
Knowledge Spaces and the Completeness of
Learning Strategies∗

Stefano Berardi1 and Ugo de’Liguoro2

1 Dipartimento di Informatica, Università di Torino
c.so Svizzera 185 Torino, Itatly
stefano@di.unito.it

2 Dipartimento di Informatica, Università di Torino
c.so Svizzera 185 Torino, Itatly
deliguoro@di.unito.it

Abstract
We propose a theory of learning aimed to formalize some ideas underlying Coquand’s game
semantics and Krivine’s realizability of classical logic. We introduce a notion of knowledge state
together with a new topology, capturing finite positive and negative information that guides a
learning strategy. We use a leading example to illustrate how non-constructive proofs lead to
continuous and effective learning strategies over knowledge spaces, and prove that our learning
semantics is sound and complete w.r.t. classical truth, as it is the case for Coquand’s and
Krivine’s approaches.

1998 ACM Subject Classification F.4.1 Mathematical Logic; F.1.2 [Theory of Computation]:
Modes of Computation; Interactive and reactive computation; I.2.6 [Artificial Intelligence]: Learn-
ing Induction.

Keywords and phrases Classical Logic, Proof Mining, Game Semantics, Learning, Realizability.

Digital Object Identifier 10.4230/LIPIcs.CSL.2012.77

1 Introduction

Several methods have been proposed to give a recursive interpretation of non-recursive
constructions of mathematical objects, whose existence and properties are classically provable.
A non-exhaustive list includes the continuation-based approach initiated by Griffin [10], the
game theoretic semantics of classical arithmetic by Coquand [5] and Krivine’s realizability of
classical logic [12].

As observed by Coquand, there is a common informal idea underlying the different
approaches, which is learning. With respect to the dialogic approach, learning consists into
interpreting the strategy for the defender of a statement against the refuter by a strategy
guiding the interaction between a learning agent and the “world”, representing what can be
experienced by direct computation.

Under the influence of Gold’s ideas [8, 9] and of Hayashi’s Limit Computable Mathematics
[11] we have proposed a formal theory of “learning” and “well founded limits” in [2]. In the
theory the goal of the learning process is to find an evidence, or a witness as it is usually
called, of the truth of some given sentence, which is the “problem” that the learning strategy
solves. Such an evidence is always tentative, since it could be attained only in the ideal

∗ This work was partially supported by PRIN project n. 2008H49TEH.

© Stefano Berardi and Ugo de’Liguoro;
licensed under Creative Commons License NC-ND

Computer Science Logic 2012 (CSL’12).
Editors: Patrick Cégielski, Arnaud Durand; pp. 77–91

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2012.77
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

78 Knowledge Spaces

limit. The task of the learning strategy is to tell how to react to the discovery that the
current guess is actually wrong, and this is done on the basis of the knowledge collected in
the learning process, which includes all the “counterexamples” that have been seen up to the
time.

Here we propose the same idea, but in the different perspective of topological spaces
and continuous maps. We assume having an ideal object being the result of some non-
effective mental construction and satisfying some decidable property. We say that this
construction may be learned w.r.t. to the property if we may find a “finite approximation”
of the construction which still satisfies the property. In particular given a classical proof of
an existential statement, we see the computational content of the proof as the activity of
guessing more and more about the object (individual) the sentence is about, without ever
obtaining a full information; in a discrete setting such as natural numbers, the approximation
is actually a different object, which we think as “close” to the ideal one, the “limit”, only
with respect to some given property which both satisfy.

When reasoning about ideal objects, we deal with descriptions rather than with the
objects themselves. While learning of an ideal object we have step by step certain amounts
of knowledge, which consist of pieces of evidence (e.g. decidable statements): therefore we
topologize states of knowledge to express the idea that a continuous strategy only depends
on finite positive and negative information to yield finite approximations of the ideal limit.
We call interactive realizer any continuous function of states of knowledge that roughly tells
which are the further guesses to improve the given knowledge, and how to react to the
discovery of negative evidences (e.g. counterexamples to certain assumptions). We claim that
an interactive realizer corresponds to a lambda term with continuations in Griffin’s work,
to a classical realizer in Krivine’s sense and to a winning strategy in the sense of Coquand:
however, we will not support this claim here.

We call a model any perfect (usually infinite) knowledge state. The main result of this
paper is that any object that can be ideally learned in a model can be effectively learned
in a finite state of knowledge approximating the model, and this state is found by means
of a realizer. Since models represent classical truth, the completeness theorem can be read
as stating that the learning semantics for classical proofs is complete w.r.t. classical truth,
namely Tarskian truth, as it is the case for Coquand’s dialogic semantics of proofs and for
Krivine’s classical realizability, and that the learning process is indeed effective.

The paper is organized as follows. In §2 we introduce a motivating example, which is
used throughout the paper. In §3 we define the state knowledge and topology. In §4 the
concept of relative truth is introduced to define sound, complete and model knowledge states.
Finally in §5 we define interactive realizability and prove the completeness theorem. Due to
space restrictions, proofs of technical lemmas have been omitted.

Related works
The suggestion by Coquand that the dialogic interpretation of classical proofs could be seen
as learning of some abstract entities can be found in [4], a preliminary version of [5]. The
idea has been illustrated by means of a suggestive example by von Plato in [14]. Beside
Krivine’s [12], Miquel’s work in [13] illustrates in detail the behavior of classical realizability
of existential statements (also in comparison to Friedman’s method), and we strongly believe
that the construction is a learning process in the sense of the present paper.

Learning in the limit of undecidable properties and ideal entities comes from Gold’s work
[8, 9], and has been recently rediscovered by Hayashi e.g. in [11]. We have investigated

S. Berardi and U. de’Liguoro 79

the concept of learning in the limit incorporating Coquand’s ideas in [2], although in a
combinatory rather than topological perspective. We have further elaborated the concept
of learnable in the limit in [3], where a “solution” in terms of the following §5 is called
“individual”, since we identify the ideal limit with the map generating its approximations
from states of knowledge. The formal definition of the state topology, however, is new with
the present work, as well as the treatment of the general, non-monotonic case. Also the
concept of “interactive realizability” has been introduced in [3], but in the simpler case of
monotonic learning. Essentially the same construction as in [3] is used in [1] to define a
realizability interpretation of HA plus excluded middle restricted to Σ0

1-formulas. It turns
out that interactive realizability is a generalisation of Kleene’s realizability, and this motivates
the terminology.

