Two-Variable Universal Logic with Transitive Closure*

Emanuel Kieroński and Jakub Michaliszyn
Institute of Computer Science, University of Wrocław, Poland
\{kiero,jmi\}@cs.uni.wroc.pl

Abstract

We prove that the satisfiability problem for the two-variable, universal fragment of first-order logic with constants (or, alternatively phrased, for the Bernays-Schönfinkel class with two universally quantified variables) remains decidable after augmenting the fragment by the transitive closure of a single binary relation. We give a 2-NExpTime-upper bound and a 2-ExpTime-lower bound for the complexity of the problem. We also study the cases in which the number of constants is restricted. It appears that with two constants the considered fragment has the finite model property and NExpTime-complete satisfiability problem. Adding a third constant does not change the complexity but allows to construct infinity axioms. A fourth constant lifts the lower complexity bound to 2-ExpTime. Finally, we observe that we are close to the border between decidability and undecidability: adding a third variable or the transitive closure of a second binary relation lead to undecidability.

1998 ACM Subject Classification F. 4 Mathematical Logic and Formal Languages
Keywords and phrases two-variable logic, transitive closure, decidability
Digital Object Identifier 10.4230/LIPIcs.CSL.2012.396

1 Introduction

Classical papers from the 1930s showed that the satisfiability problem for first-order logic, FO, is undecidable. This raised the question which natural fragments of FO are decidable. A large research program led to a complete characterization, with respect to the decidability, of the so-called quantifier prefix classes. In particular, the Bernays-Schönfinkel class, i.e. the class of all formulas starting from a quantifier prefix of the form $\exists^{*} \forall^{*}$ followed by a quantifier free formula, appeared to be decidable. Note that, as existential quantifiers can be simulated by constants, the Bernays-Schönfinkel class may be alternatively viewed as the universal fragment of FO (i.e. the class of universal prenex-normal form FO formulas) with constants.

Another interesting decidable fragment of FO is the two-variable fragment, FO^{2}. With respect to the number of variables it appears to be the maximal fragment whose satisfiability problem is decidable, as undecidability of FO^{3} follows from [8]. Decidability of FO^{2} was shown in [15] by establishing a finite model property, namely, that every satisfiable formula has a finite model of size at most doubly exponential with respect to its length. This bound on the size of models was later improved in [5] to singly exponential, which implied a Nexp-TIME-upper bound on the complexity of the satisfiability problem. A corresponding lower bound follows from [4, 13], so the satisfiability problem for FO^{2} is NExpTime-complete.

The importance of FO^{2} can be justified by the fact that it or its natural extensions and variants embed many formalisms used in computer science, such as modal, temporal

[^0]or description logics. Unfortunately, FO^{2} has a drawback, which becomes significant when one thinks about practical applications: it cannot express transitivity of a binary relation. Moreover, in contrast to modal logic or to some variants of the guarded fragment [16, 12], extending FO^{2} by transitivity statements leads to undecidability $[6,10]$.

Actually, in applications for program verification or knowledge representation it would be even more desirable to have a transitive closure operator. While in the world of modal logics there exist decidable variants equipped with transitive closure operators, with a notable example of propositional dynamic logic, PDL [3], not too many natural decidable fragments of first-order logic with transitive closure are known. One exception is an extension of the two-variable guarded fragment with a transitive closure operator applied to binary symbols appearing only in guards. This is shown to be decidable and 2-ExpTime-complete in [14]. In a recent paper [11], FO^{2} with the equivalence closure (i.e. reflexive, symmetric and transitive closure) operator is show to be decidable, and 2-NEXPTimE-complete, if the closure operator is applied to two distinguished binary symbols.

In [7] the universal fragment of first-order logic with constants is shown to be decidable when extended with the deterministic transitive closure operator, DTC, applied to a single, distinguished binary symbol, provided that only positive occurrences of DTC are allowed (thus we cannot say, e.g. that an element satisfying P is forbidden to be connected by a deterministic path to an element satisfying Q).

Some related results are obtained also in [2] where a logic motivated by the two-variable Bernays-Schönfinkel class extended with datalog is considered. This logic allows to state that some paths exist among constants, however, as it is actually a fragment of first-order logic, it is not able to express transitive closures.

In this paper we consider the universal, two-variable fragment of first-order logic with constants, and extend it with the transitive closure of a single, distinguished binary relation. In contrast to the mentioned fragment with DTC, we allow also for negative occurrences of transitive closures.

In [7] it is shown that if we allow to use the deterministic transitive closure or the transitive closure of a single binary relation both positively and negatively, then the universal fragment of FO becomes undecidable. The proof uses four universally quantified variables. Actually, Corollary 10 from [7] suggests that also the fragment with just two variables, two constants, and the transitive closure of one relation is undecidable. However, the statement of that corollary is not precise and there is no detailed proof. In this paper we clarify this issue by showing that in the case of two variables the satisfiability problem is decidable.

We also find quite intriguing that hardness of the investigated fragment depends on the number of constants (or, alternatively phrased, on the number of existential quantifiers in $\exists^{*} \forall^{2}$ formulas).

Our results and outline of the paper. To present our results precisely we introduce the following notation. We denote by $\forall_{T C}^{n}[m, k]$ the set of first-order formulas of the form $\forall x_{1} \ldots x_{n} \varphi$, with quantifier free φ, over signatures containing m pairs of distinguished binary relation symbols: $R_{1}, R_{1}^{+}, \ldots, R_{m}, R_{m}^{+}, k$ constant symbols c_{1}, \ldots, c_{k}, and no function symbols of arity greater than 0 ; the equality symbol is also allowed. We consider satisfiability of such formulas over structures in which for all $1 \leq i \leq m$ the interpretation of R_{i}^{+}is the transitive closure of the interpretation of R_{i}. We define also the classes of formulas in which the number of constants is unbounded as $\forall_{T C}^{n}[m]=\bigcup_{i=0}^{\infty} \quad \forall_{T C}^{n}[m, i]$.

We prove that the satisfiability problem for $\forall_{T C}^{2}[1]$ is decidable in 2-NExpTime (Section $6)$. In the case of $\forall_{T C}^{2}[1,2]$ we show even an exponential model property, so it can be decided in NExpTime (Section 4). Slightly surprisingly, $\forall_{T C}^{2}[1,3]$ lacks the finite model property
(Section 3), but we still are able to show a NExpTime-upper complexity bound (Section 7). The satisfiability problem for $\forall_{T C}^{2}[1,4]$ becomes 2-ExpTime-hard (Section 5). We also note some contrasting undecidability results, namely for $\forall_{T C}^{3}[1]$ and $\forall_{T C}^{2}[2]$ (Section 7).

2 Preliminaries

2.1 Conventions

We mostly work with $\forall_{T C}^{2}[1]$ and its fragments with bounded number of constants. In this case, we suppose without loss of generality that signatures contain only unary and binary relation symbols (cf. [5]), we denote by R the distinguished binary relation whose transitive closure is available, and use R^{+}for this transitive closure. To simplify the presentation we assume that constants are not explicitly present in the signature, but rather they are simulated by means of special unary predicates K_{1}, \ldots, K_{k}. In this case we require that in a model of a given formula there exists exactly one element satisfying K_{i}, for all $1 \leq i \leq k$; we simply denote this element by c_{i}. We do not obey this assumption when presenting example formulas and proving lower bounds. Eliminating constants in favor of such special unary predicates can be done in a standard way.

We use a standard convention and if \mathfrak{A} is a structure then we denote its universe by A. Similarly, if $V \subseteq A$ then we denote by \mathfrak{V} the substructure of \mathfrak{A} induced by V, i.e. $\mathfrak{A} \mid V$.

