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Abstract
Formalisms over infinite alphabets have recently received much focus in the community of theoret-
ical computer science. Data automaton is a formal model for words over an infinite alphabet, that
is, the product of a finite set of labels and an infinite set of data values, proposed by Bojanczyk,
Muscholl, Schwentick et. al. in 2006. A data automaton consists of two parts, a nondeterministic
letter-to-letter transducer, and a class condition specified by a finite automaton, which acts as a
condition on each subword of the outputs of the transducer in corresponding to a maximal set of
positions with the same data value. It is open whether the nonemptiness of data automata can be
decided with elementary complexity, since this problem is equivalent to the reachability of Petri
nets. Very recently, a restriction of data automata with elementary complexity, called weak data
automata, was proposed by Kara, Schwentick and Tan and its nonemptiness problem was shown
to be in 2-NEXPTIME. In weak data automata, the class conditions are specified by some simple
constraints on the number of occurrences of labels occurring in every class. The aim of this paper
is to demonstrate that the commutativity of class conditions is the genuine reason accounting
for the elementary complexity of weak data automata. For this purpose, we define and invest-
igate commutative data automata, which are data automata with class conditions restricted to
commutative regular languages. We show that while the expressive power of commutative data
automata is strictly stronger than that of weak data automata, the nonemptiness problem of
this model can still be decided with elementary complexity, more precisely, in 3-NEXPTIME. In
addition, we extend the results to data ω-words and prove that the nonemptiness of commutative
Büchi data automata can be decided in 4-NEXPTIME. We also provide logical characterizations
for commutative (Büchi) data automata, similar to those for weak (Büchi) data automata.
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1 Introduction
With the momentums from the XML document processing and the verification of computer
programs, formalisms over infinite alphabets have been intensively investigated in recent
years. In the database community, XML documents are usually represented by trees, where
the nodes can have tags together with several attributes e.g. identifiers. While the tags
are from a finite set, the attributes may take values from some infinite domains. On the
other hand, in the verification community, take concurrent systems as an example, if there is
an unbounded number of processes in the system, then the behavior of the global system
consists of the sequences of observed events attached with the process identifiers.
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With these motivations, researchers in the two communities have investigated various
formalisms over infinite alphabets, to name a few, register automata ([11]), pebble automata
([14]), data automata ([1]), XPath with data values ([9, 8]), LTL with freeze quantifiers ([6]),
as well as two-variable logic interpreted on words or trees over infinite alphabets ([1, 3]). A
survey on this topic can be found in [16].

By infinite alphabet, we mean Σ×D, with Σ a finite set of tags (labels) and D an infinite
data domain. Words and trees over the alphabet Σ×D are called data words and data trees.

The model of data automata was introduced by Bojanczyk, Muscholl, Schwentick, et. al.
in [1] to prove the decidability of two-variable logic over data words. A data automaton D

over data words consists of two parts, a nondeterministic letter-to-letter transducer A , and a
class condition specified by a finite automaton B over the output alphabet of A , which acts
as a condition on the subsequence of the outputs of A in every class, namely, every maximal
set of positions with the same data value. By a reduction to the reachability problem of Petri
nets (also called multicounter machines), the nonemptiness of data automata was shown to
be decidable. On the other hand, data automata are also powerful enough to simulate Petri
nets easily. Since it is a well-known open problem whether the complexity of the reachability
problem for Petri nets is elementary, it is also not known whether the complexity of the
nonemptiness of data automata is elementary.

Aiming at lowering the complexity of data automata, a restriction of data automata,
called weak data automata, was introduced very recently by Kara, Schwentick, and Tan
([12]). In weak data automata, the class conditions are replaced by some simple constraints
on the number of occurrences of labels occurring in every class. The nonemptiness of weak
data automata can be decided with elementary complexity, more precisely, in 2-NEXPTIME.

By comparing data automata with weak data automata, we notice that to simulate Petri
nets in data automata, the ability to express the property La<b, “for every occurrence of
a, there is an occurrence of b on the right with the same data value”, is crucial; on the
other hand, as shown in [12], La<b is not expressible in weak data automata. It is a simple
observation that La<b is a non-commutative language while the class conditions of weak data
automata are commutative. This suggests that the commutativity of class conditions might
be the genuine reason accounting for the elementary complexity of weak data automata. With
this observation, we are motivated to define and investigate commutative data automata,
which are data automata with class conditions restricted to commutative regular languages.
We would like to see that the nonemptiness of commutative data automata can still be
decided with elementary complexity, even though they have stronger class conditions than
weak data automata. This is indeed the case, as we will show in this paper.

More specifically, the contributions of this paper consist of the following three aspects.
1. At first, we investigate the expressibility of commutative data automata. We show

that the expressive power of commutative data automata lies strictly between data
automata and weak data automata. In addition, commutative data automata are closed
under intersection and union, but not under complementation. We also present a logical
characterization of commutative data automata, similar to that for weak data automata.

2. The nonemptiness of commutative data automata can be decided in 3-NEXPTIME, which
is the main result of this paper.

3. At last, we extend the results to data ω-words. We define commutative Büchi data
automata and prove that the nonemptiness of commutative Büchi data automata can be
decided in 4-NEXPTIME.

The main ideas of most of the proofs in this paper come from those for weak data
automata ([12, 5]). Nevertheless, some proof steps become much more involved as a result of
the stronger class conditions in commutative data automata.
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Related work.
Several variants of data automata have been investigated. Bojanczyk and Lasota
proposed an (undecidable) extension of data automata, called class automata, to
capture the full XPath with data values over data trees; in addition, they established
the correspondences of various class conditions of class automata over data words
with the various models of counter machines ([2]). We continued this line of research
by introducing another decidable extension of data automata over data words and
establishing the correspondence with priority multicounter machines ([19]). There is
another model, called class counting automata, relevant to this paper. Class counting
automata over data words was proposed by Manuel and Ramanujan in [13]. In class
counting automata, each data value is assigned a counter; and in each transition
step, if the value of the counter corresponding to the current data value satisfies
some constraint, then the value of the counter is updated according to a prescribed
instruction; a run is accepting if a final state is reached in the end. The nonemptiness
of class counting automata was shown to be EXPSPACE-complete. Nevertheless,
the expressive power of class counting automata is relatively weak, for instance, the
property “Each data value occurs exactly twice” cannot be expressed by class counting
automata, while this property can be easily expressed by commutative data automata.
Commutative regular languages have been investigated by many researchers. Pin
presented a counting characterization of the expressibility of commutative regular
languages ([15]). Gomez and Alvarez investigated how commutative regular languages
can be learned from positive and negative examples ([10]). Chrobak and To proposed
polynomial time algorithms to obtain regular expressions from nondeterministic finite
automata over unary alphabets ([4, 18]).

