (complexity classes). These definitions are based on [12], see it for more details.
We call qLin (resp. Lin) the set of problems decidable in time O(n logn) (resp. O(n)) on a
RAM machine where n is the size of the input. In particular, sorting is in Lin by a result
of [1], and [12].

CSL’12
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I Remark. This definition of qLin looks quite restrictive: n(logn)O(1) would be much more
reasonable, as suggested by [14]. In fact, all our results hold in both cases. We chose the
restrictive one in order to put the emphasis on the easiness result.

The main object of our discourse will be how the restriction of the way variables are
shared in a formula allows easy decision. The way variables are shared can be described by a
very simple yet powerful notion: the hypergraph.

I Definition 3 (hypergraph, hypergraph of a query). We call hypergraph H a set of non-empty
sets, called the edges of H. We call V(H) the union of its edges; the elements of V(H) are
called the vertices of H.

We write H(φ) the hypergraph of the sentence φ defined as the set of variables sets
appearing in atoms of φ: H(φ) = {Vars (A) |A is an atom of φ} where

Vars
(
Ri
(
xi1 , . . . , xiAr(Ri)

))
=
{
xi1 , . . . , xiAr(Ri)

}
I Example 4. If we consider the SCQ DecideQ(φ) where{

φ = ∃x1∈D1 ∃x2∈D2 ∃x3∈D3 ∃x4∈D4 ψ

ψ = R1(x1, x2) ∧R2(x2, x3) ∧R3(x1, x2, x3) ∧ ¬R4(x4, x3) ∧ ¬R5(x4, x4)

then we have H(φ) = {{x1, x2}, {x2, x3}, {x1, x2, x3}, {x3, x4}, {x4}}.
In this case, R1(x1, x2) is a positive conjunct. By contrast, R5(x4, x4) is an atom but not

a conjunct in this formula, while ¬R5(x4, x4) is a negative conjunct.

We will see that the complexity of DecideQ(φ) depends only on H(φ). We now define the
criterion that discerns easy queries from hard queries.

2.2 Acyclicity Notions
We will see some interesting properties of hypergraphs are several notions of acyclicity, which
are different extensions of the (classical) graph acyclicity property.

I Definition 5 (induced hypergraph, nest point). Let H be a hypergraph. We define its
induced hypergraph w.r.t. S ⊆ V(H), denoted H[S], as follows:

H[S] = {e ∩ S | e ∈ H}r {∅}

We write H[rS] as a shorthand for H [V(H) r S]. In particular, H[r{x}] is the hypergraph
obtained by weak vertex removal of x.

We say x is a nest point of H when for any two distinct edges e1 and e2 containing x,
either e1 ⊂ e2 or e2 ⊂ e1. In other words, the set {e ∈ H |x ∈ e} is linearly ordered w.r.t.
set inclusion.

Fagin’s originally defined ([9]) α-acyclicity of a hypergraph H, here denoted Aα(H). We
assume the reader is familiar with the notion of α-acyclicity, that is the most classical notion
of acyclicity for hypergraphs. He also defined β-acyclicity as follows:

I Definition 6. We say that a hypergraph H is β-acyclic, denoted Aβ(H), if each of its
subsets, i.e. every H′ ⊆ H, is α-acyclic.

This characterisation says that β-acyclicity is the “hereditary” closure of α-acyclicity.
We give a second characterisation of β-acyclicity. This inductive characterisation from [8],

based on a result of [4], is useful for the algorithm we give for β-acyclic queries (easiness
result).
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I Lemma 7 (β-acyclicity — inductive characterisation). A hypergraph H is β-acyclic iff either
it is empty, or such that:

we can find x ∈ V(H) such that x is a nest point of H and
H [r{x}] is also β-acyclic.

We say the ordered list (x1, . . . , xn) of the vertices of an hypergraph H is a Reverse Elimination
Order (REO) of H when, for all i in {1, . . . , n}, xi is a nest point of H[{x1, . . . , xi−1}]. By
this characterisation, a hypergraph is β-acyclic iff it has a REO.

Here is the third characterisation of β-acyclicity. It will be used to obtain our hardness result.
This characterisation uses the notion of β-cycle defined here.

