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Abstract
This is a survey talk explaining the connection between the three items mentioned in the title.
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1 Overview

I’ve been interested in this three-way connection since my 1975 paper [7] in which I introduced
the formal theory PV to capture polynomial time reasoning, and showed how each of its
theorems can be translated into a polynomial size family of Extended Resolution proofs.
The corresponding triple is (P, PV, ERes). I originally defined PV as an equational theory
in which the function symbols range over all polynomial time functions on N. The axioms
consist of equations defining the polynomial time functions, based on Cobham’s Theorem
[6], and a rule giving “induction on notation”; i.e. induction based on binary notation for
numbers. (Later Martin Dowd and others pointed out that ordinary induction on N can
be derived from this rule, using binary search.) My idea for PV came from Skolem’s 1923
equational theory based on function symbols for all primitive recursive functions.

The Extended Resolution proof system ERes was introduced by Tseitin [16], and is
equivalent to Extended Frege systems [10]. ERes can be characterized roughly as the
strongest propositional proof system whose soundness can be proved in PV. See [13] for
much more on these ideas.

The theory PV can formalize the proofs of many theorems useful in computer science,
such as the Pigeonhole Principle, Extended Euclidean Algorithm, Hall’s Theorem, Menger’s
Theorem, and properties of integer (or rational) determinants. Each of these corresponds
to a family of tautologies with polynomial size Extended Frege proofs. However it follows
from the witnessing theorem for PV that no polynomial time algorithm for prime recognition
(such as [1]) can be proved correct in PV unless there is a polynomial time algorithm for
integer factorization.

Buss’s influential 1986 book Bounded Arithmetic [4] introduced a hierarchy of first-order
theories Si

2 corresponding to the polynomial hierarchy. The functions Σb
1-definable in the base

theory S1
2 are the polynomial time functions, and Buss proved that S1

2(PV) is Σb
1-conservative

over PV (where now PV is regarded as a first-order theory axiomatized by the theorems of
the original equational theory). Later [12] proved that (first-order) PV is properly included in
S1

2(PV), unless the polynomial hierarchy collapses. In particular S1
2(PV) proves that integers

can be factored as a product of primes, which is unlikely to be a consequence of PV.
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10 Complexity Classes, Weak Formal Theories, and Propositional Proof Systems

There are plenty of interesting complexity classes included in P which have been studied
extensively, including

AC0 ⊂ AC0(2) ⊂ AC0(6) ⊆ TC0 ⊆ NC1 ⊆ LogSpace ⊆ NL ⊆ P

The famous open question in complexity theory is P =?NP, but a more embarrassing open
question is whether

NP = P = NL = LogSpace = NC1 = TC0 = AC0(6),

where as far as we know, the smallest class AC0(6) cannot count the number of 1-bits in an
input bit string. This is one motivation for studying small complexity classes: we need to
separate them from NP before separating P from NP.

In [9] Phuong Nguyen and I develop a uniform way of associating each of these classes
C with a theory VC and a suitable propositional proof system, which are connected like
(P, PV, ERes) mentioned above. (The design of the propositional translation is inspired
by [15].) The triple connecting NC1 is especially interesting here since the associated
propositional proof system is a ‘Frege system’; i.e. a standard Hilbert style proof system for
the propositional calculus. (Earlier Arai [3] connected NC1 to Frege systems in a similar way,
using a theory AID which is syntactically very different but logically equivalent to our theory
VNC1 [8].)

The theories in [9] use the two-sorted vocabulary developed by Zambella [17], in which
variables of the number sort x, y, z, . . . range over N, and those of the string sort X, Y, Z, . . .

range over finite subsets of N, interpreted as binary bit strings. The base theory V0

corresponds to the complexity class AC0. The two-sorted setting is ideal here, because
(using the descriptive complexity characterization AC0 = FO [11]) we have the convenient
fact that the bounded two-sorted ΣB

0 formulas represent precisely the AC0 relations. Part
of the interest here is that of ‘bounded reverse mathematics’ [14], where the goal is to
find the smallest complexity class C such that the corresponding theory VC proves a given
combinatorial theorem. The standard example here is the Pigeonhole Principle, which can
be proved in VTC0 (and in VNC1) but not in V0, and in fact the corresponding tautology
family does not have polynomial size proofs in the corresponding propositional proof system
Bounded-Depth Frege [2] (but does have polynomial size Frege proofs [5]). There are many
other interesting examples, but in most cases the lower bounds remain conjectures.
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