The rest of this paper is organized as follows. Definitions are given in the next sec-
tion. Then in Section 3, the expressibility of commutative data automata is investig-
ated. Section 4 includes the main result of this paper, a 3-NEXPTIME algorithm for the
nonemptiness of commutative data automata. Finally the results are extended to data
ω-words in Section 5. The missing proofs can be found in the full version of this paper
(http://lcs.ios.ac.cn/∼wuzl/pub/cda-wu-12.pdf).

2 Preliminaries
Let Σ be a finite alphabet. A finite word over Σ is an element of Σ∗ and an ω-word over Σ is
an element of Σω.

2.1 Presburger formulas and Commutative regular languages
Existential Presburger formulas (EP formulas) over a variable set X are formulas of the
form ∃x̄ϕ, where ϕ is a quantifier-free Presburger formula, i.e. a Boolean combination of
atomic formulas of the form t ≥ c, or t ≤ c, or t = c, or t ≡ r mod p, where c, r, p ∈ N,
p ≥ 2, 0 ≤ r < p and t is a term defined by t := c | cx | t1 + t2 | t1 − t2, where c ∈ N, x ∈ X.

Suppose Σ = {σ1, . . . , σk} and v ∈ Σ∗. The Parikh image of v, denoted by Parikh(v),
is a k-tuple (#σ1(v), . . . ,#σk(v)), where for each i : 1 ≤ i ≤ k, #σi(v) is the number of
occurrences of σi in v. Let VΣ = {xσ1 , . . . , xσk} and ϕ be an EP formula with free variables
from VΣ. The word v is said to satisfy ϕ, denoted by v |= ϕ, iff ϕ[Parikh(v)] holds. The
language defined by ϕ, denoted by L(ϕ), is the set of words v ∈ Σ∗ such that v |= ϕ.

A Presburger automaton over the alphabet Σ is a binary tuple (A , ϕ), where A is a
finite automaton over the alphabet Σ and ϕ is an EP formula with free variables from VΣ. A
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word v ∈ Σ∗ is accepted by a Presburger automaton (A , ϕ) iff v is accepted by A and at
the same time v |= ϕ. The language accepted by a Presburger automaton (A , ϕ), denoted
by L((A , ϕ)), is the set of words accepted by (A , ϕ).
I Theorem 1 ([17]). The nonemptiness of Presburger automata can be decided in NP.

Let L be a language over the alphabet Σ. Then L is commutative iff for any σ1, σ2 ∈ Σ and
u, v ∈ Σ∗, uσ1σ2v ∈ L iff uσ2σ1v ∈ L. Commutative regular languages have a characterization
in quantifier-free simple Presburger formulas defined in the following.

Quantifier-free simple Presburger formulas (QFSP formulas) over a variable set X are
Boolean combinations of atomic formulas of the form x1 + · · ·+ xn ≤ c, or x1 + · · ·+ xn ≥ c,
or x1 + · · ·+ xn = c, or x1 + · · ·+ xn ≡ r mod p, where x1, . . . , xn ∈ X, c, r, p ∈ N, p ≥ 2,
and 0 ≤ r < p.

Let VΣ = {xσ1 , . . . , xσk} and ϕ be a QFSP formula over the variable set VΣ. Similar to
EP formulas, we can define L(ϕ), the language defined by ϕ.

For a set of variables {x1, . . . , xk}, we use the notation ϕ(x1, . . . , xk) to denote an EP or
QFSP formula ϕ with the free variables from {x1, . . . , xk}.
I Proposition 2 ([15]). Let L be a language over the alphabet Σ = {σ1, . . . , σk}. Then L is a
commutative regular language iff L is defined by a QFSP formula ϕ(xσ1 , . . . , xσk).

The size of an EP or QFSP formula ϕ, denoted by |ϕ|, is defined as the length of a binary
encoding of ϕ (where the constants c, r and p are encoded in binary).
I Proposition 3. Let ϕ(x1, . . . , xk) be a QFSP formula. Then there exists an exponential-time
algorithm to transform ϕ into a QFSP formula

∨
i:1≤i≤m

ϕi of size 2O(k|ϕ|) such that there is

p0 : 2 ≤ p0 ≤ 2|ϕ| satisfying that
each ϕi is of the form

∧
1≤j≤k

ϕi,j;

for each j : 1 ≤ j ≤ k, ϕi,j is equal to xj = ci,j or xj ≥ p0 ∧ xj ≡ ri,j mod p0 for
ci,j , rij : 0 ≤ ci,j , ri,j < p0;
in addition, those ϕi’s are mutually exclusive.
For a QFSP formula ϕ(x1, . . . , xk), the number p0 and the QFSP formula

∨
i:1≤i≤m

ϕi in

Proposition 3 are called respectively the normalization number and the normal form of ϕ.
I Remark. A weaker form of Proposition 3 was proved by Ehrenfeucht and Rozenberg in [7].
But they did not give the complexity bound.

2.2 Data words, two-variable logic and data automata
Let Σ be a finite alphabet and D be an infinite set of data values. A data word over Σ is an
element of (Σ×D)∗ and a data ω-word is an element of (Σ×D)ω. Let σ ∈ Σ, a position in a
data word or a data ω-word is called a σ-position if the position is labelled by σ.

Given a data (finite or ω) word w =
(
σ1
d1

)(
σ2
d2

)
. . ., the projection of w to the finite

alphabet Σ, denoted by Proj(w), is the (finite or ω) word σ1σ2 . . . . Let X be a set of
positions in a word w, we use w|X to denote the restriction of w to the positions in X.
Similarly, w|X can be defined for ω-words, data words and data ω-words.

Let FO(+1,∼,Σ) denote the first-order logic with the following atomic formulas, σ(x)
(where σ ∈ Σ), x = y, x + 1 = y, and x ∼ y. Two positions x, y satisfy x + 1 = y if y is
the successor of the position x, and two positions satisfy x ∼ y if they have the same data
value. Let FO2(+1,∼,Σ) denote the two-variable fragment of FO(+1,∼,Σ). In addition,
let EMSO2(+1,∼,Σ) denote the extension of FO2(+1,∼,Σ) by existential monadic second-
order quantifiers in front of the FO2(+1,∼,Σ) formulas. The data language defined by an
EMSO2(+1,∼,Σ) sentence ϕ, denoted by L(ϕ), is the set of data words satisfying ϕ.

CSL’12
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A class of a data (finite or ω) word w is a maximal nonempty set of positions in w with
the same data value. Given a class X of a data word w, the class string of w corresponding
to X is Proj(w|X), the projection of w|X .