2 Solving problems by learning

To illustrate the idea of learning strategies, either monotonic or non-monotonic, we propose
an example suggested by Coquand and developed by Fridlender in [6]. Let f1, f2 be total
functions over N. Fix some integer k > 0 and consider the statements: “there is an increasing
sequence of k integers which is weakly increasing w.r.t. f1” and “there is an increasing
sequence of k integers which is weakly increasing w.r.t. f1 and f2”. Formally:

∃x1 . . . ∃xk. x1 < · · · < xk ∧ f1(x1) ≤ · · · ≤ f1(xk) (1)

∃x1 . . . ∃xk. x1 < · · · < xk ∧ f1(x1) ≤ · · · ≤ f1(xk) ∧ f2(x1) ≤ · · · ≤ f2(xk) (2)

We look at these statements as the problems of finding a k-tuple n1 < · · · < nk witnessing
their truth. We begin by observing that these statements can be proved classically as follows.
For any f : N→ N and A ⊆ N we say that “n is a local minimum of f w.r.t. A” (shortly n
is an f,A-minimum) if n is the minimum of f in A ∩ [n,∞[. Formally:

f,A-min(n)⇔ ∀y ∈ A. n < y ⇒ f(n) ≤ f(y).

Observe that the predicate f,A-min(n) is undecidable in general, even if f is recursive and
A decidable. The statement ¬f,A-min(n) is classically equivalent to ∃y ∈ A. n < y ∧ f(n) >
f(y). For any f : N→ N and infinite A ⊆ N, we denote by

Af = {a ∈ A | f,A-min(a)} ⊆ A

the set of all f,A-minima. We now study the set Af .

I Lemma 1. For any f : N→ N and infinite A ⊆ N, the set Af = {a ∈ A | f,A-min(a)} of
f,A-minima is infinite, and f is monotonic over Af .

Proof. Toward a contradiction suppose that Af is finite, possibly empty. Then there exists
a0 = min(A \ Af), as A is infinite. By definition of a0 for all a ∈ A with a ≥ a0 we have
¬f,A-min(a), that is: there is some a′ > a, a′ ∈ A such that f(a) > f(a′). If we choose
a = a0 we deduce that there exists some a1 ∈ A such that a0 < a1 and f(a0) > f(a1), and
so on. By iterating the reasoning we get an infinite sequence a0 < a1 < a2 < · · · such that
f(ai) > f(ai+1) for all i ∈ N, which is on turn an infinite descending chain in N, that is an
absurdity.

I Theorem 2. Both statements (1) and (2) are classically provable.

CSL’12

80 Knowledge Spaces

Proof. In Lemma 1.2 take A = N: then f1 is monotonic over the infinite set Af1 . If we take
the first k elements of Af1 we have an increasing sequence of k integers whose values are
weakly increasing under f1, establishing (1).

To prove (2) we use use again Lemma 1.2 taking A = Nf1 , which we know to be infinite
by the same lemma; then f1, f2 are both monotonic over the infinite set Af2 = (Nf1)f2 .

The proof of Lemma 1 and its use in the proof of Theorem 2 are non-constructive, as
they rely on the “computation” of the minimum of f in A for certain f and A. In order to
compute the minimum of f we need, in general, to know infinitely many values of f . However,
this proof may be interpreted by a computation as soon as we only require finitely many
n1, . . . , nk that satisfy (1) or (2): n1, . . . , nk may be found using a finite knowledge about f .

Indeed the proof of Lemma 1 can be turned into an effective strategy to learn a solution
to problem (1), assuming that f1 is recursive. The basic remark is that we do not actually
need to know the infinitely many elements of Nf1 , nor we have to produce some n which
belongs to Nf1 beyond any doubt. We can approximate the infinite set Nf1 by some finite set
B, whose elements are not necessarily in Nf1 , rather they are just f1,N-minima as far as we
know. B is a kind of hypothesis about Nf1 .

More precisely, we will find a set B such that f1, B-min(n) for all n ∈ B. This property
is trivially true for any singleton set, say {0}. In the general case, if B has k elements or
more, then by definition of f1, B-min the set B is a solution to (1). Otherwise we take any
m > max(B) and try adding m to B. Since we cannot decide whether any n is a local
minimum of f1, we are not allowed to increase B to B ∪ {m}, because it could be the case
that f1(n) > f1(m) for some n ∈ B. Rather we update B, by removing all n ∈ B such that
f1(n) > f1(m):

B′ = {n ∈ B | f1(n) ≤ f1(m)} ∪ {m},

The new set B′ includes m and satisfies the invariant property of containing only f1, B
′-

minima. The cardinality of B′ is not necessarily greater than that of B, so that we need an
argument to conclude that, starting from the singleton {0} and iterating the step from B to
B′, the learning agent will eventually reach a k-element set with the required property.

The termination argument in the case works as follows. Although the sequence of sets is
not increasing w.r.t. inclusion, the knowledge that some elements are not local minima of
f1 grows monotonically, since more and more pairs n,m are found such that f1(n) > f1(m).
From this remark, one can prove by a fixed-point argument (over a suitable topology) that
the growth of knowledge eventually ends, which implies that a set B with k elements will be
found after finitely many steps. In this case we speak of monotonic learning.

In order to include an example of non-monotonic learning, we assume that both f1 and
f2 are recursive, and we outline an effective computation approximating an initial segment of
(Nf1)f2 , solving problem (2). The informal interpretation we include here will be formalized
using the notion of layered valuation.

As it happens in the classical proof of Theorem 2, we iterate the same method used for
problem (1), and build a C ⊆ B of f2, C-minima, where B is the current approximation of
the infinite set Nf1 . In doing so the learning agent assumes that B is a subset of Nf1 (though
he cannot be certain of this), and that all elements of C are f2-minima w.r.t. Nf1 (again an
uncertain belief). At each step, the learner takes some m ∈ B, such that m > max(C), and
manages to add m to C, possibly by removing some of its elements, by computing:

C ′ = {p ∈ C | f2(p) ≤ f2(m)} ∪ {m} ⊆ B.

