
Computer Science Logic 2012

26th International Workshop
21th Annual Conference of the EACSL
CSL’12, September 3–6, 2012, Fontainebleau, France

Edited by

Patrick Cégielski
Arnaud Durand

LIPIcs – Vo l . 16 – CSL’12 www.dagstuh l .de/ l ip i c s

Editors

Patrick Cégielski
LACL EA 4219
IUT Sénart-Fontainebleau
Université Paris Est Créteil
cegielski@u-pec.fr

Arnaud Durand
Institut de Mathématiques de Jussieu, CNRS UMR 7586
UFR de mathématiques
Université Paris Diderot
durand@math.univ-paris-diderot.fr

ACM Classification 1998
A.0 Conference Proceedings; D. Software; F. Theory of Computation;
G.2.2 Graph Theory; G.3 Probability and Statistics; I.2 Artificial Intelligence

ISBN 978-3-939897-42-2

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-939897-42-2.

Publication date
September, 2012

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
These works are licensed under a Creative Commons Attribution-NonCommercial-NoDerivs (BY-NC-ND)
or Attribution-NoDerivs (BY-ND) 3.0 Unported license:
BY-NC-ND: http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode
BY-ND: http://creativecommons.org/licenses/by-nd/3.0/legalcode
In brief, these licenses authorize each and everybody to share (to copy, distribute and transmit) the works
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution (BY-NC-ND, BY-ND): The work must be attributed to its authors.
No derivation (BY-NC-ND, BY-ND): It is not allowed to alter or transform this work.
Noncommercial (BY-NC-ND): The work may not be used for commercial purposes.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.CSL.2012.i

ISBN 978-3-939897-42-2 ISSN 1868-8969 http://www.dagstuhl.de/lipics

http://www.dagstuhl.de/dagpub/978-3-939897-42-2
http://www.dagstuhl.de/dagpub/978-3-939897-42-2
http://dnb.d-nb.de
http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode
http://creativecommons.org/licenses/by-nd/3.0/legalcode
http://dx.doi.org/10.4230/LIPIcs.CSL.2012.i
http://www.dagstuhl.de/dagpub/978-3-939897-42-2
http://drops.dagstuhl.de/lipics
http://www.dagstuhl.de/lipics

iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Susanne Albers (Humboldt University Berlin)
Chris Hankin (Imperial College London)
Deepak Kapur (University of New Mexico)
Michael Mitzenmacher (Harvard University)
Madhavan Mukund (Chennai Mathematical Institute)
Wolfgang Thomas (RWTH Aachen)
Vinay V. (Chennai Mathematical Institute)
Pascal Weil (Chair, University Bordeaux)
Reinhard Wilhelm (Saarland University, Schloss Dagstuhl)

ISSN 1868-8969

www.dagstuhl.de/lipics

CSL’12

http://drops.dagstuhl.de/lipics

Contents

Editor’s Preface . ix
Conference Organization . xi
External Reviewers . xiii

Report on the Ackermann Award 2012

The Ackermann Award 2012
Thierry Coquand, Anuj Dawar and Damian Niwiński . 1

Abstracts of Invited Talks

Sharing Distributed Knowledge on the Web
Serge Abiteboul . 6

ConnectingComplexityClasses,WeakFormalTheories, andPropositional Proof Systems
Stephen A. Cook . 9

Satisfiability: where Theory meets Practice
Inês Lynce . 12

Definability and Complexity of Graph Parameters
Johann A. Makowsky . 14

Contributed Papers

A syntactical approach to weak omega-groupoids
Thorsten Altenkirch and Ondrej Rypacek . 16

Interactive Realizability for Classical Peano Arithmetic with Skolem Axioms
Federico Aschieri . 31

Relational Parametricity for Higher Kinds
Robert Atkey . 46

Higher-order Interpretations and Program Complexity
Patrick Baillot and Ugo Dal Lago . 62

Knowledge Spaces and the Completeness of Learning Strategies
Stefano Berardi and Ugo De Liguoro . 77

Bounded Satisfiablity for PCTL
Nathalie Bertrand, John Fearnley, and Sven Schewe . 92

A Concurrent Logical Relation
Lars Birkedal, Filip Sieczkowski, and Jacob Thamsborg . 107

Equivalence Constraint Satisfaction Problems
Manuel Bodirsky and Michal Wrona . 122

Computer Science Logic 2012 (CSL’12).
Editors: Patrick Cégielski, Arnaud Durand

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

vi Contents

A Negative Conjunctive Query is Easy if and only if it is Beta-Acyclic
Johann Brault-Baron . 137

On the equational consistency of order-theoretic models of lambda calculus
Alberto Carraro and Antonino Salibra . 152

Faster Algorithms for Alternating Refinement Relations
Krishnendu Chatterjee, Siddhesh Chaubal, and Pritish Kamath 167

A Systematic Approach to Canonicity in the Classical Sequent Calculus
Kaustuv Chaudhuri, Dale Miller, and Stefan Hetzl . 183

ML with PTIME complexity guarantees
Jacek Chrząszcz and Aleksy Schubert . 198

Definability of linear equation systems over groups and rings
Anuj Dawar, Erich Grädel, Bjarki Holm, Eryk Kopczynski, and Wied Pakusa 213

Cut Reduction in Linear Logic as Asynchronous Session-Typed Communication
Henry Deyoung, Luís Caires, Frank Pfenning, and Bernardo Toninho 228

Bounded Combinatory Logic
Boris Düdder, Moritz Martens, Jakob Rehof, and Paweł Urzyczyn 243

Collapsing non-idempotent intersection types
Thomas Ehrhard . 259

Descriptive complexity for pictures languages
Etienne Grandjean and Frédéric Olive . 274

Pebble games and linear equations
Martin Grohe and Martin Otto . 289

Banach-Mazur Games with Simple Winning Strategies
Erich Grädel and Simon Leßenich . 305

Herbrand-Confluence for Cut Elimination in Classical First Order Logic
Stefan Hetzl and Lutz Strassburger . 320

A Computational Interpretation of the Axiom of Determinacy in Arithmetic
Takanori Hida . 335

Church-Rosser Properties of Normal Rewriting
Jean-Pierre Jouannaud and Jian-Qi Li . 350

A Counting Logic for Structure Transition Systems
Łukasz Kaiser and Simon Leßenich . 366

Parametricity in an Impredicative Sort
Chantal Keller and Marc Lasson . 381

Two-Variable Universal Logic with Transitive Closure
Emanuel Kieronski and Jakub Michaliszyn . 396

Connection Matrices and the Definability of Graph Parameters
Tomer Kotek and Johann Makowsky . 411

The FO2 alternation hierarchy is decidable
Manfred Kufleitner and Pascal Weil . 426

Contents vii

Axiomatizing proof tree concepts in bounded arithmetic
Satoru Kuroda . 440

Isomorphisms of scattered automatic linear orders
Dietrich Kuske . 455

Undecidable First-Order Theories of Affine Geometries
Antti Kuusisto, Jeremy Meyers, and Jonni Virtema . 470

Towards CERes in intuitionistic logic
Alexander Leitsch, Giselle Reis, and Bruno Woltzenlogel Paleo 485

Variants of Collapsible Pushdown Systems
Pawel Parys . 500

A Proof of Kamp’s theorem
Alexander Rabinovich . 516

Commutative Data Automata
Zhilin Wu . 528

CSL’12

Editors’s Preface

The annual conference of the European Association for Computer Science Logic (EACSL),
CSL 2012, was held in Fontainebleau, France, from 3 to 6 September 2012. CSL started
as a series of international workshops on Computer Science Logic, and became at its sixth
meeting the Annual Conference of the EACSL. This conference was the 26th workshop and
21th EACSL conference; it was organized by the Department of Computer Science of the
Institut Universitaire de Technologie, IUT, of the university Paris Est Créteil (UPEC).

The Ackermann Award is the EACSL Outstanding Dissertation Award for Logic in
Computer Science. This year, the jury decided to give the Ackermann Award for 2012 to two
recipients : Andrew Polonsky and Szymon Toruńczyk. The awards were officially presented
at the conference (September, 4). The citation of the awards, an abstract of the thesis, and a
biographical sketch of the recipients written by Thierry Coquand, Anuj Dawar and Damian
Niwiński may be found in the proceedings.

This is the second year that the CSL proceedings are not published as a Springer LNCS
but in the LIPIcs series. A total of 102 abstracts were registered and 80 of these were followed
by full papers submitted to CSL 2012. After a two weeks electronic meeting, the Program
Committee (PC) selected 35 papers for presentation at the conference and publication in
these proceedings. Each paper was assigned to at least three PC members. In the call for
papers, authors were encouraged to include a well written introduction accessible to a general
audience in computer science logic. The program committee has paid a careful attention to
assess the merits of the submissions regarding this criterion too.

The overall quality of the submissions was really high. The program committee did not
fix a strict a priori limit on the number of accepted papers and wished to accept as many
good papers as possible. However, at the end some of them had to be rejected due to lack
of space. In addition to the contributed talks, CSL 2012 had four invited speakers: Serge
Abiteboul (Collège de France, INRIA Saclay and ENS Cachan) Stephen A. Cook (University
of Toronto), Inês Lynce (Technical University of Lisbon), Johann A. Makowsky (Technion,
Haifa). Abstracts of the invited talks are included in the proceedings.

We wish to warmly thank the PC and all external reviewers for their precious help in
reviewing the papers. Our thanks also go to the members of the Organizing Committee, in
particular Pierre Valarcher (co-chair), for their considerable efforts in organizing the conference
and to Tristan Crolard for his great work in preparing the proceedings. The conference
received support from the Université Paris-Est Créteil, the IUT Sénart-Fontainebleau, the
LACL (Laboratoire d’Algorithmique, Complexité et Logique, EA 4219), and INRIA. We
thank these organizations for their generous supports.

September 2012 Patrick Cégielski, Arnaud Durand

Computer Science Logic 2012 (CSL’12).
Editors: Patrick Cégielski, Arnaud Durand

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

Conference Organization

Program Committee

Jeremy Avigad Carnegie Mellon, Pittsburgh, USA
Arnold Beckmann Swansea, UK
Nikolaj Bjorner Microsoft Research, Redmond, USA
Julian Bradfield Edimburgh, UK
Thomas Brihaye Mons, Belgium
Patrick Cégielski UPEC, France (co-chair)
Victor Dalmau Pompeu Fabra, Barcelona, Spain
Josee Desharnais Laval, Canada
Mariangiola Dezani-Ciancaglini Torino, Italy
Gilles Dowek INRIA, Paris-Rocquencourt, France
Arnaud Durand Paris-Diderot, Paris, France (co-chair)
Nicola Galesi Roma, Italy
Laura Kovacs TU Vienna, Austria
Antonin Kucera Brno, Czech Republic
Viktor Kuncak EPFL, Lausanne, Switzerland
Daniel Leivant Indiana, USA
Markus Lohrey Leipzig, Germany
Alexandre Miquel ENS Lyon, France
Filip Murlak Warsaw, Poland
Prakash Panangaden McGill, Montreal, Canada
Nicole Schweikardt Frankfurt, Germany
Sam Staton Cambridge, UK
Mirek Truszczynski Kentucky, USA
Helmut Veith TU Vienna
Frank Wolter Liverpool, UK

Organizing Committee

Alexis Bès Arnaud Durand
Régis Brouard Frédéric Gervais
Patrick Cégielski (co-chair) Yoann Marquer
Julien Cervelle Denis Monnerat
Tristan Crolard Pierre Valarcher (co-chair)
Patricia Crouan-Véron Konstantin Verchinine
Lilian Dubau

Computer Science Logic 2012 (CSL’12).
Editors: Patrick Cégielski, Arnaud Durand

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

External Reviewers

Alessi, Fabio
Aschieri, Federico
Atkey, Robert
Atserias, Albert
Baaz, Matthias
Barany, Vince
Barnat, Jiri
Ben-Amram, Amir
Bertrand, Nathalie
Beyersdorff, Olaf
Bollig, Benedikt
Brazdil, Tomas
Cave, Andrew
Chatterjee, Krishnendu
Coppo, Mario
Crolard, Tristan
Dal Lago, Ugo
Danielsson, Nils Anders
Dragoi, Cezara
Falke, Stephan
Fearnley, John
Ferreira, Francisco
Figueira, Diego
Gabbay, Murdoch
Gaboardi, Marco
Garner, Richard
Gauld, David
Ghelli, Giorgio
Gore, Rajeev
Goubault-Larrecq, Jean
Gutierrez, Julian
Harwath, Frederik
Hetzl, Stefan
Hirschowitz, Tom
Hofmann, Martin
Hofstra, Pieter
Holzer, Andreas
Hoshino, Naohiko
Huth, Michael
Hyvernat, Pierre
Iemhoff, Rosalie
Ilik, Danko
Iosif, Radu
Kara, Ahmet
Keller, Chantal

Klima, Ondrej
Krebs, Andreas
Kretinsky, Jan
Krishnaswami, Neelakantan
Kuske, Dietrich
Lamarche, Francois
Lange, Martin
Lauria, Massimo
Libkin, Leonid
Lisitsa, Alexei
Liu, Jiamou
Longley, John
Lumsdaine, Peter
Macedonio, Damiano
Marek, Victor
Martini, Simone
Meinecke, Ingmar
Murawski, Andrzej
Müller, Sebastian
Nguyen, Phuong
Obdrzalek, Jan
Oliva, Paulo
Oliveras, Albert
Padovani, Luca
Pambuccian, Victor
Paperman, Charles
Pechoux, Romain
Pfenning, Frank
Piccolo, Mauro
Piskac, Ruzica
Polonsky, Andrew
Pratt-Hartmann, Ian
Riba, Colin
Ritter, Eike
Roux, Cody
Rubin, Sasha
Schmidt-Schauss, Manfred
Schoepp, Ulrich
Schwoon, Stefan
Simonsen, Jakob Grue
Strejcek, Jan
Terui, Kazushige
Tzameret, Iddo
Tzevelekos, Nikos
van Raamsdonk, Femke

Computer Science Logic 2012 (CSL’12).
Editors: Patrick Cégielski, Arnaud Durand

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

xiv External Reviewers

Vollmer, Heribert
Waldmann, Uwe
Wooldridge, Mike
Zeilberger, Noam

Zeume, Thomas
Zhang, Lijun
Zuleger, Florian

The Ackermann Award 2012
Thierry Coquand1, Anuj Dawar2, and Damian Niwiński3

1,2,3 Members of EACSL Jury of the Ackermann Award∗

The eighth Ackermann Award is presented at this CSL’12, held in Fontainebleau, France.
This is the sixth year in which the EACSL Ackermann Award is generously sponsored. Our
sponsor for the period 2011–2013 is the Kurt Gödel Society. Besides providing financial
support for the Ackermann Award, the KGS also committed itself to inviting recipients of
the Award for a special lecture to be given in Vienna.

Eligible for the 2012 Ackermann Award were PhD dissertations in topics specified by the
EACSL and LICS conferences, which were formally accepted as PhD theses at a university or
equivalent institution between 1.1. 2010 and 31.12. 2011. The Jury received 7 nominations
for the Ackermann Award 2012. The candidates came from 7 different nationalities from
Europe, Australia, and South America, and received their PhDs in 6 different countries in
Europe (2 in UK). Only two candidates received the PhD in the country of their origin.

All the submissions were of very high standard and contained remarkable results in their
particular domain. The Jury wishes to congratulate all the nominated candidates for their
outstanding work. The Jury encourages them to continue their scientific careers, and hopes
to see more of their work in the future.

The jury decided finally, to give for the year 2012 two awards, one for work in lambda
calculus, and one for work in automata theory. The 2012 Ackermann Award winners are,
in alphabetical order

Andrew Polonsky from Ukraine, for his thesis
Proofs, Types and Lambda Calculus
issued by University of Bergen, Norway, in 2011,
supervised by Marc Bezem,
Szymon Toruńczyk from Poland, for his thesis
Languages of profinite words and the limitedeness problem
issued by University of Warsaw, Poland, in 2011,
supervised by Mikołaj Bojańczyk.

Andrew Polonsky
Citation. Andrew Polonsky receives the 2012 Ackermann Award of the European Association
of Computer Science Logic (EACSL) for his thesis

Proofs, Types and Lambda Calculus.

His thesis brings a number of valuable results in λ-calculus. In particular, it solves in a
negative way the range property problem for the theory H, stated by Barendregt in 1976.

Background of the Thesis. The λ-calculus, introduced by Church in the 1930s, is the
first mathematical model of effectively computable functions and it was for this model
that Church’s Thesis was originally formulated. This is surprising if one considers the fact
that λ-terms were first introduced to represent logical formulae, and this tight connection
between logic and computations gives to λ-calculus a special status in computer science.

∗ We would like to thank H. Barendregt, J.-E. Pin, and R. Statman for their help in preparing the
citations.

Computer Science Logic 2012 (CSL’12).
Editors: Patrick Cégielski, Arnaud Durand; pp. 1–5

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 The Ackermann Award 2012

One important issue has been when two λ-terms should be identified, since this corresponds
to the issue of when two algorithms can be considered to be the same. This question has
given rise to a rich lattice of lambda theories. The first notion of equality is β-conversion,
for which the confluence result known as the Church-Rosser property was first formulated.
Church himself believed that meaningless computations in the λ-calculus are represented
by terms without normal forms, and so that all these terms should be identified. For the
type-free λ-calculus however this approach has a number of disadvantages and it became
clear in the 1970s, through the work of Scott, Wadsworth, Barendregt and others, that a
more appropriate notion to capture non-terminating computations was that of terms without
a head normal form, known as unsolvable terms. Barendregt defined the theory H as the least
equational theory extending β-conversion and equating all unsolvable terms. This theory
H has a number of interesting properties and occupies an important place in the lattice of
different ways of identifying λ-terms.

To deeper analyze these various theories, Barendregt formulated the range property.
This is a kind of zero-one law: it states that for any closed λ-term F the collection of
all closed applications F M has, modulo the given theory, either exactly one or infinitely
many elements. This expresses the fact that a given term cannot classify the λ-terms into
finitely many sets with given properties. The first instance of this property, for β-conversion,
was conjectured in a classical paper of Böhm (1968). This conjecture was proved later by
Barendregt and Myhill, as a consequence of Scott’s Theorem that a non trivial set of λ-terms
closed under β-conversion cannot be recursive. It was then realized that most lambda theories
(λβη, the theory of models D∞,the Böhm-tree model, and many others) satisfy the range
property. In 1976, Barendregt conjectured the range property for the theory H. In his classic
monograph The lambda calculus, its syntax and semantics, North-Holland 1984, Barendregt
collected several arguments in favour of this conjecture. The main one is that a putative
counter-example would have non-computable properties, and hence cannot be represented by
a λ-term. Since then, several strong researchers have been trying to settle the range property
for H. Indeed Statman and Intrigila were recently able to show that the corresponding
conjecture holds for combinatory logic.

Polonsky’s Thesis. The main result of Polonsky’s thesis is a surprising negative solution
to the range property of the lambda theory H. This failure of the range property indicates
a subtle unexpected difference between the theory H and most other lambda theories. For
this, Polonksy defines a lambda term, having modulo H a range of cardinality 2. This uses
previous works by Statman and Barendregt who outlined what kind of construction was
needed in order to get such a counterexample. The required behaviour of such lambda term
was however so complex that this was then used as a positive argument in favour of the
conjecture. This construction is carried out in Polonsky’s thesis as the "devil’s tunnel". The
exact details are quite ingenious and the devil’s tunnel construction produces a recursively
enumerable Böhm tree with a unique infinite path which is not recursively enumerable. This
path is constructed by a Putnam-Gold-like trial and error procedure. All this is very elegantly
presented in the thesis. The solution of the range problem for H can be considered to be
one of the strong achievements in the field of λ-calculus. It is in some way reminiscent of
Plotkin (1974) fundamental and unexpected discovery of the failure of ω-completeness of
λ-calculus (exhibiting two closed terms F and Z such that F M =β Z for any closed term
M and F x 6=β Z).

Polonsky’s thesis contains several other significant results. Smullyan (1994) had given an
interesting axiomatization of enumerators, but left three open problems having to do with the
independence of the given axiomatic system. Polonsky solved these by characterizing when an

T. Coquand, A. Dawar, and D. Niwiński 3

enumerator is "standard". He did this again by using results of computability theory, making
clever use of non-computable functions. Another elegant result of Polonsky characterizes
when an untyped lambda term can be typed in a type algebra. This contribution is already
incorporated in the recent book Lambda calculus with types by Barendregt, Cambridge
University Press (to appear in 2013). The first part of the thesis contains an interesting
analysis of the connection between coherent logic and general first-order logic.

The thesis is of high level of original creativity. Not only are strong results presented,
but Polonsky also shows creativity stating open problems, which undoubtedly are fruitful for
future research.

Biographical Sketch. Andrew Polonsky was born on 9 June 1984 in Ukraine. In 2002-2005
he studied Mathematics in the University of Storss, Connecticut, U.S. In 2006-2007 he attend
a Master Class in Logic at the Mathematical Research Institute of Utrecht, The Netherlands.
Between 2007 and 2010 he was a PhD student at the University of Bergen, Norway, under
the supervision of Marc Bezem. In 2011-2012 he has been a postdoc at the University of
Amsterdam, The Netherlands, and is now a postdoc at the Radboud University Nijmegen,
The Netherlands.

Szymon Toruńczyk
Citation. Szymon Toruńczyk receives the 2012 Ackermann Award of the European Associ-
ation of Computer Science Logic (EACSL) for his thesis

Languages of profinite words and the limitedeness problem.

His thesis builds a new framework to study limitedeness problems of finite automata, based
on the topology of profinite words.

Background of the Thesis. Research currents in computer science are often driven by
decidability questions. Even when a problem is solved, it often stimulates theoretical work
explaining the solution. Toruńczyk’s thesis is related to two decidability questions: the
limitedeness problem for distance automata originally solved by Hashigushi in 1982, and the
still unsolved decidability status of the logic MSO + B. The actual motivation arose from a
connection between the two problems.

In 2004, Mikołaj Bojańczyk raised the question whether the decidability of some instances
of the finite model property can be strengthened to decidability of a suitable logic. He
proposed an extension of the monadic second order logic by a quantifier BX ϕ(X), expressing
the existence of a finite bound on the cardinality of sets X satisfying ϕ. The decidability
status of the new logic remains unknown. In particular, the MSO + B theory of 〈ω,≤〉 is a
plausible extension of Büchi’s arithmetic S1S, but its decidability remains open. Approaching
the problem, Bojańczyk and Thomas Colcombet captured a fragment of this theory by
automata with blind counters, which can be incremented and reset, but not read. The
technical core of their proof is a duality result claiming that two variants of the model, called
ωB and ωS-automata respectively, actually complemented each other. It was only afterwards
that the authors realized that some of their ideas occurred previously in research on the star
height problem.

This celebrated automata-theoretic decision problem asks for the minimal nesting of the
star operator needed to define a given regular language. The problem, raised by Lawrence C.
Eggan in 1963, was solved positively by Kosaburo Hashiguchi only 25 years later. As a step
toward the main solution, Hashiguchi solved in 1982 a related decision problem of limitedeness
of distance automata. In the original setting, the problem concerns finite (non-deterministic)

CSL’12

4 The Ackermann Award 2012

automata with non-negative costs over transitions, and asks if any acceptable word can be
accepted with a cumulative cost within some finite bound. This can be generalized to other
concepts of cost. The difficult techniques of Hashiguchi were further studied and developed in
particular by Imre Simon and Hing Leung. An insightful new solution was given in 2005 by
Daniel Kirsten, who reduced the star height question to the limitedeness problem of what he
called distance desert automata. A surprising discovery made by Thomas Colcombet revealed
that the ωB and ωS-automata introduced in the context of the logic MSO + B, were in
fact the infinite computation variants of Kirsten’s automata, and the aforementioned duality
theorem yielded yet another path to the solution of the star height problem. Colcombet
pursued this connection by cleaning away infinite computations, and concentrating on B
and S-automata on finite words. He further developed a theory of cost functions, where the
limitedeness problem appears as a special case of an equivalence between two functions. This
theory constitutes a powerful quantitative generalization of the theory of regular languages,
involving automata, algebra, and logic.

Toruńczyk’s Thesis. Compared to the previous work, the thesis of Szymon Toruńczyk
reveals a metric aspect of the limitedeness problem. It was first noticed by Hing Leung who
in his alternative proof of Hashiguchi’s result (from 1988) used a concept of limit, but it
was not pursued very far. The reason perhaps is that a topological structure of finite words
is not as apparent as it is in the case of ω-words, which can be just identified with reals.
A topological structure of finite words is revealed however by their metric completion to
profinite words, which moreover preserves the algebraic structure of semigroup. This is an
alternative extension of the free monoid of finite words, just as the p-adic numbers form
an extension of the rational field, which is alternative to reals. In his thesis, throughout a
long series of results, Toruńczyk argues that the topological semigroup of profinite words
constitutes a suitable framework to consider the limitedeness problem, cost functions, as well
as the quantifier B.

The first main result is a self-contained proof of the decidability of the limitedeness
problem for the (most general) case of B-automata, based on topological ideas. The results
by Kirsten and Colcombet follow there from a more general, new result, on the structure
of a certain profinite semigroup generalizing the tropical semiring considered by Simon and
Leung.

The second main result consists of a multiple characterization of cost functions computable
by B-automata (or S-automata) in terms of the associated sets of profinite words. It is a basic
fact of the theory of profinite words that the completions of the ordinary regular languages
form the family of clopen (closed and open) sets of profinite words. Toruńczyk makes the next
step by showing that the profinite languages associated with B-automata (or S-automata)
correspond to the open (resp. closed) sets with finite syntactic stabilization monoids. This
yields a machine independent characterization of the cost functions of Colcombet. Another
characterization is given in terms of logic, which is a profinite counterpart of the logic
MSO + B. The decidability of the satisfiability problem for this logic remains open, but the
author manages to show that satisfiability of propositional combinations of the formulas
corresponding to cost functions is decidable.

Biographical Sketch. Szymon Toruńczyk was born in 1983. He obtained all his degrees
from the University of Warsaw: B.S. degree in computer science in 2006, and M.Sc. de-
gree in mathematics in 2006. He wrote his doctoral dissertation under the supervision of
Mikołaj Bojańczyk and obtained the Ph.D. degree in computer science (with honors) in 2011.
Throughout 2009-2011 he visited ENS Cachan, working under supervision of Luc Segoufin.
He is currently an assistant professor at the Warsaw University.

T. Coquand, A. Dawar, and D. Niwiński 5

Jury
The Jury for the Ackermann Award 2012 consisted of eight members, three of them ex
officio, namely the president and the vice-president of EACSL, and one member of the LICS
organizing committee.

The members of the jury were

Thierry Coquand (University of Gothenburg),
Anuj Dawar (University of Cambridge), the vice-president of EACSL,
Thomas A. Henzinger (IST Austria),
Jean-Pierre Jouannaud (École Polytechnique, Paris),
Daniel Leivant (Indiana University, Bloomington),
Damian Niwiński (University of Warsaw), the president of EACSL,
Luke Ong (University of Oxford), LICS representative,
Wolfgang Thomas (RWTH, Aachen).

Previous winners
Previous winners of the Ackermann Award were
2005, Oxford

Mikołaj Bojańczyk,
Konstantin Korovin,
Nathan Segerlind,

2006, Szeged
Balder ten Cate,
Stefan Milius,

2007, Lausanne
Dietmar Berwanger,
Stéphane Lengrand,
Ting Zhang,

2008, Bertinoro
Krishnendu Chatterjee,

2009, Coimbra
Jakob Nordström,

2010, Brno
no award given,

2011, Bergen
Benjamin Rossman.

Detailed reports on their work appeared in the CSL proceedings, and are also available via
the EACSL homepage.

CSL’12

Sharing Distributed Knowledge on the Web
Serge Abiteboul

Collège de France, INRIA Saclay & ENS Cachan, France

Abstract
To share information, we propose to see the Web as a knowledge base consisting of distributed
logical facts and rules. Our objective is to help Web users finding information, as well as con-
trolling their own, using automated reasoning over this knowledge base towards improving the
quality of service and of data. For this, we introduce Webdamlog, a Datalog-style language with
rule delegation. We mention the implementation of a system to support this language as well as
standard communications and security protocols.

1998 ACM Subject Classification H.2 Database

Keywords and phrases Knowledge base, distributed data, world wide web, deduction.

Digital Object Identifier 10.4230/LIPIcs.CSL.2012.6

Category Invited Talk

1 Overview

Information of interest may be found on the Web in a variety of forms, in many systems, and
with different access protocols. Today, the control and management of the diversity of data
and tasks in this setting are beyond the skills of casual users. Facing similar issues, companies
see the cost of managing and integrating information skyrocketing. We are interested here in
the management of Web data. Our focus is not on harvesting all the data of a particular user
or a particular application domain and then managing it in a centralized manner. Instead,
we are concerned with the management of Web data in place in a distributed manner, with a
possibly large number of autonomous, heterogeneous systems collaborating to support certain
tasks. We describe ongoing works concerned with the foundations of such data management
based on declarative distributed data management.

Centralized data management has matured with relational database systems, enabled by
the combination and cooperation of a very active research community and a very successful
industry. The success of the field rests on solid formal foundations that combine existing tools,
e.g., first-order logic for specifying queries and dependencies, with others that were developed
from scratch, e.g., query optimization or concurrency control. As a result, centralized data
management systems are now very reliable and the corresponding science is well-developed.

Now consider a user of the Web today. Such a user typically needs to manage the following
kinds of information: data (documents, photos, music, etc.), metadata (personal ontologies,
other’s, etc.), data localization (e.g., where friends place their photos), access rights (e.g., list
of friends who have access to private photos), credentials (login, passwords, etc.), temporal
and provenance information, other kinds of knowledge (replication policy, trust in others,
beliefs, etc.). The information resides on many devices (smartphone, laptop, TV box, etc.),
many systems (mailers, blogs, Web sites, etc.), many social networks (Facebook, Picasa, etc.)
as well as in the “data rings” [5] of family members, friends, associations, companies, and
health, tax or other organizations.

© Serge Abiteboul;
licensed under Creative Commons License NC-ND

Computer Science Logic 2012 (CSL’12).
Editors: Patrick Cégielski, Arnaud Durand; pp. 6–8

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2012.6
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

S. Abiteboul 7

Clearly, relational databases are not providing adequate support for managing the diversity
of such information. First, the exchange standard for the Web is based on data trees (HTML,
XML, JSON) and not on relations. Then, the information is by nature distributed between
huge number of autonomous systems, unlike in relational systems where it is centralized or
distributed within a few tightly controlled machines. Finally, a critical dimension of the
problem is the imprecise, uncertain, noisy, possibly contradicting nature of data in this
setting.

Our thesis is that managing the richness and diversity of data residing on the Web can
be tamed using a holistic approach based on a distributed knowledge base. Our approach is
to represent all Web information as logical facts, and Web data management tasks as logical
rules. A variety of complex data management tasks that currently require intense work and
deep expertise may then greatly benefit from the automatic reasoning provided by inference
engines, operating over the distributed Web knowledge base.

The kinds of reasoning tasks we are envisioning, and that are to be captured by rules,
therefore include:

Accessing information. Knowledge is used to localize data, e.g., find which systems hold
the information of interest. Also, when a new source of information is discovered, some
simple reasoning may be required to understand how it should be used, and how to obtain
access rights.
Peer’s policy. Each peer specifies its own policy, which includes choices such as where to
store/search for particular information, which data to serve to other peers, and which data
to replicate. Such policies in social networks are typically defined based on information
such as the composition of user groups (“circles” in Google+ terminology).
Ontology processing. A particular source may structure its information in a particular
manner or even describe it using RDF or RDFS. Reasoning is necessary to query this
information. In particular, when accessing different information sources, knowledge is
needed to align their concepts and relations.
Quality management. Reasoning may be needed to assess the truthfulness of some data or
to choose between contradicting information. This is related to evaluating the confidence
one has in some data, the trust in sources, and, more generally, the beliefs of a particular
peer or user.
Knowledge acquisition and dissemination. These are central issues in this context.
Knowledge acquisition, i.e., acquiring new facts and rules and evaluating their quality,
should provide principled mechanisms that protect against (i) accepting any kind of
information that is published by anyone on the Web and (ii) revising opinions too easily
and in an ad-hoc manner (e.g., believing the last person who spoke).

We propose to express the peer’s logic in Webdamlog, a datalog-style rule-based language.
In WebdamLog, peers exchange facts (for information) and rules (in place of code). The use
of declarative rules provides the following advantages:

Peers may perform automatic reasoning using the available knowledge;
Because the model is formally defined, it becomes possible to prove (or disprove) desirable
properties in the spirit of [1] that uses logic to describe access control protocols;
Because the model is based on a Datalog-style language, it can benefit from optimization
techniques, as in [7, 9];
Because our model represents provenance [3] and time, we can better control the quality
of data; and
Because the model is general, it can represent wide variety of scenarios and protocoles,
which is the reality of today’s Web.

CSL’12

8 Exchanging Distributed Knowledge

Acknowledgment. This work has been partially funded by the European Research Council
under the European Community’s Seventh Framework Programme (FP7/2007-2013); ERC
grant Webdam, agreement 226513. A more detailed presentations of the results of the project
may be found on the Webdam Web site at http://webdam.inria.fr/.

References
1 Martín Abadi. Logic in Access Control (Tutorial Notes). In Alessandro Aldini, Gilles

Barthe, and Roberto Gorrieri, editors, Foundations of Security Analysis and Design V,
volume 5705, chapter 5, pages 145–165. Springer Berlin Heidelberg, Berlin, Heidelberg,
2009.

2 Serge Abiteboul, Meghyn Bienvenu, Alban Galland, and Emilien Antoine. A rule-based
language for Web data management. In Proceedings of the Symposium on Principles of
Database Systems, 2011.

3 Serge Abiteboul, Alban Galland, and Neoklis Polyzotis. A model for web information
management with access control. In Proceedings of the International Workshop on the Web
and Databases, 2011.

4 Emilien Antoine, Alban Galland, Kristian Lyngbaek, Amélie Marian, and Neoklis Polyzotis.
[Demo] Social Networking on top of the WebdamExchange System. In Proceedings of the
International Conference on Data Engineering, 2011.

5 Serge Abiteboul, Neoklis Polyzotis, The Data Ring: Community Content Sharing, Confer-
ence on Innovative Data Systems Research, 2007.

6 Alban Galland, Serge Abiteboul, Amélie Marian, and Pierre Senellart. Corroborating
Information from Disagreeing Views. In Proceedings of the International Conference on
Web Search and Data Mining, 2010.

7 Joseph M. Hellerstein. Datalog redux: experience and conjecture. In Proceedings of the
Symposium on Principles of Database Systems, 2010.

8 Serge Abiteboul, T-H. Hubert Chan, Evgeny Kharlamov, Werner Nutt, and Pierre Senellart,
Capturing Continuous Data and Answering Aggregate Queries in Probabilistic XML. In
ACM Transactions on Database Systems, vol. 36, nº 4, 2011.

9 Boon Thau Loo, Tyson Condie, Minos Garofalakis, David E. Gay, Joseph M. Hellerstein,
Petros Maniatis, Raghu Ramakrishnan, Timothy Roscoe, and Ion Stoica. Declarative net-
working: language, execution and optimization. In Proceedings of the 2006 ACM SIGMOD
international conference on Management of data, SIGMOD ’06, pages 97–108, New York,
NY, USA, 2006. ACM.

http://webdam.inria.fr/

Connecting Complexity Classes, Weak Formal
Theories, and Propositional Proof Systems
Stephen A. Cook

University of Toronto
sacook@cs.toronto.edu

Abstract
This is a survey talk explaining the connection between the three items mentioned in the title.

1998 ACM Subject Classification F.1.3, F.4.1

Keywords and phrases Complexity Classes, Weak Formal Theories, Propositional Proof Systems

Digital Object Identifier 10.4230/LIPIcs.CSL.2012.9

Category Invited Talk

1 Overview

I’ve been interested in this three-way connection since my 1975 paper [7] in which I introduced
the formal theory PV to capture polynomial time reasoning, and showed how each of its
theorems can be translated into a polynomial size family of Extended Resolution proofs.
The corresponding triple is (P, PV, ERes). I originally defined PV as an equational theory
in which the function symbols range over all polynomial time functions on N. The axioms
consist of equations defining the polynomial time functions, based on Cobham’s Theorem
[6], and a rule giving “induction on notation”; i.e. induction based on binary notation for
numbers. (Later Martin Dowd and others pointed out that ordinary induction on N can
be derived from this rule, using binary search.) My idea for PV came from Skolem’s 1923
equational theory based on function symbols for all primitive recursive functions.

The Extended Resolution proof system ERes was introduced by Tseitin [16], and is
equivalent to Extended Frege systems [10]. ERes can be characterized roughly as the
strongest propositional proof system whose soundness can be proved in PV. See [13] for
much more on these ideas.

The theory PV can formalize the proofs of many theorems useful in computer science,
such as the Pigeonhole Principle, Extended Euclidean Algorithm, Hall’s Theorem, Menger’s
Theorem, and properties of integer (or rational) determinants. Each of these corresponds
to a family of tautologies with polynomial size Extended Frege proofs. However it follows
from the witnessing theorem for PV that no polynomial time algorithm for prime recognition
(such as [1]) can be proved correct in PV unless there is a polynomial time algorithm for
integer factorization.

Buss’s influential 1986 book Bounded Arithmetic [4] introduced a hierarchy of first-order
theories Si

2 corresponding to the polynomial hierarchy. The functions Σb
1-definable in the base

theory S1
2 are the polynomial time functions, and Buss proved that S1

2(PV) is Σb
1-conservative

over PV (where now PV is regarded as a first-order theory axiomatized by the theorems of
the original equational theory). Later [12] proved that (first-order) PV is properly included in
S1

2(PV), unless the polynomial hierarchy collapses. In particular S1
2(PV) proves that integers

can be factored as a product of primes, which is unlikely to be a consequence of PV.
© Stephen A. Cook;
licensed under Creative Commons License NC-ND

Computer Science Logic 2012 (CSL’12).
Editors: Patrick Cégielski, Arnaud Durand; pp. 9–11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2012.9
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

10 Complexity Classes, Weak Formal Theories, and Propositional Proof Systems

There are plenty of interesting complexity classes included in P which have been studied
extensively, including

AC0 ⊂ AC0(2) ⊂ AC0(6) ⊆ TC0 ⊆ NC1 ⊆ LogSpace ⊆ NL ⊆ P

The famous open question in complexity theory is P =?NP, but a more embarrassing open
question is whether

NP = P = NL = LogSpace = NC1 = TC0 = AC0(6),

where as far as we know, the smallest class AC0(6) cannot count the number of 1-bits in an
input bit string. This is one motivation for studying small complexity classes: we need to
separate them from NP before separating P from NP.

In [9] Phuong Nguyen and I develop a uniform way of associating each of these classes
C with a theory VC and a suitable propositional proof system, which are connected like
(P, PV, ERes) mentioned above. (The design of the propositional translation is inspired
by [15].) The triple connecting NC1 is especially interesting here since the associated
propositional proof system is a ‘Frege system’; i.e. a standard Hilbert style proof system for
the propositional calculus. (Earlier Arai [3] connected NC1 to Frege systems in a similar way,
using a theory AID which is syntactically very different but logically equivalent to our theory
VNC1 [8].)

The theories in [9] use the two-sorted vocabulary developed by Zambella [17], in which
variables of the number sort x, y, z, . . . range over N, and those of the string sort X, Y, Z, . . .

range over finite subsets of N, interpreted as binary bit strings. The base theory V0

corresponds to the complexity class AC0. The two-sorted setting is ideal here, because
(using the descriptive complexity characterization AC0 = FO [11]) we have the convenient
fact that the bounded two-sorted ΣB

0 formulas represent precisely the AC0 relations. Part
of the interest here is that of ‘bounded reverse mathematics’ [14], where the goal is to
find the smallest complexity class C such that the corresponding theory VC proves a given
combinatorial theorem. The standard example here is the Pigeonhole Principle, which can
be proved in VTC0 (and in VNC1) but not in V0, and in fact the corresponding tautology
family does not have polynomial size proofs in the corresponding propositional proof system
Bounded-Depth Frege [2] (but does have polynomial size Frege proofs [5]). There are many
other interesting examples, but in most cases the lower bounds remain conjectures.

References
1 Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P. Annals of Mathe-

matics, 160(2):781–793, 2004.
2 Ajtai. The complexity of the pigeonhole principle. Combinatorical, 14(4):417–433, 1994.
3 Toshiyasu Arai. A bounded arithmetic AID for Frege systems. Annals of Pure and Applied

Logic, 103(1–3):155–199, 2000.
4 Samuel Buss. Bounded Arithmetic. Bibliopolis, 1986.
5 Samuel Buss. Polynomial size proofs of the propositional pigeonhole principle. Journal of

Symbolic Logic, 52:916–927, 1987.
6 A. Cobham. The intrinsic computational difficulty of functions. In Y. Bar-Hillel, editor,

Proceedings of the International Congress Logic, Methodology, and Philosophy of Science,
pages 24–30. North Holland, 1965.

7 Stephen Cook. Feasibly constructive proofs and the propositional calculus. Proceedings of
the 7th Annual ACM Symposium on Theory of computing, pages 83–97, 1975.

S. A. Cook 11

8 Stephen Cook and Tsuyoshi Morioka. Quantified Propositional Calculus and a Second-
Order Theory for NC1. Archive for Mathematical Logic, 44(6):711–749, 2005.

9 Stephen Cook and Phuong Nguyen. Logical Foundations of Proof Complexity. Cambridge
University Press, 2010. Draft available from URL http://www.cs.toronto.edu/~sacook.

10 Stephen Cook and Robert Reckhow. The relative efficiency of propositional proof systems.
Journal of Symbolic Logic, 44(1):36–50, 1979.

11 Neil Immerman. Descriptive Complexity. Springer, 1999.
12 J. Krajíček, P. Pudlák, and G. Takeuti. Bounded arithmetic and the polynomial hierarchy.

Annals of Pure and Applied Logic, 52:143–153, 1991.
13 Jan Krajíček. Bounded Arithmetic, Propositional Logic and Computational Complexity.

Cambridge University Press, 1995.
14 Phuong Nguyen. Bounded Reverse Mathematics. PhD thesis, University of Toronto, 2008.

http://www.cs.toronto.edu/~pnguyen/.
15 Jeff B. Paris and Alex J. Wilkie. Counting problems in bounded arithmetic. In Methods

in Mathematical Logic, number 1130 in Lecture Notes in Mathematics, pages 317–340.
Springer, 1985.

16 G. S. Tseitin. On the complexity of derivation in propositional calculus. In A. O.
Slisenko (Translated from Russian), editor, Studies in Constructive Mathematics and Math-
ematical Logic, Part 2, pages 115–125. Consultants Bureau, New Yor, London, 1970.

17 D. Zambella. Notes on polynomially bounded arithmetic. Journal of Symbolic Logic,
61(3):942–966, 1996.

CSL’12

Satisfiability: where Theory meets Practice∗

Inês Lynce

INESC-ID/IST,
Technical University of Lisbon, Portugal
ines@sat.inesc-id.pt

Abstract
Propositional Satisfiability (SAT) is a keystone in the history of computer science. SAT was
the first problem shown to be NP-complete in 1971 by Stephen Cook [4]. Having passed more
than 40 years from then, SAT is now a lively research field where theory and practice have
a natural intermixing. In this talk, we overview the use of SAT in practical domains, where
SAT is thought in a broad sense, i.e. including SAT extensions such as Maximum Satisfiability
(MaxSAT), Pseudo-Boolean Optimization (PBO) and Quantified Boolean Formulas (QBF).

1998 ACM Subject Classification I.2.8 Problem Solving, Control Methods, and Search

Keywords and phrases Propositional Satisfiability, SAT solvers, Applications

Digital Object Identifier 10.4230/LIPIcs.CSL.2012.12

Category Invited Talk

1 Overview

Given a Boolean formula, the SAT problem is to find an assignment to the Boolean variables
such that the formula is satisfied or prove that no such assignment exists. Whereas SAT
is used for solving decision problems, extensions of SAT are used for solving optimization
problems. Interestingly, many implementations of SAT extensions make iterative calls to a
SAT solver. This means that SAT research has a direct impact on SAT extensions. Also
interesting is the fact that SAT solvers are also used by or have been an inspiration to other
paradigms. Well-known examples are Satisfiability Modulo Theories (SMT) [15], Answer Set
Programming (ASP) [11], model checking [3] and planning [10].

Currently, SAT is well known not only for its theoretical interest but also for the
effectiveness of modern SAT solvers. SAT solvers are reliable and easy to use as the result of
more than one decade accessing the status of SAT solvers in international competitions [9].
Modern SAT solvers find their roots in the seminal contributions made in the 60s with
the resolution based DP procedure [6] and the backtrack search based DPLL procedure [5].
DPLL has later been enhanced with a few techniques: clause learning [17] to reduce the
search space, search restarts [7] to diversify the search and lazy data structures [14] to reduce
the cost of propagation, among others.

SAT and SAT extensions are clearly application driven research fields. Advances are most
often motivated by real problems requiring a solution. Successful examples are haplotype
inference [12] and biological networks [8] in the field of biology, as well as upgrades in software
packages [1] in the field of software engineering, among many others. SAT is now used not
only by SAT researchers but also by other researchers who use a SAT solver as a black box.

∗ This work was partially supported by national funds through FCT research project ASPEN (PTDC/EIA-
CCO/110921/2009) and INESC-ID multiannual funding from the PIDDAC program funds.

© Ines Lynce;
licensed under Creative Commons License NC-ND

Computer Science Logic 2012 (CSL’12).
Editors: Patrick Cégielski, Arnaud Durand; pp. 12–13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2012.12
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

I. Lynce 13

SAT solvers are not limited to providing a solution or proving that no such solution exists.
Another interesting topic in SAT is to reason over formulas. The motivation is to better
understand the structure of the formula either to improve the SAT solvers performance or to
better perceive the problem being encoded into SAT. For example, we may want to eliminate
redundant clauses, i.e. to get a minimal equivalent subformula (MES) [2]. In terms of
variables, one may be interested in identifying the backbones [13], i.e. the value assignments
that are common to all solutions, and the backdoors, i.e. a set of value assignments such
that the simplified formula can be solved by a poly-time algorithm [18]. As for unsatisfiable
formulas, it may be relevant to identify a minimal unsatisfiable subformula (MUS) [16].

References
1 Josep Argelich, Inês Lynce, and João P. Marques Silva. On solving boolean multilevel

optimization problems. In IJCAI, pages 393–398, 2009.
2 Anton Belov, Mikoláš Janota, Inês Lynce, and João Marques-Silva. On computing minimal

equivalent subformulas. In CP, 2012. To appear.
3 Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. Symbolic model

checking without BDDs. In TACAS, pages 193–207, 1999.
4 Stephen A. Cook. The complexity of theorem-proving procedures. In ACM Symposium on

Theory of Computing, pages 151–158, 1971.
5 Martin Davis, George Logemann, and Donald W. Loveland. A machine program for

theorem-proving. Commun. ACM, 5(7):394–397, 1962.
6 Martin Davis and Hilary Putnam. A computing procedure for quantification theory. J.

ACM, 7(3):201–215, 1960.
7 Carla P. Gomes, Bart Selman, and Henry A. Kautz. Boosting combinatorial search through

randomization. In AAAI, pages 431–437, 1998.
8 João Guerra and Inês Lynce. Reasoning over biological networks using maximum satisfiab-

ility. In CP, 2012. To appear.
9 Matti Järvisalo, Daniel Le Berre, Olivier Roussel, and Laurent Simon. The international

SAT solver competitions. AI Magazine, 33(1), 2012.
10 Henry A. Kautz and Bart Selman. Planning as satisfiability. In ECAI, pages 359–363, 1992.
11 Fangzhen Lin and Yuting Zhao. ASSAT: computing answer sets of a logic program by SAT

solvers. Artif. Intell., 157(1-2):115–137, 2004.
12 Inês Lynce and João Marques-Silva. Efficient haplotype inference with boolean satisfiability.

In AAAI, pages 104–109, 2006.
13 João Marques-Silva, Mikoláš Janota, and Inês Lynce. On computing backbones of propos-

itional theories. In ECAI, pages 15–20, 2010.
14 Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.

Chaff: Engineering an efficient SAT solver. In DAC, pages 530–535, 2001.
15 Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and SAT modulo

theories: From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(t). J.
ACM, 53(6):937–977, 2006.

16 João P. Marques Silva and Inês Lynce. On improving MUS extraction algorithms. In SAT,
pages 159–173, 2011.

17 João P. Marques Silva and Karem A. Sakallah. GRASP - a new search algorithm for
satisfiability. In ICCAD, pages 220–227, 1996.

18 Ryan Williams, Carla P. Gomes, and Bart Selman. Backdoors to typical case complexity.
In IJCAI, pages 1173–1178, 2003.

CSL’12

Definability and Complexity of Graph Parameters
Johann A. Makowsky

Faculty of Computer Science, Technion–Israel Institute of Technology
Haifa Israel
{janos}@cs.technion.ac.il

Abstract
In this talk we survey definability and complexity results of graph parameters which take values
in some ring or field R.

1998 ACM Subject Classification F.1.1, F.2.2, F.4.1, G.2.2

Keywords and phrases Model theory, finite model theory, graph invariants

Digital Object Identifier 10.4230/LIPIcs.CSL.2012.14

Category Invited Talk

1 Overview

Partition functions and related graph parameters have found many applications in computer
science, combinatorics, physics, chemistry, biology and even the mathematics of finance.

In this talk we survey definability and complexity results of graph parameters which take
values in some ring or field R. For this purpose we introduced the classes SOLEVALR and
MSOLEVALR of graph parameters with values in a ring or a field R which are definable in
Second Order Logic SOL and Monadic Second Order Logic MSOL respectively, [6, 12, 13, 9,
10].

Partition functions are special cases of such parameters. They all are in MSOLEVALR.
Many classes of partition functions have been characterized in a series of papers by M.
Freedman, L. Lovasz, A. Schrijver and B. Szegedy [5, 15, 1], Their characterizations all use
algebraic properties of connection matrices, which are a generalization of Hankel matrices over
words. Partition functions can also be viewed as weighted constraint satisfaction problems
(CSP) over relational structures. However, characterizing those functions which map labeled
relational structures into R which are representable as CSP problems, seems harder. It
was shown in [6] that for all functions in MSOLEVALR and for a wide class of connection
matrices the rank of these connection matrices is finite.

A classical result of J.W. Carlyle and A. Paz [3] used Hankel matrices to characterize
functions f : Σ∗ → R of words over a finite alphabet Σ recognizable by multiplicity automata
(aka weighted automata). We use this to give a complete characterization of R-valued
functions over words in terms of their Hankel matrix. We discuss how to extend such
characterization to labeled trees, edge-labeled graphs, and, more generally, to relational
structures, [14]. This contrasts and complements the approach given in [4], which uses
weighted formulas of MSOL rather than functions in MSOLEVALR.

Studying the complexity of functions in SOLEVALR and MSOLEVALR poses some
problems. To capture the complexity of their combinatorial nature, the Turing model of
computation and Valiant’s notion of counting complexity classes]P seem most natural.
To capture the algebraic and numeric nature of partition functions as real or complex
valued functions, the Blum-Shub-Smale (BSS) model of computation seems more natural.

© Johann A. Makowsky;
licensed under Creative Commons License NC-ND

Computer Science Logic 2012 (CSL’12).
Editors: Patrick Cégielski, Arnaud Durand; pp. 14–15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2012.14
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

J.A. Makowsky 15

However, in BSS there are various analogues of]P based on discrete counting, but there
is no established complexity class suitable for hard to compute graph parameters. As a
result most papers use a naive hybrid approach in discussing their complexity or restrict
their considerations to sub-fields of C which can be coded in a way to allow dealing with
Turing computability. Polynomial time computability is formulated in BSS but hardness is
formulated resorting to]P. Pioneered by F. Jaeger and D.L. Vertigan and D.J.A. Welsh [8],
and A. Bulatov and M. Grohe [2], dichotomy theorems for a wide class of partition functions
were proven which were all formulated in this hybrid language, see also [7].

In the second part of this talk we discuss a unified natural framework for the study of
computability and complexity of partition functions and graph parameters and show how
classical results can be cast in this framework, cf. [11].

The emphasis of this talk is conceptual and includes a list of open problems and a
discussion further directions of research.

(Partially based on joint work with T. Kotek, N. Labai and E.V. Ravve)

References
1 A.Schrijver. Graph invariants in the spin model. J. Comb. Theory Series B, 99:502–511,

2009.
2 A. Bulatov and M. Grohe. The complexity of partition functions. Theoretical Computer

Science, 348:148–186, 2005.
3 J.W. Carlyle and A. Paz. Realizations by stochastic finite automata. J. Comp. Syst. Sc.,

5:26–40, 1971.
4 M. Droste and P. Gastin. Weighted automata and weighted logics. In ICALP 2005, pages

513–525, 2005.
5 M. Freedman, László Lovász, and A. Schrijver. Reflection positivity, rank connectivity, and

homomorphisms of graphs. Journal of AMS, 20:37–51, 2007.
6 B. Godlin, T. Kotek, and J.A. Makowsky. Evaluation of graph polynomials. In 34th

International Workshop on Graph-Theoretic Concepts in Computer Science, WG08, volume
5344 of Lecture Notes in Computer Science, pages 183–194, 2008.

7 M. Grohe and M. Thurley. Counting homomorphisms and partition functions. In M. Grohe
and J.A. Makowsky, editors, Model Theoretic Methods in Finite Combinatorics, volume 558
of Contemporary Mathematics, pages 243–292. American Mathematical Society, 2011.

8 F. Jaeger, D.L. Vertigan, and D.J.A. Welsh. On the computational complexity of the Jones
and Tutte polynomials. Math. Proc. Camb. Phil. Soc., 108:35–53, 1990.

9 T. Kotek. Definability of combinatorial functions. PhD thesis, Technion - Israel Institute
of Technology, Haifa, Israel, March 2012. Submitted.

10 T. Kotek and J.A. Makowsky. Connection matrices and the definability of graph parameters.
In CSL 2012, this volume, 2012.

11 T. Kotek, J.A. Makowsky, and E.V. Ravve. A computational framework for the study of
partition functions and graph polynomials. Preprint, 2012.

12 T. Kotek, J.A. Makowsky, and B. Zilber. On counting generalized colorings. In Computer
Science Logic, CSL’08, volume 5213 of Lecture Notes in Computer Science, page 339–353,
2008.

13 T. Kotek, J.A. Makowsky, and B. Zilber. On counting generalized colorings. In M. Grohe
and J.A. Makowsky, editors, Model Theoretic Methods in Finite Combinatorics, volume
558 of Contemporary Mathematics, pages 207–242. American Mathematical Society, 2011.

14 N. Labai and J.A. Makowsky. Recognizable power series and msol-definable functions of
words. Preprint, 2012.

15 B. Szegedy. Edge coloring models and reflection positivity. Journal of the American Math-
ematical Society, 20.4:969–988, 2007.

CSL’12

A Syntactical Approach to Weak ω-Groupoids
Thorsten Altenkirch1 and Ondřej Rypáček2

1 Functional Programming Laboratory
School of Computer Science
University of Nottingham, UK
thorsten.altenkirch@nottingham.ac.uk

2 Department of Computer Science
University of Sheffield, UK
ondrej.rypacek@gmail.com

Abstract
When moving to a Type Theory without proof-irrelevance the notion of a setoid has to be
generalized to the notion of a weak ω-groupoid. As a first step in this direction we study the
formalisation of weak ω-groupoids in Type Theory. This is motivated by Voevodsky’s proposal of
univalent type theory which is incompatible with proof-irrelevance and the results by Lumsdaine
and Garner/van de Berg showing that the standard eliminator for equality gives rise to a weak
ω-groupoid.

1998 ACM Subject Classification F.4.1. Lambda calculus and related systems, F.4.1. Mechan-
ical theorem proving, G.0 Mathematics of Computing – General

Keywords and phrases Type Theory, Category Theory, Higher dimensional structures

Digital Object Identifier 10.4230/LIPIcs.CSL.2012.16

1 Introduction

The main motivation for the present work is the development of Univalent Type Theory
by Voevodsky [23, 5]. In a nutshell, Univalent Type Theory is a variant of Martin-Löf’s
Type Theory where we give up the principle of uniqueness of identity proofs (UIP) to make
it possible to treat equivalence of structures (e.g. isomorphism of sets) as equality. While
Voevodsky’s motivation comes from Homotopy Theory, Univalent Type Theory has an
intrinsic type theoretic motivation in enabling us to treat abstract structures as first class
citizens making it possible to combine high level reasoning and concrete applications without
unnecessary clutter.

The central principle of Univalent Type Theory is the Univalence Axiom which states that
equality of types is weakly equivalent to weak equivalence. Here weak equivalence is a notion
motivated by homotopy theoretic models of type theory which can be alternatively understood
as a refinement of the notion of isomorphism in the absence of UIP. The Univalence axiom can
be viewed as a strong extensionality principle and indeed it implies functional extensionality.
As with functional extensionality, univalence doesn’t easily fit within the computational
understanding of Type Theory, since it does not fit into the common pattern of introduction
and elimination rules. The first author has suggested a solution of this problem for functional
extensionality [1]: we can justify extensionality by a translation based on the setoid model.
This approach was later refined [2] to Observational Type Theory which is the base for the
development of Epigram 2 [9].

However, Observational Type Theory relies essentially on UIP and hence is incompatible
with Univalent Type Theory. To address this we need to replace setoids with a structure able

© Thorsten Altenkirch and Ondřej Rypáček;
licensed under Creative Commons License NC-ND

Computer Science Logic 2012 (CSL’12).
Editors: Patrick Cégielski, Arnaud Durand; pp. 16–30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2012.16
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

T. Altenkirch and O. Rypáček 17

to model non-unique identity proofs. A first step in this direction is the groupoid model [11]
but this forces UIP on the next level, i.e. for equality between equality proofs. 1 To be able
to model Type Theory without UIP at any level we need to move to ω-groupoids. Moreover,
the equalities we need to assume are in general non-strict (i.e. they are not definitional
equalities in the sense of Type Theory) and hence we need to look at weak ω-groupoids.
Indeed, as [8] and [17] have shown: Type Theory with Identity types gives rise to a weak
ω-groupoid.

Our goal is to eliminate univalence by formalizing a weak ω-groupoid model of Type
Theory in Type Theory. As a first step we need to implement the notion of a weak ω-groupoid
in Type Theory and this is what we do in the present paper. An obvious possibility would
have been to implement a categorical notion of weak ω-groupoids (e.g. based on globular
operads) in Type Theory. However, this forces us to implement many categorical notions
first, generating an avoidable overhead. It also seems that a structure with a more type
theoretic flavour is more manageable in type theory and more accessible from a naive point of
view. Hence, we are looking for a more direct type theoretic formulation of weak ω-groupoids.
In the present paper we attempt this by defining a weak ω-groupoid to be a globular set
with additional structure where this structure is given by interpreting a syntactic theory in
the globular set. This approach is new and remains to be proved in our future work that it
is equivalent to an established definition. The material presented here has been formalised in
Agda [19]. We present it in a natural deduction style for the reader unfamiliar with Agda
syntax.

In the following text, we first discuss and define globular sets in type theory in Section
2. In Section 3 we start introducing the syntax of ω-groupoids by defining the general
syntactical framework which includes variables contexts, categories, and objects. We also
define interpretation of the framework into a globular set. Sections 4, 5 and 6 are concerned
with definition of the syntax of objects. Section 4 describes the construction of all units
and objects; Section 5 defines the construction of all coherence cells witnessing the left and
right unit laws, associativity of composition and interchange. In Section 6, we complete
the definition of coherence by introducing all coherence cells between coherence cells. In
Section 7 we summarise the results, and provide a rough comparison to other (categorical)
approaches to weak ω-categories.

2 Globular Sets

In Type Theory we use the notion of a setoid to describe a set with a specific equality. That
is a A : Setoid is given by the following data:

objA : Set
homA : objA → objA → Prop

and proof objects id,−−1,−;− witnessing that hom is an equivalence relation. Here we write
Prop to denote the class of sets which have at most one inhabitant. This restriction is
important when showing that the category of setoids has certain structure, in particular forms
a model of Type Theory. That is setoids can model a type theory with a proof-irrelevant
equality. To model proof-relevant equality we need to generalize the notion of a setoid so
that the hom-sets are generalized setoids again. It is not enough to just postulate the laws of
an equivalence relation at each level, we also need some laws how these proofs interact. On

1 [16] have shown that the appropriate restriction of Univalence can be eliminated in this setting.

CSL’12

18 A Syntactical Approach to Weak ω-Groupoids

the first level we require the laws of a groupoid, e.g. we want that id;α is equal to α. Here is
equal means that they are related by the equality relation of a setoid again. As demonstrated
in [8, 17], the structure we are looking for is a weak ω-groupoid. It is the goal of this paper
to develop a formalisation of this structure. As a first step let’s ignore the proof objects (i.e.
the data of an equivalence relation and the groupoid laws etc). We end up with a coinductive
definition of a globular set G : Glob given by

objG : Set
homG : objG → objG →∞Glob

Here we use ∞ to indicate that Glob is defined coinductively. More formally, Glob is the
terminal coalgebra of Σobj : Set.obj → obj → −. Given globular sets A,B a morphism
f : Glob(A,B) between them is given by

obj→f : objA → objB
hom→f : Πa, b : objA.Glob(homA a b,homB(obj→f a, obj→f b))

Note that this definition exploits the coinductive character of Glob. Identity and composition
can be defined easily by iterating the set-theoretic definitions ad infinitum. As an example
we can define the terminal object in 1Glob : Glob by the equations

obj1Glob
= 1Set

hom1Glob x y = 1Glob

More interestingly, the globular set of identity proofs over a given set A, Idω A : Glob can be
defined as follows:

objIdω A = A

homIdω A a b = Idω (a = b)

Our definition of globular sets is equivalent to the usual one as a presheaf category over the
diagram:

0
s0 //
t0
// 1

s1 //
t1
// 2 · · ·n

sn //
tn
// (n+ 1) · · ·

with the globular identities:

si+1 ◦ si = ti+1 ◦ si
ti+1 ◦ ti = si+1 ◦ ti

In the example of Idω A the presheaf is given by a family FA : N→ Set:

FA 0 = A

FA 1 = Σa, b : A, a = b

FA 2 = Σa, b : A,Σα, β : a = b, α = β
...

...
...

FA (n+ 1) = Σa, b : A,F a=b n

and source and target maps si, ti : FA (n+ 1)→ FA n satisfying the globular identities.

s0(a, b,−) = a sn+1 (a, b, α) = (a, b, sn α)
t0(a, b,−) = b tn+1 (a, b, α) = (a, b, tn α)

T. Altenkirch and O. Rypáček 19

3 Syntax

Our goal is to specify the conditions under which a globular set is a weak ω-groupoid. This
means we need to require the existence of certain objects in various object sets within the
structure. A natural way would be to generalize the definition of a setoid and add these
components to the structure. However, it is not clear how to capture the coherence condition
which basically says that any two morphisms which just represent identities in the strict
case should be equal. Instead we will follow a different approach which can be compared to
the definition of environment models for the λ-calculus: we shall define a syntax for weak
ω-groupoids and then define a weak ω-groupoid as a globular set in which this syntax can be
interpreted.

3.1 The syntactical framework
We start by presenting a syntactical framework which is a syntax for globular sets. This
syntax could be used to identify any globular set with structure (e.g. weak or strict ω-
categories), the specific aspects of a weak ω-groupoid will be introduced later by adding
additional syntax for objects and other auxiliary syntactic components.

Our framework consists of the following main components which are defined by mutual
induction2:
Contexts

Con : Set

Contexts serve to formalize the existence of hypothetical objects which are specified by
the globular set in which they live. E.g. to formalize ordinary composition we have to
assume that objects a, b, c and 1-cells f : a // b and g : b // c exist to be able to form
g ◦ f : a // c.

Categories

Γ : Con
VarCat Γ : Set

Γ : Con
Cat Γ : Set

In order to define the valid compositions of cells one needs to know their boundaries,
i.e. iterated domains and codomains in the globular case. Category expressions record
this data. We define two kinds of categories: VarCats are categories which contain
only variables, while Cats contain all cells freely generated from variables. The set of
expressions for both kinds of categories depends on a context, e.g. we need at least to
assume that there is one object in the top-level category to be able to form any other
categories.