Let w =
(
σ1
d1

)(
σ2
d2

)
. . .
(
σn
dn

)
be a data word and ϕ be a QFSP formula over the variable

set VΣ. Then w is said to satisfy the class condition ϕ, denoted by w |=c ϕ, if for each class
X of w, Proj(w|X) |= ϕ.

Given a data (finite or ω) word w =
(
σ1
d1

)(
σ2
d2

)
. . ., the profile word of w, denoted by

Profile(w), is a word (σ1, s1)(σ2, s2) . . . over the alphabet Σ × {⊥,>} such that for every
i ≥ 1, we have si = > (resp. si = ⊥) iff di = di+1 (resp. di 6= di+1), moreover, if w is finite
and of length n, then sn = ⊥. A data (finite or ω) word w =

(
σ1
d1

)(
σ2
d2

)
. . . is called locally

different if for every i ≥ 1, it holds di 6= di+1.
I Definition 4. A data automaton (DA) D is a tuple (A ,B), where A = (Q1,Σ ×
{⊥,>},Γ, δ1, q0,1, F1) is a nondeterministic letter-to-letter transducer with the input alphabet
Σ× {⊥,>} and the output alphabet Γ, and B = (Q2,Γ, δ2, q0,2, F2) is a finite automaton
over the alphabet Γ.

A data word w =
(
σ1
d1

)(
σ2
d2

)
. . .
(
σn
dn

)
is accepted by a data automaton D = (A ,B) iff

there is an accepting run of A over Profile(w) which produces a word γ1 . . . γn such that for
each class X of w′ =

(
γ1
d1

)(
γ2
d2

)
. . .
(
γn
dn

)
, the class string Proj(w′|X) is accepted by B.

The data language defined by a data automaton D , denoted by L(D), is the set of data
words accepted by D .
I Definition 5 ([12]). A weak data automaton (WDA) is a tuple (A ,C ) such that A =
(Q,Σ×{⊥,>},Γ, δ, q0, F ) is a letter-to-letter transducer and the class condition C is specified
by a collection of

key constraints of the form Key(γ) (where γ ∈ Γ), interpreted as “every two γ-positions
have different data values”,
inclusion constraints of the form D(γ) ⊆

⋃
γ′∈RD(γ′) (where γ ∈ Γ, R ⊆ Γ), interpreted

as “for every data value occurring in a γ-position, there is γ′ ∈ R such that the data
value also occurs in a γ′-position”,
and denial constraints of the form D(γ)∩D(γ′) = ∅ (where γ, γ′ ∈ Γ), interpreted as “no
data value occurs in both a γ-position and a γ′-position”.
A data word w =

(
σ1
d1

)(
σ2
d2

)
. . .
(
σn
dn

)
is accepted by a weak data automaton D = (A ,C )

iff there is an accepting run of A over Profile(w) which produces a word γ1 . . . γn such that
the data word w′ =

(
γ1
d1

)(
γ2
d2

)
. . .
(
γn
dn

)
satisfies all the constraints in C .

I Definition 6. A commutative data automaton (CDA) D is a tuple (A , ϕ) such that
A = (Q,Σ×{⊥,>},Γ, δ, q0, F ) is a letter-to-letter transducer and ϕ is a QFSP formula over
the variable set VΓ.

A data word w =
(
σ1
d1

)(
σ2
d2

)
. . .
(
σn
dn

)
is accepted by a commutative data automaton

D = (A , ϕ) iff there is an accepting run of A over Profile(w) which produces a word γ1 . . . γn

such that the data word w′ =
(
γ1
d1

)(
γ2
d2

)
. . .
(
γn
dn

)
satisfies that w′ |=c ϕ.

I Remark. We choose to define the class conditions of commutative data automata by QFSP
formulas, instead of finite automata with commutative transition relations. The main purpose
of this choice is to ease the extension of the results to data ω-words (c.f. Section 5). In
addition, in the definition of commutative data automata, we choose the input alphabet
of the transducer to be Σ × {⊥,>}, instead of Σ. It seems for us that this choice strictly
increases the expressive power of commutative data automata, but we admit that we do not
know how to prove it at present. J
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3 Expressiveness
In this section, we first show that the expressibility of CDA lies strictly between WDA and
DA, then we discuss the closure properties of CDA and provide a logical characterization of
CDA.
I Theorem 7. WDA < CDA < DA.
Proof.
CDA < DA.

It was shown in [12] that the language “for every occurrence of a, there is an occurrence
of b on the right with the same data value” cannot be expressed in WDA. The same proof
can be applied to show that the language is not expressible in CDA. On the other hand, it is
easy to see that the language can be defined by a DA.
WDA < CDA.

From any WDA (A ,C ), an equivalent CDA (A , ϕC ) can be constructed such that
ϕC :=

∧
C∈C

ϕC , where ϕC is defined as follows,

if C is of the form Key(γ), then ϕC := xγ ≤ 1,
if C is of the form D(γ) ⊆

⋃
γ′∈R

D(γ′), then ϕC := xγ ≥ 1→
∑
γ′∈R

xγ′ ≥ 1,

if C is of the form D(γ) ∩D(γ′) = ∅, then ϕC := xγ ≥ 1→ xγ′ = 0.

For the strictness of the inclusion, it is easy to observe that the language “In each class
of the data word, the letter a occurs an even number of times” is expressible in CDA. By
some pumping argument, we can show that the language is not expressible in WDA. J

I Remark. According to the above reduction of WDA to CDA, we would like to say that in
some sense, CDA = WDA + Modulo constraints in class conditions.

I Theorem 8. CDAs are closed under union and intersection, but not closed under comple-
mentation.

In the following, we define EMSO2
#(+1,∼,Σ), a counting extension of EMSO2(+1,∼,Σ),

and show that it is expressively equivalent to CDA.
The logic EMSO2

#(+1,∼,Σ) includes all the formulas of the form ∃R1 . . . Rl(ϕ ∧ ∀xψ)
(where R1, . . . , Rl are unary predicates), such that ϕ ∈ FO2(+1,∼,Σ, R1, . . . , Rl) and
ψ is a Boolean combination of atomic formulas of the form

∑
τ∈∆

#x∼y∧τ(y)(y) ≥ c, or∑
τ∈∆

#x∼y∧τ(y)(y) ≤ c, or
∑
τ∈∆

#x∼y∧τ(y)(y) = c, or
∑
τ∈∆

#x∼y∧τ(y)(y) ≡ r mod p, satisfying

that ∆ ⊆ Σ × 2{R1,...,Rl}, c ∈ N, p ≥ 2, 0 ≤ r < p, and if τ = (σ,R), then τ(y) =
σ(y) ∧

∧
i:1≤i≤l

ηRi(y), where ηRi(y) = Ri(y) if Ri ∈ R, and ηRi(y) = ¬Ri(y) otherwise.