2.2 Atomic types

An (atomic) 1-type (over a given signature) is a maximal satisfiable set of atoms or negated atoms with free variable x. Similarly, an (atomic) 2 -type is a maximal satisfiable set of atoms and negated atoms with free variables x, y. We assume that literals built using our special symbol R^{+}are also members of atomic types. Note that the numbers of 1-types and 2-types are bounded exponentially in the size of the signature. We often identify a type with the conjunction of all its elements.

Observe that in the case of signatures restricted to unary and binary symbols, to completely describe a structure it is enough to list the 2-types of all pairs of elements. However, we usually start our constructions by defining 1-types.

For a given σ-structure \mathfrak{A}, and $a \in A$ we say that a realizes a 1 -type α if α is the unique 1 -type such that $\mathfrak{A} \models \alpha[a]$. We denote by $\operatorname{tp}_{\mathfrak{A}}(a)$ the 1 -type realized by a. Similarly, for distinct $a, b \in A$, we denote by $\operatorname{tp}_{\mathfrak{A}}(a, b)$ the unique 2 -type realized by the pair a, b, i.e. the type β such that $\mathfrak{A} \models \beta[a, b]$. We denote by $\boldsymbol{\alpha}[\mathfrak{A}]$ the set of all 1 -types, and by $\boldsymbol{\beta}[\mathfrak{A}]$ the set of all 2-types realized in \mathfrak{A}. For $S_{1}, S_{2} \subseteq A$, we denote by $\boldsymbol{\alpha}_{\mathfrak{A}}\left[S_{1}\right]$ the set of all 1-types realized in S_{1}, by $\boldsymbol{\beta}_{\mathfrak{A}}\left[S_{1}, S_{2}\right]$ the set of all 2 -types $\operatorname{tp}_{\mathfrak{A}}\left(a_{1}, a_{2}\right)$ with $a_{i} \in S_{i}$. We sometimes skip subscripts if the structure is clear from the context.

2.3 Small cliques

Let \mathfrak{A} be a structure. We say that $C \subseteq A$ is an R^{+}-clique, or simply a clique, if C is a maximal set of elements such that for all distinct $a, b \in C$ we have $\mathfrak{A} \models a R^{+} b \wedge b R^{+} a$. In the other words an R^{+}-clique is a maximal strongly R-connected component in \mathfrak{A}. We show that we can restrict our attention to structures with cliques of a bounded size.

- Lemma 1. Let φ be a formula in $\forall_{T C}^{2}[1]$ and let $\mathfrak{A} \models \varphi$. Then there exists a model of φ such that the size of every R^{+}-clique in this model is bounded exponentially in $|\varphi|$.

Towards a proof of this lemma we first show how to replace a single R^{+}-clique C in \mathfrak{A} by its small counterpart C^{\prime}. In [14] the following lemma is proved.

- Lemma 2. Let φ be an FO^{2} formula and $\mathfrak{M} \models \varphi$ its strongly R-connected model (an R^{+}-clique). Then there exists a strongly R-connected model $\mathfrak{M}^{\prime} \models \varphi$ of size bounded exponentially in $|\varphi|$ such that $\boldsymbol{\alpha}[\mathfrak{M}]=\boldsymbol{\alpha}\left[\mathfrak{M}^{\prime}\right]$.

We apply the above lemma to \mathfrak{C} and $\psi=\varphi \wedge \psi^{c}$, where $\psi^{c}=\forall x y \bigwedge_{i}\left(K_{i}(x) \wedge K_{i}(y) \rightarrow x=y\right)$, obtaining a structure \mathfrak{C}^{\prime}. In particular \mathfrak{C}^{\prime} contains realizations of the same special predicates K_{i} as \mathfrak{C}, and each of them is realized at most once. It remains to connect \mathfrak{C}^{\prime} with $\mathfrak{A}\lceil A \backslash C$. For any $a \in A \backslash C$ and any $\alpha \in \boldsymbol{\alpha}[C]$, if there exists $b \in C$, of type α, such that $\mathfrak{A} \models a R b \vee b R a$ then we set $b^{\prime}=b$. Otherwise we choose an arbitrary element of type α in C as b^{\prime}. For every element $b^{\prime \prime} \in C^{\prime}$ of type α we set $\operatorname{tp}_{\mathfrak{A}^{\prime}}\left(a, b^{\prime \prime}\right)=\operatorname{tp}_{\mathfrak{A}}\left(a, b^{\prime}\right)$. Let us denote by \mathfrak{A}^{\prime} the structure so obtained. The proof of the following claim is omitted due to page limit.

- Claim 3. \mathfrak{A}^{\prime} is indeed a model of φ.

In the case of a finite model we apply the above step successively to all R^{+}-cliques, obtaining finally a model with small cliques. For the case of an infinite model, note that $\forall_{T C}^{2}[1]$ satisfies downward Löwenheim-Skolem property, so we may assume that the initial model is countable, and apply our procedure to all R^{+}-cliques in countably many steps. The desired model with small R^{+}-cliques is the natural limit of the described process. This finishes our proof of Lemma 1.

For a pair of distinct elements a, b we say that they are in free position in \mathfrak{A} if $\mathfrak{A} \models$ $\neg a R^{+} b \wedge \neg b R^{+} a$. A clique C_{1} is in free position with C_{2} if every element from C_{1} is in free position with every element of C_{2}.

2.4 Saturations

In our constructions it is sometimes convenient to have structures with many R-edges. Let \mathfrak{A} be a structure and let us build \mathfrak{A}^{\prime} by adding to \mathfrak{A} a number of R-edges, in the following way. If there is a pair of elements $a_{1}, a_{2} \in A$ such that $\mathfrak{A} \models a_{1} R a_{2} \wedge \neg a_{2} R^{+} a_{1}$ and a pair of elements $b_{1}, b_{2} \in A$, such that $\operatorname{tp}_{\mathfrak{A}}\left(a_{1}\right)=\operatorname{tp}_{\mathfrak{A}}\left(b_{1}\right), \operatorname{tp}_{\mathfrak{A}}\left(a_{2}\right)=\operatorname{tp}_{\mathfrak{A}}\left(b_{2}\right)$ and $\mathfrak{A} \models b_{1} R^{+} b_{2} \wedge \neg b_{1} R b_{2} \wedge \neg b_{2} R^{+} b_{1}$, then we modify the 2-type of b_{1}, b_{2} by setting $\operatorname{tp}_{\mathfrak{A}^{\prime}}\left(b_{1}, b_{2}\right)=$ $\operatorname{tp}_{\mathfrak{A}}\left(a_{1}, a_{2}\right)$. We repeat this step until no further modifications are possible. We call the obtained structure an R-saturation of \mathfrak{A}. A structure which is its own R-saturation is called R-saturated.

Note that the R-edges added in the above process do not change the R^{+}-relations among the elements. As all the modified 2 -types are realized in \mathfrak{A}, we have the following proposition.

- Proposition 4. Let φ be a $\forall_{T C}^{2}[1]$ formula and \mathfrak{A} its model. Then an R-saturation of \mathfrak{A} is an R-saturated model of φ.

3 An infinity axiom

To demonstrate the strength of the considered fragment we show in this section that there exists a $\forall_{T C}^{2}[1,3]$-formula $\eta=\forall x y \eta_{0}$ which is satisfiable but has only infinite models.