Variables & Objects

G : VarCat Γ
Var G : Set

C : Cat Γ
Obj C : Set

VarCats contain only variables, which are projections out of the context Γ. On the other
hand, given a category we define all expressions which identify objects lying within the
category. As indicated above this is the main focus of the forthcoming sections.

2 This is an instance of an inductive-inductive definition in Type Theory, see [3].

CSL’12

20 A Syntactical Approach to Weak ω-Groupoids

We now specify the constructors for the various sets (apart from objects). We use unnamed
variables ala deBruijn, hence contexts are basically sequences of categories. However, note
that this is a dependent context since the well-formedness of a category expression may
depend on the previous context. At the same time we build globular sets from nameless
variables in contexts.

ε : Con
G : VarCat Γ
(Γ, G) : Con • : VarCat Γ

G : VarCat Γ a, b : Var G
G[a, b] : VarCat Γ

vz : Var (wk G)
v : Var G

vs v : Var (wk G G′)
where wk is weakening defined for categories by induction on the structure in the obvious
way:

G, G′ : VarCat Γ
wk G G′ : VarCat (Γ, G′)

wk • G′ = •
wk (G[a, b]) G′ = (wk G G′)[vs a, vs b]

There are two ways to form category expressions: there is the top level category denoted by
• and given any two objects a, b in a category C we can form the hom category C[a, b].

• : Cat Γ
C : Cat Γ a, b : Obj C

C[a , b] : Cat Γ

Variables become objects by the following constructor of Obj, which mutually extends to
VarCats:

v : Var G
var v : Obj (var G)

G : VarCat Γ
var G : Cat Γ where var • = •

var G[a, b] = (var G)[var a, var b]

We use the usual arrow notation for categories and objects. For instance, •[a, b], •[a, b][f, g]
and α : Obj (•[a, b][f, g]) are pictured respectively as follows:

a b a b

f

%%
a b

g

99 a b

f

%%
a b

g

99⇓α

We also write, as usual, x : an −→ bn : · · · : a0 −→ b0 for an x : Obj (•[a0, b0] · · · [an, bn]).
Note that it is essential to first introduce VarCats and then Cats with an inclusion

var : Σ(VarCat Γ) Var // Σ(Cat Γ) Obj

In this way we make sure that variables alone form a globular set, i.e. that the domain and
codomain of a variable is a variable. In particular, that it is not possible to introduce a
variable between syntactically constructed coherence cells. In this way we can talk about the
ω-category freely generated by a globular set.

3.2 Interpretation
Given a globular set we define what we mean by an interpretation of the syntax. Once
we have specified all the constructors for objects a weak ω-groupoid is given by such an
interpretation. The interpretation of the structural components given in the present section
is fixed. Again this is reminiscent of environment models.

An interpretation in a globular set G : Glob is given by the following data:

T. Altenkirch and O. Rypáček 21

1. An assignment of sets to contexts:
Γ : Con
JΓK : Set

2. An assignment of globular sets to VarCat and Cat expressions:
G : VarCat Γ γ : JΓK

JGK γ : Glob
C : Cat Γ γ : JΓK

JCK γ : Glob
3. An assignment of elements of object sets to object expressions and variables

G : VarCat Γ x : Var G γ : JΓK
JxK γ : objJGK γ

C : Cat Γ A : Obj C γ : JΓK
JAK γ : objJCK γ

subject to the following conditions:

JεK = 1 Jvar xK γ = JxK γ
JΓ, GK = Σγ : JΓK, JGK γ JvzK (γ, a) = a

J•K γ = G JvsxK (γ, a) = JxK γ
JC[a, b]K γ = homJCKγ (JaK γ) (JbK γ)

,

where the last case applies both to VarCats and Cats.

4 Structure

A category, strict or weak, is a globular set with additional structure. The difference between
the strict and the weak case is whether we adorn the structure with (equational) constraints
or whether one instead of axioms introduces more structure, which witnesses rather than
postulates the constraints; so-called coherence cells. In this section we introduce the syntax
for the structure of composition and units giving rise to syntax for what one could call a
pre-monoidal globular category, where composites and units are expressible but unconstrained
by coherence cells.

4.1 Composition
In the ordinary case, a category, C, defines an indexed operation of composition on its
arrows. Explicitly, for a, b, c objects of C, f in C[a, b], g in C[b, c], there is a gf in C[a, c].
In the higher-dimensional case, C(a, b) and C(b, c) are not mere sets but ω-categories and
composition extends from sets the whole hom-categories. Informally: for a, b, c as before,
f , g, n-cells of homcategories C(a, b) and C(b, c), respectively, one requires an n-cell g ◦ f
of C(a, c). The fact that both f and g are of the same relative depth with respect to C is
important, as well the fact the homcategories of f and g meet at a common object, b, of C.
Following are some examples of valid compositions for increasing n:

a
f // b

g // c 7→ a
gf // c a b

f

""
a b

f ′

<<⇓α b c

g

""
b c

g′

<<⇓β 7→ a c

gf

""
a c

g′f ′

<<⇓βα (1)

a b

f

a b//
⇓α ⇓α′V
γ

a b

f ′′

>>⇓β ⇓β′V
δ

7→ a c

f

((
a c

f ′′

66⇓βα ⇓β′α′V
δγ

(2)

We formalise this as follows.

CSL’12

22 A Syntactical Approach to Weak ω-Groupoids

4.1.1 Telescopes
The type Obj : Cat // Set represents the set of syntactical objects lying directly in any
category. In order to talk about arbitrary n-cells of a category, for instance to define their
compositions, we must introduce telescopes. Informally, a telescope is a category in a category.
Formally, telescopes, Tel, are defined below at the same time as their concatenation onto a
category, ++, which takes a telescope to a category, and therefore allows us to put objects
into a telescope:

C : Cat Γ n : N
Tel C n : Set

t : Tel C n
C ++ t : Cat Γ

Telescopes are like categories except that the base case is an arbitrary category C rather
than • :

• : Tel C 0
t : Tel C n a, b : Obj (C ++ t)

t[a, b] : Tel C (n+ 1)
C ++ • = C

C ++ t[a, b] = (C ++t)[a, b]

Here, we call n the length of t, and we say any x : Obj(C ++ t) to be of depth n.
We say that t lies in C. Note that only the left associative reading of ++ makes sense so

expressions like C ++ t++u are unambiguous.
We say that an object x : Obj (C ++ t) lies in (the telescope) t. When t lies in C, x is

called an object relative to C. Alternatively, when the category t lies in is not important we
use the following syntactical shorthand:

C : Cat Γ t : Tel C n
t ⇓ : Cat Γ t ⇓= C ++ t

For example, given the category a b

f

%%
a b

g

99⇓ϕ ⇓γ , one has:

•[ϕ, γ] ⇓ = •[a, b][f, g] ++ • [ϕ, γ] = •[a, b][f, g][ϕ, γ] .

4.1.2 Back to composition
We use telescopes to define syntax for all compositions of an ω-category. These are defined
mutually recursively with their extensions to telescopes:

t : Tel (C[a, b]) n u : Tel (C[b, c]) n
u ◦ t : Tel (C[a, c])

α : Obj(C[a, b] ++t) β : Obj(C[b, c] ++u)
β ◦ α : Obj(C[a, c] ++(u ◦ t))

Where ◦ is a new constructor of Obj and ◦ for telescopes is a function defined by cases

• ◦ • = •
u[a′, b′] ◦ t[a, b] = (u ◦ t)[a′ ◦ a, b′ ◦ b]

Any α and β as above are said to be composable. Note that for a fixed category C, ◦ always
defines the composition in C, called horizontal in the 2-categorical case, which can be applied
to all composable (n + 1)-cells of C, where n is the length of the telescopes t and u. To
compose cells “vertically”, one moves to a homcategory. In 2-category theory, horizontal
composition is usually denoted ◦ or ∗ or is left out, whereas vertical composition by · . In
our case, we always use ◦ and the level we mean is contained in the (implicit) parameter C.
For example, examples in (1) are both horizontal compositions where C = •, while (2) is a
vertical composition where C = •[a, b].

T. Altenkirch and O. Rypáček 23

4.2 Units

We generate all higher units from a single constructor id defined as follows:

a : Obj C
id a : Obj C[a, a]

By iteration we obtain the unit for horizontal composition of n-cells:

a : Obj C n : N
idTel an : Tel C n idna : Obj (idTel an ⇓)

Again, an iterated unit is defined at the same time as its telescope.

idTel a 0 = • id0a = a

idTel a (n+ 1) = (idTel an)[idna, idna] id(n+1)a = id (idna)

5 Laws

In a strict ω-category composition and identities – structure – are accompanied by axioms
expressing their fundamental properties. Namely, composition should be associative, and it
should satisfy the so-called interchange law; identities should be the units of composition.
The fact that the axioms are equations and one can therefore replace equals for equals in
expressions has the pleasant consequence that the complexity of axioms doesn’t increase
with dimension. Indeed, the whole theory for strict ω-categories can be generalised without
much difficulty to categories enriched in an arbitrary monoidal category [12]. However, once
the equational axioms are replaced by data – coherence cells – their complexity rises steeply
with dimension.

The combinatorial complexity of coherence cells has been a major obstacle in the devel-
opment of weak ω-categories. It has led to the development of many diverse approaches to
weak ω-categories, e.g. [21, 7, 6, 22, 20, 15, 17]. Comprehensive surveys and comparisons
can be found in [14, 10]. However the development of Type Theory has made it possible to
express all coherence cells in a closed form. In this section we start to describe how in Type
Theory all coherence cells can be generated by induction on their depth.

For example, the 1-categorical left-unity law:

idb ◦ f = f , (3)

for all f : a −→ b, is replaced in a weak ω-category by a pair of 2-cells λf : idb ◦ f =⇒ f and
λ−1
f : f =⇒ idb ◦ f . A similar law should hold for ◦ and higher cells. I.e. it should also hold

in the strict case that for any α : f =⇒ f ′:

id2
b ◦ α = α , (4)

where id2
b = ididb . Note that (4) makes sense because (3) holds. In the weak case, it is not

the case that the boundary of id2
b ◦ α is equal to the boundary of α and it is simply not

possible to categorify (4) by introducing a pair of 3-cells between the left and right side
of (4). However, we can use λf and λ−1

f to coerce the boundary of the former, idb ◦ f and
idb ◦ f ′, to the boundary of the latter, f and f ′, respectively. The following figure illustrates

CSL’12

24 A Syntactical Approach to Weak ω-Groupoids

this idea:

λα : a b

f

%%
b b

idb
%%

a b

f

��
⇓λ−1
f

a b

f ′

99 b b

idb

99⇓α ⇓id2
ba b

f ′

@@
⇓λf′

V a b

f

%%⇓αa b

f ′

99 (5)

The reader is invited to try to write down the fourth iteration, i.e. the domain and codomain
of λγ for γ : αV α′ : f =⇒′ f : a −→ a′. Note that each higher pair of λ’s can be seen as
expressing the naturality of the preceding lower lambda.

Similarly one must introduce ρ’s to witness the right unit law, χ’s to witness interchange,
and α’s to witness associativity. In the case of groupoids where every arrow has an inverse
there are ι’s and κ’s to witness the left and right cancellation properties. The example of λ
has been chosen because of its relative simplicity.

Moreover, all such coherence cells must satisfy a coherence property basically saying
that any pair of n-cells from d to d′ involving only coherence cells and units3 must have a
mediating n+1-cell connecting d and d′. Intuitively, as the coherence cells λ, ρ, α and χ we
have just described witness axioms, the higher coherence cells witness their closure under
composition and identity.

5.1 Formalising left units
In (5) we made the boundaries of the left- and right-hand sides match by applying the
function:

Φ ≡ (l, l′) 7→ x 7→ l′ · x · l

to (λ−1
f , λf ′) and id2

b ◦ α. The 3-cells λα and λ−1
α are then introduced as

λα : Obj (•[a, b][f, f ′][Φ (λ−1
f , λf ′) (id2

b ◦ α), α])
λ−1
α : Obj (•[a, b][f, f ′][α,Φ (λ−1

f , λf ′) (id2
b ◦ α)]) .

These arrows should be natural in 3-cells γ : αV α′. In a diagram:

idb ◦ f ′ f ′
λf′

//

idb ◦ f

idb ◦ f ′

id2
b ◦α

��

idb ◦ f foo
λ−1
f

f

f ′

α

��

λα_ *4

_jtλ
−1
α

λf ′ ∗ (id2
b ◦ α′) ∗ λ−1

f α′
λα′

//

λf ′ ∗ (id2
b ◦ α) ∗ λ−1

f

λf ′ ∗ (id2
b ◦ α′) ∗ λ−1

f

idλ
f′
∗(id3

b ◦ γ)∗id
{λ−1
f

��

λf ′ ∗ (id2
b ◦ α) ∗ λ−1

f αoo λ−1
α

α

α′

γ

��

λγ_*4

_jt
λ−1
γ

Note that going top-left-bottom around the square one gets

Φ (λ−1
α , λα′) (Φ (λ−1

f , λf ′) γ)) .

This is the basic idea of the recursion generating all higher λ’s. A similar pattern occurs in
the definition of the other coherence cells.

3 Identity cells can be seen as coherence cells witnessing reflexivity of equality.

T. Altenkirch and O. Rypáček 25

5.2 Formalising all coherence cells
To summarise and generalise, we want to introduce for each α in a telescope t of length n and
each β in a telescope u of length n a cell Φmα −→ β where m is the data necessary to define
a function Obj (t ⇓)→ Obj (u ⇓). We will call such an m a telescope morphism from t to u;
formally m : t ⇒ u. Then Φ has type t ⇒ u → Obj(t ⇓) → Obj(u ⇓). Formally, we define
telescope morphisms as follows; in mutual recursion with their application to telescopes and
objects in telescopes:
t, u : TelC n
t⇒ u : Set • : •⇒ •

m : t⇒ u α : Obj (u ⇓ [a′,m@a]) Obj (u ⇓ [m@b, b′])
m[α, β] : t[a, b]⇒ u[a′, b′]

where
m : t⇒ u t′ : Tel (t ⇓)n

m
−→@ t′ : Tel (u ⇓)n

m : t⇒ u a : Obj (t ⇓ ++ t′)

m@a : Obj (u ⇓ ++m
−→@ t′)

•
−→@ t = t

m′[α, β]−→@ t = (m′−→@ t)[m@α,m@β])
Φ is then a special case of @ for t′ = •. To define @ we need the following auxiliary function,
among others, which extends a telescope on the left.

t : Tel (C[a, b]) n
[a, b]t : Tel C (n+ 1)

where [a, b]• = •[a, b]
[a, b](t[c, d]) = ([a, b]t)[c, d]

Note that here c and d don’t actually fit into the telescope [a, b]t because the latter is
definitionally different from t. However, it is straightforward to prove by induction that

t ⇓ ≡ [a, b]t ⇓ , (6)

and use the proof to make c and d fit. However, in the interest of clarity we left the details
out above. The full details can be found in [4].

We are now in the position do define @ as follows: The base case is trivial:

•@x = x

The hom-case follows the pattern outlined in Section 5.1.
m′[α, β] : t[a, b]⇒ u[a′, b′] t′ : Tel (t[a, b] ⇓) n x : Obj (t′ ⇓)

m′[α, β]@x = idnβ ◦ (m′@x) ◦ idnα
In summary, m@x is defined by induction on m where in each step the length of m decreases
by one and the depth of x increases by one. To make the levels match the category of x has
to be whiskered by the morphisms α, β for m = m′[α, β]. When m = •, the recursion stops.
The meticulous reader will have noticed that the expression m′@x above is not well typed
as x lives in t[a, b] ++ t′ and we need an object in t ++ [a, b]t′. But this is easily fixed by
substituting using (6). Other similar inaccuracies are dealt with similarly.

Here is an illustration for m = •[ϕ, γ][α, β], t′ = •, t = •[a, b][f, g], u = •[a′, b′][f ′, g′]:

a′ b′

f ′

##
a′ b′

g′

;;a′ m@a
ϕ

%%
m@a m@b

m@f
%%
m@b b′

γ
##

a′ m@a
ϕ

::m@a m@b
m@g

::m@b b′

γ

;;⇓idϕ ⇓idγ⇓m@x

⇓α

⇓β

CSL’12

26 A Syntactical Approach to Weak ω-Groupoids

Having defined telescope morphisms, it is relatively easy to define λ’s of all depths relative
to an arbitrary category. All that is needed is a telescope morphism,

−→
λ , together with a new

constructor, λ, of Obj:

t : Tel C[a, b] n
−→
λ t : (idTel (id b)n) ◦ t⇒ t

t : Tel C[a, b]n f : Obj(t ⇓)

λ t f : Obj ((t ⇓)[
−→
λ t@(idnb ◦ f), f])

where
−→
λ • = •
−→
λ (t′[a, b]) = (

−→
λ t′)[(λ t′ a)−1

, λ t′ b]

Here we could define a pair of constructors λ and λ−1 for the two opposite directions of λ.
Instead, as we are interested in groupoids, we define a generic constructor −1 on all cells of a
homcategory:

f : Obj (C[a, b])
f−1 : Obj (C[b, a])

The introduction of formal inverses forces the introduction of coherence cells witnessing their
being left and right inverses. See the next section.

5.3 Right units, associativity and interchange
Similarly to λ’s we define the remaining coherence cells, i.e. ρ’s to witness right units, α’s
to witness associativity of composition, ι’s and κ’s to witness inverses and χ’s to witness
interchange. These are defined analogically to λ’s.

To this end, note that everything in the definition of λ is forced by the type of
−→
λ . In

general it is enough to give for ρ and α the type of the telescope morphism. Just as in the
case of λ, it is in each case just a “telescopisation” of the ordinary case.

t : TelC[a, b]n
−→ρ t : t ◦ (idTel (id a)n)⇒ t

t : Tel C[a, b] m u : Tel C[b, c] n v : Tel C[c, d] o
−→α t u v : (v ◦ u) ◦ t⇒ v ◦ (u ◦ t)

Because of the way we introduce identities, the laws of inverses are also simple:

f : Obj (C[a, b])
ι f : Obj (C[a, a][f−1 ◦ f, id a]) κ f : Obj(C[b, b][f ◦ f−1, id b])

The coherence cells witnessing interchange, −→χ are in the ω case is more complicated. In
the simple 2-categorical case, the interchange law states that (γ′ ·γ)∗(ϕ′ ·ϕ) = (γ′∗ϕ′)·(γ∗ϕ).
In the ω-case the law remains syntactically the same but we consider each of ϕ, ϕ′, γ and
γ′ in their telescopes with the generalised notion of composability. The following picture
illustrates the idea:

a b
��

a bAA b c
��

b cAA· · · · · ·

�� ��

u1· · · u2· · ·

�� ��

a1
((

c1

55

b1 //
· · ·

· · ·

· · ·

· · ·

�� 		

�� 		

t11

t12

t21

t22

· · ·

· · ·

· · ·

· · ·

a2
((

c2

55

b2 //�� 		

�� 		

Where · · · indicate telescopes of arbitrary depth where u1 and u2 have to be of the same
length; and tij , i, j ∈ {1, 2} have to be of the same length. In this situation, it is possible,

T. Altenkirch and O. Rypáček 27

up to definitional equality of telescopes, to form both the composition (t22 ◦ t21) ◦ (t12 ◦ t11)
and also (t22 ◦ t12) ◦ (t21 ◦ t11). A telescope morphism from the former to the latter telescope
induces a coherence cell for interchange. This is formalised as follows:

u1 : Tel C[a, b] n u2 : Tel C[b, c] n t11 : Tel (C[a, b] ++u1) m
t12 : Tel (C[a, b] ++u1) m t21 : Tel (C[b, c] ++u2) m t22 : Tel (C[b, c] ++u2) m

χ t11 t12 t21 t22 : (t22 ◦ t21) ◦ (t12 ◦ t11)⇒ (t22 ◦ t12) ◦ (t21 ◦ t11)

6 Coherence

6.1 The need of more coherence
In the previous sections we showed how to define all coherence cells witnessing the axioms of
a strict ω-groupoid. These can be composed to witnesses identity of cells which don’t exactly
match the sides of either of the axioms.

For instance, to witness the equality

(g idb) f = g f

we can compose λ after α to obtain witnesses such as:

idgλf · αg,idg,f : (g idb) f −→ g f and ρ idf : (g idb) f −→ g f .

In the strict case equality of 1-cells is a proposition and therefore all proofs of equality of
1-cells are equal. In the weak 2-categorical case, equality of 1-cells is not propositional but
equality of 2-cells is. In other words, equality of 1-cells is witnessed by 2-cells which must
satisfy new axioms. For instance:

(g idb) f g (idb f)
αg,idg,f //(g idb) f

g f

ρ idf
$$J

JJ
JJ

JJ
JJ

JJ
JJ

g (idb f)

g f

idg λf

��

(7)

In our case, when all levels are weakened the equality is replaced be a new 3-cell

idgλf · αg,idg,f −→ ρ idf

Moreover, for any pair of such 3-cells, p, q : idgλf · αg,idg,f −→ ρ idf , there must be 4-cell
p −→ q, etc., all the way up to ω. This is a weakening of propositionality of equality of
n-cells in the strict setting. The following diagram illustrates this up to level 4:

(g idb) f g (idb f)
αg,idg,f //(g idb) f

g f

ρ idf

$$J
JJ

JJ
JJ

JJ
JJ

JJ
JJ

JJ
JJ

JJ
J

g (idb f)

g f

idg λf

��

p

��
qpp
"" (8)

In summary and full generality:

For any pair of coherence cells with the same domain and codomain, there must be a
mediating coherence cell.

CSL’12

28 A Syntactical Approach to Weak ω-Groupoids

6.2 Formalising coherence cells between coherence cells

We formalise the above principle as follows. We define a predicate thin on objects such that
thin (id f) = > where > is the one element Set. Moreover each coherence cell is thin

thin (λ__) = > thin(ρ__) = > thin (α,___) = > thin (χ____) = >
thin (ι f) = > thin (κ f) = >

Further we close thin under weakening, composition and inverses. Finally, we introduce a
constructor of Obj and a clause of thin:

f g : Obj C[a, b] p : thin f q : thin g
coh p q : Obj C[a, b][f, g]

thin (coh p q) = >

The last remaining case are variables, which are not thin:

thin (var v) = ⊥

6.3 The problem with coherence

The question of coherence in weak ω-categories is subtle. On the one hand, one needs enough
coherence to make weakly equivalent all cells that should be identities in the strict case. On
the other hand, if we shouldn’t add too many equations not to loose any of our intended
models. We believe our definition is correct as we are saying in the definition of coh only that
all formal diagrams of coherence cells commute (see [18], §VII.2, for a related discussion).
The fact that not all diagrams commute rests on the fact that one is not allowed to postulate
equations between nonvariables, which is achieved by the separation of VarCat and Cat and
the fact that contexts are built from VarCats. Otherwise it would be for instance possible4
to assume a 0-cell a, and a pair of 2-cells: x, y : id a→ id a : a→ a. Then it is be possible to
construct, by the Eckerman-Hilton argument, a cell η : x ◦ y → y ◦ x : id a → id a : a → a

which is thin. As id (x ◦ y) is also thin, η ◦ η and id(x ◦ y) would be equivalent by coh.
However, not every monoidal braided category is symmetrical. However it is not possible to
construct this example in our syntactical framework as (id a) is not a variable.

7 Conclusions and Further Work

7.1 Summary

We have presented a novel approach to defining weak ω-groupoids which is based on ideas
from Type Theory. The central idea is to define the syntax of weak ω-groupoids and then
define a weak ω-groupoid as a globular set with an interpretation of the syntax, which is
where Type Theory has its greatest strength. Our approach to formalization of coherence is
natural, in a way naive, since it is a natural generalisation of the corresponding first order
laws.

We have formalized all of the material presented here in Agda [19], except for the definition
of the telescope morphism for χ. We believe this is a technicality, albeit a difficult one. The
Agda source file is available from [4].

4 We are indebted to an anonymous referee for pointing out this example to us.

T. Altenkirch and O. Rypáček 29

7.2 Related work
There exists an abundance of categorical definitions of weak ω-categories and groupoids.
Although a direct comparison is a slippery road, we would like to give a rough comparison
of the key similarities and differences between our and other definitions. Most importantly,
our definition is fundamentally different in that it is formulated in Type Theory rather
than Category Theory. This means that we couldn’t just formalise any of the approaches
[20, 7, 15] because the notion a strict ω-category is central in them in that it drives the
definition of coherence cells. However, it is unclear to how define strict ω-categories in Type
Theory without quotient types. This forces some of the choices we have made. Nevertheless,
on an intuitive level there are similarities of our approach to some categorical approaches, in
particular to Batanin’s definition [7] which we briefly discuss below:

Batanin’s spans are essentially our telescopes. And as noted by Batanin, Cartier called
Batanin’s spans telescopes in 1994.
Batanin’s definition, same as ours, is globular and works with a system of units and
binary compositions.
We conjecture that for a C : Cat Γ, the mapping n 7→ Σ(t : Tel C n)(Obj(t ⇓)) forms a
strict monoidal globular category freely generated by the globular set determined by Γ.
It remains to show that our syntax defines a contractible ω-operad and our notion of
interpretation defines its algebra.

7.3 Further work
The current formalisation is still quite complicated and we hope to find ways to simplify it.
One interesting idea may be to use the syntactical approach to define opetopes based on
dependent polynomial functors (i.e. indexed containers) [13], which has a very type-theoretic
flavour.

It remains to prove that the definition proposed in this paper is a sensible one. This
seems to be most easily done by showing that any interpretation of the syntax defines an
algebra for Batanin’s universal contractible operad.

We would like to use our framework to provide a formalisation of a variation of the results
in [17, 8] by showing that Idω is a weak ω-groupoid. Such a formalisation would be different
form their results because we are working inside Type Theory, rather than on a meta-level.

The main challenge ahead is to formalize the notion of a ω-groupoid model of Type
Theory. Once this has been done we will be able to eliminate the univalence axiom and
provide a computational interpretation of this principle.

Acknowledgments

We would like to thank Peter Lumsdaine and Darin Morrison who contributed to initial
attempts to formalize weak ω-groupoids in Agda. We would like to acknowledge interesting
and useful discussions on topics related to this paper with Steve Awodey, Thierry Coquand,
Robert Harper, Kris Kapulkin, Nicolai Krauss, Dan Licata, Thomas Streicher and Vladimir
Voevodsky. We would also like to thank the annonymous referees for providing valuable
comments and indeed pointing out a shortcoming with our previous definition of coherence.

References
1 Thorsten Altenkirch. Extensional equality in intensional type theory. In 14th Symposium

on Logic in Computer Science, pages 412 – 420, 1999.

CSL’12

30 A Syntactical Approach to Weak ω-Groupoids

2 Thorsten Altenkirch, Conor McBride, and Wouter Swierstra. Observational equality, now!
In PLPV ’07: Proceedings of the 2007 workshop on Programming languages meets program
verification, pages 57–68, New York, NY, USA, 2007. ACM.

3 Thorsten Altenkirch, Peter Morris, Fredrik Nordvall Forsberg, and Anton Setzer. A cat-
egorical semantics for inductive-inductive definitions. In Andrea Corradini, Bartek Klin,
and Corina Cîrstea, editors, Algebra and Coalgebra in Computer Science, volume 6859 of
Lecture Notes in Computer Science, pages 70–84. Springer Berlin / Heidelberg, 2011.

4 Thorsten Altenkirch and Ondřej Rypáček. A syntactical approach to weak ω-
groupoids: Agda implementation. https://github.com/txa/OmegaCats/blob/master/
Syntactical/WeakOmegaCat/Core.agda.

5 Steve Awodey. Type theory and homotopy. arXiv:1010.1810v1.
6 J. Baez and J. Dolan. Higher-dimensional algebra iii. n-categories and the algebra of

opetopes. Advances in Mathematics, 135(2):145–206, 1998.
7 Michael Batanin. Monoidal globular categories as natural environment for the theory of

weak n-categories. Advances in Mathematics, 136:39–103, 1998.
8 Benno Van Den Berg and Richard Garner. Types are weak ω-groupoids, 2008.
9 James Chapman, Pierre-Évariste Dagand, Conor McBride, and Peter Morris. The gentle

art of levitation. SIGPLAN Not., 45:3–14, September 2010.
10 Eugenia Cheng and Aaron Lauda. Higher-dimensional categories: an illustrated guide

book.
11 Martin Hofmann and Thomas Streicher. The groupoid interpretation of type theory. In

Twenty-five years of constructive type theory (Venice, 1995), volume 36 of Oxford Logic
Guides, pages 83–111. Oxford Univ. Press, New York, 1998.

12 G. M. Kelly. Basic Concepts of Enriched Category Theory, volume 64 of Lecture Notes in
Mathematics. Cambridge University Press, 1982.

13 Joachim Kock, André Joyal, Michael Batanin, and Jean-François Mascari. Polynomial
functors and opetopes. Advances in Mathematics, 224(6):2690 – 2737, 2010.

14 T. Leinster. A survey of definitions of n-category. Th. Appl. Cat. 10, 10:1–70, 2002.
15 Tom Leinster. Operads in higher-dimensional category theory. PhD thesis, University of

Cambridge, Cambridge, 2000.
16 Daniel R. Licata and Robert Harper. 2-dimensional directed type theory. Electr. Notes

Theor. Comput. Sci., 276:263–289, 2011.
17 Peter Lefanu Lumsdaine. Weak ω-categories from intensional type theory. Logical Methods

in Computer Science, 6:1–19, 2010.
18 Saunders MacLane. Categories for the Working Mathematician. Springer.
19 Ulf Norell. Towards a practical programming language based on dependent type theory. PhD

thesis, Chalmers University of Technology, 2007.
20 Jacques Penon. Approche polygraphique des ∞-categories non strictes. Cahiers de Topo-

logie et Géométrie Différentielle, 40(1):31–80, 1999.
21 Ross Street. The algebra of oriented simplexes. Journal of Pure and Applied Algebra,

49(3):283 – 335, 1987.
22 Todd Trimble. What are ‘fundamental n-groupoids’? Cambridge, August 1999. seminar

at DPMMS.
23 Vladimir Voevodsky. Univalent foundations of mathematics. In Lev Beklemishev and

Ruy de Queiroz, editors, Logic, Language, Information and Computation, volume 6642 of
Lecture Notes in Computer Science, pages 4–4. Springer Berlin / Heidelberg, 2011.

https://github.com/txa/OmegaCats/blob/master/Syntactical/WeakOmegaCat/Core.agda
https://github.com/txa/OmegaCats/blob/master/Syntactical/WeakOmegaCat/Core.agda

Interactive Realizability for Classical Peano
Arithmetic with Skolem Axioms
Federico Aschieri

Laboratoire PPS, équipe PI.R2, Université Paris 7, INRIA & CNRS

Abstract
Interactive realizability is a computational semantics of classical Arithmetic. It is based on
interactive learning and was originally designed to interpret excluded middle and Skolem axioms
for simple existential formulas. A realizer represents a proof/construction depending on some
state, which is an approximation of some Skolem functions. The realizer interacts with the
environment, which may provide a counter-proof, a counterexample invalidating the current
construction of the realizer. But the realizer is always able to turn such a negative outcome
into a positive information, which consists in some new piece of knowledge learned about the
mentioned Skolem functions. The aim of this work is to extend Interactive realizability to a
system which includes classical first-order Peano Arithmetic with Skolem axioms. For witness
extraction, the learning capabilities of realizers will be exploited according to the paradigm of
learning by levels. In particular, realizers of atomic formulas will be update procedures in the
sense of Avigad and thus will be understood as stratified-learning algorithms.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases Interactive realizability, learning, classical Arithmetic, witness extraction

Digital Object Identifier 10.4230/LIPIcs.CSL.2012.31

1 Introduction

Do classical proofs have some constructive content? If yes, what is a construction in classical
logic? On a first thought one is inclined to think that these questions cannot have any
interesting answers in terms of effective computer programs.

Surely, a classical proof is a mental construction, for it is a succession of constructive
steps interleaved with some ineffective considerations, which however appear to have a clear
mental constructive significance. Indeed, when we use the excluded middle, we can clearly
picture ourselves ideally deciding whether in a situation something holds or does not. When
we use an axiom of comprehension, we employ a definite law in order to construct in our
minds a perfectly determined collection of elements. When we use the axiom of choice, we
may imagine ourselves to make arbitrary choices as long as it is needed.

Even if a classical proof seems a legitimate mental construction, it is still a long way to
yield some effective computer program. Nevertheless, from the beginning of proof theory
many results have been obtained in that direction, which clearly showed that classical proofs
have a constructive content. Of course, we refer to the seminal results obtained by Hilbert’s
epsilon substitution method (see e.g [18]) and Gentzen’s cut elimination [14]. Then, several
other techniques have been introduced: among them, Gödel’s double negation translation
followed either by the Gödel functional interpretation [13] or Kreisel’s modified realizability
[16] and Friedman’s translation [12]; finally, Curry-Howard correspondence (see e.g. [19]).

The Curry-Howard correspondence, first introduced for intuitionistic logic and finally
extended to higher-order classical logic [17], clearly shows that a classical proof not only is a
mental construction but has the very same syntactic structure of a program. In other words,

© Federico Aschieri;
licensed under Creative Commons License ND

Computer Science Logic 2012 (CSL’12).
Editors: Patrick Cégielski, Arnaud Durand; pp. 31–45

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2012.31
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

32 Interactive Realizability for Classical Peano Arithmetic with Skolem Axioms

a proof is an effective program. Thus the problem of explaining what is a construction in
classical logic acquires a perfectly sound mathematical sense.

Though all these constructive interpretations may seem very different from each other, a
deeper study shows that they are all based on the same concept: learning. As suggestively
showed by Coquand [11], a classical proof yields a learning strategy in some class of games
in which players can erase their moves and backtrack to earlier positions of the game.

Now, the most important problem to solve in order to understand and implement efficiently
the constructive content of classical proofs, is to provide an accurate description of the nature
and the structure of the knowledge that a program extracted from a classical proof gathers
during its execution. Only after a precise description of learning has been completed, one can
think of how to build efficient programs. This remains a complex task, but it is of central
importance to start by defining a semantics for classical proofs explicitly based on learning.

In order to provide answers to those issues, Interactive realizability [1, 4, 6] has been
developed: it is a realizability semantics based on states of knowledge and learning, designed
for a system of Heyting Arithmetic with excluded middle and choice principles (Skolem
axioms) restricted to Σ0

1-formulas. In hindsight, it can be seen as modern evolution of the
epsilon substitution method, refined and rebuilt around the Curry-Howard correspondence for
classical logic and game semantics. The aim of this paper is to take the theory of Interactive
realizability to the next level: we extend it in order to interpret a full classical system,
which includes first-order Peano Arithmetic with Skolem axioms, that is, excluded middle,
comprehension and choice over all first-order formulas.

The theory of Interactive realizability makes precise the intuitive considerations that
we have made above. In particular, it explains how to interpret a classical proof, how to
pass from the ideal mental construction it represents to a concrete effective construction (a
program). The main concepts are indeed the following:
TClass and mental constructions. An interactive realizer is in the first place a term of
TClass, a version of Gödel’s system T enriched with Skolem function symbols for every
arithmetical formulas. The terms of TClass represent the mental constructions that one
can obtain directly and intuitively from a classical proof.
States of Knowledge as Approximations. Terms of TClass are ineffective and, let to
themselves, useless. Therefore, interactive realizers are always computed with respect to
states, i.e. approximations of the Skolem functions they contain and thus effectiveness is
recovered.
Learning. Since finite approximations may be inadequate, results of computations may be
wrong. But an interactive realizer is also a self-correcting program, able to spot incorrect
values of the approximations used during computations and to correct them with right
values. The new values are learned, remarkably, by realizers of classical principles and all
the oracle values needed during each particular computation are acquired through learning
processes. Here is the fundamental insight: classical principles may be computationally
interpreted as learning devices.

All these ideas work very smoothly for the most simple instance of the excluded middle

EM1 := ∀xN. ∃yNP (x, y) ∨ ∀yN¬P (x, y) (P computable atomic predicate)

A realizer of this principle uses some approximation s of a Skolem function Φ for P in
order to decide which side of EM1 is true. If for some particular n, P (n, s(n)) holds, then
the realizer has a witness for the left side; otherwise, it declares the right side to be true.
However, if the environment asks the realizer for a construction of ¬P (n,m) and actually
m is a counterexample to its belief (i.e. P (n,m) is true), then the realizer corrects the

F. Aschieri 33

approximation s as to output m on input n. We observe that this correction is sound on
absolute grounds: m is a correct value for Φ on argument n.

In the case of a general instance of the excluded middle

EM := ∀xN. ∃yNA(x, y) ∨ ∀yN¬A(x, y) (A first-order formula)

one stumbles across a serious problem: even if one has an approximation s of a Skolem
function Φ for A(x, y), how to compute whether A(n, s(n)) holds? In general, one cannot know
for sure the truth value of a complex formula. A realizer thus may assume that s(n) is not a
witness and declare the right side to be true. However, a problem remains because learning
is going to be by counterexamples: how to test whether an m given by a computational
environment is such that A(n,m) is true? The solution is to “compute” the truth value of
A(n,m) by using the approximations of the Skolem functions for the sub-formulas of A: for
eliminating quantifiers, it suffices to use the equivalences ∃y B(x, y) ≡ B(x,ψ(x)), where ψ
is a Skolem function for B. Since these approximations refer to Skolem functions for formulas
of lower logical complexity than that of A, a realizer can determine on relatively firm grounds
whether m is a correct value for Φ on argument n.

An important concept that we shall introduce is therefore that of truth value of a formula
in a state and we shall study how it relates to realizability. Another novelty is that the
self-corrections of realizers will not be absolute, but relative, and learning will be by levels.
By this we mean that whenever a realizer gains some knowledge concerning a Skolem function
for some formula, it may falsify a knowledge about another Skolem function for a formula of
higher complexity than the first. In this case, one is forced to remove the falsified knowledge
and all its consequences of greater level from the current state. The termination of this
add-and-remove process is not at all evident, yet it may be proved by well-established
techniques: we shall be able to see that a realizer of an atomic formula is an update procedure
in the sense of Avigad [8], and that will be enough for witness extraction. As in [4], one can
see Interactive realizability as new use of Friedman’s translation and modified realizability,
that allows to extract update procedures from classical proofs without transforming them in
quantifier-free form, as in the epsilon substitution method or Herbrand analysis.

Plan of the Paper. In section §2 we introduce the term calculus TClass in which Interactive,
learning-based realizers are written, namely an extension of Gödel’s system T plus Skolem
function symbols for a denumerable collection of Skolem functions. In section §3, we extend
Interactive realizability, as described in [1, 4], to HAω+EM+SK, an arithmetical system with
functional variables which includes first-order classical Peano Arithmetic and Skolem axioms.
In section §4 we show how to perform witness extraction with Interactive realizability. Full
proofs of all results of this paper may be found in [7].

Acknowledgments. We thank Stefano Berardi for valuable comments and suggestions.

2 The Term Calculus TClass

In this section we follow the approach of [1, 4] and describe the typed lambda calculi T and
TClass in which interactive realizers are written. T is an extension of Gödel’s system T (see
Girard [15]) with some syntactic sugar. The basic objects of T are numerals, booleans, and
its basic computational constructs are primitive recursion at all types, if-then-else, pairs,
as in Gödel’s T. T also includes as basic objects finite partial functions over N and simple
primitive recursive operations over them. TClass is obtained from T by adding on top of it a
collection of Skolem function symbols Φ0,Φ1,Φ2 . . . , of type N→ N, one for each arithmetical
formula. The symbols are inert from the computational point of view and realizers are always
computed with respect to some approximation of the Skolem maps represented by Φ0,Φ1,

CSL’12

34 Interactive Realizability for Classical Peano Arithmetic with Skolem Axioms

2.1 Updates
In order to define T , we start by introducing the concept of “update”, which is nothing but
a finite function over N (i.e. a map over N with finite domain). Realizers of atomic formulas
will return these finite functions, or “updates”, as new pieces of information that they have
learned about the Skolem function Φ0,Φ1, Skolem functions, in turn, are used as “oracles”
during computations in the system TClass. Updates are new associations input-output that are
intended to correct, and in this sense, to update, wrong oracle values used in a computation.

I Definition 1 (Updates and Consistent Union). We define:
1. An update set U , shortly an update, is a finite set of triples of natural numbers representing

a finite function from N2 to N.
2. Two triples (a, n,m) and (a′, n′,m′) of numbers are consistent if a = a′ and n = n′ implies

m = m′. Two updates U1, U2 are consistent if U1 ∪ U2 is an update.
3. U is the set of all updates.
4. The consistent union U1 U U2 of U1, U2 ∈ U is U1 ∪ U2 minus all triples of U2 which are

inconsistent with some triple of U1.

The consistent union U1 U U2 is an non-commutative operation: whenever a triple of U1
and a triple of U2 are inconsistent, we arbitrarily keep the triple of U1 and we reject the
triple of U2, therefore for some U1, U2 we have U1 U U2 6= U2 U U1. The operator U represents
a way of selecting a consistent subset of U1 ∪ U2, such that U1UU2 = ∅ =⇒ U1 = U2 = ∅.
Any operator U with that property would produce an alternative Realizability Semantics.

2.2 The System T
T is formally described in figure 1. Terms of the form ifA t1 t2 t3 will be written in the more
legible form if t1 then t2 else t3. A numeral is a term of the form S(. . .S(0) . . .). For every
update U ∈ U, there is in T a constant U : U, where U is a new base type representing U.
We write ∅ for ∅. In T , there are four operations involving updates (see figure 1):

1. The first operation is denoted by the constant min : U → N. min takes as argument an
update constant U ; it returns the minimum numeral a such that (a, n,m) ∈ U for some
n,m ∈ N, if any exists; it returns 0 otherwise.

2. The second operation is denoted by the constant get : U→ N3 → N. get takes as arguments
an update constant U and three numerals a, n, l; it returns m if (a, n,m) ∈ U for some
m ∈ N (i.e. if (a, n) belongs to the domain of the partial function U); it returns l otherwise.

3. The third operation is denoted by the constant mkupd : N3 → U. mkupd takes as
arguments three numerals a, n,m and transforms them into (the constant coding in T)
the update {(a, n,m)}.

4. The fourth operation is denoted by the constant d : U2 → U. d takes as arguments two
update constants and returns the update constant denoting their consistent union.

We observe that the constants min, get,mkupd are just syntactic sugar and may be avoided
by coding finite partial functions into natural numbers. System T may thus be coded in
Gödel’s T. As proved in [1, 4], T is strongly normalizing, has the uniqueness-of-normal-form
property and the following normal form theorem also holds.

I Lemma 2 (Normal Form Property for T + C +R). Assume that R is a functional set of
reduction rules for C. Assume A is either an atomic type or a product type. Then any closed
normal term t ∈ T of type A is: a numeral n : N, or a boolean True, False : Bool, or an
update constant U : U, or a constant of type A, or a pair 〈u, v〉 : B × C.

F. Aschieri 35

Types

σ, τ ::= N | Bool | U | σ → τ | σ × τ

Constants

c ::= Rτ | ifτ | 0 | S | True | False | min | get | mkupd | d | U (∀U ∈ U)

Terms

t, u ::= c | xτ | tu | λxτu | 〈t, u〉 | π0u | π1u

Typing Rules for Variables and Constants

xτ : τ | 0 : N | S : N→ N | True : Bool | False : Bool | U : U (for every U ∈ U) | d : U→ U→ U

| min : U→ N | get : U→ N→ N→ N→ N | mkupd : N→ N→ N→ U
| ifτ : Bool→ τ → τ → τ | Rτ : τ → (N→ (τ → τ))→ N→ τ

Typing Rules for Composed Terms
t : σ → τ u : σ

tu : τ
u : τ

λxσu : σ → τ
u : σ t : τ
〈u, t〉 : σ × τ

u : τ0 × τ1
i ∈ {0, 1}πiu : τi

Reduction Rules All the usual reduction rules for simply typed lambda calculus (see Girard [15]) plus the
rules for recursion, if-then-else and projections

Rτuv0 7→ u RτuvS(t) 7→ vt(Rτuvt) ifτ Trueu v 7→ u ifτ Falseu v 7→ v πi〈u0, u1〉 7→ ui, i = 0, 1

plus the following ones, assuming a, n,m, l be numerals:

minU 7→
{
a if ∃m,n. (a, n,m) ∈ U ∧ ∀(b, i, j) ∈ U. a ≤ b
0 otherwise U1 d U2 7→ U1 U U2

getU an l 7→
{
m if ∃m. (a, n,m) ∈ U
l otherwise mkupd anm 7→ {(a, n,m)}

Figure 1 The extension T of Gödel’s system T.

2.3 The System TClass

We now define a classical extension of T , that we call TClass, with a Skolem function symbol for
each arithmetical formula. The elements of TClass will represent (non-computable) realizers.

I Definition 3 (The System TClass). Define TClass = T + SC, where SC is a countable set of
Skolem function constants, each one of type N → N. We assume to have an enumeration
Φ0,Φ1,Φ2, . . . of all the constants in SC (while generic elements of SC will be denoted with
letters Φ,Ψ,σ, τ, . . .).

Every Φ ∈ SC represents a Skolem function for some arithmetical formula ∃yN A(x, y),
taking as argument a number x and returning some y such that A(x, y) is true if any exists,
and an arbitrary value otherwise. In general, there is no set of computable reduction rules for
the constants in SC, and therefore no set of computable reduction rules for TClass. Each (in
general, non-computable) term t ∈ TClass is associated to a set {t[s] |s ∈ T , s : N2 → N} ⊆ T
of computable terms we call its “approximations”, one for each term s : N2 → N of T ,
which is thought as a sequence s0, s1, s2, . . . of computable approximations of the oracles
Φ0,Φ1,Φ2, . . . (with si we denote s(i)).

I Definition 4 (Approximation at state s). We define:
1. A state is a closed term of type N2 → N of T . If i is a numeral, with si we denote s(i).
2. Assume t ∈ TClass and s is a state. The “approximation of t at state s” is the term t[s] of
T obtained from t by replacing each constant Φi with si.

CSL’12

36 Interactive Realizability for Classical Peano Arithmetic with Skolem Axioms

3 An Interactive Learning-Based Notion of Realizability for
HAω + EM + SK

In this section we introduce a learning-based notion of realizability for HAω + EM + SK,
Heyting Arithmetic in all finite types (see e.g. Troelstra [20]) plus Excluded Middle and
Skolem axiom schemes for all arithmetical formulas. Then we prove our main Theorem, the
Adequacy Theorem: “if a closed formula is provable in HAω+EM+SK, then it is realizable”.

We first define the formal system HAω + EM + SK. We represent atomic predicates of
HAω+EM+SK with closed terms of TClass of type Bool. Terms of HAω+EM+SK are elements of
TClass and thus may include the function symbols in SC. We assume having in Gödel’s T some
terms ⇒Bool: Bool → Bool → Bool,¬Bool : Bool → Bool,∨Bool : Bool → Bool → Bool . . .,
implementing boolean connectives. As usual, we shall use infix notation: for example, we
write t1 ⇒Bool t2 in place of ⇒Bool t1t2 and similarly for the other connectives.

3.1 Language of HAω + EM + SK
We now define the language of the arithmetical theory HAω + EM + SK.

I Definition 5 (Language of HAω + EM + SK). The language LClass of HAω + EM + SK is
defined as follows.
1. The terms of LClass are all t ∈ TClass.
2. The atomic formulas of LClass are all Q ∈ TClass such that Q : Bool.
3. The formulas of LClass are built from atomic formulas of LClass by the connectives ∨, ∧,
→, r , ∀, ∃ as usual, with quantifiers possibly ranging over variables xτ , yτ , zτ , . . . of
arbitrary finite type τ of TClass.

4. A formula of LClass is said arithmetical if it does not contain constants in SC and all its
quantifiers range over the type N, i.e. it has one of the following forms: ∀xNA, ∃xNA,
A ∨B, A ∧B, A→ B, ArB, P , with A,B arithmetical and P atomic formula of T .

We denote with ⊥ the atomic formula False and with ¬A the formula A → ⊥. The
connective r is the dual of implication as in bi-intuitionistic logic and means “A and the
opposite of B”. If F is a formula of LClass in the free variables xτ1

1 , . . . , x
τn
n and t1 : τ1, . . . , tn :

τn are terms of LClass, with F (t1, . . . , tn) we shall denote the formula F [t1/x1, . . . , tn/xn].
Sequences of variable xN

1, . . . , x
N
k will be written as ~x. We denote with 〈~x〉 a term of T in the

free numeric variables ~x representing a injection of Nk into N. Moreover, for every sequence
of numerals ~n = n1, . . . , nk, we define 〈~n〉 := 〈~x〉[~n/~x] and assume that the function ~n 7→ 〈~n〉
is a bijection.

The Excluded Middle axiom scheme EM is defined as the set of all formulas of the form:

∀~x N. A(~x) ∨ ¬A(~x)

where A is an arithmetical formula.
The Skolem axiom scheme SK contains for each arithmetical formula A(~x, y) an axiom:

∀~x N. ∃yNA(~x, y)→ A(~x,Φ〈~x〉)

with Φ ∈ SC. We assume that for every Φ ∈ SC there is in SK one and only one formula in
which Φ occurs. Such unique formula A is said to be the formula associated to Φ and Φ will
be sometimes written as ΦA. If s is a state and Φi = ΦA, with sA we denote si and with
mkupdAu t we denote mkupd i u t. With lev(Φ) we denote the number measuring the logical
complexity of the formula A associated to Φ, i.e. the number of quantifiers occurring in A.

F. Aschieri 37

If s, s′ are two states and n a numeral, we write s ≡ s′ lev(n) if for every A of complexity
strictly less than n, one has sA(m) = s′A(m) for all numerals m.

For each formula F of LClass, its involutive negation F⊥ is defined by induction on F .
First, we say that an atomic formula P is positive if it is of the form ¬Bool . . .¬BoolQ, Q is
not of the form ¬BoolR, and the number of ¬Bool in front of Q is even. Then we define:

(¬BoolP)⊥ = P (if P positive) P⊥ = ¬BoolP (if P positive)
(A ∧B)⊥ = A⊥ ∨B⊥ (A ∨B)⊥ = A⊥ ∧B⊥

(A→ B)⊥ = ArB (ArB)⊥ = A→ B

(∀xτA)⊥ = ∃xτA⊥ (∃xτA)⊥ = ∀xτA⊥

As usual, one has (F⊥)⊥ = F .

3.2 Truth Value of a Formula in a State
The axioms of the system HAω + EM + SK give a great computational power to the system
TClass: one can “compute” by a term χF of TClass the truth value of any arithmetical formula
F . When one effectively evaluates χF in a particular state s, we say that one computes the
truth value of a formula F in a state s.

I Definition 6 (Truth Value of a Formula F in a State s). For every arithmetical formula
F (~x) of LClass we define, by induction on F , a term χF : Bool of system TClass, with the same
free variables of F :

χP = P, P atomic
χA∨B = χA ∨Bool χB χ∀yNA = χA[ΦA⊥〈~x〉/y] χArB = χA ∧Bool χB⊥

χA∧B = χA ∧Bool χB χ∃yNA = χA[ΦA〈~x〉/y] χA→B = χA ⇒Bool χB

We define F s := χF [s] and call it the truth value of F in the state s.

Intuitively, if F (~n) is a closed formula, our intended interpretation is:
1. χF (~n) is a term of TClass denoting, in any standard model of HAω + EM + SK, the truth

value of F (~n) .
2. F s(~n) is a term of T computing what would be the truth value of F (~n) in some standard

model of HAω + EM under the (possibly false) assumption that the interpretation Φi 7→ si
satisfies the axioms of SK.

We remark that thus F s(~n) is only a conditional truth value: if F s(~n) is not the correct truth
value of F (~n) – it may well happen – then the interpretation Φi 7→ si does not satisfy the
axioms of SK. This subtle point is what makes possible learning in Interactive realizability:
whenever a contradiction follows, realizers are able to effectively find counterexamples to the
assertion that the interpretation Φi 7→ si satisfies the axioms of SK. We also observe that
this way of computing the truth of a formula comes from the epsilon substitution method
(see Avigad [8], Mints et al. [18]).

The notion of truth in a state behaves as expected with respect to involutive negation.

I Proposition 7 (Truth in a State and Truth). For every arithmetical formula F (~x), state s
and sequence of numerals ~n, F s(~n) = False ⇐⇒ (F⊥)s(~n) = True

We now prove a fundamental fact: the truth of a formula F in a state s is determined
by the approximations that s gives to the Skolem functions of strictly lower level than the
logical complexity of F .

CSL’12

38 Interactive Realizability for Classical Peano Arithmetic with Skolem Axioms

I Proposition 8. Let F (~x) be any arithmetical formula of logical complexity m, ~n be a
sequence of numerals and s, s′ be states such that s ≡ s′ lev(m). Then F s(~n) = F s

′(~n).

Every state s is considered as an approximation of the Skolem functions denoted by the
constants of SC: for each formula A, sA may be a correct approximation of ΦA on some
arguments, but wrong on other ones. More precisely, if Φi = ΦA, we are going to consider
the set of (i, 〈~n〉) such that As(~n, sA〈~n〉) = True as the real “domain” of s, representing the
set of arguments at which sA is surely a correct approximation of ΦA, in the sense that sA
returns an appropriate witness (but observe that the truth of A is approximated in s).

I Definition 9 (Sound Updates, Domains). We define:
1. Given an update U and a state s, we define doms(U) as the set of pairs of numerals (i, 〈~n〉)

such that A(~x, y) is the formula associated to Φi, (i, 〈~n〉,m) ∈ U and As(~n,m) = True.
U is said to be sound in the state s if (i, 〈~n〉,m) ∈ U implies (i, 〈~n〉) ∈ doms(U).

2. Similarly, if s is a state, we denote with dom(s) the set of pairs of numerals (i, 〈~n〉) such
that A(~x, y) is the formula associated to Φi, si〈~n〉 = m and As(~n,m) = True.

From now onwards, for every pair of terms t1, t2 of system T , we shall write t1 = t2 if they
are the same term modulo the equality rules corresponding to the reduction rules of system
T (equivalently, if they have the same normal form).

3.3 Interactive Realizability
For every formula A of LClass, we now define what type |A| a realizer of A must have.

I Definition 10 (Types for realizers). For each formula A of LClass we define a type |A| of
TClass by induction on A:

|P | = U, if P is atomic
|A ∧B| = |A| × |B| |∃xτA| = τ × |A| |ArB| = |A| × |B⊥|
|A ∨B| = Bool× (|A| × |B|) |∀xτA| = τ → |A| |A→ B| = |A| → |B|

Let now p0 := π0 : σ0 × (σ1 × σ2) → σ0, p1 := π0π1 : σ0 × (σ1 × σ2) → σ1 and
p2 := π1π1 : σ0 × (σ1 × σ2)→ σ2 be the three canonical projections from σ0 × (σ1 × σ2). We
define the realizability relation t � F , where t ∈ TClass, F ∈ LClass and t : |F |.

I Definition 11 (Interactive Realizability). Assume s is a state, t is a closed term of TClass,
F ∈ LClass is a closed formula, and t : |F |. We define first the relation t �s F by induction
and by cases according to the form of F :

1. t �s Q for some atomic Q if and only if U = t[s] implies:
U is sound in s and doms(U) ∩ dom(s) = ∅
U = ∅ implies Q[s] = True

2. t �s A ∧B if and only if π0t �s A and π1t �s B
3. t �s A ∨B if and only if either p0t[s] = True and p1t �s A, or p0t[s] = False and

p2t �s B
4. t �s A→ B if and only if for all u, if u �s A, then tu �s B
5. t �s ArB if and only if π0t �s A and π1t s B⊥

6. t �s ∀xτA if and only if for all closed terms u : τ of T , tu �s A[u/x]
7. t �s ∃xτA if and only for some closed term u : τ of T , π0t[s] = u and π1t �s A[u/x]
We define t � F if and only if for all states s of T , t �s F .

F. Aschieri 39

The ideas behind the definition of �s in the case of HAω + EM + SK are those we already
explained in [1, 4, 6]. A realizer is a term t of TClass, possibly containing some non-computable
Skolem function of SC; if such a function was computable, t would be an intuitionistic realizer.
Since in general t is not computable, we calculate its approximation t[s] at state s. t is
an intelligent, self-correcting program, representing a proof/construction depending on the
state s. The realizer interacts with the environment, which may provide a counter-proof,
a counterexample invalidating the current construction of the realizer. But the realizer is
always able to turn such a negative outcome into a positive information, which consists in
some new piece of knowledge learned about some Skolem function Φi.

There are two concepts that are useful to understand the interaction of a realizer with
the environment: a realizer receives as input tests and produces as output predictions.

Predictions.
A realizer t of A ∨ B uses s to predict which one between A and B is realizable: if
π0t[s] = True then A is realizable, and if π0t[s] = False then B is realizable.
A realizer u of ∃xτA uses s to compute π0u[s] = w and to predict that w is a witness
for ∃xτA (i.e. that A[w/x] is realizable).

Tests.
A realizer of a universal formula ∀xτA takes an object w as a challenge coming from
the environment to provide a construction of A[w/x], whose correctness will be tested
at the end of computation.
A realizer of A→ B takes a realizer of A as a challenge coming from the environment
to provide a construction of B, whose correctness will be tested at the end of the
computation.
A realizer of A ∧ B may be challenged to construct A as well as B, and again the
correctness of the construction will be tested at the end of computation.
A realizer of an atomic formula Q comes after a series of predictions and challenges
that have been provided to test the construction of a complex formula; the realizer
performs a final test and computes the formula Q in the state s as an experiment.
Since predictions of realizers need not be always correct, it is possible that a realized
atomic formula is actually false; we may have t �s Q and Q[s] = False in T . If
Q, though predicted to be true, is instead false, then a counterexample has been
encountered; this means that the approximation s of the Skolem constants in SC is
still inadequate. In this case, t[s] 6= ∅ by definition of t �s Q. That is to say: if the
construction of a realizer is wrong in a particular state, the realizer must learn from
its mistakes. The point is that after every learning, the actual state can be improved
with the information in U = t[s], since (i, 〈~n〉) ∈ U and A is associated to Φi imply
As(~n,m) = True and As(~n, si〈~n〉) = False.

The next proposition tells that realizability at state s respects the notion of equality of
TClass terms, when the latter is relativized to state s. That is, if two terms are equal at the
state s, then they realize the same formulas in the state s.

I Proposition 12 (Saturation). If t1[s] = t2[s] and u1[s] = u2[s], then t1 �s B[u1/x] if and
only if t2 �s B[u2/x].

3.4 Realizability of Classical Axioms
We are now going to show how to realize EM and SK. We first need to realize the ex-falso-
quodlibet axiom, for which a dummy term is enough.

CSL’12

40 Interactive Realizability for Classical Peano Arithmetic with Skolem Axioms

I Proposition 13 (Realizer of the Ex-Falso-Quodlibet Axiom). For every formula F (~x) of
LClass, there exists a closed term ⊥F of T such that ⊥F � ⊥ → F (~u), for every sequence of
closed terms ~u of TClass. In particular, ⊥F can be defined by induction on F as follows:

⊥P := λxU. x ⊥A→B := λxUλy|A|.⊥Bx
⊥A∧B := λxU.〈⊥Ax,⊥Bx〉 ⊥∃xτA := λxU〈0τ ,⊥Ax〉
⊥A∨B := λxU.〈False,⊥Ax,⊥Bx〉 ⊥∀xτA := λxUλyτ .⊥Ax
⊥ArB := λxU〈⊥Ax,⊥B⊥x〉

In Interactive realizability, as we shall see many times, realizers continually interact
with each other and game theory is a very useful tool to describe they behaviour (see [5]).
Interestingly, for realizing Skolem axioms and some instances of EM we are lead to consider
once again Tarski games. In these kind of games, there are two players and an arithmetical
formula on the board; the first player – usually called Eloise – tries to show that it is true,
while the second player – usually called Abelard – tries to show that the formula is false.
Thus, Eloise wins when true atomic formulas are on the board while Abelard wins with false
ones. In the case of formulas of the shape A ∨ B, ∃xNA, Eloise moves: in the first case by
choosing a side of the disjunction and in the second case by choosing a numeral as a witness
for the existential quantifier. In the case of formulas of the shape A ∧ B, ∀xNA, Abelard
moves: in the first case by choosing a side of the conjunction and in the second case by
choosing a numeral as a counterexample to the universal quantifier. In the case of formulas of
the shape A→ B, Abelard gives a winning strategy for A to Eloise and they play the game
for B. An Eloise strategy for A is represented by a term E of type |A|, while an Abelard
strategy for A is represented by a term A of type |A⊥|. Thus one may define the Tarski
game between strategies through a game operator ? (which indeed resembles the operator
? of symmetric lambda calculus [9]) that puts Eloise against Abelard. The result of the
game is thus E ?A and it is a term of type |⊥| = U. If E and A happens to be interactive
realizers, they represent self-correcting constructions. E and A challenge the construction of
each other, but who looses the interaction is always able to partially repair its construction,
i.e. to learn some information about some Skolem functions, which he puts in some update.
That is to say, E ?A realizes ⊥. Details follow.

I Proposition 14 (A Tarski Game Between Strategies). Let F be an arithmetical formula and
E : |F |, A : |F⊥| two terms of TClass. Define by induction and according to the shape of F a
term E ?A : |⊥| as follows:

(F = P, P atomic) E ?A := E dA

(F = A→ B) E ?A := E (π0A) ? π1A (F = ArB) E ?A := A (π0E) ? π1E

(F = ∃yNA) E ?A := π1E ?A (π0E) (F = ∀yNA) E ?A := E (π0A) ? π1A

(F = A ∧B) E ?A := if p0A then π0E ? p1A else π1E ? p2A

(F = A ∨B) E ?A := if p0E then p1E ? π0A else p2E ? π1A

Then E �s F ∧A �s F⊥ =⇒ E ?A �s ⊥.

We now establish two important links between the concept of truth in a state and the
concept of realizability in the same state.

The first result is that if a formula is true in a state s, then it is realizable in s. Intuitively,
F s = True means that the state s is both: i) powerful enough to compute witnesses for all
the subformulas of F and their negations which are supposed to be true if F is true; ii) sharp

F. Aschieri 41

enough to not provide counterexamples invalidating some of those witnesses. Thus F can be
realized in the state s by a realizer TF which uses s to return the mentioned witnesses and
“waits” for possible counterexamples.

One could expect the converse to hold as well, namely that if F is realizable in s, then F
is true in s. This is not actually true, but “almost”. Indeed, the second result is that if F is
realizable in s and F s = False, one has disastrous consequences: ⊥ is realizable in s. In fact,
one can define a term FF transforming any realizer E of F in the state s in a realizer of ⊥ in
the same s, whenever F s = False. Indeed, if F s = False, then (F⊥)s = True by proposition
7; therefore A := TF⊥ realizes F⊥ in s. The state s is thus used to build a counterexample
A to F , which can be put against the realizer E of F in the term E ?A . This latter term
realizes ⊥ by proposition 14. Intuitively, if s is a strong enough approximation, A wins
and thus provides a counterexample to the fact that E is a construction of F ; since E , as
realizer, is a self-correcting program, it is able to extend the state s with new information:
this information realizes ⊥ in s. If instead s is not a good approximation, E wins and the
capabilities of A are used to improve the state s with an update realizing ⊥. Formally:

I Proposition 15 (Truth and Realizability in a State). Let F (~x) be an arithmetical formula.
There exist two terms TF (~x) and FF (~x) of TClass such that for all numerals ~n and state s

F s(~n) = True =⇒ TF (~n) �s F (~n)
F s(~n) = False =⇒ FF (~n) �s ¬F (~n)

In particular, TF and FF can be constructed by induction on F as follows:

TP := ∅, P atomic TA→B := λz|A|. if χA then TB else ⊥B(FAz)
TA∧B := 〈TA,TB〉 T∀yNA := λyN. if χA then TA else ⊥AmkupdA⊥ 〈~x〉 y
TA∨B := 〈χA,TA,TB〉 T∃yNA := 〈ΦA〈~x〉,TA[ΦA〈~x〉/y]〉

TArB := 〈TA,TB⊥〉 FF := λx|F |. x ?TF⊥

The most remarkable feature of our realizability semantics is the existence of a realizer
for any instance of EM, even if our language contains the positive symbols ∨,∃ which have
to be realized according to the Kreisel-style clauses of our definition of realizability.