The semantics of EMSO2(+1,∼,Σ) formulas can be extended naturally to EMSO2
#(+1,∼

,Σ) formulas by interpreting formulas ∀xψ as the counting constraints for each class. Let’s
take the formula ∀x

(
#x∼y∧τ(y)(y) ≥ c

)
as an example: Given a data word w over the

alphabet Σ× 2{R1,...,Rl}, w |= ∀x
(
#x∼y∧τ(y)(y) ≥ c

)
iff for each class X of w, the number

of τ -positions in X is at least c.
I Theorem 9. EMSO2

#(+1,∼,Σ) and CDA are expressively equivalent.
Given an EMSO2

#(+1,∼,Σ) formula ∃R1 . . . Rl(ϕ ∧ ∀xψ), a CDA D = (A , ϕ′) of
doubly exponential size can be constructed such that L(D) = L(∃R1 . . . Rl(ϕ ∧ ∀xψ)). In
addition, the size of the output alphabet of A is at most exponential over the size of
∃R1 . . . Rl(ϕ ∧ ∀xψ).
Given a CDA D = (A , ϕ), an EMSO2

#(+1,∼,Σ) formula ϕ′ of polynomial size can be
constructed such that L(D) = L(ϕ′).

CSL’12
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4 The nonemptiness problem of CDA

In this section, we prove the main result of this paper.

I Theorem 10. The nonemptiness of CDA can be decided in 3-NEXPTIME.

The rest of this section is devoted to the proof of Theorem 10. Although the structure of
the proof is similar to that for WDA in [12, 5], the proofs of several lemmas become more
complicated.

Through this section, let D = (A , ϕ) be a commutative data automaton such that
A = (Q,Σ× {⊥,>},Γ, δ, q0, F ) and ϕ is a QFSP formula over the variable set VΓ.

Because we are concerned with the nonemptiness problem, without loss of generality, we
can assume that A = (Q,Γ× {⊥,>}, δ, q0, F ) is just a finite automaton over the alphabet
Γ× {⊥,>}. Then the nonemptiness of D is reduced to the following problem.

PROBLEM: NONEMPTINESS-PROFILE
INPUT: A finite automaton A = (Q,Γ × {⊥,>}, δ, q0, F ) and a

QFSP formula ϕ over VΓ

QUESTION: Is there a data word w over Γ such that Profile(w) is
accepted by A and w |=c ϕ?

The outline of the proof goes as follows.
At first, a finite automaton A ′ of exponential size over the alphabet Γ′, and a QFSP
formula ϕ′ in the normal form of doubly exponential size over the variable set VΓ′ , are
constructed from D = (A , ϕ) such that the problem of NONEMPTINESS-PROFILE is
reduced to the following problem,

“is there a locally different data word w over the alphabet Γ′ such that Proj(w) is
accepted by A ′ and w |=c ϕ

′?”
We would like to point out that the finite automaton A ′ runs directly on the projections
of data words, instead of the profile words of them.
Let’s call this problem NONEMPTINESS-LOCALLY-DIFFERENT, which is formally
defined as follows.

PROBLEM: NONEMPTINESS-LOCALLY-DIFFERENT
INPUT: A finite automaton A = (Q,Γ, δ, q0, F ) and a QFSP

formula ϕ over VΓ in the normal form
QUESTION: Is there a locally different data word w over Γ such that

Proj(w) is accepted by A and w |=c ϕ?

Then a 2-NEXPTIME algorithm is presented to solve the problem of NONEMPTINESS-
LOCALLY-DIFFERENT.

From the above description of the proof outline, it is evident that NONEMPTINESS-
PROFILE can be decided in 4-NEXPTIME. By a finer analysis, the complexity can be shown
in 3-NEXPTIME.

Since the reduction of the problem of NONEMPTINESS-PROFILE to the problem of
NONEMPTINESS-LOCALLY-DIFFERENT completely mimics that for WDA in [12, 5], it
is omitted here due to the lack of space.

In the rest of this section, we will focus on the problem of NONEMPTINESS-LOCALLY-
DIFFERENT. Before presenting an algorithm to solve the problem, we will state and prove
two lemmas.
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4.1 Two lemmas
We first introduce some notations.

I Definition 11. Let ϕ =
∨

1≤i≤m
ϕi be a QFSP formula in the normal form over the variable

set VΓ, p0 be the normalization number of ϕ, and for every i : 1 ≤ i ≤ m, ϕi =
∧
γ∈Γ

ϕi,γ , where

ϕi,γ is either xγ = ci,γ or xγ ≥ p0 ∧ xγ ≡ ri,γ mod p0 for some ci,γ , ri,γ : 0 ≤ ci,γ , ri,γ < p0.
Then for each γ ∈ Γ, define two subsets of {1, . . . ,m}, denoted by IE(ϕ, γ) and IM (ϕ, γ), as
follows: For every i : 1 ≤ i ≤ m,

i ∈ IE(ϕ, γ) iff ϕi,γ is xγ = ci,γ and ci,γ > 0,
i ∈ IM (ϕ, γ) iff ϕi,γ is xγ ≥ p0 ∧ xγ ≡ ri,γ mod p0.

Note that if i 6∈ IE(ϕ, γ) ∪ IM (ϕ, γ), then it holds that ϕi,γ is xγ = ci,γ and ci,γ = 0.

I Definition 12. Let w be a data word over Γ and ϕ =
∨

1≤i≤m
ϕi be a QFSP formula over

the variable set VΓ in the normal form. If w |=c ϕ, then for each data value d occurring
in w, there is a unique i : 1 ≤ i ≤ m such that Proj(w|X) |= ϕi, where X is the class of w
corresponding to d. This unique number i is called the index of the class condition ϕ for d,
denoted by idxϕ(d).

We are ready to state and prove the two lemmas.

I Lemma 13. For every QFSP formula ϕ =
∨

1≤i≤m
ϕi over the variable set VΓ in the normal

form, there is an EP formula ψ = ∃y1 . . . ∃ymψ′ of polynomial size such that for each word v
over Γ, v |= ψ iff there is a data word w such that Proj(w) = v and w |=c ϕ.

Proof. Suppose ϕ is a QFSP formula in the normal form over the variable set VΓ with the
normalization number p0. Then ϕ =

∨
i:1≤i≤m

ϕi, where ϕi is of the form
∧
γ∈Γ

ϕi,γ such that

ϕi,γ is equal to xγ = ci,γ or xγ ≥ p0 ∧xγ ≡ ri,γ mod p0 for some ci,γ , ri,γ : 0 ≤ ci,γ , ri,γ < p0.
In addition, those ϕi’s are mutually exclusive.