We define η_{0} as the conjunction of formulas (1)-(3) below.
(1) there exists a path from c_{1} to c_{2} and there are no R^{+}-loops.

$$
c_{1} R^{+} c_{2} \wedge \neg x R^{+} x
$$

Figure 1 An infinite model of η.
(2) P and Q are disjoint, every element in P has an R^{+}path to c_{3}, and every element in Q has an R^{+}-path to c_{2}.

$$
(P x \wedge Q x \rightarrow \perp) \wedge\left(P x \rightarrow x R^{+} c_{3}\right) \wedge\left(Q x \rightarrow x R^{+} c_{2}\right)
$$

(3) R-edges are allowed only between elements of specific types.

$$
x R y \rightarrow\left(\left(x=c_{1} \wedge P y\right) \vee(P x \wedge Q y) \vee(Q x \wedge P y) \vee\left(P x \wedge y=c_{2}\right) \vee\left(Q x \wedge y=c_{3}\right)\right)
$$

It is not hard to see that η is satisfied in the infinite model depicted in Fig.1. Also any model of η must embed an infinite chain of elements, on which predicates P and Q alternate.

4 A finite model property for formulas with two constants

Now we show that the presence of three constants in the previous section was essential.

- Lemma 5. Every satisfiable $\forall_{T C}^{2}[1,2]$-formula φ has a finite model of size bounded exponentially in $|\varphi|$.

Let $\mathfrak{A} \models \varphi$ be a model with cliques bounded exponentially in $|\varphi|$, as guaranteed by Lemma 1. By Proposition 4 we may assume that \mathfrak{A} is R-saturated. Let C_{1} be the clique containing c_{1}, and C_{2} be the clique containing c_{2}.

Note that if $C_{1}=C_{2}$ then $\mathfrak{A} \upharpoonright C_{1} \models \varphi$, and that if $\mathfrak{A} \models \neg c_{1} R^{+} c_{2} \wedge \neg c_{2} R^{+} c_{1}$ then $\mathfrak{A} \upharpoonright$ $C_{1} \cup C_{2} \models \varphi$. In both cases we have finite models of φ of exponentially bounded size.

Consider the case when $\mathfrak{A} \models c_{1} R^{+} c_{2} \wedge \neg c_{2} R^{+} c_{1}$ (the symmetric case can be treated analogously). Let us take a shortest path π from c_{1} to c_{2}. Let us write π as $c_{1}=$ $a_{11}, a_{12}, \ldots, a_{1 k_{1}}, a_{21}, a_{22}, \ldots, a_{2 k_{2}}, \ldots, a_{l 1}, a_{l 2}, \ldots, a_{l k_{l}}=c_{2}$, where for each i the path $a_{i 1}, \ldots, a_{i k_{i}}$ is the maximal fragment of π containing elements from the same clique. We denote by C_{i} the clique containing the elements $a_{i j}$. Observe that if π leaves a clique C_{i} then it never enters it again, i.e. if $1 \leq i<j \leq l$ then $C_{i} \neq C_{j}$.

We claim that $\mathfrak{A}^{\prime}=\mathfrak{A} \upharpoonright C_{1} \cup \ldots \cup C_{l}$ is a model of φ. Indeed, if two elements belong to the same clique in \mathfrak{A}^{\prime} then they also belong the same clique in \mathfrak{A}; if a pair of elements is connected non-symmetrically by R^{+}in \mathfrak{A}^{\prime} then they are also connected non-symmetrically by R^{+}in \mathfrak{A}; finally, there are no elements in free position in \mathfrak{A}^{\prime}. Thus all atomic 2-types realized in \mathfrak{A}^{\prime} are also realized in \mathfrak{A}, which implies that $\mathfrak{A}^{\prime} \models \varphi$. Note that taking whole cliques of elements from π to \mathfrak{A}^{\prime}, instead of considering just $\mathfrak{A} \upharpoonright \pi$, is important, as φ may require some elements to lie on an R-cycle.

We claim that the size of \mathfrak{A}^{\prime} is bounded exponentially in $|\varphi|$. This follows from the fact that for $1 \leq i<j \leq l$ we have $\operatorname{tp}\left(a_{i 1}\right) \neq \operatorname{tp}\left(a_{j 1}\right)$. Indeed, assume to the contrary that for some i, j we have that $\operatorname{tp}\left(a_{i 1}\right)=\operatorname{tp}\left(a_{j 1}\right)$. Then the path π^{\prime} obtained from π by removing the fragment $a_{i 1}, \ldots, a_{j-1, k_{j-1}}$ is a path from c_{1} to c_{2}, which is shorter than π. Note that π^{\prime} is indeed an R-path, since $\mathfrak{A} \models a_{i-1, k_{i-1}} R a_{i 1}$, and thus, by R-saturation of \mathfrak{A}, we have also $\mathfrak{A} \models a_{i-1, k_{i-1}} R a_{j 1}$. Thus the number of cliques in \mathfrak{A}^{\prime} is not greater than $|\boldsymbol{\alpha}|$, the size of every clique is bounded exponentially in $|\varphi|$, and thus also $\left|A^{\prime}\right|$ is bounded exponentially in $|\varphi|$.

This finishes the proof of Lemma 5. It naturally leads to the following complexity result.

- Theorem 6. The satisfiability problem for $\forall_{T C}^{2}[1,2]$ is decidable in NExpTime.

A corresponding lower bound can be obtained even in the absence of constants (assuming that we consider satisfiability in non-empty structures). The idea is similar to the proof of Theorem 5 from [7]. We construct a formula whose models are grids of exponential size. Instead of using two constants to distinguish the left-upper and the right-lower corners of the grid we say that every element is R-reachable from itself but not by a direct R-edge: $x R^{+} x \wedge \neg x R x$. We allow edges only between elements which are neighbors on a snake-like path through the whole grid. We allow also for an R-edge from the right-lower corner to the left-upper corner. Thus models are R-cycles which have to contain all elements of the grid.

- Theorem 7. The satisfiability problem for $\forall_{T C}^{2}[1,0]$ is NExpTime-hard.

5 Lower bound for formulas with four constants

Now we show that in the presence of four constants the lower bound for the satisfiability problem can be lifted to 2-ExpTime. To simplify the presentation we assume first that there are nine constants available, and then we present a trick which allows to get rid of five of them.

5.1 A construction involving nine constants

The proof goes by a reduction from alternating Turing machines with exponentially bounded space. The general idea of the proof and the shape of intended models are similar to the ones used in [9]. However, the lack of existential quantifiers makes the tasks of enforcing desired shapes of models and then simulating Turing machines more tricky.

Tree-like structures. To simulate a run of an alternating Turing machine it is convenient to have a structure which resembles an infinite binary tree, with each node being able to encode a single configuration, and identify its successor nodes. Let us describe how to enforce a desired structure.

We use unary predicates P_{0}, \ldots, P_{n-1} and assume that for any element a they encode a value $0 \leq \bar{P}(a)<2^{n}$ in a natural way, i.e. $P_{i}(a)$ is true exactly if the i th bit of the binary representation of $\bar{P}(a)$ is equal to 1 . Let us abbreviate by $\bar{P}(x)=\bar{P}(y), \bar{P}(x)=\bar{P}(y)+1$, $\bar{P}(x)=k$ (for $0 \leq k<2^{n}$) quantifier-free formulas with an obvious meaning. Such formulas can be constructed of size polynomial in n in a standard fashion.

We say that elements $a_{0}, \ldots, a_{2^{n}-1}$ form a node in a structure \mathfrak{A} if $\bar{P}\left(a_{i}\right)=i$ and $\mathfrak{A} \models a_{i-1} R a_{i}$ for $0<i<2^{n}$. The purpose of a node will be to encode information about a single configuration of a Turing machine. We use unary predicates H_{i}^{d} for $0 \leq i<4$, $d \in\{L, R\}$ to distinguish eight types of nodes. An additional predicate H^{I} serves for distinguishing an initial node.