IDefinition 8. A chordless cycle is a graph isomorphic to {{xi, xi+1} | 1 ≤ i ≤ k}∪{{xk, x1}}
for some k. A β-cycle of a hypergraph H is a subset of some induced sub-hypergraph of H
that is a chordless cycle:

C is a β-cycle of H ⇔ ∃S⊆V(H) C ⊆ H[S] and C is a chordless cycle

I Lemma 9 (β-acyclicity as absence of β-cycles). An hypergraph H is β-acyclic iff it does
not have a β-cycle.

2.3 Statement of the Results
With all these notations, we are now able to state our results:

I Theorem 10 (dichotomy). Under hypothesis that the presence of a triangle in a graph of
n vertices cannot be decided in time O(n2 logn), we have:

∀φ ∈ NCQ DecideQ(φ) ∈ qLin ⇔ Aβ(H(φ))

Proof. Lemma 21 proves the implication ⇐ (easiness result) and Lemma 30 proves the
implication ⇒ (hardness result). J

I Remark. This is to be compared to the positive conjunctive queries dichotomy contained
in [2]: for any φ ∈ CQ such that H(φ) is 4-conformal,1 we have:

∀φ ∈ CQ DecideQ(φ) ∈ Lin ⇔ Aα(H(φ))

under hypothesis we cannot decide the presence of a triangle in a graph G in time O(|G|).
Notice that this result also holds if we replace Lin by qLin; in that case the hypothesis

becomes “deciding the presence of a triangle in a graph is not in qLin.”

I Theorem 11 (easiness).

∀φ ∈ EQ DecideQ(φ) ∈ qLin ⇐ Aβ(H(φ))

That is to say any β-acyclic existential first-order sentence is decidable in time O (|S| log |S|).
Let P be a property on hypergraphs. Under the previously mentioned complexity hypothesis

(about the triangle problem), we have:

(∀φ ∈ EQ P (H(φ))⇒ DecideQ(φ) ∈ qLin) ⇔ (∀H P (H)⇒ Aβ(H))

This means: any property of the hypergraph of a query grants it quasi-linear decision time if
and only if this property implies β-acyclicity.

1 A hypergraph is said to be k-conformal when every clique of cardinality ≥ k is contained in an edge.

CSL’12
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Proof. Put φ in Disjunctive Normal Form, distribute (existential) quantification over dis-
junctive clauses which is correct since ∃x(A(x)∨B(x))⇔ (∃xA(x))∨ (∃xB(x)). Each clause
is a SCQ whose hypergraph is a subset of H(φ), each clause is therefore a β-acyclic SCQ; by
Lemma 21, it has a qLin decision time, therefore so has their disjunction φ.

Second point is a direct corollary of this easiness result (part ⇐) and the hardness part
of the NCQ dichotomy (part ⇒). J

3 Davis-Putnam Resolution with respect to a Nest Point

This section gives an algorithmic result needed for the easiness result; it can be independently
read for its own, or may be skipped by admitting it. This part consists in exploiting
a particular property of a variable in a CNF formula to perform efficient Davis-Putnam
resolution with respect to this variable.

3.1 Definition and Properties
I Definition 12 (CNF, nest point of a CNF formula, Davis-Putnam resolution). A CNF
formula F (x1, . . . , xn) is a classic propositional formula on the variables x1, . . . , xn that is in
Conjunctive Normal Form, i.e. F (x1, . . . , xn) =

∧
i Ci where Ci are clauses, i.e. sub-formulae

in the form Ci =
∨n(i)
j=1 l

j
i where lji are literals. Literals are either positive literals — variables

taken in {x1, . . . , xn}— or negative literals — negated variables ¬xi where xi ∈ {x1, . . . , xn}.
A formula in CNF can be thought of as a set of clauses, which are sets of literals.

We say a clause C holds a variable x when either x ∈ C or ¬x ∈ C (or both, but the
clause is tautological in this case). The set of variables held by a clause C is denoted
Vars (C) = {xi | xi ∈ C or ¬xi ∈ C}. We write Fx the set of clauses of F holding a variable
x. We say a variable xi is a nest point of F (x1, . . . , xn) (see [17]) when for all C1 and C2 in
Fxi , either Vars (C1) ⊆ Vars (C2) or Vars (C2) ⊆ Vars (C1).

We define the resolvent of F (x1, . . . , xn) w.r.t. the variable x1

Res (F, x1) (x1, . . . , xn) =
{
C1 ∨ C2

∣∣∣∣ (C1 ∨ x1) ∈ F (x1, . . . , xn) and
(C2 ∨ ¬x1) ∈ F (x1, . . . , xn)

}
The following results are from [17].