Let ψ = ∃y1 . . . ∃ymψ′ such that ψ′ is a conjunction of the quantifier-free Presburger
formulas ψ′1, ψ′2, and ψ′3, where

1. ψ′1 :=
∧
γ∈Γ

(
xγ −

( ∑
i∈IE(ϕ,γ)

ci,γyi

)
−

( ∑
i∈IM (ϕ,γ)

(p0 + ri,γ)yi

)
≥ 0
)
,

2. ψ′2 :=
∧
γ∈Γ

(( ∧
i∈IM (ϕ,γ)

yi = 0
)
→ xγ −

( ∑
i∈IE(ϕ,γ)

ci,γyi

)
= 0
)
,

3. ψ′3 :=
∧
γ∈Γ

(
xγ −

( ∑
i∈IE(ϕ,γ)

ci,γyi +
∑

i∈IM (ϕ,γ)
ri,γyi

)
≡ 0 mod p0

)
.

Intuitively,
y1, . . . , ym represent the numbers of classes satisfying respectively ϕ1, . . . , ϕm,
the formula ψ′1 specifies the lower bound of γ-positions for every γ ∈ Γ, which is the sum
of the lower bounds of γ-positions in all classes, more precisely, ci,γ for i ∈ IE(ϕ, γ) or
p0 + ri,γ for i ∈ IM (ϕ, γ),
the formula ψ′2 specifies that for each γ ∈ Γ, if there are no classes in which modular
constraints for γ are required (this is specified by the condition yi = 0 for every i ∈
IM (ϕ, γ)), then the number of γ-positions is equal to the sum of ci,γ for i ∈ IE(ϕ, γ),
the formula ψ′3 says that for every γ ∈ Γ, the number of γ-positions, subtracting the
lower bound specified in ψ′1, should be equal to zero modulo p0.
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Let y denote the tuple y1, . . . , ym in the following.
“If” part:

Suppose there is a data word w such that Proj(w) = v and w |=c ϕ, namely, for each class
X in w, Proj(w|X) |= ϕ.

For each i : 1 ≤ i ≤ m, let Di be the set of data values d occurring in w such that
idxϕ(d) = i. Note that (Di)1≤i≤m forms a partition of the set of all the data values occurring
in w. In addition, let ki = |Di| for each i : 1 ≤ i ≤ m. We also use k to denote the tuple
k1, . . . , km.

It is sufficient to verify that v |= ψ′[ȳ ← k] in order to show v |= ψ.
Let’s exemplify the argument by demonstrating that v |= ψ′2[y ← k].
Suppose ki = 0 for each i ∈ IM (ϕ, γ). Then Di = ∅ for each i ∈ IM (ϕ, γ). We want to

show that #γ(v) =
∑

i∈IE(ϕ,γ)
ci,γki.

For each data value d ∈ Di such that i 6∈ IM (ϕ, γ),
if i ∈ IE(ϕ, γ), i.e. ϕi,γ is equal to xγ = ci,γ and ci,γ > 0, then the letter γ occurs exactly
ci,γ times in the class of w corresponding to d;
if i 6∈ IE(ϕ, γ) ∪ IM (ϕ, γ), i.e. ϕi,γ is equal to xγ = ci,γ and ci,γ = 0, then the letter γ
does not occur in the class of w corresponding to d.

Since (Di)1≤i≤m is a partition of the set of all the data values occurring in w, it follows that
#γ(v) =

∑
i∈IE(ϕ,γ)

ci,γki. So v |= ψ′2[y ← k].

“Only if” part:
Suppose v |= ψ. Then there are numbers k = k1, . . . , km such that v |= ψ′[y ← k].
Let K = k1 + · · · + km. Define a function ξ : {1, . . . ,K} → {1, . . . ,m} such that

|ξ−1(i)| = ki for each i : 1 ≤ i ≤ m.
In the following, we assign the data values from {1, . . . ,K} to the positions in v to get a

data word w such that w |=c ϕ, namely, for each class X of w, Proj(w|X) |= ϕ.
From the fact that v |= ψ′1[y ← k], we know that for each γ ∈ Γ,

#γ(v) ≥
∑

i∈IE(ϕ,γ)

ci,γki +
∑

i∈IM (ϕ,γ)

(p0 + ri,γ)ki.

We assign the data values in {1, . . . ,K} to the positions in v through the following
two-step procedure.
Step 1 For every γ ∈ Γ and every i : 1 ≤ i ≤ m, assign the data values in ξ−1(i) to the

γ-positions in v such that each data value in ξ−1(i) is assigned to exactly (ci,γ) γ-positions
if i ∈ IE(ϕ, γ), and is assigned to exactly (p0 + ri,γ) γ-positions if i ∈ IM (ϕ, γ).

Step 2 For every γ ∈ Γ such that there is i ∈ IM (ϕ, γ) satisfying that ki > 0, select such an
index i and a data value from ξ−1(i), denoted by dγ , and assign dγ to all the γ-positions
which have not been assigned data values after Step 1.
Now all the positions of v have been assigned data values from {1, . . . ,K}, let w be the

resulting data word.
For every γ ∈ Γ, if there are still γ-positions that have not been assigned data values

after Step 1, then #γ(v) >
∑

i∈IE(ϕ,γ)
ci,γki +

∑
i∈IM (ϕ,γ)

(p0 + ri,γ)ki ≥
∑

i∈IE(ϕ,γ)
ci,γki. From

the fact that v |= ψ′2[y ← k], it follows that there is i ∈ IM (ϕ, γ) such that ki > 0. So a data
value dγ can be selected and assigned to all the pending γ-positions in Step 2.

It remains to show that w |=c ϕ. It is sufficient to prove that for every i : 1 ≤ i ≤ m

and every data value d ∈ ξ−1(i), Proj(w|X) |= ϕi, where X is the class of w corresponding
to d. Because Proj(w|X) = v|X and ϕi =

∧
γ∈Γ

ϕi,γ , it is equivalent to show that for every
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i : 1 ≤ i ≤ m, d ∈ ξ−1(i), and γ ∈ Γ, we have v|X |= ϕi,γ , where X is the class of w
corresponding to d.

Suppose i : 1 ≤ i ≤ m, d ∈ ξ−1(i), and γ ∈ Γ. Let X be the class of w corresponding to
d. In the following, we show that v|X |= ϕi,γ .