I Proposition 16 (Realizer EA of EM). Let A(~x) be any arithmetical formula. Define

EA := λ~x N. 〈χA,TA,FA〉

Then EA � ∀~x N. A(~x) ∨ ¬A(~x).

We observe that the excluded middle can very well be defined as ∀~x N. A(~x) ∨ A⊥(~x). In
the case of Σ0

n-formulas, one would get a simplified realizer of the form λ~x N. 〈χA,TA,TA⊥〉,
which does not use the game operator ? contained in FA. In the case of Σ0

1-formulas, one
recovers as a special case exactly the realizer of [1], where Interactive realizability was first
defined for HA + EM1 + SK1. We also observe that the realizer EA, when evaluated in any
state, uses two instructions: the read from the state operation for satisfying the constructive
clauses of realizability and the update of the state operation for dealing with counterexamples
to universal quantifiers. The operation of updating the state is used only to interpret classical
steps of proofs. We now show how to realize the Skolem axiom scheme SK.

I Proposition 17 (Realizer SA of SK). Let A(~x, y) be any arithmetical formula and Φ the
Skolem function constant associated to A. Define

SA := λ~x Nλz|∃y
NA|. if χ∃yNA then TA[Φ〈~x〉/y] else ⊥A(~x,Φ〈~x〉)(F∃yNAz)

Then SA � ∀~x N.∃yNA(~x, y)→ A(~x,Φ〈~x〉).

CSL’12

42 Interactive Realizability for Classical Peano Arithmetic with Skolem Axioms

3.5 Curry-Howard Correspondence for HAω + EM + SK
In figure 2, we define a standard natural deduction system for HAω + EM + SK (see [19], for
example) together with a term assignment in the spirit of Curry-Howard correspondence for
classical logic. We replace purely universal axioms (i.e., Π0

1-axioms) with Post rules, which

Contexts With Γ we denote contexts of the form x1 : A1, . . . , xn : An, with x1, . . . , xn proof variables
and A1, . . . , An formulas of LClass.

Axioms Γ, x : A ` x|A| : A

Conjunction Γ ` u : A Γ ` t : B
Γ ` 〈u, t〉 : A ∧B

Γ ` u : A ∧B
Γ ` π0u : A

Γ ` u : A ∧B
Γ ` π1u : B

Subtraction Γ ` u : A Γ ` t : B⊥

Γ ` 〈u, t〉 : ArB
Γ ` u : ArB
Γ ` π0u : A

Γ ` u : ArB
Γ ` π1u : B⊥

Implication Γ ` u : A→ B Γ ` t : A
Γ ` ut : B

Γ, x : A ` u : B
Γ ` λx|A|u : A→ B

Disjunction Intro. Γ ` u : A
Γ ` 〈True, u, d|B|〉 : A ∨B

Γ ` u : A
Γ ` 〈False, d|A|, u〉 : A ∨B

Disjunction Elim. Γ ` u : A ∨B Γ, x : A ` w1 : C Γ, x : B ` w2 : C
Γ ` if p0u then (λx|A|w1)(p1u) else (λx|B|w2)(p2u) : C

Universal Quantification Γ ` u : ∀ατA
Γ ` ut : A[t/ατ]

Γ ` u : A
Γ ` λατu : ∀ατA

where t is a term of LClass and αN does not occur free in any formula B occurring in Γ.

Existential Quantification Γ ` u : A[t/ατ]
Γ ` 〈t, u〉 : ∃ατ .A

Γ ` u : ∃ατ .A Γ, x : A ` t : C
Γ ` (λατλx|A| t)(π0u)(π1u) : C

where ατ is not free in C nor in any formula B occurring in Γ.

Induction Γ ` u : A(0) Γ ` v : ∀αN.A(α)→ A(S(α))
Γ ` λαNRuvα : ∀αNA

Post Rules Γ ` u1 : A1 Γ ` u2 : A2 · · · Γ ` un : An
Γ ` u1 d u2 d · · · d un : A

where n > 0 and A1, A2, . . . , An, A are atomic formulas of LClass, and the rule is a Post rule for
equality, for a Peano axiom or for a classical propositional tautology or for booleans.

Post Rules with no Premises Γ ` ∅ : A
where A is an atomic formula of LClass and an axiom of equality or a classical propositional tautology.

EM Γ ` EA : ∀~x N. A(~x) ∨ ¬A(~x)

SK Γ ` SA : ∀~x N. ∃yNA(~x, y)→ A(~x,Φ〈~x〉)

Figure 2 Term Assignement Rules for HAω + EM + SK.

are inferences of the form

Γ ` A1 Γ ` A2 · · · Γ ` An
Γ ` A

where A1, . . . , An, A are atomic formulas of LClass such that for every substitution σ =
[t1/x1, . . . , tk/xk] of closed terms t1, . . . , tk of T and state s, A1σ[s] = . . . = Anσ[s] = True
implies Aσ[s] = True. Let now eq : N2 → Bool be a term of Gödel’s system T representing
equality between natural numbers. Among the Post rules, we have the Peano axioms and
axioms of equality

Γ ` eq S(x) S(y)
Γ ` eq x y

Γ ` eq 0 S(x)
Γ ` ⊥ Γ ` eq xx

Γ ` eqx y Γ ` eq y z
Γ ` eq x z

Γ ` A(x) Γ ` eqx y
Γ ` A(y)

F. Aschieri 43

and for every A1, A2 such that A1 = A2 is an equation of Gödel’s system T (equivalently,
A1, A2 have the same normal form in T), we have the rule

Γ ` A1

Γ ` A2

We also add a Post rule for every classical propositional tautology A1 → . . . → An → A,
where for i = 1, . . . , n, Ai, A are atomic formulas obtained as combination of other atomic
formulas by the Gödel’s system T boolean connectives. Finally, we have a rule of case
reasoning for booleans. For any atomic formula P and any formula A[P] we have:

Γ ` A[True] Γ ` A[False]
Γ ` A[P]

If T is any type of T , we denote with dT a dummy term of type T , defined by dN = 0,
dBool = False, dU = ∅, dA→B = λzA.dB (with zA any variable of type A), dA×B = 〈dA, dB〉.

It can now be proved that every theorem of HAω + EM + SK is realizable (see [7]).

I Theorem 18. If A is a closed formula such that HAω + EM + SK ` t : A, then t � A.

4 Witness Extraction with Interactive Realizability

In this section, we turn our attention to the witness extraction problem for Π0
2-formulas.

Given a realizer t � ∀xN∃yNPxy, where P is an atomic recursive predicate, one is asked to
extract from t a non-trivial program taking as input a numeral n and yielding as output a
witness for the formula ∃yNPny (that is, a numeral m such that Pnm = True). In the case
of Interactive realizability, the problem of computing that witness can be reduced to finding
a “zero” for a suitable term u of type U, that is a state s such that u[s] = ∅. Indeed, given
any numeral n and state s, the following implications hold:

t � ∀xN∃yNPxy =⇒ t �s ∀xN∃yNPxy =⇒ tn �s ∃yNPny

=⇒ (π0(tn)[s] = m ∧ π1(tn) �s Pnm) =⇒ (π1(tn)[s] = ∅ =⇒ Pnm = True)

Therefore, if s is a zero of π1(tn), then π0(tn) is equal in the state s to some witness m of the
formula ∃yNPny. Intuitively, a zero for π1(tn) represents a sufficient amount of information
to compute the required witness. Indeed, a zero for π1(tn) always exists, because π1(tn)
represents an update procedure (see [2, 8] for investigations and explanations of the concept).

I Definition 19 (Avigad’s Finite Update Procedures). A k + 1-ary typed update procedure
k ∈ N is a term U : (N→ N)k → U of T such that the following holds:
1. for all sequences f = f0, . . . , fk of closed type-N→ N terms of T

Uf 6= ∅ =⇒ Uf = {(i, n,m)} ∧ 0 ≤ i ≤ k

2. for all sequences f = f0, . . . , fk and g = g0, . . . , gk of closed type-N→ N terms of T and
for all 0 ≤ i ≤ k, if

Uf = {(i, n,m)}
for all j < i, fj = gj
gi(n) = m

then: Ug = {(i, h, l)} =⇒ h 6= n.

If U is a k + 1-ary update procedure, a zero for U is a sequence f = f0, . . . , fk of closed
type-N→ N terms of T such that Uf = ∅.

CSL’12

44 Interactive Realizability for Classical Peano Arithmetic with Skolem Axioms

Condition (2) describes learning by levels. If U is a k-ary update procedure and f is a
sequence of terms approximating the Skolem functions Φ0, . . . ,Φk (and we assume i ≤ j,
implies lev(Φi) ≤ lev(Φj)), there are two possibilities: either f is a fine approximation and
then Uf = ∅; or f is not and then Uf = {(i, n,m)}, for some numerals n,m: U says the
term fi should be updated as to output m on input n. Moreover, if Uf = (i, n,m), one
in a sense has learned at level i that Φi(n) = m on grounds of the values of fj , for j < i.
Condition (2) indicates that the information Φi(n) = m should be preserved, unless some
information in the lower levels changes.

For technical convenience we now add to T (and thus to system TClass), a constant
ch : U→ U which chooses exactly one element from every non-empty update and maps the
empty update to itself. Therefore, we assume to have in T conversion rules such that for
every non-empty update U

ch∅ 7→ ∅ chU 7→ {(i, n,m)}, for some (i, n,m) ∈ U

For simplicity, we are going to consider only proof-like terms of TClass: a term t is said to be
proof-like if: i) every occurrence in t of the constant mkupd is of the form mkupdi, where
i is some numeral, and Φi occurs in t; ii) no update constant different from ∅ occurs in t.
Indeed, that is the syntactic form of every interactive realizer extracted from some proof in
HAω + EM + SK.

I Proposition 20 (The Update Procedure Associated to an Atomic Realizer). Let Q be an
atomic formula of LClass and suppose t � Q, with t proof-like. Let without loss of generality
Φ0, . . . ,Φk the list of all Skolem function constants of t ordered by levels: if i ≤ j, then
lev(Φi) ≤ lev(Φj). Define

U := λfN→N
0 . . . λfN→N

k . ch(t[f0/Φ0 . . . fk/Φk])

Then U is an update procedure.

From now on, the term U of proposition 20 will be called the (k + 1)-ary update procedure
associated to t. There is a standard way to compute a zero for any update procedure and
thus for the correspondent atomic realizer. In order to do that, if f = f0, . . . , fk is a sequence
of terms of type N→ N and U is an update constant, we define a term f ⊕ U which changes
the values of fi according to the triples (i, n,m) ∈ U , where i = minU , leaves fj for j < i

unchanged and changes every fj , with j > i, to be equal to the constant function λxN0.

I Definition 21 (Updates of Functions). For each numeral i, we define a term ⊕i : (N →
N)→ U→ (N→ N) as follows:

⊕i := λfN→NλuUλxN if minu > i then fx else if minu = i then (getu i x fx) else 0

We shall write t1⊕it2 in place of ⊕it1t2. If f = f0, . . . , fk is a sequence of terms of type
N→ N and u : U, we define f⊕u := f0⊕0u, . . . , fk⊕ku.

I Theorem 22 (Zero Theorem). Let Q be an atomic formula of LClass, suppose t is a proof-like
term such that t � Q and let U be the (k + 1)-ary update procedure associated to t. Let
s be any state. Define, by induction on n, a sequence {rn}n∈N of k + 1-ary sequences of
type-N→ N terms as follows:

r0 := s0, . . . , sk

rn+1 := rn⊕(Urn) (see definition 21)

Then, there exists a n such that t[(rn)0/Φ0 . . . (rn)k/Φk] = ∅.

F. Aschieri 45

Using the results of [3, 6], we are even able to extract a program belonging to system T .

I Theorem 23 (Program Extraction via Interactive Realizability). Let t be a term of TClass and
suppose that t � ∀xN∃yτPxy, with P : N→ τ → Bool closed term of system T . Then:
1. From t one can effectively define a recursive function f such that for every numeral n,

f(n) : τ is a term of system T such that Pn(f(n)) = True.
2. f can be represented in system T .

Remark. We observe that our algorithm for witness extraction is not the last word on the topic,
for it is not particularly optimized for real-world execution. However, thanks to our realizability
interpretation, we have now achieved a sharp understanding and control of the learning process which
is implicit in every computational interpretation of classical logic. This is crucial: the inefficiency of
the algorithms extracted from classical proofs is usually due to their inability to backtrack without
forgetting important information that they have acquired during the computation. It is already
evident that dramatically more efficient algorithm are possible, by managing in a more sophisticated
way the update of the states. For example, multiple updates of the states can be allowed at one
time and in the proof of the Zero theorem one does not need to “set to zero” every approximation
corresponding to a Skolem function of higher level of the first level which is corrected by an update.
For reasons of space, we leave these optimizations to future work.

References
1 F. Aschieri, S. Berardi, Interactive Learning-Based Realizability for Heyting Arithmetic with EM1,

Logical Methods in Computer Science, 2010.
2 F. Aschieri, Transfinite Update Procedures for Predicative Systems of Analysis, Proceedings of

Computer Science Logic, 2011.
3 F. Aschieri, A Constructive Analysis of Learning in Peano Arithmetic, Annals of Pure and Applied

Logic, 2011, doi:10.1016/j.apal.2011.12.004.
4 F. Aschieri, S. Berardi, A New Use of Friedman’s Translation: Interactive Realizability, Festschrift

of Helmut Schwichtenberg, Ontos-Verlag Series in Mathematical Logic, to appear.
5 F. Aschieri, Learning Based Realizability for HA + EM1 and 1-Backtracking Games: Soundness

and Completeness, Annals of Pure and Applied Logic, to appear.
6 F. Aschieri, Interactive Realizability for Second-Order Heyting Arithmetic with EM1 and SK1,

Technical Report, http://hal.inria.fr/hal-00657054.
7 F. Aschieri, Interactive Realizability for Classical Peano Arithmetic with Skolem Axioms, Technical

Report, http://hal.inria.fr/hal-00685360.
8 J. Avigad, Update Procedures and 1-Consistency of Arithmetic, Mathematical Logic Quarterly,

volume 48, 2002.
9 F. Barbanera, S. Berardi, A Symmetric Lambda-Calculus for Classical Program Extraction, Informa-

tion and Computation, 1996.
10 S. Berardi and U. de’ Liguoro, Interactive Realizers. A New Approach to Program Extraction from

Nonconstructive Proofs, ACM Transactions on Computational Logic, 2012.
11 T. Coquand, A Semantic of Evidence for Classical Arithmetic, Journal of Symbolic Logic, 1995.
12 H. Friedman, Classically and Intuitionistically Provable Recursive Functions, Lecture Notes in

Mathematics, 1978, Volume 669/1978, 21-27.
13 K. Gödel, Uber eine bisher noch nicht benutzte Erweiterung des finiten Standpunktes, Dialectica 12,

pp. 280-287 (1958).
14 G. Gentzen, Die Widerspruchsfreiheit der reinen Zahlentheorie. Mathematische Annalen,1935.
15 J.-Y. Girard, Proofs and Types, Cambridge University Press (1989).
16 G. Kreisel, On Weak Completeness of Intuitionistic Predicate Logic, Journal of Symbolic Logic, vol.

27, 1962.
17 J-L. Krivine, Typed lambda-calculus in classical Zermelo-Fraenkel set theory, Archive for Mathemat-

ical Logic, 40(3), 2001.
18 G. Mints, S. Tupailo, W. Bucholz, Epsilon Substitution Method for Elementary Analysis, Archive

for Mathematical Logic, volume 35, 1996
19 M. H. Sorensen, P. Urzyczyn, Lectures on the Curry-Howard isomorphism, Studies in Logic and the

Foundations of Mathematics, vol. 149, Elsevier, 2006.
20 A. Troelstra, D. van Dalen, Constructivism in Mathematics, vol. I, North-Holland, 1988.

CSL’12

Relational Parametricity for Higher Kinds
Robert Atkey

University of Strathclyde, UK
Robert.Atkey@strath.ac.uk

Abstract
Reynolds’ notion of relational parametricity has been extremely influential and well studied for
polymorphic programming languages and type theories based on System F. The extension of
relational parametricity to higher kinded polymorphism, which allows quantification over type
operators as well as types, has not received as much attention. We present a model of relational
parametricity for System Fω, within the impredicative Calculus of Inductive Constructions, and
show how it forms an instance of a general class of models defined by Hasegawa. We investigate
some of the consequences of our model and show that it supports the definition of inductive types,
indexed by an arbitrary kind, and with reasoning principles provided by initiality.

1998 ACM Subject Classification D.3.1 Formal Definitions and Theory, F.3.2 Semantics of
Programming Languages

Keywords and phrases Relational Parametricity, Higher Kinds, Polymorphism

Digital Object Identifier 10.4230/LIPIcs.CSL.2012.46

1 Introduction

Reynolds defined relational parametricity to formalise the intuition that, in the absence of
introspection capabilities, a polymorphic program must act uniformly in the choice of type
instantiation [14]. The inability of a program to rely on details of data representation that it
has not been explicitly exposed to forms the backbone of reasoning based on information
hiding and abstraction. The core of Reynolds’ idea is that a parametrically polymorphic
program should preserve all relations between any pair of types that it is instantiated with.

Since Reynolds’ definition, many interesting consequences have been revealed. Wadler
called some of these consequences “Theorems for free” [20] where theorems can be stated
about polymorphically typed programs just by looking at their types. It is also possible to
prove that the polymorphic λ-calculus allows encodings of categorical constructions such as
finite products and coproducts, initial algebras and final coalgebras, as long as the model is
parametric in Reynolds’ sense, as demonstrated by Hasegawa [7].

Most of the previous work on parametricity has been based on languages and type theories
building on System F, where type quantification is only over types. Modern programming
languages now include higher kinded polymorphism where programs may be parameterised
by type operators of kinds like ∗ → ∗ as well as normal types of kind ∗. Type operators are
simply functions operating on types, where the kinds act as a type system at “one level up”
to classify types. The purely functional language Haskell uses type operators of kind ∗ → ∗
to represent constructions such as monads [11], and the GHC compiler has recently added
support for user defined kinds [21]. The JVM-based language Scala [12] also includes support
for type operators. Languages in the ML family such as OCaml and SML do not support
higher kinded polymorphism in their core languages, but do support a form of it through
their module systems. Indeed, Rossberg et al. [16] have shown that ML-style modules can
be understood by translation into a language with higher kinds.

© Robert Atkey;
licensed under Creative Commons License NC-ND

Computer Science Logic 2012 (CSL’12).
Editors: Patrick Cégielski, Arnaud Durand; pp. 46–61

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2012.46
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

R. Atkey 47

In this paper, we consider the prototypical calculus with type operators and higher kinded
polymorphism, System Fω. We give a concrete model of this calculus within the impredicative
variant of the Calculus of Inductive Constructions, building on the interpretation of kinds as
reflexive graphs, due to Hasegawa [8, 7] and Robinson and Rosolini [15]. The use of reflexive
graphs builds Reynolds’ identity extension principle into the interpretation, ensuring that
we are able to perform hypothetical reasoning with parametric functions. We make use of
this ability to show that we can represent κ indexed inductive types, for arbitrary kinds κ,
within System Fω, and prove their initiality. Proving initiality is essential for reasoning about
members of inductive types. When κ = ∗, we obtain a method for encoding and reasoning
about Generalised Algebraic Data Types (GADTs) [5].

1.1 Background
To our knowledge, the earliest formulation of a theory of relational parametricity for higher
kinded types is due to Hasegawa [8], building on his previous work on relationally parametric
System F [7]. Hasegawa gives a category theoretic approach, based on interpreting kinds and
types in categories of r-frames: sets equipped with a notion of reflexive relations between
their elements, building in Reynolds’ identity extension property. We recall Hasegawa’s
definition of r-frame in Section 3.3, and describe how it relates to our model construction,
and to the reflexive graph approach of Robinson and Rosolini [15]. Hasegawa presents a set
of general requirements on a model in order for it to interpret System Fω, and demonstrates
two instances: a PER-based model and a syntactic model. Hasegawa also develops a number
of applications of models, using notions of enriched category theory, including the existence
of initial algebras and final coalgebras for a certain class of internally defined functors.

Takeuti [17] formulated a definition of relational parametricity for dependent type theories
in the λ-cube, including System Fω, and developed a small amount of enriched category
theory in this setting.

Bernardy, Jansson and Paterson [3] present a slightly different formulation of parametricity
for pure type systems (PTSs), including those in the λ-cube. A key feature of this work is that
the relational interpretation of a type is expressed within an augmented version of the PTS
that is started with. Bernardy et al. prove an abstraction theorem for their translation, with
the neat property that the same translation that translates types to relational interpretations
also translates terms to the proof of the abstraction theorem for that term. This work does
not take into account the identity extension aspect of parametricity, nor do the authors
construct a model with the property that all members of universal types are relationally
parametric, so the constructions we present in Section 4 are not possible in their setting.

Voigtländer [18] has examined an extension of free theorems to a fragment of System Fω,
where he only considers functions with types of form ∀κα. A[α]→ B[α], where κ may be a
higher kind. Voigtländer derives several useful free theorems relating functions that operate
polymorphically over monads. We expect that all his free theorems are true in our model.

Vytiniotis and Weirich [19] present a syntactic model of parametricity for System Fω
extended with representation types. They define a relational interpretation of types where
great care is required, in their syntactic setting, to ensure that the interpretation is coherent
under type equality. This is handled for us in our extensional denotational setting. Vytiniotis
and Weirich consider an extended system with type representations and prove that, due to
parametricity, run-time type casting using type representations will always be equivalent
to the identity function. In comparison to the present work, they do not need to consider
a definition of the interpretation of kinds that forces there to be a distinguished identity
relation for every type, because they need only consider the types that are syntactically

CSL’12

48 Relational Parametricity for Higher Kinds

definable. We have also considered constructions within parametric System Fω beyond
equality types.

1.2 Contributions of this Paper

We define a concrete type theoretic model of relationally parametric System Fω, a
polymorphic λ-calculus with higher kinded types. We give our model in direct terms, not
using category theoretic language, in an attempt to make the definition more accessible.
We also relate our model to a standard non-parametric semantics (Theorem 4), in order to
show that the relationally parametric model can be used to reason about interpretations
in the non-parametric model.
We demonstrate that our relationally parametric model of System Fω allows for the
definition of indexed inductive types, with an initiality property that allows for reasoning.
Hasegawa also proves the existence of initial algebras in relationally parametric models
of System Fω, for functors satisfying a condition he calls the middle-lax property. We
demonstrate initial algebras for all definable functors, and present our proof in more
elementary terms. We also demonstrate how to interpret data kinds, such as type-level
natural numbers.

We emphasise that even though our model is constructed on paper with the impredicative
Calculus of Inductive Constructions, we have not yet completed a full verification of all our
results in Coq. Also, there are evidently many more constructions that one might consider
in a relationally parametric model of System Fω, including final coalgebras. We have some
preliminary results in this direction, but leave development of them to future work.

2 Type Polymorphism with Higher Kinds

To fix notation we define the syntax and typing of System Fω in this section, following
the standard presentations [13]. There are three levels: kinds, which classify types, which
classify terms. The language of kinds consists of simple types over a single base kind ∗ that
represents all types that can classify terms. We use meta-syntactic variables κ, κ1, κ2, ... to
stand for kinds. The grammar κ ::= ∗ | κ1 → κ2 defines the collection of kinds that we
consider. We will look at extending the calculus with additional kinds in Section 5.

The language of types is an applied simply-typed λ-calculus with constants for function
and universal types. The kinding rules that classify types by kind are shown in Section 1.
We will use the general name “type” for both proper types of kind ∗ and for higher kinded
type operators. We use Θ as a meta-variable to stand for kinding contexts α1 : κ1, ..., αn : κn,
Greek letters α, β, ... for type variables in the calculus and capital roman letters A,B, F, ...
for meta-syntactic variables standing for arbitrary types. Types come equipped with an
equational theory (≡) built from the standard typed βη rules for the simply typed λ-calculus.

The typing rules for terms are shown in Section 2. These are the standard rules for
System Fω. We assume throughout that all the types in the typing context Γ are of base
kind according to the kinding context Θ. We use the notation A{B/α} to represent capture
avoiding substitution of B for all occurrences of α in A. The final typing rule imports
the equational theory of types into the typing judgement, allowing a term to have many
syntactically different types. Terms come equipped with an equational theory of their own:
βη equalities for λ-abstraction and Λ-abstraction.

R. Atkey 49

α : κ ∈ Θ
Θ ` α : κ

Θ, α : κ1 ` A : κ2

Θ ` λα : κ1. A : κ1 → κ2

Θ ` F : κ1 → κ2 Θ ` A : κ1

Θ ` FA : κ2

Θ ` A : ∗ Θ ` B : ∗
Θ ` A→ B : ∗

Θ, α : κ ` A : ∗
Θ ` ∀κα. A : ∗

Figure 1 Types and their Kinds.

x : A ∈ Γ
Θ | Γ ` x : A

Θ | Γ ` e : A Θ ` A ≡ B : ∗
Θ | Γ ` e : B

Θ | Γ, x : A ` e : B
Θ | Γ ` λx : A. e : A→ B

Θ | Γ ` e1 : A→ B Θ | Γ ` e2 : A
Θ | Γ ` e1e2 : B

Θ, α : κ | Γ ` e : A α 6∈ fv(Γ)
Θ | Γ ` Λα : κ. e : ∀κα.A

Θ | Γ ` e : ∀κα.A Θ ` B : κ
Θ | Γ ` e [B] : A{B/α}

Figure 2 Terms and their Types.

3 A Relationally Parametric Model

We now present the construction of a relationally parametric model of System Fω in the
impredicative Calculus of Inductive Constructions (CIC). CIC is a dependently typed
λ-calculus with impredicative polymorphism and inductive types, and forms the basis of
the Coq proof assistant. The presence of impredicative polymorphism in our meta-theory
simplifies the presentation of our model, allows us to concentrate on the parametricity aspects,
and permits straightforward reasoning inside the model. This technique has been used to
construct models of System F with Kripke parametricity for the purposes of studying the
adequacy of Higher Order Abstract Syntax (HOAS) encodings [1]. Our model is an instance
of the class of models defined by Hasegawa, and also those defined by Robinson and Rosolini.
We cover the connection in Section 3.3. We motivate this class of models in Section 3.2.

3.1 Setting up the Metatheory

Impredicative CIC allows us to quantify over all objects of sort Set to generate a new
object of sort Set. This feature can be enabled in the Coq proof assistant by means of the
-impredicative-set command line option. CIC already includes an impredicative sort
of propositions Prop. Importantly, this is disjoint from the sort Set, where we build our
denotations of types.

We require two additional axioms to be added to CIC. The first of these is extensionality
for functions, which states that two functions are equal if they are equal for all inputs:
∀A ∈ Type, B ∈ A → Type, f, g ∈ (∀a.Ba). (∀x. fx = gx) → f = g. Extensionality
for functions allows our denotational model to smoothly support the η equality rules of
System Fω, without requiring complex constructions involving setoids. We also require
propositional extensionality, which will allow us to treat equivalent propositions as equal:

CSL’12

50 Relational Parametricity for Higher Kinds

∀P,Q ∈ Prop, (P ↔ Q) → P = Q. Propositional extensionality implies proof irrelevance:
all proofs of a given proposition are equal: ∀P ∈ Prop. ∀p1, p2 ∈ P. p1 = p2. These axioms
allow us to define data with embedded proofs that are equal when their computational parts
are equal, which allows us to prove more equalities between denotations of types.

We informally justify our use of these axioms, plus impredicativity, by the existence of
models of CIC in intuitionistic set theory. In the remainder of the paper, we use informal
set theoretic notation and do not explicitly highlight the uses of these axioms. Note that
everywhere we refer to “set”s, we mean CIC objects of sort Set.

3.2 Types, Relations and Identity Extension
We consider the extension of Reynolds’ definition of relational parametricity to a type system
with higher kinds, in order to motivate the model construction in the rest of this section.

If we model types of kind ∗ as sets, then the modelling of the rest of the kind hierarchy
has an obvious choice: we interpret kinds of the form κ1 → κ2 as functions:

J∗K = Set Jκ1 → κ2K = Jκ1K→ Jκ2K

To define relational parametricity, we need to consider what relations between the inter-
pretations of types look like. At the base kind, ∗, this will be just the collection of all
relations between a pair of sets: we denote the collection of relations between sets A and B
as Rel(A,B). At higher kinds, an obvious approach is to consider relation transformers:

JκKR ∈ JκK× JκK→ Set
J∗KR = (A,B) 7→ Rel(A,B)

Jκ1 → κ2KR = (F,G) 7→ ∀A,B ∈ Jκ1K.Jκ1KR(A,B)→ Jκ2KR(FA,GB)

Following relationally parametric models of System F (e.g., Jacobs [9], Section 8.4), for any
well-kinded type α1 : κ1, · · · , αn : κn ` A : κ, we will have an underlying interpretation
JAKf ∈ Jκ1K×· · ·×JκnK→ JκK and a relational interpretation JAKr ∈ ∀

−→
A,
−→
B.Jκ1KR(A1, B1)×

· · · × JκnKR(An, Bn)→ JκKR(F−→A,F−→B).
However, this interpretation of kinds suffers from a problem. In order to allow for

hypothetical reasoning using relational parametricity, we must ensure that the interpretation
of a type of the form ∀κα.A only contains elements that actually preserve all relations
(i.e., are parametric). If the type A is open—it has free type variables—then in order to
state this property we need a default relational interpretation for each of the free type
variables. In Reynolds’ formulation of relational parametricity, where all type variables
have kind ∗, the default relational interpretation is given by equality. Moreover, given a
type with free type variables, substituting the equality relation for all the free variables in
the relational interpretation of the type should give the equality relation: this is Reynolds’
identity extension property, which is needed to prove the abstraction theorem (see Theorem
3, below).

In the situation with higher kinds, some of the variables may be of functional kinds like
κ1 → κ2, so to even state identity extension we need a notion of identity relation for any
type at these kinds. We cannot use equality, because we require a relation transformer.
Moreover, this transformer should obey the identity extension property itself; sending the
identity relations for kind κ1 to the identity relations for kind κ2. But what are these
identity relations? There does not seem to be an obvious way to assign an identity relation
transformer to an arbitrary type operator, so we need to equip each element of Jκ1 → κ2K
with a distinguished relation transformer with the identity extension property.

R. Atkey 51

3.3 Kinds as Reflexive Graphs
Hasegawa [7, 8] and Robinson and Rosolini [15] give us the solution. Instead of defining the
underlying and relational semantics of kinds separately, we treat each kind as a reflexive
graph. A reflexive graph consists of two collections: one of objects and one of relations.
Every relation is assigned a source and target object, and every object a has a distinguished
“identity” relation, whose source and target are a. Hasegawa calls such structures r-frames,
and notes that they are essentially categories without composition. Robinson and Rosolini
note that the category of reflexive graphs is just the category of presheaves over the category
• i // •δ0vv

δ1
hh such that δ0 ◦ i = id and δ1 ◦ i = id. It immediately follows that there is an

interpretation of higher kinds, using the cartesian closed structure of this presheaf category,
although Robinson and Rosolini do not make use of this fact. This solves the problem we
identified above: the assignment of a distinguished identity relation to every inhabitant of
the denotation of a higher kind. Dunphy and Reddy [6] also use reflexive graphs to study
relational parametricity.

It the rest of this section, we present a concrete model of System Fω within CIC that
interprets kinds as reflexive graphs. We do not make explicit use of the presheaf structure
underlying the model, in order to keep the presentation straightforward and accessible.

3.4 Interpretation of Kinds
A kind κ is interpreted as a triple of a carrier A; a function that takes a pair of elements
of A and returns the set of “relations” between them; and a special distinguished “identity”
relation for every element of A. We write this specification as a CIC type as follows:

ΣA ∈ Type. ΣR ∈ A×A→ Type. ∀a ∈ A. R(a, a)

In the following, we make use of the projection functions −U , −R and −∆ to obtain the first,
second and third components of the interpretations of kinds.

We define an interpretation for all kinds by induction on their structure. At base kind,
the carrier is simply the type of all sets; relations between A and B are subsets of A×B;
and the distinguished identity relation is exactly the equality relation:

J∗K = (Set,Rel,≡)

At higher kinds κ1 → κ2, the interpretation is more involved. The carrier is the set of pairs of
functions from the carrier of κ1 to the carrier of κ2, along with their associated distinguished
identity-preserving identity relations; the relations between two semantic type operators
(F,R) and (G,S) are relation transformers; and the distinguished identity relation for (F,R)
is just R.

Jκ1 → κ2K = ({(F,R) | F ∈ Jκ1KU → Jκ2KU , R ∈ (∀AB. Jκ1KR(A,B)→ Jκ2KR(FA,FB)),
∀A ∈ Jκ1KU . RAA(Jκ1K∆A) = Jκ2K∆(FA)},

((F,R), (G,S)) 7→ ∀AB.Jκ1KR(A,B)→ Jκ2KR(FA,GB),
(F,R) 7→ R)

Kinding contexts Θ = α1 : κ1, ..., αn : κn are interpreted as follows:

Jα1 : κ1, ..., αn : κnK = (Jκ1KU × ...× JκnKU ,
(θ, θ′) 7→ Jκ1KR(π1θ, π1θ

′)× ...× JκnKR(πnθ, πnθ′),
θ 7→ (Jκ1K∆(π1θ), ..., JκnK∆(πnθ)))

CSL’12

52 Relational Parametricity for Higher Kinds

We use πi to denote the ith projection. The carrier component of the interpretation of a
kinding context is simply the product of the underlying semantics of the context members,
and the relational component is simply the product of the relational components of the
context members. This naturally leads to the identity component being defined as the tuple
of the identity components of the interpretations of the context members. We overload the
projections −U , −R and −∆ for the denotations of kinding contexts as well as kinds.

3.5 Interpretation of Types
A kinding judgement Θ ` A : κ establishing the well-formedness of a type A is interpreted
as a pair of a function JAKf ∈ JΘKU → JκKU and a relation transformer JAKr ∈ (∀θθ′ ∈
JΘKU .JΘKR(θ, θ′) → JκKR(JAKfθ, JAKfθ′)) such that the identity extension property holds.
We give the full statement below in Theorem 1.

We now give an interpretation of the kinding judgements of Section 1, by induction on
the kinding derivation. Type variables Θ ` αi : κi, where αi is the ith variable in Θ, are
interpreted using projections:

JαiKfθ = πiθ JαiKrθθ′ρ = πiρ

For λ-abstraction of types, we must return a pair of the type operator and the distinguished
identity relation on the operator. This is derived from the relational interpretation of the
premise and the identity relation on the context. In essence, type-level λ-abstraction in
System Fω is interpreted as λ-abstraction at the meta-level:

Jλα : κ1. AKfθ = (λX ∈ Jκ1KU . JAKf (θ,X),
λXY ∈ Jκ1KU , R ∈ Jκ1KR(X,Y). JAKr(θ,X)(θ, Y)(JΘK∆θ,R))

Jλα : κ1. AKrθθ′ρ = λXY ∈ Jκ1KU , R ∈ Jκ1KR(X,Y). JAKr(θ,X)(θ′, Y)(ρ,R)

Type-level application is interpreted as application at the meta-level:

JF AKfθ = π1(JF Kf θ) (JAKf θ)
JF AKrθθ′ρ = JF Krθθ′ρ (JAKfθ)(JAKfθ′)(JAKrθθ′ρ)

We now turn to the interpretation of the two constructors of actual types in the kinding
system of Section 1. For function types, we use the standard logical relations interpretation
of function types as preservation of relations:

JA→ BKfθ = JAKfθ → JBKfθ

JA→ BKrθθ′ρ = {(f, g) | ∀(x, y) ∈ JAKrθθ′ρ. (fx, gy) ∈ JBKrθθ′ρ}

Finally, a universal type ∀κα.A is interpreted as the set of all type-parameterised inhabitants
of the open type A that are relationally parametric. We use the distinguished identity relation
on contexts in this definition, where Θ is the current context in the kinding derivation. The
interpretation of universally quantified types as just those elements that are relationally
parametric is key to the applications of the model that we present in Section 4. This definition
allows us to state results that range over all inhabitants of J∀κα.AKf , not just those that
arise from closed programs.

J∀κα. AKfθ = {x ∈ (∀X ∈ JκKU . JAKf (θ,X)) |
∀XY,R ∈ JκKR(X,Y). (xX, xY) ∈ JAKr(θ,X)(θ, Y)(JΘK∆θ,R)}

J∀κα. AKrθθ′ρ = {(x, y) | ∀XY,R ∈ JκKR(X,Y). (xX, yY) ∈ JAKr(θ,X)(θ′, Y)(ρ,R)}

The following theorem states that the clauses above are well-defined: all the definitions
above are well-typed, and the identity extension property is preserved.

R. Atkey 53

I Theorem 1. For all well-kinded types Θ ` A : κ there exist functions:
JAKf ∈ JΘKU → JκKU and JAKr ∈ (∀θθ′ ∈ JΘKU .JΘKR(θ, θ′) → JκKR(JAKfθ, JAKfθ′))

such that identity extension holds: ∀θ ∈ JΘKU . JAKrθθ(JΘK∆θ) = JκK∆(JAKfθ)

I Theorem 2 (Soundness of βη). If Θ ` A ≡ B : κ then JAKf = JBKf and JAKr = JBKr.

We extend the interpretation of types to the interpretation of typing contexts in the obvious
way: contexts Γ = x1 : A1, ..., xn : An (where all the Ai are of base kind) are interpreted as
tuples of the the interpretations of the individual types, and the relational interpretation is
the standard one for logical relations on products.

3.6 Semantics of Terms

We omit the interpretation of terms, which is similar to the interpretation of the terms of
System F in a relationally parametric model (see, for example, Bainbridge et al. [2]). We
just state the key result—the abstraction theorem for System Fω.

I Theorem 3. For all well-typed terms Θ | Γ ` e : A there is a function (the −P superscript
stands for “parametric”)

JeKP ∈ (∀θ ∈ JΘKU . JΓKfθ → JAKfθ)

such that, for all θ, θ′ ∈ JΘKU , ρ ∈ JΘKR(θ, θ′), γ ∈ JΓKfθ and γ′ ∈ JΓKfθ′,

if (γ, γ′) ∈ JΓKrθθ′ρ then (JeKPθγ, JeKPθ′γ′) ∈ JAKrθθ′ρ.

Moreover, this interpretation is sound for the βη equational theory of the terms.

The interpretation of terms and the proof that they satisfy the abstraction property must
be carried out simultaneously in order to show that the interpretation of Λ-abstraction is
well-defined. This is due to the interpretation of the ∀κ-types as sets of type indexed values
that preserve all relations.

The next theorem relates the model we have defined in this section to the standard
non-parametric model in CIC, where we interpret higher kinds simply as functions, and
∀κ-types just using the impredicative quantification of the meta-theory. The intention is
that this non-parametric semantics represents the “natural” semantics of System Fω in CIC,
without the artificial scaffolding of relational parametricity. To state this theorem, it is
necessary to extend the calculus with a type of booleans to act as observable values.

I Theorem 4. For any closed term − | − ` e : bool, the parametric semantics of Theorem
3 and the non-parametric semantics are equal.

The proof of this theorem is carried out by the construction of a logical relation between the
parametric and non-parametric semantics. The importance of this theorem is that it allows
us to use equalities between terms that we prove in the parametric semantics of Theorem
3 to reason about contextual equivalence in the non-parametric semantics. If we prove
an equivalence Je1KP = Je2KP in the parametric semantics, where e1 and e2 may be open
terms, then for all contexts C[−] of type bool, we have, by the compositionality of J−KP ,
JC[e1]KNP = JC[e1]KP = JC[−]KPJe1KP = JC[−]KPJe2KP = JC[e2]KP = JC[e2]KNP , where
J−KNP is the non-parametric semantics, and J−KP is the parametric semantics.

CSL’12

54 Relational Parametricity for Higher Kinds

4 Applications of Higher Kinded Parametricity

We now demonstrate how, in System Fω, we can define useful data type constructions
for indexed data types, of kind κ → ∗. Such indexed data types include Generalised
Algebraic Data Types (GADTs) [5], by setting κ = ∗. We build towards the construction of
indexed inductive types in stages, defining equality types, existential types at higher kinds,
product and sum types and then finally indexed inductive types as initial algebras. For each
construction, relational parametricity is used to justify the η equality rules.

We reason within CIC, using the model that we constructed in the previous section.
When we quantify over all types of a particular kind, we mean to interpret this as all semantic
inhabitants of the denotation of this kind. Similarly, when we quantify over terms of a
particular type, we mean semantic inhabitants of the denotation of the type. We often omit
semantic brackets to reduce clutter. When F is a semantic type of kind κ, we write ∆F for
F ’s distinguished identity relation JκK∆(F) ∈ JκKR(F, F). As a shorthand for the relational
interpretations of certain types, we often write type expressions with free type variables
replaced by relations.

4.1 Equality Types
It is possible (Jacobs [9], Section 8.1) to extend System Fω with an equality type that records
when two types (of arbitrary but equal kinds) are equal. One adds an additional kind indexed
family of type operators Eqκ : κ→ κ→ ∗ and two kind indexed families of term constants:

reflκ : ∀κα. Eqκαα elimEqκ : ∀καβ. Eqκαβ → ∀κ→κ→∗ρ.(∀κγ. ργγ)→ ραβ

that obey the following β and η equality rules:

A : κ G : κ→ κ→ ∗ f : ∀κα.Gαα
elimEqκ [A] [A] (refl [A]) [G] f = f [A]

(β)

A,B : κ z : EqκAB G : κ→ κ→ ∗ t : ∀καβ. Eqκ α β → Gαβ

elimEqκ [A] [B] z [G] (Λγ. t [γ] [γ] (reflκ [γ])) = t [A] [B] z
(η)

We can define a substitution operation, using elimEqκ, which will be used in Section 5 below.

substκ : ∀καβ.Eqκαβ → ∀κ→∗ρ. ρα→ ρβ

substκ = Λαβ.λe.Λρ.λx. elimEqκ [α] [β] e [λγ1γ2. ργ1 → ργ2] (Λγ.λx.x) x

In System Fω, it is possible to implement the equality type. We make the following definitions,
encoding the equality type as it own eliminator.

Eqκ = λαβ. ∀κ→κ→∗ρ. (∀κγ. ργγ)→ ραβ

reflκ = Λα. Λρ. λf. f [α]
elimEqκ = Λαβ. λe. Λρ. λf. e [ρ] f

The β equality rule for this implementation of equality types holds in all models of System
Fω, just by β reduction. In the parametric model of Section 3, we can also show that the η
equality rule holds, by using higher kinded relational parametricity.

I Lemma 5. Let A,B be types of kind κ, and G be a type of kind κ→ κ→ ∗. Then for any
z : EqκAB, and t : ∀καβ. Eqκαβ → Gαβ, we have (in the model of Section 3):

t [A] [B] (z [Eqκ] reflκ) = z [G] (Λγ. t [γ] [γ] (reflκ [γ]))

R. Atkey 55

Proof. Let ∆G = Jκ → κ → ∗K∆(G), the identity-preserving identity relation transformer
associated with G. Define another relation transformer R ∈ Jκ → κ → ∗KR(Eqκ, G) as
RABSA′B′S′ = {(x, y) | (t [A] [A′] x, y) ∈ ∆GSS

′}. We know from the parametricity
property derived from z’s type that:

(z [Eqκ], z [G]) ∈ (∀κγ. Rγγ)→ R∆A∆B (1)

where ∆A = JκK∆(A) and ∆B are the identity relations appropriate to κ for the semantic
types A and B. We will instantiate (1) with reflκ and Λγ. t [γ] [γ] (reflκ [γ]), so we must
ensure that these are related at ∀κγ. Rγγ. But, for any X,Y and S ∈ JκKR(X,Y) this
reduces to whether (t [X] [X] (reflκ [X]), t [Y] [Y] (reflκ [Y])) ∈ ∆GSS, which follows from
t’s parametricity property, ensured by its membership of the denotation of a universal type.

Now, (z [Eqκ] reflκ, z [G] (Λγ. t [γ] [γ] (reflκ [γ]))) ∈ R∆A∆B . By the construction of iden-
tity relations at higher kinds, ∆G∆A∆B = ∆GAB = (≡), so when we unfold the definition ofR,
we have shown that, in the model, t [A] [B] (z [Eqκ] reflκ) = z [G] (Λγ. t [γ] [γ] (reflκ [γ])). J

I Theorem 6. The β and η rules stated above for refl and elimEq hold for the implementations
refl and elimEq when interpreted in the model of Section 3.

Proof. The β equality rule can be seen to hold by expanding the definitions and applying β
reduction. Showing that the η equality rule holds requires parametricity. Unfolding and β
reducing, the equation to show becomes z [G] (Λγ. t [γ] [γ] (reflκ [γ])) = t [A] [B] z. From
Lemma 5 we know that z [G] (Λγ. t [γ] [γ] (reflκ [γ])) = t [A] [B] (z [Eqκ] reflκ). Now we
use Lemma 5 again, with an arbitrary G and f : ∀κγ.Gγγ, setting t = Λαβ.λx.x [G] f . This
gives us z [Eqκ] reflκ [G] f = z [G] f , and so by extensionality, z [Eqκ] reflκ = z. Thus we
have shown z [G] (Λγ. t [γ] [γ] (reflκ [γ])) = t [A] [B] z, as required. J

4.2 Existential Types
As with System F, it is possible to encode existential types in System Fω, only now we have
the option of doing so for higher kinds. The specification for existential types goes as follows:
for every type F : κ→ ∗, there is a type ∃κα. Fα, and two combinators:

packκ : ∀κ→∗ρ. ∀κα. ρα→ (∃κα. ρα)
elimExκ : ∀κ→∗ρ. ∀∗β. (∀κα. ρα→ β)→ (∃κα. ρα)→ β

that obey the following equational rules:

F : κ→ ∗ A : κ x : FA B : ∗ f : ∀κα. Fα→ B

elimExκ [F] [B] f (packκ [F] [A] x) = f [A] x
(β)

F : κ→ ∗ e : ∃κα. Fα B : ∗ t : (∃κα. Fα)→ B

elimExκ [F] [B] (Λα. λx. t (packκ [F] [α] x)) e = t e
(η)

We can implement this specification in System Fω by copying the implementation of existen-
tials in System F. Set ∃κα.Fα = ∀∗β.(∀κα.Fα→ β)→ β and define

packκ = Λρα.λx.Λβ.λf.f [α] x
elimExκ = Λρβ.λfe. e [β] f

In the proof of the next lemma, we make use of functional relations. This is a standard
concept used in relationally parametric reasoning for System F (for example, Birkedal and
Møgelberg [4]). They are called graph relations by Hasegawa [8].

CSL’12

56 Relational Parametricity for Higher Kinds

I Definition 7 (Functional Relations at Base Kind). For types A,B of kind ∗ and an inhabitant
f of the type A→ B, we define the relation 〈f〉 ∈ J∗KR(A,B) as 〈f〉 = {(a, b) | fa = b}.

I Lemma 8. For all F : κ→ ∗ and B : ∗, t : (∃κα.Fα)→ B and e : ∃κα.Fα, we have

t (e [∃κα.Fα] (packκ [F])) = e [B] (Λα.λx. t (packκ [F] [α] x))

Proof. By e’s parametricity, we know that (e [∃κα.Fα], e [B]) ∈ (∀κα.∆Fα → 〈t〉) → 〈t〉.
We will apply this pair to packκ [F] and Λα.λx. t (packκ [F] [α] x), so we must show
that they are related by ∀κα.∆Fα → 〈t〉. Given X,Y ∈ JκKU , S ∈ JκKR(X,Y) and
(x, y) ∈ ∆FS, we want to prove (packκ [F] [X] x, t (packκ [F] [Y] y)) ∈ 〈t〉 which is
equivalent to t (Λβ.λf. f [X] x) = t (Λβ.λf. f [Y] y), by unfolding the definition of 〈t〉 and
packκ. Now it is possible to prove this equality by using extensionality and f ’s parametricity.

Thus we have shown (e [∃κα.Fα] (packκ [F]), e [B] (Λα.λx.t (packκ [F] [α] x))) ∈ 〈t〉.
Unfolding the definition of 〈t〉, this gives us what we want. J

I Theorem 9. This implementation of ∃κα.Fα, packκ and elimExκ satisfies the βη equality
rules for existential types when interpreted in the model of Section 3.

Proof. The β equality rule follows simply by expanding the definitions and applying the β
equality rules of System Fω. For the η rule, we use Lemma 8 to reason as follows:

elimExκ [F] [B] (Λα.λx.t (packκ [F] [α] x)) e = e [B] (Λα.λx.t (packκ [F] [α] x))
= t (e [∃κα.Fα] (packκ [F]))

The first equality is by unfolding the definition of elimExκ and the second is by Lemma
8. We now make use of Lemma 8 again, with an arbitrary B and f : ∀κα.Fα → B,
setting t = λx.x [B] f . This yields e [∃κα.Fα] (packκ [F]) [B] f = e [B] f , and hence, by
extensionality, e [∃κα.Fα] (packκ [F]) = e. Thus we can rewrite the final line in the sequence
of equations above to get t e, as required. J

4.3 Categories of Indexed Types

For every kind κ, we define the category of κ indexed types as follows. The objects are types
of kind κ→ ∗ and morphisms between F and G are inhabitants of the type ∀κγ.Fγ → Gγ.
We write F ⇒ G as shorthand for this type. Identities and composition in these categories
are defined as follows:

idF : F ⇒ F ◦ : (G⇒ H)→ (F ⇒ G)→ (F ⇒ H)
idF = Λγ.λx. x ◦ = λf g.Λγ.λx. f [γ] (g [γ] x)

The categories of κ indexed types have all finite products and coproducts (sum types).
We only sketch the proof here, which is a straightforward extension of the proof for the
existence of non-indexed finite products and coproducts in System F.

I Theorem 10. The categories of κ indexed types have all finite products and coproducts.

Proof. (Sketch) Pointwise extension of the corresponding constructions for types of base
kind in System F [4, 7]. For example, A× B = λα. ∀∗β. (Aα → Bα → β) → β. To prove
the required universal properties, parametricity is needed. J

R. Atkey 57

4.4 Functors and Initial Algebras
For a kind κ, an endofunctor on the category of κ indexed types consists of a pair (F, fmapF)
of a type F of kind (κ→ ∗)→ (κ→ ∗) and an associated function fmapF : ∀κ→∗αβ.(α⇒
β)→ (Fα⇒ Fβ) that preserves identities and composition.

We now show that any such functor has an initial algebra, and so we can define κ indexed
inductive types. To do so, we need the higher kinded generalisation of the functional relations
previously defined at base kind in Definition 7.

I Definition 11 (Functional Relations at Higher Kind). Given types F,G of kind κ → ∗
(i.e., objects of the category of κ indexed types) and f of type A⇒ B define the functional
relation 〈f〉 ∈ Jκ→ ∗KR(A,B) as 〈f〉XY S = {(x, y) | (f [X] x, y) ∈ ∆BS}.

I Lemma 12 (Graph Lemma). For a functor (F, fmapF) and morphism f : A⇒ B, then it
is the case that ∆F 〈f〉 ⊆ 〈fmapF [A] [B] f〉.

Proof. Of course, by the inclusion in the lemma statement, we mean that the inclusion
holds for all X,Y ∈ JκKU and S ∈ JκKR(X,Y). We know by the parametricity property
for fmapF that (fmapF [A] [B], fmapF [B] [B]) ∈ (〈f〉 ⇒ ∆B) → (∆F 〈f〉 ⇒ ∆FB). We
proceed by supplying the suitably related arguments (f, idB) ∈ 〈f〉 ⇒ ∆B and then S,
to obtain (fmapF [A] [B] f X, idFBY) ∈ ∆F 〈f〉S → ∆FBS. So, if (x, y) ∈ ∆F 〈f〉S then
(fmapF [A] [B] f X x, y) ∈ ∆FBS, which implies that (x, y) ∈ 〈fmapF [A] [B] f〉S. J

We now show that every endofunctor on the categories of κ indexed types has an initial
algebra. This result allows us to define κ indexed inductive types within System Fω and
use initiality to reason about them. Following the purely category theoretic definition,
we define, for a functor (F, fmapF), an F -algebra to consist of a pair of a type A of kind
κ → ∗ and a morphism kA : FA ⇒ B. Given two F -algebras A, kA and B, kB, an F -
algebra homomorphism between them is a morphism f : A ⇒ B such that the equation
kB ◦ fmapF [A] [B] f = f ◦ kA holds. An initial F -algebra is an F -algebra µF, inF such that
for any other F -algebra A, kA there exists a unique F -algebra homomorphism µF ⇒ A.

We state the existence of initial F -algebras in type theoretic terms as follows. For any
functor (F, fmapF), we require a type µF : κ→ ∗, along with two combinators:

inF : F (µF)⇒ F

foldF : ∀κ→∗ρ.(Fρ⇒ ρ)→ (µF ⇒ ρ)

that satisfy the following βη equality rules:

A : κ→ ∗ kA : FA⇒ A C : κ e : F (µF)C
foldF [A] kA [C] (inF [C] e) = kA [C] (fmapF [µF] [A] (foldF [A] kA) [C] e)

(β)

A : κ→ ∗ kA : FA⇒ A f : µF ⇒ A f is an F -algebra homomorphism
f = foldF [A] kA

(η)

The β equality rule states that, for any F -algebra A, kA, foldF [A] kA is an F -algebra
homomorphism. The η equality rule states that foldF [A] kA is the unique F -algebra
homomorphism from µF, inF to A, kA.

Within System Fω we can implement the above specification for any functor (F, fmapF)
and show that the β equality rule holds. Moreover, using parametricity we can further show

CSL’12

58 Relational Parametricity for Higher Kinds

that the η equality rule holds. We define

µF = λα.∀κ→∗ρ.(Fρ⇒ ρ)→ ρα

foldF = Λρ.λf.Λα.λx. x [ρ] f
inF = Λγ.λx.Λρ.λf. f [γ] (fmapF [µF] [ρ] (foldF [ρ] f) [γ] x)

I Lemma 13. Let (F, fmapF) be a functor. Given two F algebras A : κ→ ∗, kA : FA⇒ A

and B : κ→ ∗, kB : FB ⇒ B, and an F -algebra homomorphism h : A⇒ B, then for any
type C of kind κ and e : (µF)C, we have h [C] (e [A] kA) = e [B] kB.

Proof. By e’s parametricity, we know that (e [A], e [B]) ∈ (∆F 〈h〉 ⇒ 〈h〉) → 〈h〉∆C .
We will apply this pair to (kA, kB), so we must show that (kA, kB) ∈ ∆F 〈h〉 ⇒ 〈h〉.
Given X,Y ∈ JκKU , S ∈ JκKR(X,Y) and (x, y) ∈ ∆F 〈h〉S, we need to demonstrate that
(kA [X] x, kB [Y] y) ∈ 〈h〉S. Unfolding the definition of 〈h〉, this means we need to show
that (h [X] (kA [X] x), kB [Y] y) ∈ ∆BS. Since h is an F -algebra homomorphism, it suffices
to show that

(kB [X] (fmap [A] [B] h [X] x), kB [Y] y) ∈ ∆BS (2)

We know by Lemma 12 that (x, y) ∈ 〈fmap [A] [B] h〉S. Unfolding this use of a functional
relation, this gives (fmap [A] [B] h [X] x, y) ∈ ∆FBS. Now we may use the parametricity
property of kB to show (2).

We now have (e [A] kA, e [B] kB) ∈ 〈h〉∆C , and unfolding the definition of 〈h〉 yields
(h [C] (e [A] kA), e [B] kB) ∈ ∆B∆C . Since ∆B∆C = ∆BC = (≡), we have shown that
h [C] (e [A] kA) = e [B] kB , as required. J

I Theorem 14. The implementations of µF , inF and foldF satisfy the βη equality rules
stated above, in the model of Section 3.

Proof. The β equality rule is seen to hold by expanding the definitions and β reducing. By
itself, this ensures that our definition is a weakly initial algebra. For the η equality rule, we
unfold foldF , and η expand to see that we need to prove f [C] e = e [A] kA. By Lemma
13, and that f is an F -algebra homomorphism, we have f [C] (e [µF] in) = e [A] kA. We
now use Lemma 13 again, with an arbitrary B and kB : FB ⇒ B, setting h = foldF [B] kB
(which we know to be an F -algebra homomorphism by the β-equality rule). This gives us
e [µF] inF [B] kB = e [B] kB, and so, by extensionality, e [µF] inF = e. Thus we have
shown f [C] e = e [A] kA, as required. J

4.5 Generalised Algebraic Data Types
Given that we can encode existential types, products, coproducts, equality types and initial
algebras in parametric System Fω, it is now possible to encode Generalised Algebraic Data
Types (GADTs) [5], using the encoding of Johann and Ghani [10] into a system with initial
algebras and equality types (the same encoding was used implicitly by Cheney and Hinze
[5]). For example, the following Haskell declaration:

data Z; data S a
data Vec :: * -> * -> * where

VNil :: Vec a Z; VCons :: a -> Vec a n -> Vec a (S n)

can be encoded, assuming a kinding context containing Z : ∗, S : ∗ → ∗ and α : ∗, by the
initial algebra of the functor Fρα = Eq∗ α Z+ (∃∗η.α× ρη×Eq∗ α (Sη)). We have used the
equality type to encode the “transmuting” effect of the constructors on the type parameters.

R. Atkey 59

This encoding is not immediately useful within System Fω because we are not guaranteed
anything about equalities between types. Specifically, we cannot be sure that the types Z
and Sη are not equal, so it is not possible to directly translate the following Haskell function:

head :: Store a (S n) -> a; head (SCons a _) = a

where we know head is total because Z 6= S n for all n, by Haskell’s generative semantics for
data declarations. We can simulate this by adding the assumption ZisNotS : ∀∗η.Eq Z (Sη)→
0 to the context, where 0 = ∀∗α.α is the encoding of the terminal object. This allows us
to define the function within System Fω. In the next section we show how to extend the
calculus and model with a data kind of natural numbers, which means that we do not have
to abuse types to stand for natural numbers.

5 Extension of System Fω with Additional Kinds

In the previous section, we used abstract type constructors Z and S to simulate natural
numbers. However, recent versions of the GHC Haskell compiler have been extended with
data kinds, which lift some inductive data types up to the type level. Yorgey et al. [21]
provide the details of this lifting. As a step towards modelling data kinds, we demonstrate
how our model can be extended with a kind of natural numbers by interpreting them as a
discrete “category without composition”.

Syntactically, we extend the grammar of kinds with a new kind of natural numbers:
κ ::= ... | nat. We also extend the language of types with two new constants and a kind
indexed family of constants, with the following kindings:

zero : nat succ : nat→ nat recκ : κ→ (nat→ κ→ κ)→ nat→ κ

with the β-equality rules recκ A B zero ≡ A and recκ A B (succ n) ≡ B n (recκ A B n).
Semantically, we define JnatK = (N, λn1, n2.{∗ | n1 = n2}, λn.∗), where N is the set of

all natural numbers and the notation {∗ | n1 = n2} denotes the set {∗} when n1 = n2 and
the empty set otherwise. Following Hasegawa, and thinking of the interpretation of kinds
as categories without composition, the interpretation of nat is “discrete”: there are only
relations between equal objects. It is straightforward to define the semantic interpretations
of the zero, succ and recκ constants.

Given the extension of the calculus and model with this new kind, we can use Theorem
14 to define the inductive type of nat indexed vectors. We set

Fαρn = (Eqnat n zero) + (∃natn
′. α× ρn′ × Eqnat n (succ n′))

so that the type of nat indexed vectors with elements of type A is given by µ(FA). It is
now possible to write the head function within System Fω without any further assumptions:
we can write a term that demonstrates that succ n and zero are not equal, using the subst
function defined in Section 4.1, and type-level computation using recκ:

zeroIsNotSucc : ∀natn. Eq zero (succ n)→ 0
zeroIsNotSucc = Λn.λe. substnat [zero] [succ n] e [rec∗ 1 (λn α. 0)] ∗

where 1 = ∀α.α→ α, the standard encoding of the unit type, and ∗ is the unique inhabitant.

CSL’12

60 Relational Parametricity for Higher Kinds

6 Conclusions

We have defined a concrete type theoretic model of relationally parametric System Fω
(Theorem 3), based on the idea of interpreting kinds as reflexive graphs, due to Hasegawa
and Robinson and Rosolini. This model allows us to reason relationally about the standard
non-parametric semantics (Theorem 4). We have investigated some of the consequences of
our model, and shown that it is possible to define indexed inductive types within System Fω,
with an initiality property that allows for reasoning (Theorem 14). We have also shown that
it is possible to extend the model with data kinds, such as the natural numbers.

Acknowledgements Thanks to Patricia Johann, Neil Ghani, Alex Simpson, Thorsten
Altenkirch and Lars Birkedal for suggestions and comments on this work. This work was
funded by EPSRC grant EP/G068917/1.

References
1 R. Atkey. Syntax For Free: Representing Syntax with Binding using Parametricity. In

Typed Lambda Calculi and Applications (TLCA), volume 5608 of Lecture Notes in Computer
Science, pages 35–49. Springer, 2009.

2 E. S. Bainbridge, P. J. Freyd, A. Scedrov, and P. J. Scott. Functorial polymorphism. Theor.
Comput. Sci., 70(1):35–64, 1990.

3 J.-P. Bernardy, P. Jansson, and R. Paterson. Parametricity and dependent types. In Proc.
15th ACM SIGPLAN International Conference on Functional Programming, ICFP 2010,
pages 345–356, 2010.

4 L. Birkedal and R. E. Møgelberg. Categorical models for Abadi-Plotkin’s Logic for Para-
metricity. Mathematical Structures in Computer Science, 15(4):709–772, 2005.

5 J. Cheney and R. Hinze. A lightweight implementation of generics and dynamics. In Proc.
2002 ACM SIGPLAN Workshop on Haskell, Haskell ’02, pages 90–104, 2002.

6 B. Dunphy and U. S. Redddy. Parametric limits. In Proc. 19th IEEE Symp. on Logic in
Computer Science, LICS 2004, pages 242–251, 2004.

7 R. Hasegawa. Categorical data types in parametric polymorphism. Mathematical Structures
in Computer Science, 4(1):71–109, 1994.

8 R. Hasegawa. Relational limits in general polymorphism. Publications of the Research
Institute for Mathematical Sciences, 30:535–576, 1994.

9 B. Jacobs. Categorical Logic and Type Theory. Elsevier, 1999.
10 P. Johann and N. Ghani. Foundations for structured programming with GADTs. In Proc.

35th ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages, POPL
2008, pages 297–308, 2008.

11 M. P. Jones. A System of Constructor Classes: Overloading and Implicit Higher-Order
Polymorphism. J. Funct. Program., 5(1):1–35, 1995.

12 A. Moors, F. Piessens, and M. Odersky. Generics of a higher kind. In Proc. 23rd Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2008, pages 423–438, 2008.

13 B. Pierce. Types and Programming Languages. MIT Press, 2002.
14 J. C. Reynolds. Types, Abstraction and Parametric Polymorphism. In Proc. IFIP 9th

World Computer Congress, volume 83 of Information Processing, pages 513–523, 1983.
15 E. Robinson and G. Rosolini. Reflexive graphs and parametric polymorphism. In Proc. 9th

Annual IEEE Symp. on Logic in Computer Science, LICS 1994, pages 364–371, 1994.
16 A. Rossberg, C. V. Russo, and D. Dreyer. F-ing modules. In Proc. ACM SIGPLAN

International Workshop on Types in Language Design and Implementation, TLDI 2010,
pages 89–102, 2010.

R. Atkey 61

17 I. Takeuti. The theory of parametricity in the lambda cube. Technical Report 1217, Kyoto
University, 2001.

18 J. Voigtländer. Free Theorems Involving Type Constructor Classes: Functional Pearl. In
Proc. 14th ACM SIGPLAN International Conference on Functional programming, ICFP
2009, pages 173–184, 2009.

19 D. Vytiniotis and S. Weirich. Parametricity, type equality, and higher-order polymorphism.
J. Funct. Program., 20(2):175–210, 2010.

20 P. Wadler. Theorems for free! In Proc. Fourth International Conference on Functional
Programming Languages and Computer Architecture, FPCA’89, pages 347–359, 1989.