Figure 2 An initial fragment of the structure \mathfrak{T} from the proof of the lower bound.

Let \mathfrak{T} be the structure depicted in Fig. 2. It is drawn in a way suggesting its similarity to a binary tree, note however that actually this structure is shallow: every R-path has length not greater than $2^{n}+2$.

- Claim 8. There exists a formula λ such that:
(a) $\mathfrak{T} \models \lambda$
(b) any model $\mathfrak{A} \models \lambda$ locally resembles \mathfrak{T}, i.e. there exists a node of type H_{0}^{L} satisfying H^{I}, and for every node $a_{0}, \ldots, a_{2^{n}-1}$ of type H_{i}^{d} there exists a left successor node $a_{0}^{L}, \ldots, a_{2^{n}-1}^{L}$ of type $H_{i+1 \bmod 4}^{L}$ and a right successor node $a_{0}^{R}, \ldots, a_{2^{n}-1}^{R}$ of type $H_{i+1 \bmod 4}^{R}$ such that if i is even then $\mathfrak{A} \models a_{2^{n}-1} R a_{0}^{L} \wedge a_{2^{n}-1} R a_{0}^{R}$ and if i is odd then $\mathfrak{A} \models a_{2^{n}-1}^{L} R a_{0} \wedge a_{2^{n}-1}^{R} R a_{0}$.

We construct λ from five conjuncts. Conjuncts (1) and (2) say that for some elements there are paths from or to some constants. Conjuncts (3)-(5) say that R-edges are allowed only between elements of specific 1-types (actually only such types whose realizations are connected by an R-edge in \mathfrak{T}). Below we describe these conjuncts in more details.
(1) there is an R-path from c^{I} to c_{1}^{L}.
(2) every element satisfying H_{0}^{L} or H_{0}^{R} can reach (by some R^{+}-paths) elements c_{1}^{L} and c_{1}^{R}; every element satisfying H_{2}^{L} or H_{2}^{R} can reach elements c_{3}^{L} and c_{3}^{R}; every element satisfying H_{1}^{L} or H_{1}^{R} can be reached from elements c_{2}^{L} and c_{2}^{R}; every element satisfying H_{3}^{L} or H_{3}^{R} can be reached from elements c_{0}^{L} and c_{0}^{R}.
(3) (edges incident to constants) for $i \in\{0,2\}$ and $d \in\{L, R\}$ element c_{i}^{d} has no incoming R-edges, and has outgoing R-edges only to elements a such that $\bar{P}(a)=0$ and $H_{i}^{d}(a)$ holds; for $i \in\{1,3\}$ and $d \in\{L, R\}$ element c_{i}^{d} has no outgoing R-edges, and has incoming R-edges only from elements a such that $\bar{P}(a)=2^{n}-1$ and $H_{i}^{d}(a)$ holds; c^{I} has no incoming R-edges and has outgoing R-edges only to elements a such that $\bar{P}(a)=0$ and $H_{0}^{L}(a) \wedge H^{I}(a)$ holds.
(4) (edges inside nodes) if an element a satisfies $\bar{P}(a)<2^{n}-1 \wedge H_{i}^{d}(a)$ than it has outgoing edges only to elements b satisfying $H_{i}^{d}(b)$ such that $\bar{P}(b)=\bar{P}(a)+1$ and $H^{I}(a) \leftrightarrow H^{I}(b)$;
if an element a satisfies $\bar{P}(a)>0 \wedge H_{i}^{d}(a)$ than it has incoming edges only from elements b satisfying $H_{i}^{d}(b)$ such that $\bar{P}(a)=\bar{P}(b)+1$ and $H^{I}(a) \leftrightarrow H^{I}(b)$;
(5) (edges among nodes) an element a such that $\bar{P}(a)=2^{n}-1$ and $H_{i}^{d}(a)$ for $i \in\{0,2\}$ hold has incoming edges only from elements in H_{i}^{d}, and has outgoing edges only to elements b such that $\bar{P}(b)=0$ and $H_{i+1}^{L}(b) \vee H_{i+1}^{R}(b) \vee H_{i-1 \bmod 4}^{L}(b) \vee H_{i-1 \bmod 4}^{R}(b)$; an element a such that $\bar{P}(a)=0$ and $H_{i}^{d}(a)$ for $i \in\{1,3\}$ hold has an outgoing edges only from elements in H_{i}^{d}, and has incoming edges only from elements b such that $\bar{P}(b)=2^{n}-1$ and $H_{i+1 \bmod 4}^{L}(b) \vee H_{i+1}^{R} \bmod 4^{L}(b) \vee H_{i-1}^{L}(b) \vee H_{i-1}^{R}(b)$.

Clearly $\mathfrak{T} \models \lambda$. Consider an arbitrary model $\mathfrak{A} \models \lambda$. By (1) there must be a path from C^{I} to c_{1}^{L}. By (3) this path must begin with an edge to an element a_{0} such that $\mathfrak{A} \models \bar{P}\left(a_{0}\right)=0 \wedge H^{I}\left(a_{0}\right) \wedge H_{0}^{L}\left(a_{0}\right)$. Then, by (4) this path must go through a whole node of type H_{0}^{L}, satisfying also H^{I}. The last element of this node must have by (2) a path to c_{1}^{L} and a path to c_{1}^{R}. By (5) the first of this paths must go through an element a_{1}^{L} satisfying $\mathfrak{A} \models \bar{P}\left(a_{1}^{L}\right)=0 \wedge H_{1}^{L}\left(a_{1}^{L}\right)$, and the other through an element a_{1}^{R} satisfying $\mathfrak{A} \models \bar{P}\left(a_{1}^{R}\right)=0 \wedge H_{1}^{R}\left(a_{1}^{R}\right)$. Both paths must then go through whole nodes of appropriate types. Elements a_{1}^{L} and a_{1}^{R} must have by (2) paths from c_{2}^{L} and c_{2}^{R}, which again have to go through whole nodes of types H_{2}^{L} and H_{2}^{R}. This reasoning can be generalized to an inductive argument that part (b) of Claim 8 holds.
Simulating alternating Turing machines. A well-known theorem from [1] says that 2-ExpTime is equal to AExpSpace, the class of problems solvable by alternating Turing machines in exponentially bounded space.

For a given alternating machine M and its input w we can construct a formula κ_{w}^{M} which is satisfiable iff M accepts w. We define κ_{w}^{M} as the conjunction of λ and some formulas encoding computations of M. Every element of a model of λ corresponds to single tape cell of M, and stores information about this cell, as well as about the two neighboring cells. Thus, formulas of the form $\left(x R^{+} y \wedge \bar{P}(x)=\bar{P}(y) \wedge H_{i}^{d}(x) \wedge H_{i+1 \bmod 4}^{d}(y)\right) \rightarrow \ldots$ can be used to say that two consecutive nodes of a model describe two consecutive configurations of M. Details are omitted due to space limit.

5.2 Four constants suffice

The following lemma will be used to reduce the number of constants required in the proof of 2-ExpTime-hardness from nine to four. Actually, it has a stronger statement and allows to reduce satisfiability of $\forall_{T C}^{2}[1, n]$ and even $\forall_{T C}^{2}[1]$ in polynomial time to satisfiability of $\forall_{T C}^{2}[1,4]$, assuming that we consider only structures in which relation R^{+}restricted to constants is a partial order.

- Lemma 9. For each n and each $\forall_{T C}^{2}[1, n]$ sentence φ there is a polynomially computable $\forall_{T C}^{2}[1,4]$ formula φ^{\prime} such that φ^{\prime} has a model if and only if φ has a model in which for all $i<j$ there is no R-path from c_{j} to c_{i}.