From the data value assignment procedure, we know that there are still
(
#γ(v) −∑

i∈IE(ϕ,γ)
ci,γki −

∑
i∈IM (ϕ,γ)

(p0 + ri,γ)ki
)
γ-positions which have not been assigned data values

after Step 1. Because v |= ψ′3[y ← k], it follows that #γ(v)−
∑

i∈IE(ϕ,γ)
ci,γki −

∑
i∈IM (ϕ,γ)

(p0 +

ri,γ)ki ≡ 0 mod p0. So there is tγ ∈ N such that #γ(v) −
∑

i∈IE(ϕ,γ)
ci,γki −

∑
i∈IM (ϕ,γ)

(p0 +

ri,γ)ki = tγp0.

We distinguish between the following three cases.
Case i ∈ IE(ϕ, γ). Then ϕi,γ is xγ = ci,γ and ci,γ > 0. From the data value assignment
procedure, we know that each data value in ξ−1(i), including d, has been assigned to exactly
(ci,γ) γ-positions. This implies that #γ(v|X) = ci,γ . So v|X |= ϕi,γ .
Case i ∈ IM (ϕ, γ). Then ϕi,γ is xγ ≥ p0 ∧xγ ≡ ri,γ mod p0. From the data value assignment
procedure, we know that the data value d is assigned to (p0 + ri,γ) γ-positions if d 6= dγ ,
and assigned to (p0 + ri,γ + tγp0) γ-positions otherwise. Therefore, #γ(v|X) = p0 + ri,γ or
p0 + ri,γ + tγp0. It follows that v|X |= ϕi,γ .
Case i 6∈ IE(ϕ, γ) ∪ IM (ϕ, γ). Then ϕi,γ is xγ = ci,γ and ci,γ = 0. From the data value
assignment procedure, we know that each data value in ξ−1(i), including d, has not been
assigned to any γ-position in v. Therefore, #γ(v|X) = 0 and v|X |= ϕi,γ . J

I Definition 14. Let ϕ =
∨

1≤i≤m
ϕi be a QFSP formula in the normal form over the variable

set VΓ with the normalization number p0 such that for each i : 1 ≤ i ≤ m, ϕi =
∧
γ∈Γ

ϕi,γ,

where ϕi,γ is xγ = ci,γ or xγ ≥ p0 ∧ xγ ≡ ri,γ mod p0 for 0 ≤ ci,γ , ri,γ < p0. Moreover, for
each i : 1 ≤ i ≤ m, let

hi =
∑

γ:i∈IE(ϕ,γ)

ci,γ +
∑

γ:i∈IM (ϕ,γ)

(p0 + ri,γ).

Let w be a data word over the alphabet Γ, then w is said to satisfy the class condition
ϕ with “many” data values if w |=c ϕ and for each i : 1 ≤ i ≤ m, either ki = 0 or
ki ≥ max (2p0 + 1, 2hi + 3), where ki is the number of data values d occurring in w such
that idxϕ(d) = i.

Let v ∈ Γ∗ and ψ = ∃y1 . . . ∃ymψ′ be the EP formula obtained from ϕ as in Lemma
13. Then v is said to satisfy ψ with “large” numbers if there are a tuple of numbers
k = k1, . . . , km such that v |= ψ′[y ← k] and for each i : 1 ≤ i ≤ m, either ki = 0 or
ki ≥ max (2p0 + 1, 2hi + 3).

I Lemma 15. Let ϕ =
∨

1≤i≤m

∧
γ∈Γ

ϕi,γ be a QFSP formula in the normal form with the

normalization number p0. Moreover, let ψ = ∃y1 . . . ∃ymψ′ be the EP formula obtained from
ϕ as stated in Lemma 13. Then for any v ∈ Γ∗, v |= ψ with large numbers iff there is a
locally different data word w such that Proj(w) = v and w |=c ϕ with many data values.

Proof. “If” part: Obvious.
“Only if” part:
Suppose v satisfies ψ with large numbers, i.e. there are numbers k = k1, . . . , km such

that v |= ψ′[y ← k] and for each i : 1 ≤ i ≤ m, either ki = 0 or ki ≥ max(2p0 + 1, 2hi + 3).
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Let K = k1 + · · · + km. Define a function ξ : {1, . . . ,K} → {1, . . . ,m} such that
|ξ−1(i)| = ki for each i : 1 ≤ i ≤ m.

As in the proof of Lemma 13, we assign data values in {1, . . . ,K} to the positions of v to
get a desired data word w. The assignment procedure is divided into two steps, Step 1 and 2.
Step 1:

The same as Step 1 of the data value assignment procedure in the proof of the “Only
if” part of Lemma 13.
After Step 1, we get a partial data word where some positions still have no data values.

Let’s assign a special data value, say ], to all those positions without data values, then we
get a data word w1 =

(
γ1
d1

)(
γ2
d2

)
. . .
(
γn
dn

)
.

In w1, there may exist positions j such that dj = dj+1 and dj , dj+1 6= ]. Let’s call these
positions as conflicting positions of w1.

Claim. The data word w1 can be turned into a data word w′′1 such that w′′1 contains
no conflicting positions, w1 and w′′1 have the same set of data values (including ]),
and for each γ ∈ Γ and each class X of w1, #γ(w1|X) = #γ(w′′1 |X).
Proof of the claim.
Let j be a conflicting position of w1, a = γj , and i : 1 ≤ i ≤ m such that dj ∈ ξ−1(i).
From Step 1, we know that dj occurs exactly hi =

∑
γ:i∈IE(ϕ,γ)

ci,γ +
∑

γ:i∈IM (γ)
(p0 + ri,γ)

times in w1. It follows that there are at most 2hi positions adjacent to a position
with the data value dj . On the other hand, we have that ki ≥ max(2p0 + 1, 2hi + 3)
and for each data value in d ∈ ξ−1(i), there is at least one occurrence of a with
the data value d. It follows that there are (at least) three positions j′1, j′2, j′3 such
that dj′

1
, dj′

2
, dj′

3
∈ ξ−1(i), dj′

1
, dj′

2
, dj′

3
are pairwise distinct, γj′

1
= γj′

2
= γj′

3
= a,

and dj′
1−1, dj′

2−1, dj′
3−1, dj′

1+1, dj′
2+1, dj′

3+1 6= dj . From this, we deduce that there is
a position j′ such that γj′ = a, dj′ ∈ ξ−1(i), dj′ 6= dj−1, dj , and dj 6= dj′−1, dj′+1.
Because dj′ 6= dj−1, dj+1 (dj+1 = dj since j is conflicting) and dj 6= dj′−1, dj′+1, we
can swap the data value dj in the position j and the data value dj′ in the position j′
to make the two positions j and j′ non-conflicting. Let w′1 be the data word after the
swapping. It follows that w′1 has less conflicting positions than w1.
Continue like this, we finally get a data word w′′1 without conflicting positions. J

Now we return to the proof of the lemma.
From the claim, we know that a data word w′′1 containing no conflicting positions can

be obtained from w1. But w′′1 may still contain the special data value ]. If this is the case,
then from the description of Step 1, we know that there exists at least one γ ∈ Γ such that
#γ(v) >

∑
i∈IE(ϕ,γ)

ci,γki +
∑

i∈IM (γ)
(p0 + ri,γ)ki.