S. Berardi and U. de’Liguoro 81

This is only possible when such an m exists in B: if not the algorithm generating B has to
be resumed to get a larger set containing an element greater than max(C). But since B does
not grow monotonically, elements of C will be dropped while computing C ′ also because they
are no longer in B. This makes the convergence proof much harder. Indeed the knowledge
accumulated while building B takes the simple form of (sets of statements) f1(n) > f1(m),
and it grows monotonically; on the contrary the “knowledge” gathered while computing C
consists of more complex statements of the form: m ∈ B ∧ f2(n) > f2(m), with B changing
non-monotonically during the computation of C. This knowledge is the conjunction of an
hypothesis m ∈ B and a fact, f2(n) > f2(m). This second layer of of knowledge, mixing
hypothesis and fact, does not grow monotonically, because any hypothesis m ∈ B may turn
out to be false: therefore it is unsafe, yet it guides the construction of C. In this case we
speak non-monotonic learning. Non-monotonic learning is the more general form of learning.

3 States of knowledge and their topology

There are three kinds of entities in learning: questions, answers and states of knowledge. The
main concern are states of knowledge, which on turn are certain sets of answers. Answers
are viewed as atomic objects, since their internal structure is immaterial. Questions instead
are represented indirectly by equivalence classes of answers, each to be thought of as the set
of alternative, incompatible choices for an answer to the same question.

I Definition 3 (Knowledge Structure and State of Knowledge). A knowledge structure (A,∼)
consists of a a non-empty at most countable set A of answers and an equivalence relation
∼ ⊆ A× A. As a topological space, A is equipped with the discrete topology.

The set Q = A/∼ of equivalence classes [x] w.r.t. ∼ is the set of questions, and it is
equipped with the discrete topology.

A subset X ⊆ A is a state of knowledge if for all x ∈ A the set X ∩ [x] is either empty
or a singleton. We denote by S the set of knowledge states and by Sfin the subset of finite
elements of S.

If x ∼ y then x, y are two answers to the same question. The equivalence class [x]
abstractly represents the question answered by x. Two answers x, y ∈ A are compatible,
written x#y, if they are not different answers to the same question:

x#y ⇔ x = y ∨ x 6∼ y.

Example 1 Let us reconsider the example in §2. A knowledge structure (A0,∼0) for learning
a solution to (1) can be defined by taking A0 = {(n,m) ∈ N×N | n < m}, where we interpret
a pair (n,m) as the statement: “m is a counterexample to f1,N-min(n)”, and more precisely
as the formula:

n < m ∧ f1(n) > f1(m).

If we think of m as the answer to the question about n, we obtain the definition of the
relation (n,m) ∼0 (n′,m′) by n = n′.

A knowledge structure (A1,∼1) for learning a solution to (2) can be defined by taking
A1 = A0 and ∼1 =∼2. (A1,∼1) has not the same intended meaning as (A0,∼0): an answer
(n,m) ∈ A1 is interpreted by the statement:

n < m ∧ f2(n) > f2(m) ∧ n,m ∈ Nf1 .

CSL’12

82 Knowledge Spaces

Finally we set A2 = A0]A1 = {(i, n,m) | i ∈ {0, 1} & (n,m) ∈ Ai}, namely the disjoint
union of A0 and A1 and we define (i, n,m) ∼2 (j, n′,m′) if and only if i = j and n = n′ (that
is (n,m) ∼i (n′,m′)).

Let S2 be the knowledge space associated to A2 and X ∈ S2 be any state of knowledge.
Then we interpret (0, n,m) ∈ X by “the agent knows at X that n < m and f1(n) > f1(m)”,
hence that n is not in Nf1 . We interpret: for all p ∈ N, (0, n, p) 6∈ X by “the agent knows
at X of no p such that n < p and f1(n) > f1(p)”, hence he believes that n is in Nf1 . We
write (Nf1)X = {n ∈ N | ∀p ∈ N.(0, n, p) 6∈ X} for the set of n which the agent believes to be
in Nf1 at X. In the same way we write ((Nf1)f2)X = {n ∈ (Nf1)X | ∀p ∈ N.(1, n, p) 6∈ X}
for the set of n which the agent believes to be in (Nf1)f2 at X. We will see in the following
sections that (A2,∼2) is a knowledge structure apt to learn (2).

The “state of knowledge” of a finite agent should be finite; for the sake of the theory we
also consider infinite states of knowledge, which are naturally approximated by finite ones in
a sense to be made precise by a topology. Let us define a query map q : S×Q→ Pfin(A) by
q(X, [x]) = X ∩ [x]. Then q(X, [x]) is either a singleton {y}, meaning that y is the answer at
X to the question [x], or the empty set, meaning that the agent knows at X of no answer
to [x], and he assumes that there is none. Take the discrete topology over Pfin(A); we then
consider the smallest topology over S making q continuous.

I Definition 4 (State Topology). The state topology (S,Ω(S)) is generated by the sub-basics
Ax, Bx, with x ∈ A:

Ax = {X ∈ Sfin | x ∈ X} = {X ∈ Sfin | X ∩ [x] = {x}},

Bx = {X ∈ Sfin | X ∩ [x] = ∅}.

Ax is the set of all states X such that q(X, [x]) = {x}, which means that at state X the
answer x ∈ A has been selected to the question [x] ∈ Q; on the other hand if X ∈ Bx, that
is q(X, [x]) = ∅, then at X the learning agent knows of no answer to the question [x]. Let
X,Y, Z range over S, and s, t over Sfin. By definition, a basic open of Ω(S) has the shape:

OU,V =
⋂
x∈U

Ax ∩
⋂
y∈V

By,

for finite U, V ⊆ A. If ¬x#y, that is x ∼ y and x 6= y, then Ax ∩ Ay = ∅, because if
x, y ∈ X then X is inconsistent, so that ∅ is a basic open. On the other hand if x ∼ y then
Bx = By. Therefore without loss of generality we assume U, V to be consistent, and that
all basic opens of Ω(S) are of the form Os,t, for some s, t ∈ Sfin. Summing up, assume that
s = {x1, . . . , xn} and t = {y1, . . . , ym}. Then X ∈ Os,t means that the agent at X knows
the answers x1, . . . , xn to the questions [x1], . . . , [xn] (a finite positive information), while he
knows of no answer to the questions [y1], . . . , [ym], and assumes that there is none (a finite
negative information).