I Lemma 13 (correctness of resolution, size of resolvent). The following propositions hold:
the Davis-Putnam resolution is correct:

∀x1, . . . , xn Res (F, x1) (x1, . . . , xn) ⇔ ∃x1 Fx1(x1, . . . , xn)

if x1 is a nest point of a formula F , then

Res (F, x1) is a subset of {C r {x1,¬x1} |C ∈ Fx1)

Proof. Correctness of the resolution is both classical [6] and easy to see.
Let x1 be a nest point of F . We just have to consider Fx1 . Since x1 is a nest point of

Fx1 , in Fx1 we can rename variables as x1, . . ., xn by growing size of the smallest clause
containing them. Obviously, x = x1, and all clauses C are such that Vars (C) = {x1, . . . , xk}
with k ≤ n. When the computation is over, we just have to give their original names back to
the variables.

Take any two clauses C1 ∨ x and C2 ∨ ¬x involved in resolvent computation. We know
Vars (C1) ⊆ Vars (C2) or the converse. Assume, w.l.o.g, Vars (C1) ⊆ Vars (C2). If some
variable is present with different signs in C1 and C2, then the resolvent is tautological.
Assume this is not the case. Therefore C1 ∨ C2 = C2. J
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3.2 Algorithm and Complexity
Here we prove the resolution can be done in linear time, which is our addition to the main
result of Ordyniak et al.( [17]).

I Lemma 14 (resolvent computation). Let F (x1, . . . , xn) be a CNF sentence whose x1 is a
nest point. We can compute the resolvent of F (x1, . . . , xn) w.r.t. x1 in time O(|F |).

Proof. The main algorithmic point consists in adopting a handy representation of the formula.
Like in proof of Lemma 13, since x1 is a nest point of F , we can rename variables in Fx1

by growing size of the smallest clause containing it, therefore all clauses C are such that
Vars (C) = {x1, . . . , xk} with k ≤ n. Clauses can therefore be encoded as words over the
alphabet {−,+}. For example, x1 ∨ ¬x2 ∨ ¬x3 ∨ x4 is encoded as +−−+.

Let us consider subsumed clauses, i.e., clauses C such that we can find C ′ such that
C ′ ⊆ C. With this encoding, C1, encoded be w1, subsumes C2, encoded by w2, if and only
if w1 is a prefix of w2. Getting rid of subsumed clauses is done by applying the following
simple algorithm, where L is the list of words encoding the set of clauses.

RemovePrefixed(L):
Sort lexicographically L
n← 1
for i from 2 to Card (L) :

if L[n] not prefix of L[i] :
L[n+ 1]← L[i]
n← n+ 1

L[n+ 1]← End-Of-List

It is easy to see that this algorithm is correct, i.e. eliminates (in-place) any word that is
prefixed by another. Sorting in lexicographical order, here denoted <, can be done in linear
time using algorithm 3.2 page 80 in [1], see also definition 2. Therefore previous algorithm is
linear.

In order to compute the resolvent of F with respect to x1, we just need to consider
pairs of clauses such that one is in the form + . . . and the other in the form − . . .. Let us
construct the lexicographically ordered sub-lists S− and S+ of words beginning with −, resp.
+, without their leading −, resp. +. Two clauses C1 and C2 respectively encoded by words
w1 and w2 have a non-tautological resolvent on x1 if and only if w1 ∈ S− and w2 ∈ S+
(or the converse), and w1 is a prefix of w2: in this case, their “resolvent” is w2 itself, i.e.
C2 r {x1}.

Algorithm 1, where S− (resp. S+) is represented by a sorted list L1 (resp. L2) of n1 (resp.
n2) elements, is a variant of the fusion algorithm of two sorted lists. It is obviously linear.
In order to prove Algorithm 1 is correct, we consider the bipartite directed graph where
a→ b means a is a prefix of b, and where words are represented in growing lexicographical
order (from left to right).

S+ × ×
�� ## ))

× . . . × ×
""

× . . .

S− ×

OO

× . . . × × ×

kk ii bb

×

bb

. . .

The constraints of this graph are given by the assertions 1-4 given below. As a preliminary,
we let the reader convince himself the following fact holds: if a word a is a prefix of a
word b, then for all words w and W such that w < a < W and none is a prefix of another,
w < b < W .