21 B. A. Yorgey, S. Weirich, J. Cretin, S. Peyton Jones, D. Vytiniotis, and J. P. Magalhães.
Giving Haskell a Promotion. In Proc. 8th ACM SIGPLAN Workshop on Types in Language
Design and Implementation, TLDI ’12, pages 53–66, 2012.

CSL’12

Higher-Order Interpretations and Program
Complexity∗

Patrick Baillot1 and Ugo Dal Lago2

1 CNRS, ENS de Lyon, INRIA, UCBL, Université de Lyon, Laboratoire LIP
patrick.baillot@ens-lyon.fr

2 Università di Bologna & INRIA
dallago@cs.unibo.it

Abstract
Polynomial interpretations and their generalizations like quasi-interpretations have been used in
the setting of first-order functional languages to design criteria ensuring statically some complex-
ity bounds on programs [8]. This fits in the area of implicit computational complexity, which
aims at giving machine-free characterizations of complexity classes. In this paper, we extend
this approach to the higher-order setting. For that we consider the notion of simply-typed term
rewriting systems [30], we define higher-order polynomial interpretations for them and give a
criterion ensuring that a program can be executed in polynomial time. In order to obtain a
criterion flexible enough to validate interesting programs using higher-order primitives, we intro-
duce a notion of polynomial quasi-interpretations, coupled with a simple termination criterion
based on linear types and path-like orders.

1998 ACM Subject Classification F.3.2 Semantics of Programming Languages

Keywords and phrases implicit complexity, higher-order rewriting, quasi-interpretations

Digital Object Identifier 10.4230/LIPIcs.CSL.2012.62

1 Introduction

The problem of statically analyzing the performance of programs can be attacked in many
different ways. One of them consists in verifying complexity properties early in the devel-
opment cycle, when programs are still expressed in high-level languages, like functional or
object oriented idioms. And in this scenario, results from an area known as implicit compu-
tational complexity (ICC in the following) can be useful: they consist in characterizations
of complexity classes in terms of paradigmatic programming languages (recursion schemes
[25, 6], λ-calculus [26], term rewriting systems [8], etc.) or logical systems (proof-nets, nat-
ural deduction, etc.), from which static analysis methodologies can be distilled. Examples
are type systems, path-orderings and variations on the interpretation method. The chal-
lenge here is defining ICC systems which are not only simple, but also intensionally powerful:
many natural programs among those with bounded complexity should be recognized as such
by the ICC system, i.e., should actually be programs of the system.

One of the most fertile direction in ICC is indeed the one in which programs are term
rewriting systems (TRS in the following) [8, 9], whose complexity can be kept under control
by way of variations of the powerful techniques developed to check termination of TRSs,
namely path orderings [16], dependency pairs [28] and the interpretation method [24]. Many

∗ This work was partially supported by the ARC INRIA project “ETERNAL” and by the ANR-08-
BLANC-0211-01 project “COMPLICE”.

© Patrick Baillot and Ugo Dal Lago;
licensed under Creative Commons License NC-ND

Computer Science Logic 2012 (CSL’12).
Editors: Patrick Cégielski, Arnaud Durand; pp. 62–76

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2012.62
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

P. Baillot and U. Dal Lago 63

different complexity classes have been characterized this way, from polynomial time to poly-
nomial space, to exponential time to logarithmic space. And remarkably, many of the intro-
duced characterizations are intensionally very powerful, in particular when the interpretation
method is relaxed and coupled with recursive path orderings, like in quasi-interpretations
[9].

The cited results indeed represent the state-of-the art in resource analysis for first-order
functional programs, i.e. when functions are not first-class citizens. If the class of pro-
grams of interest includes higher-order functional programs, the techniques above can only
be applied if programs are either defunctionalized or somehow put in first-order form, for
example by applying a translation scheme due to the second author and Simone Martini [15].
However, it seems difficult to ensure in that case that the target first-order programs sat-
isfy termination criteria such as those used in [9]. The article [10] proposed to get around
this problem by considering a notion of hierarchical union of TRSs, and showed that this
technique allows to handle some examples of higher-order programs. This approach is inter-
esting but it is not easy to assess its generality, besides particular examples. In the present
work we want to switch to a higher-order interpretations setting, in order to provide a more
abstract account of such situations.

We thus propose to generalize TRS techniques to systems of higher-order rewriting, which
come in many different flavours [21, 23, 30]. The majority of the introduced higher-order
generalizations of rewriting are quite powerful but also complex from a computational point
of view, being conceived to model not only programs but also proofs involving quantifiers.
As an example, even computing the reduct of a term according to a reduction rule can in
some cases be undecidable. Higher-order generalizations of TRS techniques [22, 29], in turn,
reflect the complexity of the languages on top of which they are defined. Summing up,
devising ICC systems this way seems quite hard.

In this paper, we consider one of the simplest higher-order generalizations of TRSs,
namely Yamada’s simply-typed term rewriting systems [30] (STTRSs in the following), we
define a system of higher-order polynomial interpretations [29] for them and prove that,
following [8], this allows to exactly characterize, among others, the class of polynomial
time computable functions. We show, however, that this way the class of (higher-order)
programs which can be given a polynomial interpretation does not include interesting and
natural examples, like foldr, and that this problem can be overcome by switching to an-
other technique, designed along the lines of quasi-interpretations [9]. This is the subject of
sections 3 and 4 below.

An extended version of this paper with all proofs is available [3].

2 Simply-Typed Term Rewriting Systems

2.1 Definitions and Notations

We recall here the definition of a STTRS, following [30, 2]. We will actually consider a
subclass of STTRSs, basically the one of those STTRSs whose rules’ left hand side consists
in a function symbol applied to a sequence of patterns. For first-order rewrite systems this
corresponds to the notion of constructor rewrite system.

We consider a denumerable set of base types, which we call data-types, that we denote
D,E, Types are defined by the following grammar:

A,B ::= D | A1 × · · · ×An → A.

CSL’12

64 Higher-Order Interpretations and Program Complexity

A functional type is a type which contains an occurrence of→. Some examples of base types
are the type Wn of n-ary words and the type NAT of tally integers.

We denote by F the set of function symbols (or just functions), C the set of constructors
and X the set of variables. Constructors c ∈ C have a type of the form D1× · · · ×Dn → D,
for n ≥ 0. For instance Wn has constructors empty of type Wn and c1, . . . , cn of type
Wn → Wn. Functions f ∈ F , on the other hand, can have any functional type. Variables
x ∈ X can have any type. Terms are typed and defined by the following grammar:

t, ti := xA | cA | fA | (tA1×···×An→A tA1
1 . . . tAn

n)A

where xA ∈ X , cA ∈ C, fA ∈ F . We denote by T the set of all terms. Observe how
application is primitive and is in general treated differently from other function symbols.
This is what makes STTRSs different from ordinary TRSs. FV (t) is the set of variables
occurring in t. t is closed iff FV (t) = ∅.

To simplify the writing of terms we will often elide their type. We will also write (t s)
for (t s1 . . . sn). Therefore any term t is of the form (. . . ((α s1) s2) . . . sk) where k ≥
0 and α ∈ X ∪ C ∪ F . We will also use the following convention: any term t of the
form (. . . ((s s1) s2) . . . sk) will be written ((s s1 . . . sk)) or ((s s11 . . . s1n1 . . . sk1 . . . sknk

)).
Observe however that, e.g., if t has type A1 × A2 → (B1 × B2 → B), ti has type Ai for
i = 1, 2, si has type Bi for i = 1, 2, then both (t t1 t2) and ((t t1 t2) s1 s2) are well-typed
(with type B1×B2 → B and B, respectively), but (t t1) and (t t1 t2 s1) are not well-typed.
We define the size |t| of a term t as the number of symbols (elements of F∪C∪X) it contains.
We denote t{x/s} the substitution of term s for x in t.

A pattern is a term generated by the following grammar:

p, pi := xA | (cD1×...×Dn→D pD1
1 . . . pDn

n).

P is the set of all patterns. Observe that patterns of functional type are necessarily variables.
We consider rewriting rules in the form t→ s such that:
1. t and s are terms of the same type A, FV (s) ⊆ FV (t), and any variable appears at most

once in t;
2. t must have the form ((f p1 . . . pk)) where each pi for i ∈ 1, . . . , k consists of patterns only.

The rule is said to be a rule defining f, while the total number of patterns in p1, . . . , pk
is the arity of the rule.

Now, a simply-typed term rewriting system (STTRS in the following) is a set R of non-
overlapping rewriting rules such that for every function symbol f, every rule for f has the
same arity, which is said to be the arity of f. A program P = (f, R) is given by a STTRS R
and a chosen function symbol f ∈ F .

In the next section, a notion of reduction will be given which crucially relies on the
concept of a value. More specifically, only values will be passed as arguments to functions.
Formally, we say that a term is a value if either:
1. it has a type D and is in the form (c v1 . . . vn), where v1, . . . , vn are themselves values;
2. or it has functional type A and is of the form ((f v1 . . . vn)), where the terms in v1, . . . vn

are themselves values and n is strictly smaller than the arity of f.
Condition 2 is reminiscent of the λ-calculus, where an abstraction is a value. We denote
values as v, u and the set of all values as V.

2.2 STTRSs: Dynamics
The evaluation of terms will be formalized by a rewriting relation. Before that we need to
introduce notions of substitution and unification.

P. Baillot and U. Dal Lago 65

A substitution σ is a mapping from variables to values with a finite domain, and such
that σ(xA) has type A. A substitution σ is extended in the natural way to a function from
T to itself, that we shall also write σ. The image of a term t under the substitution σ is
denoted tσ. Contexts are defined as terms but with the proviso that they contain exactly
one occurrence of a special constant •A (hole) having type A. They are denoted as C, D
. . . If C is a context with hole •A , and t is a term of type A, then C{t} is the term obtained
from C by replacing the occurrence of •A by t. Consider a STTRS R. We say that s reduces
to t in call-by-value, denoted as s→R t, if there exists a rule l→ r of R, a context C and a
substitution σ such that lσ is a closed term, s = C{lσ} and t = C{rσ}. When there is no
ambiguity on R, we simply write → instead of →R.

2.3 Typed λ-calculi as STTRSs
Please notice that one of the advantages of STTRSs over similar formalisms (like [23]) is
precisely the simplicity of the underlying unification mechanism, which does not involve any
notion of binding and is thus computationally simpler than higher-order matching. There
is a price to pay in terms of expressivity, obviously. The choice of the STTRS framework
as higher-order calculus is not too restrictive, however: one can show that typed λ-calculi
equipped with weak call-by-value reduction can be seen as STTRSs. This is achieved using
ideas developed for encodings of the λ-calculus into first-order term rewrite systems [15].
In particular, abstractions become function symbols, in the spirit of λ-lifting. More about
these embeddings can be found in [3], where encodings of PCF and Gödel’s T are described
in detail.

3 Higher-Order Polynomial Interpretations

We want to demonstrate how first-order rewriting-based techniques for ICC can be adapted
to the higher-order setting. Our goal is to devise criteria ensuring complexity bounds on
programs of first-order type possibly containing subprograms of higher-order types. A typical
application will be to find out under which conditions a higher-order functional program such
as e.g. map, iteration or foldr, fed with a (first-order) polynomial time program produces
a polynomial time program.

As a first illustrative step we consider the approach based on polynomial interpretations
from [8], which offers the advantage of simplicity. We thus build a theory of higher-order
polynomial interpretations for STTRSs. It starts from a particular concrete instantiation of
the methodology proposed in [30] for proving termination by interpretation, on which we
prove additional properties in order to obtain polynomial time complexity bounds.

Higher-order polynomials (HOPs) take the form of terms in a typed λ-calculus whose
only base type is that of natural numbers. To each of those terms can be assigned a strictly
monotonic function in a category FSPOS with products and functions. So, the whole process
can be summarized by the following diagram:

STTRSs
[·] // HOPs

J·K // FSPOS

3.1 Higher-Order Polynomials
Let us consider types built from a base type N:

A,B ::= N | A→ A.

CSL’12

66 Higher-Order Interpretations and Program Complexity

The expression An → B stands for the type A→ . . .→ A︸ ︷︷ ︸
n times

→ B. Let CP be the following set

of constants: CP = {+ : N2 → N,× : N2 → N} ∪ {n : N | n ∈ N?}. Observe that in CP
we have constants of type N only for strictly positive integers. We consider the following
grammar of Church-typed terms:

M := xA | cA | (MA→BNA)B | (λxA.MB)A→B ,

where cA ∈ CP and in (λxA.MB) we require that x occurs free in M . A higher-order
polynomial (HOP) is a term of this grammar which is in β-normal form. We use an infix
notation for + and ×. We assume given the usual set-theoretic interpretation of types and
terms, denoted as JAK and JMK: if M has type A and FV (M) = {xA1

1 , . . . , xAn
n }, then JMK

is a map from JA1K × . . . × JAnK to JAK. We denote by ≡ the equivalence relation which
identifies terms which denote the same function, e.g. we have: λx.(2 × ((3 + x) + y)) ≡
λx.(6 + (2×x+ 2× y)). Noticeably, even if HOPs can be built using higher-order functions,
the first order fragment only contains polynomials:

I Lemma 3.1. If M is a HOP of type Nn → N and such that FV (M) = {y1 : N, . . . , yk :
N}, then the function JMK is bounded by a polynomial function.

3.2 Semantic Interpretation
Now, we consider a subcategory FSPOS of the category SPOS of strict partial orders as
objects and strictly monotonic total functions as morphisms. Objects of FSPOS are freely
generated as follows:
N is the domain of strictly positive integers, equipped with the natural strict order ≺N ,
if σ, τ are objects, then σ × τ is obtained by the product ordering,
σ → τ is the set of strictly monotonic total functions from σ to τ , equipped with the
following strict order: f ≺σ→τ g if for any a of σ we have f(a) ≺τ g(a).

Actually we will also need to compare the semantics of terms which do not have the same
free variables. For that we define: if f ∈ σ1 × . . . × σn → τ , g ∈ σ1 × . . . × σm → τ and
n ≤ m, then: f ≺ g if ∀a1 ∈ σ1, . . .∀am ∈ σm, f(a1, . . . , an) ≺τ g(a1, . . . , am).

FSPOS is a subcategory of SET with all the necessary structure to interpret types and
terms. JAK≺ denotes the semantics of A as an object of FSPOS: we choose to set JNK≺ = N ,
while JA1 × . . .× An → AK≺ is JA1K≺ × . . .× JAnK≺ → JAK≺. Let M be a HOP of type A
with free variables xA1

1 , . . . , xAn
n . Then for every e ∈ JA1 × . . .× AnK≺, there is a naturally

defined f ∈ JAK≺. Moreover, this correspondence is strictly monotone and thus defines an
element of JA1 × . . .×An → AK≺ which we denote as JMK≺.

3.3 Assignments and Polynomial Interpretations
We consider X , C and F as in Sect. 2. To each variable xA we associate a variable xA where
A is obtained from A by replacing each occurrence of base type by the base type N and by
curryfication. We will sometimes write x (resp. A) instead of x (resp. A) when it is clear
from the context.

An assignment [·] is a map from C ∪ F to HOPs such that if f ∈ C ∪ F has type A, [f]
is a closed HOP of type A. Now, for t ∈ T of type A, we define an HOP [t] of type A by
induction on t:

if t = x ∈ X , then [t] is x;
if t ∈ C ∪ F , [t] is already defined;

P. Baillot and U. Dal Lago 67

otherwise, if t = (t0 t1 . . . tn) then [t] ≡ (. . . ([t0][t1]) . . . [tn]).
Observe that in practice, computing [t] will in general require to do some β-reduction steps.

Now, we say that an assignment [·] is a higher polynomial interpretation or simply a
polynomial interpretation for a STTRS R iff for every l→ r ∈ R, we have that JrK≺ ≺ JlK≺.
Note that in the particular case where the program only contains first-order functions, this
notion of polynomial interpretation coincides with the classical one for first-order TRSs. In
the following, we assume that [·] is a polynomial interpretation for R. A key property is
the following, which tells us that the interpretation of terms strictly decreases along any
reduction step:

I Lemma 3.2. If s→ t, then JtK≺ ≺ JsK≺.

As a consequence, the interpretation of terms (of base type) is itself a bound on the length
of reduction sequences:

I Proposition 3.3. Let t be a closed term of base type D. Then [t] has type N and any
reduction sequence of t has length bounded by JtK≺.

3.4 A Complexity Criterion
Proving a STTRS to have a polynomial interpretation is not enough to guarantee its time
complexity to be polynomially bounded. To ensure that, we need to impose some constraints
on the way constructors are interpreted.

We say that the assignment [·] is additive if any constructor c of type D1 × · · · ×Dn →
D, where n ≥ 0, is interpreted by a HOP Mc whose semantic interpretation JMcK≺ is a
polynomial function of the form: p(y1, . . . , yn) =

∑n
i=1 yi + γc, with γc ≥ 1. Additivity

ensures that the interpretation of first-order values is proportional to their size:

I Lemma 3.4. Let [·] be an additive assignment. Then there exists γ ≥ 1 such that for any
value v of type D, we have JvK≺ ≤ γ · |v|.

A function f : ({0, 1}∗)m → {0, 1} is said to be representable by a STTRS R if there is a
function symbol f of type (W2)n →W2 in R which computes f in the obvious way. We can
now state the main result about polynomial interpretations:

I Theorem 3.5 (Polynomial Bound). Let R be a STTRS with an additive polynomial in-
terpretation [·]. Consider a function symbol g of type (W2)n → W2. Then, there ex-
ists a polynomial p : Nn → N such that, for any w1, . . . , wn ∈ {0, 1}?, any reduction of
(g w1 . . . wn) has length bounded by p(|w1|, . . . , |wn|). This holds more generally for g of
type D1 × · · · ×Dn → D.

A key property we use in the proof of Theorem 3.5 is that function symbols of first-order
type are interpreted by functions which are bounded by a polynomial. This is a consequence
of Lemma 3.1 and is the main reason why we have chosen to define the interpretation of
terms via HOPs.

I Corollary 3.6. The functions on binary words representable by STTRSs admitting an
additive polynomial interpretation are exactly the polytime functions.

The fact that all polynomial time functions can be represented follows from [8], essentially
because our setting subsumes that of this paper.

The results we have just described are quite robust: one is allowed to extend CP with
new combinators, provided their set-theoretic semantics are strictly monotone functions for

CSL’12

68 Higher-Order Interpretations and Program Complexity

which Lemma 3.1 continues to hold. However, the class of polynomial time STTRSs which
can be proved such by way of higher-order polynomial interpretations is quite restricted, as
we are going to argue.

3.5 Examples
Consider the STTRS defined by the following rules:

((map f) nilD)→ nilE ;
((map f) (consD x xs))→ (consE (f x) ((map f) xs));

with the following types:

f : D → E; map : (D → E)→ L(D)→ L(E);
nilD : L(D); consD : D × L(D)→ L(D);
nilE : L(E); consE : E × L(E)→ L(E).

Here D,E,L(D), L(E) are base types. For simplicity we use just one cons and one nil
notation for both types D and E. The interpretation below was given in [30] for proving
termination, but here we show that it also gives a polynomial time bound. Now, we choose
the following assignment of HOPs:

[nil] = 2 : N;
[cons] = λn.λm.(n+m+ 1) : N→ N→ N;

[map] = λφ.λn.n× (φ n) : (N→ N)→ N→ N.

One can check that the condition JrK≺ ≺ JlK≺ holds for both rules above. We thus have
an additive polynomial interpretation for map, therefore Corollary 3.6 applies and we can
conclude that for any f also satisfying the criterion, (map f) computes a polynomial time
function.

Now, one might want to apply the same method to an iterator iter, of type (D →
D) × D → NAT → D, which when fed with arguments f , d, n iterates f exactly n times
starting from d. However there is no additive polynomial interpretation for this program.
Actually, this holds for very good reasons: iter can produce an exponential-size function
when fed with a fast-growing polynomial time function, e.g. double : NAT → NAT .

One way to overcome this issue could be to show that iter does admit a valid polynomial
interpretation, provided its domain is restricted to some particular functions, admitting a
small polynomial interpretation, of the form λn.(n + c), for some constant c. This could
be enforced by considering a refined type systems for HOPs. But the trouble is that there
are very few programs which admit a polynomial interpretation of this form! Intuitively
the problem is that polynomial interpretations need to bound simultaneously the execution
time and the size of the intermediate values. In the sequel we will see how to overcome this
issue.

4 Beyond Interpretations: Quasi-Interpretations

The previous section has illustrated our approach. However we have seen that the intensional
expressivity of higher-order polynomial interpretations is too limited. In the first-order
setting this problem has been overcome by decomposing into two distinct conditions the role

P. Baillot and U. Dal Lago 69

fA ∈ NF
Γ | ∆ ` f : A

cA ∈ C
Γ | ∆ ` c : A Γ | x : A,∆ ` x : A x : D,Γ | ∆ ` x : D

fA1,...,An→B ∈ RF ,with arity n
Γ | ∅ ` si : Ai

Γ | ∆ ` ((f s1 . . . sn)) : B

Γ | ∆ ` t : A1 × . . .×An → B

Γ | ∆i ` si : Ai
Γ | ∆,∆1, . . . ,∆n ` (t s1 . . . sn) : B

Figure 1 A Linear Type System for STTRS terms.

played by polynomial interpretations [27, 9]: (i) a termination condition, (ii) a condition
enforcing a bound on the size of values occurring during the computation. In [9], this has
been implemented by using: for (i) some specific recursive path orderings, and for (ii) a
notion of quasi-interpretation. We will examine how this methodology can be extended to
the higher-order setting.

The first step will take the form of a termination criterion defined by a linear type
system for STTRSs together with a path-like order, to be described in Section 4.1 below.
The second step consists in shifting from a semantic world of strictly monotonic functions
to one of monotonic functions. This corresponds to a picture like the following, and is the
subject of sections 4.2 and 4.3.

STTRSs
[·] // HOMPs

J·K // FPOS

4.1 The Termination Criterion
The termination criterion has two ingredients: a typing ingredient and a syntactic ingredient,
expressed using an order @ on the function symbols. Is it restrictive for expressivity? The
syntactic ingredient is fairly expressive, since it allows to validate all programs coming from
System T (see [3] for more details). As to the full termination criterion, including the typing
ingredient, it is general enough to embed Hofmann’s SLR [19] and LFPL [20], which are
distinct restrictions of System T capturing polytime functions.

Formally, introducing the typing ingredient requires splitting the class F into two disjoint
classes RF and NF . The intended meaning is that functions in NF will not be defined in
a recursive way, while functions in RF can. We further assume given a strict order @ on
F which is well-founded. If t is a term, t @ f means that for any g occurring in t we have
g @ f. The rules of a linear type system for STTRS terms are in Figure 1. In a judgement
Γ | ∆ ` t : A, the sub-context ∆ is meant to contain linear variables while Γ is meant to
contain non-linear variables.

A STTRS satisfies the termination criterion if every rule ((f p1 . . . pk)) → s satis-
fies:
1. either f ∈ RF , there are a term r and sequences of patterns q1, . . . , qk such that s =
r{x/((f q1 . . . qk))}, we have Γ | x : B,∆ ` r : B, r @ f, for any i, j, qi,j is subterm of
pi,j and there exist i0, j0 s.t. qi0,j0 6= pi0,j0 ;

2. or we have Γ | ∆ ` s : B and s @ f.
Observe that because of the typability condition in 1., this termination criterion implies that
there is at most one recursive call in the right-hand-side s of a rule.

Given a term t, its definitional depth is the maximum, over any function symbol f ap-

CSL’12

70 Higher-Order Interpretations and Program Complexity

T Sv(X) =1, if v is a first order value,

T S((f t1...tn))(X) =1 +

 ∑
tj ∈ FO

j ≤ arity(f)

T Stj (X)

+

 ∑
tj ∈ HO

j ≤ arity(f)

n ·X · T Stj (X)

+

(∑
j≥arity(f)+1

T Stj (X)

)
+

(∑
s∈R(f)

n ·X · T Ss(X)

)
, if f ∈ RF ;

T S((f t1...tn))(X) =1 +

(∑
1≤j≤n

T Stj (X)

)
+

(∑
s∈R(f)

T Ss(X)

)
, if f ∈ NF ;

T S((c t1...tn))(X) =1 +

(∑
1≤j≤n

T Stj (X)

)
;

T S((x t1...tn))(X) =1 +

(∑
1≤j≤n

T Stj (X)

)
.

Figure 2 The Definition of T S(·)(X).

pearing in t, of the length of the longest descending @-chain starting from f. The definitional
depth of t is denoted as ∂(t). By a standard reducibility argument, one can prove that every
term of a STTRS satisfying the termination criterion is strongly normalizing (see again [3]
for the details).

In the rest of this section, we show that all that matters for the time complexity of
STTRSs satisfying the termination criterion is the size of first-order values that can pos-
sibly appear along the reduction of terms. In other words, we are going to prove that if
the latter is bounded, then the complexity of the starting term is known, modulo a fixed
polynomial. Showing this lemma, which will be crucial in the following, requires introducing
many auxiliary definitions and results.

Given a term t and a natural number n ∈ N, n is said to be a bound of first order values
for t if for every reduct s of t, if s contains a first-order value v, then |v| ≤ n. Suppose a
function symbol f takes n base arguments. Then f is said to have base values bounded by
a function q : Nn → N if (f t1 . . . tn) has q(|t1|, . . . , |tn|) as a bound of its first-order values
whenever t1, . . . , tn are first-order values. Given a function symbol f, R(f) denotes the set of
terms appearing in the right-hand side of rules for f, not taking into account recursive calls.
For every term t, define its space-time weight as a polynomial T St(X) on the indeterminate
X, by induction on (∂(t), |t|), following the lexicographic order, as in Figure 2. We denote
here by FO (resp. HO) the arguments tj of f of base type (resp. functional type). The
collapsed size ||t|| of a term t is its size, where however all first-order values count for 1.
We define a rewrite relation ⇒ which is like →, except that whenever a recursive function
symbol is unfolded, it is unfolded completely in just one rewrite step.

We are now ready to explain why the main result of this section holds. First of all,
T St(X) is an upper bound on the collapsed size of t, a result which can be proved by
induction on t:

I Lemma 4.1. For every n ≥ 1 and for every t, T St(n) ≥ ||t||.

Moreover, T St(X) decreases along any ⇒ step if X is big enough:

P. Baillot and U. Dal Lago 71

I Lemma 4.2. If n is a bound of first-order values for t, and t⇒ s, then T St(n) > T Ss(n).

It is now easy to reach our goal:

I Proposition 4.3. Suppose that R satisfies the termination criterion. Moreover, suppose
that f has base values bounded by a function q : Nn → N. Then, there is a polynomial
p : N→ N such that if t1, . . . , tn are first-order values and (f t1 . . . tn)→m s, then m, |s| ≤
p(q(|t1|, . . . , |tn|)).

To convince yourself that linearity is needed to get a result like Proposition 4.3, consider
the following STTRS, whose terms cannot be typed in our linear type system:

((comp x y) z) → (x (y z)
(autocomp x) → (comp x x)
(id x) → x

(expid 0) → id
(expid (s x)) → (autocomp (expid x))

Both id and (expid t) (for every value t of type NAT) can be given type NAT → NAT .
Actually, they all are the same function, extensionally. But try to see what happens if
expid is applied to natural numbers of growing sizes: there is an exponential blowup going
on which does not find any counterpart in first-order values.

4.2 Higher-Order Max-Polynomials
We want to refine the type system for higher-order polynomials, in order to be able to use
types to restrict the domain of functionals. The grammar of types is now the following one:

S ::= N | S (S; A ::= S | A→ A.

Types of the first (resp. second) grammar are called linear types (resp. types) and denoted
as R,S . . . (resp. A,B,C . . .). The linear function type (is a subtype of →, i.e., one can
define a relation v between types by stipulating that S (R v S → R and by closing the
rule above in the usual way, namely by imposing that A → B v C → E whenever C v A

and B v E.
We now consider the following new set of constructors:

DP = {+ : N (N (N,max : N (N (N,× : N→ N→ N} ∪ {n : N | n ∈ N?},

and we define the following grammar of Church-typed terms

M := xA | cA | (MA→BNA)B | (λxA.MB)A→B | (MS(RNS)R | (λxS .MR)S(R

where cA ∈ DP . We also require that:
in (λxA.MB)A→B , the variable xA occurs at least once in MB ;
in (λxS .MR)S(R, the variable xS occurs exactly once in MR and in linear position (i.e.,
it cannot occur on the right-hand side of an application NA→BL

A).
One can check that this class of Church-typed terms is preserved by β-reduction. A higher-
order max-polynomial (HOMP) is a term as defined above and which is in β-normal form.
We define the following objects and constructions on objects:
N is the domain of strictly positive integers, equipped with the natural partial order,
denoted here ≤N ,

CSL’12

72 Higher-Order Interpretations and Program Complexity

if σ, τ are objects, then σ × τ is obtained by the product ordering,
σ ⇒ τ is the set of monotonic total functions from σ to τ , equipped with the extensional
order: f ≤σ⇒τ g if for any a of σ we have f(a) ≤τ g(a).

This way, one obtains a subcategory FPOS of the category POS with partial orders as objects
and monotonic total functions as morphisms. As before with ≺ we define ≤ so as to compare
the semantics of terms which do not have the same free variables.

In order to interpret the (construction in this category we introduce a notion of size.
A size is a (finite) multiset of elements of N. The empty multiset will be denoted ∅. Given
a multiset S, we denote by max S its maximal element and by

∑
S the sum of its elements.

By convention max ∅ =
∑
∅ = 0. Now, given an object σ of the category FPOS, we say that

an element e ∈ σ admits a size in the following cases:
If σ is N , then e is an integer n, and S is a size of e iff we have: max S ≤ n ≤

∑
S.

If σ = σ1×· · ·×σn, then S is a size of e = (e1, . . . , en) iff there exists for any i ∈ {1, . . . , n}
a multiset Si which is a size of ei, and such that S = ∪ni=1Si.
If σ = τ ⇒ ρ, then S is a size of e iff for any f of τ which has a size T , S ∪ T is a size
of e(f). τ _ ρ is the subset of all those functions in σ which admit a size.

We denote by JAK≤ the semantics of A as an object of FPOS, where N is mapped to N , →
is mapped to ⇒ and (to _. As for HOPs, any HOMP M can be naturally interpreted
as a monotonic function between the appropriate partial orders, which we denote by JMK≤.
We will speak of the size of an HOMP M , by which we mean a size of its interpretation
JMK≤. Note that not all terms admit a size. For instance × : N→ N→ N does not admit
a size. If M reduces to N , then they have the same sizes, if any. Let us examine some
examples:

The term n of type N admits the following sizes: [n], [1, . . . , 1]︸ ︷︷ ︸
k times

with k ≥ n, and more

generally [n1, . . . , nk] such that ∀i ∈ {1, k}, ni ≤ n and
∑k
i=1 ni ≥ n.

The terms max and + of type N (N (N admit as size ∅ or [0].
The terms λx.(x+ 3), λx.max(x, 3) of type N (N both have size 3.
The term λf.(f 2 3) of type (N (N) (N has size [2, 3].

Actually, if we consider first-order terms with types of the form N (. . .(N, it is sufficient
to consider singletons as sizes. If we only wanted to deal with these terms we could thus use
integers for sizes, instead of multisets. Non-singleton multisets only become necessary when
we move to higher-order types, as in the last example above:

I Proposition 4.4. If M is a HOMP of type Nk (N with free variables x1 : N, . . . , xn : N
which are linear in M , then it admits a size of the form [m] where m ∈ N.

The following will be useful to obtain the Subterm Property:

I Lemma 4.5. For every type A there is a closed HOMP of type A.

4.3 Higher-Order Quasi-Interpretations
Now, a HOMP assignment [·] is defined by: for any fA ∈ X (resp. fA ∈ C ∪ F), [f]
is a variable f (resp. a closed HOMP M) with a type B, where B is obtained from (the
curryfication of) A by:

replacing each occurrence of a base type D by N,
replacing each occurrence of → in A by either → or (.

For instance if A = (D1 → D2)→ D3 we can take for B any of the types: (N (N)→ N,
(N → N) → N, etc. In the sequel we will write A for any of these types B. Now,

P. Baillot and U. Dal Lago 73

if t = (t0 t1 . . . tn) then [t] is defined if for any 0 ≤ i ≤ n, [ti] is defined and if [t] ≡
(. . . ([t0][t1]) . . . [tn]) is well-typed. Additive HOMP assignments are defined just as additive
HOP assignments. Now, we say that an assignment [·] is a quasi-interpretation for R
if for any rule l → r of R, [l] and [r] are defined and have the same type, and it holds
that JlK≤ ≥ JrK≤. Observe that contrarily to the case of polynomial interpretations, these
inequalities are not strict, and moreover they are stated with respect to the new domains,
taking into account the distinction between the two connectives → and (.

The interpretation of a term does not, like in the strict case, necessarily decrease along
a reduction step. However, it cannot increase: if t →∗ s, then JsK≤ ≤ JtK≤. This, together
with the possibility of forming HOMPs of arbitrary type (Lemma 4.5) implies the following,
crucial, property:

I Proposition 4.6 (Subterm Property). Suppose that an STTRS R has an additive quasi-
interpretation [·]. Then, for every function symbol f of arity n with base arguments, there
is a polynomial p : Nn → N such that if (f t1 . . . tn)→∗ s and if s contains an occurrence of
a base term r, then |r| ≤ p(|t1|, . . . , |tn|).

And here is the main result of this Section:

I Theorem 4.7 (Polytime Soundness). If an STTRS R has an additive quasi-interpretation,
R satisfies the termination criterion and f has arity n with base type arguments, then there
is a polynomial p : Nn → N such that whenever (f t1 . . . tn) →m s, it holds that m, |s| ≤
p(|t1|, . . . , |tn|). So if f has a type D1 × · · · ×Dn → D then instances of f can be computed
in polynomial time.

Proof. A consequence of Proposition 4.6 and of Proposition 4.3. J

Notice how Theorem 4.7 is proved by first observing that terms of STTRSs having a quasi-
interpretation are bounded by natural numbers which are not too big with respect to the
input, thus relying on the termination criterion to translate these bounds to complexity
bounds.

Higher-order quasi interpretations, like their strict siblings, can be extended by enlarging
DP so as to include more combinators, provided they are bounded by polynomials. One
of these extensions is discussed in [3] and allows to (re)prove LFPL programs to represent
polytime functions.

4.4 Examples
Consider the program foldr given by:

((foldr f b) nil)→ b; (1)
((foldr f b) (cons x xs))→ (f x ((foldr f b) xs)); (2)

where functions, variables and constructors have the following types:

foldr : (D × E → E)× E → L(D)→ E; f : D × E → E;

and nil, cons typed as in Sect. 3.5. Now, we choose as assignment:

[nil] = 1 : N; [cons] = λn.λm.n+m+ 1 : N→ N→ N;
[foldr] = λφ.λp.λn.p+ n× (φ 1 1) : (N (N (N)→ N→ N→ N.

CSL’12

74 Higher-Order Interpretations and Program Complexity

Observe the (in the type of the first argument of [foldr] which is the way to restrict the
domain of arguments. We then obtain the following interpretations of terms:

[((foldr f b) nil)] = b+ 1× (f 1 1);
[((foldr f b) (cons x, xs))] = b+ (x+ xs+ 1)× (f 1 1);

[(f x ((foldr f b) xs))] = f x (b+ xs× (f 1 1)).

It is easy to see that condition JrK≤ ≤ JlK≤ holds for rule (1). As to rule (2) consider
φ ∈ N (N (N . We know that φ has a size c ≥ 0, and thus for every x, y ∈ N ,

c ≤ φ x y ≤ x+ y + c. (3)

Then we have:

f x (b+ xs× f(1, 1)) ≤ x+ b+ xs× (f 1 1) + c ≤ x× (f 1 1) + b+ xs× (f 1 1) + c

≤ b+ (x+ xs+ 1)× (f 1 1),

where for the two last steps we used (f 1 1) ≥ 1 and (f 1 1) ≥ c (because of (3)). So JrK≤ ≤
JlK≤ also holds for (2) and we have an additive quasi-interpretation. As to the termination
criterion, it is satisfied because in rule (2), xs is a strict sub-pattern of (cons x xs) and the
term (f x y) can be typed in the linear type system as required. Summing up, we can apply
Theorem 4.7 and conclude that if the termination criterion is satisfied by all functions, if
tD×E→E , bE are terms and [t] is a HOMP with type N (N (N, then (foldr t b) is a
polynomial time program of type L(D)→ E.

Note that the idea of ensuring complexity bounds when the programs are fed with func-
tional arguments admitting additional conditions had already been suggested in [10], on
particular examples. The present setting using types, however, brings a more systematic
account of this property.

5 Discussion and Relation with Other ICC Systems

The authors believe that the interest of the present work does not lie much in bringing yet
another ready-to-use ICC system but rather in offering a new framework in which to design
ICC systems and prove their complexity properties. Indeed, considered as an ICC system
our setting presents two limitations:
1. given a program one needs to find an assignment and to check that it is a valid quasi-

interpretation, which in general will be difficult to automatize;
2. the termination criterion currently does not allow to reuse higher-order arguments in full

generality.
To overcome 2. we think it will be possible to design more liberal termination criteria, while
attacking 1. could possibly consist in defining type systems such that if a program is well-
typed, then it admits a quasi-interpretation, and for which one could devise type-inference
algorithms. On the other hand, recently introduced techniques for inferring higher-order
polynomial interpretations [17] could shed some light on this issue, which is however outside
the scope of this paper.

Related and Further Work. Let us first compare our approach to other frameworks
for proving complexity soundness results. At first-order, we have already emphasized the
fact that our setting is an extension of the quasi-interpretation approach of [9] (see also [1]
for the relation with non-size-increasing, at first-order). At higher-order, various approaches
based on realizability have been used [14, 11]. While these approaches were developed for

P. Baillot and U. Dal Lago 75

logics or System T-like languages, our setting is adapted to a language with recursion and
pattern-matching. We think it might also be easier to use in practice.

Let us now discuss the relations with known ICC systems. Several variants of System
T based on restriction of recursion and linearity conditions [19, 7, 12] have been proposed
which characterize polynomial time. Another system [20] based on a linear type system for
non-size-increasing computation, called LFPL, offers more intensional expressivity. Terms of
the latter calculus can indeed be proved to be reducible in polynomial time by showing they
admit quasi-interpretations and satisfy the termination criterion (details are omitted here,
due to space constraints, but can be found in [3]). With respect to [20], the advantages we
bring are a slightly more general handling of higher-order arguments, but also the possibility
to capture size-increasing polytime algorithms. As an example, we are able to assign a quasi-
interpretation to (STTRSs computing) functions in Bellantoni and Cook’s algebra BC [6] (see
again [3]).

Some other works are based on type systems built out of variants of linear logic [5, 18, 4].
They are less expressive for first-order functions but offer more liberal disciplines for hand-
ling higher-order arguments. In future work we will examine if they could suggest a more
flexible termination condition for our setting, maybe itself based on quasi-interpretations,
following [13].

6 Conclusions

We have advocated the usefulness of simply typed term rewriting systems to smoothly extend
notions from first-order rewrite systems to the higher-order setting. Our main contribution is
a new framework for studying (and distilling) ICC systems for higher-order languages. While
up to now quite distinct techniques had been successful for providing expressive criteria for
polynomial time complexity at first-order and at higher-order respectively, our approach
brings together these techniques: interpretation methods on the one hand, and semantic
domains and type systems on the other. We have illustrated the strength of this framework
by designing an ICC system for polynomial time based on a termination criterion and on
quasi-interpretations, which allows to give some sufficient conditions for programs built with
higher-order functionals (like foldr) to work in bounded time. We think this setting should
allow in future work to devise new, more expressive, systems for ensuring complexity bounds
for higher-order languages.

References

1 Roberto Amadio. Synthesis of max-plus quasi-interpretations. Fundam. Inform., 65:29–60,
2005.

2 Takahito Aoto and Toshiyuki Yamada. Termination of simply typed term rewriting by
translation and labelling. In RTA 2003, volume 2706 of LNCS. Springer, 2003.

3 Patrick Baillot and Ugo Dal Lago. Higher-order interpretations and program complexity
(long version). Available at http://hal.archives-ouvertes.fr/hal-00667816, 2012.

4 Patrick Baillot, Marco Gaboardi, and Virgile Mogbil. A polytime functional language from
light linear logic. In ESOP 2010, volume 6012 of LNCS, pages 104–124, 2010.

5 Patrick Baillot and Kazushige Terui. Light types for polynomial time computation in
lambda calculus. Inf. Comput., 207(1):41–62, 2009.

6 Stephen J. Bellantoni and Stephen A. Cook. A new recursion-theoretic characterization of
the poly-time functions. Computational Complexity, 2:97–110, 1992.

CSL’12

http://hal.archives-ouvertes.fr/hal-00667816

76 Higher-Order Interpretations and Program Complexity

7 Stephen J. Bellantoni, Karl-Heinz Niggl, and Helmut Schwichtenberg. Higher type recur-
sion, ramification and polynomial time. Ann. Pure Appl. Logic, 104(1-3):17–30, 2000.

8 Guillaume Bonfante, Adam Cichon, Jean-Yves Marion, and Hélène Touzet. Algorithms
with polynomial interpretation termination proof. J. Funct. Program., 11(1):33–53, 2001.

9 Guillaume Bonfante, J.-Y. Marion, and Jean-Yves Moyen. Quasi-interpretations a way to
control resources. Theor. Comput. Sci., 412(25):2776–2796, 2011.

10 Guillaume Bonfante, Jean-Yves Marion, and Romain Péchoux. Quasi-interpretation syn-
thesis by decomposition. In ICTAC 2007, volume 4711 of LNCS, pages 410–424. Springer,
2007.

11 Aloïs Brunel and Kazushige Terui. Church => Scott = Ptime: an application of resource
sensitive realizability. In DICE 2010, volume 23 of EPTCS, pages 31–46, 2010.

12 Ugo Dal Lago. The geometry of linear higher-order recursion. In LICS 2005, pages 366–375,
2005.

13 Ugo Dal Lago and Marco Gaboardi. Linear dependent types and relative completeness. In
LICS 2011, pages 133–142, 2011.

14 Ugo Dal Lago and Martin Hofmann. Realizability models and implicit complexity. Theor.
Comput. Sci., 412(20):2029–2047, 2011.

15 Ugo Dal Lago and Simone Martini. On constructor rewrite systems and the lambda-
calculus. In ICALP 2009, volume 5556 of LNCS, pages 163–174. Springer, 2009.

16 Nachum Dershowitz. Orderings for term-rewriting systems. Theor. Comput. Sci.,
17(3):279–301, 1982.

17 Carsten Fuhs and Cynthia Kop. Polynomial interpretations for higher-order rewriting. In
RTA 2012, volume 15 of LIPIcs, pages 176–192. Schloss Dagstuhl, 2012.

18 Marco Gaboardi and Simona Ronchi Della Rocca. A soft type assignment system for
lambda -calculus. In CSL 2007, volume 4646 of LNCS, pages 253–267. Springer, 2007.

19 Martin Hofmann. A mixed modal/linear lambda calculus with applications to Bellantoni-
Cook safe recursion. In CSL 1997, volume 1414 of LNCS, pages 275–294, 1997.

20 Martin Hofmann. Linear types and non-size-increasing polynomial time computation. Inf.
Comput., 183(1):57–85, 2003.

21 Jean-Pierre Jouannaud and Mitsuhiro Okada. A computation model for executable higher-
order algebraic specification languages. In LICS 1991, pages 350–361, 1991.

22 Jean-Pierre Jouannaud and Albert Rubio. The higher-order recursive path ordering. In
LICS 1999, pages 402–411, 1999.

23 Jan Willem Klop, Vincent van Oostrom, and Femke van Raamsdonk. Combinatory reduc-
tion systems: Introduction and survey. Theor. Comput. Sci., 121(1&2):279–308, 1993.

24 D. Lankford. On proving term rewriting systems are noetherian. Technical Report MTP-3,
Louisiana Tech. University, 1979.

25 D. Leivant. Predicative recurrence and computational complexity I: word recurrence and
poly-time. In Feasible Mathematics II, pages 320–343. Birkhauser, 1994.

26 Daniel Leivant and Jean-Yves Marion. Lambda calculus characterizations of poly-time.
Fundam. Inform., 19(1/2), 1993.

27 Jean-Yves Marion and Jean-Yves Moyen. Efficient First Order Functional Program Inter-
preter with Time Bound Certifications. In LPAR 2000, volume 1955 of LNAI, pages 25–42.
Springer, 2000.

28 Georg Moser and Andreas Schnabl. The derivational complexity induced by the dependency
pair method. Logical Methods in Computer Science, 7(3), 2011.

29 Jaco van de Pol. Termination of Higher-order Rewrite Systems. PhD thesis, Utrecht
University, 1996.

30 Toshiyuki Yamada. Confluence and termination of simply typed term rewriting systems.
In RTA 2001, volume 2051 of LNCS, pages 338–352. Springer, 2001.

Knowledge Spaces and the Completeness of
Learning Strategies∗

Stefano Berardi1 and Ugo de’Liguoro2

1 Dipartimento di Informatica, Università di Torino
c.so Svizzera 185 Torino, Itatly
stefano@di.unito.it

2 Dipartimento di Informatica, Università di Torino
c.so Svizzera 185 Torino, Itatly
deliguoro@di.unito.it

Abstract
We propose a theory of learning aimed to formalize some ideas underlying Coquand’s game
semantics and Krivine’s realizability of classical logic. We introduce a notion of knowledge state
together with a new topology, capturing finite positive and negative information that guides a
learning strategy. We use a leading example to illustrate how non-constructive proofs lead to
continuous and effective learning strategies over knowledge spaces, and prove that our learning
semantics is sound and complete w.r.t. classical truth, as it is the case for Coquand’s and
Krivine’s approaches.

1998 ACM Subject Classification F.4.1 Mathematical Logic; F.1.2 [Theory of Computation]:
Modes of Computation; Interactive and reactive computation; I.2.6 [Artificial Intelligence]: Learn-
ing Induction.

Keywords and phrases Classical Logic, Proof Mining, Game Semantics, Learning, Realizability.

Digital Object Identifier 10.4230/LIPIcs.CSL.2012.77

1 Introduction

Several methods have been proposed to give a recursive interpretation of non-recursive
constructions of mathematical objects, whose existence and properties are classically provable.
A non-exhaustive list includes the continuation-based approach initiated by Griffin [10], the
game theoretic semantics of classical arithmetic by Coquand [5] and Krivine’s realizability of
classical logic [12].

As observed by Coquand, there is a common informal idea underlying the different
approaches, which is learning. With respect to the dialogic approach, learning consists into
interpreting the strategy for the defender of a statement against the refuter by a strategy
guiding the interaction between a learning agent and the “world”, representing what can be
experienced by direct computation.

Under the influence of Gold’s ideas [8, 9] and of Hayashi’s Limit Computable Mathematics
[11] we have proposed a formal theory of “learning” and “well founded limits” in [2]. In the
theory the goal of the learning process is to find an evidence, or a witness as it is usually
called, of the truth of some given sentence, which is the “problem” that the learning strategy
solves. Such an evidence is always tentative, since it could be attained only in the ideal

∗ This work was partially supported by PRIN project n. 2008H49TEH.

© Stefano Berardi and Ugo de’Liguoro;
licensed under Creative Commons License NC-ND

Computer Science Logic 2012 (CSL’12).
Editors: Patrick Cégielski, Arnaud Durand; pp. 77–91

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2012.77
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

78 Knowledge Spaces

limit. The task of the learning strategy is to tell how to react to the discovery that the
current guess is actually wrong, and this is done on the basis of the knowledge collected in
the learning process, which includes all the “counterexamples” that have been seen up to the
time.

Here we propose the same idea, but in the different perspective of topological spaces
and continuous maps. We assume having an ideal object being the result of some non-
effective mental construction and satisfying some decidable property. We say that this
construction may be learned w.r.t. to the property if we may find a “finite approximation”
of the construction which still satisfies the property. In particular given a classical proof of
an existential statement, we see the computational content of the proof as the activity of
guessing more and more about the object (individual) the sentence is about, without ever
obtaining a full information; in a discrete setting such as natural numbers, the approximation
is actually a different object, which we think as “close” to the ideal one, the “limit”, only
with respect to some given property which both satisfy.

When reasoning about ideal objects, we deal with descriptions rather than with the
objects themselves. While learning of an ideal object we have step by step certain amounts
of knowledge, which consist of pieces of evidence (e.g. decidable statements): therefore we
topologize states of knowledge to express the idea that a continuous strategy only depends
on finite positive and negative information to yield finite approximations of the ideal limit.
We call interactive realizer any continuous function of states of knowledge that roughly tells
which are the further guesses to improve the given knowledge, and how to react to the
discovery of negative evidences (e.g. counterexamples to certain assumptions). We claim that
an interactive realizer corresponds to a lambda term with continuations in Griffin’s work,
to a classical realizer in Krivine’s sense and to a winning strategy in the sense of Coquand:
however, we will not support this claim here.

We call a model any perfect (usually infinite) knowledge state. The main result of this
paper is that any object that can be ideally learned in a model can be effectively learned
in a finite state of knowledge approximating the model, and this state is found by means
of a realizer. Since models represent classical truth, the completeness theorem can be read
as stating that the learning semantics for classical proofs is complete w.r.t. classical truth,
namely Tarskian truth, as it is the case for Coquand’s dialogic semantics of proofs and for
Krivine’s classical realizability, and that the learning process is indeed effective.

The paper is organized as follows. In §2 we introduce a motivating example, which is
used throughout the paper. In §3 we define the state knowledge and topology. In §4 the
concept of relative truth is introduced to define sound, complete and model knowledge states.
Finally in §5 we define interactive realizability and prove the completeness theorem. Due to
space restrictions, proofs of technical lemmas have been omitted.

Related works
The suggestion by Coquand that the dialogic interpretation of classical proofs could be seen
as learning of some abstract entities can be found in [4], a preliminary version of [5]. The
idea has been illustrated by means of a suggestive example by von Plato in [14]. Beside
Krivine’s [12], Miquel’s work in [13] illustrates in detail the behavior of classical realizability
of existential statements (also in comparison to Friedman’s method), and we strongly believe
that the construction is a learning process in the sense of the present paper.

Learning in the limit of undecidable properties and ideal entities comes from Gold’s work
[8, 9], and has been recently rediscovered by Hayashi e.g. in [11]. We have investigated

S. Berardi and U. de’Liguoro 79

the concept of learning in the limit incorporating Coquand’s ideas in [2], although in a
combinatory rather than topological perspective. We have further elaborated the concept
of learnable in the limit in [3], where a “solution” in terms of the following §5 is called
“individual”, since we identify the ideal limit with the map generating its approximations
from states of knowledge. The formal definition of the state topology, however, is new with
the present work, as well as the treatment of the general, non-monotonic case. Also the
concept of “interactive realizability” has been introduced in [3], but in the simpler case of
monotonic learning. Essentially the same construction as in [3] is used in [1] to define a
realizability interpretation of HA plus excluded middle restricted to Σ0

1-formulas. It turns
out that interactive realizability is a generalisation of Kleene’s realizability, and this motivates
the terminology.

2 Solving problems by learning

To illustrate the idea of learning strategies, either monotonic or non-monotonic, we propose
an example suggested by Coquand and developed by Fridlender in [6]. Let f1, f2 be total
functions over N. Fix some integer k > 0 and consider the statements: “there is an increasing
sequence of k integers which is weakly increasing w.r.t. f1” and “there is an increasing
sequence of k integers which is weakly increasing w.r.t. f1 and f2”. Formally:

∃x1 . . . ∃xk. x1 < · · · < xk ∧ f1(x1) ≤ · · · ≤ f1(xk) (1)

∃x1 . . . ∃xk. x1 < · · · < xk ∧ f1(x1) ≤ · · · ≤ f1(xk) ∧ f2(x1) ≤ · · · ≤ f2(xk) (2)

We look at these statements as the problems of finding a k-tuple n1 < · · · < nk witnessing
their truth. We begin by observing that these statements can be proved classically as follows.
For any f : N→ N and A ⊆ N we say that “n is a local minimum of f w.r.t. A” (shortly n
is an f,A-minimum) if n is the minimum of f in A ∩ [n,∞[. Formally:

f,A-min(n)⇔ ∀y ∈ A. n < y ⇒ f(n) ≤ f(y).

Observe that the predicate f,A-min(n) is undecidable in general, even if f is recursive and
A decidable. The statement ¬f,A-min(n) is classically equivalent to ∃y ∈ A. n < y ∧ f(n) >
f(y). For any f : N→ N and infinite A ⊆ N, we denote by

Af = {a ∈ A | f,A-min(a)} ⊆ A

the set of all f,A-minima. We now study the set Af .

I Lemma 1. For any f : N→ N and infinite A ⊆ N, the set Af = {a ∈ A | f,A-min(a)} of
f,A-minima is infinite, and f is monotonic over Af .

Proof. Toward a contradiction suppose that Af is finite, possibly empty. Then there exists
a0 = min(A \ Af), as A is infinite. By definition of a0 for all a ∈ A with a ≥ a0 we have
¬f,A-min(a), that is: there is some a′ > a, a′ ∈ A such that f(a) > f(a′). If we choose
a = a0 we deduce that there exists some a1 ∈ A such that a0 < a1 and f(a0) > f(a1), and
so on. By iterating the reasoning we get an infinite sequence a0 < a1 < a2 < · · · such that
f(ai) > f(ai+1) for all i ∈ N, which is on turn an infinite descending chain in N, that is an
absurdity.

I Theorem 2. Both statements (1) and (2) are classically provable.

CSL’12

80 Knowledge Spaces

Proof. In Lemma 1.2 take A = N: then f1 is monotonic over the infinite set Af1 . If we take
the first k elements of Af1 we have an increasing sequence of k integers whose values are
weakly increasing under f1, establishing (1).

To prove (2) we use use again Lemma 1.2 taking A = Nf1 , which we know to be infinite
by the same lemma; then f1, f2 are both monotonic over the infinite set Af2 = (Nf1)f2 .

The proof of Lemma 1 and its use in the proof of Theorem 2 are non-constructive, as
they rely on the “computation” of the minimum of f in A for certain f and A. In order to
compute the minimum of f we need, in general, to know infinitely many values of f . However,
this proof may be interpreted by a computation as soon as we only require finitely many
n1, . . . , nk that satisfy (1) or (2): n1, . . . , nk may be found using a finite knowledge about f .

Indeed the proof of Lemma 1 can be turned into an effective strategy to learn a solution
to problem (1), assuming that f1 is recursive. The basic remark is that we do not actually
need to know the infinitely many elements of Nf1 , nor we have to produce some n which
belongs to Nf1 beyond any doubt. We can approximate the infinite set Nf1 by some finite set
B, whose elements are not necessarily in Nf1 , rather they are just f1,N-minima as far as we
know. B is a kind of hypothesis about Nf1 .

More precisely, we will find a set B such that f1, B-min(n) for all n ∈ B. This property
is trivially true for any singleton set, say {0}. In the general case, if B has k elements or
more, then by definition of f1, B-min the set B is a solution to (1). Otherwise we take any
m > max(B) and try adding m to B. Since we cannot decide whether any n is a local
minimum of f1, we are not allowed to increase B to B ∪ {m}, because it could be the case
that f1(n) > f1(m) for some n ∈ B. Rather we update B, by removing all n ∈ B such that
f1(n) > f1(m):

B′ = {n ∈ B | f1(n) ≤ f1(m)} ∪ {m},

The new set B′ includes m and satisfies the invariant property of containing only f1, B
′-

minima. The cardinality of B′ is not necessarily greater than that of B, so that we need an
argument to conclude that, starting from the singleton {0} and iterating the step from B to
B′, the learning agent will eventually reach a k-element set with the required property.

The termination argument in the case works as follows. Although the sequence of sets is
not increasing w.r.t. inclusion, the knowledge that some elements are not local minima of
f1 grows monotonically, since more and more pairs n,m are found such that f1(n) > f1(m).
From this remark, one can prove by a fixed-point argument (over a suitable topology) that
the growth of knowledge eventually ends, which implies that a set B with k elements will be
found after finitely many steps. In this case we speak of monotonic learning.

In order to include an example of non-monotonic learning, we assume that both f1 and
f2 are recursive, and we outline an effective computation approximating an initial segment of
(Nf1)f2 , solving problem (2). The informal interpretation we include here will be formalized
using the notion of layered valuation.

As it happens in the classical proof of Theorem 2, we iterate the same method used for
problem (1), and build a C ⊆ B of f2, C-minima, where B is the current approximation of
the infinite set Nf1 . In doing so the learning agent assumes that B is a subset of Nf1 (though
he cannot be certain of this), and that all elements of C are f2-minima w.r.t. Nf1 (again an
uncertain belief). At each step, the learner takes some m ∈ B, such that m > max(C), and
manages to add m to C, possibly by removing some of its elements, by computing:

C ′ = {p ∈ C | f2(p) ≤ f2(m)} ∪ {m} ⊆ B.

S. Berardi and U. de’Liguoro 81

This is only possible when such an m exists in B: if not the algorithm generating B has to
be resumed to get a larger set containing an element greater than max(C). But since B does
not grow monotonically, elements of C will be dropped while computing C ′ also because they
are no longer in B. This makes the convergence proof much harder. Indeed the knowledge
accumulated while building B takes the simple form of (sets of statements) f1(n) > f1(m),
and it grows monotonically; on the contrary the “knowledge” gathered while computing C
consists of more complex statements of the form: m ∈ B ∧ f2(n) > f2(m), with B changing
non-monotonically during the computation of C. This knowledge is the conjunction of an
hypothesis m ∈ B and a fact, f2(n) > f2(m). This second layer of of knowledge, mixing
hypothesis and fact, does not grow monotonically, because any hypothesis m ∈ B may turn
out to be false: therefore it is unsafe, yet it guides the construction of C. In this case we
speak non-monotonic learning. Non-monotonic learning is the more general form of learning.

3 States of knowledge and their topology

There are three kinds of entities in learning: questions, answers and states of knowledge. The
main concern are states of knowledge, which on turn are certain sets of answers. Answers
are viewed as atomic objects, since their internal structure is immaterial. Questions instead
are represented indirectly by equivalence classes of answers, each to be thought of as the set
of alternative, incompatible choices for an answer to the same question.

I Definition 3 (Knowledge Structure and State of Knowledge). A knowledge structure (A,∼)
consists of a a non-empty at most countable set A of answers and an equivalence relation
∼ ⊆ A× A. As a topological space, A is equipped with the discrete topology.

The set Q = A/∼ of equivalence classes [x] w.r.t. ∼ is the set of questions, and it is
equipped with the discrete topology.

A subset X ⊆ A is a state of knowledge if for all x ∈ A the set X ∩ [x] is either empty
or a singleton. We denote by S the set of knowledge states and by Sfin the subset of finite
elements of S.

If x ∼ y then x, y are two answers to the same question. The equivalence class [x]
abstractly represents the question answered by x. Two answers x, y ∈ A are compatible,
written x#y, if they are not different answers to the same question:

x#y ⇔ x = y ∨ x 6∼ y.

Example 1 Let us reconsider the example in §2. A knowledge structure (A0,∼0) for learning
a solution to (1) can be defined by taking A0 = {(n,m) ∈ N×N | n < m}, where we interpret
a pair (n,m) as the statement: “m is a counterexample to f1,N-min(n)”, and more precisely
as the formula:

n < m ∧ f1(n) > f1(m).

If we think of m as the answer to the question about n, we obtain the definition of the
relation (n,m) ∼0 (n′,m′) by n = n′.

A knowledge structure (A1,∼1) for learning a solution to (2) can be defined by taking
A1 = A0 and ∼1 =∼2. (A1,∼1) has not the same intended meaning as (A0,∼0): an answer
(n,m) ∈ A1 is interpreted by the statement:

n < m ∧ f2(n) > f2(m) ∧ n,m ∈ Nf1 .

CSL’12

82 Knowledge Spaces

Finally we set A2 = A0]A1 = {(i, n,m) | i ∈ {0, 1} & (n,m) ∈ Ai}, namely the disjoint
union of A0 and A1 and we define (i, n,m) ∼2 (j, n′,m′) if and only if i = j and n = n′ (that
is (n,m) ∼i (n′,m′)).

Let S2 be the knowledge space associated to A2 and X ∈ S2 be any state of knowledge.
Then we interpret (0, n,m) ∈ X by “the agent knows at X that n < m and f1(n) > f1(m)”,
hence that n is not in Nf1 . We interpret: for all p ∈ N, (0, n, p) 6∈ X by “the agent knows
at X of no p such that n < p and f1(n) > f1(p)”, hence he believes that n is in Nf1 . We
write (Nf1)X = {n ∈ N | ∀p ∈ N.(0, n, p) 6∈ X} for the set of n which the agent believes to be
in Nf1 at X. In the same way we write ((Nf1)f2)X = {n ∈ (Nf1)X | ∀p ∈ N.(1, n, p) 6∈ X}
for the set of n which the agent believes to be in (Nf1)f2 at X. We will see in the following
sections that (A2,∼2) is a knowledge structure apt to learn (2).

The “state of knowledge” of a finite agent should be finite; for the sake of the theory we
also consider infinite states of knowledge, which are naturally approximated by finite ones in
a sense to be made precise by a topology. Let us define a query map q : S×Q→ Pfin(A) by
q(X, [x]) = X ∩ [x]. Then q(X, [x]) is either a singleton {y}, meaning that y is the answer at
X to the question [x], or the empty set, meaning that the agent knows at X of no answer
to [x], and he assumes that there is none. Take the discrete topology over Pfin(A); we then
consider the smallest topology over S making q continuous.

I Definition 4 (State Topology). The state topology (S,Ω(S)) is generated by the sub-basics
Ax, Bx, with x ∈ A:

Ax = {X ∈ Sfin | x ∈ X} = {X ∈ Sfin | X ∩ [x] = {x}},

Bx = {X ∈ Sfin | X ∩ [x] = ∅}.

Ax is the set of all states X such that q(X, [x]) = {x}, which means that at state X the
answer x ∈ A has been selected to the question [x] ∈ Q; on the other hand if X ∈ Bx, that
is q(X, [x]) = ∅, then at X the learning agent knows of no answer to the question [x]. Let
X,Y, Z range over S, and s, t over Sfin. By definition, a basic open of Ω(S) has the shape:

OU,V =
⋂
x∈U

Ax ∩
⋂
y∈V

By,

for finite U, V ⊆ A. If ¬x#y, that is x ∼ y and x 6= y, then Ax ∩ Ay = ∅, because if
x, y ∈ X then X is inconsistent, so that ∅ is a basic open. On the other hand if x ∼ y then
Bx = By. Therefore without loss of generality we assume U, V to be consistent, and that
all basic opens of Ω(S) are of the form Os,t, for some s, t ∈ Sfin. Summing up, assume that
s = {x1, . . . , xn} and t = {y1, . . . , ym}. Then X ∈ Os,t means that the agent at X knows
the answers x1, . . . , xn to the questions [x1], . . . , [xn] (a finite positive information), while he
knows of no answer to the questions [y1], . . . , [ym], and assumes that there is none (a finite
negative information).

The state topology is distinct from, yet strictly related to, several well-known topologies.
Ω(S) is discrete if and only if Q is finite (there are finitely many equivalence classes). Ω(S) is
homeomorphic to the product space Π[x]∈Q([x]] 1) of the discrete topologies over [x]] 1,
where 1 is any singleton (representing the “undefined” answer to the question [x]) and] is
disjoint union. Every state topology is homeomorphic to some subspace of the Baire topology
over NN. The state topology is totally disconnected and Hausdorff: it is compact (that is, is
a Stone space) if and only if all equivalence classes are finite. If all equivalence classes in
Q are singletons (that is, if ∼ is the equality relation on A) and Q is infinite then Ω(S) is

S. Berardi and U. de’Liguoro 83

homeomorphic to the Cantor space 2N. If all equivalence classes in Q are infinite and Q is
infinite, then Ω(S) is homeomorphic to the whole Baire space.

A clopen is an open and closed set; hence clopens are closed under complement, finite
unions and intersections. There are significative examples of clopen sets in S.

I Lemma 5 (Sub-basic opens of State Topology are clopen). Assume that x ∈ A, f : S→ I is
continuous, I is a discrete space and J ⊆ I. Then:
1. Bx is clopen
2. Ax is clopen
3. f−1(J) is clopen.