The state topology is distinct from, yet strictly related to, several well-known topologies.
Ω(S) is discrete if and only if Q is finite (there are finitely many equivalence classes). Ω(S) is
homeomorphic to the product space Π[x]∈Q([x]] 1) of the discrete topologies over [x]] 1,
where 1 is any singleton (representing the “undefined” answer to the question [x]) and] is
disjoint union. Every state topology is homeomorphic to some subspace of the Baire topology
over NN. The state topology is totally disconnected and Hausdorff: it is compact (that is, is
a Stone space) if and only if all equivalence classes are finite. If all equivalence classes in
Q are singletons (that is, if ∼ is the equality relation on A) and Q is infinite then Ω(S) is

S. Berardi and U. de’Liguoro 83

homeomorphic to the Cantor space 2N. If all equivalence classes in Q are infinite and Q is
infinite, then Ω(S) is homeomorphic to the whole Baire space.

A clopen is an open and closed set; hence clopens are closed under complement, finite
unions and intersections. There are significative examples of clopen sets in S.

I Lemma 5 (Sub-basic opens of State Topology are clopen). Assume that x ∈ A, f : S→ I is
continuous, I is a discrete space and J ⊆ I. Then:
1. Bx is clopen
2. Ax is clopen
3. f−1(J) is clopen.

I Remark. As a consequence of Lemma 5.1 we have that the predicate n ∈ NXf1
is continuous

in X, since {X | n ∈ NXf1
} = B(0,n,n+1) which is a clopen set, and indeed n 6∈ NXf1

if and
only if X ∈

⋃
m>nA(0,n,m), namely the complement of B(0,n,n+1). A similar remark holds

for n ∈ (Nf1)Xf2
.

It is instructive to compare the state topology to Scott and Lawson topologies over S.
First observe that S is a poset by subset inclusion, and it is downward closed. It follows
that (S,∩,⊆) is an inf-semilattice with bottom ∅. S is closed under arbitrary but non-empty
inf, as the empty inf, namely the whole set A, is not consistent in general. Indeed S is not
closed under union, unless the compatibility relation is the identity. We say that X and Y
are compatible w.r.t. inclusion, if X ⊆ Z ⊇ Y for some Z ∈ S. Clearly the union of a family
U ⊆ S belongs to S if and only if all elements of U are pairwise compatible sets. By this S is
closed under directed sups, so it is a coherence space in the sense of Girard and a cpo, which
in fact has compacts K(S) = Sfin and it is algebraic.

It follows that the Scott topology over the cpo (S,⊆) is determined by taking all the
Ax with x ∈ A as sub-basics. On the other hand any Bx is a Scott-closed set, since its
complement S \Bx is equal to the union

⋃
{Ay | y ∈ [x]} of Scott opens. However Bx is not

Scott-open because it is not upward closed.
Recall that (see [7]) the lower topology over a poset is generated by the complements of

principal filters; the Lawson topology is the smallest refinement of both the lower and the
Scott topology. In case of the cpo (S,⊆) the Lawson topology is generated by the sub-basics:

X ↑ = {Y ∈ S | X 6⊆ Y } and s↑ = {Y ∈ S | s ⊆ Y },

for X ∈ S and s ∈ Sfin, representing the negative and positive information respectively.
The state topology includes the Lawson topology, and in general it is finer than that.

The next lemma tells that all Lawson opens are open in the state topology, but if some
equivalence class [x] is infinite then some open of the state topology is not open in the Lawson
topology. Recall that Ω(S) denotes the family of open sets in the state topology.

I Lemma 6.
1. All basic opens of Lawson topology are in Ω(S).
2. For all x ∈ A, Bx is Lawson-open if and only if [x] is finite.

As an immediate consequence of Lemma 6 we have the following.

I Theorem 7 (State versus Lawson Topology). The state topology Ω(S) refines the Lawson
topology over the cpo (S,⊆), and they coincide if and only if [x] is finite for all x ∈ A.

CSL’12

84 Knowledge Spaces

4 Relative truth and layered states

Answers to a question can be either true or false. In the perspective of learning we think of
truth values with respect to the actual knowledge that a learning agent can have at some
stage of the process, so that we relativize the valuation of the answers to the knowledge
states. Furthermore the example of learning the solution to problem (2) in §2 shows that
there can be dependencies among answers in a state of knowledge. We formalize this by
means of a stratification into levels of the set of answers. In the example of §1 we only need
levels 0 and 1. In the definition, however, we allow any number of levels, even transfinite.

Denote with Ord the class of ordinals. Let us assume the existence of a map lev : A→ Ord,
associating to each answer x the ordinal lev(x), and such that any two answers to the same
question are of the same level. If X ∈ S and α ∈ Ord we write X � α = {x ∈ X | lev(x) < α}.
We can now make precise the notions of level and of truth of an answer w.r.t. a knowledge
state. Let us denote with 2 = {true, false} the set of truth values.

I Definition 8 (Layered Valuations). A layered knowledge structure is any tuple (A,∼, lev, tr),
with (A,∼) a knowledge structure, lev : A→ Ord and tr : A× S→ 2 two maps such that:
1. Two answers to the same question have the same level:

∀x, y ∈ A.(x ∼ y ⇒ lev(x) = lev(y))

2. tr is continuous, by taking A and 2 with the discrete topology, S with the state topology
Ω(S), and A× S with the product topology;

3. tr is layered: ∀x ∈ A, X ∈ S.tr(x,X) = tr(x,X � lev(x))

Set Tx = tr(x)−1({true}) = {X ∈ S | tr(x,X) = true}, and similarly Fx = tr(x)−1({false}).
When tr is a layered valuation, if X ∈ Tx or X ∈ Fx, we say that x is true or false w.r.t. X
respectively. By definition, the truth of x w.r.t. X depends only on the answers of lower
level than lev(x); it follows that

lev(x) = 0⇒ tr(x,X) = tr(x, ∅)

that is, the truth value of answers of level 0 is absolute, and it depends just on the choice of
tr. Level 0 answers play the role of “facts”. On the contrary answers of level greater than
0 are better seen as empirical hypothesis, that are considered true as far as they are not
falsified by answers of lower level.

Example 2 Continuing example 1, let us set lev(i, n,m) = i. Then we define the meaning
of the answers in A2 via the mapping tr by putting: tr((0, n,m), X) = true if and only if
f1(n) > f1(m), and: tr((1, n,m), X) = true if and only if n,m ∈ (Nf1)X and f2(n) > f2(m).
Recall that (Nf1)X is the set of n such that (0, n, p) 6∈ X for all p, and that if (i, n,m) ∈
A2 = A0] A1 then n < m.