Let γ ∈ Γ such that #γ(v) >
∑

i∈IE(ϕ,γ)
ci,γki +

∑
i∈IM (γ)

(p0 + ri,γ)ki.

From v |= ψ′3[y ← k], it follows that #γ(v) −
∑

i∈IE(ϕ,γ)
ci,γki −

∑
i∈IM (γ)

(p0 + ri,γ)ki ≡

0 mod p0. So there is tγ ≥ 1 such that #γ(v)−
∑

i∈IE(ϕ,γ)
ci,γki −

∑
i∈IM (γ)

(p0 + ri,γ)ki = tγp0.

Therefore, there are (tγp0) γ-positions in w1 of the data value ]. Because w1 and w′′1 have
the same set of positions of the data value ], it follows that there are also (tγp0) γ-positions
in w′′1 of the data value ]. Let jγ,1 < · · · < jγ,tγp0 be a list of all such γ-positions in w′′1 .

On the other hand, because v |= ψ′2[y ← k] and #γ(v) >
∑

i∈IE(ϕ,γ)
ci,γki, it follows that

there is i ∈ IM (ϕ, γ) such that ki > 0. Let iγ be such an index i. Then from the assumption
that v satisfies ψ with large numbers, we know that kiγ ≥ max(2p0 + 1, 2hiγ + 3).
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Step 2:

For each γ ∈ Γ such that #γ(v) >
∑

i∈IE(ϕ,γ)
ci,γki +

∑
i∈IM (γ)

(p0 + ri,γ)ki, assign the

data values from {1, . . . ,K} to the γ-positions with the data value ] in w′′1 as follows.
We distinguish between the following two cases.

Case tγ ≥ 2.
Initially set s := 1. Repeat following procedure until s > tγ .

Let J = {jγ,s, jγ,tγ+s, . . . , jγ,tγ(p0−1)+s} and J ′ be the set of all positions
adjacent to a position in J . In addition, let D be the set of data values
(except ]) occurring in the positions belonging to J ′. Because |J | = p0, we
have |D| ≤ 2p0. On the other hand, kiγ ≥ 2p0 + 1, it follows that there is
d ∈ ξ−1(iγ) \D.
Assign the data value d to every position in J . Then we still get a non-
conflicting data word, since all the positions in J are not adjacent to each
other.
Set s := s+ 1.

Case tγ = 1.
Let J = {jγ,1, jγ,2, . . . , jγ,p0} and J ′ be the set of all positions adjacent to a position
in J . In addition, let D be the set of data values (except ]) occurring in the
positions belonging to J ′. Because |J | = p0, we have |D| ≤ 2p0. On the other hand,
kiγ ≥ 2p0 + 1, it follows that there is d ∈ ξ−1(iγ) \D.
Because iγ ∈ IM (ϕ, γ), each data value in ξ−1(iγ) has been assigned to exactly
(p0 + riγ ,γ) γ-positions in Step 1. During Step 1, we can do the assignments in a
way so that all the positions in J , i.e. the p0 γ-positions without data value, are
not adjacent to each other. Therefore, we can assign the data value d to every
position in J and still get a non-conflicting data word.

Let w be the resulting data word after the two steps of data value assignments. Then w
is locally different. Similar to the proof of the “Only if” part of Lemma 13, we can show
that for each i : 1 ≤ i ≤ m and each data value d ∈ ξ−1(i), Proj(w|X) |=c ϕi, where X is the
class of w corresponding to d. From this, it follows that for each i : 1 ≤ i ≤ m, the number
of data values in w such that i ∈ idxϕ(d) is equal to ki. Since for each i : 1 ≤ i ≤ m, either
ki = 0 or ki ≥ max(2p0 + 1, 2hi + 3), we conclude that w |=c ϕ with many data values. J

4.2 Algorithm for NONEMPTINESS-LOCALLY-DIFFERENT
We first give an algorithm for the following problem.

PROBLEM: NONEMPTINESS-LOCALLY-DIFFERENT-MANY
INPUT: A finite automaton A = (Q,Γ, δ, q0, F ) and a QFSP

formula ϕ over VΓ in the normal form
QUESTION: is there a locally different data word w over the alphabet

Γ such that Proj(w) is accepted by A and w |=c ϕ with
many data values?

From Lemma 15, it follows that NONEMPTINESS-LOCALLY-DIFFERENT-MANY can
be solved by the following algorithm.

Suppose the normalization number of ϕ is p0 and ϕ =
∨

i:1≤i≤m

∧
γ∈Γ

ϕi,γ such that

each ϕi,γ is either xγ = ci,γ or xγ ≥ p0 ∧ xγ ≡ ri,γ mod p0 for some ci,γ , ri,γ : 0 ≤
ci,γ , ri,γ < p0. Let ψ = ∃y1 . . . ∃ymψ′ be the existential Presburger formula obtained

CSL’12



540 Commutative Data Automata

from ϕ as stated in Lemma 13. For every i : 1 ≤ i ≤ m, let hi =
∑

γ:i∈IE(ϕ,γ)
ci,γ +∑

γ:i∈IM (ϕ,γ)
(p0 + ri,γ).

1. Construct the following EP formula ψg,

ψg := ∃y1 . . . ∃ym

ψ′ ∧ ∧
1≤i≤m

(yi = 0 ∨ (yi ≥ 2p0 + 1 ∧ yi ≥ 2hi + 3))

 .

2. Decide the nonemptiness of the Presburger automaton (A , ψg).

Now we consider the problem of NONEMPTINESS-LOCALLY-DIFFERENT.
For a data word w ∈ (Γ×D)∗, if w |=c ϕ, then for each i : 1 ≤ i ≤ m, let ki be the number

of data values d occurring in w such that idxϕ(d) = i. For each i : 1 ≤ i ≤ m such that
ki < max(2p0 + 1, 2hi + 3), if we take the ki data values d such that idxϕ(d) = i as constants,
then the problem of NONEMPTINESS-LOCALLY-DIFFERENT can be solved similar to
the problem of NONEMPTINESS-LOCALLY-DIFFERENT-MANY. More specifically, the
algorithm goes as follows.