CSL’12
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ComputeResolvent(S−, S+):
Res ← ∅
i− ← 1; i+ ← 1
while i− < n− and i+ < n+ :

if S−[i−] is a prefix of S+[i+] :
Res ← Res ∪ {S+[i+]}
Increment i+

elsif S+[i+] is a prefix of S−[i−] :
Res ← Res ∪ {S−[i−]}
Increment i−

elsif S+[i+] < S−[i−] :
Increment i+

elsif S+[i+] > S−[i−] :
Increment i−

return Res
Algorithm 1 Resolvent computation.

1. The in-degree of the graph is at most one: assuming the contrary leads to ∃u, v ∈ S−
(resp. S+) with u prefix of v.

2. The graph has no path of length 2: exactly the same proof.
3. Edges do not cross each other. By symmetry, only two cases have to be considered:

Edges do not cross each other in this fashion: b
+

a
+

a
−

b
−

• •

• •

55ii i.e. we can’t have a− prefix
of a+ and b− prefix of b+ with a− < b− and a+ > b+. Assume this is the case. a− is
prefix of a+ and inferior and not prefix of b−. Therefore a+ < b−. Since b− is a prefix
of b+, b− < b+, therefore a+ < b+ (by the preliminary fact), contradictory.
Edges don’t cross each other in this fashion: b

+
a

+

a
−

b
−

• •

• •

55
)) i.e. we can’t have a− prefix of

a+ and b+ prefix of b− with a− < b− and a+ > b+: essentially the same proof, but
using the preliminary fact twice.

4. The neighbourhood of a vertex is contiguous, i.e. if a− is a prefix of both b+ and c+,
then for all b+ < d+ < c+, a− is a prefix of d+.

All these facts together prove that no pair (a, b) where a is a prefix of b is “forgotten” by the
given algorithm, which is therefore correct. J

4 Easiness Result

In this section, we prove that one can decide a β-acyclic SCQ with n variables on a structure
S in time O(n|S| log |S|). We prove it a bottom-up fashion: each step either reduces to or
generalizes the previous one:

first step uses results of the first section (Davis-Putnam resolvent computation w.r.t. a
nest point in linear time) to decide β-acyclic NCQ-BoolD fast,
second step generalizes it to β-acyclic SCQ-BoolD, and
third step reduces β-acyclic SCQ to β-acyclic SCQ-BoolD.

For the sake of simplicity, we always assume a sentence is simple in the following sense:
relation symbols all appear once, and in an atom, each variable appears at most once, and in
any order of our convenience. This is justified by Corollary 27, page 149.
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4.1 NCQ on the Boolean Domain
Here we make use of the results of previous section in order to get the announced complexity.

I Definition 15 (NCQ-BoolD, SCQ-BoolD). We say a NCQ (resp. SCQ) is over the boolean
domain when all its domains are fixed to {0, 1} instead of being defined with domain symbols;
we write it NCQ-BoolD (resp. SCQ-BoolD).

As an example, if φ = ∃x1 ∈ D1 . . . xn ∈ Dn ψ(x1, . . . , xn) is a NCQ, then φ′ = ∃x1 . . . xn ∈
{0, 1}nψ(x1, . . . , xn) is a NCQ-BoolD.

The main result of this subsection, Lemma 17, gives an easiness result for NCQ-BoolD
having a β-acyclic hypergraph. This result is obtained using inductively the following lemma
jointly with the inductive characterisation of β-acyclicity by nest points.

I Lemma 16 (NCQ-BoolD nest point). Let φ be a NCQ-BoolD, S a structure, and x a nest
point of H(φ). We can build another NCQ-BoolD φ′ and another structure S ′ in time O(|S|)
( independent of |φ|) such that DecideQ(φ)(S)⇔ DecideQ(φ′)(S ′) and H(φ′) = H(φ)[r{x}].

