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Abstract

This paper deals with logical characterizations of picture languages of any dimension by syn-

tactical fragments of existential second-order logic. Two classical classes of picture languages

are studied:

the class of recognizable picture languages, i.e. projections of languages defined by local

constraints (or tilings): it is known as the most robust class extending the class of regular

languages to any dimension;

the class of picture languages recognized on nondeterministic cellular automata in linear

time : cellular automata are the simplest and most natural model of parallel computation

and linear time is the minimal time-bounded class allowing synchronization of nondetermin-

istic cellular automata.

We uniformly generalize to any dimension the characterization by Giammarresi et al. [7]

of the class of recognizable picture languages in existential monadic second-order logic.

We state several logical characterizations of the class of picture languages recognized in

linear time on nondeterministic cellular automata. They are the first machine-independent

characterizations of complexity classes of cellular automata.

Our characterizations are essentially deduced from normalization results we prove for first-

order and existential second-order logics over pictures. They are obtained in a general and

uniform framework that allows to extend them to other ‘regular’ structures.
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1 Introduction

One goal of descriptive complexity is to establish logical characterizations of natural classes

of problems in finite model theory. Many results in this area involve second-order logic (SO)

and its restrictions, monadic second-order logic (MSO) and existential second-order logic

(ESO): see e.g. [5, 11] for descriptive complexity of formal languages and [5, 9, 8, 11] for the

one of complexity classes.

It is important to recall that the complexity class defined by a logic often depends heavily

on the underlying class of structures: words, trees, graphs, ordered or unordered structures,

etc. E.g., for words, a classical result by Büchi, Elgot and Trahtenbrot [2, 5, 11] states

that the class of languages definable in MSO equals the class of regular languages, in short,
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MSO = REG, whereas the same logic or even its existential second-order fragment EMSO

can define some NP-complete problems on graphs, e.g., the 3-colorability problem.

We are interested in descriptive complexity of picture languages. A d-picture language is

a set of d-pictures, i.e., d-dimensional words (or colored grids). First, notice the following

points:

In a series of papers culminating in [7], Giammarresi et al. proved that a 2-picture

language is recognizable, i.e. is the projection of a local (that means: tilable) 2-picture

language, iff it is definable in EMSO. In short: REC2 = EMSO.

In fact, the class REC2 contains some NP-complete problems. More generally, one

observes that, for each dimension d ≥ 1, the class RECd of recognizable languages can be

defined as the class of d-picture languages recognized by nondeterministic d-dimensional

cellular automata in constant time1.

The present work originates from two questions about word/picture languages:

1. How can we generalize the proof of the above-mentioned theorem of Giammarresi et al.

to any dimension? That is, can we establish the equality RECd = EMSO for any d ≥ 1?

2. Can we obtain logical characterizations of time complexity classes of cellular automata2?

In this paper, a d-picture language is a set of d-pictures p : [1, n]d → Σ, for a finite alphabet

Σ, i.e., d-dimensional Σ-words3, and we use two natural representations of a d-picture p as a

first-order structure:

as a pixel structure: on the pixel domain [1, n]d where the sets p−1(s), s ∈ Σ, are

encoded by unary relations (Qs)s∈Σ and the underlying d-dimensional grid is encoded by

d successor functions (see Definition 2);

as a coordinate structure: on the coordinate domain [1, n] where the sets p−1(s) are

encoded by d-ary relations (Qs)s∈Σ; moreover, one uses the natural linear order of the

coordinate domain [1, n] and its associate successor function (see Definition 3).

We establish logical characterizations of two classes of d-picture languages, for all dimen-

sions d ≥ 1:

1. On pixel structures: RECd = ESO(arity 1) = ESO(var 1) = ESO(∀1, arity 1). That

means a d-picture language is recognizable iff it is definable in monadic ESO (resp.

in ESO with 1 first-order variable, or in monadic ESO with 1 universally quantified

first-order variable) 4.

2. On coordinate structures: NLINd
ca = ESO(var d+1) = ESO(∀d+1, arity d+1); that means

a d-picture language is recognized by a nondeterministic d-dimensional cellular automaton

in linear time (see, e.g., [3, 14]) iff it is definable in ESO with d+ 1 distinct first-order

variables (resp. ESO with second-order variables of arity at most d + 1 and a prenex

first-order part of prefix ∀d+1).

1 That means: for such a picture language L, there is some constant integer c such that each
computation stops at instant c, and p ∈ L iff it has at least one computation that stops with each
cell in an accepting state: see Sommerhalder et al. [13], which, to our knowledge, was the first paper
involving this notion.

2 This originates from a question that J. Mazoyer asked us in 2000 (personal communication): give a
logical characterization of the linear time complexity class of nondeterministic cellular automata.

3 More generally, the domain of a d-picture is of the “rectangular” form [1, n1] × . . . × [1, nd]. For
simplicity and uniformity of presentation, we have chosen to present our results in the particular
case of “square” pictures of domain [n]d. Fortunately, they also hold with the same proofs for general
domains [1, n1]× . . .× [1, nd].

4 It is interesting to compare this result with some results by Borchert [1].
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Items 1 and 2 proceed from normalization results of, respectively, first-order and ESO logics

that we prove over picture languages.

Significance of our results:

1. The normalization equality ESO(arity 1) = ESO(∀1, arity 1) of Item 1 is a consequence

of the fact that, on pixel structures (and, more generally, on structures that consist

of bijective functions and unary relations), any first-order formula is equivalent to a

boolean combination of cardinality formulas of the form: ‘there exist k distinct elements

x such that ψ(x)’, where ψ is a quantifier-free formula with only one variable. The

normalization equality explicitly expresses the local feature of EMSO on pictures – using

only one first-order variable. Using almost exclusively logical tools, the results of Item 1
can be regarded as an explicitation/simplification (using only one first-order variable)

and uniformisation of the (more combinatorial) proof and ideas of the main result of

Giammarresi et al. [7, 6]; this allows us to generalize it to any dimension and, potentially,

to other regular structures.

