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Abstract
In this talk we survey definability and complexity results of graph parameters which take values
in some ring or field R.
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1 Overview

Partition functions and related graph parameters have found many applications in computer
science, combinatorics, physics, chemistry, biology and even the mathematics of finance.

In this talk we survey definability and complexity results of graph parameters which take
values in some ring or field R. For this purpose we introduced the classes SOLEVALR and
MSOLEVALR of graph parameters with values in a ring or a field R which are definable in
Second Order Logic SOL and Monadic Second Order Logic MSOL respectively, [6, 12, 13, 9,
10].

Partition functions are special cases of such parameters. They all are in MSOLEVALR.
Many classes of partition functions have been characterized in a series of papers by M.
Freedman, L. Lovasz, A. Schrijver and B. Szegedy [5, 15, 1], Their characterizations all use
algebraic properties of connection matrices, which are a generalization of Hankel matrices over
words. Partition functions can also be viewed as weighted constraint satisfaction problems
(CSP) over relational structures. However, characterizing those functions which map labeled
relational structures into R which are representable as CSP problems, seems harder. It
was shown in [6] that for all functions in MSOLEVALR and for a wide class of connection
matrices the rank of these connection matrices is finite.

A classical result of J.W. Carlyle and A. Paz [3] used Hankel matrices to characterize
functions f : Σ∗ → R of words over a finite alphabet Σ recognizable by multiplicity automata
(aka weighted automata). We use this to give a complete characterization of R-valued
functions over words in terms of their Hankel matrix. We discuss how to extend such
characterization to labeled trees, edge-labeled graphs, and, more generally, to relational
structures, [14]. This contrasts and complements the approach given in [4], which uses
weighted formulas of MSOL rather than functions in MSOLEVALR.

Studying the complexity of functions in SOLEVALR and MSOLEVALR poses some
problems. To capture the complexity of their combinatorial nature, the Turing model of
computation and Valiant’s notion of counting complexity classes ]P seem most natural.
To capture the algebraic and numeric nature of partition functions as real or complex
valued functions, the Blum-Shub-Smale (BSS) model of computation seems more natural.
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However, in BSS there are various analogues of ]P based on discrete counting, but there
is no established complexity class suitable for hard to compute graph parameters. As a
result most papers use a naive hybrid approach in discussing their complexity or restrict
their considerations to sub-fields of C which can be coded in a way to allow dealing with
Turing computability. Polynomial time computability is formulated in BSS but hardness is
formulated resorting to ]P. Pioneered by F. Jaeger and D.L. Vertigan and D.J.A. Welsh [8],
and A. Bulatov and M. Grohe [2], dichotomy theorems for a wide class of partition functions
were proven which were all formulated in this hybrid language, see also [7].

In the second part of this talk we discuss a unified natural framework for the study of
computability and complexity of partition functions and graph parameters and show how
classical results can be cast in this framework, cf. [11].

The emphasis of this talk is conceptual and includes a list of open problems and a
discussion further directions of research.

(Partially based on joint work with T. Kotek, N. Labai and E.V. Ravve)
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