Sketch of proof. Take φ = ∃x1 . . . xn ∈ {0, 1}nψ(x1, . . . , xn) with

ψ(x1, . . . , xn) =
∧
i

¬Ri
(
xf(i,1), . . . , xf(i,n(i))

)
The main point of the proof is transforming the assertion S � ψ into an equivalent CNF
formula, and then applying CNF nest point results. For all (x1, . . . , xn) ∈ {0, 1}n, we have:

S � ψ(x1, . . . , xn) ⇔
∧
i

¬RSi
(
xf(i,1), . . . , xf(i,n(i))

)
⇔

∧
i

∧
(a1,...,an(i))∈RS

i

(xf(i,1), . . . , xf(i,n(i))) 6= (a1, . . . , an(i))︸ ︷︷ ︸
Ci(a1,...,an(i))

Ci(a1, . . . , an(i)) ⇔ (xf(i,1) 6= a1) ∨ . . . ∨ (xf(i,n(i)) 6= an(i))
⇔ σ(a1)xf(i,1) ∨ . . . ∨ σ(an(i))xf(i,n(i))

where σ maps 1 to ¬ and 0 to ε. Finally, for all x1, . . ., xn we have the equivalence:

S � ψ(x1, . . . , xn) ⇔
∧
i

∧
(a1,...,an(i))∈RS

i

σ(a1)xf(i,1) ∨ . . . ∨ σ(an(i))xf(i,n(i))

︸ ︷︷ ︸
F (x1,...,xn)

Clearly, x is a nest point of F (x1, . . . , xn) (see the note at the end of previous definition).
The transformation (φ,S) 7→ F is done in time O(|S|) — i.e. linear time.2 It is rather
easy to see that the reverse transformation (from the propositional formula back to the
corresponding NCQ-BoolD) can be done in linear time.

Lemma 13 states that Res (F, x) is a subset of Fx where x was removed, and that Davis-
Putnam resolution is correct: ∀x1, . . . , xn Res (F, x) (x1, . . . , xn) ⇔ ∃x Fx(x1, . . . , xn).
Notice x ∈ {x1, . . . , xn}. Furthermore, Lemma 14 states this can be done in linear time.

2 Not exactly: the variables of the CNF are “bigger” than the 0/1 present in the structure. Nevertheless,
when applying resolution, they will be encoded as signs — i.e. either + or −. In fact, the CNF form
explains correctness but is not an actual step.
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The following algorithm uses previous notations and is justified by the arguments above.
RemoveNestPoint(φ,x,S):

// ψ is in the following form:
∧

i
¬Ri

(
xf(i,1), . . . , xf(i,n(i))

)
// Recall that σ(1) = ¬, σ(0) = ε

F ←
∧

i

∧
(a1,...,an(i))∈RS

i
σ(a1)xf(i,1) ∨ . . . ∨ σ(an(i))xf(i,n(i))

Replace ¬R(x1, . . . , xn, x) by ¬R(x1, . . . , xn) in φ
F ← Res(F, x)
Rebuild S from F

return (φ,S)

This algorithm clearly uses linear time, i.e. O(|S|). J

We now state the NCQ easiness result. This lemma is stated and proved in order to give a
simplified view of Lemma 19 below.

I Lemma 17 (NCQ-BoolD easiness result). A NCQ-BoolD φ with n variables such that H(φ)
is β-acyclic can be decided in time O (n|S|).

Proof. The following does it:
DecideNCQ− BoolD(φ)(S):

We know (x1, . . . , xn) is a REO of φ.
for i from n to 1 :

(φ,S)← RemoveNestPoint(φ,xi,S)
while φ contains some negative conjunct ¬R() :

if RS 6= ∅ : return False
Remove ¬R() from φ

return True
Let us justify its correctness. By previous β-acyclicity characterisation, we know we can

apply nest point removing until there is no variable left.
While nest points are inductively removed, some relations become of arity 0. The

interpretation of these relations R is either empty — in this case, the assertion ¬R() is a
tautology and can be removed from the conjunction — or non-empty, i.e. contains only the
empty tuple. In this case, the assertion ¬R() is a contradiction, and the query should return
“false” to mean this conjunction is not satisfiable (i.e. the sentence is not satisfied).

Since resolvent computation is done in linear time, each loop turn takes linear time, which
happens n times. J

4.2 Easiness Result for SCQ on the Boolean Domain
We now refine previous result, instead of using it. It is barely more complicated.

Instead of proving easiness of general β-acyclic NCQ, we directly treat the case of SCQ.
A first reason is that domains will be positive relations, therefore a NCQ is already a kind
of SCQ; treating directly SCQ avoids treating domains specifically. The other reason is
discussed after the following lemma.

This trick is a (weak) variant of the one presented in [19], and was inspired by it. It looks
simple but is the key point allowing extension of the NCQ easiness result to wider classes.