I Remark. As a consequence of Lemma 5.1 we have that the predicate n ∈ NXf1
is continuous

in X, since {X | n ∈ NXf1
} = B(0,n,n+1) which is a clopen set, and indeed n 6∈ NXf1

if and
only if X ∈

⋃
m>nA(0,n,m), namely the complement of B(0,n,n+1). A similar remark holds

for n ∈ (Nf1)Xf2
.

It is instructive to compare the state topology to Scott and Lawson topologies over S.
First observe that S is a poset by subset inclusion, and it is downward closed. It follows
that (S,∩,⊆) is an inf-semilattice with bottom ∅. S is closed under arbitrary but non-empty
inf, as the empty inf, namely the whole set A, is not consistent in general. Indeed S is not
closed under union, unless the compatibility relation is the identity. We say that X and Y
are compatible w.r.t. inclusion, if X ⊆ Z ⊇ Y for some Z ∈ S. Clearly the union of a family
U ⊆ S belongs to S if and only if all elements of U are pairwise compatible sets. By this S is
closed under directed sups, so it is a coherence space in the sense of Girard and a cpo, which
in fact has compacts K(S) = Sfin and it is algebraic.

It follows that the Scott topology over the cpo (S,⊆) is determined by taking all the
Ax with x ∈ A as sub-basics. On the other hand any Bx is a Scott-closed set, since its
complement S \Bx is equal to the union

⋃
{Ay | y ∈ [x]} of Scott opens. However Bx is not

Scott-open because it is not upward closed.
Recall that (see [7]) the lower topology over a poset is generated by the complements of

principal filters; the Lawson topology is the smallest refinement of both the lower and the
Scott topology. In case of the cpo (S,⊆) the Lawson topology is generated by the sub-basics:

X ↑ = {Y ∈ S | X 6⊆ Y } and s↑ = {Y ∈ S | s ⊆ Y },

for X ∈ S and s ∈ Sfin, representing the negative and positive information respectively.
The state topology includes the Lawson topology, and in general it is finer than that.

The next lemma tells that all Lawson opens are open in the state topology, but if some
equivalence class [x] is infinite then some open of the state topology is not open in the Lawson
topology. Recall that Ω(S) denotes the family of open sets in the state topology.

I Lemma 6.
1. All basic opens of Lawson topology are in Ω(S).
2. For all x ∈ A, Bx is Lawson-open if and only if [x] is finite.

As an immediate consequence of Lemma 6 we have the following.

I Theorem 7 (State versus Lawson Topology). The state topology Ω(S) refines the Lawson
topology over the cpo (S,⊆), and they coincide if and only if [x] is finite for all x ∈ A.

CSL’12

84 Knowledge Spaces

4 Relative truth and layered states

Answers to a question can be either true or false. In the perspective of learning we think of
truth values with respect to the actual knowledge that a learning agent can have at some
stage of the process, so that we relativize the valuation of the answers to the knowledge
states. Furthermore the example of learning the solution to problem (2) in §2 shows that
there can be dependencies among answers in a state of knowledge. We formalize this by
means of a stratification into levels of the set of answers. In the example of §1 we only need
levels 0 and 1. In the definition, however, we allow any number of levels, even transfinite.

Denote with Ord the class of ordinals. Let us assume the existence of a map lev : A→ Ord,
associating to each answer x the ordinal lev(x), and such that any two answers to the same
question are of the same level. If X ∈ S and α ∈ Ord we write X � α = {x ∈ X | lev(x) < α}.
We can now make precise the notions of level and of truth of an answer w.r.t. a knowledge
state. Let us denote with 2 = {true, false} the set of truth values.

I Definition 8 (Layered Valuations). A layered knowledge structure is any tuple (A,∼, lev, tr),
with (A,∼) a knowledge structure, lev : A→ Ord and tr : A× S→ 2 two maps such that:
1. Two answers to the same question have the same level:

∀x, y ∈ A.(x ∼ y ⇒ lev(x) = lev(y))

2. tr is continuous, by taking A and 2 with the discrete topology, S with the state topology
Ω(S), and A× S with the product topology;

3. tr is layered: ∀x ∈ A, X ∈ S.tr(x,X) = tr(x,X � lev(x))

Set Tx = tr(x)−1({true}) = {X ∈ S | tr(x,X) = true}, and similarly Fx = tr(x)−1({false}).
When tr is a layered valuation, if X ∈ Tx or X ∈ Fx, we say that x is true or false w.r.t. X
respectively. By definition, the truth of x w.r.t. X depends only on the answers of lower
level than lev(x); it follows that

lev(x) = 0⇒ tr(x,X) = tr(x, ∅)

that is, the truth value of answers of level 0 is absolute, and it depends just on the choice of
tr. Level 0 answers play the role of “facts”. On the contrary answers of level greater than
0 are better seen as empirical hypothesis, that are considered true as far as they are not
falsified by answers of lower level.

Example 2 Continuing example 1, let us set lev(i, n,m) = i. Then we define the meaning
of the answers in A2 via the mapping tr by putting: tr((0, n,m), X) = true if and only if
f1(n) > f1(m), and: tr((1, n,m), X) = true if and only if n,m ∈ (Nf1)X and f2(n) > f2(m).
Recall that (Nf1)X is the set of n such that (0, n, p) 6∈ X for all p, and that if (i, n,m) ∈
A2 = A0] A1 then n < m.

Clearly tr is layered since tr((i, n,m), X) does not depend on X when i = 0, while when
i = 1 it depends on X � 1 = {(i, n,m) ∈ X | i = 0}, which is morally A0 ∩X.

To see that tr is continuous let us observe that tr((0, n,m), X) is the constant function
w.r.t. X, and that tr((1, n,m), X) = true iff and only if f2(n) > f2(m) and n,m ∈ (Nf1)X ,
and the set of X for which this is true is a clopen as a consequence of Lemma 5.

From now on, we assume that some layered knowledge structure (A,∼, lev, tr) has been
fixed, with some level map lev and some continuous layered truth predicate tr. We now
introduce the set S of sound knowledge states (those from which nothing should be removed),
the set C of complete knowledge states (those to which nothing should be added), the set M

S. Berardi and U. de’Liguoro 85

of model states (the “perfect” states, those from which nothing should be removed and to
which nothing should be added).

I Definition 9 (Sound and Complete States). Let X ∈ S, x ∈ A. Then:
1. X is sound if ∀x ∈ A. x ∈ X ⇒ tr(x,X) = true;
2. X is complete if ∀x ∈ A. X ∩ [x] = ∅ ⇒ tr(x,X) = false;
3. X is a model if it is sound and complete.
We call S, C and M the sets of sound, complete and model states respectively.

A state of knowledge X is sound if all the answers it contains are true w.r.t. X itself; X
is complete if no answer which is true w.r.t. X and compatible with the answers in X can
be consistently added to X; hence X is a model if it is made of answers true w.r.t. X and it
is maximal. We think of a model X as a perfect representation of the world. For instance
with respect to the examples in §2 and §3, if X is a model then the sets (Nf1)X and (Nf1)Xf2

are equal to (Nf1) and (Nf1)f2 respectively, that is the beliefs of the agent perfectly agree
with absolute truth.

In spite of this interpretation, models are far from being unique even w.r.t. a fixed map
tr. Two models can include two different answers to the same question, because a question
can have many true answers, while w.r.t. any state of knowledge each question is associated
to a memory cell having room for a single answer.

Let us define Sx = {X ∈ S | x ∈ X ⇒ tr(x,X) = true}, or equivalently Sx = (S\Ax)∪Tx;
Cx = {X ∈ S | X ∩ [x] = ∅ ⇒ tr(x,X) = false}, that is Cx = (S \Bx) ∪ Fx, and Mx = Sx ∩ Cx.
Clearly we have S =

⋂
x∈A Sx, C =

⋂
x∈A Cx and M =

⋂
x∈A Mx.

From a topological viewpoint, it is interesting to observe that all the above subsets of S
are closed in Ω(S), while some of them are clopen.

I Lemma 10. For all x ∈ A, Tx,Fx, Sx, Cx, Mx are clopen in Ω(S). S, C, M are closed in Ω(S).

It is immediate that sound sets exist, as well as complete ones: trivial examples are ∅
which is vacuously sound, and any set X including one answer x for each equivalence class
[x] ∈ Q, which is vacuously complete but not necessarily sound. Here is a non-trivial though
simple example of these concepts.

Example 3 Suppose that f1(0) = 2 = f1(n) for all n > 2, and that f1(1) = 1 and f1(2) = 0.
If we consider the states over A0 only, and the restriction to A0 of the mapping tr in Example
2, we have the models {(0, 0, 1), (0, 1, 2)} and {(0, 0, 2), (0, 1, 2)}. Any subset of these sets is
sound, while {(0, n, n+ 1) | n ∈ N} is complete but not sound.

It is not obvious, however, that models exist in general.

I Theorem 11 (Existence of Models). For every layered knowledge structure (A,∼, lev, tr)
and space of knowledge S over it, there exists a model X ∈ S.

Proof. Fix a layered valuation tr, and an arbitrary indexing x0, x1, . . . of the countable set
A. For each x ∈ A and Y ∈ S set:

γ(x, Y) =

{xi} if i is the minimum index j s.t.

xj ∈ [x] ∧ tr(xj , Y) = true, if it exists

∅ otherwise

Now define inductively for each α ∈ Ord:

Xα =
⋃
{γ(x,X<α) | lev(x) = α} where X<α =

⋃
β<α

Xβ

CSL’12

86 Knowledge Spaces

In words, Xα is obtained by choosing an answer x′, if any, for each equivalence class [x] with
lev(x) = α, such that x′ is true w.r.t. all the choices made at previous stages β < α. Since
xi ∈ [x] implies that lev(xi) = lev(x), Xα is made of answers of level α.

Then we prove that X =
⋃
α∈OrdXα is a model. First by construction Xα is consistent

for all α, because it contains at most one answer for each equivalence class; this implies that
X is consistent, since two answers in the same equivalence class are in the same Xα. Second,
if x ∈ X � α then x ∈ X<α, so that:

tr(x,X) = tr(x,X � lev(x)) = tr(x,X<lev(x)) = true

and X is sound. Finally, for all x ∈ A, if X ∩ [x] = ∅ then

X ∩ [x] = ∅ ⇒ Xlev(x) ∩ [x] = ∅
⇒ ∀x′ ∈ [x]. tr(x′, X<lev(x)) = false
⇒ tr(x,X<lev(x)) = false
⇒ tr(x,X) = false

by tr(x,X) = tr(x,X<lev(x)). Therefore X is complete and hence a model.

The construction of Theorem 11 is not effective, even when the layered knowledge structure
is recursive. Assume that γ ∈ Ord is the number of levels of the knowledge structure. If
we look closely to the proof, we see that we defined a model by some ∆0

1+γ-predicate. In
particular, if there are infinitely many levels, then the definition is not an arithmetical
predicate. We claim that the recursive complexity in our result is optimal: for any γ there is
some recursive layered knowledge structure with γ levels, whose models are all (the extensions
of) ∆0

1+γ-complete predicates, and therefore are never ∆0
1+δ-predicate, for any δ < γ. In

general models are not recursive sets, and a fortiori are not finite.

5 Interactive Realizability

Given a layered knowledge structure (A,∼, lev, tr), the goal of a learning process is to reach
some sound X ∈ S which is sufficiently large to compute a solution to the problem at
hand, e.g. a k-tuple n1, . . . , nk of natural numbers witnessing the truth of (1) or of (2)
in Section 2. To make this precise, we formally define what does it mean that a problem
P ⊆ N has a solution α relative to a state X. Informally, we require that α(X) is a number
continuously depending on a knowledge state X, which satisfies P whenever X is a model.
In the terminology of [3] α is an “individual”.

I Definition 12 (Solution of a Problem w.r.t. a Knowledge Structure). Let (A,∼, lev, tr) be
a layered knowledge structure and S its space of states of knowledge. Given a continuous
α : S → N (where N is a discrete space) a predicate P ⊆ N (a problem), and X ∈ S, we
define:
1. X |=A α : P ⇔ α(X) ∈ P ,
2. |=A α : P ⇔ ∀X ∈ S. X is a model ⇒ X |=A α : P .
When |=A α : P we say that α is a solution of P w.r.t. (A,∼).

We shall omit the subscript A in |=A when A is understood.

Example 4 Let (A2,∼2) be the knowledge structure defined in example 1 in §3, and S2
its knowledge space. Fix k ∈ N; writing 〈n1, . . . , nk〉 for the code number of the k-tuple

S. Berardi and U. de’Liguoro 87

n1, . . . , nk we define the “problem” P2:

P2 = {〈n1, . . . , nk〉 |
∧
i<k

(ni < ni+1 ∧ f1(ni) ≤ f1(ni+1) ∧ f2(ni) ≤ f2(ni+1))},

P2 is the set of all (coding of) k-tuple witnessing that (1) and (2) in §2 are true. Now for
any X ∈ S define:

α2(X) = min{〈n1, . . . , nk〉 | n1 < · · · < nk ∧ n1, . . . , nk ∈ (Nf1)Xf2
}

where min is understood as the lexicographic ordering of the k-tuples. By definition the
mapping α2 picks the first k elements in the set (Nf1)Xf2

in increasing order. α2 is no dummy
search procedure, is a reading primitive that assumes that X has been given. α2 is always
defined because NXf1

and (Nf1)Xf2
are infinite for every X ∈ S2. Indeed this can be proved by

a relativization to X of the argument of Lemma 1: if n 6∈ NXf1
then there exists m ∈ N s.t.

n < m but f1(n) > f1(m) in the knowledge state X, namely we have (0, n,m) ∈ X. Were
NXf1

finite, we would be able to find infinitely many such m forming an infinite increasing
chain, and so an infinite descending chain via f1. Similarly one proves that (Nf1)Xf2

is
infinite (quantifying over NXf1

in place of N and coding the counterexamples known at X by
(1, n,m) ∈ X).

We show that α2 is continuous. Let α2(X) = 〈n1, . . . , nk〉: then ni ∈ (Nf1)Xf2
for all

i ≤ k, and and for all m < nk with m 6= n1, . . . , nk, we have m 6∈ (Nf1)Xf2
. Conversely one

can check that for all Y ∈ S, if
∧
i≤k ni ∈ (Nf1)Yf2

and
∧
m<nk,m 6=n1,...,nk

m 6∈ (Nf1)Yf2
then

α2(Y) = 〈n1, . . . , nk〉. But since we know that the predicate n ∈ (Nf1)Yf2
is continuous in Y

(see the remark after Lemma 5), the last condition defines a finite intersection of clopens,
which is clopen.

We show that α2 is a solution of P2, that is, that |= α2 : P2. Let X be a model: then we
have (Nf1)Xf2

= (Nf1)f2 . Since α(X) = 〈n1, . . . , nk〉 ∈ (Nf1)Xf2
, we deduce α2(X) ∈ (Nf1)f2 ,

that is, that f1 and f2 are weakly increasing w.r.t. n1, . . . , nk. Thus, α2(X) ∈ P2.

A solution α is some way to produce an inhabitant α(X) ∈ P out of any model X. A
learning strategy for a problem P admitting a solution α w.r.t. (A,∼, lev, tr) is ideally a
search procedure of some model X ∈ S. But models are in general infinite and non-recursive
states of knowledge: to make learning effective we rely on the continuity of α which implies
that if α(X) = n ∈ P for some model X there exists a finite s ⊆ X such that α(s) = n.

We describe the search of such finite sound approximations of a model X via certain
continuous functions r over S. The function r such that for any sound X (not necessarily a
model) the set r(X) is a finite set of answers that are not in X but are compatible with the
answers in X and true w.r.t. X, and if r(X) = ∅ then α(X) ∈ P . When such a function
exists for given P and α we say that it is a realizer and that the solution α is realized by r.

I Definition 13 (Realizers and Zeros). A realizer is a continuous map r : S→ Pfin(A) such
that for all X ∈ S and all x ∈ r(X):
1. X ∩ [x] = ∅,
2. tr(x,X) = true.
We denote by R the set of realizers. Finally we say that X ∈ S is a zero of r ∈ R if r(X) = ∅.

We can see a realizer r as the essential part of a learning strategy, which tries to update
the current state of knowledge. This is obtained by evaluating r(X) to get a finite set of new
answers by which X could be soundly extended. To see this let new : S× Pfin(A)→ Pfin(A)
be defined by:

new(X,U) = {x ∈ U | X ∩ [x] = ∅ ∧ tr(x,X) = true}.

CSL’12

88 Knowledge Spaces

The function new is continuous, where Pfin(A) and S× Pfin(A) are taken with discrete and
product topology respectively.

Say that an operator over S is any continuous map r : S → Pfin(A), and call OpS, or
simply Op, the set of operators over S. For r ∈ Op we set: r̂(X) = new(X, r(X)). Note that
the set of realizers is the subset of operators such that r = r̂.

Example 5 We propose a realizer solving the problem (1), expressed by the predicate:

P1 = {〈n1, . . . , nk〉 |
∧
i<k

(ni < ni+1 ∧ f1(ni) ≤ f1(ni+1))}.

We first define a function β1(X, 〈n1, . . . , nh〉) extending any list 〈n1, . . . , nh〉 with h ≤ k to a
solution of (1):

β1(X, 〈n1, . . . , nh〉) =

〈n1, . . . , nh〉 if h = k

β1(X, 〈n1, . . . , nh,m〉) where m is the minimum s.t.
m ∈ NXf1

and
m > nh if h > 0.

A function solving (1) may then be defined by α1(X) = β1(X, 〈 〉). We claim that |= α1 : P1.
Indeed β1 is continuous w.r.t. X since m ∈ NXf1

is equivalent to X 6∈ B(0,m,m+1) which is a
clopen by 5.1, so that α1 is continuous. Further, if X is a model, then α1(X) ∈ P1. We define
a realizer r1 looking for some X such that α1(X) solves P1. r1(X) takes any knowledge
state X, and adds to it the first counterexample to (1) we may find in the list 〈n1, . . . , nk〉
generated by α1, unless α1(X) solves P1. We define r1 in two steps: first, we define a map
g1 finding the first counterexample to (1) in a given list:

g1(〈n1, . . . , nk〉) =

{(0, ni, ni+1) | 1 ≤ i < k min. s.t.

f1(ni) > f1(ni+1)} if i exists
∅ otherwise.

Then we define the realizer by composing g1 with the output of α1: r1(X) = g1(α1(X)). r1 is a
realizer, because r1(X) always outputs atoms not inX. Indeed, if α1(X) = 〈n1, . . . , nk〉 ∈ NXf1

,
and if r1(X) output the atom f1(ni) > f1(ni+1), then (f1(ni) > f1(ni+1)) 6∈ X by definition
of 〈n1, . . . , nk〉 ∈ NXf1

. We may use r1(X) to extend X until we find some X such that
r1(X) = ∅. Whenever r1(X) = ∅ we have g1(α1(X)) = ∅, hence α1(X) solves (1) by
definition of g1.

To step from P1 to P2, namely to problem (2), we just replace NXf1
by NXf1,f2

, namely:

β2(X, 〈n1, . . . , nh〉, k) =

〈n1, . . . , nh〉 if h = k

β2(X, 〈n1, . . . , nh,m〉, k) where m is the minimum s.t.
m 6∈ (Nf1)Xf2

and m > nh if h > 0.

and

g2(〈n1, . . . , nk〉) =

{(0, ni, ni+1) | 1 ≤ i < k min. s.t.

f1(ni) > f1(ni+1) ∨ f2(ni) > f2(ni+1)} if i exists
∅ otherwise.

We have that α2(X) = β2(X, 〈 〉, k), where α2 is from example 4. Now let us define
r2(X) = g2(β2(X, 〈 〉, k)) = g2(α2(X)). Then we can show that r2 is a realizer looking for
some X such that α2(X) ∈ P2 just as in the case of r1 above.

S. Berardi and U. de’Liguoro 89

If X is a model and r ∈ R then r(X) = ∅ by definition; on the other hand if |=A α : P
then α(s) = α(X) = n ∈ P for some finite s ⊆ X. Since r is continuous, the condition
that reveals that the approximation s of X is good enough to compute an n ∈ P is that
r(s) = r(X) = ∅. This suggests that a constructive way to meet the requirement about
models in the definition of |=A α : P is to ask that sound zeros of a realizer r are enough to
find inhabitants of P via α, and then look for finite sound zeros of r. We turn this into the
following definition.

I Definition 14 (Interactive Realizability). Let α : S→ N be continuous (w.r.t. the discrete
topology over N), and P ⊆ N a predicate:
1. r ∈ R interactively realizes P w.r.t. α, written r ` α : P , if and only if:

∀X ∈ S. X sound zero of r ⇒ α(X) ∈ P

2. P is interactively realizable w.r.t. α, written ` α : P , if and only if:

∃r ∈ R. r ` α : P.

If P1 and P2 are the predicates defined in examples 4 and 5, α1, α2 their respective solutions
and r1, r2 the realizers from example 5; then we claim (without proof) that ri ` αi : Pi for
both i = 1, 2.

The main result of the paper is that the apparently stronger r ` α : P for some r ∈ R is
equivalent to |= α : P . That is, whenever α : P is valid then it is interactively learnable, and
we have some strategy to find some finite X such that α(X) ∈ P .

Before we establish the existence of sound finite zeros of any r ∈ R. This is a non
trivial fact because, whenever we add to some state Y (no matter whether finite or not) a
y ∈ r(Y), we know that tr(z, Y) = true for all z ∈ Y , but we do not know about the value
of tr(z, Y ∪ {y}), so that Y ∪ {y} is not necessarily sound. Moreover it is not true that if
s ⊆ X and X is sound then s is sound.

Example 6 Let us redefine f1 by f1(0) = 10, f1(1) = 30, f1(2) = 20 and define f2(0) =
20, f2(1) = 10, f2(2) = 20. Also we let x = (1, 0, 1) meaning that 0 6∈ (Nf1)f2 , and y = (0, 1, 2)
meaning that 1 6∈ Nf1 . Then tr(x, {x}) = true since at {x} it is likely that 0 6∈ (Nf1)f2

because of the counterexample in the point 1; but tr(x, {x, y}) = false because the discovery
that 1 ∈ Nf1 contradicts counterexample on point 1.

We prove below that finite sound zeros exist for all r ∈ R and that these are finite
approximations of sound states of knowledge which are themselves zeros of r, hence in
particular of models.

I Lemma 15. If X ∈ S is sound, s ∈ Sfin is a finite state such that s ⊆ X, then there exists
a finite sound t ∈ Sfin such that s ⊆ t ⊆ X.

We are now in place to conclude the proof that every realizer has a finite sound zero. We
do not provide an effective method to find some, but we claim that we can obtain it by a
suitable sequence of answers added by the realizer and of removal of answers.

I Theorem 16 (Existence of Sound and Finite Zeros of Realizers). If r ∈ R, then there exists
a finite sound zero t ∈ Sfin of r.

Proof. Models exist by Theorem 11 and they are sound by definition, hence r(X) = ∅
for some sound X ∈ S since r ∈ R. By continuity there is a basic open Os0,t0 such that
X ∈ Os0,t0 and r(Os0,t0) = ∅. This implies that s0 ⊆ X and X ∩ t0 = ∅, so that a fortiori

CSL’12

90 Knowledge Spaces

any finite t ∈ Sfin such that s0 ⊆ t ⊆ X satisfies t ∩ t0 = ∅ and therefore t ∈ Os0,t0 , i.e. it is
a zero of r. By Lemma 15 there exists a sound t among them, which is the desired finite
sound zero of r.

We come now to the completeness theorem. Our thesis is that interactive realizability is
complete in the sense that if α(X) ∈ P for all models X, then we may replace the model X
by the finite sound zeros of a suitable realizer r ∈ R.

I Theorem 17. (Completeness of Realization) For any continuous α : S→ N and predicate
P ⊆ N: ` α : P ⇔ |= α : P.

Proof.
(⇒) If X ∈ S is a model then X is a sound zero of any realizer by Definition 13; hence if
r ` α : P for some r ∈ R we immediately have α(X) ∈ P , i.e. X |= α : P for arbitrary
model X.

(⇐) We have to show that, if |= α : P , namely if α(X) ∈ P for X ∈ M, then there exists an
r ∈ R such that r ` α : P . We establish the contrapositive:

α(X) 6∈ P ⇒ X not sound ∨ r(X) 6= ∅

for some realizer r and arbitrary X ∈ S.
If α(X) 6∈ P then, by the hypothesis, X 6∈ M, hence X 6∈ S or X 6∈ C. By definition of S
and C, this implies that ∃x ∈ A. X 6∈ Sx ∨X 6∈ Cx. Fix an enumeration x0, x1, . . . of the
countable set A. Let us define r : S→ Pfin(A) by:

r(X) =
{
∅ if α(X) ∈ P
{xi} where i = min{j ∈ N | X ∈ S \ Mxj}, else.

Then r is a total function since if α(X) 6∈ P then X ∈ S − M so that {xj ∈ A | X ∈
S \ Mxj

} 6= ∅. If r is continuous then r̂(X) = new(X, r(X)) because X ∈ S \ Mxj
implies

X ∈ S \ Cxj , and consequently, r is a realizer. We have r̂ ` α : P . Indeed, assume
for contradiction that α(X) 6∈ P , X ∈ S and r̂(X) = ∅. Then r(X) = {xi} and
X ∈ S \ Mxi = (S \ Sxi) ∪ (S \ Cxi). Since X ∈ S ⊆ Sxi , then X ∈ S \ Cxi . We conclude
that r̂(X) = {xi}, contradiction.
To see that r is continuous it suffices to check that both r−1(∅) and r−1({x}) (for any
x ∈ A) are opens in Ω(S). Now r(X) = ∅ if and only if α(X) ∈ P , that is X ∈ α−1(P)
which is clopen by Lemma 10. On the other hand X ∈ r−1({x}) if and only if:

∃i. xi = x ∧ X ∈ (S \ Mxi
) ∧ ∀j < i.X ∈ Mxj

.

This is equivalent to X ∈ Mx0 ∩ . . . ∩ Mxi−1 ∩ (S \ Mxi
) which, by Lemma 10, is a finite

intersection of clopens, hence a clopen itself.

6 Concluding remarks and further work

We have defined the notions of state of knowledge and of state topology. We have then
redefined in the more general setting of non-monotonic learning, the concepts of individual
(here called “solution”) and of interactive realizer that we treated elsewhere, proving the
completeness of learnability w.r.t. validity, which is the counterpart of classical truth in the
present setting.

S. Berardi and U. de’Liguoro 91

The definitions and results obtained are aimed at the development of a full theory of
learning strategies and of their convergence properties, which is work in progress. We
also observe that the solution and the realizer illustrated in the examples of §5 are crude
simplifications of the learning strategy implicit in the example of §2, which is capable of
using the counterexamples in a more ingenuous and efficient way. The investigation of the
interpretation of classical proofs in terms of learning strategies is a natural further step,
extending the work we have done in the monotonic case.

Since learning strategies working with finite approximations are effective (and indeed we
have shown that finite and sound knowledge states exist and suffice), a question of efficiency
of the algorithms one extracts from proofs with our method is naturally there, together with
the analysis of suitable data structures representing time and logical dependancies, which
are essential to complete the present approach.

References
1 Federico Aschieri and Stefano Berardi. Interactive Learning-Based Realizability for Heyting

Arithmetic with EM1. Logical Methods in Computer Science, 6(3), 2010.
2 Stefano Berardi and Ugo de’ Liguoro. Toward the interpretation of non-constructive reas-

oning as non-monotonic learning. Information and Computation, 207(1):63–81, 2009.
3 Stefano Berardi and Ugo de’ Liguoro. Interactive realizers. A new approach to program

extraction from non constructive proofs. ACM Transactions on Computational Logic,
13(2):11:1–11:21, 2012.

4 Thierry Coquand. A semantics of evidence for classical arithmetic. In Gordon Plotkin
Gérard Huet and Claire Jones, editors, Proceedings of the Second Workshop on Logical
Frameworks, pages 87–99, http://www.lfcs.inf.ed.ac.uk/research/types-bra/proc/,
1991.

5 Thierry Coquand. A semantics of evidence for classical arithmetic. J. Symb. Log., 60:325–
337, 1995.

6 Daniel Fridlender. Highman’s lemma in theory. In Eduardo Giménez and Christine Paulin-
Mohring, editors, Types for Proofs and Programs, International Workshop TYPES’96, Aus-
sois, France, December 15-19, 1996, Selected Papers, volume 1512 of LNCS, pages 112–133,
1998.

7 Gerhard Gierz, Karl Heinrich Hofmann, Klaus Keimel, Jimmie D. Lawson, Michael Mis-
love, and Dana S. Scott. Continuous Lattices and Domains, volume 93 of Encyclopedia of
Mathematics and its Applications. Cambridge University Press, 2003.

8 E. Mark Gold. Limiting recursion. J. Symb. Log., 30:28–48, 1965.
9 E. Mark Gold. Language identification in the limit. Information and Control, 10:447–474,

1967.
10 Timothy G. Griffin. The formulae-as-types notion of control. In Conf. Record 17th Annual

ACM Symp. on Principles of Programming Languages, POPL’90, San Francisco, CA, USA,
17–19 Jan 1990, pages 47–57. ACM Press, New York, 1990.

11 Susumu Hayashi. Mathematics based on incremental learning, excluded middle and induct-
ive inference. Theor. Comp. Sci., 350:125–139, 2006.

12 Jean-Louis Krivine. Realizability in classical logic. In Interactive Models of Computation
and Program Behavior, Panoramas et Synthèses, 2009.

13 Alexandre Miquel. Existential witness extraction in classical realizability and via a negative
translation. Logical Methods in Computer Science, 7(2), 2011.

14 Jan von Plato. A Constructive Approach to Sylvester’s Conjecture. J. UCS, 11(12):2165–
2178, 2005.

CSL’12

Bounded Satisfiability for PCTL†

Nathalie Bertrand1,2, John Fearnley2, and Sven Schewe2

1 Inria Rennes Bretagne Atlantique, Rennes, France
2 Department of Computer Science, University of Liverpool, Liverpool, UK

Abstract
While model checking PCTL for Markov chains is decidable in polynomial-time, the decidability
of PCTL satisfiability is a long standing open problem. While general satisfiability is an intriguing
challenge from a purely theoretical point of view, we argue that general solutions would not be
of interest to practitioners: such solutions could be too big to be implementable or even infinite.
Inspired by bounded synthesis techniques, we turn to the more applied problem of seeking models
of a bounded size: we restrict our search to implementable – and therefore reasonably simple
– models. We propose a procedure to decide whether or not a given PCTL formula has an
implementable model by reducing it to an SMT problem. We have implemented our techniques
and found that they can be applied to the practical problem of sanity checking – a procedure
that allows a system designer to check whether their formula has an unexpectedly small model.

1998 ACM Subject Classification I.2.2 Automatic Programming, F.4.1 Mathematical Logic.

Keywords and phrases Satisfiability, Temporal Logic, Probabilistic Logic.

Digital Object Identifier 10.4230/LIPIcs.CSL.2012.92

1 Introduction

PCTL [9] is a popular logic for the specification of probabilistic systems. The model checking
problem for PCTL formulas over Markov chains has been widely studied: it is known to
be solvable in polynomial time, and mature tools, such as PRISM [13] and MRMC [10],
have been developed. By contrast, satisfiability procedures for PCTL have received much
less attention. Recently, it has been shown that the satisfiability problem for the qualitative
fragment of PCTL is EXPTIME-complete [4]. However, the satisfiability problem for PCTL
itself is not even known to be decidable.

In this paper, we take a step back, and ask the following question: even if we could find
an algorithm for the satisfiability of PCTL, would it be useful to a practitioner? We believe
that it would not. Even in the qualitative fragment of PCTL, there are already formulas
for which there are only infinite state models. Moreover, the problem of deciding, for this
fragment of PCTL, whether there is a finite model is EXPTIME-hard [4]. Obviously, the
situation is at least as bad for the full PCTL logic.

When practitioners use satisfiability procedures, it is likely that they are interested in
whether their formula has an implementable model. A constructive satisfiability procedure
may return an infinite state model, or a model with bizarre transition probabilities that may
be difficult to implement in practice. Neither of these two situations seems to be desirable.
Hence, our goal is to solve the following problem.

“Does a PCTL specification φ have an implementable model?”

† This work was supported by the Engineering and Physical Science Research Council grant
EP/H046623/1 ‘Synthesis and Verification in Markov Game Structures’ and a Leverhulme Trust Vis-
iting Fellowship. Full version available at http://arxiv.org/abs/1204.0469.

© Nathalie Bertrand, John Fearnley, and Sven Schewe;
licensed under Creative Commons License NC-ND

Computer Science Logic 2012 (CSL’12).
Editors: Patrick Cégielski, Arnaud Durand; pp. 92–106

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2012.92
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

N. Bertrand, J. Fearnley, and S. Schewe 93

Our results are inspired by the work on bounded synthesis for LTL specifications [16, 8, 6,
11, 7], where the question of whether there is a small reactive system for an LTL formula is
considered. Building on this, we define the bounded satisfiability problem for PCTL formulas,
where the goal is to find a simple model of a PCTL formula. In our setting, a model is simple
if it has a small number of states, and if it uses only rational transition probabilities that
can be easily simulated by, for example, coin tossing. We believe that having a simple model
is a prerequisite for having an implementable model. Certainly, infinite models, and models
whose probabilities cannot be simulated by coin tossing do not seem to be useful in practice.

Results

In this paper, we introduce the concept of a simple model, and the bounded satisfiability
problem. This is the problem of finding, for a given PCTL formula φ and bound b, a simple
model of φ with at most b states. We provide a reduction from bounded satisfiability to
SMT. While PCTL satisfiability is not known to be decidable, our results show that the
bounded satisfiability problem can be decided. We also provide complexity results for the
bounded satisfiability problem. We show that it is NP-complete in the size of the minimal
model. Furthermore, we show that approximating the size of the minimal model is NP-hard.

We have constructed a simple implementation of our reduction from bounded satisfiab-
ility to SMT, and we have solved the resulting constraint systems using the Yices SMT
solver [5]. We tested this implementation on an academic case study, and our results show
that the bounded satisfiability problem can indeed be solved when the number of states
required is small.

Practical Applications

While our simple implementation does show that small models can be found by our tech-
niques, the size of these models is clearly well below what would be required for constructing
systems in an industrial setting. On the other hand, we argue that a bounded synthesis pro-
cedure for even a small number of states is useful for the purpose of sanity checking.

In model checking, we attempt to verify that a potentially buggy system satisfies a
specification. However, in recent years it has become increasingly clear that the specification
itself may also contain bugs. See, for example, the work on vacuity checking [3, 15, 12, 1, 2].
It can also be remarkably difficult to detect these errors, since a model checking procedure
will simply output “yes” in the case where a buggy system satisfies the buggy specification.

We propose that bounded satisfiability has a role to play in helping system designers find
bugs in their specifications. Consider, for instance, a complicated specification of a network
protocol that allows, among many other things, the network to go down and subsequently be
recovered. A buggy specification may allow a model that goes down immediately after service
has been restored, which would allow the model to circumvent most of the specification.
This model will have far fewer states than a model that implements a correctly functioning
network. In this case, while a correct system may be too large to build with our techniques,
it is quite possible that the broken system could be built.

Hence, we propose that bounded satisfiability should be used as a sanity check, in order
to test that a formula does not have an error that can be exploited by a small model. Sup-
pose that a system designer has a large system that is known to satisfy some complicated
specification. If the bounded satisfiability procedure produces a small model for the spe-
cification, then there is a problem that can be resolved in one of two ways. Firstly, it may
be the case that the small model does precisely what the designer wants, and in this case

CSL’12

94 Bounded Satisfiability for PCTL

the overly-complex large system can be replaced by the small one. The more likely outcome
is that the small model does not do what the designer intended. In this case, the designer
now has a small counter-example, which can be used to help correct the specification.

Our experimental results show that our procedure is particularly suitable for sanity
checking. While our implementation does not seem to scale well with the number of states
in the model, it does scales well with size of the input formula. This indicates that sanity
checking may indeed be possible for the type formulas that are used in practice.

2 Preliminaries

2.1 Markov chains
We recall below the definition of discrete-time Markov chains, simply referred to as Markov
chains in the sequel.

I Definition 1 (Markov chain). A Markov chain is a tuple M = (S,P, ι, L), where S is a
finite or countable set of states, P : S × S → [0, 1] is a probabilistic transition function,
ι ∈ S is an initial state, and L is a labelling function mapping states to atomic propositions.
P satisfies, for all s ∈ S:∑

s′∈S
P(s, s′) = 1

A path inM is a sequence of states π = s0s1 · · · ∈ S∗ such that, for every i ∈ N, P(si, si+1) >
0. The set of all paths starting in a state s ∈ S is denoted Paths(s). In order to define a
probability measure PrM over suitable sets of paths, we first explain how a measure is
associated with basic sets of paths called cylinder sets, which gather all paths sharing a
given finite prefix. For s0s1 · · · sk a finite sequence of states, we let Cyl(s0s1 · · · sk) = {π ∈
Paths(s0) | s0s1 · · · sk ≺ π} where ≺ is the usual prefix order, and define its measure as
Prs0
M(Cyl(s0s1 · · · sk)) =

∏
0≤i<k P(si, si+1). For s 6= s0, PrsM(Cyl(s0s1 · · · sk)) = 0.

Now PrsM can be extended to a set of reasonable sets of paths, namely the σ-algebra
generated from cylinder sets. This σ-algebra over Paths(M) =

⋃
s∈S(Paths(s)) precisely

consists of the smallest collection of sets of paths in M that contains the empty set, all
Cyl(s0s1 · · · sk) for any finite sequence s0s1 · · · sk of states, and is closed under complement-
ation and countable union. The extension of PrsM from cylinders to the σ-algebra they
generate is unique, and we still denote it PrsM. Note that not all sets of paths are measur-
able with respect to PrsM, but the sets we will consider in this paper are simple enough to
avoid such difficulties. We use PrM as an abbreviation of PrιM.

2.2 PCTL
Probabilistic computation tree logic (PCTL) [9] is a probabilistic variant of CTL, where
path quantifiers are replaced by probabilistic operators. PCTL is interpreted over Markov
chains, and one can for example specify that the probability measure of the set of paths
satisfying a given until property exceeds some threshold. Formally, the syntax of PCTL is
given by the following grammar:

I Definition 2 (PCTL syntax). Let AP be a set of atomic propositions. The syntax of a
PCTL formula is:

φ ::= > | a | φ ∧ φ | ¬φ | P./λτ
τ ::= © φ | φ U φ | φ U≤n φ

N. Bertrand, J. Fearnley, and S. Schewe 95

where a ∈ AP is an atomic proposition, ./ is a comparison operator in {<,≤,=,≥, >},
λ ∈ [0, 1] is a rational threshold, and n ∈ N.

Formulas produced by the production rules of φ and τ are called state formulas and path
formulas, respectively. State formulas are also called PCTL formulas. PCTL formulas are
interpreted over Markov chains. The step-bounded until operator has the intuitive semantics
that P./λ(φ U≤n ψ) is true if the probability is ./ λ that “ψ holds within the next n steps,
and φ is true until ψ is true”. Hence, the step-unbounded until formula P./λ(φ U ψ) can be
thought of P./λ(φ U<∞ ψ).

The syntax and semantics of PCTL only differ from those of CTL by using probabilistic
path operators P./λ(© · · ·), P./λ(· · · U · · ·) and P./λ(· · · U≤n · · ·) instead of universal and
existential ones.

I Definition 3 (PCTL semantics). LetM = (S,P, ι, L) be a Markov chain, s ∈ S a state of
M, and φ, φ′ PCTL formulas. We have:
M, s |= > for all s ∈ S,
M, s |= a iff a ∈ L(s),
M, s |= φ ∧ φ′ iffM, s |= φ andM, s |= φ′,
M, s |= ¬φ iffM, s 6|= φ,
M, s |= P./λτ iff Pr sM

(
{π ∈ Paths(s) | π |= τ}

)
./ λ.

Finally, for a path π = s0s1 · · · ∈ Paths(s) and PCTL formulas φ, φ′ we have:
M, π |=© φ iff s1 |= φ,
M, π |= φ U φ′ iff ∃i. si |= φ′ and ∀j < i. sj |= φ,
M, π |= φ U≤n φ′ iff ∃i ≤ n. si |= φ′ and ∀j < i. sj |= φ.

Note that the semantics is well-defined because specified sets of paths are indeed measurable.
We use the usual shorthand notations known from CTL, such as ♦ φ ≡ > U φ and � φ ≡
¬♦ ¬φ. Using duality of eventually and always operators and the duality of lower and
upper bounds of our probabilistic path operators, we can, for example, express P≤λ(� φ) ≡
P≥1−λ(♦ ¬φ).

3 Setting and problem statement

The model checking problem for PCTL over Markov chains is known to be solvable in
polynomial time [9]. In contrast to this, satisfiability, that is, the decision problem that asks
whether or not a formula has a model, is a long standing open problem for PCTL. Only
recently, satisfiability for the restricted fragment of qualitative PCTL, where thresholds can
only take value 0 or 1, has been shown to be decidable (EXPTIME-complete [4]). Already
this qualitative fragment does not have the finite model property. As an example formula
φ = P>0

(
� (¬a∧P>0©a)

)
is satisfiable (it has a model with infinitely many states) but has

no finite model [4]. Whether or not a formula has a model surely is a challenging theoretical
question, but ultimately not a question of practical interest, especially if all of its models are
infinite. On the contrary, an interesting question in practice is whether or not a formula has
a simple model, where by ‘simple’ one intends reasonably small and implementable, at least.
The problem is then to determine whether or not a formula admits a model with a bounded
number of states. This bounded satisfiability problem [16, 8, 6, 11, 7] has first been studied
in [16] for LTL and distributed architectures, where it is reduced to an SMT problem.

In the context of the probabilistic branching time logic PCTL and Markov chain models,
we advocate that non-implementability can not only result from a large (or even infinite)
state space, but also from the transition probabilities. The representation of arbitrary

CSL’12

96 Bounded Satisfiability for PCTL

01

2

3

1−
√

1
2

1

1−
√

1
2

1−
√

1
2

√
1
2

√
1
2

√
1
2

Figure 1 An irrational model for ψ0.

01

2

3

3

2

1
1
2

1
2

1
2

1
2

1
2

1
2

1

11

1

Figure 2 A simple model for ψ0.

rational or irrational probabilities definitely forms a source of complexity when it comes to
implementing a system described by a model. To illustrate this problem, let us consider
the following PCTL formula over 2 atomic propositions {p, q}, which are used to encode
0 ≡ ¬p ∧ ¬q, 1 ≡ ¬p ∧ q, 2 ≡ p ∧ ¬q, and 3 ≡ p ∧ q.

ψ0 :=1 ∧ P=1�

((
0→ P=1(© 0)

)
∧
(

1→ P=1(© (2 ∨ 0))
)
∧
(

2→ P=1(© (3 ∨ 0))
)
∧
(

3→ P=1(© (1 ∨ 0))
)

∧
(

1→ P=1/2(1 ∨ 2 U 3)
)
∧
(

2→ P=1/2(2 ∨ 3 U 1)
)
∧
(

3→ P=1/2(3 ∨ 1 U 2)
))

The formula specifies that the initial state is labelled with 1, and the 0 states form a sink.
It also requires that all successors of states labelled 1 are labelled 2 or 0 (and similarly
for 2 and 3); and last, with probability exactly 1

2 , from the state labelled 1, only 1 or 2
are visited until the state labelled 3 is reached (symmetrically for 2 and 3). A model with
four states for this formula is represented in Figure 1. Although the bounds in ψ0 are all
rationals (as required by the PCTL syntax), the formula forces every four-state model to
have irrational probabilities on their edges. Indeed, the model shown in Figure 1 is the only
four state model of ψ0. The first two lines of ψ0, for example, require that the initial state
is labelled with 1, and that all successors of states labelled with 0 must also be labelled
with 0. Also, successors of state 1 are among 0 and 2, and so forth. Moreover, letting
P(i, j) be the probability to transition from state i to state j, the three last conjuncts
in ψ0 imply that P(1, 2) · P(2, 3) = P(2, 3) · P(3, 1) = P(3, 1) · P(1, 2) = 1

2 . This yields
P(1, 2) = P(2, 3) = P(3, 1) =

√
1
2 . We emphasise that models with irrational probabilities

are not implementable, because they require infinite memory.
If we use the same example formula ψ0 but allow for a larger number of states, then

the specification becomes easier to satisfy. Seven states suffice for the rational model shown
in Figure 2. This model uses only rational probabilities. Moreover, all transitions carry
the probability 1

2 or 1. If we allow for multi-graphs, then we can split transitions with
probabilities 1 into two transitions with probability 1

2 with the same source and target.
This inspires our definition of simple models: this example model can be represented as a
multi-graph with two (potentially equivalent) outgoing transitions per node, each of which
is taken with probability 1

2 .
Moreover, any rational probability p

q can be written using its binary encoding of the
form 0.vwω with v, w ∈ {0, 1}∗. A transition from state s to state s′ with probability 3

10 , for

N. Bertrand, J. Fearnley, and S. Schewe 97

example, can be written 0.0(1001)ω, and can be encoded by the Markov chain below, where
all transition probabilities are 1

2 :

s s′

We now introduce simple Markov chains (SMCs) and discuss the semantics of PCTL
when applied to simple Markov chains.

I Definition 4 (Simple Markov Chains). A Markov chainM = (S,P, ι, L) is called a simple
Markov chain (SMC) if it satisfies the following.

The state space ofM is finite (|S| ∈ N).
The domain of the probability function P is {0, 1

2 , 1}.
M contains an atomic proposition p∃ that cannot be used in specifications. A state s
is called a real state if p∃ is contained in its label (p∃ ∈ L(s)), and it is called a hidden
state otherwise.
The initial state ι is real, and, from each state, there is a path to a real state.

Intuitively, hidden states are the states used to simulate probabilities that are not 1
2 ,

and the last constraint guarantees that the probability measure of paths that eventually
always stay in hidden states is 0. For the purposes of PCTL, the hidden states should not
be counted towards the truth of a path formula. In particular, the next operator should
refer to the next real state, and the bounded until operator with bound n should refer to an
until that should be satisfied after n real states have been seen. The SMC semantics thus
differs from the standard PCTL semantics in the definition of path formulas, which we now
redefine.

I Definition 5 (SMC Semantics). The semantics of state formulas is as in Definition 3, while
the definition of path formulas changes as follows:
M, π |=SMC © φ iff ∃i. si |=SMC φ and si is real and ∀0 < j < i. sj is hidden,
M, π |=SMC φ U φ′ iff ∃i. si |=SMC φ′ and si is real and ∀j < i. either sj |=SMC φ or
sj is hidden,
M, π |=SMC φ U≤n φ′ iff ∃i. si |=SMC φ′ and si is real and ∀j < i. either sj |=SMC φ

or sj is hidden and |{j < i | sj is real }| ≤ n.

Given a Markov chain with rational transition probabilities, we have already shown
how an equivalent simple Markov chain can be constructed, by simulating the transition
probabilities with hidden states. On the other hand, every simple Markov chain has an
equivalent Markov chain, which can be obtained by computing the probability of moving
from one real state to the next in the simple Markov chain. Therefore, we obviously have
the following equivalence.

I Proposition 6. For a PCTL formula φ, there is a finite Markov chain M with rational
transition probabilities and M |= φ if, and only if, there is a simple Markov chain M′ that
satisfiesM′ |=SMC φ.

Having only transition probabilities 1
2 and 1 is very convenient in practice, because then

all random choices can immediately be simulated by a device as simple as tossing a fair
coin. The example formula ψ0 and the argumentation above motivate the quest for models
that are simple in two respects: they have a reasonable number of states, and all transition
probabilities are equal to 1

2 or 1. We can now formally state our bounded satisfiability
problem:

CSL’12

98 Bounded Satisfiability for PCTL

I Definition 7 (Bounded satisfiability problem). Input: A PCTL formula φ and a bound
b ∈ N.
Question: Does there exist a simple Markov chain M with at most b states, such that
M |=SMC φ?

For PCTL, the synthesis problem can be solved by a satisfiability algorithm. Suppose
we want a probabilistic environment that gives us proposition p with probability 0.5, and
not p with probability 0.5. Then, we can add the following requirement to our formula:

P=1�
(
P=0.5(©p) ∧ P=0.5(©¬p)

)
.

This can obviously be generalised for multiple input propositions, and non-uniform probab-
ility distributions.

To check whether there is a simple modelM of φ with b states that satisfies a formula can
clearly be done in non-deterministic polynomial time in the size of the related model checking
problem (that is, in the joint size of the model and specification): it can simply guess the
model and then check its correctness in polynomial time. It is also NP hard. Indeed, from
a SAT instance f and a bound b, one can build a formula for which the smallest model is
of size b if f is satisfiable and b + 1 is f is not satisfiable. Intuitively, using bit strings to
encore numbers between 1 and b+ 1, one can force the model to have b different states, and
if f is unsatisfiable, require an extra state.

I Proposition 8. For a given PCTL formula φ and a bound b, the problem of deciding
whether there is a simple modelM withM |=SMC φ that has b states is NP-complete in the
joint size of φ andM.

Moreover, we can also show that approximating the size of a smallest model is NP-hard.
The reason for this is that it is simple to find a PCTL formula for which the smallest model
is of size ≈ 2n, where n is polynomial in the specification. Hence, we can construct a PCTL
formula φ that either requires that a boolean formula ψ is true in the first state, or requires
that we build an exponential model. Therefore, if ψ has a satisfying assignment, then φ has
a model of size 1, otherwise the smallest model of φ has exponentially many sates.

I Proposition 9. It is NP-hard to approximate the size of the smallest model of a PCTL
formula φ within a factor that is polynomial in |φ|.

4 Reduction to an SMT problem

A satisfiability modulo theories (SMT) problem is the decision problem that consists in
determining whether or not a logical formula expressed in boolean logic and using additional
theories is satisfiable. Let φ be a PCTL formula over a set of atomic propositions AP .
Suppose that we wish to solve the bounded satisfiability problem for φ with the bound b. In
this section we will construct a system of SMT constraints that are satisfiable if, and only
if, the formula φ has a model with b states. The size of the SMT formula will be linear in
the number of sub-formulas in φ, and the SMT formula can be constructed in linear time
(assuming that the bounds for bounded until formulas are given in unary). The theories we
use in our SMT constraints are linear real arithmetic and uninterpreted function symbols.
SMT for for this theory is NP-complete.

N. Bertrand, J. Fearnley, and S. Schewe 99

4.1 The model
We begin by introducing the functions and constraints that will define our model. We define
the type States = {1, 2, . . . , b}, with the intention that each integer in States will represent
one state of the model. We define the following functions.

We define the left successor function left : States → States and the right successor
function right : States → States. These functions give the two outgoing transitions from
each of the states. A transition from a state s to a state s′ with probability 1 can be
simulated by setting left(s) = right(s) = s′.
We define the existence function exists : States → B, where exists(s) is true if s is a real
state, and false if s is a hidden state.
For each atomic proposition a ∈ AP , we define a function trutha : States → B, where
trutha(s) indicates that the atomic proposition a is true in state s.

Using the functions we have defined, it is possible to define a model that visits only a
finite number of real states before getting stuck in hidden states. To avoid this, we introduce
a function dist∃ : States→ [0, 1], and the following two constraints:

∀s · exists(s)↔ dist∃(s) = 0,

∀s · ¬exists(s)→
(

dist∃(s) > dist∃(left(s))
)
∨
(

dist∃(s) > dist∃(right(s))
)
.

The first constraint states that dist∃(s) may only be 0 when s is real. The second constraint
states that at each hidden state, the value of dist∃(s) must be strictly larger than either
dist∃(left(s)) or dist∃(right(s)).

We argue that, if the model satisfies these two constraints, then it cannot get stuck in
hidden states. A hidden state s can satisfy the second constraint if, and only if, there is
a finite path from s to a real state. Hence, there is some probability p, with p > 0, to
move from s to some real state. Since this holds for all hidden states, the probability of not
eventually reaching a real state must be 0.

4.2 The formula
For each sub-formula ψ of φ, we associate a function satψ : States → B, where satψ(s) will
be true if and only if state s satisfies ψ. In this section we will describe the constraints that
are placed on satψ.

Non-temporal operators

We begin by giving the constraints for satψ for the case where ψ is a non-temporal operator.
We define the following constraints:

If ψ is an atomic proposition a ∈ AP , then we add the constraint:

∀s · satψ(s)↔ trutha(s). (1)

If ψ is ¬ψ′, then we add the constraint:

∀s · satψ(s)↔ ¬satψ′(s). (2)

If ψ is ψ1 ∧ ψ2, then we add the constraint:

∀s · satψ(s)↔ satψ1(s) ∧ satψ2(s). (3)

CSL’12

100 Bounded Satisfiability for PCTL

Next formulas

We now define the constraints on satψ(s) in the case where ψ is P./λ(© ψ′). It should be
noted that we are only interested in whether ψ′ holds in the next real state, and that we
must account for the fact that several hidden states may be visited before we arrive at a
real state. It is for this reason that we introduce the function valueψ : States → [0, 1]. Our
intention is that this function should give, for each hidden state, the probability that ψ′
holds in the next real state. We define the following constraints on valueψ(s).

∀s · exists(s) ∧ satψ′(s)→ valueψ(s) = 1,
∀s · exists(s) ∧ ¬satψ′(s)→ valueψ(s) = 0,

∀s · ¬exists(s)→ valueψ(s) = 1
2 ·
(

valueψ(left(s)) + valueψ(right(s))
)
.

The first two constraints set the value of a real state s to be either 1 or 0 depending on
whether ψ′ holds at s. The final constraint sets the value of a hidden state to be the average
of the values of its successors. Recall that we have already introduced constraints to ensure
that the system cannot get stuck in hidden states. Therefore, these constraints are sufficient
to force, for each hidden state s, the function valueψ(s) to give the probability that ψ′ holds
at the next real state.

We can now introduce the constraint for satψ(s). This constraint simply checks whether
the probability of ψ′ occurring in the next real state satisfies the bound ./ λ.

∀s · satψ(s)↔ 1
2 ·
(

valueψ(left(s)) + valueψ(right(s))
)
./ λ.

Until formulas

We now define the constraints on satψ(s) in the case where ψ is P./λ(ψ1 U ψ2). Following our
approach for the next operator, we once again define a function valueψ : States→ [0, 1]. Our
intention is that valueψ(s) should give the probability that the until formula ψ is satisfied
at the state s. We place the following constraints on the function valueψ:

∀s · exists(s) ∧ satψ2(s)→ valueψ(s) = 1,
∀s · exists(s) ∧ ¬satψ1(s) ∧ ¬satψ2(s)→ valueψ(s) = 0,
∀s · ¬exists(s) ∨

(
satψ1(s) ∧ ¬satψ2(s)

)
→

valueψ(s) = 1
2 · (valueψ(left(s)) + valueψ(right(s))).

The first constraint sets the probability to 1 for real states that satisfy the right-hand side
of the until, and the second constraint sets the probability to 0 for real states that satisfy
neither the left-hand side nor the right-hand side of the until. The final constraint deals
with real states that only satisfy the left-hand side of the until, and with hidden states. In
both of these cases, we set the probability of the state to be the average of the probability
of its successors.

In contrast to the next operator, the constraints that we have introduced are not sufficient
to capture the probability of an until operator. To see the problem, consider a model in
which ψ1 is satisfied at all states, and ψ2 is not satisfied at any state. Our constraints so
far would allow valueψ(s) to take any value in [0, 1] in such a model. To solve this, we
introduce a distance function distψ : States → [0, 1], which ensures that ψ2 can be reached

N. Bertrand, J. Fearnley, and S. Schewe 101

with non-zero probability.

∀s · exists(s) ∧ satψ2(s)↔ distψ(s) = 0,
∀s · valueψ(s) = 0↔ distψ(s) = 1,
∀s · valueψ(s) 6= 0 ∧

(
¬exists(s) ∨ ¬satψ2(s)

)
→(

distψ(s) > distψ(left(s))
)
∨
(

distψ(s) > distψ(right(s))
)
.

If a state satisfying ψ2 can be reached with non-zero probability from a state s, then it is
clear that we can set distψ(s) < 1. On the other hand, if no state satisfying ψ2 can be reached
from s, then the third constraint cannot be satisfied. Therefore, the second constraint must
be used, which sets distψ(s) = 1, and then correctly sets valueψ(s) = 0.

Having specified the value function valueψ, the constraint for the function satψ simply
compares the value to the bound given by λ:

∀s · exists(s) ∧ satψ(s)↔ valueψ(s) ./ λ.

Bounded until formulas

We now give the constraints for satψ for the case where ψ is P./λ(ψ1 U≤n ψ2). The con-
straints that we introduce here can be seen as a generalisation of the constraints that
are used for next formulas. For each i in the range 0 ≤ i ≤ n, we introduce a function
valueψ,i : States → [0, 1]. The function valueψ,i(s) is intended to give the probability that
ψ1 U≤i ψ2 holds at the state s. We can start by giving a constraint for the function valueψ,0:

∀s · exists(s) ∧ satψ2(s)→ valueψ,0(s) = 1,
∀s · exists(s) ∧ ¬satψ2(s)→ valueψ,0(s) = 0,

∀s · ¬exists(s)→ valueψ,0(s) = 1
2 ·
(

valueψ,0(left(s)) + valueψ,0(right(s))
)
.

Having defined valueψ,0, we can now define valueψ,i inductively. For each i in the range
1 ≤ i ≤ n, we add the constraints:

∀s · exists(s) ∧ satψ2(s)→ valueψ,i(s) = 1,
∀s · exists(s) ∧ ¬satψ1(s) ∧ ¬satψ2(s)→ valueψ,i(s) = 0,
∀s · exists(s) ∧ satψ1(s) ∧ ¬satψ2(s)→

valueψ,i(s) = 1
2

(
valueψ,i−1(left(s)) + valueψ,i−1(right(s))

)
,

∀s · ¬exists(s)→ valueψ,i(s) = 1
2 ·
(

valueψ,i(left(s)) + valueψ,i(right(s))
)
.

The first two constraints deal with the case where ψ2 is true at a real state, and the case
where ψ1 and ψ2 are both false at a real state, respectively. The third constraint deals with
real states at which ψ1 is true, and ψ2 is false. In this case, the probability that ψ1 U≤i ψ2
holds at s is the same as the probability that ψ1 U≤i−1 ψ2 holds in the next real state.
Hence, the third constraint takes the average of valueψ,i−1 over the successors of s. Finally,
the fourth constraint deals with the hidden states. Since moving through a hidden state
does not count towards the step bound of the until, we take an average of valueψ,i over the
successors for the hidden states.

Having defined the function valueψ,i for all i in the range 0 ≤ i ≤ n, we can now define
the function satψ by comparing the value given by valueψ,n with the bound λ.

∀s · exists(s) ∧ satψ(s)↔ valueψ,n(s) ./ λ.

CSL’12

102 Bounded Satisfiability for PCTL

The formula φ

At this point, we have introduced constraints over satψ for every sub-formula of the input
formula φ. Our final task is to ensure that φ itself holds at some real state in the model. To
do this, we arbitrarily pick State 1, and we require that State 1 is real, and that φ holds at
State 1. Hence, to complete our reduction, we add the constraint:

exists(1) ∧ satφ(1).

5 Implementation and results

5.1 Implementation

In this section we describe an implementation of the reduction given in Section 4. In fact,
we implement a slightly simpler version of the reduction. In particular, it would obviously
be inefficient to produce the function satψ for the case where ψ is of the form ¬ψ′, ψ1∧ψ2, or
a for some atomic proposition a ∈ AP . Instead, we carry out the reduction as normal, and
then we iteratively apply the identities given in (1), (2), and (3). For example, we replace
all instances of satψ1∧ψ2 with satψ1(s)∧ satψ2(s). We iterate this procedure until none of the
three identities can be applied.

Our implementation consists of a parser that reads PCTL formulas, performs the re-
duction to SMT, and then outputs the system of SMT constraints. To solve the system of
constraints, we experimented with several prominent SMT solvers, and we found that the
Yices [17] solver was by far the fastest for our inputs. Hence, all the results described in this
section were obtained using Yices-1.0.32 on a machine with a 2.66 GHz Core i7 processor
and 4 GB of RAM. The implementation as well as the examples we report on are available
for download at http://www.csc.liv.ac.uk/~john/static/pctl-smt.tar.bz2.

Our initial intention was to test our techniques against PCTL formulas from the liter-
ature. However, after attempting to find such formulas, we ran into a problem: the PCTL
formulas that we found in the literature are not interesting from the perspective of satisfiab-
ility. Formulas that are given as examples in model checking papers are often very simple,
because the authors are usually interested in the performance when measured in the size
of the system. This meant that most of the formulas that we found had extremely simple
satisfying models. For example, all of the formulas that appear in [14] have 1 state satisfying
models, and as we shall see, these instances are not challenging for our implementation. The
same problem occurs for all other examples that we found in the literature. Therefore, in
the following subsections, we construct two scalable PCTL formulas that can be used to
measure the performance of our implementation.

5.2 The lossy channel example

In this section, we test how well our implementation can construct systems. We define
a formula channelu that represents a lossy channel with u users. For each i in the range
1 ≤ i ≤ u, there is an atomic proposition sendi, which indicates that user i wishes to send a
message, and an atomic proposition deliveri, which indicates that the message belonging to

http://www.csc.liv.ac.uk/~john/static/pctl-smt.tar.bz2

N. Bertrand, J. Fearnley, and S. Schewe 103

41

2

3

∀i·sendi

deliver1

∀i·sendi

deliver2

∀i·sendi

deliver3

∀i·¬sendi

∀i·¬deliveri

Figure 3 A model for channel3.

Users Time (s)

2 0.063
3 0.765
4 12.879
5 18.172
6 8784.490

Figure 4 Experimental results for channelu.

user i has been delivered. The formula channelu is defined to be:

channel1,u := P≥0.1(©
∧

1≤i≤u
¬deliveri)

channel2,u :=
∧

1≤i≤u
P=0.5(© sendi)

channel3,u :=
∧

1≤i≤u

(
sendi → P=1(> U deliveri)

)
channel4,u :=

∧
1≤i≤u

(deliveri →
∧

1≤k≤u,k 6=i
¬deliverk)

channelu := P=1

(
� (channel1,u ∧ channel2,u ∧ channel3,u ∧ channel4,u)

)
.

The formula channel1,u specifies that the channel is lossy: specifically that at least ten
percent of the time the channel should not deliver a message at all. The formula channel2,u
specifies that the users should actually use the channel. It states that, in each step, there
is a fifty percent chance that each user attempts to send a message. The formula channel3,u
states that, once a message has been sent, it should eventually be delivered. Finally, the
formula channel4,u states that the channel may only deliver one message in each step.

The formula channelu has a model with u+ 1 states. For example, in Figure 3, we show
the structure of a model for channel3. The atomic propositions send1, send2, and send3, are
true in all states but state 4. We also have that deliver1 is true in state 1, that deliver2 is
true in state 2, and that deliver3 is true in state 3. Other than these exceptions, the deliveri
atomic propositions are false at all other states.

It is also not difficult to see that the formula channelu cannot have a model with fewer
than u+ 1 states. This is because, with probability 1, each of the sendi atomic propositions
must become true. Once this has occurred, we require at least u + 1 distinct states: since
two messages cannot be delivered at the same time, we require at least one state for each
deliveri, and since the channel is lossy, we require at least one state in which no deliveri is
true.

In the table in Figure 4, we show experimental results for the formula channelu. In each
case, we asked our implementation to find a model with u+1 states for the formula channelu.
These results show that our implementation can construct systems with a small number of
states very quickly. However, the exponential nature of the problem catches up to us quite
quickly, and checking for the existence of a model with 7 states for the formula channel6
already takes more than two hours. The SMT solver was not able to solve the constraint

CSL’12

104 Bounded Satisfiability for PCTL

system for channel7 within a reasonable amount of time. (We stopped the experiment after
a day.)

5.3 A lossy channel with bugs
In this section we study the ability of our implementation to find bugs in specifications. We
define an extension to our lossy channel that allows the system to go down, and we will
require that, if the system does go down, then a number of recovery steps will be taken in
order to restore service. Unfortunately, our formula will have a bug, and our goal is to find
out how well our implementation can find this bug.