2. Intuitively, our characterization NLINd
ca = ESO(∀d+1, arity d + 1) of Item 2 naturally

reflects a symmetry property of the time-space diagram of any computation of a non-

deterministic d-dimensional cellular automaton: informally, the single first-order variable

representing time cannot be distinguished from any of the d variables that represent

the d-dimensional space; in other words, the d + 1 variables can be permuted without

increasing the expressive (or computational) power of the formula. This is the sense of

the inclusion ESO(∀d+1, arity d+ 1) ⊆ NLINd
ca whose proof is far from trivial.

2 Preliminaries

All along the paper, we denote by Σ, Γ some finite alphabets and by d a positive integer.

For any positive integer n, we set [n] := {1, . . . , n}. We are interested in sets of pictures of

any fixed dimension d.

I Definition 1. A d-dimensional picture or d-picture on Σ is a function p : [n]d → Σ where

n is a positive integer. The set dom(p)= [n]d is called the domain of picture p and its

elements are called points, pixels or cells of the picture. A set of d-pictures on Σ is called a

d-dimensional language, or d-language, on Σ.

Notice that 1-pictures on Σ are nothing but nonempty words on Σ.

2.1 Pictures as model theoretic structures

Along the paper, we will often describe d-languages as sets of models of logical formulas.

To allow this point of view, we must settle on an encoding of d-pictures as model theoretic

structures.

For logical aspects of this paper, we refer to the usual definitions and notations in logic

and finite model theory (see [5] or [11], for instance). A signature (or vocabulary) σ is a finite

set of relation and function symbols each of which has a fixed arity. A (finite) structure S of

vocabulary σ, or σ-structure, consists of a finite domain D of cardinality n ≥ 1, and, for any

symbol s ∈ σ, an interpretation of s over D, often denoted by s for simplicity. The tuple

of the interpretations of the σ-symbols over D is called the interpretation of σ over D and,

when no confusion results, it is also denoted σ. We will often deal with tuples of objects. We

denote them by bold letters.
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Let us define the two natural representations of a picture as a logical structure.

I Definition 2. Given p : [n]d → Σ, we denote by pixeld(p) the structure

pixeld(p) = ([n]d, (Qs)s∈Σ, (succi)i∈[d], (mini)i∈[d], (maxi)i∈[d]).

Here:

succj is the (cyclic) successor function according to the jth dimension of [n]d, mapping

each (a1, . . . , ad) ∈ [n]d on (a(j)
1 , . . . , a

(j)
d ) ∈ [n]d, where we set : a

(j)
j = aj + 1 if aj < n,

and a
(j)
j = 1 otherwise; a

(j)
i = ai for each i 6= j; in other words, for a ∈ [n]d, succj(a) is

the d-tuple a(j) obtained from a by ‘increasing’ its jth component according to the cyclic

successor on [n];
the mini’s, maxi’s and Qs’s are the following unary (monadic) relations: mini = {a ∈
[n]d : ai = 1}; maxi = {a ∈ [n]d : ai = n}; Qs = {a ∈ [n]d : p(a) = s}.

I Definition 3. Given p : [n]d → Σ, we denote by coordd(p) the structure

coordd(p) = 〈[n], (Qs)s∈Σ, <, succ,min,max〉. (1)

Here:

each Qs is the d-ary relation that is the set of cells of p labelled by an s, in other words:

Qs = {a ∈ [n]d : p(a) = s};
<, min, max are relations of respective arities 2, 1, 1, that are respectively the sets

{(i, j) : 1 ≤ i < j ≤ n}, {1} and {n};
succ is the cyclic successor, that is: succ(i) = i+ 1 for i < n and succ(n) = 1.

For a d-language L, we set pixeld(L) = {pixeld(p) : p ∈ L} and coordd(L) = {coordd(p) :
p ∈ L}.
I Remark. Several details are irrelevant in Definitions 2 and 3, i.e. our results still hold for

several variants, in particular:

in Definition 3, the fact that the linear order < and the equality = are allowed or not

and the fact that min, max are represented by individual constants or unary relations;

in both definitions, the fact that the successor function(s) is/are cyclic or not and is/are

completed or not by predecessor(s) function(s).

At the opposite, it is essential that, in both definitions,

the successor(s) is/are represented by function(s) and not by (binary) relation(s),

the min, max are explicitly represented.

2.2 Logics under consideration

All formulas considered hereafter belong to relational Existential Second-Order logic. Given

a signature σ, indifferently made of relation and function symbols, a relational existential

second-order formula of signature σ has the shape Φ ≡ ∃Rϕ(σ,R), where R = (R1, . . . , Rk)
is a tuple of relation symbols and ϕ is a first-order formula of signature σ ∪ {R}. We denote

by ESOσ the class thus defined. We will often omit to mention σ for considerations on these

logics that do not depend on the signature. Hence, ESO stands for the class of all formulas

belonging to ESOσ for some σ.

We will pay great attention to several variants of ESO. In particular, we will distinguish

formulas of type Φ ≡ ∃Rϕ(σ,R) according to: the number of distinct first-order variables

involved in ϕ, the arity of the second-order symbols R ∈ R, and the quantifier prefix of some

prenex form of ϕ.

C S L ’ 1 2
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With the logic ESOσ(∀d, arity `), we control these three parameters: it is made of

formulas of which first-order part is prenex with a universal quantifier prefix of length d,

and where existentially quantified relation symbols are of arity at most `. In other words,

ESOσ(∀d, arity `) collects formulas of shape ∃R∀xθ(σ,R,x) where θ is quantifier free, x is

a d-tuple of first-order variables, and R is a tuple of relation symbols of arity at most `.

Relaxing some constraints of the above definition, we set:

ESOσ(∀d) =
⋃
`>0

ESOσ(∀d, arity `) and ESOσ(arity `) =
⋃
d>0

ESOσ(∀d, arity `).

Finally, we write ESOσ(var d) for the class of formulas that involve at most d first-order

variables, thus focusing on the sole number of distinct first-order variables (possibly quantified

several times).