I Lemma 18. Let R+
a be a boolean relation of arity a. We can build in linear time the

boolean relations R+
a−1 of arity a− 1 and R−a of arity a such that, for all x1, . . . , xa∈{0, 1}a:

R+
a (x1, . . . , xa)⇔ R+

a−1(x1, . . . , xa−1) ∧ ¬R−a (x1, . . . , xa)
(x1, . . . , xa) ∈ R−a ⇒ (x1, . . . , xa−1) ∈ R+

a−1
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DecideSCQ− BoolD(φ)(S):
We know (x1, . . . , xn) is a REO of φ.
for i from n to 1 :

while there is more than one positive conjunct containing xi in φ :
Take R(ȳ, z̄, xi) and S(z̄, xi) among them
RS ←

{
(ā, b̄, c) ∈ RS | (b̄, c) ∈ SS

}
Remove S(z̄, xi) from φ

if xi in contained in a positive conjunct R+
a (ȳ, x) :

Build (R+
a−1)S , (R−a )S from (R+

a )S

Replace R+
a (ȳ, xi) by R+

a−1(ȳ) ∧ ¬R−a (ȳ, xi) in φ
(φ,S)← RemoveNestPoint(φ,xi,S)
(R+

a−1)S ← (R+
a−1)S r (R−a )S

else
(φ,S)← RemoveNestPoint(φ,xi,S)

while φ contains a negative (resp. positive) conjunct ¬R() (resp. R()) :
if RS 6= ∅ (resp. RS = ∅) :

return False
Remove ¬R() (resp. R()) from φ

return True
Algorithm 2 SCQ-BoolD decision algorithm.

Proof. Let R+
a−1 = {(e1, . . . , ea−1) | ∃eaR+

a (e1, . . . , ea)} and R−a =
(
R+
a−1 × {0, 1}

)
rR+

a . J

We could transform a SCQ-BoolD into a NCQ-BoolD, at the cost of an additional n factor,
that would affect the complexity of general SCQ. However, by making a somewhat ad
hoc algorithm, we can treat the SCQ-BoolD case directly and get the expected complexity
O(n|S|).

I Lemma 19 (SCQ-BoolD easiness result). A SCQ-BoolD φ with n variables, and whose
hypergraph H(φ) is β-acyclic can be decided in time O (n|S|).

Proof. Notice the statements of the proof of Lemma 17 still hold. Apply Algorithm 2. If
several positive conjuncts hold a given nest point, then we can proceed to filtering as follows:
take any two positive conjuncts. The set of variables hold by one includes the set of variables
held by the other, we can sort them in a lexicographical order such that the set of shared
variables have the strong weight of the lexicographical order; we can finally proceed to
filtering in linear time. β-acyclicity is preserved, and the REO is maintained by edge removal.
In the end, there is only one positive conjunct holding the nest point.

Now the positive conjunct can be managed with Lemma 18, summed up in the following,
where R/a means the relation R has arity a.

(R+
a )S/a

(R+
a−1)S/a−1

(R−a )S/a (R−a )S/a−1
(R+

a−1)S/a− 1
Lemma 18

00
obvious//)) Rem.NestP. //

We build (R+
a−1)S , (R−a )S from (R+

a )S in linear time. After linear time resolvent computation,
(R−a )S has arity a−1 (the nest point has been removed) and we can proceed to a simplification
in linear time justified by:

(R+
a−1)S(x1, . . . , xa−1) ∧ ¬(R−a )S(x1, . . . , xa−1)⇔ ((R+

a−1)S r (R−a )S)(x1, . . . , xa−1)
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Since resolvent computation is done in linear time, each loop turn takes linear time, which
happens n times. J

4.3 Final Easiness Result
Here is the last (technical) result on hypergraphs we need.

I Lemma 20. Let H1, x ∈ V(H1), y /∈ V(H1) and H2 = {e ∪ {x, y} | e ∪ {x} ∈ H1} ∪ {e ∈
H1 |x /∈ e}. This means H2 is the same hypergraph as H1 except every edge holding x also
holds y.

We have: (a1, . . . , an, x, b1, . . . , bm) is a REO of H1 iff (a1, . . . , an, x, y, b1, . . . , bm) and
(a1, . . . , an, y, x, b1, . . . , bm) are REOs of H2. In particular, Aβ(H1)⇔ Aβ(H2).