Clearly tr is layered since tr((i, n,m), X) does not depend on X when i = 0, while when
i = 1 it depends on X � 1 = {(i, n,m) ∈ X | i = 0}, which is morally A0 ∩X.

To see that tr is continuous let us observe that tr((0, n,m), X) is the constant function
w.r.t. X, and that tr((1, n,m), X) = true iff and only if f2(n) > f2(m) and n,m ∈ (Nf1)X ,
and the set of X for which this is true is a clopen as a consequence of Lemma 5.

From now on, we assume that some layered knowledge structure (A,∼, lev, tr) has been
fixed, with some level map lev and some continuous layered truth predicate tr. We now
introduce the set S of sound knowledge states (those from which nothing should be removed),
the set C of complete knowledge states (those to which nothing should be added), the set M

S. Berardi and U. de’Liguoro 85

of model states (the “perfect” states, those from which nothing should be removed and to
which nothing should be added).

I Definition 9 (Sound and Complete States). Let X ∈ S, x ∈ A. Then:
1. X is sound if ∀x ∈ A. x ∈ X ⇒ tr(x,X) = true;
2. X is complete if ∀x ∈ A. X ∩ [x] = ∅ ⇒ tr(x,X) = false;
3. X is a model if it is sound and complete.
We call S, C and M the sets of sound, complete and model states respectively.

A state of knowledge X is sound if all the answers it contains are true w.r.t. X itself; X
is complete if no answer which is true w.r.t. X and compatible with the answers in X can
be consistently added to X; hence X is a model if it is made of answers true w.r.t. X and it
is maximal. We think of a model X as a perfect representation of the world. For instance
with respect to the examples in §2 and §3, if X is a model then the sets (Nf1)X and (Nf1)Xf2

are equal to (Nf1) and (Nf1)f2 respectively, that is the beliefs of the agent perfectly agree
with absolute truth.

In spite of this interpretation, models are far from being unique even w.r.t. a fixed map
tr. Two models can include two different answers to the same question, because a question
can have many true answers, while w.r.t. any state of knowledge each question is associated
to a memory cell having room for a single answer.

Let us define Sx = {X ∈ S | x ∈ X ⇒ tr(x,X) = true}, or equivalently Sx = (S\Ax)∪Tx;
Cx = {X ∈ S | X ∩ [x] = ∅ ⇒ tr(x,X) = false}, that is Cx = (S \Bx) ∪ Fx, and Mx = Sx ∩ Cx.
Clearly we have S =

⋂
x∈A Sx, C =

⋂
x∈A Cx and M =

⋂
x∈A Mx.

From a topological viewpoint, it is interesting to observe that all the above subsets of S
are closed in Ω(S), while some of them are clopen.

I Lemma 10. For all x ∈ A, Tx,Fx, Sx, Cx, Mx are clopen in Ω(S). S, C, M are closed in Ω(S).

It is immediate that sound sets exist, as well as complete ones: trivial examples are ∅
which is vacuously sound, and any set X including one answer x for each equivalence class
[x] ∈ Q, which is vacuously complete but not necessarily sound. Here is a non-trivial though
simple example of these concepts.

Example 3 Suppose that f1(0) = 2 = f1(n) for all n > 2, and that f1(1) = 1 and f1(2) = 0.
If we consider the states over A0 only, and the restriction to A0 of the mapping tr in Example
2, we have the models {(0, 0, 1), (0, 1, 2)} and {(0, 0, 2), (0, 1, 2)}. Any subset of these sets is
sound, while {(0, n, n+ 1) | n ∈ N} is complete but not sound.

It is not obvious, however, that models exist in general.

I Theorem 11 (Existence of Models). For every layered knowledge structure (A,∼, lev, tr)
and space of knowledge S over it, there exists a model X ∈ S.

Proof. Fix a layered valuation tr, and an arbitrary indexing x0, x1, . . . of the countable set
A. For each x ∈ A and Y ∈ S set:

γ(x, Y) =

{xi} if i is the minimum index j s.t.

xj ∈ [x] ∧ tr(xj , Y) = true, if it exists

∅ otherwise

Now define inductively for each α ∈ Ord:

Xα =
⋃
{γ(x,X<α) | lev(x) = α} where X<α =

⋃
β<α

Xβ

CSL’12

86 Knowledge Spaces

In words, Xα is obtained by choosing an answer x′, if any, for each equivalence class [x] with
lev(x) = α, such that x′ is true w.r.t. all the choices made at previous stages β < α. Since
xi ∈ [x] implies that lev(xi) = lev(x), Xα is made of answers of level α.

Then we prove that X =
⋃
α∈OrdXα is a model. First by construction Xα is consistent

for all α, because it contains at most one answer for each equivalence class; this implies that
X is consistent, since two answers in the same equivalence class are in the same Xα. Second,
if x ∈ X � α then x ∈ X<α, so that:

tr(x,X) = tr(x,X � lev(x)) = tr(x,X<lev(x)) = true

and X is sound. Finally, for all x ∈ A, if X ∩ [x] = ∅ then

X ∩ [x] = ∅ ⇒ Xlev(x) ∩ [x] = ∅
⇒ ∀x′ ∈ [x]. tr(x′, X<lev(x)) = false
⇒ tr(x,X<lev(x)) = false
⇒ tr(x,X) = false

by tr(x,X) = tr(x,X<lev(x)). Therefore X is complete and hence a model.

The construction of Theorem 11 is not effective, even when the layered knowledge structure
is recursive. Assume that γ ∈ Ord is the number of levels of the knowledge structure. If
we look closely to the proof, we see that we defined a model by some ∆0

1+γ-predicate. In
particular, if there are infinitely many levels, then the definition is not an arithmetical
predicate. We claim that the recursive complexity in our result is optimal: for any γ there is
some recursive layered knowledge structure with γ levels, whose models are all (the extensions
of) ∆0

1+γ-complete predicates, and therefore are never ∆0
1+δ-predicate, for any δ < γ. In

general models are not recursive sets, and a fortiori are not finite.

5 Interactive Realizability

Given a layered knowledge structure (A,∼, lev, tr), the goal of a learning process is to reach
some sound X ∈ S which is sufficiently large to compute a solution to the problem at
hand, e.g. a k-tuple n1, . . . , nk of natural numbers witnessing the truth of (1) or of (2)
in Section 2. To make this precise, we formally define what does it mean that a problem
P ⊆ N has a solution α relative to a state X. Informally, we require that α(X) is a number
continuously depending on a knowledge state X, which satisfies P whenever X is a model.
In the terminology of [3] α is an “individual”.