Our formula will be called brokenu,r, which represents a lossy channel with u users, and
which can recover from an error in r steps. In addition to the atomic propositions used
by channelu, we add several new atomic propositions. The atomic proposition up indicates
whether the network is up or down. For each j in the range 1 ≤ j < r, there is an atomic
proposition recoverj , that indicates that the network is in the jth step of the recovery
procedure. We will require that each of the recovery propositions must be true before the
system can come back up.

Our formula will reuse the formulas channel1,u and channel4,u from the previous section.
However, we replace the other two formulas with the following:

broken2,u,r :=
∧

1≤i≤u
(up ∧

∧
1≤j≤r

¬recoverj)→ P=0.5(© sendi)

broken3,u,r :=
∧

1≤i≤u

(
up ∧ sendi → P=1(> U deliveri)

)
broken5,u,r :=

∧
1≤i≤u

(¬up→
∧

1≤k≤u,k 6=i
¬deliverk)

The formula broken2,u,r specifies that, if the channel is up, and not in a recovery state,
then users should be able to send messages. The formula broken3,u,r specifies that, if a user
sends a message while the network is up, then that message should be delivered. Finally,
the formula broken5,u,r specifies that, if the network is not up, then no messages can be
delivered.

In addition to these formulas, we also specify the recovery procedure. We define:

broken0
r :=

{
¬up→ P≥0.99(© up) if r = 1,
¬up→ P≥0.99(© recover1) otherwise,

and, for all j in the range 1 ≤ j ≤ r, we define:

brokenjr :=
{

recoverj → P=1(© recoverj+1 ∧
∧

1≤k≤j ¬recoverk) if j < r,
recoverj → P=1(© up ∧

∧
1≤k≤r ¬recoverk) if j = r.

If r = 1, then these formulas specify that the system should recover in one step after it
has gone down. For other values of r, these formulas specify that the system should pass
through each of the recovery states before the channel comes back up. We can now specify
the full formula:

brokenu,r := P=1

(
� (channel1,u ∧ broken2,u,r

∧ broken3,u,r ∧ channel4,u ∧ broken5,u,r ∧
∧

1≤j≤r
brokenjr)

)
.

N. Bertrand, J. Fearnley, and S. Schewe 105

31

2

4

up

¬up, ∀i·sendi

up
recover1

up, recover2

Figure 5 A model for brokenu,3.

Users Time (s)
r = 1 r = 2 r = 3 r = 4

10 0.192 0.376 13.852 89.908
20 0.609 1.643 2.666 72.341
30 0.869 2.723 58.825 278.150
40 1.139 2.153 23.023 167.234
50 1.886 10.695 55.375 336.153
60 4.510 9.624 64.603 502.790
70 6.912 11.622 54.162 216.548
80 7.672 40.855 55.568 370.268
90 4.457 46.538 151.892 565.718

100 12.111 47.440 231.619 1927.258

Figure 6 Experimental results for brokenu,r.

Unfortunately, this formula contains a bug: if the system immediately goes down after
being up, then no messages are ever delivered. Figure 5 shows the structure of a model that
satisfies brokenu,3 for all u. We have that up is satisfied in all states except 2, that recover1
is satisfied in state 3, and that recover2 is satisfied in state 4. The propositions deliveri are
not satisfied in any state, and the propositions sendi are only satisfied in state 2.

We asked our implementation to solve brokenu,r for varying values of u and r. The results
are displayed in Figure 6. These results show a similar scaling with respect to r as was found
for the previous example: as the size of the smallest model increases, our performance gets
progressively worse, and we were unable to obtain results for r = 5 within a reasonable
amount of time. However, these results show that our implementation scales well with
respect to the number of users. This indicates that, while the running time of the procedure
depends strongly on the size of the minimal model, there is a much smaller dependence on
the size of the PCTL formula. Indeed, the formula broken100,r contains over 300 temporal
operators. It is for this reason that we claim that our techniques are particularly suited
for sanity checking, because this application requires us to construct a small model for a
complex formula. These results show that our procedure can handle such situations.

6 Conclusion

In this paper, we have introduced the bounded satisfiability problem, which is a simplification
of the satisfiability problem for PCTL, that restricts consideration to models that can be
implemented. As was expected, bounded satisfiability is NP-complete in the minimal output.
To offset this negative result, we provided a reduction from bounded satisfiability to an SMT
problem, because in practice SMT solvers can often answer large queries.

Our experimental results allow for two interpretations. Our first set of experimental
results shows that the difficulty of finding a solution to the system of SMT constraints
depends strongly on the size of the minimal model. Hence, we consider it unlikely that these
techniques will be able to construct the large systems that would be useful in practice. On
the other hand, our second set of benchmarks showed that the running time of the SMT
solver does not depend strongly on the size of the PCTL formula. Indeed, we were able to
construct systems that satisfy formulas with hundreds of temporal operators. It would seem
that, while our techniques are not able to construct models that are large enough be useful
in practice, they are able to handle the large specifications that may appear in this setting.

CSL’12

106 Bounded Satisfiability for PCTL

This motivates the idea of sanity checking, where a system designer wishes to ensure that
there are no errors in a specification that could lead to a small satisfying model. Our results
indicate that our techniques are capable of providing a sanity checking procedure.

References
1 R. Armoni, L. Fix, A. Flaisher, O. Grumberg, N. Piterman, A. Tiemeyer, and M. Vardi.

Enhanced vacuity detection in linear temporal logic. In Proceedings of the 15th Interna-
tional Conference on Computer Aided Verification (CAV 2003), LNCS 2725, pages 368–380.
Springer, 2003.

2 T. Ball and O. Kupferman. Vacuity in testing. In Proceedings of the Second International
Conference on Tests and Proofs (TAP 2008), LNCS 4966, pages 4–17. Springer, 2008.

3 I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh. Efficient detection of vacuity in ACTL
formulas. Formal Methods in System Design, 18(2):141–163, 2001.

4 T. Brázdil, V. Forejt, J. Kretínský, and A. Kucera. The satisfiability problem for prob-
abilistic CTL. In Proceedings of the 23rd Annual IEEE Symposium on Logic in Computer
Science (LICS 2008), pages 391–402. IEEE Computer Society, 2008.

5 L. M. de Moura, B. Dutertre, and N. Shankar. A tutorial on satisfiability modulo theories.
In Proceedings of the 19th International Conference on Computer Aided Verification (CAV
2007), LNCS 4590, pages 20–36. Springer, 2007.

6 R. Ehlers. Symbolic bounded synthesis. In Proceedings of the 22nd International Conference
on Computer Aided Verification (CAV 2010), LNCS 6174, pages 365–379. Springer, 2010.

7 R. Ehlers. Unbeast: Symbolic bounded synthesis. In Proceedings of the 17th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS
2011), LNCS 6605, pages 272–275. 2011.

8 B. Finkbeiner and S. Schewe. SMT-based synthesis of distributed systems. In Proceedings
of the 2nd Workshop on Automated Formal Methods (AFM 2007), pages 69–76. 2007

9 H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal Aspects
of Computing, 6(5):512–535, 1994.

10 J.-P. Katoen, I. S. Zapreev, E. M. Hahn, H. Hermanns, and D. N. Jansen. The ins and outs
of the probabilistic model checker MRMC. Performance Evaluation, 68(2):90–104, 2011.

11 O. Kupferman, Y. Lustig, M. Y. Vardi, and M. Yannakakis. Temporal synthesis for bounded
systems and environments. In Proceedings of the 28th International Symposium on Theor-
etical Aspects of Computer Science (STACS 2011), LIPIcs 9, pages 615–626.

12 O. Kupferman and M. Y. Vardi. Vacuity detection in temporal model checking. Software
Tools for Technology Transfer, 4(2):224–233, 2003.

13 M. Z. Kwiatkowska, G. Norman, and D. Parker. Prism 4.0: Verification of probabilistic
real-time systems. In Proceedings of the 23rd International Conference on Computer Aided
Verification (CAV 2011), LNCS 6806, pages 585–591. Springer, 2011.

14 M. Z. Kwiatkowska, G. Norman, J. Sproston, and F. Wang. Symbolic model checking
for probabilistic timed automata. In Proceedings of the Joint International Conferences
on Modelling and Analysis of Timed and Fault-Tolerant Systems (FORMATS/FTRTFT
2004), LNCS 3253, pages 293–308. Springer, 2004.

15 M. Purandare and F. Somenzi. Vacuum cleaning CTL formulae. In Proceedings of the 14th
International Conference on Computer Aided Verification (CAV 2002), LNCS 2404, pages
485–499. Springer, 2002.

16 S. Schewe and B. Finkbeiner. Bounded synthesis. In Proceedings of the 5th International
Symposium on Automated Technology for Verification and Analysis (ATVA 2007), LNCS
4762, pages 474–488. Springer, 2007.

17 Yices website: http://yices.csl.sri.com/.

A Concurrent Logical Relation
Lars Birkedal, Filip Sieczkowski, and Jacob Thamsborg

IT University of Copenhagen, Denmark
{birkedal, fisi, thamsborg}@itu.dk

Abstract
We present a logical relation for showing the correctness of program transformations based on a
new type-and-effect system for a concurrent extension of an ML-like language with higher-order
functions, higher-order store and dynamic memory allocation.

We show how to use our model to verify a number of interesting program transformations that
rely on effect annotations. In particular, we prove a Parallelization Theorem, which expresses
when it is sound to run two expressions in parallel instead of sequentially. The conditions are
expressed solely in terms of the types and effects of the expressions. To the best of our knowledge,
this is the first such result for a concurrent higher-order language with higher-order store and
dynamic memory allocation.

1998 ACM Subject Classification F.3.1 Specifying and Verifying and Reasoning about Programs

Keywords and phrases verification, logical relation, concurrency, type and effect system

Digital Object Identifier 10.4230/LIPIcs.CSL.2012.107

1 Introduction

Relational reasoning about program equivalence is useful for reasoning about the correctness
of program transformations, data abstraction (representation independence), compiler cor-
rectness, etc. The standard notion of program equivalence is contextual equivalence and in
recent years, there have been many improvements in reasoning methods for higher-order ML-
like languages with general references, based on bisimulations, e.g., [17, 23, 25], traces [18],
game semantics [21], and Kripke logical relations, e.g., [1, 2, 8, 12].

In this paper we present the first Kripke logical relation for reasoning about equivalence
of a concurrent higher-order ML-like language with higher-order store and dynamic memory
allocation.

To state and prove useful equivalences about concurrent programs, it is necessary to
have some way of restricting the contexts under which one proves equivalences. This point
was made convincingly in the recent paper by Liang et. al. [19], who presented a rely-
guarantee-based simulation for verifying concurrent program transformations for a first-order
imperative language (with first-order store). Here is a very simple example illustrating the
point. Consider two expressions

e1 ≡ x := 1; y := 1 and e2 ≡ y := 1;x := 1.

Here x and y are variables of type ref int. The expressions e1 and e2 are not contextually
equivalent. (To see why, consider expression e3 ≡ x := 0; y := 0, and note that running e1
in parallel with e3 may result in a state with !x = 0 and ! y = 1, but that cannot be the
case when we run e2 in parallel with e3.) The issue is, of course, that the context may also
modify the references x and y. On the other hand, if we know that no other threads have
access to x or y, then it should be the case that e1 and e2 are equivalent. We can express
this restriction on the contexts using a refined region-based type-and-effect system.

© Lars Birkedal, Filip Sieczkowski, and Jacob Thamsborg;
licensed under Creative Commons License NC-ND

Computer Science Logic 2012 (CSL’12).
Editors: Patrick Cégielski, Arnaud Durand; pp. 107–121

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2012.107
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

108 A Concurrent Logical Relation

We first recall that a type-and-effect system is a type system that classifies programs
according to which side effects the programs may have. A variety of effect systems have
been proposed for higher-order programming languages, e.g., [15, 20, 27], see [16] for a
recent overview. Effect systems can often be understood as specifying the results of a static
analysis, in the sense that it is possible to automatically infer types and effects. Effect
systems can be used for different purposes: they were originally proposed by Lucassen and
Gifford [20] for parallelization purposes but they have also, e.g., been used as the basis for
implementing ML using a stack of regions for memory management [27, 9]. In a recent
series of papers, Benton et. al. have argued that another important point of effect systems
is that they can be used as the basis for effect-based program transformations, e.g., compiler
optimizations, [6, 5, 3, 4], see also [26]. The idea is that certain program transformations
are only sound under additional assumptions about which effects program phrases may, or
rather may not, have.

Now, returning to our example, we refine the types of x and y to be refρint and refσ int,
respectively. Intuitively, this expresses that x and y are references in different regions, but
it does not put any restrictions on whether other threads may access x or y. Thus, when we
type e1 and e2 we will use two contexts of region variables, one for public regions that can be
used by other concurrently running threads, and one for private regions that are under the
control of the present thread. This idea is inspired by recent work on concurrent separation
logic, e.g., [22, 11, 29, 13]. We use a vertical bar to separate public and private regions: the
typing context

ρ, σ | ∅ | x : refρint, y : refσ int

expresses that ρ and σ are public regions, whereas the typing context

∅ | ρ, σ | x : refρint, y : refσ int

expresses that ρ and σ are private regions. The expressions e1 and e2 are well-typed in the
latter context and, with this refined typing, they are indeed contextually equivalent, because
our type-and-effect system guarantees that no well-typed context can access regions ρ or σ.
(The expressions are also well-typed in the former context, but not contextually equivalent
with that refined typing.)

In this paper we present a step-indexed Kripke logical relations model of a type-and-effect
system with public and private regions for a concurrent higher-order language with general
references. Our model is constructed over the operational semantics of the programming
language, and builds on recent work by Thamsborg and Birkedal on logical relations for the
sequential sub-language [26]. Note that the type-and-effect annotations are just annotations;
the operational semantics of the language is standard and regions only exist in our semantic
model, not in the operational semantics.

As an important application of our model we prove a Parallelization Theorem, which
expresses when it is sound to run two expressions in parallel instead of sequentially. To the
best of our knowledge, this is the first such result for a higher-order language with higher-
order store and dynamic memory allocation. Here is a very simple instance of the theorem.
Consider two expressions

e1 ≡ y := !x+ ! y and e2 ≡ z := !x+ ! z,

each well-typed in a context

∅ | ρx, ρy, ρz | x : refρx int, y : refρy int, z : refρz int,

L. Birkedal, F. Sieczkowski, and J. Thamsborg 109

i.e., where x, y, and z are references in distinct private regions. In this context, running e1
and e2 sequentially is contextually equivalent to running e1 and e2 in parallel. Intuitively,
this also makes sense: e1 and e2 update references in distinct regions, and it is unproblematic
that they both read (but not write) from the same region.

As mentioned, this was a simple instance of the Parallelization Theorem. We stress that
the theorem is expressed solely in terms of the type and efffects of the expressions e1 and
e2, so a compiler may automatically infer that it is safe to parallelize two expressions by
looking at the inferred effect types, and without reasoning about all interleavings. Moreover,
the theorem applies to contexts and expressions with general higher types (not just with
references to integers and unit types). Note that the distinction between private and public
regions is also crucial here (parallelization would not be sound if the effects of the expressions
were on public regions).

Our type-and-effect system crucially also includes a region-masking rule. Traditionally,
this rule has been used to hide local effects on regions, which makes it possible to view a
computation as pure even if it uses effects locally and makes the effect system stronger, in
the sense that it can justify more program transformations. Here we also observe that the
masking rule can be used for introducing private regions, since the masking rule intuitively
guarantees that effects on a region are not leaked to the context. It is well-known that region-
masking makes the model construction for a sequential language technically challenging, see
the extensive discussion in [26]. Here it is yet more challenging because of concurrency; we
explain how our model ensures soundness of the masking rule in Section 3.

The extension with concurrency also means that when we define the logical relation for
contextual approximation and relate two computations e1 and e2, we cannot simply require
relatedness after e1 has completed evaluation (as in the sequential case), since other threads
should be allowed to execute as well. We explain our approach to relating concurrent
computations in Section 3; it is informed by recent soundness proofs of unary models of
concurrent separation logic [30, 10].

Another challenge arises from the fact that since our language includes dynamically
allocated general references, the existence of the logical relation is non-trivial; in particular,
the set of Kripke worlds must be recursively defined. Here we build on our earlier work [7]
and define the worlds as a solution to a recursive metric-space equation. Indeed, to focus on
the essential new aspects due to the extension with concurrency, we deliberately choose to
use the exact same notion of worlds as we used for the sequential sub-language in [26]. In the
same vein, we here consider a monomorphically typed higher-order programming language
with general references, but leave out universal and existential types as well as recursive
types. However, we want to stress that since our semantic techniques (step-indexed Kripke
logical relations over recursively defined worlds) do indeed scale well to universal, existential,
and recursive types, e.g. [7, 12], it is possible to extend our model to a language with such
types. We conjecture that it is also possible to extend our model to richer effect systems
involving region and effect polymorphism, but we have not done so yet.

All proofs are deferred to the long version of the paper; it can be found online at the
following address: www.itu.dk/people/birkedal/papers/longsamba.pdf.

2 Language and Typing

We consider a standard call-by-value lambda calculus with general references, and extended
with parallel composition and an atomic construct. We assume countably infinite, pairwise
disjoint sets of region variables RV (ranged over by ρ), locations L (ranged over by l) and

CSL’12

www.itu.dk/people/birkedal/papers/longsamba.pdf

110 A Concurrent Logical Relation

π ::= rdρ |wrρ | alρ
ε ::= π1, . . . , πn

τ ::= 1 | int | τ1× τ2 | refρ τ
| τ1 →Π,Λ

ε τ2

v ::= x | 〈〉 | 〈v1, v2〉
| fun f(x).e | l

e ::= v | proji v | v e | ref v | ! v
| v1 := v2 | par e1 and e2

| cas (v1, v2, v3) | atomic e
E ::= [] | v E | par E and e2

| par e1 and E

Figure 1 Syntax.

(E[proji 〈v1, v2〉] |h) 7−→ (E[vi] |h)
(E[(fun f(x).e) v] |h) 7−→ (E[e[fun f(x).e/f, v/x]] |h)

(E[ref v] |h) 7−→ (E[l] |h[l 7→ v]) if l /∈ dom(h)
(E[l := v] |h) 7−→ (E[〈〉] |h[l:=v]) if l ∈ dom(h)

(E[! l] |h) 7−→ (E[h(l)] |h) if l ∈ dom(h)
(E[par v1 and v2] |h) 7−→ (E[〈v1, v2〉] |h)
(E[cas (l, n1, n2)] |h) 7−→ (E[1] |h[l:=n2])

if l ∈ dom(h) and h(l) = n1

(E[cas (l, n1, n2)] |h) 7−→ (E[0] |h)
if l ∈ dom(h) and h(l) 6= n1

(E[atomic e] |h) 7−→ (E[v] |h′)
if (e |h) 7−→∗ (v |h′)

(E[atomic e] |h) 7−→ (E[atomic e] |h)

Figure 2 Operational semantics.

program variables (ranged over by x, y, f). As usual, the reduction relation is between
configurations, (e |h) 7−→ (e′ |h′) where heaps h, h′ ∈ H are finite maps from locations
to values. Figures 1 and 2 give the syntax and operational semantics; we denote the set
of expressions E and the set of values V. The evaluation contexts allow parallel evaluation
inside par expressions, and there is a new primitive reduction covering the case when the two
subcomputations have terminated. For technical simplicity, we allow an atomic e expression
to reduce to itself, possibly introducing more divergence than the diverging behaviours of
e. The syntax is kept minimal; in examples we may use additional syntactic sugar, e.g.,
writing let x = e1 in e2 for (fun f(x).e2) e1 for some fresh f . For e ∈ E , we write FV(e)
and FRV(e) for the sets of free program variables and region variables, respectively; also we
define rds ε = {ρ ∈ RV | rdρ ∈ ε} and similarly for writes and allocation.

The form of the judgments of our type-and-effect system is standard with one important
refinement: regions are partitioned into public and private regions, with the purpose of
restricting interference from the environment. In greater detail, a typing judgement looks
like this:

Π |Λ |Γ ` e : τ, ε.

The Γ, e and τ are the usual: the variable context Γ assigns types to program variables in
the expression e, with the resulting type of τ . To get an idea of — or rather an upper bound
of — the side-effects of e, we split the heap into regions; these are listed in Π and Λ. We
track memory accesses by adding a set ε of effects of the form rdρ, wrρ and alρ, where ρ is a
region. Roughly, a computation with effect rdρ may read one or more locations in region ρ,
and similarly for writes and allocation. This setup goes back to Lucassen and Gifford [20].

The novelty, as mentioned in the Introduction, is our partition of regions into the public
ones Π and the private ones Λ. As opposed to the rest of the judgment, this public-private
division does not make promises about the behavior of e. Instead, it states the expectations
that e has of the environment: threads running in parallel with e may — in a well-typed
manner — read, write and allocate in the public regions but must leave the private regions

L. Birkedal, F. Sieczkowski, and J. Thamsborg 111

Π |Λ |Γ, x : τ ` x : τ, ∅ Π |Λ |Γ ` 〈〉 : 1, ∅
Π |Λ |Γ ` v : τ1 × τ2, ε
Π |Λ |Γ ` proji v : τi, ε

Π |Λ |Γ ` v1 : τ1, ε1 Π |Λ |Γ ` v2 : τ2, ε2

Π |Λ |Γ ` 〈v1, v2〉 : τ1 × τ2, ε1 ∪ ε2

Π |Λ |Γ, f : τ1 →Π,Λ
ε τ2, x : τ1 ` e : τ2, ε

Π |Λ |Γ ` fun f(x).e : τ1 →Π,Λ
ε τ2, ∅

Π |Λ |Γ ` v : τ1 →Π,Λ
ε τ2, ε1 Π |Λ |Γ ` e : τ1, ε2

Π |Λ |Γ ` v e : τ2, ε1 ∪ ε2 ∪ ε
Π |Λ |Γ ` v : τ, ε ρ ∈ Π,Λ

Π |Λ |Γ ` ref v : refρτ , ε ∪ {alρ}
Π |Λ |Γ ` v1 : refρτ , ε1 Π |Λ |Γ ` v2 : τ, ε2

Π |Λ |Γ ` v1 := v2 : 1, ε1 ∪ ε2 ∪ {wrρ}
Π |Λ |Γ ` v : refρτ , ε

Π |Λ |Γ ` ! v : τ, ε ∪ {rdρ}
Π |Λ, ρ |Γ ` e : τ, ε

Π |Λ |Γ ` e : τ, ε− ρ
(ρ /∈ FRV(Γ, τ))

· |Π,Λ |Γ ` e : τ, ε
Π |Λ |Γ ` atomic e : τ, ε

(als ε ⊆ rds ε ∩ wrs ε)

Π,Λ | · |Γ ` e1 : τ1, ε1 Π,Λ | · |Γ ` e2 : τ2, ε2

Π |Λ |Γ ` par e1 and e2 : τ1 × τ2, ε1 ∪ ε2

Π |Λ |Γ ` v1 : refρint, ε1 Π |Λ |Γ ` v2 : int, ε2 Π |Λ |Γ ` v3 : int, ε3

Π |Λ |Γ ` cas (v1, v2, v3) : int, {wrρ, rdρ} ∪ ε1 ∪ ε2 ∪ ε3

Π |Λ |Γ ` e : τ1, ε1 Π,Λ ` τ1 ≤ τ2 ε1 ⊆ ε2

Π |Λ |Γ ` e : τ2, ε2
(FRV(ε2) ⊆ Π,Λ)

Θ ` τ ≤ τ
(FRV(τ) ⊆ Θ)

Θ ` τ1 ≤ τ ′1 Θ ` τ2 ≤ τ ′2
Θ ` τ1 × τ2 ≤ τ ′1 × τ ′2

Θ ` τ ′1 ≤ τ1 Θ ` τ2 ≤ τ ′2 ε1 ⊆ ε2 Π1 ⊆ Π2 Λ1 ⊆ Λ2

Θ ` τ1 →Π1,Λ1
ε1 τ2 ≤ τ ′1 →Π2,Λ2

ε2 τ ′2
(FRV(ε2),Π2,Λ2 ⊆ Θ)

Figure 3 Typing and subtyping relations. Notice that for a typing judgement Π |Λ |Γ ` e : τ, ε
we always have FRV(Γ, τ, ε) ⊆ Π ∪ Γ.

untouched.
When running parallel threads, the private regions of the parent are shared between

the children, and so are public from their point of view; this is reflected in the typing
rule for parallel composition, c.f. Figure 3. Note that the parent thread only continues
once both children have terminated; as a consequence, the parent regains ownership of its
private regions before it goes on. Running an expression atomically temporarily makes all
regions private. The side condition is a technical necessity. Finally, new, private regions are
introduced by the so-called masking rule:

Π |Λ, ρ |Γ ` e : τ, ε
Π |Λ |Γ ` e : τ, ε− ρ

(ρ /∈ FRV(Γ, τ))

The subtraction of ρ in the conclusion removes any read, write or allocation effects tagged
with ρ. The reading of the masking rule is that we make a brand new, empty region ρ for
e to use, but once e has terminated we forget about ρ again; this works out since the side
condition prevents e from leaking locations from ρ. Traditionally, the masking rule has been
used to do memory-management [27] as well as a means of hiding local effects to facilitate
effect-based program transformations [5, 26]. Here we make another use of the rule: we
observe that, moreover, e cannot leak locations from ρ while running and so ρ is a private
region for the duration of e. After all, the only means of inter-thread communication is

CSL’12

112 A Concurrent Logical Relation

shared memory. Note that from the perspective of the context, this rule allows to remove a
private region, and prepare a setup for application of the parallel composition.

All the typing rules are in Figure 3. We just remark here, that reference types are
tagged with the region where the location resides and that function arrows are tagged with
the latent effects as well as with the public and private regions that the function expects; the
latter is natural once we remember that a function is basically just a suspended, well-typed
expression.

Because of the nondeterminism arising from par and shared references, the definition of
contextual equivalence could take into account both may- and must-convergence. In this
paper we only consider may-equivalence and formally we define (may-) contextual approxi-
mation by:
I Definition 1. Π |Λ |Γ ` e .↓ e′ : τ, ε if and only if for all h and C typed such that
· | · | · ` C[e], C[e′] : int, ∅, whenever (C[e] |h) ↓ then (C[e′] |h) ↓.
Here, as usual, (e |h) ↓ means that (e |h) 7−→ ∗(v |h′) for some value v and some h′.

Contextual equivalence, Π |Λ |Γ ` e ≈ e′ : τ, ε, is then defined as Π |Λ |Γ ` e .↓ e′ :
τ, ε and Π |Λ |Γ ` e′ .↓ e : τ, ε. Note that the diverging behaviours introduced by our
operational semantics of atomic e do not influence may-contextual equivalence.

3 Definition of the logical relation

Semantic Types and Worlds We give a Kripke or world-indexed logical relation. This
is a fairly standard approach to modeling dynamic allocation; in combination with higher-
order store, however, it comes with a fairly standard problem: the type-world circularity.
Roughly, semantic types are indexed over worlds and worlds contain semantic types, so both
need to be defined before the other. A specific instance of this circularity was solved recently
by Thamsborg and Birkedal [26] based on metric-space theory developed by Birkedal et. al.
[7]; we re-use that solution here. Semantic types (and worlds) are constructed as a fixed-
point of a endo-functor on a certain category of metric-spaces. We do not care about that,
though; we just give the result of the construction. In addition, we largely ignore the fact
that we actually deal in metric spaces and not just plain sets; the little metric machinery
we need is deferred to the appendix of the long version of the paper.

There is a set T of semantic types and a set W of worlds; types are world-indexed rela-
tions on values and worlds describe the regions and type-layouts of heaps, roughly speaking.
Take a type µ ∈ T and apply it to a world w ∈W and you get an indexed relation on values,
i.e., µ(w) ⊆ N × V × V. These relations are downwards closed in the first coordinate; we
read (k, v1, v2) ∈ µ(w) as saying that v1 and v2 are related at type µ up to approximation
k assuming world w.

We assume a countably infinite set of region names RN ; a world w ∈W contains finitely
many such |w| ⊆fin RN . Some of these dom(w) ⊆ |w| are live and the rest are dead. To each
live region r ∈ dom(w) we associate a finite partial bijection w(r) on locations decorated
with types, i.e., w(r) ⊆fin L×L× T̂ such that for (l1, l2, µ), (m1,m2, ν) ∈ w(r) we have that
both l1 = m1 and l2 = m2 imply l1 = m1, l2 = m2 and µ = ν. We write dom1(w(r)) for
the set of left hand side locations in the bijection and dom2(w(r)) for the right hand side
ones; different regions must have disjoint left and right hand side locations. For convenience,
we set domA

1 (w) =
⋃
r∈A∩dom(w) dom1(w(r)) whenever A ⊆ |w|, and we write dom1(w) for

dom|w|1 (w), i.e., the set of all left hand side locations. Similarly for the right hand side.
Worlds evolve and types adapt. Triples of two locations and a type can be added to a live

region, as long as different regions remain disjoint. Orthogonal to this, one can add a fresh,

L. Birkedal, F. Sieczkowski, and J. Thamsborg 113

i.e., neither live nor dead, region name with an associated empty partial bijection. And one
can kill any live region, rendering it dead and losing the associated the partial bijection in
the process. The reflexive, transitive closure of all three combined is a preorder v on worlds;
it is a crucial property of types that they respect this, i.e., that w v w′ =⇒ µ(w) ⊆ µ(w′)
for any two w,w′ ∈ W and any µ ∈ T. This is type monotonicity and it prevents values
from fleeing types over time.

Finally, to tie the knot, there is an isomorphism ι : T̂→ T from the odd types stored in
worlds to proper types. Whenever a type is extracted from a world it needs to be coerced
by this isomorphism before it can be applied to some world.

The Logical Relation and Interpretation of Types Often, a logical relation goes like
this: two computations are related if they (from related heaps) reduce to related values (and
heaps); this is the extensional view: we do not care about the intermediate states. As we
consider concurrency, however, a computation can be interrupted and so we need to start
caring. In our setup, public regions are accessible from the environment. To address this,
we assume that before each reduction step, the public regions hold related values; in return,
we promise related values after the step. In other words, the granularity of extensionality
is just one step for the public regions. For private regions, however, there is no interference
and the granularity is an entire computation as usual. This is the fundamental idea; it is
how we propose to stay extensional in the face of concurrency.

Without further ado, let us look into the cornerstone of our model: the safety relation
defined in Figure 6; auxiliary relations are defined in Figure 8. What does it mean to have

(k, h◦1, h◦2, e1, e2, h1, h2) ∈ safeΠ,Λ,A,R
τ,ε w◦, w?

Overall, it says that after environment interference, we can match the behavior of e1, i.e.,
termination or any one-step reduction, by zero or more steps of e2; match in the sense of
(re-)establishing certain relations, including safety itself. Safety is a local property of a pair
of computations, this is crucial: it has no knowledge of computations running concurrently
and h1 and h2 are the local heaps, i.e., the parts of the global heaps that the e1 respectively
e2 control exclusively. The computations consider R(Π) to be their public, R(Λ) to be their
private and A to be their anonymous regions. The latter intuitively are private regions
that have been masked out: they exist only for the duration of these computations, but
we have to track them to deny the environment access; this is another difficulty imposed
by concurrency. Safety is indexed by a world w as well; note that worlds are global things:
all concurrent threads share one world, i.e., they agree about the division of the heap into
regions and the types associated to locations. Finally k is intuitively the number of steps
we are safe for, h◦1 and h◦2 are the (private parts of) the initial local heaps, τ is the expected
return type, ε the effects and w◦ the initial world.

We unroll the definition in writing. The first pair of big square brackets — the prerequi-
sites — translates to ‘the environment interferes’. This yields a new world w′ subject to the
constraints of the environment transition relation: no public, private or anonymous regions
are killed, and the latter two see no allocation either. The actual contents of the public
regions are unknown, but we are free to assume that they hold related values of the proper
type, at least where we have read effects; this is the public heaps g1 and g2 in the precondition
relation. In addition we have frames f1 and f2 that cover the remainder of the world and
a triple-split relation that ensures coherence between the domains of corresponding parts of
the world and the heaps, see Figures 4 and 8.

The left hand side is irreducible in the termination branch and takes one step in the
progress branch. In either case, we must match this in zero or more steps on the right hand

CSL’12

114 A Concurrent Logical Relation

domR(Π)
1 (w)︷ ︸︸ ︷

−−−−−
domR(Λ)

1 (w)︷ ︸︸ ︷
−−−−−

domA
1 (w)︷ ︸︸ ︷

−−−−−−−−
−−−−−︸ ︷︷ ︸

dom(g1)

−−−−−︸ ︷︷ ︸
dom(h1)

−−−−−︸ ︷︷ ︸
dom(h1)

−−−−−−︸ ︷︷ ︸
dom(f1)

−−−︸ ︷︷ ︸
dom(h1)

Figure 4 The left hand side of the triple-split relation. The top dashed line is dom1(w), the bot-
tom dashed line dom(g1 · h1 · f1). The local heap h1 has a private part matching the private regions,
an anonymous part matching the anonymous regions and an off-world part outside the domain of
the world. The frame f1 must cover regions that are neither public, private nor anonymous.

side, not touching the frame; this means finding a future world w′′ and relating a number of
things. The choice of future world is restricted by the self transition relation: we must not
kill private or public regions, but we can allocate in them, and regions that we know nothing
about must be left untouched; this is our promise to the environment. In the termination
branch, we are furthermore required to kill off all anonymous regions as the computation is
done; any new regions added in the progress branch go to the set of anonymous regions. In
both branches, the changes made to the public heap must be well-typed and permitted by
the effects and, if we are done, we check the changes made to (the private part of) the local
heaps as well; the fact that the public heaps are compared across a single stage and the
(private parts of) the local heaps are compared across the entire computations is the crux
of the idea of having different granularities of extensionality.

In addition to performing actual allocation, we have the possibility of moving existing
locations from, say, the off-world part of the local heap into the public heap or the private
part of the local heap; this is a subtle point that permits the actual allocation of new
locations and the corresponding extension of the world to be temporarily out of sync.

We have glossed over one aspect of safety: the right hand side takes steps in the ordi-
nary operational semantics, but the left hand side works in the instrumented operational
semantics. A reduction (e |h)→n

µ (e′ |h′) in the latter implies a similar reduction in former;
in addition it counts the steps of a reduction with all atomic commands ‘unfolded’ (with
unfolding itself counting one step) and it records all heap accesses; the formal definition is
deferred to the appendix of the long version of the paper. We need the former for com-
patibility of the atomic typing rule below: atomic commands really unfold as they execute,
hence we must count the number of ‘unfolded’ steps. It is less immediate that we must test
the actual reads, writes and allocations, recorded by µ, against the effects described by ε, as
done in the progress branch of safety. But if omitted, our present proof of the Paralleliza-
tion Theorem falls short, since it relies on the following simple, but crucial commutation
property:

I Lemma 2. If we have l /∈ µ and (e |h)→n
µ (e′ |h′), then (e |h[l 7→ v])→n

µ (e′ |h′[l 7→ v]).

The actual logical relation is given in Figure 7. The existentially quantified a ∈ N is
the minimal number of anonymous regions required to run; apart from that it uses safety
in a straightforward way. There is some asymmetry to these definitions: the anonymous
regions A are required to exist (and be empty) in the world beforehand, but are killed
off in the termination branch; also the precondition on the (private parts of) the initial
local heaps is in the logical relation whereas the postcondition lives in the termination
branch. The interpretation of types is in Figure 5. Interpreting the function type looks
daunting, but a function is just a suspended expression with a single free variable, hence
we have to restate most of the logical relation in the definition. Apart from that, we just

L. Birkedal, F. Sieczkowski, and J. Thamsborg 115

J1KRw = {(k, (), ()) | k ∈ N} JintKR w = {(k, n, n) | k ∈ N ∧ n ∈ Z}

Jτ1 × τ2KRw =
{
(k, (v11, v21), (v12, v22)) | (k, v11, v12) ∈ Jτ1K

R
w ∧ (k, v21, v22) ∈ Jτ2K

R
w
}

JrefρτKRw =

{

(k, l1, l2) | ∃µ ∈ T̂. (l1, l2, µ) ∈ w(R(ρ)) ∧
∀w′ w w. JτKR w′ k= (ι µ)(w′)

}
R(ρ) ∈ dom(w)

{(k, v1, v2) | k ∈ N ∧ v1, v2 ∈ V} R(ρ) /∈ dom(w)
q
τ1 →Π,Λ

ε τ2
y
Rw =

(k, fun f(x).e1, fun f(x).e2) | ∃a ∈ N.∀j < k. ∀w′ w w.
∀A ⊆ dom(w′).∀v1, v2 ∈ V.∀h1, h2, h

′
1, h
′
2 ∈ H.[

R(FRV(ε)) ⊆ dom(w′) ∧ A#R(Π ∪ Λ) ∧ |A| ≥ a ∧ w′(A) = ∅ ∧
(j, v1, v2) ∈ Jτ1K

R
w′ ∧ h′1 ⊆ h1 ∧ h′2 ⊆ h2 ∧ (j, h′1, h′2) ∈ PΛ,R

ε w′

]
⇒

(j, h′1, h′2, (fun f(x).e1) v1, (fun f(x).e2) v2, h1, h2) ∈ safeΠ,Λ,A,R
τ2,ε w′, w′

R(FRV(ε)) ⊆ dom(w)

{(k, v1, v2) | k ∈ N ∧ v1, v2 ∈ V} R(FRV(ε)) * dom(w)

Figure 5 Interpretation of types. We require R : RV ⇀fin RN injective with FRV(τ) ⊆ dom(R).
We assume R(FRV(τ)) ⊆ |w| above, otherwise we define JτKRw to be the empty set. In the
interpretation of functions, and also below, we write # to denote disjoint sets. We get that JτKR ∈ T.

remark that the R(ρ) /∈ dom(w) case of reference interpretation is part of an approach to
handling dangling pointers (due to region masking) proposed recently in [26]; similarly for
the R(FRV(ε)) * dom(w) case.

To conclude this subsection we give a theorem that, combined with the upcoming com-
patibility, means that logical relatedness implies contextual may-approximation. The proof
is in the appendix of the long version of the paper and it is not hard, but it is worth noting
that we need a proof at all: with sequential languages, this is a result one reads off the
definition of the logical relation.

I Theorem 3 (May-Equivalence). Assume that · | · | · |= e1 � e2 : int, ∅ holds. Take any
h1, h2 ∈ H. If there are e′1, h′1 with (e1 |h1) ∗7−→ (e′1 |h′1) such that irr(e′1|h′1) holds, then
there is n ∈ Z such that e′1 = n and h′2 such that (e2 |h2) ∗7−→ (n, h′2).

Compatibility of the Logical Relation The logical relation is compatible, i.e., respects
all typing rules. This is a sine qua non of logical relations; it implies the fundamental lemma
stating that every well-typed expression is related to itself. And, as discussed just above, it
makes the logical relation approximate contextual may-approximation:

I Theorem 4. Π |Λ |Γ |= e1 � e2 : τ, ε implies Π |Λ |Γ ` e1 .↓ e2 : τ, ε.

Compatibility means that each typing rule induces a lemma by reading the (unary) typing
judgments as the corresponding (binary) logical relations.The three most interesting of these
have to do with concurrency and the divide between public and private regions; they are
listed here and proofs are given in the appendix of the long version of the paper:

I Lemma 5. Π |Λ, ρ |Γ |= e1 � e2 : τ, ε implies Π |Λ |Γ |= e1 � e2 : τ, ε− ρ provided that
ρ /∈ FRV(Γ, τ).

CSL’12

116 A Concurrent Logical Relation

(k, h◦1, h◦2, e1, e2, h1, h2) ∈ safeΠ,Λ,A,R
τ,ε w◦, w

⇐⇒
∀j ≤ k. ∀w′, g1, g2, f1, f2.[

envtranΠ,Λ,A,R w,w′ ∧ (j, g1, g2) ∈ PΠ,R
ε w′ ∧

(g1, h1, f1, g2, h2, f2) ∈ splitsΠ,Λ,A,R w′
]
⇒[

irr(e1|g1 · h1 · f1)⇒

∃e′2, w′′, h′1, h′2, g′1, g′2.

(e2 | g2 · h2 · f2) ∗7−→ (e′2 | g′2 · h′2 · f2) ∧ selftranΠ,Λ,A,R w′, w′′ ∧
∅ = (A ∩ dom(w′′)) ∪ (dom(w′′) \ dom(w′)) ∧ g1 · h1 = g′1 · h′1 ∧

(g′1, h′1, f1, g
′
2, h
′
2, f2) ∈ splitsΠ,Λ,∅,R w′′ ∧ (j, g1, g2, g

′
1, g
′
2) ∈ QΠ,R

ε w′, w′′ ∧

(j, e1, e
′
2) ∈ JτKR (w′′) ∧ ∃h′′1 ⊆ h′1, h′′2 ⊆ h′2. (j, h◦1, h◦2, h′′1 , h′′2) ∈ QΛ,R

ε w◦, w′′
]
∧[

∀e′1, h
†
1, µ, n ≤ j. (e1 | g1 · h1 · f1)→n

µ (e′1 |h
†
1)⇒

∃e′2, w′′, A′, h′1, h′2, g′1, g′2.

(e2 | g2 · h2 · f2) ∗7−→ (e′2 | g′2 · h′2 · f2) ∧ selftranΠ,Λ,A,R w′, w′′ ∧

A′ = (A ∩ dom(w′′)) ∪ (dom(w′′) \ dom(w′)) ∧ h†1 = g′1 · h′1 · f1 ∧

(g′1, h′1, f1, g
′
2, h
′
2, f2) ∈ splitsΠ,Λ,A′,R w′′ ∧ (j − n, g1, g2, g

′
1, g
′
2) ∈ QΠ,R

ε w′, w′′ ∧

µ ∈ effsA
′,R

ε,h′
1
w′′ ∧ (j − n, h◦1, h◦2, e′1, e′2, h′1, h′2) ∈ safeΠ,Λ,A′,R

τ,ε w◦, w′′
]

Figure 6 Safety. The predicate is defined by well-founded induction. Nontrivial requirements
are: Π # Λ, FRV(τ, ε) ⊆ Π ∪ Λ, FV(e1, e2) = ∅, R : Π ∪ Λ ↪→ |w◦|, R(FRV(ε)) ⊆ dom(w◦) and
w w w◦ with dom(w◦) ∩ R(Π ∪ Λ) ⊆ dom(w), A ⊆ dom(w) and A#R(Π ∪ Λ). See Figure 8 for
auxiliary definitions. We refer to the contents of the big square brackets as the prerequisites, the
termination branch and the progress branch, respectively.

Π | Λ | Γ |= e1 � e2 : τ, ε
⇐⇒

∃a ∈ N.∀k ∈ N.∀w ∈W.∀R : Π ∪ Λ ↪→ |w|.∀A ⊆ dom(w).

∀γ1, γ2 ∈ V |Γ|.∀h1, h2, h
′
1, h
′
2 ∈ H.[

R(FRV(ε)) ⊆ dom(w) ∧ A#R(Π ∪ Λ) ∧ |A| ≥ a ∧ ∀r ∈ A.w(r) = ∅ ∧

(k, γ1, γ2) ∈ JΓKRw ∧ h′1 ⊆ h1 ∧ h′2 ⊆ h2 ∧ (k, h′1, h′2) ∈ PΛ,R
ε w

]
⇒

(k, h′1, h′2, e1[γ1/Γ], e2[γ2/Γ], h1, h2) ∈ safeΠ,Λ,A,R
τ,ε w,w.

Figure 7 The logical relation with anonymous regions. We require that Π # Λ, FRV(Γ, τ, ε) ⊆
Π ∪ Λ and, as always, that FV(e1, e2) ∈ |Γ|.

L. Birkedal, F. Sieczkowski, and J. Thamsborg 117

envtranΠ,Λ,A,R w,w′ ⇐⇒ w v w′ ∧ ∀r ∈ dom(w) ∩ (R(Π ∪ Λ) ∪A). r ∈ dom(w′)
∧ ∀r ∈ dom(w) ∩ (R(Λ) ∪A). w(r) = w′(r).

selftranΠ,Λ,A,R w,w′ ⇐⇒ w v w′ ∧ ∀r ∈ dom(w) \A. r ∈ dom(w′)
∧ ∀r ∈ dom(w) \ (R(Π ∪ Λ) ∪A). w(r) = w′(r).

(g1, h1, f1, g2, h2, f2) ∈ splitsΠ,Λ,A,R w ⇐⇒
dom(h1) # dom(g1) # dom(f1) ∧ dom(h2) # dom(g2) # dom(f2) ∧

domR(Π)
1 (w) = dom(g1) ∧ domR(Λ)∪A

1 (w) ⊆ dom(h1) ∧

domdom(w)\(R(Π∪Λ)∪A)
1 (w) ⊆ dom(f1) ∧

domR(Π)
2 (w) = dom(g2) ∧ domR(Λ)∪A

2 (w) ⊆ dom(h2) ∧

domdom(w)\(R(Π∪Λ)∪A))
2 (w) ⊆ dom(f2).

(k, h1, h2) ∈ PΘ,R
ε w ⇐⇒ dom(h1) = domR(Θ)

1 (w) ∧ dom(h2) = domR(Θ)
2 (w) ∧

∀r ∈ R(Θ) ∩ dom(w).∀(l1, l2, µ) ∈ w(r).
r ∈ R(rds ε)⇒ k > 0⇒ (k − 1, h1(l1), h2(l2)) ∈ (ι µ)(w).

(k, h1, h2, h
′
1, h
′
2) ∈ QΘ,R

ε w,w′ ⇐⇒

dom(h1) = domR(Θ)
1 (w) ∧ dom(h2) = domR(Θ)

2 (w) ∧

dom(h′1) = domR(Θ)
1 (w′) ∧ dom(h′2) = domR(Θ)

2 (w′) ∧(
∀r ∈ R(Θ) ∩ dom(w).∀(l1, l2, µ) ∈ w(r).
[h1(l1) = h′1(l1) ∧ h2(l2) = h′2(l2)] ∨ [r ∈ R(wrs ε) ∧
k > 0⇒ (k − 1, h′1(l1), h′2(l2)) ∈ (ι µ)(w′)]

)
∧(

∀r ∈ R(Θ) ∩ dom(w).
∀(l1, l2, µ) ∈ w′(r) \ w(r). r ∈ R(als ε) ∧
k > 0⇒ (k − 1, h′1(l1), h′2(l2)) ∈ (ι µ)(w′)

)
.

µ ∈ effsA,Rε,h w ⇐⇒ {l | rdl ∈ µ} ∩ dom1(w) ⊆ domR(rds ε)∪A
1 (w) ∧

{l | wrl ∈ µ} ∩ dom1(w) ⊆ domR(wrs ε)∪A
1 (w) ∧

{l | all ∈ µ} ∩ dom1(w) ⊆ domR(als ε)∪A
1 (w) ∧

{l | rdl ∈ µ ∨ wrl ∈ µ ∨ all ∈ µ} \ dom1(w) ⊆ dom(h).

Figure 8 Six auxiliary definitions. The environment transition and self transition relations are
defined for Π # Λ, R : Π ∪ Λ ↪→ |w|, A ⊆ dom(w) and R(Π ∪ Λ) #A. The triple-split relation
has the same prerequisites. The precondition relation is defined for R : RV ⇀fin |w| injective
with Θ ∪ FRV(ε) ⊆ dom(R). The postcondition relation additionally requires w′ w w such that
dom(w) ∩ R(Θ) ⊆ dom(w′). Finally the actual-effects relation expects R : RV ⇀fin |w| injective
with FRV(ε) ⊆ dom(R) and A ⊆ dom(w).

CSL’12

118 A Concurrent Logical Relation

I Lemma 6. · |Π,Λ |Γ |= e1 � e2 : τ, ε implies Π |Λ |Γ |= atomic e1 � atomic e2 : τ, ε if
als ε ⊆ rds ε ∩ wrs ε.

I Lemma 7. Π,Λ | · |Γ |= e1 � e2 : τ, ε and Π,Λ | · |Γ |= e†1 � e†2 : τ †, ε† together imply
Π |Λ |Γ |= par e1 and e†1 � par e2 and e†2 : τ × τ †, ε ∪ ε†.

4 Applications

4.1 Parallelization Theorem: Disjoint Concurrency
We now explain our Parallelization Theorem, which gives us an easy way to prove properties
about the common case of disjoint concurrency, where disjointness is captured using private
regions and effect annotations.

I Theorem 8 (Parallelization). Assuming that
1. Π,Λ | · | Γ ` e1 : τ1, ε1,
2. Π,Λ | · | Γ ` e2 : τ2, ε2,
3. rds ε1 ∪ wrs ε1 ∪ rds ε2 ∪ wrs ε2 ⊆ Λ,
4. rds ε1 ∩ wrs ε2 = rds ε2 ∩ (wrs ε1 ∪ als ε1) = wrs ε1 ∩ wrs ε2 = ∅,
the following property holds:

Π | Λ | Γ |= 〈e1, e2〉 ∼= par e1 and e2 : τ1 × τ2, ε1 ∪ ε2.

Intuitively, item 3 keeps the environment from detecting anything, and item 4 prevents the
two computations from talking among themselves, thereby making them independent; the
als ε1 in item 4 is a technicality that we cannot do without. We showed a concrete simple
application of this theorem in the Introduction. More generally, example usage includes
situations where we operate on two imperative data structures (say linked lists or graphs);
if we only mutate parts of the data structures that are in different regions, then we may
safely parallelize operations on the data structures.

The masking rule makes it possible to do more optimizations via the Parallelization
Theorem: Consider, for simplicity, the familiar example of an efficient implementation fib
of the Fibonacci function using two local references. We can use the masking rule to give it
type and effect int→·,·∅ int, ∅. This allows us to view the imperative implementation as pure,
and thus by Theorem 8 we find that it is sound to optimize two sequential calls to fib to two
parallel calls. This may sound like a simple optimization, but the point is that a compiler
can perform it automatically, just based on the effect types. It also underlines how we are
able to reason about more involved behaviors of concurrent threads, even though the type
system provides only rough bounds on interference through the private-public distinction.

The proof of the Parallelization Theorem is quite tricky. Please see the the appendix of
the long version of the paper for an informal overview of the proof and the technical details.

4.2 Non-disjoint Concurrency
We now exemplify how our logical relations model can also be used to reason compositionally
about equivalences of fine-grained concurrent programs operating on public regions.

Consider the following type

τ ≡ refρint→ρ,∅
{rdρ,wrρ} 1

L. Birkedal, F. Sieczkowski, and J. Thamsborg 119

of functions that take an integer reference in a public region, possibly read and write from
the reference, and return unit. The following two functions

fun inc1(x). let y = !x in let z = y + 1 in
if cas (x, y, z) then 〈〉 else inc1 (x)

and fun inc2(x). atomic (x := !x+ 1)

both have type τ . (We have allowed ourselves to use a standard conditional expression; 1
corresponds to true and 0 to false.) Both functions increment the integer given in their ref-
erence arguments; inc1 uses the fine-grained compare-and-swap to do it atomically, whereas
inc2 uses the brute-force atomic operation. Using our logical relations model, we can prove
that inc1 and inc2 are contextually equivalent:

ρ | · | · ` inc1 ≈ inc2 : τ, ∅. (1)

Hence, replacing inc2 with inc1 in any well-typed client gives two contextually equivalent
expressions. Thus our logical relation models a form of data abstraction for concurrency
(where we abstract over the granularity of concurrency in the module).

We now show how to use the equivalence of inc1 and inc2 to derive equivalences of two
different clients using the fine-grained concurrency implementation inc1.

To this end, consider the following two client programs of type

σ ≡ τ →ρ,∅
∅ refρint→ρ,∅

{rdρ,wrρ} int,

fun c1(inc).λ n.incn; incn; !n and fun c2(inc).λ n.(par incn and incn); !n

Note that c1 makes two sequential calls to inc, whereas c2 runs the two calls in parallel.
Because of the use of compare-and-swap in inc1, we would hope that the c1 inc1 and c2 inc1
are contextually equivalent (in typing context ρ | ∅ | ∅). We can prove that this is indeed
the case using compositional reasoning as follows. Using our logical relation, we prove that
c1 inc2 is contextually equivalent to c2 inc2, i.e.,

ρ | · | · ` c1 inc2 ≈ c2 inc2 : refρint→ρ,∅
{rdρ,wrρ} int, ∅. (2)

Finally, we conclude that c1 inc1 is contextually equivalent to c2 inc1 by transitivity of con-
textual equivalence (using (1), (2) and (1) again for the respective steps):

c1 inc1 ≈ c1 inc2 ≈ c2 inc2 ≈ c2 inc1

This proof illustrates an important point: to show equivalence of two clients of a module
implemented using fine-grained concurrency, it suffices to show that the clients are equiv-
alent wrt. a coarse-grained implementation, and that the coarse-grained implementation is
equivalent to the fine-grained implementation. This is often a lot simpler than trying to
show the equivalence of the clients wrt. the fine-grained implementation directly. We can
think of the coarse-grained implementation of the module (here inc2) as the specification of
the module and the fine-grained implementation (here inc1) as its implementation.

The formal proofs of (1) and (2) follow by straightforward induction.

5 Discussion

Gifford and Lucassen [15, 20] originally proposed type-and-effect systems as a static analysis
for determining which parts of a higher-order imperative program could be implemented
using parallelism. Here we are able to express the formal correctness of these ideas in a

CSL’12

120 A Concurrent Logical Relation

succinct way by having a parallel construct in our programming language and establishing
the Parallelization Theorem.

In Section 4.2 we showed how contextual equivalence can be used to state that compare-
and-swap can be used to implement a simple form of locking, and how our logical relations
model could be used to prove this statement. We believe that it should be possible to give
similar succinct statements and proofs of other implementations of synchronization; confer
work by Turon and Wand [28].

As mentioned earlier, we have deliberately used the same definition of worlds here as
in [26]. As discussed there [26, Section 8.2], this notion of world has somewhat limited
expressiveness: the only heap invariants we can state are those that relate values at two
locations by a semantic type. To increase expressiveness, it would thus be interesting to
extend our model using ideas from [12], and then investigate more examples of equivalences.

Recently, Liang et. al. [19] have proposed RGSim, a simulation based on rely-guarantee,
to verify program transformations in a concurrent setting. Their actual definition [19, Defi-
nition 4] bears some resemblance to our safety relation; indeed, an early draft of loc.cit. was
a source of inspiration. They have no division of the heap into public and private parts,
instead they give a pair of rely and guarantee that, respectively, constrain the interference of
the environment and the actions of the computation. Their approach is essentially untyped;
one point of view is that we ‘auto-instantiate’ the many parameters of their simulation
based on our typing information. They consider first-order languages with ground store;
this obviously keeps life simple, but the example equivalences they give are not.

Our simple example of data abstraction for concurrency in Section 4.2 suggests that there
could be a relationship to linearizability. We intend to explore whether a formal relationship
can be established in our higher-order setting; confer work by Filipović et. al. [14].

6 Conclusion and Future Work

We have presented a logical relations model of a new type-and-effect system for a concurrent
higher-order ML-like language with general references. We have shown how to use the model
for reasoning about both disjoint and non-disjoint concurrency. In particular, we have proved
the first automatic Parallelization Theorem for such a rich language.

In this paper, we have focused on may contextual equivalence. Future work includes
investigating models for must contextual equivalence. Since our language allows the encoding
of countable nondeterminism, must equivalence is non-trivial, and will probably involve
indexing over ω1 rather than ω [24]. Future work also includes extending the model to
region and effect polymorphism, as well as the extension to more expressive worlds, and to
other concurrency constructs such as fork-join.

The authors would like to thank Jan Schwinghammer and Xinyu Feng for discussions of
aspects of this work.

References

1 Amal Ahmed. Semantics of Types for Mutable State. PhD thesis, Princeton University,
2004.

2 Amal Ahmed, Derek Dreyer, and Andreas Rossberg. State-dependent representation inde-
pendence. In POPL, 2009.

3 N. Benton, L. Beringer, M. Hofmann, and A. Kennedy. Relational semantics for effect-based
program transformations with dynamic allocation. In PPDP. ACM, 2007.

L. Birkedal, F. Sieczkowski, and J. Thamsborg 121

4 N. Benton, L. Beringer, M. Hofmann, and A. Kennedy. Relational semantics for effect-based
program transformations: Higher-order store. In PPDP. ACM, 2009.

5 N. Benton and P. Buchlovsky. Semantics of an effect analysis for exceptions. In TLDI,
2007.

6 N. Benton, A. Kenney, M. Hofmann, and L. Beringer. Reading, writing and relations:
Towards extensional semantics for effect analyses. In APLAS, 2006.

7 L. Birkedal, B. Reus, J. Schwinghammer, K. Støvring, J. Thamsborg, and H. Yang. Step-
indexed Kripke models over recursive worlds. In POPL, 2011.

8 L. Birkedal, J. Thamsborg, and K. Støvring. Realizability semantics of parametric poly-
morphism, general references, and recursive types. In FOSSACS, 2009.

9 L. Birkedal, M. Tofte, and M. Vejlstrup. From region inference to von Neumann machines
via region representation inference. In POPL, 1996.

10 A. Buisse, L. Birkedal, and K. Støvring. A step-indexed Kripke model of separation logic
for storable locks. In MFPS, 2011.

11 M. Dodds, X. Feng, M.J. Parkinson, and V. Vafeiadis. Deny-guarantee reasoning. In ESOP,
2009.

12 D. Dreyer, G. Neis, and L. Birkedal. The impact of higher-order state and control effects
on local relational reasoning. In ICFP 2010, pages 143–156. ACM, 2010.

13 X. Feng, R. Ferreira, and Z. Shao. On the relationship between concurrent separation logic
and assume-guarantee reasoning. In ESOP, 2007.

14 Ivana Filipovic, Peter W. O’Hearn, Noam Rinetzky, and Hongseok Yang. Abstraction for
concurrent objects. TCS, 2010.

15 D.K. Gifford and J.M. Lucassen. Integrating functional and imperative programming. In
LISP and Functional Programming, 1986.

16 F. Henglein, H. Makholm, and H. Niss. Effect types and region-based memory management.
In B.C. Pierce, editor, Advanced Topics in Types and Programming Languages. 2005.

17 Vasileios Koutavas and Mitchell Wand. Small bisimulations for reasoning about higher-
order imperative programs. In POPL, 2006.

18 James Laird. A fully abstract trace semantics for general references. In ICALP, 2007.
19 H. Liang, X. Feng, and M. Fu. A rely-guarantee-based simulation for verifying concurrent

program transformations. In POPL, 2012.
20 J.M. Lucassen and D.K. Gifford. Polymorphic effect systems. In POPL, 1988.
21 A. Murawski and N. Tzevelekos. Game semantics for good general references. In LICS,

2011.
22 Peter W. O’Hearn. Resources, concurrency, and local reasoning. TCS, 2007.
23 Davide Sangiorgi, Naoki Kobayashi, and Eijiro Sumii. Environmental bisimulations for

higher-order languages. TOPLAS, 2011.
24 Jan Schwinghammer and Lars Birkedal. Step-indexed relational reasoning for countable

nondeterminism. In CSL, 2011.
25 Eijiro Sumii. A complete characterization of observational equivalence in polymorphic

λ-calculus with general references. In CSL, 2009.
26 Jacob Thamsborg and Lars Birkedal. A Kripke logical relation for effect-based program

transformations. In ICFP, 2011.
27 M. Tofte and J.-P. Talpin. Implementation of the typed call-by-value λ-calculus using a

stack of regions. In Proceedings of POPL, 1994.
28 Aaron Joseph Turon and Mitchell Wand. A separation logic for refining concurrent objects.

In Thomas Ball and Mooly Sagiv, editors, POPL, pages 247–258. ACM, 2011.
29 V. Vafeiadis and M.J. Parkinson. A marriage of rely/guarantee and separation logic. In

CONCUR, 2007.
30 Viktor Vafeiadis. Concurrent separation logic and operational semantics. In MFPS, 2011.

CSL’12

Equivalence Constraint Satisfaction Problems∗

Manuel Bodirsky1 and Michał Wrona2

1 CNRS / LIX (UMR 7161)
École Polytechnique
91128 Palaiseau, France
bodirsky@lix.polytechnique.fr

2 Department of Computer and Information Science
Linköpings universitet
SE-581 83 Linköping, Sweden
michal.wrona@liu.se

Abstract
The following result for finite structures Γ has been conjectured to hold for all countably infinite
ω-categorical structures Γ: either the model-complete core ∆ of Γ has an expansion by finitely
many constants such that the pseudovariety generated by its polymorphism algebra contains a
two-element algebra all of whose operations are projections, or there is a homomorphism f from
∆k to ∆, for some finite k, and an automorphism α of ∆ satisfying ∀x1, . . . , xk. f(x1, . . . , xk) =
α(f(x2, . . . , xk, x1)). This conjecture has been confirmed for all infinite structures Γ that have a
first-order definition over (Q;<), and for all structures that are definable over the random graph.
In this paper, we verify the conjecture for all structures that are definable over an equivalence
relation with a countably infinite number of countably infinite classes.

Our result implies a complexity dichotomy (into NP-complete and P) for a family of constraint
satisfaction problems (CSPs) which we call equivalence constraint satisfaction problems. The
classification for equivalence CSPs can also be seen as a first step towards a classification of the
CSPs for all relational structures that are first-order definable over Allen’s interval algebra, a
well-known constraint calculus in temporal reasoning.

1998 ACM Subject Classification F.4.1 Mathematical Logic, F.2.2 Nonnumerical Algorithms
and Problems

Keywords and phrases Constraint satisfaction problems, universal algebra, model theory, Ram-
sey theory, temporal reasoning, computational complexity

Digital Object Identifier 10.4230/LIPIcs.CSL.2012.122

1 Introduction

The constraint satisfaction problem for a fixed structure Γ with finite relational signature
is the following computational problem, denoted by CSP(Γ): given a finite structure I
with the same signature as Γ, decide whether there is a homomorphism from I to Γ. By
selecting an appropriate structure Γ, many computational problems in various areas of
theoretical computer science can be formulated as CSP(Γ), for example problems from
artificial intelligence, combinatorics, finite model theory, scheduling, and database theory.

∗ This work has received funding from the European Research Council under the European Community’s
Seventh Framework Programme (FP7/2007-2013 Grant Agreement no. 257039), and the National
Graduate School in Computer Science (CUGS), Sweden.

© Manuel Bodirsky and Michał Wrona;
licensed under Creative Commons License NC-ND

Computer Science Logic 2012 (CSL’12).
Editors: Patrick Cégielski, Arnaud Durand; pp. 122–136

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2012.122
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

M. Bodirsky and M. Wrona 123

In 1993, Feder and Vardi conjectured that CSP(Γ) is for all finite structures Γ in P or NP-
complete. There has been a considerable research activity around this dichotomy conjecture
in constraint satisfaction, producing many results of independent interest.

One of the results that came out of the attempts to prove the dichotomy conjecture is the
following universal-algebraic dichotomy, which essentially follows from [17, 2]; also see [4].
All concepts that appear in the statement will be defined in Section 2.

I Theorem 1.1 (follows from [17, 2]). Let Γ be a finite relational structure. Then either
the pseudovariety generated by the polymorphism algebra of the expansion of the core of Γ
by constants contains a two-element algebra all of whose operations are projections, or
there is a homomorphism f from Γk to Γ, for some finite k ≥ 2, that satisfies

∀x1, . . . , xk. f(x1, . . . , xk) = f(x2, . . . , xk, x1) .

It is known that when Γ satisfies the first item in Theorem 1.1, then CSP(Γ) is NP-hard.
Bulatov, Jeavons, and Krokhin [13] made the conjecture that for finite structures Γ with finite
relational signature that do not satisfy the first item in Theorem 1.1, the problem CSP(Γ)
can be solved in polynomial time. This conjecture has been called the tractability conjecture,
and obviously the tractability conjecture implies the dichotomy conjecture. The tractability
conjecture has been verified for 2-element structures [22], 3-element structures [12], undirected
graphs [11], and many other classes of finite structures.