3 A logical characterization of recognizable picture languages

In this section, we define the class of local (resp. recognizable) picture languages and establish

the logical characterizations of the class of recognizable picture languages. In order to define

a notion of locality based on sub-pictures we need to mark the border of each picture.

I Definition 4. By Γ] we denote the alphabet Γ ∪ {]} where ] is a special symbol not in Γ.

Let p be any d-picture of domain [n]d on Γ. The bordered d-picture of p, denoted by p], is

the function p] : [0, n+ 1]d → Γ] defined by p](a) = p(a) if a ∈ dom(p); p](a) = ] otherwise.

Here, ‘otherwise’ means that a is on the border of p], i.e. some component ai of a is 0 or

n+ 1.

Let us now define our notion of local picture language or tilings language. It is based

on some sets of allowed patterns (called tiles) of the bordered pictures and is a simple

generalization to any dimension of the notion of hv-local 2-dimensional picture language

of [10] (see also [6]).

I Definition 5. 1. Given a d-picture p and an integer j ∈ [d], two cells a = (ai)i∈[d] and

b = (bi)i∈[d] of p are j-adjacent if they have the same coordinates, except the jth one for

which |aj − bj | = 1.

2. A tile for a d-language L on Γ is a pair in (Γ])2.

3. A picture p is j-tiled by a set of tiles ∆ ⊆ (Γ])2 if for any two j-adjacent points

a, b ∈ dom(p]): (p](a), p](b)) ∈ ∆.
4. Given d sets of tiles ∆1, . . . ,∆d ⊆ (Γ])2, a d-picture p is tiled by (∆1,. . . ,∆d) if p is j-tiled

by ∆j for each j ∈ [d].
5. We denote by L(∆1,. . . ,∆d) the set of d-pictures on Γ that are tiled by (∆1,. . . ,∆d).
6. A d-language L on Γ is local if there exist ∆1, . . . ,∆d ⊆ (Γ])2 such that L = L(∆1,. . . ,∆d).

We then say that L is (∆1, . . . ,∆d)-local , or (∆1, . . . ,∆d)-tiled .

I Remark. Our notion of locality (that generalizes the one of [10] to any dimension) is more

restrictive than the one given by Giammarresi and al. [7]. At the opposite, the locality notion

defined by Borchert [1] is the most general one: its is defined by the presence/absence or some

patterns/sub-pictures of any size in the picture, and, as he proved, his locality is equivalent

to definability by some universally quantified one-variable first-order sentence using non

cyclic successor functions and minimal and maximal predicates. Fortunately, the notion of

recognizability as defined below, is a robust notion that remains equivalent to the one defined

by either one of the locality notions of [1] and [7].
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I Definition 6. A d-language L on Σ is recognizable if it is the projection (i.e. homomorphic

image) of a local d-language over an alphabet Γ. It means there exist a surjective function

π : Γ → Σ and a local d-language Lloc on Γ such that L = {π ◦ p : p ∈ Lloc}. Because of

the last item of Definition 5, one can also write: L is recognizable if there exist a surjective

function π : Γ→ Σ and d sets ∆1, . . . ,∆d ⊆ (Γ])2 such that L = {π◦p : p ∈ L(∆1, . . . ,∆d)}.
We write RECd for the class of recognizable d-languages.

A characterization of recognizable languages of dimension 2 by a fragment of existential

monadic second-order logic was proved by Giammarresi et al. [7]. They established:

I Theorem 7 ([7]). For any 2-language L: L ∈ REC2 ⇔ pixel2(L) ∈ ESO(arity 1).

In this section, we come back to this result. We simplify its proof, refine the logic it involves,

and generalize its scope to any dimension.

I Theorem 8. For any d > 0 and any d-language L, the following assertions are equivalent:

1. L ∈ RECd;

2. pixeld(L) ∈ ESO(∀1, arity 1);
3. pixeld(L) ∈ ESO(arity 1).

Theorem 8 is a straightforward consequence of Propositions 9 and 11 below.

I Proposition 9. For any d > 0 and any d-language L on Σ: L ∈ RECd ⇔ pixeld(L) ∈
ESO(∀1, arity 1).

Sketch of proof. ⇒ A picture belongs to L if there exists a tiling of its domain whose

projection coincides with its content. In the logic involved in the proposition, the ‘arity 1’

corresponds to formulating the existence of the tiling, while the ∀1 is the syntactic resource

needed to express that the tiling behaves as expected. Let us detail these considerations.

By Definition 5, there exist an alphabet Γ (which can be assumed disjoint from Σ), a

surjective function π : Γ → Σ and d subsets ∆1, . . . ,∆d ⊆ (Γ])2 such that L is the set

{π ◦ p′ : p′ ∈ L(∆1, . . . ,∆d)}.
The belonging of a picture p′ : [n]d → Γ to L(∆1, . . . ,∆d) is easily expressed on

pixeld(p′) = 〈[n]d, (Qs)s∈Γ, . . .〉 with a first-order formula which asserts, for each dimen-

sion i ∈ [d], that for any pixel x of p′, the couple (x, succi(x)) can be tiled with some element

of ∆i. Because it deals with each cell x separately, this formula has the form ∀xΨ(x, (Qs)s∈Γ),
where Ψ is quantifier-free.

Now, a picture p : [n]d → Σ belongs to L iff it results from a π-renaming of a picture

p′ ∈ L(∆1, . . . ,∆d). It means there exists a Γ-labeling of p (that is, a tuple (Qs)s∈Γ of

subsets of [n]d) corresponding to a picture of L(∆1, . . . ,∆d) (i.e. fulfilling ∀xΨ(x, (Qs)s∈Γ))
and from which the actual Σ-labeling of p (that is, the subsets (Qs)s∈Σ) is obtained via π

(easily expressed by a formula of the form ∀xΨ′(x, (Qs)s∈Σ, (Qs)s∈Γ)).
Finally, the formula (∃Qs)s∈Γ∀x : Ψ∧Ψ′ conveys the desired property and fits the required

form.