Proof. Easy considering the inductive definition of β-acyclicity (definition 7). J

I Lemma 21 (SCQ easiness result). A SCQ φ with n variables, and whose hypergraph H(φ)
is β-acyclic can be decided in time O (n|S| log |S|).

Proof. We transform a β-acyclic SCQ with n variables into a β-acyclic SCQ-BoolD having
n log |S| variables. Let φ be a β-acyclic SCQ admitting (x1, . . . , xn) as a REO. Finding it
takes a time depending only on φ.

We assume domains are reasonably encoded: we suppose there is a constant k such that,
for any domain Di,

⌈
log2 maxi

(
DSi
)⌉
< k log |S|. This assumption is reasonable: we always

can sort (in linear time) the union of the domains and associate each element with its number
in this order. Then we can re-encode (in-place) the whole structure in time O(|S| log |S|) by,
for each occurring element, looking for its number, and replacing it by its number. Each
element has therefore a size O (log |S|).

Let si =
⌈
log2 max

(
DSi
)⌉
. By the previous point, si = O (log |S|). We define

φ′ = ∃x1∈{1, . . . , 2s1} . . . ∃xn∈{1, . . . , 2sn} D1(x1) ∧ . . . ∧Dn(xn) ∧ ψ

We have H(φ′) = H(φ) ∪ {{xi} |xi ∈ V(H(φ))} therefore H(φ′) is β-acyclic. Now we can
transform φ′ into a SCQ-BoolD:

φ′′ = ∃(x1
1, . . . , x

s1
1 , . . . , x

sn
n ) ∈ {0, 1}Σ

n
i si D1(x1

1, . . . , x
s1
1 ) ∧ . . . ∧Dn(x1

n, . . . , x
sn
n ) ∧ ψ′

with ψ′ the same as ψ with every R(xa, xb, . . .) replaced by R(x1
a, . . . , x

sa
a , x

1
b , . . . , x

sb

b , . . .).
φ′′ is a SCQ-BoolD, also β-acyclic due to Lemma 20. Moreover, (x1

1, . . . , x
s1
1 , . . . , x

1
n, . . . , x

sn
n )

is a REO of H(φ′′). Noting Σni=1si = O(n log |S|) and applying Lemma 19 concludes. J

5 Hardness Result

We introduce a basic notion of reduction together with a trivial lemma that will be useful to
prove Corollary 27, and makes simple the proof of the hardness result.

I Definition 22 (linear reduction ≺). We say a problem P1 reduces linearly to a prob-
lem P2, denoted P1 ≺ P2, when we can find f ∈ Lin such that, given an algorithm
A2 deciding P2, A2 ◦ f decides P1 that is to say the following algorithm decides P1:

DecideP1(I1):
I2 ← f(I1)
return DecideP2(I2)

We also say P2 expresses P1. When P1 both reduces linearly to and expresses linearly P2,
we say P1 and P2 are equivalent, denoted P1 ∼ P2.
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The following lemma is obvious:

I Lemma 23 (linear reduction properties). Linear reduction is transitive, i.e. if P1 ≺ P2 and
P2 ≺ P3, then P1 ≺ P3; and qLin is closed by linear reduction, i.e. if P1 ≺ P2 and P2 ∈ qLin
then P1 ∈ qLin.

5.1 A Technical Point
In order to prove our hardness result on NCQ, we need to introduce a normalized form
of NCQ; it is used to show that the complexity of a NCQ is exactly determined by its
hypergraph.

I Definition 24 (simple, sorted, normalized NCQ). One says that a NCQ φ = ∃x1 ∈
D1 . . . ∃xn ∈ Dn ψ is simple if each relation symbol occurs only once in ψ. φ is sorted
if the tuple of variables of each atom of ψ occurs in increasing order of subscripts with no
repetition, i.e. every atom of ψ is in the form R(xi1 , . . . , xik ) where i1 < . . . < ik.

A NCQ is normalized if it is both simple and sorted.

The following lemma is obvious:

I Lemma 25. Let φ1, φ2 be two normalized NCQ with the same signature and H(φ1) =
H(φ2). Then φ1 and φ2 are identical up to relation symbols permutation. In particular
DecideQ(φ1) ∼ DecideQ(φ2).

I Lemma 26. Any NCQ φ is equivalent to some normalized NCQ φ′′ with H(φ) = H(φ′′),
i.e. DecideQ(φ) ∼ DecideQ(φ′′).