We sketch the main idea of the proof. Assume that constants c_{1}, \ldots, c_{4} are available. We simulate n additional constants by n fresh unary predicates S_{1}, \ldots, S_{n}. We use also auxiliary unary predicates $P_{1}, \ldots, P_{n}, Q_{1}, \ldots, Q_{n}$. We say that each of the predicates S_{i}, P_{i}, Q_{i} is satisfied in at most one element. We want to enforce that each of S_{i} is satisfied at least once, and for $i<j$, each pair of realizations of S_{i}, S_{j} may appear either in free position or may be connected by an R^{+}path from the one satisfying S_{i} to the one satisfying S_{j}. To do so we enforce first the upper and the lower horizontal chains of elements from Fig. 3. Then we say that the element satisfying P_{i} has an R-path to the element satisfying

Figure 3 A model of ψ.
Q_{i}. By an appropriate restriction of 2-types containing R we can enforce that these paths go through elements satisfying S_{i}. We guarantee that all S_{i} are realized, by saying that there are no R-paths from P_{i} to Q_{j} for $i>j$. Here the assumption from the statement of the lemma, about admissible R^{+}-connections among constants is relevant. Details of the proof of Lemma 9 are omitted due to space limit.

We are now ready to formulate the following theorem.

- Theorem 10. The satisfiability problem for $\forall_{T C}^{2}[1,4]$ is 2-ExpTime-hard.

Proof. We define λ^{*} by renaming the constants in λ in the following way: $c^{I} \rightarrow c_{1}, c_{2}^{L} \rightarrow c_{2}$, $c_{2}^{R} \rightarrow c_{3}, c_{4}^{L} \rightarrow c_{4}, c_{4}^{R} \rightarrow c_{5}, c_{1}^{L} \rightarrow c_{6}, c_{1}^{R} \rightarrow c_{7}, c_{3}^{L} \rightarrow c_{8}, c_{3}^{R} \rightarrow c_{9}$. Clearly, renaming the constants does not change the properties of formulas. Moreover, λ^{*} guarantees that $c_{1}-c_{5}$ have no incoming edges and $c_{6}-c_{9}$ have no outgoing edges, and therefore in any model of λ^{*} there are no paths from c_{j} to c_{i} for any $i<j$. We apply Lemma 9 to λ^{*} obtaining λ^{\prime}. We can now replace λ by λ^{\prime} when constructing κ_{w}^{M} from the previous subsection.

6 Decidability of formulas with an unbounded number of constants

In this section we show that the satisfiability problem for $\forall_{T C}^{2}[1]$ is decidable. We use a standard approach which consists in an analysis of arbitrary models and rebuilding them to obtain a shape which admits descriptions of a bounded size. In this case we show that every formula has a model which can be divided into at most doubly exponentially many fragments, called zones, each of which is either a clique or an infinite, regular chain of cliques.

6.1 Clique types

Let \mathfrak{A} be a structure. We say that a clique C has a clique type $\delta=(\mathcal{C}, \mathcal{A}, \mathcal{B})$ in \mathfrak{A}, if \mathcal{C} is the set of atomic 1-types realized in C, \mathcal{A} is the set of atomic 1-types of the elements located above C, i.e. the elements b such that for all $a \in C$ we have $\mathfrak{A} \models b R^{+} a \wedge \neg a R^{+} a$, and \mathcal{B} is the set of atomic 1-types of the elements located below C, i.e. the elements b such that for all $a \in C$ we have $\mathfrak{A} \models a R^{+} b \wedge \neg b R^{+} a$. We denote by $\Delta[\mathfrak{A}]$ the set of all clique types realized in \mathfrak{A}. Note that $|\Delta[\mathfrak{A}]|$ is bounded doubly exponentially in the signature.

6.2 Zones

For a pair of cliques C_{1}, C_{2} we write $C_{1} \leq_{c} C_{2}$ if $C_{1}=C_{2}$ or for all $a_{1} \in C_{1}, a_{2} \in C_{2}$ we have $a_{1} R^{+} a_{2}$. Relation \leq_{c} naturally induces a relation \leq_{δ} on clique types. We define:
$\delta_{1} \leq_{\delta} \delta_{2}$ iff there exist cliques $C_{1}, C_{2} \subseteq A, C_{i}$ of type δ_{i}, such that $C_{1} \leq_{c} C_{2}$. Let \leq_{δ}^{*} be the transitive closure of \leq_{δ}. Let $\delta_{1} \approx \delta_{2}$ iff $\delta_{1} \leq^{*} \delta_{2}$ and $\delta_{2} \leq^{*} \delta_{1}$. Clearly, \approx is an equivalence relation over $\Delta[\mathfrak{A}]$. The set of elements of \mathfrak{A}, belonging to the cliques realizing the extended types from the same equivalence class of \approx, is called a zone. Note that the number of zones of \mathfrak{A} is bounded doubly exponentially in the signature.

We say that a zone V is singular if every R^{+}-connection inside V is symmetric. A few simple properties of zones, having straightforward proofs, are collected below.

- Proposition 11. (i) Let $\delta_{1}=\left(\mathcal{C}_{1}, \mathcal{A}_{1}, \mathcal{B}_{1}\right)$ and $\delta_{2}=\left(\mathcal{C}_{2}, \mathcal{A}_{2}, \mathcal{B}_{2}\right)$ be two clique types realized in a zone V. Then $\mathcal{A}_{1}=\mathcal{A}_{2}$ and $\mathcal{B}_{1}=\mathcal{B}_{2}$.
(ii) If a zone V is singular then V contains only realizations of a single clique type.
(iii) Let $\delta=(\mathcal{C}, \mathcal{A}, \mathcal{B})$ be a clique type realized in a non-singular zone V. Then for every $\alpha \in \mathcal{C}$ we have $\alpha \in \mathcal{A}$ and $\alpha \in \mathcal{B}$.
(iv) Let α_{1} and α_{2} be atomic types realized in a non-singular zone V. Then there exists a pair of elements a_{1}, a_{2} in \mathfrak{A} (but not necessarily in \mathfrak{V}) such that $\operatorname{tp}\left(a_{1}\right)=\alpha_{1}, \operatorname{tp}\left(a_{2}\right)=\alpha_{2}$, and $\mathfrak{A} \models a_{1} R^{+} a_{2} \wedge \neg a_{2} R^{+} a_{1}$.
(v) Let π be a path connecting two elements belonging to a non-singular zone V. Then every element a on π belongs to V.

6.3 Making zones regular

Let V be a zone in a structure \mathfrak{A}. We show how to replace \mathfrak{V} by a zone \mathfrak{V}^{\prime} being either a single clique or an infinite, regular chain of cliques, in such a way that the resulting structure \mathfrak{A}^{\prime} satisfies all $\forall_{T C}^{2}[1]$ formulas satisfied in \mathfrak{A}.

Building a singular zone. If V is singular then it consists of some number of cliques in free position, and, by Proposition 11 (ii), all of them have the same clique type δ. In this case \mathfrak{V}^{\prime} is a single realization of δ.

Building a non-singular zone. Consider a non-singular zone V. By Proposition 11 (i) there are \mathcal{A}, \mathcal{B} such that every clique type realized in \mathfrak{V} has the form $(\mathcal{C}, \mathcal{A}, \mathcal{B})$ for some set \mathcal{C}. The construction of a regular version of a \mathfrak{V} relies on the following proposition.