I Definition 12 (Solution of a Problem w.r.t. a Knowledge Structure). Let (A,∼, lev, tr) be
a layered knowledge structure and S its space of states of knowledge. Given a continuous
α : S → N (where N is a discrete space) a predicate P ⊆ N (a problem), and X ∈ S, we
define:
1. X |=A α : P ⇔ α(X) ∈ P ,
2. |=A α : P ⇔ ∀X ∈ S. X is a model ⇒ X |=A α : P .
When |=A α : P we say that α is a solution of P w.r.t. (A,∼).

We shall omit the subscript A in |=A when A is understood.

Example 4 Let (A2,∼2) be the knowledge structure defined in example 1 in §3, and S2
its knowledge space. Fix k ∈ N; writing 〈n1, . . . , nk〉 for the code number of the k-tuple

S. Berardi and U. de’Liguoro 87

n1, . . . , nk we define the “problem” P2:

P2 = {〈n1, . . . , nk〉 |
∧
i<k

(ni < ni+1 ∧ f1(ni) ≤ f1(ni+1) ∧ f2(ni) ≤ f2(ni+1))},

P2 is the set of all (coding of) k-tuple witnessing that (1) and (2) in §2 are true. Now for
any X ∈ S define:

α2(X) = min{〈n1, . . . , nk〉 | n1 < · · · < nk ∧ n1, . . . , nk ∈ (Nf1)Xf2
}

where min is understood as the lexicographic ordering of the k-tuples. By definition the
mapping α2 picks the first k elements in the set (Nf1)Xf2

in increasing order. α2 is no dummy
search procedure, is a reading primitive that assumes that X has been given. α2 is always
defined because NXf1

and (Nf1)Xf2
are infinite for every X ∈ S2. Indeed this can be proved by

a relativization to X of the argument of Lemma 1: if n 6∈ NXf1
then there exists m ∈ N s.t.

n < m but f1(n) > f1(m) in the knowledge state X, namely we have (0, n,m) ∈ X. Were
NXf1

finite, we would be able to find infinitely many such m forming an infinite increasing
chain, and so an infinite descending chain via f1. Similarly one proves that (Nf1)Xf2

is
infinite (quantifying over NXf1

in place of N and coding the counterexamples known at X by
(1, n,m) ∈ X).

We show that α2 is continuous. Let α2(X) = 〈n1, . . . , nk〉: then ni ∈ (Nf1)Xf2
for all

i ≤ k, and and for all m < nk with m 6= n1, . . . , nk, we have m 6∈ (Nf1)Xf2
. Conversely one

can check that for all Y ∈ S, if
∧
i≤k ni ∈ (Nf1)Yf2

and
∧
m<nk,m 6=n1,...,nk

m 6∈ (Nf1)Yf2
then

α2(Y) = 〈n1, . . . , nk〉. But since we know that the predicate n ∈ (Nf1)Yf2
is continuous in Y

(see the remark after Lemma 5), the last condition defines a finite intersection of clopens,
which is clopen.

We show that α2 is a solution of P2, that is, that |= α2 : P2. Let X be a model: then we
have (Nf1)Xf2

= (Nf1)f2 . Since α(X) = 〈n1, . . . , nk〉 ∈ (Nf1)Xf2
, we deduce α2(X) ∈ (Nf1)f2 ,

that is, that f1 and f2 are weakly increasing w.r.t. n1, . . . , nk. Thus, α2(X) ∈ P2.

A solution α is some way to produce an inhabitant α(X) ∈ P out of any model X. A
learning strategy for a problem P admitting a solution α w.r.t. (A,∼, lev, tr) is ideally a
search procedure of some model X ∈ S. But models are in general infinite and non-recursive
states of knowledge: to make learning effective we rely on the continuity of α which implies
that if α(X) = n ∈ P for some model X there exists a finite s ⊆ X such that α(s) = n.

We describe the search of such finite sound approximations of a model X via certain
continuous functions r over S. The function r such that for any sound X (not necessarily a
model) the set r(X) is a finite set of answers that are not in X but are compatible with the
answers in X and true w.r.t. X, and if r(X) = ∅ then α(X) ∈ P . When such a function
exists for given P and α we say that it is a realizer and that the solution α is realized by r.

I Definition 13 (Realizers and Zeros). A realizer is a continuous map r : S→ Pfin(A) such
that for all X ∈ S and all x ∈ r(X):
1. X ∩ [x] = ∅,
2. tr(x,X) = true.
We denote by R the set of realizers. Finally we say that X ∈ S is a zero of r ∈ R if r(X) = ∅.

We can see a realizer r as the essential part of a learning strategy, which tries to update
the current state of knowledge. This is obtained by evaluating r(X) to get a finite set of new
answers by which X could be soundly extended. To see this let new : S× Pfin(A)→ Pfin(A)
be defined by:

new(X,U) = {x ∈ U | X ∩ [x] = ∅ ∧ tr(x,X) = true}.

CSL’12

88 Knowledge Spaces

The function new is continuous, where Pfin(A) and S× Pfin(A) are taken with discrete and
product topology respectively.

Say that an operator over S is any continuous map r : S → Pfin(A), and call OpS, or
simply Op, the set of operators over S. For r ∈ Op we set: r̂(X) = new(X, r(X)). Note that
the set of realizers is the subset of operators such that r = r̂.

Example 5 We propose a realizer solving the problem (1), expressed by the predicate:

P1 = {〈n1, . . . , nk〉 |
∧
i<k

(ni < ni+1 ∧ f1(ni) ≤ f1(ni+1))}.

We first define a function β1(X, 〈n1, . . . , nh〉) extending any list 〈n1, . . . , nh〉 with h ≤ k to a
solution of (1):

β1(X, 〈n1, . . . , nh〉) =

〈n1, . . . , nh〉 if h = k

β1(X, 〈n1, . . . , nh,m〉) where m is the minimum s.t.
m ∈ NXf1

and
m > nh if h > 0.