Sketch of proof. Here we give the only non-trivial point of the proof, in an easy to
generalize example. Let φ1 = ∃x1 ∈ D1∃x2 ∈ D2∃x3 ∈ D3 ¬R1(x1, x2) ∧ ¬R2(x2, x3)
and φ2 built by replacing both R1 and R2 by the same symbol R in φ1. We prove
DecideQ(φ1) ≺ DecideQ(φ2). We define, for i ∈ {1, 2, 3}, Di

S2 = Di
S1 × {i} and RS2 ={

((a1, 1), (a2, 2)) | (a1, a2) ∈ R1
S1
}
∪
{

((a2, 2), (a3, 3)) | (a2, a3) ∈ R2
S1
}
. The key point is

that RS2 is a disjoint union of relations corresponding to relations R1
S1 and R2

S1 ; further, the
tuples originating from R1

S1 (resp. R2
S1) are identified by their specific form ((a1, 1), (a2, 2))

(resp. ((a2, 2), (a3, 3))). J

I Corollary 27. For all NCQ φ1 and φ2, we have

H(φ1) = H(φ2) ⇒ DecideQ(φ1) ∼ DecideQ(φ2)

Proof. Obvious corollary of Lemma 25 and Lemma 26. J

5.2 Hardness Result
I Lemma 28. Let φ be a NCQ, and x a variable appearing in φ. Let φ′ be the query obtained
by removing every occurrence of x in φ, that is to say removing the ∃x∈Dx, and removing x
in atoms where it occurs. Then DecideQ(φ) expresses linearly DecideQ(φ′).

Proof. By virtue of Corollary 27, we can assume that every relation appears once in φ, with
associated variables in order. For simplicity, x is therefore assumed the minimal element for
the order. To define the reduction, we will just define how a given relation R is transposed
between S1 and S2. If x does not appear in the corresponding atom, there is no difference
i.e. RS2 = RS1 .
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In the other case, R appears as R(x, xa(1), . . . , xa(k)) in φ, with a : {1, . . . , k} → {1, . . . n}.
R appears as R(xa(1), . . . , xa(k)) in φ′. From now, completing the reduction is easy: define
RS2 =

{
(1, s1, . . . , sk) | (s1, . . . , sk) ∈ RS1

}
and Dx

S2 = {1}. J

I Corollary 29. Let φ ∈ NCQ. For every φ′ such that H(φ′) = H(φ)[S] for some S, we have
DecideQ(φ) � DecideQ(φ′).

Proof. For every x ∈ V(H(φ))r S, apply Lemma 28, together with transitivity (Lemma 23).
We have proved that DecideQ(φ) expresses some DecideQ(φ′), such that H(φ′) = H(φ)[S];
apply Corollary 27 to prove equivalence of this last query with all queries having the same
hypergraph; transitivity concludes. J

I Lemma 30 (hardness result). Under hypothesis that the problem of deciding the presence
of a triangle in a graph on n vertices cannot be decided in O(n2 logn):

∀φ ∈ NCQ DecideQ(φ) ∈ qLin ⇒ Aβ(H(φ))

Proof. For the sake of contradiction, assume DecideQ(φ) ∈ qLin and ¬Aβ(H(φ)). This
implies we can find S ⊆ V(H) and h ⊆ H(φ) such that h[S] is a chordless cycle. Then, by
Corollary 29 and Corollary 27, DecideQ(φ) expresses the following query of signature σ:

P = DecideQ
(
∃x1∈D1 . . . ∃xk∈Dk ¬Rk(xk, x1) ∧

k−1∧
i=1
¬Ri(xi, xi+1)

)
that, by Lemma 23, is also in qLin.

Now, let us associate to any graph G = (V,E) with Card (V ) = n a σ-structure defined
as follows. For each Ri with i > 3, set RiS = {(i, j) ∈ V 2 | i 6= j}. For each Ri with i ≤ 3,
set RiS = {(i, j) ∈ V 2 | (i, j) /∈ E}. Set Di

S = V . We have |S| = O(|V |2) = O(n2). If
this query is in qLin, we can decide the presence of a triangle in G in time O(|S| log |S|) =
O(n2 logn2) = O(n2 logn). J

Concluding Remark

β-acyclic existential first-order queries have many qualities, they only lack one thing: to
include α-acyclic CQ. This is to be addressed in a future paper.
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