⇐ In order to prove the converse implication, it is convenient to first normalize the

sentences of ESO(∀1, arity 1). This is the role of the technical result below, which asserts

that on pixel encodings, each such sentence can be rewritten in a very local form where the

first-order part alludes only pairs of adjacent pixels of the bordered picture. We state it

without proof (see also [1]):

C S L ’ 1 2
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I Fact 10. On pixel structures, any ϕ ∈ ESO(∀1, arity 1) is equivalent to a sentence of the

form:

∃U∀x
∧
i∈[d]


mini(x) → mi(x) ∧
maxi(x) → Mi(x) ∧
¬maxi(x) → Ψi(x)

 . (2)

Here, U is a list of monadic relation variables and mi, Mi, Ψi are quantifier-free formulas

such that

atoms of mi and Mi have all the form Q(x);
atoms of Ψi have all the form Q(x) or Q(succi(x)),

where, in both cases, Q ∈ {(Qs)s∈Σ,U}.

Now, consider L such that pixeld(L) ∈ ESO(∀1, arity 1). Fact 10 ensures that pixeld(L) is

characterized by a sentence of the form (2) above. We have to prove that L is the projection

of some local d-language Lloc on some alphabet Γ, that is a (∆1,. . . , ∆d)-tiled language

for some ∆1,. . . , ∆d ⊆ Γ2. Let U1, . . . , Uk denote the list of (distinct) elements of the set

{(Qs)s∈Σ,U} of unary relation symbols of ϕ so that the first ones U1, . . . , Um are the Qs’s

(here, mini and maxi symbols are excluded). The trick is to put each subformula mi(x),
Mi(x) and Ψi(x) of ϕ into its complete disjunctive normal form with respect to U1, . . . , Uk.

Typically, each subformula Ψi(x) whose atoms are of the form Uj(x) or Uj(succi(x)), for

some j ∈ [k], is transformed into the following ‘complete disjunctive normal form’:

∨
(ε,ε′)∈∆i

 ∧
j∈[k]

εjUj(x) ∧
∧
j∈[k]

ε′jUj(succi(x))

 .

Here, the following conventions are adopted:

ε = (ε1, . . . , εk) ∈ {0, 1}k and similarly for ε′;

for any atom α and any bit εj ∈ {0, 1}, εjα denotes the literal α if εj = 1, the literal ¬α
otherwise.

For ε ∈ {0, 1}k, we denote by Θε(x) the ‘complete conjunction’
∧
j∈[k] εjUj(x). Intuitively,

Θε(x) is a complete description of x and the set Γ =
⋃
i∈[m]{0i−110m−i} × {0, 1}k−m is the

set of possible colours (remember that the Qs’s that are the Uj ’s for j ∈ [m] form a partition

of the domain). The complete disjunctive normal form of Ψi(x) can be written into the

suggestive form:
∨

(ε,ε′)∈∆i
(Θε(x) ∧Θε′(succi(x))).

If each subformula mi(x) and Mi(x) of ϕ is similarly put into complete disjunctive normal

form, that is
∨

(],ε)∈∆i
Θε(x) and

∨
(ε,])∈∆i

Θε(x), respectively (there is no ambiguity in our

implicit definition of the ∆i’s, since ] 6∈ Γ), then the whole formula ϕ becomes the following

equivalent formula:

ϕ′ = ∃U∀x
∧
i∈[d]



mini(x) →
∨

(],ε)∈∆i

Θε(x) ∧

maxi(x) →
∨

(ε,])∈∆i

Θε(x) ∧

¬maxi(x) →
∨

(ε,ε′)∈∆i

( Θε(x) ∧Θε′(succi(x)) )


Finally, let Lloc denote the d-language over Γ defined by the first-order sentence ϕloc

obtained by replacing each Θε by the new unary relation symbol Qε in the first-order part of
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ϕ′. In other words, pixeld(Lloc) is defined by the following first-order sentence:

ϕloc = ∀x
∧
i∈[d]



mini(x) →
∨

(],ε)∈∆i

Qε(x) ∧

maxi(x) →
∨

(ε,])∈∆i

Qε(x) ∧

¬maxi(x) →
∨

(ε,ε′)∈∆i

(Qε(x) ∧Qε′(succi(x)) )


Hence, Lloc = L(∆1, . . . ,∆d). That is, Lloc is indeed local and the corresponding sets of tiles

are the ∆i’s of the previous formula. It is now easy to see that our initial d-language L is

the projection of the local Lloc by the projection π : Γ→ Σ defined as follows: π(ε) = s iff

εi = 1 for i ∈ [m] and Ui is Qs. This completes the proof. J

I Proposition 11. ESO(arity 1) ⊆ ESO(∀1, arity 1) on pixel structures, for any d > 0.

Proof. In a pixel structure, each function symbol is interpreted as a bijective function (namely,

a cyclic successor). It has been proved in [4, 12] that any first-order formula on such a

structure can be rewritten as a so-called cardinality formula, that is as a boolean combination

of sentences of the form ψ≥k = ∃≥kxψ(x) (for k ≥ 1) where ψ(x) is a quantifier-free formula

(using the ‘bijective’ function symbols f and their inverses f−1) with the single variable x

and where the quantifier ∃≥kx means ‘there exist at least k elements x. . . ’. Therefore, it is

easily seen that proving the proposition amounts to showing that each sentence of the form

ψ≥k or ¬ψ≥k can be translated in ESO(∀1, arity 1) on pixel structures.

This is done as follows: for a given sentence ∃≥kxψ(x), we introduce new unary relations

U=1, U=2, . . . , U=k−1 and U≥k, with the intended meaning:

A pixel a ∈ [n]d belongs to U=j (resp. U≥k) iff there are exactly j (resp. at least k)

pixels b ∈ [n]d lexicographically smaller than or equal to a such that pixeld(p) |= ψ(b).

Then we have to compel these relation symbols to fit their expected interpretations, by means

of a universal first-order formula with a single variable. First, we demand the relations to

form a partition of the domain:

(1)
∧

i<j<k

(
¬U=i(x) ∨ ¬U=j(x)

)
∧
∧
i<k

(
¬U=i(x) ∨ ¬U≥k(x)

)
.