A function solving (1) may then be defined by α1(X) = β1(X, 〈 〉). We claim that |= α1 : P1.
Indeed β1 is continuous w.r.t. X since m ∈ NXf1

is equivalent to X 6∈ B(0,m,m+1) which is a
clopen by 5.1, so that α1 is continuous. Further, if X is a model, then α1(X) ∈ P1. We define
a realizer r1 looking for some X such that α1(X) solves P1. r1(X) takes any knowledge
state X, and adds to it the first counterexample to (1) we may find in the list 〈n1, . . . , nk〉
generated by α1, unless α1(X) solves P1. We define r1 in two steps: first, we define a map
g1 finding the first counterexample to (1) in a given list:

g1(〈n1, . . . , nk〉) =

{(0, ni, ni+1) | 1 ≤ i < k min. s.t.

f1(ni) > f1(ni+1)} if i exists
∅ otherwise.

Then we define the realizer by composing g1 with the output of α1: r1(X) = g1(α1(X)). r1 is a
realizer, because r1(X) always outputs atoms not inX. Indeed, if α1(X) = 〈n1, . . . , nk〉 ∈ NXf1

,
and if r1(X) output the atom f1(ni) > f1(ni+1), then (f1(ni) > f1(ni+1)) 6∈ X by definition
of 〈n1, . . . , nk〉 ∈ NXf1

. We may use r1(X) to extend X until we find some X such that
r1(X) = ∅. Whenever r1(X) = ∅ we have g1(α1(X)) = ∅, hence α1(X) solves (1) by
definition of g1.

To step from P1 to P2, namely to problem (2), we just replace NXf1
by NXf1,f2

, namely:

β2(X, 〈n1, . . . , nh〉, k) =

〈n1, . . . , nh〉 if h = k

β2(X, 〈n1, . . . , nh,m〉, k) where m is the minimum s.t.
m 6∈ (Nf1)Xf2

and m > nh if h > 0.

and

g2(〈n1, . . . , nk〉) =

{(0, ni, ni+1) | 1 ≤ i < k min. s.t.

f1(ni) > f1(ni+1) ∨ f2(ni) > f2(ni+1)} if i exists
∅ otherwise.

We have that α2(X) = β2(X, 〈 〉, k), where α2 is from example 4. Now let us define
r2(X) = g2(β2(X, 〈 〉, k)) = g2(α2(X)). Then we can show that r2 is a realizer looking for
some X such that α2(X) ∈ P2 just as in the case of r1 above.

S. Berardi and U. de’Liguoro 89

If X is a model and r ∈ R then r(X) = ∅ by definition; on the other hand if |=A α : P
then α(s) = α(X) = n ∈ P for some finite s ⊆ X. Since r is continuous, the condition
that reveals that the approximation s of X is good enough to compute an n ∈ P is that
r(s) = r(X) = ∅. This suggests that a constructive way to meet the requirement about
models in the definition of |=A α : P is to ask that sound zeros of a realizer r are enough to
find inhabitants of P via α, and then look for finite sound zeros of r. We turn this into the
following definition.

I Definition 14 (Interactive Realizability). Let α : S→ N be continuous (w.r.t. the discrete
topology over N), and P ⊆ N a predicate:
1. r ∈ R interactively realizes P w.r.t. α, written r ` α : P , if and only if:

∀X ∈ S. X sound zero of r ⇒ α(X) ∈ P

2. P is interactively realizable w.r.t. α, written ` α : P , if and only if:

∃r ∈ R. r ` α : P.

If P1 and P2 are the predicates defined in examples 4 and 5, α1, α2 their respective solutions
and r1, r2 the realizers from example 5; then we claim (without proof) that ri ` αi : Pi for
both i = 1, 2.

The main result of the paper is that the apparently stronger r ` α : P for some r ∈ R is
equivalent to |= α : P . That is, whenever α : P is valid then it is interactively learnable, and
we have some strategy to find some finite X such that α(X) ∈ P .

Before we establish the existence of sound finite zeros of any r ∈ R. This is a non
trivial fact because, whenever we add to some state Y (no matter whether finite or not) a
y ∈ r(Y), we know that tr(z, Y) = true for all z ∈ Y , but we do not know about the value
of tr(z, Y ∪ {y}), so that Y ∪ {y} is not necessarily sound. Moreover it is not true that if
s ⊆ X and X is sound then s is sound.

Example 6 Let us redefine f1 by f1(0) = 10, f1(1) = 30, f1(2) = 20 and define f2(0) =
20, f2(1) = 10, f2(2) = 20. Also we let x = (1, 0, 1) meaning that 0 6∈ (Nf1)f2 , and y = (0, 1, 2)
meaning that 1 6∈ Nf1 . Then tr(x, {x}) = true since at {x} it is likely that 0 6∈ (Nf1)f2

because of the counterexample in the point 1; but tr(x, {x, y}) = false because the discovery
that 1 ∈ Nf1 contradicts counterexample on point 1.

We prove below that finite sound zeros exist for all r ∈ R and that these are finite
approximations of sound states of knowledge which are themselves zeros of r, hence in
particular of models.

I Lemma 15. If X ∈ S is sound, s ∈ Sfin is a finite state such that s ⊆ X, then there exists
a finite sound t ∈ Sfin such that s ⊆ t ⊆ X.

We are now in place to conclude the proof that every realizer has a finite sound zero. We
do not provide an effective method to find some, but we claim that we can obtain it by a
suitable sequence of answers added by the realizer and of removal of answers.

I Theorem 16 (Existence of Sound and Finite Zeros of Realizers). If r ∈ R, then there exists
a finite sound zero t ∈ Sfin of r.

Proof. Models exist by Theorem 11 and they are sound by definition, hence r(X) = ∅
for some sound X ∈ S since r ∈ R. By continuity there is a basic open Os0,t0 such that
X ∈ Os0,t0 and r(Os0,t0) = ∅. This implies that s0 ⊆ X and X ∩ t0 = ∅, so that a fortiori

CSL’12

90 Knowledge Spaces

any finite t ∈ Sfin such that s0 ⊆ t ⊆ X satisfies t ∩ t0 = ∅ and therefore t ∈ Os0,t0 , i.e. it is
a zero of r. By Lemma 15 there exists a sound t among them, which is the desired finite
sound zero of r.

We come now to the completeness theorem. Our thesis is that interactive realizability is
complete in the sense that if α(X) ∈ P for all models X, then we may replace the model X
by the finite sound zeros of a suitable realizer r ∈ R.

I Theorem 17. (Completeness of Realization) For any continuous α : S→ N and predicate
P ⊆ N: ` α : P ⇔ |= α : P.