- Proposition 12. There exists a sequence of (not necessarily distinct) clique types $\delta_{0}, \ldots, \delta_{l-1}$, where $\delta_{i}=\left(\mathcal{C}_{i}, \mathcal{A}, \mathcal{B}\right)$, and atomic types $\alpha_{0}^{i n}, \alpha_{0}^{\text {out }}, \ldots, \alpha_{l-1}^{i n}, \alpha_{l-1}^{\text {out }}$ such that:
(a) l is bounded exponentially in the size of the signature,
(b) for every $\alpha \in \boldsymbol{\alpha}[V]$ there exists i such that $\alpha \in \mathcal{C}_{i}$,
(c) for every i, δ_{i} is a clique type of a clique in \mathfrak{V},
(d) for every i we have $\alpha_{i}^{\text {in }}, \alpha_{i}^{\text {out }} \in \mathcal{C}_{i}$,
(e) for every i there exists in \mathfrak{A} a realization a of $\alpha_{i}^{\text {out }}$ and a realization b of $\alpha_{i+1}^{i n} \bmod l$ such that $\mathfrak{A} \models a R b \wedge \neg b R^{+} a$.

Proof. Let $\delta_{0}^{\prime}, \ldots, \delta_{s-1}^{\prime}$ be an enumeration of all clique types from $\Delta[\mathfrak{V}]$. By the definition of a zone and the relation \leq_{δ} there is a \leq_{δ}-path from δ_{i}^{\prime} to $\delta_{i+1 \bmod s}^{\prime}$, for every $0 \leq i<s$. By concatenating such paths we obtain a sequence $\delta_{0}, \ldots, \delta_{t-1}$ meeting conditions (b)-(e) (assuming a natural choice of $\alpha_{i}^{i n}$ and $\alpha_{i}^{\text {out }}$). In this path we choose for every $\alpha \in \boldsymbol{\alpha}[\mathfrak{V}]$ a clique type $\delta_{\alpha}=\left(\mathcal{C}_{\alpha}, \mathcal{A}_{\alpha}, \mathcal{B}_{\alpha}\right)$ such that $\alpha \in \mathcal{C}_{\alpha}$. Observe that if $\alpha_{i}^{i n}=\alpha_{j}^{\text {in }}$ for some $0 \leq i<j<t$ such that $\delta_{i}, \ldots, \delta_{j-1}$ does not contain any δ_{α} then we can remove $\delta_{i}, \ldots, \delta_{j-1}$ from the sequence without violating conditions (b)-(e). This observation allows to easily shorten the sequence to a required length.

Let $\delta_{0}, \ldots, \delta_{l-1}$ be a sequence of clique types guaranteed by Proposition 12. We construct \mathfrak{V}^{\prime} as an infinite chain of cliques $\ldots C_{-2}, C_{-1}, C_{0}, C_{1}, C_{2}, \ldots$ such that the clique C_{i} has type $\delta_{i \bmod l}$. For every pair $\alpha_{1}, \alpha_{2} \in \boldsymbol{\alpha}[V]$ we choose a 2-type $\beta_{1 \rightarrow 2} \models x R^{+} y \wedge \neg y R^{+} x \wedge \alpha_{1}(x) \wedge$ $\alpha_{2}(y)$ realized in \mathfrak{A}. An appropriate $\beta_{1 \rightarrow 2}$ exists in $\boldsymbol{\beta}[\mathfrak{A}]$ by Proposition 11 (iv). If it is possible we choose $\beta_{1 \rightarrow 2}$ containing $x R y$. For all $a_{1} \in C_{i}, a_{2} \in C_{j}, i<j$, such that $\operatorname{tp}\left(a_{1}\right)=\alpha_{1}, \operatorname{tp}\left(a_{2}\right)=\alpha_{2}$ we set $\operatorname{tp}\left(a_{1}, a_{2}\right):=\beta_{1 \rightarrow 2}$. This finishes the construction of \mathfrak{V}^{\prime}. Note that by our choice of atomic 2-types and condition (e) from Proposition 12, we have that for all $i<j$ there exists an R-path from each element of C_{i} to each element of C_{j}.

Connecting a rebuilt zone to the remaining part of the model. Consider an element $a \in A \backslash V$. Let $\alpha=\operatorname{tp}_{\mathfrak{A}}(a)$. We distinguish three cases.

Case 1: In \mathfrak{A} element a is in free position with all elements in V. For any 1-type $\alpha^{\prime} \in \boldsymbol{\alpha}\left[\mathfrak{V}^{\prime}\right]$ we find an element $b \in V$ of type α^{\prime} (such an element exists as our construction ensures that $\left.\boldsymbol{\alpha}\left[\mathfrak{V}^{\prime}\right]=\boldsymbol{\alpha}[\mathfrak{V}]\right)$, and for any $b^{\prime} \in V^{\prime}$ of type α^{\prime} we set $\operatorname{tp}_{\mathfrak{A}^{\prime}}\left(a, b^{\prime}\right)=\operatorname{tp}_{\mathfrak{A}}(a, b)$. Clearly this ensures that a is in free position with all elements from V^{\prime}.
Case 2: In \mathfrak{A} there is an R-path from a to an element of V. For any 1-type $\alpha^{\prime} \in \boldsymbol{\alpha}[V]$:

- if there exists a realization $b \in V$ of α^{\prime} such that $\mathfrak{A} \models a R b$ then for all $b^{\prime} \in V^{\prime}$ of type α^{\prime} we set $\operatorname{tp}_{\mathfrak{A}^{\prime}}\left(a, b^{\prime}\right)=\operatorname{tp}_{\mathfrak{A}^{\prime}}(a, b)$.
- otherwise find a realization $b \in A$ of α^{\prime} such that $\mathfrak{A} \models a R^{+} b$ and for all $b^{\prime} \in V^{\prime}$ of type α^{\prime} we set $\operatorname{tp}_{\mathfrak{A}^{\prime}}\left(a, b^{\prime}\right)=\operatorname{tp}_{\mathfrak{A}}(a, b)$. Note that in this subcase the existence of an appropriate b is guaranteed by the properties of relation \leq_{δ}, but sometimes we need to look for it outside V.
Note that in this case element a has an R-path in \mathfrak{A}^{\prime} to every element from V^{\prime}. Indeed, on a path from a to an element of V there must be an element, say b, which has an R-edge to a point from V. This element b will be made R^{+}-connected to all elements from V; in particular, if V is non-singular it will have R-edges to infinitely many elements of V.

Case 3: In \mathfrak{A} there is an R-path from an element of V to a. Proceed analogously to Case 2.
Modifying the remaining part of the model. To complete the construction of \mathfrak{A}^{\prime} consider a pair of elements $a_{1}, a_{2} \in A \backslash V$. If $\mathfrak{A} \models a_{1} R^{+} b \wedge b^{\prime} R^{+} a_{2}$ (or symmetrically $\left.\mathfrak{A} \models a_{2} R^{+} b \wedge b^{\prime} R^{+} a_{1}\right)$ for some elements $b, b^{\prime} \in V$ then a_{1} becomes R^{+}-connected to a_{2} in \mathfrak{A}^{\prime}, even if they are not connected in \mathfrak{A}. Note that in this case $a_{1} \in \mathcal{A}$ and $a_{2} \in \mathcal{B}$. This means that there is a pair of realizations $a_{1}^{\prime}, a_{2}^{\prime}$ of $\operatorname{tp}\left(a_{1}\right)$ and $\operatorname{tp}\left(a_{2}\right)$ in \mathfrak{A} such that $\mathfrak{A} \models a_{1}^{\prime} R^{+} a_{2}^{\prime}$. We set in this case $\operatorname{tp}_{\mathfrak{A}^{\prime}}\left(a_{1}, a_{2}\right)=\operatorname{tp}_{\mathfrak{A}}\left(a_{1}^{\prime}, a_{2}^{\prime}\right)$ (and proceed analogously in the symmetric case). In the opposite case there is no R^{+}-path in \mathfrak{A}^{\prime} between a_{1} and a_{2} and we can safely set $\operatorname{tp}_{\mathfrak{A}^{\prime}}\left(a_{1}, a_{2}\right)=\operatorname{tp}_{\mathfrak{A}}\left(a_{1}, a_{2}\right)$.