Let us temporarily denote by ≤lex the lexicographic order on [n]d inherited from the

natural order on [n], and by succlex, minlex, maxlex its associated successor function and

unary relations corresponding to extremal elements. Then the sets described above can be

defined inductively by the conjunction of the following six formulas:

(2) (minlex(x) ∧ ¬ψ(x))→ U=0(x)

(3) (minlex(x) ∧ ψ(x))→ U=1(x)

(4)
∧
i<k

(
(¬maxlex(x) ∧ U=i(x) ∧ ¬ψ(succlex(x))

)
→ U=i(succlex(x))

(5)
∧

i<k−1

(
(¬maxlex(x) ∧ U=i(x) ∧ ψ(succlex(x))

)
→ U=i+1(succlex(x))

(6)
(
(¬maxlex(x) ∧ U=k−1(x) ∧ ψ(succlex(x))

)
→ U≥k(succlex(x))

C S L ’ 1 2
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(7)
(
(¬maxlex(x) ∧ U≥k(x)

)
→ U≥k(succlex(x))

Hence, under the hypothesis (1) ∧ . . . ∧ (7), the sentences ψ≥k and ¬ψ≥k are equivalent,

respectively, to ∀x(maxlex(x)→ U≥k(x)) and ∀x(maxlex(x)→ ¬U≥k(x)).
To complete the proof, it remains to get rid of symbols succlex, minlex and maxlex that

are not allowed in our language. It is done by referring to these symbols implicitly rather

than explicitly. For instance, since succlex(x) = succisucci+1 . . . succd(x) for the smallest

i ∈ [d] such that
∧
j>i maxj(x), each formula ϕ involving succlex(x) actually corresponds to

the conjunction:

∧
i∈[d]

(¬maxi(x) ∧
∧

i<j≤d

maxj(x))→ ϕi

 ,

where ϕi is obtained from ϕ by the substitution succlex(x)  succi . . . succd(x). Similar

arguments allow to get rid of minlex and maxlex. J

I Remark. In this proof, two crucial features of a structure of type pixeld(p) are involved:

its ‘bijective’ nature, that allows to rewrite first-order formulas as cardinality formulas; the

regularity of its predefined arithmetics (the functions succi defined on each dimension), that

endows pixeld(p) with a grid structure: it enables us to implicitly define an order on the whole

domain dom(p) by means of first-order formulas with a single variable, which in turn allows

to express cardinality formulas by ‘cumulative’ arguments, via the sets U=i. Proposition 11

straightforwardly generalizes to all structures – and there are a lot – that fulfill these two

properties.

4 A logical characterization of NLINca

The second main concept studied in this paper is the classical notion of linear time complexity

on nondeterministic cellular automata of any dimension (e.g., see [3, 14]). For simplicity

of notation, we only present here the notion of one-way d-dimensional cellular automaton,

instead of the more usual notion of two-way d-dimensional cellular automaton, but it is a

folklore result that in the nondeterministic case, the two linear-time complexity classes so

defined coincide (see [14]).

There are some technicalities in our definition of the transition function of a cellular

automaton here below. This is due to the need to distinguish the different possible positions of

the pixels of a picture w.r.t. its border: the one-way neighborhood of a cell x = (x1, . . . , xd),
that is the set of cells y = (y1, . . . , yd) such that 0 ≤ yi − xi ≤ 1 for each i ∈ [d], may be

incomplete according to the position of the cell x w.r.t. the border of the picture.

I Definition 12. A pixel x = (x1, . . . , xd) ∈ [n]d is in position a = (a1, . . . , ad) ∈ {0, 1}d in

a picture p : [n]d → Γ or in the domain [n]d if, for all i ∈ [d], we have ai = 0 if xi = n and

ai = 1 if xi < n.

We are going to define the transition function on a pixel x of a picture p according to

some ‘neighborhood’ (sub-picture) denoted pa,x whose domain, denoted by Doma, depends

on the position a of the pixel in the picture.

I Definition 13. For each a = (a1, . . . , ad) ∈ {0, 1}d, let us define the a-domain as Doma =
[0, a1]× · · · × [0, ad].

The a-neighborhood of some pixel x ∈ [n]d in position a in a picture p : [n]d → Γ is the

function pa,x : Doma → Γ defined as pa,x(b) = p(x+ b), where x+ b denotes the sum of the

vectors x and b.
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We denote by neighba(Γ) the set of all possible a-neighborhoods on an alphabet Γ, that

is the set of functions ν : Doma → Γ.

We are now ready to define the ‘transition function’ of a cellular automaton:

IDefinition 14. A one-way nondeterministic d-dimensional cellular automaton (d-automaton,

for short) over an alphabet Σ is a tuple A = (Σ,Γ, δ, F ), where

the finite alphabet Γ called the set of states of A includes the input alphabet Σ and the

set F of accepting states: Σ, F ⊆ Γ;

δ is the (nondeterministic) transition function of A: it is a family of a-transition functions

δ = (δa)a∈{0,1}d of the form δa : neighba(Γ)→ P(Γ).

Let us now define a computation.

I Definition 15. Let A = (Σ,Γ, δ, F ) be a d-automaton and p, p′ : [n]d → Γ be two d-pictures

on Γ. We say that p′ is a successor of p for A, denoted by p′ ∈ A(p), if, for each position

a ∈ {0, 1}d and each point x of position a in [n]d, p′(x) ∈ δa(pa,x). The set of jth-successors

of p for A, denoted by Aj(p), is defined inductively:

A0(p) = {p} and, for j ≥ 0, Aj+1(p) =
⋃

p′∈Aj(p)

A(p′).

I Definition 16. A computation of a d-automaton A on an input d-picture p is a sequence

p1, p2, p3, . . . of d-pictures such that p1 = p and pi+1 ∈ A(pi) for each i. A computation is

accepting if it is finite – it has the form p1, p2, . . . , pk for some k – and the cell of minimal

coordinates, 1d = (1, . . . , 1), of its last configuration is in an accepting state: pk(1d) ∈ F .