While the tractability conjecture is open for general finite structures, it turns out that a
generalized version of the tractability conjecture is true for several large classes of infinite
relational structures Γ. To define those classes, we need the following concepts. In this paper
we say that a relational structure Γ is first-order definable in ∆ if Γ has the same domain
as ∆, and for every relation R of Γ there is a first-order formula φ in the signature of ∆
such that φ holds exactly on those tuples that are contained in R. The class of all structures
with a first-order definition in (Q;<) has been studied in [6]; the CSPs for those structures
are called temporal constraint satisfaction problems and they can be used to model many
computational problems in temporal reasoning and scheduling. The class of all structures
with a first-order definition over the countable universal homogeneous graph, aka the random
graph, has been studied in [9]. All those structures are ω-categorical, that is, all countable
models of their first-order theory are isomorphic.

The following has been conjectured for all ω-categorical structures (see Conjecture 5.3
from [4]; the formulation there is different, but equivalent by Theorem 5.5.18 in [4]).
I Conjecture 1.2. Let Γ be a countable ω-categorical relational structure. Then either
1. the model-complete core of Γ has an expansion ∆ by finitely many constants such that

the pseudovariety generated by the polymorphism algebra of ∆ contains a two-element
algebra all of whose operations are projections, or

2. the model-complete core of Γ has a polymorphism f and an automorphism α satisfying

∀x1, . . . , xn. f(x1, . . . , xn) = α(f(x2, . . . , xn, x1)) .

This conjecture generalizes the universal-algebraic dichotomy that holds for finite struc-
tures Γ. Conjecture 1.2 has been shown for all structures Γ definable over (Q;<) [6], or over
the random graph [9]. Moreover, the two cases of Conjecture 1.2 correspond precisely to the
cases that CSP(Γ) is NP-hard, or polynomial, respectively.

In this article, we show that Conjecture 1.2 holds for all structures that are first-order
definable over (D;Eq), where D is a countable infinite set, and Eq is an equivalence relation
on D with infinitely many infinite classes. We show that also in this case the dichotomy

CSL’12

124 Equivalence Constraint Satisfaction Problems

described in the conjecture coincides with a complexity dichotomy for the corresponding
CSPs. We call them equivalence CSPs, since solutions to an instance I of CSP(Γ) where Γ is
first-order definable over (D;Eq) can be represented by exhibiting an equivalence relation on
the image of a mapping from I to Γ (and thus CSP(Γ) is always in NP).

Apart from the fact that (D;Eq) is, besides (Q;<) and the random graph, one of the
fundamental ω-categorical structures, there is additional motivation to specifically study the
class of structures definable over (D;Eq), and we describe this motivation in the following.

1.1 Motivation and Applications
1.1.1 Composing Classification Results
Suppose ∆1 and ∆2 are such that we have shown Conjecture 1.2 for all structures Γ that
are definable over ∆1 or definable over ∆2. To better understand Conjecture 1.2 in general,
we would like to prove that the conjecture also holds for all structures Γ that are definable
over a structure ∆ that is built from ∆1 and ∆2 in a simple way. One of the basic ways to
construct a new ω-categorical structure ∆ from ω-categorical structures ∆1 and ∆2 is to
take infinitely many copies of ∆2, to identify each element of ∆1 with one of those copies,
and to join the copies according to the relations in ∆1. Formally, for i ∈ {1, 2}, write Di for
the domain and τi for the signature of ∆i. Suppose that τ1 and τ2 are disjoint (otherwise
rename the symbols). Then ∆ is a τ1 ∪ τ2 structure with domain D1 ×D2. A k-ary relation
R ∈ τ2 denotes {((a, b1), . . . , (a, bk)) | (b1, . . . , bk) ∈ R∆2 , a ∈ D1} in ∆; a k-ary relation
R ∈ τ1 denotes {((a1, b1), . . . , (ak, bk)) | (a1, . . . , ak) ∈ R∆1 , b1, . . . , bk ∈ D2} in ∆.

The simplest situation for this is when ∆1 = ∆2 = (N; =). Note that the structure
(D;Eq) is isomorphic to

(
N; {(x, y), (u, v) | x = u}

)
; that is, the relation Eq relates exactly

those elements that come from the same copy of ∆2. So the task outlined above for
∆1 = ∆2 = (N; =) amounts precisely to studying the class of all structures Γ definable over
(D;Eq).

1.1.2 Fragments of Allen’s Interval Algebra
Allen’s interval algebra is a formalism introduced for temporal reasoning in Artificial Intelli-
gence [1], and plays a central role in qualitative reasoning in general. The most fundamental
computational problem for Allen’s interval algebra is the so-called network satisfaction
problem, which can be viewed as the CSP for the following structure ∆: the domain I of ∆
are the pairs (u, v) ∈ Q2 with u < v, and the relations of ∆ are all binary relations R such
that the 4-ary relation {(x, y, u, v) | ((x, y), (u, v)) ∈ R} has a first-order definition in (Q;<).
An important achievement in temporal reasoning is the complete complexity classification
of the fragments of Allen’s interval algebra in [20, 21], that is, of the constraint satisfaction
problems for structures Γ obtained from ∆ by removing some of the relations.

This result has been obtained without the universal-algebraic approach as it is used
in [13, 2, 6, 9], but by a clever case distinction and heavy use of primitive positive definitions
to show hardness in cases where the known algorithms do not apply. A proof based on the
universal-algebraic approach would have the advantage that it would automatically yield
the much stronger classification result for all structures Γ that are first-order definable in ∆.
In contrast to the classification in [20], this includes structures that have relations of arity
larger than two. Such a result would be a considerable extension of the result from [20], and
is currently out of reach. However, for structures Γ with a first-order definition in ∆ that
contain the binary relation

{
((x, y), (u, v)) | y = u

}
(this relation is typically denoted by m

in the literature on Allen’s interval algebra), a classification of the complexity of CSP(Γ) can

M. Bodirsky and M. Wrona 125

be derived from the classification for the structures definable in (Q;<) (see Section 5.5.4
in [4]). Note that every structure with a definition in (D;Eq) is isomorphic to a structure
definable over Allen’s interval algebra, by the observation that (D;Eq) is isomorphic to(

I; {((x, y), (u, v)) | x = u}
)
.

Hence, the classification presented here is a part of the more ambitious project to classify
the CSP for all structures that are first-order definable over Allen’s interval algebra.

1.2 Techniques and Outline
We give a description of our proof strategy; in this description, we freely use concepts that
will be introduced in Section 2. Let Γ be a structure with a first-order definition in (D;Eq). If
the binary relation E(x, y) defined by Eq(x, y)∧x 6= y, or the binary relation N(x, y) defined
by ¬Eq(x, y) is not primitive positive definable in Γ, then Γ must have an endomorphism that
does not preserve E or that does not preserve N . It turns out that in this case Γ is degenerate,
and we use a Ramsey-theoretic analysis of the endomorphisms to reduce the classification to
known results (Theorem 3.3). If E and N are primitive positive definable, then so is Eq, and
we are in the situation that the polymorphism algebra A of Γ has a non-trivial congruence,
namely Eq. The quotient of A by Eq is an algebra that contains all permutations of its
domain, and for such algebras Conjecture 1.2 has already been established (Theorem 3.3).
Moreover, we will consider certain algebras of A obtained from the congruence classes of Eq,
and again they contain all permutations of their domain. The central part of the paper is a
universal-algebraic argument how to combine the classification results for the quotient and
the congruence classes to obtain the general classification result.

2 Tools. . .

2.1 . . . from Model Theory
In this paper we consider two kinds of first-order structures: relational structures (typically
ω-categorical or finite, sometimes expanded with constants) and algebras, that is, structures
with a functional signature (see Section 2.2).

Let σ and τ be signatures with σ ⊆ τ . When ∆ is a σ-structure and Γ is a τ -structure
with the same domain such that R∆ = RΓ for all R ∈ σ, and f∆ = fΓ for all f ∈ σ, then
∆ is called a reduct of Γ, and Γ is called an expansion of ∆. We say that Γ is a first-order
expansion of ∆ if Γ is an expansion of ∆ and all relations in Γ are first-order definable over
∆. A structure ∆ is called a finite reduct of Γ if ∆ is a reduct of Γ with a finite signature. We
also write (Γ, R) for the expansion of Γ by a new relation R. Given two σ-structures Γ over
the domain A and ∆ over the domain B, ∆ is said to be an (induced) substructure of Γ iff (i)
B ⊆ A, (ii) for every n-ary function symbol f in σ the function f∆ is a restriction of fΓ to Bn,
and (iii) for every n-ary relation symbol R in σ we have R∆ = RΓ ∩Bn. For two τ -structures
Γ1 and Γ2 the direct product ∆ = Γ1×Γ2 is the τ structure on the domain A1×A2, where A1
is the domain of Γ1 and A2 is the domain of Γ2 such that: (i) for every n-ary relation symbol
R in τ we have ((a1

1, a
1
2), . . . , (an1 , an2)) ∈ R∆ iff (a1

1, . . . , a
n
1) ∈ RΓ1 and (a1

2, . . . , a
n
2) ∈ RΓ2 ,

and (ii) for every n-ary function symbol f in τ we have that f∆(
(a1

1, a
1
2), . . . , (an1 , an2)

)
=(

fΓ1(a1
1, . . . , a

n
1), fΓ2(a1

2, . . . , a
n
2)

)
. The direct product Γ× Γ is also denoted by Γ2, and the

k-fold product Γ× · · · × Γ, defined analogously, by Γk.
We say that a map h from the domain of a τ -structures Γ to the domain of a τ -

structure ∆ preserves a first-order τ -formula φ with free variables x1, . . . , xn if for all

CSL’12

126 Equivalence Constraint Satisfaction Problems

elements a1, . . . , an of Γ such that Γ satisfies φ(a1, . . . , an), ∆ satisfies φ(h(a1), . . . , h(an)). A
map h : Γ→ ∆ is a homomorphism if it preserves all atomic τ -formulas. An embedding is an
injective homomorphism satisfying the stronger condition that (t1, . . . , tn) ∈ RΓ if and only
if (h(t1), . . . , h(tn)) ∈ R∆, for all relation symbols R ∈ τ . An isomorphism is a surjective
embedding, and an automorphism of Γ is an isomorphism between Γ and itself. The set of
all automorphisms of Γ is denoted by Aut(Γ). An orbital of Aut(Γ) is a binary relation of
the form

{
(α(t1), α(t2)) | α ∈ Aut(Γ)

}
for elements t1, t2 of Γ.

A first-order theory T is model-complete if every embedding between models of T preserves
all first-order formulas. We say that a structure is model-complete if its theory is model-
complete. A homomorphism of a structure Γ into itself is called an endomorphism. A
structure Γ is called a core if all endomorphisms of Γ are embeddings. A structure ∆ is called
a core of Γ if ∆ is a core as well as Γ and ∆ are homomorphically equivalent, that is, there is
a homomorphism from Γ to ∆ and a homomorphism from ∆ to Γ.

I Theorem 2.1 ([3]). Every ω-categorical structure Γ is homomorphically equivalent to an
ω-categorical model-complete core ∆. All model-complete cores of Γ are isomorphic.

When ∆ is a model-complete core with finite relational signature, c is an element of the
domain of ∆, and (∆, {c}) is the expansion of ∆ by the unary relation {c}, then there is a
polynomial-time reduction from CSP((∆, {c})) to CSP(∆).

A structure Γ is homogeneous if every isomorphism between finite substructures of Γ can
be extended to an automorphism of Γ. Homogeneous structures with a finite signature are
ω-categorical. Good introductions to ω-categoricity can be found in [14, 18].

2.2 . . . from Universal Algebra
Let Γ be a structure. Homomorphisms from Γk to Γ are called polymorphisms of Γ. When
R is a relation over the set D, we say that f : Dk → D preserves R if f is a polymorphism
of (D;R), and that f violates R otherwise. The set of all polymorphisms of a relational
structure Γ, denoted by Pol(Γ), forms an algebraic object called a clone. A clone on some
fixed domain D is a set of operations on D containing all projections and closed under
composition. A clone C is locally closed iff for all natural numbers n, for all n-ary operations
g on D, if for all finite B ⊆ Dn there exists an n-ary f ∈ C which agrees with g on B, then
g ∈ C . A set of operations F locally generates an operation f if f is in the smallest locally
closed clone containing F , denoted by 〈F 〉.
I Proposition 2.2 (see e.g. Propositions 5.1.1 and 5.2.1 in [4]). Let F be a set of operations
on some domain D. Then the following are equivalent: (i) F is the polymorphism clone of a
relational structure; and (ii) F is a locally closed clone. Moreover, F locally generates g if
and only if g preserves all relations preserved by F .

Primitive positive formulas over a signature τ are first-order formulas built exclusively
from conjunction, existential quantifiers, equality and relation symbols from τ . The first
part of the following theorem is from [7], the second part is a straightforward consequence of
Theorem 5.2.3 and Lemma 5.3.5 in [4].

I Theorem 2.3. A relation R has a primitive positive definition in an ω-categorical structure
Γ if and only if R is preserved by all polymorphisms of Γ. An orbital O of Aut(Γ) has a
primitive positive definition in Γ if and only if O is preserved by all endomorphisms of Γ.

An algebra A whose set of operations equals Pol(Γ) is called a polymorphism algebra of Γ;
note that polymorphism algebras are not unique, since we can freely rename the operations

M. Bodirsky and M. Wrona 127

in A and still obtain a polymorphism algebra; however, since such a renaming is in our
context always irrelevant, we also call A the polymorphism algebra of Γ, and denote it by
Alg(Γ), as if it were unique.

A congruence of an algebra A with domain A is an equivalence relation on A that is
preserved by all operations in A. Let A,B be algebras with the same signature τ . If there is
a surjective homomorphism h from A to B, then B is called a homomorphic image of A. The
kernel {(a, b) ∈ A2 | h(a) = h(b)} of h is a congruence on A. Any congruence of A gives rise to
a quotient algebra of A, denoted by A/θ, whose domain A/θ consists of the equivalence classes
of θ, and which has the same signature as A so that fA/θ(a1/θ, . . . , an/θ) = fA(a1, . . . , an)/θ,
for every f ∈ τ and all a1, . . . , an ∈ A; here, ai/θ is the equivalence class of θ containing ai.

A class V of algebras with the same signature is called a pseudovariety if V contains all
homomorphic images, subalgebras, and finite direct products of algebras in V. The smallest
pseudovariety containing A is called the pseudovariety generated by A, and denoted by
V(A). The relevance of pseudovarieties in constraint satisfaction comes from the following
fact, which is a consequence of Theorems 5.5.6 and 5.5.15 in [4].
I Proposition 2.4. Let Γ and ∆ be ω-categorical structures. If there exists an algebra A in
V(Alg(Γ)) with the same domain as ∆ and whose operations are polymorphisms of ∆, then
there is for every finite reduct ∆′ of ∆ a finite reduct Γ′ of Γ such that CSP(∆′) reduces to
CSP(Γ′) in polynomial time.

The following lemma is a consequence that will be used several times.

I Lemma 2.5. Let Γ be an ω-categorical structure such that V(Alg(Γ)) contains a two-
element algebra all of whose operations are projections. Then Γ has a finite reduct Γ′ such
that CSP(Γ′) is NP-hard.

Proof . Suppose V(Alg(Γ)) contains an algebra A with domain {0, 1} all of whose operations
are projections. The operations in A preserve the relation R = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.
The problem CSP(({0, 1};R)) is known under the name positive 1-IN-3-3SAT, and NP-
hard [16]. Now the statement follows from Proposition 2.4. �

We remark that the two cases in Conjecture 1.2 are always disjoint; this follows along the
lines of the proof of Proposition 5.6.9 and 5.6.10 in [4]; we state it here for easy reference.
I Proposition 2.6. Let Γ be an ω-categorical model-complete core with a polymorphism f

and an automorphism α satisfying ∀x1, . . . , xn. f(x1, . . . , xn) = α(f(x2, . . . , xn, x1)). Then
for every expansion ∆ of Γ by constants, every algebra in the pseudovariety generated by the
polymorphism algebra of ∆ contains an operation that is not a projection.

2.3 . . . from Ramsey Theory
We use Ramsey theory to show that polymorphisms must behave canonically on large parts of
the domain; canonical behavior will be introduced below. A wider introduction to canonical
operations can be found in [8] and [4]; the definitions we present here are tailored towards
applications for equivalence constraint satisfaction problems.

I Definition 2.7. Let Γ and ∆ be structures over the same domain D. A behavior of a
binary operation f : D2 → D on S ⊆ D is a partial function that sends a pair of orbitals
(O1, O2) of Aut(Γ) to an orbital O3 of Aut(∆) such that for all (a1, a2) ∈ S2 ∩ O1 and
(b1, b2) ∈ S2 ∩O2 we have (f(a1, a2), f(b1, b2)) ∈ O3. A behavior is canonical if it is a total
function. An operation f : D2 → D is canonical on S as a function from Γ2 to ∆ if it has
a canonical behavior on S. If a behavior of f on S sends (O1, O2) to O3, then we write

CSL’12

128 Equivalence Constraint Satisfaction Problems

f(O1, O2) =S O3. Canonical unary operations and their behavior are defined analogously.
An operation f behaves as an operation g on S if they share the same behavior on S. In
these definitions, we might omit to specify S in case that S = D.

Let Γ,∆ be finite τ -structures. We write
(∆

Γ
)
for the set of all substructures of ∆ that are

isomorphic to Γ. When Γ,∆,Θ are τ -structures, then we write Θ→ (∆)Γ
r if for all colorings

χ :
(Θ

Γ
)
→ {1, . . . , r} there exists ∆′ ∈

(Θ
∆

)
such that χ is constant on

(∆′

Γ
)
.

I Definition 2.8. A class of finite relational structures C that is closed under isomorphisms
and substructures is called Ramsey if for all Γ,∆ ∈ C and for every finite k ≥ 1 there exists
a Θ ∈ C such that Θ→ (∆)Γ

k .

A structure Γ is called Ramsey if the class of all finite structures that embed into Γ is
Ramsey. A structure is called ordered if it carries a binary relation that denotes a linear
order on its domain. When Γ is Ramsey and ordered, then the following theorem allows us
to work with canonical polymorphisms of the expansion of Γ by constants.

I Theorem 2.9 ([10]). Let Γ be a homogeneous ordered Ramsey structure with finite relational
signature and domain D. Let c1, . . . , cm ∈ D, and let f : D2 → D be any operation. Then
{f} ∪Aut((Γ, c1, . . . , cm)) locally generates an operation that is canonical as a function from
(Γ, c1, . . . , cm)2 to Γ, and which is identical with f on all tuples containing only values from
c1, . . . , cm.

3 Equivalence Constraint Satisfaction Problems

We consider structures Γ with a first-order definition in (D;Eq), where D is a countably
infinite domain and Eq is an equivalence relation onD with infinitely many infinite equivalence
classes. In the following, such structures Γ are called equivalence constraint languages.

We define E(x, y) := Eq(x, y) ∧ x 6= y and N(x, y) := ¬Eq(x, y). Note that Eq(x, y) has
the primitive positive definition ∃z(E(x, z)∧E(z, y)) over (D;E), and it follows in particular
that every operation that preserves E also preserves Eq.

I Example 3.1. An example of an equivalence constraint language is Γ := (D; {(x, y, z) |
E(x, y) ∨N(y, z)}); it follows from our classification result (Corollary 7.5) that CSP(Γ) is
in P. On the other hand, consider ∆ := (D;R) where R =

{
(x, y, z) | (Eq(x, y) ∨ Eq(y, z)) ∧

(N(x, y) ∨N(y, z))
}
. It follows from Corollary 7.5 that CSP(∆) is NP-complete.

When R1, R2 are binary relations over D and a = (a1, a2) ∈ D2 and b = (b1, b2) ∈ D2,
we write a

(
R1
R2

)
b to denote that R1(a1, b1) and R2(a2, b2).

I Observation 3.2. Let f : D2 → D be a binary function that preserves E, and let a, b, c ∈ D2

such that a
(
E
=

)
b and b

(=
E

)
c. Then E(f(a), f(b)) or E(f(b), f(c)).

Proof . Since f preserves Eq, we have Eq(f(a), f(b)) and Eq(f(b), f(c)). Since a
(
E
E

)
c and

f preserves E, we have E(f(a), f(c)). Thus, f(a) 6= f(b) or f(b) 6= f(c), which proves the
statement. �

It is easy to see that (D;Eq) is a homogeneous structure and therefore ω-categorical.
Every structure with a first-order definition in an ω-categorical structure is again ω-categorical
(see e.g. [18]); thus, all equivalence constraint languages are ω-categorical. All equivalence
constraint languages are preserved by the automorphisms of (D;Eq), and we make the
following convention: a set of operations F generates an operation g if F ∪ Aut((D;Eq))
locally generates g (see Section 2.2). Moreover, we say that f generates g if {f} generates g.

M. Bodirsky and M. Wrona 129

id const eEE eNN eN=

= = = = = =
N N = E N N
E E = E N =

Figure 1 Canonical unary behaviors.

A linear order < on (D;Eq) is convex if for all a < b < c in D, if (a, c) ∈ Eq, then
(a, b) ∈ Eq. Expansions (D;Eq,<) of (D;Eq) by a convex linear order < are Ramsey
(see [19], Corollary 6.8).

An important subclass of equivalence constraint languages is the class of equality constraint
languages, i.e., structures with a first-order definition over (D; =). We will use the following
theorem, which is due to [5], in a formulation from [4] (a combination of Theorem 6.3.3 and
5.5.18 in [4]). Note that a countably infinite relational structure is isomorphic to an equality
constraint language if and only if it is preserved by all permutations of its domain [5].

I Theorem 3.3 (of [5]). Let Γ be an equality constraint language. Then exactly one of the
following two cases applies.

Γ is a model-complete core and V(Alg(Γ)) contains a two-element algebra whose operations
are projections. In this case, Γ has a finite reduct Γ′ such that CSP(Γ′) is NP-complete.
Γ has a binary polymorphism f and an automorphism α satisfying ∀x, y. f(x, y) =
α(f(y, x)); in fact, f can be chosen to be either constant or injective. Moreover, for all
finite reducts Γ′ of Γ the problem CSP(Γ′) is in P.

4 Endomorphisms

In this section we show that if an equivalence constraint language Γ has an endomorphism
that violates E or N , then Γ also has one out of five canonical endomorphisms described in
the following. This result will be an important first step in our complexity classification, as
we will see in Section 5.

The five mentioned behaviors of canonical unary operations are denoted by id, const,
eEE , eNN , and eN= and presented in Figure 1. For example, we require that eEE(N) = E

and eEE(E) = E. It is clear that for each of those five behaviors there exists a function from
D → D with this behavior. We also use the symbols id, const, eEE , eNN , and eN= to denote
a function with the respective behavior; since any two functions who have the same of these
behaviors generate each other, the precise choice of those functions will not be important.

To prove the main result of this section, Theorem 4.5, we use Ramsey theory via
Theorem 2.9 as follows. When e violates E or N , then there are c1, c2 ∈ D such that E(c1, c2)
and ¬E(e(c1), e(c2)), or N(c1, c2) and ¬N(e(c1), e(c2)). Let < be a convex linear order on D
such that c1 < c2; as mentioned before, (D;Eq, <) is Ramsey. By Theorem 2.9, the operation
e generates an operation f that is canonical as a function from (D;Eq, <, c1, c2) to (D;Eq, <)
(and hence also canonical as a function from (D;Eq, <, c1, c2) to (D;Eq)) and still violates
E or N . We say that f has behavior B between two points x, y ∈ D if f has behavior B on
{x, y}.

I Lemma 4.1. Let f : D → D be canonical as a function from (D;Eq, <, c1, c2) to (D;Eq).
If f behaves as the identity on all infinite orbits, and if it behaves as the identity between the
constants c1, c2 and all other points, then it preserves N .

CSL’12

130 Equivalence Constraint Satisfaction Problems

Proof . Since f violates N we have that Eq(f(c1), f(c2)). Let c3 be such that E(c1, c3) and
N(c2, c3). Then E(f(c1), f(c3)) and N(f(c2), f(c3)), contradicting transitivity of Eq. �

I Lemma 4.2. Let f : D → D be canonical as a function from (D;Eq, <, c1, c2) to (D;Eq).
If f violates E and behaves as the identity on all infinite orbits, and if it behaves as the
identity between the constants c1, c2 and all other points, then it generates eN=.

Proof . Since f violates E we have E(c1, c2) and either f(c1) = f(c2) or N(c1, c2). We first
show that the second case is impossible. There is c3 such that E(c1, c3) and E(c2, c3). Hence,
E(f(c1), f(c3)), E(f(c2), f(c3)), and N(f(c1), f(c2)), contradicting transitivity of Eq.

So f(c1) = f(c2), and in particular f preserves Eq. We show by local closure that f
generates eN=. Let F be a finite subset of D. Let e be an operation generated by f such
that the cardinality k of the set

{
(x, y) ∈ E ∩ F 2 | e(x) = e(y)

}
is maximal. If k = |E ∩ F 2|,

then e behaves on F as eN= and we are done. Otherwise, suppose there is (x, y) ∈ E ∩ F 2

such that e(x) 6= e(y). Since f and therefore e preserve Eq, we must have E(e(x), e(y)).
Let α be an automorphism of (D;Eq) that maps (e(x), e(y)) to (c1, c2). Then the mapping
e′ := f ◦ α ◦ e maps x and y to the same element, and

{
(x, y) ∈ E ∩ F 2 | e′(x) = e′(y)

}
> k,

contradicting the choice of e. �
We now analyze canonical behavior of injective functions in the case without constants.

I Lemma 4.3. Let f : D → D be canonical as a function from (D;Eq, <, c1, c2) to (D;Eq).
Let S be an infinite orbit of (D;Eq, <, c1, c2) that induces a copy of (D;Eq). If f does not
behave as the identity on S, then it generates eEE, eN=, eNN , or a constant operation.

Proof . Since all orbitals of (D;Eq) are symmetric, the unary operation f is canonical as a
function from (D;Eq, <) to (D;Eq) if and only if it is canonical as a function from (D;Eq) to
(D;Eq). If f does not behave as the identity on S, then f violates E or N on S. If f violates
N , then either f(N) =S (=) or f(N) =S E. In the first case we must have f(E) =S (=),
and f is constant on S. Since S induces a copy of (D;Eq), it follows by local closure that f
generates a constant operation. So suppose that f(N) =S E. If f(E) =S E then f behaves
as eEE on S, and therefore generates eEE . The case that f(E) =S N is impossible, since
for u, v, w with N(u, v), N(u,w), E(v, w) this would imply E(f(u), f(v)), E(f(u), f(w)),
N(f(v), f(w)), contradicting transitivity of Eq.

So suppose that f preserves N but violates E on S. If f(E) =S (=) then f behaves as
eN= on S and therefore generates eN=. Otherwise, f(E) =S N ; in this case f behaves as
eNN on S, and therefore generates eNN . �

Next, we analyze canonical behavior of operations in the presence of two constants.

I Lemma 4.4. Let c1, c2 ∈ D be constants and let f : D → D be canonical as a function
from (D;Eq, <, c1, c2) to (D;Eq). Let O be an infinite orbit of (D;Eq, <, c1, c2). If f does
not behave as the identity on O, or if it does not behave as the identity between one of c1, c2
and a point from O, then it generates eEE, eN=, eNN , or a constant operation.

Proof . Let P be an orbit of (D;Eq, <, c1, c2) that induces a copy of (D;Eq) in (D;Eq). We
assume that f behaves as the identity on P ; otherwise, we are done by Lemma 4.3. Between
any u ∈ D \ P and any v ∈ P , f must behave as the identity. To see this, observe that
necessarily N(u, v). Suppose that u < v; the case that v < u is analogous. Suppose for
contradiction that Eq(f(u), f(v)). Pick a v′ ∈ P \ {v} such that N(u, v′) and N(v, v′). Then
u < v′ because < is convex. Since f is canonical we have Eq(f(u), f(v′)). Since f behaves as
the identity on P , we have N(f(v), f(v′)). This contradicts transitivity of Eq. We conclude
that N(f(u), f(v)) and hence f behaves as the identity between any u ∈ D \ P and v ∈ P .

M. Bodirsky and M. Wrona 131

First suppose that f does not behave as the identity on O. As we have observed above,
we are done if O induces in (D;Eq) a structure that is isomorphic to (D;Eq). Otherwise,
there exists a c ∈ {c1, c2} such that E(u, c) for all u ∈ O. Since f does not behave as the
identity on O we have either f(E) =O (=) or f(E) =O N . In the first case, by local closure
f generates eN=. In the second case, f generates eNN , again by local closure.

Now suppose that f does not behave as the identity between one of the constants
c ∈ {c1, c2} and a point p from O. We have already shown in the first paragraph that we are
done when O induces in (D;Eq) a structure isomorphic to (D;Eq). Therefore, E(p, c) for all
p ∈ O. If f(E) =O (=) then f generates eN=, and if f(E) =O N then f generates eNN . �

I Theorem 4.5. Any e : D → D violating E or N generates eEE, eNN , eN=, or a constant
operation.

Proof . Since e violates E orN , there are c1, c2 ∈ D such that E(c1, c2) and not E(e(c1), e(c2)),
or N(c1, c2) and Eq(e(c1), e(c2)). By Theorem 2.9, the operation e generates an operation f
that is canonical as a function from (D;Eq, <, c1, c2) to (D;Eq) and still violates E or N .
Then by Lemma 4.1 and by Lemma 4.2, either

f generates eN=, and we are done, or
there is an infinite orbit O such that f does not behave as the identity on O, or
there is an infinite orbit O such that f does not behave as the identity between one of
the constants c ∈ {c1, c2} and a point from O.

In the last two cases f generates eEE , eNN , eN=, or a constant operation by Lemma 4.4. �

5 Hardness

This section has two parts: we first use the results from the previous section to show that
we can focus on equivalence constraint languages where E and N are primitive positive
definable. In the second part, we use Theorem 3.3 in two different ways to isolate two groups
of first-order expansions of (D;E,N) that have NP-hard CSPs, and correspond to Item 1
of Conjecture 1.2. This will be complemented in the next sections by the proof that the
remaining first-order expansions of (D;E,N) are preserved by a binary polymorphism f

satisfying Item 2 of Conjecture 1.2, and correspond to polynomial-time tractable equivalence
constraint satisfaction problems.

I Lemma 5.1. Let Γ be first-order definable in (D;Eq), and let ∆ be the model-complete
core of Γ. Then one of the following holds:

the pseudovariety generated by the polymorphism algebra of ∆ contains a two-element
algebra all of whose operations are projections. In this case, there exists a finite reduct Γ′
of Γ such that CSP(Γ′) is NP-complete;
∆ has a polymorphism f and an automorphism α satisfying ∀x, y. f(x, y) = α(f(y, x)).
In this case, for every finite reduct Γ′ of Γ we have that CSP(Γ′) is in P;
both E and N have a primitive positive definition in Γ.

Proof . Consider first the case that Γ has an endomorphism f that violates E or N . By
Theorem 4.5 we obtain that f generates an operation e which is from {eEE , eNN , eN=} or a
constant operation. By Theorem 2.2, e is an endomorphism of Γ. If e is constant, then we
are in Case 2 and done. Otherwise, the structure ∆ induced by the image of e in Γ is infinite
and preserved by all permutations, and hence an equality constraint language. Moreover, ∆
is a model-complete core of Γ and the statement follows directly from Theorem 3.3.

CSL’12

132 Equivalence Constraint Satisfaction Problems

min(E,=) = E N

= = E ?
E E E ?
N ? ? N

min(N,Eq) = E N

= = ? N
E ? E N
N N N N

min(N,E,=) = E N

= = E N
E E E N
N N N N

Figure 2 Important behaviors: min(E,=) (left), min(N,Eq) (middle), and min(N,E,=) (right).

Now suppose that the orbitals E or N of (D;Eq) are preserved by all endomorphisms; in
particular, they are preserved by all automorphisms, and hence form orbitals of Aut(Γ). By
Theorem 2.3, E and N must be primitive positive definable. �

To classify first-order expansions of (D;E) we use Theorem 3.3 in two different ways.
The first way is via the following observation, whose proof we leave to the reader.
I Proposition 5.2. Let Γ be a first-order expansion of (D;E). Then Eq is a congruence of
A := Alg(Γ) and the algebra B := A/Eq contains all permutations of its domain.

Another way how Theorem 3.3 comes into play is as follows; again, the proof is straight-
forward and left to the reader.
I Proposition 5.3. Let Γ be a first-order expansion of (D;E), and let c ∈ D be arbitrary.
Then for any c ∈ D, the set {d ∈ D | E(c, d)} induces a subalgebra B of A := Alg((Γ, c))
that contains all permutations of its domain.

By combining those results we prove that either Γ satisfies Item 1 of Conjecture 1.2, or it
has certain binary polymorphisms. Three important behaviors of binary operations, min(E,=),
min(N,Eq), and min(N,E,=) are depicted in Figure 2, which should be read analogously to
Figure 1. For example, we require that min(N,Eq)(N,E) = min(N,Eq)(E,N) = N . The name
of min(N,E,=) comes from the observation that it equals the minimum operation with respect
to the order N < E < (=). The existence of operations with these behaviors follows from
Proposition 6.1.
I Proposition 5.4. Let Γ be a first-order expansion of (D;E,N), and let c ∈ D be arbitrary.
Then Γ is a model-complete core, and either V(Alg((Γ, c))) contains a two-element algebra
all of whose operations are projections, and Γ has a finite reduct Γ′ such that CSP(Γ′) is
NP-hard, or Γ is preserved by
1. an operation f with the behavior min(E,=) on {d ∈ D | E(c, d)}, and
2. an operation with the behavior min(N,Eq).
Proof . Since Γ contains E and N , every endomorphism of Γ behaves as the identity. Hence,
every endomorphism of Γ is locally generated by Aut(Γ). By Theorem 3.6.11 in [4], the
structure Γ is a model-complete core.

The subalgebra A induced by {d |E(c, d)} in B := Alg((Γ, c)) contains a unary function
for each permutation of its domain (Proposition 5.3). Let ∆ be the structure with the same
domain as A that contains all the relations that are preserved by the operations in A, and let
A′ be the polymorphism algebra of ∆. If V(A′) contains a two-element algebra all of whose
operations are projections, then so does V(A) since every operation of A is also an operation
of A′. In this case, also V(B) contains this two-element algebra, and by Lemma 2.5 there
is a finite reduct Γ′ of Γ such that CSP((Γ′, {c})) is NP-hard. Since Γ is a model-complete
core, Theorem 2.1 shows that CSP(Γ′) is NP-hard.

If V(A′) does not contain a two-element algebra all of whose operations are projections,
then Theorem 3.3 implies that ∆ has either a binary injective or constant polymorphism f .
Since Γ contains the relations E and N , all its endomorphisms are injective, and therefore

M. Bodirsky and M. Wrona 133

also the unary operations in B, in A, and in A′ are injective. This implies that f is binary
injective. Let τ be the signature of A. Since the operations in A locally generate the
operations in A′ (Proposition 2.2), it follows that for every finite subset S of the domain
of A there exists a g ∈ τ such that gA behaves as f on S; since f is binary injective, gB

therefore has the behavior min(E,=) on S as a function over Γ. By an easy compactness
argument (see Lemma 3.1.8 in [4]), Γ has a polymorphism with the behavior min(E,=) on all
of {d |E(c, d)}, satisfying the condition of Item 1 in the statement.

The proof that Γ also has a polymorphism with behavior min(N,Eq) is similar, based on
the fact that Eq is a congruence of C := Alg(Γ), and that the algebra D := C/Eq contains
all permutations of its domain. Similarly as above we argue that for every finite subset S of
the domain of D there is an operation in D that behaves as min(N,Eq) on the union of the
classes of D = C/Eq that correspond to elements in S (unless V(D) contains a two-element
algebra all of whose operations are projections). As above, a compactness argument gives
the existence of an operation in D that behaves as min(N,Eq) on the entire domain of Γ. �

6 Tractability

In this section we show that equivalence CSPs that have a polymorphism with the behavior
min(N,E,=) can be solved in polynomial time.
I Proposition 6.1. There is a binary function f that is canonical as a function from (D;Eq)2

to (D;Eq) with the behavior min(N,E,=). This function can be chosen such that there is an
automorphism α of (D;Eq) satisfying ∀x, y. f(x, y) = α(f(y, x)).
Proof . Observe that the structure (D;Eq)2 is again an equivalence relation on a countable set
with infinitely many infinite classes, and by ω-categoricity there is an isomorphism i between
(D;Eq)2 and (D;Eq). This isomorphism has the behavior min(N,E,=). Let β : D2 → D2 be
defined by (x, y) 7→ (y, x). Then β is an automorphism of (D;Eq)2, and α := i ◦ β ◦ i−1 is an
automorphism of (D;Eq) such that i(x, y) = α(i(y, x)). �

The operation f whose existence is shown in Proposition 6.1 will also be denoted by
min(N,E,=), i.e., we use the same symbol for this operation and its behavior.
I Proposition 6.2. Let ∆ be a structure that is first-order definable in (D;Eq), with finite re-
lational signature, and polymorphism min(N,E,=). Then CSP(∆) can be solved in polynomial
time.
Proof . We use Proposition 2.4, and Theorem 3.3. An operation f is called essentially
injective if it can be obtained from an injective operation by adding dummy variables (that
is, the function value of f does not depend on those additional arguments of f). Let A be
an algebra with domain N whose operations are precisely the essentially injective operation
over N. It is easy to verify that the operations of A form a locally closed clone, and hence,
by Proposition 2.2, there exists a relational structure Γ with polymorphism algebra A. We
will show there is an algebra B with domain D in the pseudovariety generated by A such
that all operations of B preserve ∆. It then follows from Proposition 2.4 that there exists
a finite signature reduct Γ′ of Γ such that CSP(∆) reduces to CSP(Γ′). Polynomial-time
tractability of CSP(Γ′) follows from Theorem 3.3.

The relation C = {((u1, u2), (v1, v2)) ∈ N | u1 = v1} is a congruence of A2, with
infinitely many infinite congruence classes. Let b be any bijection between the congruence
classes of C and the domain D of ∆, and let B be the homomorphic image of A2 with
respect to the map b. We claim that every operation fB of B preserves ∆. If there are
i1, . . . , ik ∈ {1, . . . , n} such that fA : Nn → N satisfies f(x1, . . . , xn) = g(xi1 , . . . , xik) for

CSL’12

134 Equivalence Constraint Satisfaction Problems

all x1, . . . , xn ∈ N, then it clearly suffices to verify the claim for g instead of f . Since fA

is essentially injective, we can therefore assume that fA is injective. Then fB(x1, . . . , xn)
behaves as min(N,E,=)(x1,min(N,E,=)(x2, . . . ,min(N,E,=)(xn−1, xn) . . .)): indeed,

Eq(fB(x1, . . . , xn), fB(y1, . . . , yn))⇔ fA(x1
1, . . . , x

n
1) = fA(y1

1 , . . . , y
n
1)

⇔ xi1 = yi1 for all i ≤ n
⇔ Eq(xi, yi) for all i ≤ n .

Since ∆ is preserved by min(N,E,=), it is also preserved by fB. �

7 Generating min(N,E,=)

In this section we show that when f has the behavior min(E,=) on {d ∈ D | E(c, d)} for
some c ∈ D and g has the behavior min(N,Eq), then {f, g} generates min(N,E,=). Some of the
proofs in this section have been omitted and can be found in the full version of the paper.

I Lemma 7.1. Let Γ be a first-order expansion of (D;E), and c ∈ D. Suppose that Γ has
a polymorphism that behaves as min(E,=) on {d ∈ D |E(c, d)}. Then Γ is also preserved by
min(E,=).

In the proof of Lemma 7.1 we use the following lemma, which is inspired by similar
statements in [9]. We remark that Item 2 in the statement below is formally unrelated to
the notion of independence as studied in [15], but similar in spirit.

I Lemma 7.2. Let Γ be a first-order expansion of (D;E). Then the following are equivalent.
1. Γ has a polymorphism with the behavior min(E,=).
2. For every primitive positive formula φ(x1, . . . , xn) and y1, . . . , y4 ∈ {x1, . . . , xn}, when

φ(x1, . . . , xn) ∧ E(y1, y2) ∧ y3 = y4 and
φ(x1, . . . , xn) ∧ y1 = y2 ∧ E(y3, y4)

are satisfiable over Γ, then also φ(x1, . . . , xn) ∧E(y1, y2) ∧E(y3, y4) is satisfiable over Γ.
3. For every finite subset S of D, Γ has a polymorphism with the behavior min(E,=) on S.

I Lemma 7.3. Let f be an operation with the behavior min(E,=). Then f generates an
operation with the behavior min(E,=) that is canonical as a function from (D;Eq)2 to (D;Eq).

I Lemma 7.4. Let f and g be operations with the behavior min(N,Eq) and min(E,=), respec-
tively. Then {f, g} generates min(N,E,=).

Proof . By Lemma 7.3, we can assume that f is canonical as a function from (D;Eq)2

to (D;Eq). We will show that h(x, y) := g(f(x, y), f(y, x)) has the behavior min(N,E,=).
Consider arbitrary points a = (a1, a2), b = (b1, b2) in D2. Because f and g preserve E and
N , h also does, and hence h(E,E) = E and h(N,N) = N . If a

(
E
=

)
b or a

(=
E

)
b, then because

f has the behavior min(E,=), we have both E(f(a1, a2), f(b1, b2)) and E(f(a2, a1), f(b2, b1)).
Since g preserves E, we obtain that E(h(a), h(b)) and we are done in this case.

We now turn to the case where a
(
N
Q

)
b andQ ∈ {E,=}, and show thatN(f(a1, a2), f(b1, b2))

or N(f(a2, a1), f(b2, b1)). Assume the contrary. Let α be an automorphism of (D;Eq) such
that α(a2) = a1. Then (a1, a1)

(
N
Q

)
(b1, α(b2)) and (a1, a1)

(
Q
N

)
(α(b2), b1). By transitivity of

Eq, we have that (b1, α(b2))
(
N
N

)
(α(b2), b1). Since f is canonical as a function from (D;Eq)2 to

(D;Eq), we have that Eq(f(a1, a1), f(b1, α(b2))) and Eq(f(a1, a1), f(α(b2), b1)). Therefore,
Eq(f(b1, α(b2)), f(α(b2), b1)) by transitivity of Eq. This contradicts the fact that f preserves

M. Bodirsky and M. Wrona 135

N . Thus we have proved that N(f(a1, a2), f(b1, b2)) or N(f(a2, a1), f(b2, b1)). Further,
because g has the behavior min(N,Eq), we obtain that N(h(a), h(b)).

The case where a
(
Q
N

)
b for Q ∈ {E,=} is symmetric. We have considered all the cases,

and conclude that indeed h has the behavior min(N,E,=). �
By combining Proposition 5.4, Proposition 6.2, and Lemma 7.4, we obtain the following.

I Corollary 7.5. Let Γ be a first-order expansion of (D;E,N). Then Γ is preserved by
min(N,E,=), and for every finite reduct Γ′ of Γ the problem CSP(Γ′) is in P, or Γ has a finite
reduct Γ′ such that CSP(Γ′) is NP-hard.

8 Conclusions and Future Work

We have shown that Conjecture 1.2 holds for all structures with a first-order definition over
an equivalence relation with infinitely many infinite classes; moreover, the universal-algebraic
dichotomy from Conjecture 1.2 corresponds in this case precisely to a complexity dichotomy
of the corresponding constraint satisfaction problems. We obtain the following.

I Theorem 8.1. For equivalence constraint languages Γ exactly one of the following holds:
1. There is an expansion ∆′ of the model-complete core ∆ of Γ by a constant such that

Alg(∆′) contains a two-element algebra whose operations are projections. In this case,
for some finite reduct Γ′ of Γ we have that CSP(Γ′) is NP-complete.

2. The model-complete core ∆ of Γ has a polymorphism f and an automorphism α satisfying
∀x, y. f(x, y) = α(f(y, x)). In this case, CSP(Γ′) is in P for every finite reduct Γ′ of Γ.

Proof . By Proposition 2.6, the two cases are mutually exclusive. By Lemma 5.1, we have
that either Case 1 or Case 2 holds, or E and N are primitively positively definable over Γ. By
Proposition 5.4 and Lemma 7.1 every first-order expansion Γ of (D;E,N) is a model-complete
core, and either satisfies Case 1 or is preserved by an operation f with the behavior min(E,=)
and an operation g with the behavior min(N,Eq). Further, Lemma 7.4 implies that Γ, and in
consequence every finite reduct Γ′ of Γ, is preserved by min(N,E,=). The tractability of each
such Γ′ follows from Proposition 6.2. By Proposition 6.1 there exists an automorphism α of
(D;Eq) satisfying ∀x, y. min(N,E,=)(x, y) = α(min(N,E,=)(y, x)); hence, we are in Case 2. �

Theorem 8.1 classifies also a non-trivial class of structures that are first-order definable
over Allen’s Interval Algebra (see Section 1.1): recall that the structure (I;RE), where
RE := {((x, y), (u, v)) | x = u}, is isomorphic to (D;Eq). In fact, we believe that the
techniques of this paper can be applied to eventually classify the complexity of the CSP
for all structures Γ with a first-order definition over Allen’s Interval Algebra. A next step
towards this goal might be to classify all such structures Γ that contain the relation RE . In
this case RE is a congruence of Alg(Γ). Note that the quotient of Alg(Γ) by RE , and all
subalgebras corresponding to equivalence classes of RE , contain all automorphisms of (Q;<).
Hence, the difference to the scenario of the present paper is that one might then have to
use the results from [6] about first-order expansions of (Q;<) instead of the dichotomy for
equality constraint languages.

References
1 James F. Allen. Maintaining knowledge about temporal intervals. Communications of the

ACM, 26(11):832–843, 1983.

2 Libor Barto and Marcin Kozik. New conditions for Taylor varieties and CSP. In Proceedings
of LICS, pages 100–109, 2010.

CSL’12

136 Equivalence Constraint Satisfaction Problems

3 Manuel Bodirsky. Cores of countably categorical structures. Logical Methods in Computer
Science, 3(1):1–16, 2007.

4 Manuel Bodirsky. Complexity classification in infinite-domain constraint satisfaction. Mem-
oire d’habilitation à diriger des recherches, Université Diderot – Paris 7. Available at
arXiv:1201.0856, 2012.

5 Manuel Bodirsky and Jan Kára. The complexity of equality constraint languages. Theory of
Computing Systems, 3(2):136–158, 2008. A conference version appeared in the proceedings
of CSR’06.

6 Manuel Bodirsky and Jan Kára. The complexity of temporal constraint satisfaction prob-
lems. Journal of the ACM, 57(2):41 pp, 2009. An extended abstract appeared in the
proceedings of STOC’08.

7 Manuel Bodirsky and Jaroslav Nešetřil. Constraint satisfaction with countable homoge-
neous templates. Journal of Logic and Computation, 16(3):359–373, 2006.

8 Manuel Bodirsky and Michael Pinsker. Reducts of Ramsey structures. AMS Contemporary
Mathematics, vol. 558 (Model Theoretic Methods in Finite Combinatorics), pages 489–519,
2011.

9 Manuel Bodirsky and Michael Pinsker. Schaefer’s theorem for graphs. In Pro-
ceedings of STOC, pages 655–664, 2011. Preprint of the long version available at
arxiv.org/abs/1011.2894.

10 Manuel Bodirsky, Michael Pinsker, and Todor Tsankov. Decidability of definability. In
Proceedings of LICS, pages 321–328, 2011. Preprint of full journal version available from
arxiv.org/abs/1012.2381.

11 Andrei A. Bulatov. H-coloring dichotomy revisited. Theoretical Computer Science,
349(1):31–39, 2005.

12 Andrei A. Bulatov. A dichotomy theorem for constraint satisfaction problems on a 3-
element set. Journal of the ACM, 53(1):66–120, 2006.

13 Andrei A. Bulatov, Andrei A. Krokhin, and Peter G. Jeavons. Classifying the complexity
of constraints using finite algebras. SIAM Journal on Computing, 34:720–742, 2005.

14 Peter J. Cameron. Oligomorphic Permutation Groups. Cambridge University Press, Cam-
bridge, 1990.

15 David Cohen, Peter Jeavons, Peter Jonsson, and Manolis Koubarakis. Building tractable
disjunctive constraints. Journal of the ACM, 47(5):826–853, 2000.

16 Michael Garey and David Johnson. A guide to NP-completeness. CSLI Press, Stanford,
1978.

17 David Hobby and Ralph McKenzie. The Structure of Finite Algebras. AMS Memoir, 1988.
18 Wilfrid Hodges. Model theory. Cambridge University Press, 1993.
19 Alexander Kechris, Vladimir Pestov, and Stevo Todorcevic. Fraissé limits, Ramsey theory,

and topological dynamics of automorphism groups. Geometric and Functional Analysis,
15(1):106–189, 2005.

20 Andrei A. Krokhin, Peter Jeavons, and Peter Jonsson. Reasoning about temporal relations:
The tractable subalgebras of Allen’s interval algebra. Journal of the ACM, 50(5):591–640,
2003.

21 Bernhard Nebel and Hans-Jürgen Bürckert. Reasoning about temporal relations: A maxi-
mal tractable subclass of Allen’s interval algebra. Journal of the ACM, 42(1):43–66, 1995.

22 Thomas J. Schaefer. The complexity of satisfiability problems. In Proceedings of STOC,
pages 216–226, 1978.

arxiv.org/abs/1012.2381

A Negative Conjunctive Query is Easy if and
only if it is Beta-Acyclic
Johann Brault-Baron

Université de Caen/ENSICaen/CNRS - GREYC (UMR6072)
Bd Maréchal Juin 14050 Caen Cedex, France
Johann.Brault-Baron@unicaen.fr

Abstract
It is known that the data complexity of a Conjunctive Query (CQ) is determined only by the way
its variables are shared between atoms, reflected by its hypergraph. In particular, Yannakakis [18,
3] proved that a CQ is decidable in linear time when it is α-acyclic, i.e. its hypergraph is α-acyclic;
Bagan et al. [2] even state:

Any CQ is decidable in linear time iff it is α-acyclic. (under certain hypotheses)
(By linear time, we mean a query on a structure S can be decided in time O(|S|))

A natural question is: since the complexity of a Negative Conjunctive Query (NCQ), a con-
junctive query where all atoms are negated, also only depends on its hypergraph, can we find a
similar dichotomy in this case?

To answer this question, we revisit a result of Ordyniak et al. [17] — that states that sat-
isfiability of a β-acyclic CNF formula is decidable in polynomial time — by proving that some
part of their procedure can be done in linear time. This implies, under an algorithmic hypothesis
(precisely: one cannot decide whether a graph is triangle-free in time O(n2 logn) where n is the
number of vertices.) that is likely true:

Any NCQ is decidable in quasi-linear time iff it is β-acyclic.
(By quasi-linear time, we mean a query on a structure S can be decided in time O(|S| log |S|))

We extend the easiness result to Signed Conjunctive Query (SCQ) where some atoms are
negated. This has great interest since using some negated atoms is natural in the frameworks of
databases and CSP. Furthermore, it implies straightforwardly the following:

Any β-acyclic existential first-order query is decidable in quasi-linear time.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes, H.2.4 Query pro-
cessing

Keywords and phrases conjunctive query, hypergraph, β-acyclicity, data complexity, Davis-
Putnam procedure.

Digital Object Identifier 10.4230/LIPIcs.CSL.2012.137

1 Introduction

This paper gives descriptive complexity results in a finite model theory framework. According
to [16], “Finite model theory studies the expressive power of logic on finite relational
structures.” Here we emphasize the complexity aspect of expressive power, in relation with
the considered (first-order) logic fragment.

A fragment of great interest is the primitive positive fragment, i.e. the set of sentences
one can build using only atoms — relations between variables —, the conjunction ∧ and
the existential quantifier ∃. This fragment, also known as Conjunctive Queries (CQ), is
fundamental in database theory (see [5] for example) and in Constraint Satisfaction Problems
(CSP) (see [7]). While general queries (first-order sentences) are PSpace-complete in terms

© Johann Brault-Baron;
licensed under Creative Commons License NC-ND

Computer Science Logic 2012 (CSL’12).
Editors: Patrick Cégielski, Arnaud Durand; pp. 137–151

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2012.137
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

138 A Negative Conjunctive Query is Easy if and only if it is Beta-Acyclic

of combined complexity, conjunctive queries are “only” NP-complete in terms of combined
complexity, or W[1]-Complete ([13]) in terms of parametrized complexity.

An important tractable class of conjunctive queries are the α-acyclic (or acyclic, for short)
conjunctive queries. They are tractable in a very strong sense: Yannakakis [18] proved that
an α-acyclic conjunctive query φ on a relational structure S can be decided in time O(|φ|.|S|);
in particular, it is fixed-parameter linear, i.e. it has linear data complexity. Bagan et al.([2])
even states (partially) that α-acyclicity is a necessary condition of linear data complexity.
Another result giving relevance to this class is that Gottlob et al. ([10]) proved α-acyclic CQ
to be LogCFL-complete for combined complexity.

Acyclic CQ have met a great interest essentially because they are the basis of important
tractable classes of queries: they have been extended to several notions of queries not-too-far
from α-acyclicity. In particular, this notion was extended to bounded treewidth CQ — a
notion of bounded distance from being a tree — leading to classification results, see [13];
and to the notion of bounded hyper-treewidth CQ[11], for example. These classes allow
polynomial reduction to acyclic CQ.

Nevertheless, in a database context, polynomiality is not a sufficient notion of tractability:
a quadratic dependency on the database size is often considered intractable. A more
reasonable notion would be quasi-linear time n(logn)O(1) (see [14]), which we take as a
definition of tractability. Notice that, according to this definition of tractability, tractable
CQ are still exactly CQ that have an α-acyclic hypergraph.

One can naturally ask oneself which queries, besides α-acyclic CQ, are tractable. Notice
that there are some obviously tractable queries that are not in CQ, in particular some sets
operations; e.g., the query ∃xR(x)∧¬S(x) that can be interpreted as “is RrS non-empty?”.
This example leads to a quite natural question: which extensions of CQ where some atoms
are negated, which we call Signed Conjunctive Queries (SCQ), are tractable?

In order to answer this question, we investigate a simpler question: Which queries that
are conjunctions of only negated atoms, that we call Negative Conjunctive Queries (NCQ),
are tractable? The advantage of this simpler case is that we can use the same tool as the
known CQ case: the notion of hypergraph. The hypergraph of a query is quite a simple
object reflecting the way variables are shared between atoms. It is a widespread intuitive
idea that the complexity of a CQ only depends on its hypergraph, and in fact it is easy to
prove this also holds in the case of NCQ.

One might think that a NCQ can be immediately reduced to a CQ by complementing
the relations. However, computing the complement is clearly not in FPT, and a fortiori not
in quasi-linear time.

We will prove for this case a dichotomy similar to the one known for CQ: a NCQ is
tractable iff it is β-acyclic, which means that its hypergraph is β-acyclic. We finally extend
the easiness result by proving that β-acyclic SCQ are tractable.

Structure of this Paper

This paper is organized as follows:
Section 1 introduces the main definitions and states the results;
Section 2 refines a result from Ordyniak et al. [17] by proving Davis-Putnam resolution
w.r.t. a variable that is a nest point is done in linear time;
Section 3 proves the easiness result;
Section 4, after introducing some technical points, establishes the hardness result.

J. Brault-Baron 139

2 Preliminaries and Results

We introduce here the respective statements of the two results with all necessary definitions.

2.1 Preliminaries
I Definition 1 (sentence, structure, query, CQ, NCQ, SCQ). A signature σ is:

a set of relation symbols,
and an arity Ar that associates a number to each symbol R, denoted Ar (R).

A σ-structure S consists in associating a set of Ar(R)-tuples to each of the relation symbols
R of σ which is called the interpretation of R in S, and denoted RS . Some relation symbols
of arity 1 may be used in a particular way, and are then called domain symbols.

An existential first-order sentence, or sentence for short, is a usual existential first-order
sentence where each variable has a distinct associated domain symbol Di. More formally, a
σ-sentence has the form ∃x1∈D1 . . . ∃xn∈Dn ψ where Di is a domain symbol belonging to
σ and ψ is a usual quantifier-free σ′-formula where σ′ is σ without the D1, . . . , Dn previously
mentioned. In the whole document, ψ will refer to the quantifier-free part of φ.

We call query of a sentence φ, denoted DecideQ(φ), the problem of, given a structure S,
deciding whether φ holds in S. Depending on the quantifier-free formula ψ, we define classes
of queries of interest:

when ψ =
∧
iRi

(
xi0 , . . . , xiAr(Ri)

)
, DecideQ(φ) ∈ CQ the existential Conjunctive Queries;

when ψ =
∧
i ¬Ri

(
xi0 , . . . , xiAr(Ri)

)
, DecideQ(φ) ∈ NCQ the existential Negative Con-

junctive Queries;
when ψ =

∧
i σiRi

(
xi0 , . . . , xiAr(Ri)

)
, where σi is either ¬ or ε (nothing), DecideQ(φ) ∈

SCQ the existential Signed Conjunctive Queries;
when ψ is unrestricted, i.e. written using any connectives (∧, ∨,→, ¬, etc.) DecideQ(φ) ∈
EQ the existential Queries.

Considering the particular form of the first three classes, we may consider these formulas as
conjunctions of so-called conjuncts, i.e. when ψ is in the form: ψ =

∧
i σiRi

(
xi0 , . . . , xiAr(Ri)

)
each Ci = σiRi

(
xi0 , . . . , xiAr(Ri)

)
is a conjunct. When σ(i) is ε (resp. ¬), we say Ci is a

positive (resp. negative) conjunct.

I Remark. Defining sentences with distinguished domains symbols attached to variables is a
bit unusual. Let us justify it briefly through a simple example. Consider:

φ1 = ∃x1∃x2∃x3∃x4 R(x1, x2) ∧R(x3, x2) ∧R(x1, x4) ∧R(x3, x4)
φ2 = ∃x1∃x2∃x3∃x4 R(x1, x2) ∧R(x2, x3) ∧R(x4, x1) ∧R(x3, x4)

The sentences φ1 and φ2 obviously have the same hypergraph (see below) but DecideQ(φ1) is
obviously easy (it consists in deciding whether a directed graph has at least one edge), while
DecideQ(φ2) is presumably not as easy (it consists in deciding whether a directed graph has
a circuit of size 4). Using our formalism guarantees that:

the complexity of a CQ (or a NCQ) depends only on its hypergraph, and
the easiness results (of α-acyclic CQ and β-acyclic SCQ) still hold with the usual definition,
i.e. when the variables all have the same domain.

I Definition 2 (complexity classes). These definitions are based on [12], see it for more details.
We call qLin (resp. Lin) the set of problems decidable in time O(n logn) (resp. O(n)) on a
RAM machine where n is the size of the input. In particular, sorting is in Lin by a result
of [1], and [12].

CSL’12

140 A Negative Conjunctive Query is Easy if and only if it is Beta-Acyclic

I Remark. This definition of qLin looks quite restrictive: n(logn)O(1) would be much more
reasonable, as suggested by [14]. In fact, all our results hold in both cases. We chose the
restrictive one in order to put the emphasis on the easiness result.

The main object of our discourse will be how the restriction of the way variables are
shared in a formula allows easy decision. The way variables are shared can be described by a
very simple yet powerful notion: the hypergraph.

I Definition 3 (hypergraph, hypergraph of a query). We call hypergraph H a set of non-empty
sets, called the edges of H. We call V(H) the union of its edges; the elements of V(H) are
called the vertices of H.

We write H(φ) the hypergraph of the sentence φ defined as the set of variables sets
appearing in atoms of φ: H(φ) = {Vars (A) |A is an atom of φ} where

Vars
(
Ri
(
xi1 , . . . , xiAr(Ri)

))
=
{
xi1 , . . . , xiAr(Ri)

}
I Example 4. If we consider the SCQ DecideQ(φ) where{

φ = ∃x1∈D1 ∃x2∈D2 ∃x3∈D3 ∃x4∈D4 ψ

ψ = R1(x1, x2) ∧R2(x2, x3) ∧R3(x1, x2, x3) ∧ ¬R4(x4, x3) ∧ ¬R5(x4, x4)

then we have H(φ) = {{x1, x2}, {x2, x3}, {x1, x2, x3}, {x3, x4}, {x4}}.
In this case, R1(x1, x2) is a positive conjunct. By contrast, R5(x4, x4) is an atom but not

a conjunct in this formula, while ¬R5(x4, x4) is a negative conjunct.

We will see that the complexity of DecideQ(φ) depends only on H(φ). We now define the
criterion that discerns easy queries from hard queries.

2.2 Acyclicity Notions
We will see some interesting properties of hypergraphs are several notions of acyclicity, which
are different extensions of the (classical) graph acyclicity property.

I Definition 5 (induced hypergraph, nest point). Let H be a hypergraph. We define its
induced hypergraph w.r.t. S ⊆ V(H), denoted H[S], as follows:

H[S] = {e ∩ S | e ∈ H}r {∅}

We write H[rS] as a shorthand for H [V(H) r S]. In particular, H[r{x}] is the hypergraph
obtained by weak vertex removal of x.

We say x is a nest point of H when for any two distinct edges e1 and e2 containing x,
either e1 ⊂ e2 or e2 ⊂ e1. In other words, the set {e ∈ H |x ∈ e} is linearly ordered w.r.t.
set inclusion.

Fagin’s originally defined ([9]) α-acyclicity of a hypergraph H, here denoted Aα(H). We
assume the reader is familiar with the notion of α-acyclicity, that is the most classical notion
of acyclicity for hypergraphs. He also defined β-acyclicity as follows:

I Definition 6. We say that a hypergraph H is β-acyclic, denoted Aβ(H), if each of its
subsets, i.e. every H′ ⊆ H, is α-acyclic.

This characterisation says that β-acyclicity is the “hereditary” closure of α-acyclicity.
We give a second characterisation of β-acyclicity. This inductive characterisation from [8],

based on a result of [4], is useful for the algorithm we give for β-acyclic queries (easiness
result).

J. Brault-Baron 141

I Lemma 7 (β-acyclicity — inductive characterisation). A hypergraph H is β-acyclic iff either
it is empty, or such that:

we can find x ∈ V(H) such that x is a nest point of H and
H [r{x}] is also β-acyclic.

We say the ordered list (x1, . . . , xn) of the vertices of an hypergraph H is a Reverse Elimination
Order (REO) of H when, for all i in {1, . . . , n}, xi is a nest point of H[{x1, . . . , xi−1}]. By
this characterisation, a hypergraph is β-acyclic iff it has a REO.

Here is the third characterisation of β-acyclicity. It will be used to obtain our hardness result.
This characterisation uses the notion of β-cycle defined here.

IDefinition 8. A chordless cycle is a graph isomorphic to {{xi, xi+1} | 1 ≤ i ≤ k}∪{{xk, x1}}
for some k. A β-cycle of a hypergraph H is a subset of some induced sub-hypergraph of H
that is a chordless cycle:

C is a β-cycle of H ⇔ ∃S⊆V(H) C ⊆ H[S] and C is a chordless cycle

I Lemma 9 (β-acyclicity as absence of β-cycles). An hypergraph H is β-acyclic iff it does
not have a β-cycle.

2.3 Statement of the Results
With all these notations, we are now able to state our results:

I Theorem 10 (dichotomy). Under hypothesis that the presence of a triangle in a graph of
n vertices cannot be decided in time O(n2 logn), we have:

∀φ ∈ NCQ DecideQ(φ) ∈ qLin ⇔ Aβ(H(φ))

Proof. Lemma 21 proves the implication ⇐ (easiness result) and Lemma 30 proves the
implication ⇒ (hardness result). J

I Remark. This is to be compared to the positive conjunctive queries dichotomy contained
in [2]: for any φ ∈ CQ such that H(φ) is 4-conformal,1 we have:

∀φ ∈ CQ DecideQ(φ) ∈ Lin ⇔ Aα(H(φ))

under hypothesis we cannot decide the presence of a triangle in a graph G in time O(|G|).
Notice that this result also holds if we replace Lin by qLin; in that case the hypothesis

becomes “deciding the presence of a triangle in a graph is not in qLin.”

I Theorem 11 (easiness).

∀φ ∈ EQ DecideQ(φ) ∈ qLin ⇐ Aβ(H(φ))

That is to say any β-acyclic existential first-order sentence is decidable in time O (|S| log |S|).
Let P be a property on hypergraphs. Under the previously mentioned complexity hypothesis

(about the triangle problem), we have:

(∀φ ∈ EQ P (H(φ))⇒ DecideQ(φ) ∈ qLin) ⇔ (∀H P (H)⇒ Aβ(H))

This means: any property of the hypergraph of a query grants it quasi-linear decision time if
and only if this property implies β-acyclicity.