- Proposition 13. Let \mathfrak{A} be a model of an $\forall_{T C}^{2}[1]$ formula φ. Then there exists a model $\mathfrak{A}^{\prime} \models \varphi$ in which all zones are either single cliques or infinite, regular chains of cliques, with regular connections among zones.

Proof. We simply repeat the described procedure successively to all zones, obtaining finally a model of a desired shape.

6.4 Decidability procedure

A structure of a shape as in Proposition 13 can be described in a natural way. Such a description contains for every zone a sequence of clique types guaranteed by Proposition 12, patterns of connections among them, and for every pair of zones a pattern of connection between every clique type from the first zone and every clique type from the second zone.

To check if a given formula φ in $\forall_{T C}^{2}[1]$ has a model we guess such a description of a regular model. Verifying that a guessed description indeed produces a model of φ is easy and can be done in polynomial time with respect to its size. As the number of zones is bounded doubly exponentially in the size of the signature, and thus also in $|\varphi|$, the whole description of a regular structure is also bounded doubly exponentially. Thus we obtain:

- Theorem 14. The satisfiability problem for $\forall_{T C}^{2}[1]$ is decidable in 2-NExpTime.

7 NExpTime-upper bound for formulas with three constants

In this section we show that $\forall_{T C}^{2}[1,3]$, even though it lacks a finite model property, is still decidable in NExpTime. For a given structure \mathfrak{A} we say that a sequence V_{1}, \ldots, V_{k} of zones is a path of zones if for each i there exist $v_{i} \in V_{i}, v_{i+1} \in V_{i+1}$ such that $\mathfrak{A} \models v_{i} R v_{i+1}$. Note that in this case, in models guaranteed by Proposition 13 a path from each element of V_{i} to each element of V_{j} exists for $i<j$.

- Definition 15. Let \mathfrak{A} be a model with regular zones as in Proposition 13. We say that \mathfrak{A} is downward fork-like if it consists of four zones V_{0}, \ldots, V_{3}, containing all constants, and some number of zones forming a path from V_{1} to V_{0}, a path from V_{0} to V_{2}, and a path from V_{0} to V_{3}. Similarly \mathfrak{A} is upward fork-like if it consists of four zones V_{0}, \ldots, V_{3}, containing all constants, and some number of zones forming a path from V_{0} to V_{1}, a path from V_{2} to V_{0}, and a path from V_{3} to V_{0}. A structure is fork-like if it is downward or upward fork-like. Zone V_{0} is called a splitting zone of the structure. We start from the following observation.
- Lemma 16. If an $\forall_{T C}^{2}[1,3]$ formula φ has a fork-like model \mathfrak{A} then it has a fork-like model in which the number of zones is bounded exponentially in $|\varphi|$.

Proof. We show a proof for the case in which \mathfrak{A} is downward fork-like. The case of an upward fork-like structure is analogous. Let \mathfrak{A}^{\prime} be the R-saturation of \mathfrak{A}. Note that R-saturation does not change the division into cliques and zones. Let V_{0}, \ldots, V_{3} be as in Definition 15. Let π_{10} be some shortest path of zones from V_{1} to V_{0}, π_{02} a shortest path of zones from V_{0} to V_{2} and π_{03} a shortest paths of zones from V_{0} to V_{3}. Note that $\mathfrak{A}^{\prime \prime}=\mathfrak{A}^{\prime} \uparrow \pi_{10} \cup \pi_{02} \cup \pi_{03}$ is still a model of φ. By R-saturation of \mathfrak{A}^{\prime} and an argument similar to the one used in the proof of Lemma 5 the number of zones in $\mathfrak{A}^{\prime \prime}$ is bounded exponentially in the size of φ.

Our plan is to show that every satisfiable formula φ in $\forall_{T C}^{2}[1,3]$ has either a finite, exponentially bounded model, or a fork-like model.

Let $\mathfrak{A} \models \varphi$ be a regular model guaranteed by Proposition 13 . Let c_{1}, c_{2}, c_{3} be the elements satisfying K_{1}, K_{2}, K_{3}, resp.

Simple cases.

- If two of c_{1}, c_{2}, c_{3} belong to the same zone, then they belong to the same clique. In this case we may construct a finite model as in Section 4.
- If one of the constants, say c_{3} is in free position with both the remaining constants, then we construct a model consisting of the cliques of c_{1} and c_{2}, a path between them, if such a path exists, and the clique of c_{3}. The path between c_{1} and c_{2} can be then shortened to an exponential length as in Section 4.
- If there exists a path from one of the constants to another, containing the third one then again we may use the construction from Section 4 to obtain a path of exponential size.

Figure 4 Fork-like structures \mathfrak{A}_{0} and \mathfrak{A}_{1} from the proof.

As demonstrated, in each of the above cases there exists a finite, exponentially bounded model of φ.
Fork-like case. A more interesting case is when the constants belong to three distinct zones, two of them, say c_{1}, c_{2} are in free position, and the third one, c_{3}, can reach both c_{1} and c_{2} by R-paths, or, symmetrically, can be reached from both c_{1} and c_{2} by R-paths. Assume, e.g., that $\mathfrak{A} \models c_{1} R^{+} c_{2} \wedge c_{1} R^{+} c_{3} \wedge \neg c_{2} R^{+} c_{3} \wedge \neg c_{3} R^{+} c_{2}$. Let V_{1}, V_{2}, V_{3} be the zones of c_{1}, c_{2}, resp. c_{3}. Let π_{12} be a path of zones $V_{1}, W_{1}^{1}, \ldots, W_{k_{1}}^{1}, U_{0}, W_{1}^{2}, \ldots, W_{k_{2}}^{2}, V_{2}$ from V_{1} to V_{2}, with U_{0} being a zone from which a path to V_{3} exists. Let π_{03} be a path of zones $U_{0}, W_{1}^{3}, W_{2}^{3}, \ldots W_{k_{3}}^{3}, V_{3}$, from U_{0} to V_{3}. See Fig. 4(a).

Note that $\mathfrak{A}_{0} \mid \pi_{12} \cup \pi_{03}$ is a downward fork-like structure, splitting at zone U_{0}. Observe also that in \mathfrak{A}_{0} the formula φ cannot be violated by a pair of elements, such that one of them belongs to the fragment V_{1}, \ldots, U_{0} of π_{12}. However, it is not necessarily the case that $\mathfrak{A}_{0} \models \varphi$, as some elements belonging to zones located below U_{0} may be required to be connected by R-paths. Assume e.g. that an element from W_{i}^{3} is connected in \mathfrak{A} to an element in W_{j}^{2}. Let $W_{i}^{3}, W_{1}^{4}, \ldots, W_{k_{4}}^{4}, W_{j}^{2}$ be a path of zones. Observe now that the structure \mathfrak{A}^{\prime} consisting of the path of zones $V_{1}, W_{1}^{1}, \ldots, W_{k_{1}}^{1}, U_{0}, W_{1}^{3}, \ldots, W_{i-1}^{3}, W_{i}^{3}, W_{1}^{4}$, $\ldots, W_{k_{4}}^{4}, W_{j}^{2}, W_{j+1}^{2}, \ldots, W_{k_{2}}^{2}, V_{2}$, and the path $W_{i+1}^{3}, \ldots, W_{k_{3}}^{3}, V_{3}$ is a downward fork-like structure splitting at zone W_{i}^{3}. Denote $U_{1}=W_{i}^{3}$, and observe that U_{1} is located below U_{0}. See Fig. 4(b). If \mathfrak{A}_{1} is still not a model of φ we repeat the above step obtaining a fork-like structure \mathfrak{A}_{2}, splitting at U_{2}, such that U_{2} is located below U_{1}, and so on. Thus a descending sequence of zones U_{0}, U_{1}, \ldots is formed, and as the number of zones is finite this process must eventually end in a structure which is a model of φ.