I Definition 17. Let A = (Σ,Γ, δ, F ) be a d-automaton and let T : N → N be such

that T (n) > n. A d-picture p on Σ is accepted by A in time T (n) if A admits an

accepting computation of length T (n) on p. That means, there exists a computation

p = p1, p2, . . . , pT (n) = AT (n)−1(p) of A on p such that pT (n)(1d) ∈ F . A d-language L on Σ
is accepted , or recognized , by A in time T (n) if it is the set of d-pictures accepted by A in

time T (n). That is L = {p : ∃p′ ∈ AT (n)−1(p) such that p′(1d) ∈ F}.
If T (n) = cn + c′, for some integers c, c′, then L is said to be recognized in linear time

and we write L ∈ NLINd
ca.

I Remark. The nondeterministic linear time class NLINd
ca is very robust, i.e. is not modified

by many changes in the definition of the automaton or in its time bound. In particular, it

is a folklore result that the constants c, c′ defining the bound T (n) = cn + c′ can be fixed

arbitrarily, provided T (n) > n. For example, the class NLINd
ca does not change if we take the

minimal time T (n) = n+ 1, called real time, i.e. the minimal time for that the information

of any pixel of p can be communicated to the reference pixel, 1d (see [14]).

Here is the second main result of this paper.

I Theorem 18. For any d > 0 and any d-language L, the following assertions are equivalent:

1. L ∈ NLINd
ca;

2. coordd(L) ∈ ESO(∀d+1, arity d+ 1);

3. coordd(L) ∈ ESO(var d+ 1).

This theorem is a straightforward consequence of Propositions 19 and 20 below.

I Proposition 19. For any d > 0 and any d-language L,

L ∈ NLINd
ca ⇔ coordd(L) ∈ ESO(∀d+1, arity (d+ 1)).

C S L ’ 1 2
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Sketch of proof. ⇒
Let L ∈ NLINd

ca. By the Remark preceding Theorem 18, L is recognized by a d-automaton

A = (Σ,Γ, δ, F ) in real time, i.e. in time n+ 1. The sentence in ESO(var d+ 1) that we are

going to construct is of the form ∃(Rs)s∈Γ ∀x∀t ψ(x, t), where:

- ψ is a quantifier-free formula that uses a list of exactly d + 1 first-order variables

x = (x1, . . . , xd) and t. Intuitively, the d first ones represent the coordinates of any point in

dom(p) = [n]d and the last one represents any of the first n instants t ∈ [n] of the computation

(the last instant n+ 1 is not explicitly represented);

- ψ uses, for each state s ∈ Γ, a relation symbol Rs of arity d + 1. Intuitively,

Rs(a1, . . . , ad, t) holds, for any a = (a1, . . . , ad) ∈ [n]d and any t ∈ [n], iff the state of

cell a at instant t is s.

- ψ is the conjunction ψ(x, t) = init(x, t)∧ step(x, t)∧end(x, t) of three formulas whose

intuitive meaning is the following.

∀x∀t init(x, t) describes the first configuration of A, i.e. at initial instant 1, that is the

input picture p1 = p;

∀x∀t step(x, t) describes the computation between the instants t and t+1, for t ∈ [n−1],
i.e. describes the (t+ 1)th configuration pt+1 from the tth one pt, i.e. says pt+1 ∈ A(pt) ;

∀x∀t end(x, t) expresses that the nth configuration pn leads to a (last) (n + 1)th con-

figuration pn+1 ∈ A(pn) which is accepting, i.e. with an accepting state in cell 1d:
pn+1(1d) ∈ F .

Let us only give explicitly the second formula, step, which is the most central one (the

last formula, end, is similar; the first one, init, is easy to construct):

step(x, t) ≡∧
a∈{0,1}d

∧
ν∈neighba(Γ)

( ¬max(t) ∧ Pa(x) ∧
∧

b∈Doma

Rν(b)(x + b, t)
)
→

⊕
s∈δa(ν)

Rs(x, succ(t))


Here,

⊕
denotes the exclusive disjunction. Furthermore:

For x ∈ [n]d and a = (a1, . . . , ad) ∈ {0, 1}d, the formula Pa(x) claims that the pixel x is

in position a. Namely: Pa(x) ≡
∧
i∈[d]

(¬i)max(xi), where (¬i) is ¬ if ai = 1, and nothing

otherwise.

For b = (b1, . . . , bd) ∈ {0, 1}d, x + b abbreviates the tuple of terms (θ1, . . . , θd) where, for

each i, the term θi is xi if bi = 0, and succ(xi) otherwise.

It is easy to verify that the formula ∀x step(x, t) means pt+1 ∈ A(pt), as claimed.

⇐ Assume coordd(L) ∈ ESO(∀d+1, arity d + 1). That is, there is some sentence Φ in

ESO(∀d+1, arity d + 1) such that p ∈ L ⇔ coordd(p) |= Φ. We want to prove L ∈ NLINd
ca,

i.e. L is recognized by some d-automaton in linear time. Let us give the main idea of the

proof for the simplest case d = 1 and a formula Φ ∈ ESO(∀2, arity 2) of the form

Φ = ∃R∀x∀yψ(x, y)

where R is a binary relation symbol and ψ is a quantifier-free formula where the only atoms

in which R occurs, called R atoms, are of the following forms (1-4):

(1) R(x, y); (2) R(succ(x), y); (3) R(x, succ(y)); (4) R(y, x).

First, notice that if the only atoms where R occurs are of the forms (1-3), i.e. the variables

x, y only appear in this unique order in the arguments of R, then formula Φ has a local
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behaviour : points (x, y), (succ(x), y) and (x, succ(y) are neighbours, i.e. adjacent each other.