1. Guess a set J ⊆ {1, . . . ,m} and sets of constants Dj’s.
a) Guess a set J ⊆ {1, . . . ,m}.
b) For each j ∈ J , guess an integer sj < max(2p0 + 1, 2hi + 3).
c) For each j ∈ J , fix a set Dj = {αj1, . . . , αjsj} of constants such that Dj’s are

mutually disjoint and Dj ∩ D = ∅. Let DJ = ∪j∈JDj.
2. Construct an automaton A ′ over the alphabet Γ ∪ Γ×DJ from (A , ϕ) such that

A ′ accepts a word v = λ1 . . . λn ∈ (Γ ∪ Γ×DJ)∗ iff the following conditions hold.
A symbol (γ, d) appears in v iff there exists j ∈ J such that j ∈ IE(ϕ, γ)∪IM (ϕ, γ)
and d ∈ Dj.
Let u = γ1 . . . γn ∈ Γ∗ such that

γi =
{
λi if λi ∈ Γ,
γ if λi = (γ, d) ∈ Γ×DJ .

Then u is accepted by A .
For any i : 1 ≤ i < n, if λi = (γ, d) and λi+1 = (γ′, d′), then d 6= d′.
For any j ∈ J and any γ ∈ Γ, the following holds: If j ∈ IE(ϕ, γ), then for each
d ∈ Dj, the letter (γ, d) occurs exactly cj,γ times in v. If j ∈ IM (ϕ, γ), then for
each d ∈ Dj, the number of occurrences of the letter (γ, d) is at least p0 and
equal to ri,γ modulo p0.

3. Construct the following EP formula ψg,J ,

ψg,J = ∃y1 . . . ∃ym

ψ′ ∧∧
i∈J

yi = 0 ∧
∧
i 6∈J

(yi ≥ 2p0 + 1 ∧ yi ≥ 2hi + 3)

 .

Note that ψg,J is an EP formula with free variables from VΓ, and contains no
variables x(γ,d) with (γ, d) ∈ Γ×DJ .

4. Decide the nonemptiness of the Presburger automaton (A ′, ψg,J).

The proof of the correctness of the above algorithm for NONEMPTINESS-LOCALLY-
DIFFERENT follows the same line as the proof for SAT-LOCALLY-DIFFERENT in [5].
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5 Commutative Büchi data automata
In this section, we consider data automata with commutative class conditions over data
ω-words.

Let Nω = N∪{ω} with the linear order (<) and the addition (+) operation of N extended
in a natural way, i.e. n < ω for any n ∈ N, and ω + n = ω for any n ∈ Nω.

The definition of the Parikh images of finite words can be easily extended to ω-words:
Given an ω-word v over an alphabet Γ = {γ1, . . . , γl}, Parikh(v) = (#γ1(v), . . . ,#γl(v)),
where for each i : 1 ≤ i ≤ l, #γi(v) is still the number of occurrences of γi in v, in particular,
if γi occurs infinitely many times in v, then #γi(v) = ω.

Similar to QFSP formulas, we define ω-QFSP formulas over a variable set X as follows.
The syntax of ω-QFSP formulas is the same as QFSP formulas, except that the atomic

formulas can also be of the form x = ω (where x ∈ X).
The ω-QFSP formulas are interpreted on Nω: Let π : X → Nω, then the atomic ω-QFSP

formulas are interpreted as follows,

π |= x1 + · · ·+ xn op c if π(x1) + · · ·+ π(xn) op c, where op ∈ {≤,≥,=},
π |= x1 + · · ·+xn ≡ r mod p if π(x1)+ · · ·+π(xn) < ω and π(x1)+ · · ·+π(xn) ≡ r mod p,
π |= x = ω if π(x) = ω.

In addition, the Boolean operators are interpreted in a standard way.
Similar to Proposition 3, there is a normal form for ω-QFSP formulas.

I Proposition 16. Let ϕ(x1, . . . , xk) be a ω-QFSP formula. Then there exists an exponential-
time algorithm to transform ϕ into a ω-QFSP formula

∨
i:1≤i≤m

ϕi of size 2O(k|ϕ|) such that

there is p0 : 2 ≤ p0 ≤ 2|ϕ| satisfying that
each ϕi is of the form

∧
1≤j≤k

ϕi,j;

for each j : 1 ≤ j ≤ k, ϕi,j is equal to xj = ci,j or xj ≥ p0 ∧ xj ≡ ri,j mod p0, or xj = ω

for ci,j , rij : 0 ≤ ci,j , ri,j < p0;
in addition, those ϕi’s are mutually exclusive.

Let w be a data ω-word over an alphabet Γ and ϕ be a ω-QFSP formula over the variable
set VΓ, then the definition of w |=c ϕ, i.e. w satisfies the class condition ϕ, is a natural
extension of that for data words.

A commutative Büchi data automaton (CBDA) is a binary tuple (A , ϕ), where A =
(Q,Σ× {⊥,>},Γ, δ, q0, F ) is a Büchi letter-to-letter transducer and ϕ is a ω-QFSP formula
over the variable set VΓ.

A CBDA (A , ϕ) accepts a data ω-word w =
(
σ1
d1

)(
σ2
d2

)
. . . if there is an accepting

run of A over Profile(w) which produces an ω-word γ1γ2 . . . such that the data ω-word
w′ =

(
γ1
d1

)(
γ2
d2

)
. . . . . . satisfies that w′ |=c ϕ.

Similar to the logic EMSO2
#(+1,∼,Σ) in Section 3, we define the logic E∞MSO2

#(+1,∼
,Σ) as follows: It includes all the formulas ∃∞R1 . . . ∃∞Rk∃S1 . . . ∃Sl(ϕ ∧ ∀xψ), where
ϕ ∈ FO2(+1,∼,Σ, R1, . . . , Rk, S1, . . . , Sl) and ψ is the same as the ψ in EMSO2

#(+1,∼,Σ)
formulas, except that the atomic formulas in ψ can be also of the form #x∼y∧τ(y)(y) = ω.

The semantics of E∞MSO2(+1,∼,Σ) formulas are defined similar to EMSO2
#(+1,∼,Σ)

formulas, except that the unary relation symbols R1, . . . , Rk are restricted to bind to infinite
sets and #x∼y∧τ(y)(y) = ω are interpreted as the fact that the symbol τ appears infinitely
many times in the class that contains the position x.

Similar to CDA, we also have the following logical characterization of CBDA.

I Theorem 17. E∞MSO2
#(+1,∼,Σ) and CBDA are expressively equivalent.

CSL’12
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The proof of Theorem 17 is similar to that for WBDA in [12].

I Theorem 18. The nonemptiness of CBDA can be decided in 4-NEXPTIME.

The proof of Theorem 18 is by a nondeterminstic exponential time reduction to the
nonemptiness of CDA on data words.
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