The described construction, together with Lemma 16 allows us to state:

- Theorem 17. The satisfiability problem for $\forall_{T C}^{2}[1,3]$ is in NExPTime.

8 Related undecidability results

To complete the picture we observe that the decidable fragment we have identified is very close to the border between decidability and undecidability. Namely, we show that adding a third variable or the transitive closure of a second binary symbol lead to undecidability.

- Theorem 18. The satisfiability and the finite satisfiability problems for $\forall_{T C}^{3}[1]$ and $\forall_{T C}^{2}[2]$ are undecidable.

The proof for $\forall_{T C}^{3}[1]$ can be obtained by a slight refinement of the proof of Corollary 9 from [7], which states that $\forall_{T C}^{4}[1]$ is undecidable. In that proof a snake-like path from the upper-left corner to the lower-right corner of the grid is enforced. Additional R-edges, necessary to define vertical adjacency relation, are enforced by a completing squares formula with four variables. If we allow for additional diagonal R-edges then this formula can be replaced by a completing triangles formula with three variables. We also remark that this proof requires only a single constant: to mark the upper-left corner of the grid. We require this constant to lie on a cycle and accept an incoming edge only from the opposite corner of the grid.

The proof for $\forall_{T C}^{2}[2]$ can be obtained by an adaptation of the proof of the undecidability of FO^{2} with two transitive relations from [10]. This adaptation uses similar ideas to the proof of the 2-ExpTime-lower bound for $\forall_{T C}^{2}[1,4]$ from Section 5: appropriate neighbors of elements of the grid, which in the proof from [10] are enforced explicitly by formulas with existential quantifiers in our case can be enforced by requiring that some elements have paths to or from some constants, and by appropriate restriction of of 1-types which may be related by R-edges.

9 Conclusions

We have identified an interesting decidable fragment of two-variable logic with transitive closure operator, $\forall_{T C}^{2}[1]$. This fragment, even though does not allow explicitly for existential quantifiers, is sufficiently strong to admit infinity axioms and encodings of alternating Turing machines with exponentially bounded space.

Regarding the influence of the number of constants k on the finite model property and the complexity of $\forall_{T C}^{2}[1, k]$ we have drawn the following picture.

In fact, our construction of a regular model \mathfrak{A}^{\prime} of φ from its arbitrary model \mathfrak{A} retains more properties than those expressible in $\forall_{T C}^{2}[1]$. In particular \mathfrak{A}^{\prime} realizes only clique types realized in \mathfrak{A}. Thus we may add for free to our language existential statements of the form $\forall x\left(\chi_{1}(x) \rightarrow \exists y\left(x R^{+} y \wedge \chi_{2}(y)\right)\right)$ or $\forall x\left(\chi_{1}(x) \rightarrow \exists y\left(y R^{+} x \wedge \chi_{2}(y)\right)\right)$, with χ_{1}, χ_{2} quantifier-free.

Without major difficulties it is possible to extend our construction even to a more expressive logic, namely to the fragment of FO^{2} with the transitive closure of relation R, with the only restriction that existential subformulas are of the form $\exists y\left(x R^{+} y \wedge \psi(x, y)\right)$, $\exists y\left(y R^{+} x \wedge \psi(x, y)\right)$ (or formulas obtained by switching the role of x and y). In other words, existential quantifiers are guarded by atomic predicates built from R^{+}.

An important open question arises:

- Open Question 1. Is the whole two-variable fragment of first-order logic, FO^{2}, decidable when extended by transitive closure of a fixed binary relation?

In a recent paper [17] it is shown that FO^{2} is decidable with one transitive relation. We believe that combining the techniques from that paper with some ideas from our paper may lead to a positive answer to the given open question.

We also leave two open question regarding $\forall_{T C}^{2}[1]$:

- Open Question 2. What is the exact complexity of the satisfiability problem for $\forall_{T C}^{2}[1]$?
- Open Question 3. Is the finite satisfiability problem for $\forall_{T C}^{2}[1]$ decidable?

References

1 A. K. Chandra, D. Kozen, and L. J. Stockmeyer. Alternation. Journal of the ACM, 28(1):114-133, 1981.
2 W. Charatonik and P. Witkowski. On the complexity of the Bernays-Schönfinkel class with datalog. In LPAR, volume 6397 of $L N C S$, pages 187-201, 2010.
3 M. J. Fisher and R. E. Ladner. Propositional dynamic logic of regular programs. Journal of Computer and System Sciences, 18(2):194-211, 1979.
4 Martin Fürer. The computational complexity of the unconstrained limited domino problem (with implications for logical decision problems). In Logic and Machines, volume 171 of LNCS, pages 312-319, 1983.
5 E. Grädel, P. Kolaitis, and M. Vardi. On the decision problem for two-variable first-order logic. Bulletin of Symbolic Logic, 3(1):53-69, 1997.
6 E. Grädel, M. Otto, and E. Rosen. Undecidability results on two-variable logic. In STACS, volume 1200 of LNCS, pages 249-260, 1997.
7 N. Immerman, A. Moshe Rabinovich, T. W. Reps, S. Sagiv, and G. Yorsh. The boundary between decidability and undecidability for transitive-closure logics. In CSL, volume 3210 of $L N C S$, pages 160-174, 2004.
8 A.S. Kahr, E.F. Moore, and H. Wang. Entscheidungsproblem reduced to the $\forall \exists \forall$ case. 1962.

9 E. Kieroński. The two-variable guarded fragment with transitive guards is 2ExpTime-Hard. In Proc. Foundations of Software Science and Computational Structures, 6th International Conference, FOSSACS, volume 2620 of LNCS, pages 299-312, 2003.
10 E. Kieronski. Results on the guarded fragment with equivalence or transitive relations. In CSL, volume 3634 of LNCS, pages 309-324, 2005.
11 E. Kieroński, J. Michaliszyn, I. Pratt-Hartmann, and L. Tendera. Two-variable first-order logic with equivalence closure. Accepted for LICS, 2012.
12 E. Kieroński and L. Tendera. On finite satisfiability of the guarded fragment with equivalence or transitive guards. In LPAR, volume 4790 of $L N A I$, pages 318-332, 2007.
13 H. R. Lewis. Complexity results for classes of quantificational formulas. Journal of Computer and System Sciences, 21:317-353, 1980.
14 J. Michaliszyn. Decidability of the guarded fragment with the transitive closure. In ICALP (2), volume 5556 of $L N C S$, pages 261-272, 2009.

15 M. Mortimer. On languages with two variables. Zeitschr. f. Logik und Grundlagen d. Math., 21:135-140, 1975.
16 W. Szwast and L. Tendera. On the decision problem for the guarded fragment with transitivity. In LICS, pages 147-156, 2001.
17 W. Szwast and L. Tendera. FO ${ }^{2}$ with one transitive relation is decidable. Unpublished, 2012.

[^0]: * Partially supported by Polish Ministry of Science and Higher Education grant N N206 371339.