This allows to construct a 1-automaton (nondeterministic cellular automaton of dimension

1) A that mimics Φ. Roughly, A successively guesses ‘rows’ R(i, . . .), for i = 1, 2, . . . n, of

R, and in the same time, it checks locally the coherence of each instantiation ψ(i, j): more

precisely, at instant i, the state of each cell j, 1 ≤ j ≤ n, of A contains both values R(i, j)
and R(i+ 1, j). So, in case atoms of R are of the forms (1-3), the language L is recognized

by such a 1-automaton A in linear time as claimed.

Now, let us consider the general case where the formula includes all the forms (1-4). Of

course, the pixel of the form (4), R(y, x), is not adjacent to pixels of the form (1-3) but

is their symmetric (more precisely, is symmetric of R(x, y)) with respect to the diagonal

x = y. The intuitive idea is to cut or to fold the ‘picture’ R along this diagonal: R is

replaced by its two ‘half pictures’ denoted R1 and R2, that are superposed in the half

square x ≤ y above the diagonal. More precisely, R1 and R2 are binary relations whose

intuitive meaning is the following: for points (x, y) such that x ≤ y, one has the equivalence

R1(x, y) ⇔ R(x, y) and the equivalence R2(x, y) ⇔ R(y, x). By this transformation, each

pixel R2(x, y) that represents the original pixel R(y, x) lies at the same point (x, y) as pixel

R1(x, y) that represents pixel R(x, y), for x ≤ y. The case y ≤ x is similar. This solves the

problem of vicinity.

More precisely, the sentence Φ = ∃R∀x∀yψ(x, y) is normalized as follows. Let coherent(x, y)
denote the formula x = y → (R1(x, y)↔ R2(x, y)) whose universal closure ensures the co-

herence of R1 and R2 on the common part of R they both represent, that is the diagonal

x = y. Using R1 and R2, it is not difficult to construct a formula

ψ′(x, y) = coherent(x, y) ∧

 x < y → ψ<(x, y) ∧
x = y → ψ=(x, y) ∧
x > y → ψ>(x, y)


such that the sentence Φ′ = ∃R1∃R2∀x∀yψ′(x, y) in ESO(∀2, arity 2) is equivalent to Φ. Let

us describe and justify its precise form and meaning.

Table 1 Replacement of R-atoms by R1- or R2-atoms.

case formula R(x, y) R(succ(x), y) R(x, succ(y)) R(y, x)

x < y ψ<(x, y) R1(x, y) R1(succ(x), y) R1(x, succ(y)) R2(x, y)
x = y ψ=(x, y) R1(x, y) R2(x, succ(y)) R1(x, succ(y)) R1(x, y)
x > y ψ>(x, y) R2(y, x) R2(y, succ(x)) R2(succ(y), x) R1(y, x)

The formulas ψ<(x, y), ψ=(x, y) and ψ>(x, y) are obtained from formula ψ(x, y) by

substitution of R-atoms by R1- or R2-atoms according to the cases described in Table 1. It

is easy to check that each replacement is correct according to its case. For instance, it is

justified to replace each atom of the form R(x, succ(y)) in ψ by R2(succ(y), x) when x > y

(in order to obtain the formula ψ>(x, y)), because when x > y we get succ(y) ≤ x and hence

the equivalence R(x, succ(y))↔ R2(succ(y), x) holds, by definition of R2.

Notice that the variables x, y always occur in this order in each R1- or R2-atom of the

formulas ψ< and ψ= (see Table 1). At the opposite, they always occur in the reverse order

y, x in the formula ψ>(x, y). This is not a problem because, by symmetry, the roles of x and

y can be exchanged and the universal closure ∀x∀y(x > y → ψ>(x, y)) is trivially equivalent

to ∀x∀y(y > x → ψ>(y, x)). So, the above sentence Φ′ – and hence, the original sentence

C S L ’ 1 2
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Φ – is equivalent to the sentence denoted Φ” obtained by replacing in Φ′ the subformula

x > y → ψ>(x, y) by y > x→ ψ>(y, x). By construction, relation symbols R1, R2 only occur

in Φ in atoms of the three required ‘sorted’ forms: Ri(x, y), Ri(succ(x), y) or Ri(x, succ(y)).
Finally, to be precise, there remain two difficulties so that a 1-automaton can simulate

the ‘sorted’ sentence Φ” in linear time, by the informal algorithm described above:

the presence of equalities and inequalities in the sentence;

the forms of the atoms involving input relation symbols.

It is easy to get rid of equalities and inequalities by introducing new binary relation symbols

defined and used in a ‘sorted’ manner too (see (1-3)). Concerning the second point, we can

assume, without loss of generality, that the only atoms involving the input relation symbols

(Qs)s∈Σ are of the two forms Qs(x) or Qs(y). As we do for equalities and inequalities, we

can get rid of atoms of the form Qs(y) by introducing new binary ESO relation symbols :

intuitively, they convey each bit Qs(a) at each point of coordinates (a, . . .) or (. . . , a); those

new binary relations are also defined and used in a ‘sorted’ manner. The fact that all the

atoms involving the input are of the form Qs(x) allows to consider this input in the initial

configuration of the computation of the 1-automaton but in no later configuration as required.

So, the sketch of proof is complete for the case d = 1.

For the general case, i.e. for any dimension d, the ideas and the steps of the proof are

exactly the same as for d = 1 but the notations and details of the proof are much more

technical. To give an idea, let us succinctly describe the ESO relations of arity d+1 introduced

in the main normalization step. Here again, each ESO relation symbol R of the original

sentence Φ in ESO(∀d+1, arity d+ 1) is replaced by – or, intuitively, ‘divided into’ – (d+ 1)!
new ESO relation symbol Rα of the same arity d+ 1, where α is a permutation of the set of

indices [d+ 1]. The intended meaning of each relation Rα is the following: for each tuple