Proof.
(⇒) If X ∈ S is a model then X is a sound zero of any realizer by Definition 13; hence if
r ` α : P for some r ∈ R we immediately have α(X) ∈ P , i.e. X |= α : P for arbitrary
model X.

(⇐) We have to show that, if |= α : P , namely if α(X) ∈ P for X ∈ M, then there exists an
r ∈ R such that r ` α : P . We establish the contrapositive:

α(X) 6∈ P ⇒ X not sound ∨ r(X) 6= ∅

for some realizer r and arbitrary X ∈ S.
If α(X) 6∈ P then, by the hypothesis, X 6∈ M, hence X 6∈ S or X 6∈ C. By definition of S
and C, this implies that ∃x ∈ A. X 6∈ Sx ∨X 6∈ Cx. Fix an enumeration x0, x1, . . . of the
countable set A. Let us define r : S→ Pfin(A) by:

r(X) =
{
∅ if α(X) ∈ P
{xi} where i = min{j ∈ N | X ∈ S \ Mxj}, else.

Then r is a total function since if α(X) 6∈ P then X ∈ S − M so that {xj ∈ A | X ∈
S \ Mxj

} 6= ∅. If r is continuous then r̂(X) = new(X, r(X)) because X ∈ S \ Mxj
implies

X ∈ S \ Cxj , and consequently, r is a realizer. We have r̂ ` α : P . Indeed, assume
for contradiction that α(X) 6∈ P , X ∈ S and r̂(X) = ∅. Then r(X) = {xi} and
X ∈ S \ Mxi = (S \ Sxi) ∪ (S \ Cxi). Since X ∈ S ⊆ Sxi , then X ∈ S \ Cxi . We conclude
that r̂(X) = {xi}, contradiction.
To see that r is continuous it suffices to check that both r−1(∅) and r−1({x}) (for any
x ∈ A) are opens in Ω(S). Now r(X) = ∅ if and only if α(X) ∈ P , that is X ∈ α−1(P)
which is clopen by Lemma 10. On the other hand X ∈ r−1({x}) if and only if:

∃i. xi = x ∧ X ∈ (S \ Mxi
) ∧ ∀j < i.X ∈ Mxj

.

This is equivalent to X ∈ Mx0 ∩ . . . ∩ Mxi−1 ∩ (S \ Mxi
) which, by Lemma 10, is a finite

intersection of clopens, hence a clopen itself.

6 Concluding remarks and further work

We have defined the notions of state of knowledge and of state topology. We have then
redefined in the more general setting of non-monotonic learning, the concepts of individual
(here called “solution”) and of interactive realizer that we treated elsewhere, proving the
completeness of learnability w.r.t. validity, which is the counterpart of classical truth in the
present setting.

S. Berardi and U. de’Liguoro 91

The definitions and results obtained are aimed at the development of a full theory of
learning strategies and of their convergence properties, which is work in progress. We
also observe that the solution and the realizer illustrated in the examples of §5 are crude
simplifications of the learning strategy implicit in the example of §2, which is capable of
using the counterexamples in a more ingenuous and efficient way. The investigation of the
interpretation of classical proofs in terms of learning strategies is a natural further step,
extending the work we have done in the monotonic case.

Since learning strategies working with finite approximations are effective (and indeed we
have shown that finite and sound knowledge states exist and suffice), a question of efficiency
of the algorithms one extracts from proofs with our method is naturally there, together with
the analysis of suitable data structures representing time and logical dependancies, which
are essential to complete the present approach.

References
1 Federico Aschieri and Stefano Berardi. Interactive Learning-Based Realizability for Heyting

Arithmetic with EM1. Logical Methods in Computer Science, 6(3), 2010.
2 Stefano Berardi and Ugo de’ Liguoro. Toward the interpretation of non-constructive reas-

oning as non-monotonic learning. Information and Computation, 207(1):63–81, 2009.
3 Stefano Berardi and Ugo de’ Liguoro. Interactive realizers. A new approach to program

extraction from non constructive proofs. ACM Transactions on Computational Logic,
13(2):11:1–11:21, 2012.

4 Thierry Coquand. A semantics of evidence for classical arithmetic. In Gordon Plotkin
Gérard Huet and Claire Jones, editors, Proceedings of the Second Workshop on Logical
Frameworks, pages 87–99, http://www.lfcs.inf.ed.ac.uk/research/types-bra/proc/,
1991.

5 Thierry Coquand. A semantics of evidence for classical arithmetic. J. Symb. Log., 60:325–
337, 1995.

6 Daniel Fridlender. Highman’s lemma in theory. In Eduardo Giménez and Christine Paulin-
Mohring, editors, Types for Proofs and Programs, International Workshop TYPES’96, Aus-
sois, France, December 15-19, 1996, Selected Papers, volume 1512 of LNCS, pages 112–133,
1998.

7 Gerhard Gierz, Karl Heinrich Hofmann, Klaus Keimel, Jimmie D. Lawson, Michael Mis-
love, and Dana S. Scott. Continuous Lattices and Domains, volume 93 of Encyclopedia of
Mathematics and its Applications. Cambridge University Press, 2003.

8 E. Mark Gold. Limiting recursion. J. Symb. Log., 30:28–48, 1965.
9 E. Mark Gold. Language identification in the limit. Information and Control, 10:447–474,

1967.
10 Timothy G. Griffin. The formulae-as-types notion of control. In Conf. Record 17th Annual

ACM Symp. on Principles of Programming Languages, POPL’90, San Francisco, CA, USA,
17–19 Jan 1990, pages 47–57. ACM Press, New York, 1990.

11 Susumu Hayashi. Mathematics based on incremental learning, excluded middle and induct-
ive inference. Theor. Comp. Sci., 350:125–139, 2006.

12 Jean-Louis Krivine. Realizability in classical logic. In Interactive Models of Computation
and Program Behavior, Panoramas et Synthèses, 2009.

13 Alexandre Miquel. Existential witness extraction in classical realizability and via a negative
translation. Logical Methods in Computer Science, 7(2), 2011.

14 Jan von Plato. A Constructive Approach to Sylvester’s Conjecture. J. UCS, 11(12):2165–
2178, 2005.

CSL’12

	Introduction
	Solving problems by learning
	States of knowledge and their topology
	Relative truth and layered states
	Interactive Realizability
	Concluding remarks and further work