(a1, . . . , ad+1) ∈ [n]d+1 such that a1 ≤ a2 . . . ≤ ad+1, the equivalence

Rα(a1, . . . , ad+1)↔ R(aα(1), . . . , aα(d+1))

holds. Then, we introduce a partition of the domain [n]d+1 into subdomains, similar to

the partition of the domain [n]2 described above for d = 1 into the diagonal x = y and

the two half domains over and under the diagonal x < y and x > y. According to the

case (i.e. subdomain of the partition), this allows to replace each R atom in Φ by an atom

of one of the two following sorted forms, Rα(x) and Rα(x(i)), where x = (x1, . . . , xd+1),
1 ≤ i ≤ d+ 1 and x(i) is the tuple x where xi is replaced by succ(xi). Finally, the equalities

and inequalities are similarly eliminated in the sentence and we normalize it with respect

to the input d-ary relations (Qs)s∈Σ by using new ESO relation symbols of arity d + 1 to

convey the input information: in the final sorted sentence all the Qs atoms are of the unique

form Qs(x1, . . . , xd). For such a sorted ESO(∀d+1, arity d+ 1)-sentence Φ, it is now easy to

construct a d-automaton that generalizes the automaton described above in case d = 1, and

checks in linear time whether coordd(p) |= Φ. J

I Proposition 20. For any d > 0, ESO(var d) ⊆ ESO(∀d, arity d) on coordinate structures.

Sketch of proof. We first prove a kind of Skolemization of ESO(var d)-formulas, thus provid-

ing a first normalization of these formulas, in which the first-order part is universal and

includes the same number of first-order variables as the initial formula. To illustrate the

procedure that performs this preliminary normalisation, let us run it on a very simple

first-order formula with two variables: ϕ ≡ ∃x (∀yU(x, y) ∨ ∃yD(x, y) ). We introduce three
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new relation symbols R1, R2, R3 corresponding to the quantified subformulas of ϕ.

def1(R1) ≡ ∀x : R1(x) ↔ ∀y U(x, y)
def2(R2) ≡ ∀x : R2(x) ↔ ∃y D(x, y)
def3(R3) ≡ ∀x : R3(x) ↔ R1(x) ∨R2(x)

Hence our initial formula can be rewritten:

∃R1, R2, R3 :

 ∧
1≤i≤3

defi(Ri)

 ∧ ∃x R3(x). (3)

It is easily seen that (3) can be written as a conjunction of prenex formulas, each of which

involves no more than two variables and has a quantifier prefix of the shape ∀x∀y or ∀x∃y
(we include in this later form the subformula ∃x R3(x)). All in all, ϕ is equivalent to a

formula of the form:

∃R1, R2, R3 : ∀x∀yψ(x, y,R) ∧ ∀x∃yθ(x, y,R), (4)

where ψ and θ are quantifier-free. In order to put this conjunction under prenex form without

adding a new first-order variable, we have to ”replace” the existential quantifier by a universal

one. (Afterward ϕ, as a conjunction of formulas of prefix ∀x, y, could be written under the

requisite shape.) To proceed, we get use of the arithmetics embedded in coordinate structures.

It allows to defining a binary relation W with intended meaning: W(x, y) iff there exists

z ≤ y such that θ(x, z) holds. This interpretation is achieved thanks to the formula:

∀x, y : {min(y)→
(
W(x, y)↔ θ(x, y)

)
}∧{W(x, succ(y))↔

(
θ(x, succ(y))∨W(x, y)

)
} (5)

Under assumption (5), the assertion ∀x∃yθ(x, y) is equivalent to ∀x∀y : max(y)→W(x, y).
This allows to rewriting (4), and hence ϕ, as the ESO(∀2)-formula:

∃R1, R2, R3,W
(

(5) ∧ ∀x∀yψ(x, y,R) ∧ ∀x∀y
(
max(y)→W(x, y)

)
.
)

(6)

Thus, the above considerations allow to show the normalization ESO(var d) = ESO(∀d)
on coordinate structures. It remains to prove ESO(∀d) = ESO(∀d, arity d). It amounts to

build, for each formula Φ of type ∃R∀x1, . . . , xdϕ, where ϕ is quantifier-free and R is a

tuple of relation symbols of any arity, a formula Φ′ with the same shape, but in which all

relation symbols are of arity ≤ d, such that Φ and Φ′ have the same models, as far as pixel

structures are concerned. The possibility to replace a k-ary (k ≥ d) relation symbol R of

Φ by d-ary symbols rests in the limitation of the number of first-order variables in Φ: each

atomic formula involving R has the form R(t1, . . . , tk) where the ti’s are terms built on

x1, . . . , xd. Therefore, although R is k-ary, in each of its occurrences it behaves as a d-ary

symbol, dealing with the sole variables x1, . . . , xd. Hence, the key is to create a d-ary symbol

for each occurrence of R in Φ or, more precisely, for each k-tuple of terms (t1, . . . , tk) involved

in a R-atomic formula. Let us again opt for a ‘proof-by-example’ choice and illustrate the

procedure on a very simple case.

Let Φ be the ESO(∀2, arity 3)-formula ∃R∀x, yϕ(x, y,R), where ϕ ≡ R(x, y, x)∧¬R(y, x, y).
Introduce two new binary relation symbols R(x,y,x) and R(y,x,y) associated to the triple of

terms (x, y, x) and (y, x, y) involved in Φ, and fix their interpretation as follows: for any

∀a, b ∈ [n], R(x,y,x)(a, b)⇔ R(a, b, a) and R(y,x,y)(a, b)⇔ R(b, a, b). Then we get the equival-

ence: 〈S,R〉 |= ∀x, y : R(x, y, x)∧¬R(y, x, y) iff 〈S,R〉 |= ∀x, y : R(x,y,x)(x, y)∧¬R(y,x,y)(x, y)
which, in turn, yields the implication:

S |= ∃R∀x, y : R(x, y, x)∧¬R(y, x, y)⇒ S |= ∃R∀x, y : R(x,y,x)(x, y)∧¬R(y,x,y)(x, y) (7)
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The converse implication would immediatly complete the proof. Unfortunately, it does not

hold, since the second formula has a model, while the first has not.

To get the right-to-left implication in (7), we have to strengthen the second formula

with some assertion that compels the tuple R(x,y,x), R(y,x,y) to be, in some sense, the binary

representation of some ternary relation. This last construction is more sophisticated than

the preceding ones, and we can’t detail it here. J
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