1 A hypergraph is said to be k-conformal when every clique of cardinality ≥ k is contained in an edge.

CSL’12

142 A Negative Conjunctive Query is Easy if and only if it is Beta-Acyclic

Proof. Put φ in Disjunctive Normal Form, distribute (existential) quantification over dis-
junctive clauses which is correct since ∃x(A(x)∨B(x))⇔ (∃xA(x))∨ (∃xB(x)). Each clause
is a SCQ whose hypergraph is a subset of H(φ), each clause is therefore a β-acyclic SCQ; by
Lemma 21, it has a qLin decision time, therefore so has their disjunction φ.

Second point is a direct corollary of this easiness result (part ⇐) and the hardness part
of the NCQ dichotomy (part ⇒). J

3 Davis-Putnam Resolution with respect to a Nest Point

This section gives an algorithmic result needed for the easiness result; it can be independently
read for its own, or may be skipped by admitting it. This part consists in exploiting
a particular property of a variable in a CNF formula to perform efficient Davis-Putnam
resolution with respect to this variable.

3.1 Definition and Properties
I Definition 12 (CNF, nest point of a CNF formula, Davis-Putnam resolution). A CNF
formula F (x1, . . . , xn) is a classic propositional formula on the variables x1, . . . , xn that is in
Conjunctive Normal Form, i.e. F (x1, . . . , xn) =

∧
i Ci where Ci are clauses, i.e. sub-formulae

in the form Ci =
∨n(i)
j=1 l

j
i where lji are literals. Literals are either positive literals — variables

taken in {x1, . . . , xn}— or negative literals — negated variables ¬xi where xi ∈ {x1, . . . , xn}.
A formula in CNF can be thought of as a set of clauses, which are sets of literals.

We say a clause C holds a variable x when either x ∈ C or ¬x ∈ C (or both, but the
clause is tautological in this case). The set of variables held by a clause C is denoted
Vars (C) = {xi | xi ∈ C or ¬xi ∈ C}. We write Fx the set of clauses of F holding a variable
x. We say a variable xi is a nest point of F (x1, . . . , xn) (see [17]) when for all C1 and C2 in
Fxi , either Vars (C1) ⊆ Vars (C2) or Vars (C2) ⊆ Vars (C1).

We define the resolvent of F (x1, . . . , xn) w.r.t. the variable x1

Res (F, x1) (x1, . . . , xn) =
{
C1 ∨ C2

∣∣∣∣ (C1 ∨ x1) ∈ F (x1, . . . , xn) and
(C2 ∨ ¬x1) ∈ F (x1, . . . , xn)

}
The following results are from [17].

I Lemma 13 (correctness of resolution, size of resolvent). The following propositions hold:
the Davis-Putnam resolution is correct:

∀x1, . . . , xn Res (F, x1) (x1, . . . , xn) ⇔ ∃x1 Fx1(x1, . . . , xn)

if x1 is a nest point of a formula F , then

Res (F, x1) is a subset of {C r {x1,¬x1} |C ∈ Fx1)

Proof. Correctness of the resolution is both classical [6] and easy to see.
Let x1 be a nest point of F . We just have to consider Fx1 . Since x1 is a nest point of

Fx1 , in Fx1 we can rename variables as x1, . . ., xn by growing size of the smallest clause
containing them. Obviously, x = x1, and all clauses C are such that Vars (C) = {x1, . . . , xk}
with k ≤ n. When the computation is over, we just have to give their original names back to
the variables.

Take any two clauses C1 ∨ x and C2 ∨ ¬x involved in resolvent computation. We know
Vars (C1) ⊆ Vars (C2) or the converse. Assume, w.l.o.g, Vars (C1) ⊆ Vars (C2). If some
variable is present with different signs in C1 and C2, then the resolvent is tautological.
Assume this is not the case. Therefore C1 ∨ C2 = C2. J

J. Brault-Baron 143

3.2 Algorithm and Complexity
Here we prove the resolution can be done in linear time, which is our addition to the main
result of Ordyniak et al.([17]).

I Lemma 14 (resolvent computation). Let F (x1, . . . , xn) be a CNF sentence whose x1 is a
nest point. We can compute the resolvent of F (x1, . . . , xn) w.r.t. x1 in time O(|F |).

Proof. The main algorithmic point consists in adopting a handy representation of the formula.
Like in proof of Lemma 13, since x1 is a nest point of F , we can rename variables in Fx1

by growing size of the smallest clause containing it, therefore all clauses C are such that
Vars (C) = {x1, . . . , xk} with k ≤ n. Clauses can therefore be encoded as words over the
alphabet {−,+}. For example, x1 ∨ ¬x2 ∨ ¬x3 ∨ x4 is encoded as +−−+.

Let us consider subsumed clauses, i.e., clauses C such that we can find C ′ such that
C ′ ⊆ C. With this encoding, C1, encoded be w1, subsumes C2, encoded by w2, if and only
if w1 is a prefix of w2. Getting rid of subsumed clauses is done by applying the following
simple algorithm, where L is the list of words encoding the set of clauses.

RemovePrefixed(L):
Sort lexicographically L
n← 1
for i from 2 to Card (L) :

if L[n] not prefix of L[i] :
L[n+ 1]← L[i]
n← n+ 1

L[n+ 1]← End-Of-List

It is easy to see that this algorithm is correct, i.e. eliminates (in-place) any word that is
prefixed by another. Sorting in lexicographical order, here denoted <, can be done in linear
time using algorithm 3.2 page 80 in [1], see also definition 2. Therefore previous algorithm is
linear.

In order to compute the resolvent of F with respect to x1, we just need to consider
pairs of clauses such that one is in the form + . . . and the other in the form − Let us
construct the lexicographically ordered sub-lists S− and S+ of words beginning with −, resp.
+, without their leading −, resp. +. Two clauses C1 and C2 respectively encoded by words
w1 and w2 have a non-tautological resolvent on x1 if and only if w1 ∈ S− and w2 ∈ S+
(or the converse), and w1 is a prefix of w2: in this case, their “resolvent” is w2 itself, i.e.
C2 r {x1}.

Algorithm 1, where S− (resp. S+) is represented by a sorted list L1 (resp. L2) of n1 (resp.
n2) elements, is a variant of the fusion algorithm of two sorted lists. It is obviously linear.
In order to prove Algorithm 1 is correct, we consider the bipartite directed graph where
a→ b means a is a prefix of b, and where words are represented in growing lexicographical
order (from left to right).

S+ × ×
�� ##))

× . . . × ×
""

× . . .

S− ×

OO

× . . . × × ×

kk ii bb

×

bb

. . .

The constraints of this graph are given by the assertions 1-4 given below. As a preliminary,
we let the reader convince himself the following fact holds: if a word a is a prefix of a
word b, then for all words w and W such that w < a < W and none is a prefix of another,
w < b < W .

CSL’12

144 A Negative Conjunctive Query is Easy if and only if it is Beta-Acyclic

ComputeResolvent(S−, S+):
Res ← ∅
i− ← 1; i+ ← 1
while i− < n− and i+ < n+ :

if S−[i−] is a prefix of S+[i+] :
Res ← Res ∪ {S+[i+]}
Increment i+

elsif S+[i+] is a prefix of S−[i−] :
Res ← Res ∪ {S−[i−]}
Increment i−

elsif S+[i+] < S−[i−] :
Increment i+

elsif S+[i+] > S−[i−] :
Increment i−

return Res
Algorithm 1 Resolvent computation.

1. The in-degree of the graph is at most one: assuming the contrary leads to ∃u, v ∈ S−
(resp. S+) with u prefix of v.

2. The graph has no path of length 2: exactly the same proof.
3. Edges do not cross each other. By symmetry, only two cases have to be considered:

Edges do not cross each other in this fashion: b
+

a
+

a
−

b
−

• •

• •

55ii i.e. we can’t have a− prefix
of a+ and b− prefix of b+ with a− < b− and a+ > b+. Assume this is the case. a− is
prefix of a+ and inferior and not prefix of b−. Therefore a+ < b−. Since b− is a prefix
of b+, b− < b+, therefore a+ < b+ (by the preliminary fact), contradictory.
Edges don’t cross each other in this fashion: b

+
a

+

a
−

b
−

• •

• •

55
)) i.e. we can’t have a− prefix of

a+ and b+ prefix of b− with a− < b− and a+ > b+: essentially the same proof, but
using the preliminary fact twice.

4. The neighbourhood of a vertex is contiguous, i.e. if a− is a prefix of both b+ and c+,
then for all b+ < d+ < c+, a− is a prefix of d+.

All these facts together prove that no pair (a, b) where a is a prefix of b is “forgotten” by the
given algorithm, which is therefore correct. J

4 Easiness Result

In this section, we prove that one can decide a β-acyclic SCQ with n variables on a structure
S in time O(n|S| log |S|). We prove it a bottom-up fashion: each step either reduces to or
generalizes the previous one:

first step uses results of the first section (Davis-Putnam resolvent computation w.r.t. a
nest point in linear time) to decide β-acyclic NCQ-BoolD fast,
second step generalizes it to β-acyclic SCQ-BoolD, and
third step reduces β-acyclic SCQ to β-acyclic SCQ-BoolD.

For the sake of simplicity, we always assume a sentence is simple in the following sense:
relation symbols all appear once, and in an atom, each variable appears at most once, and in
any order of our convenience. This is justified by Corollary 27, page 149.

J. Brault-Baron 145

4.1 NCQ on the Boolean Domain
Here we make use of the results of previous section in order to get the announced complexity.

I Definition 15 (NCQ-BoolD, SCQ-BoolD). We say a NCQ (resp. SCQ) is over the boolean
domain when all its domains are fixed to {0, 1} instead of being defined with domain symbols;
we write it NCQ-BoolD (resp. SCQ-BoolD).

As an example, if φ = ∃x1 ∈ D1 . . . xn ∈ Dn ψ(x1, . . . , xn) is a NCQ, then φ′ = ∃x1 . . . xn ∈
{0, 1}nψ(x1, . . . , xn) is a NCQ-BoolD.

The main result of this subsection, Lemma 17, gives an easiness result for NCQ-BoolD
having a β-acyclic hypergraph. This result is obtained using inductively the following lemma
jointly with the inductive characterisation of β-acyclicity by nest points.

I Lemma 16 (NCQ-BoolD nest point). Let φ be a NCQ-BoolD, S a structure, and x a nest
point of H(φ). We can build another NCQ-BoolD φ′ and another structure S ′ in time O(|S|)
(independent of |φ|) such that DecideQ(φ)(S)⇔ DecideQ(φ′)(S ′) and H(φ′) = H(φ)[r{x}].

Sketch of proof. Take φ = ∃x1 . . . xn ∈ {0, 1}nψ(x1, . . . , xn) with

ψ(x1, . . . , xn) =
∧
i

¬Ri
(
xf(i,1), . . . , xf(i,n(i))

)
The main point of the proof is transforming the assertion S � ψ into an equivalent CNF
formula, and then applying CNF nest point results. For all (x1, . . . , xn) ∈ {0, 1}n, we have:

S � ψ(x1, . . . , xn) ⇔
∧
i

¬RSi
(
xf(i,1), . . . , xf(i,n(i))

)
⇔

∧
i

∧
(a1,...,an(i))∈RS

i

(xf(i,1), . . . , xf(i,n(i))) 6= (a1, . . . , an(i))︸ ︷︷ ︸
Ci(a1,...,an(i))

Ci(a1, . . . , an(i)) ⇔ (xf(i,1) 6= a1) ∨ . . . ∨ (xf(i,n(i)) 6= an(i))
⇔ σ(a1)xf(i,1) ∨ . . . ∨ σ(an(i))xf(i,n(i))

where σ maps 1 to ¬ and 0 to ε. Finally, for all x1, . . ., xn we have the equivalence:

S � ψ(x1, . . . , xn) ⇔
∧
i

∧
(a1,...,an(i))∈RS

i

σ(a1)xf(i,1) ∨ . . . ∨ σ(an(i))xf(i,n(i))

︸ ︷︷ ︸
F (x1,...,xn)

Clearly, x is a nest point of F (x1, . . . , xn) (see the note at the end of previous definition).
The transformation (φ,S) 7→ F is done in time O(|S|) — i.e. linear time.2 It is rather
easy to see that the reverse transformation (from the propositional formula back to the
corresponding NCQ-BoolD) can be done in linear time.

Lemma 13 states that Res (F, x) is a subset of Fx where x was removed, and that Davis-
Putnam resolution is correct: ∀x1, . . . , xn Res (F, x) (x1, . . . , xn) ⇔ ∃x Fx(x1, . . . , xn).
Notice x ∈ {x1, . . . , xn}. Furthermore, Lemma 14 states this can be done in linear time.

2 Not exactly: the variables of the CNF are “bigger” than the 0/1 present in the structure. Nevertheless,
when applying resolution, they will be encoded as signs — i.e. either + or −. In fact, the CNF form
explains correctness but is not an actual step.

CSL’12

146 A Negative Conjunctive Query is Easy if and only if it is Beta-Acyclic

The following algorithm uses previous notations and is justified by the arguments above.
RemoveNestPoint(φ,x,S):

// ψ is in the following form:
∧

i
¬Ri

(
xf(i,1), . . . , xf(i,n(i))

)
// Recall that σ(1) = ¬, σ(0) = ε

F ←
∧

i

∧
(a1,...,an(i))∈RS

i
σ(a1)xf(i,1) ∨ . . . ∨ σ(an(i))xf(i,n(i))

Replace ¬R(x1, . . . , xn, x) by ¬R(x1, . . . , xn) in φ
F ← Res(F, x)
Rebuild S from F

return (φ,S)

This algorithm clearly uses linear time, i.e. O(|S|). J

We now state the NCQ easiness result. This lemma is stated and proved in order to give a
simplified view of Lemma 19 below.

I Lemma 17 (NCQ-BoolD easiness result). A NCQ-BoolD φ with n variables such that H(φ)
is β-acyclic can be decided in time O (n|S|).

Proof. The following does it:
DecideNCQ− BoolD(φ)(S):

We know (x1, . . . , xn) is a REO of φ.
for i from n to 1 :

(φ,S)← RemoveNestPoint(φ,xi,S)
while φ contains some negative conjunct ¬R() :

if RS 6= ∅ : return False
Remove ¬R() from φ

return True
Let us justify its correctness. By previous β-acyclicity characterisation, we know we can

apply nest point removing until there is no variable left.
While nest points are inductively removed, some relations become of arity 0. The

interpretation of these relations R is either empty — in this case, the assertion ¬R() is a
tautology and can be removed from the conjunction — or non-empty, i.e. contains only the
empty tuple. In this case, the assertion ¬R() is a contradiction, and the query should return
“false” to mean this conjunction is not satisfiable (i.e. the sentence is not satisfied).

Since resolvent computation is done in linear time, each loop turn takes linear time, which
happens n times. J

4.2 Easiness Result for SCQ on the Boolean Domain
We now refine previous result, instead of using it. It is barely more complicated.

Instead of proving easiness of general β-acyclic NCQ, we directly treat the case of SCQ.
A first reason is that domains will be positive relations, therefore a NCQ is already a kind
of SCQ; treating directly SCQ avoids treating domains specifically. The other reason is
discussed after the following lemma.

This trick is a (weak) variant of the one presented in [19], and was inspired by it. It looks
simple but is the key point allowing extension of the NCQ easiness result to wider classes.

I Lemma 18. Let R+
a be a boolean relation of arity a. We can build in linear time the

boolean relations R+
a−1 of arity a− 1 and R−a of arity a such that, for all x1, . . . , xa∈{0, 1}a:

R+
a (x1, . . . , xa)⇔ R+

a−1(x1, . . . , xa−1) ∧ ¬R−a (x1, . . . , xa)
(x1, . . . , xa) ∈ R−a ⇒ (x1, . . . , xa−1) ∈ R+

a−1

J. Brault-Baron 147

DecideSCQ− BoolD(φ)(S):
We know (x1, . . . , xn) is a REO of φ.
for i from n to 1 :

while there is more than one positive conjunct containing xi in φ :
Take R(ȳ, z̄, xi) and S(z̄, xi) among them
RS ←

{
(ā, b̄, c) ∈ RS | (b̄, c) ∈ SS

}
Remove S(z̄, xi) from φ

if xi in contained in a positive conjunct R+
a (ȳ, x) :

Build (R+
a−1)S , (R−a)S from (R+

a)S

Replace R+
a (ȳ, xi) by R+

a−1(ȳ) ∧ ¬R−a (ȳ, xi) in φ
(φ,S)← RemoveNestPoint(φ,xi,S)
(R+

a−1)S ← (R+
a−1)S r (R−a)S

else
(φ,S)← RemoveNestPoint(φ,xi,S)

while φ contains a negative (resp. positive) conjunct ¬R() (resp. R()) :
if RS 6= ∅ (resp. RS = ∅) :

return False
Remove ¬R() (resp. R()) from φ

return True
Algorithm 2 SCQ-BoolD decision algorithm.

Proof. Let R+
a−1 = {(e1, . . . , ea−1) | ∃eaR+

a (e1, . . . , ea)} and R−a =
(
R+
a−1 × {0, 1}

)
rR+

a . J

We could transform a SCQ-BoolD into a NCQ-BoolD, at the cost of an additional n factor,
that would affect the complexity of general SCQ. However, by making a somewhat ad
hoc algorithm, we can treat the SCQ-BoolD case directly and get the expected complexity
O(n|S|).

I Lemma 19 (SCQ-BoolD easiness result). A SCQ-BoolD φ with n variables, and whose
hypergraph H(φ) is β-acyclic can be decided in time O (n|S|).

Proof. Notice the statements of the proof of Lemma 17 still hold. Apply Algorithm 2. If
several positive conjuncts hold a given nest point, then we can proceed to filtering as follows:
take any two positive conjuncts. The set of variables hold by one includes the set of variables
held by the other, we can sort them in a lexicographical order such that the set of shared
variables have the strong weight of the lexicographical order; we can finally proceed to
filtering in linear time. β-acyclicity is preserved, and the REO is maintained by edge removal.
In the end, there is only one positive conjunct holding the nest point.

Now the positive conjunct can be managed with Lemma 18, summed up in the following,
where R/a means the relation R has arity a.

(R+
a)S/a

(R+
a−1)S/a−1

(R−a)S/a (R−a)S/a−1
(R+

a−1)S/a− 1
Lemma 18

00
obvious//)) Rem.NestP. //

We build (R+
a−1)S , (R−a)S from (R+

a)S in linear time. After linear time resolvent computation,
(R−a)S has arity a−1 (the nest point has been removed) and we can proceed to a simplification
in linear time justified by:

(R+
a−1)S(x1, . . . , xa−1) ∧ ¬(R−a)S(x1, . . . , xa−1)⇔ ((R+

a−1)S r (R−a)S)(x1, . . . , xa−1)

CSL’12

148 A Negative Conjunctive Query is Easy if and only if it is Beta-Acyclic

Since resolvent computation is done in linear time, each loop turn takes linear time, which
happens n times. J

4.3 Final Easiness Result
Here is the last (technical) result on hypergraphs we need.

I Lemma 20. Let H1, x ∈ V(H1), y /∈ V(H1) and H2 = {e ∪ {x, y} | e ∪ {x} ∈ H1} ∪ {e ∈
H1 |x /∈ e}. This means H2 is the same hypergraph as H1 except every edge holding x also
holds y.

We have: (a1, . . . , an, x, b1, . . . , bm) is a REO of H1 iff (a1, . . . , an, x, y, b1, . . . , bm) and
(a1, . . . , an, y, x, b1, . . . , bm) are REOs of H2. In particular, Aβ(H1)⇔ Aβ(H2).

Proof. Easy considering the inductive definition of β-acyclicity (definition 7). J

I Lemma 21 (SCQ easiness result). A SCQ φ with n variables, and whose hypergraph H(φ)
is β-acyclic can be decided in time O (n|S| log |S|).

Proof. We transform a β-acyclic SCQ with n variables into a β-acyclic SCQ-BoolD having
n log |S| variables. Let φ be a β-acyclic SCQ admitting (x1, . . . , xn) as a REO. Finding it
takes a time depending only on φ.

We assume domains are reasonably encoded: we suppose there is a constant k such that,
for any domain Di,

⌈
log2 maxi

(
DSi
)⌉
< k log |S|. This assumption is reasonable: we always

can sort (in linear time) the union of the domains and associate each element with its number
in this order. Then we can re-encode (in-place) the whole structure in time O(|S| log |S|) by,
for each occurring element, looking for its number, and replacing it by its number. Each
element has therefore a size O (log |S|).

Let si =
⌈
log2 max

(
DSi
)⌉
. By the previous point, si = O (log |S|). We define

φ′ = ∃x1∈{1, . . . , 2s1} . . . ∃xn∈{1, . . . , 2sn} D1(x1) ∧ . . . ∧Dn(xn) ∧ ψ

We have H(φ′) = H(φ) ∪ {{xi} |xi ∈ V(H(φ))} therefore H(φ′) is β-acyclic. Now we can
transform φ′ into a SCQ-BoolD:

φ′′ = ∃(x1
1, . . . , x

s1
1 , . . . , x

sn
n) ∈ {0, 1}Σ

n
i si D1(x1

1, . . . , x
s1
1) ∧ . . . ∧Dn(x1

n, . . . , x
sn
n) ∧ ψ′

with ψ′ the same as ψ with every R(xa, xb, . . .) replaced by R(x1
a, . . . , x

sa
a , x

1
b , . . . , x

sb

b , . . .).
φ′′ is a SCQ-BoolD, also β-acyclic due to Lemma 20. Moreover, (x1

1, . . . , x
s1
1 , . . . , x

1
n, . . . , x

sn
n)

is a REO of H(φ′′). Noting Σni=1si = O(n log |S|) and applying Lemma 19 concludes. J

5 Hardness Result

We introduce a basic notion of reduction together with a trivial lemma that will be useful to
prove Corollary 27, and makes simple the proof of the hardness result.

I Definition 22 (linear reduction ≺). We say a problem P1 reduces linearly to a prob-
lem P2, denoted P1 ≺ P2, when we can find f ∈ Lin such that, given an algorithm
A2 deciding P2, A2 ◦ f decides P1 that is to say the following algorithm decides P1:

DecideP1(I1):
I2 ← f(I1)
return DecideP2(I2)

We also say P2 expresses P1. When P1 both reduces linearly to and expresses linearly P2,
we say P1 and P2 are equivalent, denoted P1 ∼ P2.

J. Brault-Baron 149

The following lemma is obvious:

I Lemma 23 (linear reduction properties). Linear reduction is transitive, i.e. if P1 ≺ P2 and
P2 ≺ P3, then P1 ≺ P3; and qLin is closed by linear reduction, i.e. if P1 ≺ P2 and P2 ∈ qLin
then P1 ∈ qLin.

5.1 A Technical Point
In order to prove our hardness result on NCQ, we need to introduce a normalized form
of NCQ; it is used to show that the complexity of a NCQ is exactly determined by its
hypergraph.

I Definition 24 (simple, sorted, normalized NCQ). One says that a NCQ φ = ∃x1 ∈
D1 . . . ∃xn ∈ Dn ψ is simple if each relation symbol occurs only once in ψ. φ is sorted
if the tuple of variables of each atom of ψ occurs in increasing order of subscripts with no
repetition, i.e. every atom of ψ is in the form R(xi1 , . . . , xik) where i1 < . . . < ik.

A NCQ is normalized if it is both simple and sorted.

The following lemma is obvious:

I Lemma 25. Let φ1, φ2 be two normalized NCQ with the same signature and H(φ1) =
H(φ2). Then φ1 and φ2 are identical up to relation symbols permutation. In particular
DecideQ(φ1) ∼ DecideQ(φ2).

I Lemma 26. Any NCQ φ is equivalent to some normalized NCQ φ′′ with H(φ) = H(φ′′),
i.e. DecideQ(φ) ∼ DecideQ(φ′′).

Sketch of proof. Here we give the only non-trivial point of the proof, in an easy to
generalize example. Let φ1 = ∃x1 ∈ D1∃x2 ∈ D2∃x3 ∈ D3 ¬R1(x1, x2) ∧ ¬R2(x2, x3)
and φ2 built by replacing both R1 and R2 by the same symbol R in φ1. We prove
DecideQ(φ1) ≺ DecideQ(φ2). We define, for i ∈ {1, 2, 3}, Di

S2 = Di
S1 × {i} and RS2 ={

((a1, 1), (a2, 2)) | (a1, a2) ∈ R1
S1
}
∪
{

((a2, 2), (a3, 3)) | (a2, a3) ∈ R2
S1
}
. The key point is

that RS2 is a disjoint union of relations corresponding to relations R1
S1 and R2

S1 ; further, the
tuples originating from R1

S1 (resp. R2
S1) are identified by their specific form ((a1, 1), (a2, 2))

(resp. ((a2, 2), (a3, 3))). J

I Corollary 27. For all NCQ φ1 and φ2, we have

H(φ1) = H(φ2) ⇒ DecideQ(φ1) ∼ DecideQ(φ2)

Proof. Obvious corollary of Lemma 25 and Lemma 26. J

5.2 Hardness Result
I Lemma 28. Let φ be a NCQ, and x a variable appearing in φ. Let φ′ be the query obtained
by removing every occurrence of x in φ, that is to say removing the ∃x∈Dx, and removing x
in atoms where it occurs. Then DecideQ(φ) expresses linearly DecideQ(φ′).

Proof. By virtue of Corollary 27, we can assume that every relation appears once in φ, with
associated variables in order. For simplicity, x is therefore assumed the minimal element for
the order. To define the reduction, we will just define how a given relation R is transposed
between S1 and S2. If x does not appear in the corresponding atom, there is no difference
i.e. RS2 = RS1 .

CSL’12

150 A Negative Conjunctive Query is Easy if and only if it is Beta-Acyclic

In the other case, R appears as R(x, xa(1), . . . , xa(k)) in φ, with a : {1, . . . , k} → {1, . . . n}.
R appears as R(xa(1), . . . , xa(k)) in φ′. From now, completing the reduction is easy: define
RS2 =

{
(1, s1, . . . , sk) | (s1, . . . , sk) ∈ RS1

}
and Dx

S2 = {1}. J

I Corollary 29. Let φ ∈ NCQ. For every φ′ such that H(φ′) = H(φ)[S] for some S, we have
DecideQ(φ) � DecideQ(φ′).

Proof. For every x ∈ V(H(φ))r S, apply Lemma 28, together with transitivity (Lemma 23).
We have proved that DecideQ(φ) expresses some DecideQ(φ′), such that H(φ′) = H(φ)[S];
apply Corollary 27 to prove equivalence of this last query with all queries having the same
hypergraph; transitivity concludes. J

I Lemma 30 (hardness result). Under hypothesis that the problem of deciding the presence
of a triangle in a graph on n vertices cannot be decided in O(n2 logn):

∀φ ∈ NCQ DecideQ(φ) ∈ qLin ⇒ Aβ(H(φ))

Proof. For the sake of contradiction, assume DecideQ(φ) ∈ qLin and ¬Aβ(H(φ)). This
implies we can find S ⊆ V(H) and h ⊆ H(φ) such that h[S] is a chordless cycle. Then, by
Corollary 29 and Corollary 27, DecideQ(φ) expresses the following query of signature σ:

P = DecideQ
(
∃x1∈D1 . . . ∃xk∈Dk ¬Rk(xk, x1) ∧

k−1∧
i=1
¬Ri(xi, xi+1)

)
that, by Lemma 23, is also in qLin.

Now, let us associate to any graph G = (V,E) with Card (V) = n a σ-structure defined
as follows. For each Ri with i > 3, set RiS = {(i, j) ∈ V 2 | i 6= j}. For each Ri with i ≤ 3,
set RiS = {(i, j) ∈ V 2 | (i, j) /∈ E}. Set Di

S = V . We have |S| = O(|V |2) = O(n2). If
this query is in qLin, we can decide the presence of a triangle in G in time O(|S| log |S|) =
O(n2 logn2) = O(n2 logn). J

Concluding Remark

β-acyclic existential first-order queries have many qualities, they only lack one thing: to
include α-acyclic CQ. This is to be addressed in a future paper.

Acknowledgments

The author expresses his gratitude to Étienne Grandjean for careful, multiple readings of the
successive versions of this paper, despite his busy schedule, until any doubtful or unclear
point had disappeared. Without his assistance, this paper would still be a confused set of
sketchy notes.

The author would also like to thank anonymous referees for their quite detailed reviews
that greatly contributed to improve the quality of the paper.

References
1 Aho, Hopcroft, and Ullman. The design and analysis of computer algorithms. 1974.
2 Guillaume Bagan, Arnaud Durand, and Etienne Grandjean. On acyclic conjunctive queries

and constant delay enumeration. Computer Science Logic, 4646:208–222, 2007.

J. Brault-Baron 151

3 Catriel Beeri, Ronald Fagin, David Maier, and Mihalis Yannakakis. On the desirability of
acyclic database schemes. Journal of the ACM, 30(3):479–513, 1983.

4 Andries E. Brouwer and Antoon W. J. Kolen. A super-balanced hypergraph has a nest
point. Technical report, Math. centr. report ZW146, Amsterdam, 1980.

5 Ashok K. Chandra and Philip M. Merlin. Optimal implementation of conjunctive queries
in relational data bases. ACM Symp. on Theory of Computing, pages 77–90, 1977.

6 Martin Davis and Hilary Putnam. A computing procedure for quantification theory. Journal
of the ACM, 7(3):201–215, 1960.

7 Rina Dechter and Judea Pearl. Tree clustering for constraint networks. Artif. Intell.,
38(3):353–366, 1989.

8 David Duris. Some characterizations of gamma and beta-acyclicity of hypergraphs. Novem-
ber 2008.

9 Ronald Fagin. Degrees of acyclicity for hypergraphs and relational database schemes.
Journal of the ACM, 30:514–550, 1983.

10 Georg Gottlob, Nicola Leone, and Francesco Scarcello. The complexity of acyclic conjunct-
ive queries. J. ACM, 48(3):431–498, 2001.

11 Georg Gottlob, Nicola Leone, and Francesco Scarcello. Hypertree decompositions and
tractable queries. J. Comput. Syst. Sci., 64(3):579–627, 2002.

12 Etienne Grandjean. Sorting, Linear Time and the Satisfiability Problem. Ann. Math. Artif.
Intell., 16:183–236, 1996.

13 Martin Grohe, Thomas Schwentick, and Luc Segoufin. When is the evaluation of conjunctive
queries tractable. In Proceedings of the 33rd ACM Symposium on Theory of Computing,
pages 657–666, 2001.

14 Yuri Gurevich and Saharon Shelah. Nearly linear time. In Albert Meyer and Michael
Taitslin, editors, Logic at Botik ’89, volume 363 of Lecture Notes in Computer Science,
pages 108–118. Springer Berlin / Heidelberg, 1989.

15 Phokion G. Kolaitis. Constraint satisfaction, databases, and logic. In IJCAI, pages 1587–
1595, 2003.

16 Leonid Libkin. Elements of Finite Model Theory. Springer, 2004.
17 Sebastian Ordyniak, Daniel Paulusma, and Stefan Szeider. Satisfiability of Acyclic and

Almost Acyclic CNF Formulas. In Kamal Lodaya and Meena Mahajan, editors, IARCS An-
nual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2010), volume 8 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 84–95, Dagstuhl, Germany, 2010. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

18 Mihalis Yannakakis. Algorithms for acyclic database schemes. In Proceedings Conf. on
Very Large Databases, pages 82–94, 1981.

19 Bruno Zanuttini and Jean-Jacques Hébrard. A unified framework for structure identifica-
tion. Information Processing Letters, 81(6):335 – 339, 2002.

CSL’12

On the equational consistency of order-theoretic
models of the λ-calculus∗

Alberto Carraro and Antonino Salibra

DAIS, Università Ca’Foscari Venezia
Via Torino 155, Venezia, Italy
{acarraro, salibra}@dsi.unive.it

Abstract
Answering a question by Honsell and Plotkin, we show that there are two equations between
λ-terms, the so-called subtractive equations, consistent with λ-calculus but not satisfied in any
partially ordered model with bottom element. We also relate the subtractive equations to the
open problem of the order-incompleteness of λ-calculus.

1998 ACM Subject Classification F.4.1 Lambda calculus and related systems

Keywords and phrases Lambda calculus, order-incompleteness, partially ordered models

Digital Object Identifier 10.4230/LIPIcs.CSL.2012.152

1 Introduction

Lambda theories are congruences on the set of λ-terms, which contain β-conversion. They
arise by syntactical or semantic considerations. Indeed, a λ-theory may correspond to a
possible operational semantics of the lambda calculus, as well as it may be induced by a
model of lambda calculus through the congruence relation associated with the interpretation
function. The set of λ-theories is naturally equipped with a structure of complete lattice,
whose bottom element is the least λ-theory λβ, and whose top element is the inconsistent
λ-theory. The lattice of λ-theories is a very rich and complex structure of cardinality 2ℵ0

(see, for example, [1, 9, 10]). Syntactical techniques are usually difficult to apply in the study
of λ-theories. Therefore, semantic methods have been extensively investigated.

One of the most important contributions in the area of mathematical programming
semantics was the discovery by D. Scott in the late 1960s, that complete partial orders,
having their own function space as a retract, are models for the untyped lambda calculus. On
the other hand, there are results that indicate that Scott’s methods, based on a combination
of order-theory and topology, may not in general be exhaustive: Honsell and Ronchi Della
Rocca [8] have shown that there exists a λ-theory that does not arise as the theory of a Scott
model. A natural completeness problem then arises for Scott semantics: whether any two
λ-terms equal in all Scott models are β-convertible. This equational completeness problem is
one of most outstanding open problems of λ-calculus and it seems to have appeared first in
the literature in [6]. There is also an analogous consistency problem, raised by Honsell and
Plotkin in [5]: whether every finite number of equations between λ-terms, consistent with the
λ-calculus, has a Scott model. In this paper we answer negatively to this second question.
We provide two equations (called the subtractive equations) consistent with λ-calculus, which
have no partially ordered model with bottom element.

∗ The second author was partially supported by Fondation de Mathématique de Paris

© Alberto Carraro and Antonino Salibra;
licensed under Creative Commons License NC-ND

Computer Science Logic 2012 (CSL’12).
Editors: Patrick Cégielski, Arnaud Durand; pp. 152–166

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2012.152
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

A. Carraro and A. Salibra 153

Although many familiar models are constructed by order-theoretic methods, it is also
known that there are some models of the lambda calculus that cannot be non-trivially ordered
(see [11, 12, 13]). In general, we define a combinatory algebra A to be unorderable if there
does not exist a non-trivial partial order on A for which the application operation is monotone.
Of course, an unorderable model can still arise from an order-theoretic construction, for
instance as a subalgebra of some orderable model. The most interesting result has been
obtained by Selinger [13], who, enough surprising, has shown that the standard open and
closed term models of λβ and λβη are unorderable. As a consequence of this result, it follows
that if λβ or λβη is the theory of a partially ordered model, then the denotations of closed
terms in that model are pairwise incomparable, i.e. the term denotations form an anti-chain.
This led Selinger [13] to study the related question of absolute unorderability: a model is
absolutely unorderable if it cannot be embedded in an orderable one. Plotkin conjectures in
[11] that an absolutely unorderable combinatory algebra exists, but the question is still open
whether this is so. Selinger has given in [13] a syntactic characterisation of the absolutely
unorderable algebras in any algebraic variety (equational class) in terms of the existence of a
family of Mal’cev operators. Plotkin’s conjecture is thus reduced to the question whether
Mal’cev operators are consistent with the lambda calculus or combinatory logic. The question
of absolute unorderability can also be formulated in terms of theories, rather than models.
In this form, Selinger [13] refers to it as the order-incompleteness question: does there exist
a λ-theory which does not arise as the theory of a non-trivial partially ordered model?
Such a problem can be also characterised in terms of connected components of a partial
ordering (minimal subsets which are both upward and downward closed): a λ-theory T is
order-incomplete if, and only if, every partially ordered model, having T as equational theory,
is partitioned in an infinite number of connected components, each one containing exactly
one element. In other words, the partial order is the equality.

Toward an answer to the order-incompleteness problem, we find a strengthening T of
the subtractive equations having the following property: every partially ordered modelM
satisfying T has an infinite number of connected components among which that of the
looping term Ω is a singleton set. Moreover, each connected component ofM contains the
denotation of at most one βη-normal form. Compared to absolute unorderability, the above
situation still has some missing bits. For example we are not in the position to tell where
the denotations of all unsolvable λ-terms other than Ω are placed in the model. Same thing
for all the solvable λ-terms which do not have a βη-normal form.

The inspiration for the subtractive equations comes from the notion of subtractive variety
of algebras introduced by Ursini in [14]. A variety V of algebras is subtractive if it satisfies
the following identities:

s(x, x) = 0; s(x, 0) = x

for some binary term s and constant 0. Subtractive algebras abound in classical algebras. If
we interpret the binary operator “s” as subtraction, and we use the infix notation, then we
can rewrite the above identities as x− x = 0 and x− 0 = x. In the context of λ-calculus, the
subtractive equations make a certain λ-term behave like a binary subtraction operator (in
curryfied form) whose “zero” is the looping λ-term Ω.

In the last section of this paper we relativize to an element the notion of absolute
unorderability. We say that an algebra A is 0-unorderable if, for every compatible partial
order on A, 0 is not comparable with any other element of the algebra. An algebra A in
a variety V is absolutely 0-unorderable if, for any B ∈ V and embedding f : A→ B, B is
0-unorderable. Generalising subtractivity to n-subtractivity (n ≥ 2), we give a syntactic
characterisation of the absolutely 0-unorderable algebras with Mal’cev-type conditions. The

CSL’12

154 On the equational consistency of order-theoretic models of the λ-calculus

consistency of the two subtractive equations with λ-calculus implies the existence of absolutely
Ω-unorderable combinatory algebras.

2 Preliminaries

2.1 Partial Orderings
Let (A,≤) be a partially ordered set (poset). Two elements a, b of A are: (1) comparable if
either a ≤ b or b ≤ a. A set B ⊆ A is an upward (downward) closed set if b ∈ B, a ∈ A and
b ≤ a (a ≤ b) imply a ∈ B.

We denote by ≈≤ the least equivalence relation on A containing ≤. A connected component
of (A,≤) is an equivalence class of ≈≤. A connected component can be also characterised as
a minimal subset of A which is both upward closed and downward closed. The poset (A,≤)
is called connected if ≈≤ determines a unique equivalence class.

2.2 Lambda calculus
With regard to the λ-calculus we follow the notation and terminology of [1]. By Λ and Λo,
respectively, we indicate the set of λ-terms and of closed λ-terms. By convention application
associates to the left. The symbol ≡ denotes syntactical equality. The following are some
notable λ-terms: Ω ≡ (λx.xx)(λx.xx); I ≡ λx.x; K ≡ λxy.x; S ≡ λxyz.xz(yz).

If M is a λ-term and ~P ≡ P1 . . . Pn is a sequence of λ-terms, we write M ~P for the
application MP1 · · ·Pn.

The β-reduction will be denoted by →β , while the η-reduction by →η. One step of either
β-reduction or η-reduction will be denoted by →βη.

The letters ξ1, ξ2, . . . denote algebraic variables (holes in Barendregt’s terminology
[1]). Contexts are built up as λ-terms but also allowing occurrences of algebraic vari-
ables. Substitution for algebraic variables is made without α-conversion. For example,
(λx.xξ)[xy/ξ] = λx.x(xy).

A λ-term M is solvable if it has a head normal form, i.e., M is β-convertible to a term
of the form λ~x.y ~N . A λ-term M is unsolvable if it is not solvable. Among unsolvables we
distinguish the zero terms, which never reduce to an abstraction.

A λ-theory is a congruence on Λ (with respect to the operators of abstraction and
application) which contains αβ-conversion. We denote by λβ the least λ-theory. The least
extensional λ-theory λβη is axiomatised over λβ by the equation λx.Mx = M , where M ∈ Λ
and x is not free in M .

A λ-theory is consistent if it does not equate all λ-terms, inconsistent otherwise. A
λ-theory is semisensible if it does not equate solvable and unsolvable λ-terms, so that
semisensible λ-theories are consistent by definition. The set of λ-theories constitutes a
complete lattice w.r.t. inclusion, whose top is the inconsistent λ-theory and whose bottom
is the theory λβ. The λ-theory generated by a set X of identities is the intersection of all
λ-theories containing X.

Although all unsolvable terms have the same Böhm tree, they do not have the same infinite
normal form. In [2] Berarducci isolates a particular subset of the unsolvable terms, which
turn out to have completely undefined behavior even in the context of infinite λ-calculus.
Those terms, called mute terms, are defined as those unsolvables which are zero-terms and
furthermore never reduce to an application whose left side is a zero-term. For example,
Ω ≡ (λx.xx)(λx.xx) is mute. Another mute term that will be used in the rest of the paper, is
defined as follows. Let A ≡ λx.x(λy.yx), B ≡ λy.yA and Θ ≡ AB. By a direct computation

A. Carraro and A. Salibra 155

we see that the only possible reduction path starting with Θ is the following:

Θ→β B(λy.yB)→β (λy.yB)A→β AB ≡ Θ

Then Θ is a closed mute term. Throughout the paper we consider different reductions. If →γ

is a reduction, then we denote by �γ the reflexive transitive closure of →γ , and we write =γ

to denote the reflexive, symmetric and transitive closure of →γ . Finally we define, as usual,
the γ-reduction graph of a term M as the set Gγ(M) = {N ∈ Λ : M �γ N}.

2.3 Models of λ-calculus
It took some time, after Scott gave his model construction, for consensus to arise on the
general notion of a model of the λ-calculus. There are mainly two descriptions that one can
give: the category-theoretical and the algebraic one. Besides the different languages in which
they are formulated, the two approaches are intimately connected (see [1]). The categorical
notion of model is well-suited for constructing concrete models, while the algebraic one is
rather used to understand global properties of models (constructions of new models out of
existing ones, closure properties, etc.) and to obtain results about the structure of the lattice
of λ-theories.

The algebraic description of models of λ-calculus proposes two kinds of structures, viz.
the λ-algebras and the λ-models, both based on the notion of combinatory algebra. We will
focus on λ-models. A combinatory algebra A = (A, ·,K, S) is a structure with a binary
operation called application and two distinguished elements K and S called basic combinators.
The symbol “·” is usually omitted from expressions and by convention application associates
to the left, allowing to leave out superfluous parentheses. The class of combinatory algebras
is axiomatized by the equations Kxy = x and Sxyz = xz(yz). Intuitively elements on the
left-hand side of an application are to be seen as functions operating on arguments, placed on
the right-hand side. Hence it is natural to say that a function f : An → A is representable (in
A) if there exists an element a ∈ A such that f(b1, . . . , bn) = ab1 . . . bn for all b1, . . . , bn ∈ A.
For example the identity function is represented by the combinator I ≡ SKK and the
projection on the first argument by the combinator K.

The axioms of an elementary subclass of combinatory algebras, called λ-models, were
expressly chosen to make coherent the definition of interpretation of λ-terms. In addition to
the axioms of combinatory algebra, we have:

∀xy.(∀z. xz = yz)⇒ 1x = 1y
12K = K

13S = S,

where 11 ≡ 1 ≡ S(KI) and 1n+1 ≡ S(K1)(S(K1n)). The combinators 1n are made into
inner choice operators. Indeed, given any a ∈ A, the element 1na represents the same n-ary
function as a and 1nc = 1nd for all c, d representing the same n-ary function.

Let EnvA be the set of A-environments, i.e. , the functions from the set Var of λ-calculus
variables to A. For every x ∈ Var and a ∈ A we denote by ρ[x := a] the environment ρ′
which coincides with ρ everywhere except on x, where ρ′ takes the value a.

When A is a λ-model it is possible to define the following interpretation:

|x|Aρ = ρ(x);
|MN |Aρ = |M |Aρ |N |

A
ρ ;

|λx.M |Aρ = 1a, where a ∈ A is any element representing the function b ∈ A 7→ |M |Aρ[x:=b].

CSL’12

156 On the equational consistency of order-theoretic models of the λ-calculus

Note that |λx.M |Aρ is well-defined, since each function b ∈ A 7→ |M |Aρ[x:=b] is representable
under the hypothesis that A is a λ-model. This is the kind of interpretation we will refer to.

By the way when M is a closed λ-term and there is no worry of confusion about the
model being considered, we write |M | for |M |Aρ .

Each λ-model A induces a λ-theory, denoted here by Th(A), and called the equational
theory of A. Thus, M = N ∈ Th(A) if, and only if, M and N have the same interpretation
in A. A partially ordered λ-model, a po-model for short, is a pair (A,≤), where A is a
λ-model and ≤ is a partial order on A which makes the application operator of A monotone
in both arguments. A po-model (A,≤) is non-trivial if the partial order is not discrete, i.e.,
a < b for some a, b ∈ A (thus A is not a singleton).

2.4 The Jacopini–Kuper technique

The Jacopini–Kuper technique, introduced by Jacopini in [7] and generalized by Kuper in [8],
can be used to tackle questions of consistency of equational extensions of lambda calculus.
In this section we review this technique.

Let T be an arbitrary consistent λ-theory, ~P = ~Q be a set of identities Pi = Qi
(i = 1, . . . , n) between closed λ-terms, and T ′ be the λ-theory generated by T ∪ (~P = ~Q).
The idea is to reduce inconsistency of T ′ to that of T . If T ′ is inconsistent, then there
exists a finite equational proof of K =T ′ S, (where K ≡ λxy.x and S ≡ λxyz.xz(yz)) and
such a proof contains a finite number of applications of equations which are in ~P = ~Q.
The Jacopini–Kuper technique, when applicable, consists in checking two conditions on the
sequences ~P and ~Q, namely that ~P is T -operationally less defined than ~Q (see Definition 2)
and that ~P is T -proof-substitutable by ~Q (see Definition 3). Under these two conditions, it is
possible to remove from the proof of K =T ′ S all occurrences of equations in ~P = ~Q, thus
yielding a proof of K =T S. This is the end of the method, because T is supposed to be a
consistent λ-theory.

A very useful property for the application of Jacopini-Kuper method, and in particular
for proving T -proof-substitutability, is the existence of a Church-Rosser reduction, whose
induced conversion coincides with the equality induced by T on λ-terms. This is not evident
from the abstract formulation given in this section, but will be clear in the next one, when
we will apply the technique.

I Lemma 1. We have that T ∪ (~P = ~Q) `M = N if, and only if, there exist closed terms
F1, . . . , Fn such that

M =T F1 ~P ~Q

Fj ~Q~P =T Fj+1 ~P ~Q for 1 ≤ j ≤ n− 1
Fn ~Q~P =T N.

Proof. By [4, Theorem 1] there exist binary contexts C1(ξ1, ξ2), . . . , Cn(ξ1, ξ2) and identities
Pij = Qij in ~P = ~Q such that

M =T C1(Pi1 , Qi1)
Cj(Qij , Pij) =T Cj+1(Pij+1 , Qij+1) for 1 ≤ j ≤ n− 1
Cn(Qin , Pin) =T N.

It is sufficient to define Fj ≡ λ~x~y.Cj(xij , yij), where ~x and ~y are sequences of length k of
fresh variables. J

A. Carraro and A. Salibra 157

I Definition 2 (Operational definiteness). We say that ~P is T -operationally less defined than
~Q if, for every βη-normal form N and every term F , we have that

F ~P =T N ⇒ F ~Q =T N.

I Definition 3 (Proof-substitutability). We say that ~P is T -proof-substitutable by ~Q if

∀F, F ′ ∈ Λo(F ~P =T F ′ ~P ⇒ ∃G ∈ Λo(G~P ~Q =T F ~Q and G~Q~P =T F ′ ~Q)).

I Theorem 4. If ~P is T -operationally less defined than ~Q and ~P is T -proof-substitutable by
~Q, then the λ-theory T ′ generated by T ∪ (~P = ~Q) is consistent.

Proof. Assume T ′ is inconsistent, so that K =T ′ S. Then by Lemma 1 there exists an
equational proof of this identity of the form

K =T F1 ~P ~Q

Fj ~Q~P =T Fj+1 ~P ~Q for 1 ≤ j ≤ n− 1
Fn ~Q~P =T S.

Now we show how to iteratively transform the above proof of T ′ ` K = S in a proof of
T ` K = S.

Suppose n = 1, i.e., we have K =T F1 ~P ~Q and F1 ~Q~P =T S. Since ~P is T -operationally
less defined than ~Q, from K =T F1 ~P ~Q =T (λy.F1y ~Q)~P and F1 ~Q~P =T S, we get K =T
F1 ~Q~Q =T S.

Suppose n > 1. As before, by the hypothesis we get K =T F1 ~Q~Q and Fn ~Q~Q =T S. Let
~y be a sequence of fresh variables. For each j = 1, . . . , n− 1, define

Hj ≡ λ~y.Fj ~Q~y; H ′j+1 ≡ λ~y.Fj+1~y ~Q.

By Fj ~Q~P =T Fj+1 ~P ~Q (j = 1, . . . , n− 1) we have that

Hj
~P =T H ′j+1

~P .

Since ~P is T -proof-substitutable by ~Q, then there exist terms Gj (j = 1, . . . , n− 1) such that
Gj ~P ~Q =T Hj

~Q =T Fj ~Q~Q and Gj ~Q~P =T H ′j+1
~Q =T Fj+1 ~Q~Q. Therefore we obtain that

K =T F1 ~Q~Q =T G1 ~P ~Q

G1 ~Q~P =T F2 ~Q~Q =T G2 ~P ~Q
...

...
Gn−1 ~Q~P =T Fn ~Q~Q =T S

Therefore one can iterate the argument and get a proof of T ` K = S. J

3 On a question by Honsell and Plotkin

In this section we turn to a question posed in [5] by Honsell and Plotkin. The problem
is whether or not there exists a formula ϕ of first-order logic written as a possibly empty
list of universal quantifiers followed by a conjunction of equalities between λ-terms such
that ϕ does not admit po-models with bottom element. According to Honsell and Plotkin,
this problem falls under the name of Π1-consistency of the class of po-models with bottom
element. We observe that in the context of λ-calculus the Π1-consistency is equivalent to the
equational consistency, which is the particular case of Π1-consistency in which the formula ϕ
is quantifier-free. In this section we find a counterexample to the equational consistency of
the class of po-models with bottom element.

CSL’12

158 On the equational consistency of order-theoretic models of the λ-calculus

3.1 The λ-theory λπφ

We introduce two equations between λ-terms, whose models will be shown to have strong
properties with respect to the possible partial orderings they can be endowed with. Of course
we have to prove that the λ-theory λπφ generated by these equations is consistent and this
will be done in Section 3.2.

The two equations we are going to introduce represent within λ-calculus the notion of
subtractivity, which has been introduced in Universal Algebra by Ursini [14].

I Definition 5. An algebra A is subtractive if there exist a binary term s(x, y) and a constant
0 in the algebraic similarity type of A such that

s(x, x) = 0; s(x, 0) = x.

Subtractive algebras abound in classical algebras and in algebraic logic since term s

simulates part of subtraction. If we interpret the binary operator “s” as subtraction “-” and
we use the infix notation, then we can rewrite the above identities as x−x = 0 and x− 0 = x.

Let Θ be the closed mute term defined in Section 2.2. We define s(x, y) ≡ Θxy and
0 ≡ Ω. Then the λ-theory λπφ is defined as the least extensional λ-theory generated by the
following two equations, called the subtractive equations:

(π) Θxx = Ω; (φ) ΘxΩ = x.

The intuitive meaning of the equations (π) and (φ) is that they make the term Θ behave like
a binary subtraction operator (in curried form) whose “zero” is the term Ω. This intuition
will be treated precisely in Section 5. The following theorem illustrates a curious aspect of
the equations (π) and (φ): the choice of Ω is the right one.

I Theorem 6. Let O be a λ-term such that x /∈ FV (O), and let T be any λ-theory including
the identities ΘxO = x and Θxx = O. Then T ` O = Ω.

Proof. We apply a technique introduced by Gordon Plotkin and Alex Simpson (see [13]).
Let Y ≡ λf.(λx.f(xx))(λx.f(xx)) be the Curry fixpoint combinator. Then, for any λ-term
M , define µx.M ≡ Y (λx.M). Now let D ≡ µy.µx.Θxy. Then we have D =β ΘDD =T O
and D =β µx.ΘxD =T µx.ΘxO =T µx.x =β Ω, therefore T ` O = Ω. J

3.1.1 The λ-theory λπ

The extensional λ-theory λπ is axiomatised over λβη by the equation (π). It is consistent
because semisensible. We will show the consistency of λπφ relying on the consistency of λπ.

We remark that the λ-theory axiomatised by Ωxx = Ω was introduced in [12]. Here we
use Θxx = Ω for technical reason.

The following notion of reduction will be useful in the next sections (recall from Section
2.2 the definition of reduction graph Gβ(Θ) of Θ).

I Definition 7 (λπ-reduction). We formally introduce here λπ-reduction, notation →λπ, as
the contextual closure of →βη ∪ →π, where

ΨMN →π Ω if Ψ ∈ Gβ(Θ) and λπ `M = N.

Of course the conversion =λπ coincides with the equality induced by λπ.

I Theorem 8. The reduction →λπ is Church-Rosser;
For all terms M and N , we have ΘMN =λπ Ω iff M =λπ N .

A. Carraro and A. Salibra 159

Proof. As in the proof of [12, Lemma 3.1], it is sufficient to verify that �π satisfies the
diamond property (see [1, Lemma 3.2.2]) and that the relations�βη and�π commute (see [1,
Def. 3.3.4]). The conclusion follows from the Hindley–Rosen Lemma (see [1, Prop. 3.3.5]). J

Another useful result is the forthcoming lemma, which says that all λπ-reduction paths
may be “simulated” by a reduction path which allows π-steps only at the end.

I Lemma 9 (Factorization). If M �λπ N , then there exists P such that M �βη P �π N .

Proof. Use iteratively the fact that whenever M →π N →βη Q, then there exists N ′ such
that M →=

βη N
′ �π Q. J

I Lemma 10. The terms Θ and Ω are not λπ-convertible.

Proof. By the reduction graph of Θ and the confluence of →λπ. J

We remark that →λπ-residuals do not create new →π-redexes. For example, if M is a
→π-redex, then the reduction MNZ →π ΩNZ only contains →π-redexes already present in
N or Z. Any further reduction can only duplicate, erase or contract those redexes. This
would not have been true if Ω ∈ Gβ(Θ).

3.2 Jacopini–Kuper technique for λπφ

In this section we apply the Jacopini–Kuper technique explained in Section 2.4 to prove
the consistency of the theory λπφ. More precisely, the results presented here show that
the closure λx.ΘxΩ = I of the equation (φ), that axiomatizes λπφ over λπ, satisfies the
hypotheses of Theorem 4.

I Lemma 11. The term λx.ΘxΩ is λπ-operationally less defined than I.

Proof. Let F be a λ-term and N be a βη-normal form, and suppose F (λx.ΘxΩ) =λπ N .
Since λπ-reduction is confluent and N is βη-normal, we have that F (λx.ΘxΩ)�λπ N . By
Lemma 9 there exists a term M such that

F (λx.ΘxΩ)�βη M �π N.

Since N is a βη-normal form, we must have that M ≡ N . Therefore we have λβη `
F (λx.ΘxΩ) = N and, since λx.ΘxΩ is unsolvable, we can apply the Genericity Lemma of
lambda calculus to obtain λβη ` F I = N , and hence obviously λπ ` F I = N which is the
desired conclusion. J

In Lemma 12 below we keep track of the residuals of the λ-term λx.ΘxΩ during the
reduction of the term F (λx.ΘxΩ). We have three kinds of residuals: λx.ΨxΩ, ΨMΩ and Ω
(with Ψ ∈ Gβ(Θ)) as the following informal example shows:

F (λx.ΘxΩ) �λπ · · · (λx.ΘxΩ) · · · (λx.ΘxΩ) · · · (λx.ΘxΩ) · · ·
�β · · · (λx.ΘxΩ) · · · (λx.ΨxΩ) · · · · · · (λx.ΘxΩ) · · · (Θ�β Ψ)
�λπ · · · (λx.ΘxΩ) · · · (λx.ΨxΩ)M · · · (λx.ΘxΩ) · · ·
→β · · · (λx.ΘxΩ) · · · (ΨMΩ) · · · (λx.ΘxΩ) · · · (β-reduction)
�λπ · · · (λx.ΘxΩ) · · · (ΨNΩ) · · · (λx.ΘxΩ) · · · (M �λπ N)
→π · · · (λx.ΘxΩ) · · · (Ω) · · · (λx.ΘxΩ) · · · (N =λπ Ω)
�λπ · · · · · · · · ·

CSL’12

160 On the equational consistency of order-theoretic models of the λ-calculus

In order to trace the residuals it is useful to enrich the syntax of λ-terms with labels as
follows:

M,N ::= x | λx.M |MN

| (λx.ΨxΩ)n | (ΨMΩ)n | (Ω)n (n ≥ 1 and Ψ ∈ Gβ(Θ))

We denote by ΛN the set of labelled terms and we write M for the λ-term, called erasure of
M , obtained by erasing the labels from M .

Since (Ω)n and (λx.ΨxΩ)n are closed terms, then it is sufficient to extend substitution
to labelled terms by setting (ΨMΩ)n[N/x] = (ΨM [N/x]Ω)n, where Ψ ∈ Gβ(Θ). Then we
define a reduction on labelled terms as the smallest contextual reduction →lab satisfying the
following clauses, for all labelled terms M,N :

(λx.M)N →lab M [N/x]
λx.Mx→lab M if x 6∈ FV(M)
(λx.ΨxΩ)nM →lab (ΨMΩ)n if Ψ ∈ Gβ(Θ)
ΨMN →lab Ω if Ψ ∈ Gβ(Θ) and M =λπ N .

Note that (i) →λπ⊆→lab; (ii) if M →lab N then (ΨMΩ)n →lab (ΨNΩ)n. If σ is a reduction
path of labelled terms, then we denote by σ the corresponding reduction path, where all
labels are erased.

We will make use of an additional operation on labelled terms. Given terms M,N ∈ ΛN

such that M ≡ N , we define their superposition as the labelled term obtained from the
syntax tree of M by adding a possible label k to each subtree T of M according to the
following schema:

Put k = m+ n if T has label m in M and n in N ;
Put k = m if T has label m in M and no label in N ;
Put k = n if T has label n in N and no label in M ;
Put no label otherwise.

I Lemma 12. The term λx.ΘxΩ is λπ-proof-substitutable by I.

Proof. In this proof Ψ ranges over Gβ(Θ). Let F1, F2 be closed λ-terms and suppose
F1(λx.ΘxΩ) =λπ F2(λx.ΘxΩ). Since the reduction →λπ is confluent, then the two sides of
the equality are the beginning of two reduction paths σ1 and σ2 that end in a common term
R. Consider now the labelled terms Fi(λx.ΘxΩ)i for i = 1, 2. Then there exists a labelled
reduction path σ′i starting with Fi(λx.ΘxΩ)i such that σ′i ≡ σi. We denote by Ri the last
labelled term in the reduction path σ′i. Then we have that R ≡ R1 ≡ R2.

Let S be the term obtained by superposition of R1 and R2. Then the labels of S range over
the set L = {1, 2, 3}. We now describe how to extract a witness of λπ-proof-substitutability
by suitably modifying S. All residuals with label 3 in S are common to the reduction paths
σ′1 and σ′2. Then, if we mimic the reduction path σi starting from FiI (i = 1, 2), we will find
in place of the residuals with label 3 the term I for (λx.ΨxΩ)3; M for (ΨMΩ)3 and a term
N (λπ-convertible with Ω) for (Ω)3:

Fi(λx.ΘxΩ) �λπ (i = 1, 2)
· · · (λx.ΘxΩ) · · · �β

· · · (λx.ΨxΩ) · · · �λπ (Θ�β Ψ)
· · · (λx.ΨxΩ)M · · · →β

· · ·ΨMΩ · · · →λπ (M �λπ N)
· · ·ΨNΩ · · · →λπ (N =λπ Ω)
· · ·Ω · · ·

FiI �λπ (i = 1, 2)
· · · I · · · ≡
· · · I · · · �λπ

· · · IM · · · →β

· · ·M · · · →λπ (M �λπ N)
· · ·N · · · ≡ (N =λπ Ω)
· · ·N · · ·

A. Carraro and A. Salibra 161

Then we let S′ ≡ S[I/(λx.ΨxΩ)3;M/(ΨMΩ)3; Ω/(Ω)3]. The last substitution Ω for (Ω)3 is
possible because the term N in the above reduction path (right column) is λπ-convertible
with Ω. We see that, by mimicking the steps in the paths σ1, σ2, we have that

(∗) FiI =λπ L1, where L1 is the erasure of S′[I/(λx.ΨxΩ)i;M/(ΨMΩ)i] (i = 1, 2)

Let x1, x2 be fresh variables and let H be the term obtained from S′ by replacing bottom-up
the subterms (labeled by i ∈ L)

for i = 1, 2

(λx.ΨxΩ)i with xi;
(ΨMΩ)i with xiM ;
(Ω)i with xiΩ.

Then the following equivalences hold:
(a) L1 =λπ H[I/x1; (λx.ΨxΩ)/x2];
(b) L2 =λπ H[(λx.ΨxΩ)/x1; I/x2].
Therefore by setting G ≡ λx2x1.H, we obtain that

G(λx.ΘxΩ)I�β H[I/x1; (λx.ΨxΩ)/x2] =λπ L1 =λπ F1I, by (∗) and (a)
GI(λx.ΘxΩ)�β H[(λx.ΨxΩ)/x1; I/x2] =λπ L2 =λπ F2I, by (∗) and (b)

This shows that G is the witness term we were looking for. J

Now we are ready to give the main theorem of the section.

I Theorem 13. The λ-theory λπφ is consistent.

Proof. Lemma 12 and Lemma 11 show that the hypotheses of Theorem 4 are satisfied by
the equation that axiomatizes λπφ over λπ, and therefore λπφ must be consistent. J

3.3 The main theorem
The following results prove that there is no po-model with bottom element satisfying the
equations (π) and (φ) that define the λ-theory λπφ.

I Lemma 14. LetM be a po-model such thatM |= Θxx = Ω ∧ΘxΩ = x (i.e., Th(M) ⊇
λπφ). Then for all closed λ-terms P and Q we have:
(i) If M 6|= ΘPQ = Ω, then the interpretations of P and Q are in distinct connected

components ofM.
(ii) The connected component of the interpretation of Ω is a singleton set.

Proof. (i) Following [12, Section 4] we define the subtraction sequence of the pair (P,Q):

s1 ≡ ΘPQ; sn+1 ≡ ΘsnΩ.

By hypothesisM |= s1 6= Ω and by subtractivityM |= sn = s1 for all n. Then the conclusion
follows from [12, Corollary 4.6].

(ii) Let a ∈ M and a 6= |Ω|. Consider the subtraction sequence of the pair (a,Ω):
s1 = ΘaΩ and sn+1 = ΘsnΩ. Since M |= sn = a for all n, again an application of
[12, Corollary 4.6] implies that a and the interpretation of Ω are in distinct connected
components. J

CSL’12

162 On the equational consistency of order-theoretic models of the λ-calculus

The situation described by Lemma 14 can be regarded to as a relativized version of
absolute unorderability to one fixed element. In particular the interpretation of Ω is isolated
in every model. This property will be studied in Section 5 in the framework of Universal
Algebra.

We recall from [5, Theorem 7] that consistency fails for quantifier-free sentences and
po-models with bottom element. The sentence λx.Ωxx = λx.Ω∧Ω 6= ΩΩ(ΩKI) is consistent
with the extensional λ-calculus but no po-model with bottom element satisfies it. The
following theorem improves this result by Honsell and Plotkin.

I Theorem 15. For every non-trivial po-model M with bottom element, we have M 6|=
Θxx = Ω ∧ ΘxΩ = x.

Proof. Suppose, by contradiction, thatM |= Θxx = Ω ∧ΘxΩ = x. Since |Ω| is comparable
with ⊥, then by Lemma 14(ii) Ω is interpreted as the bottom element ⊥. The bottom element
is comparable with all other elements of the model. This contradicts Lemma 14(ii). J

Therefore the equations λx.Θxx = λx.Ω and λx.ΘxΩ = λx.x are indeed a counterexample
to the equational consistency for the class of po-models with bottom element. We can also
get a stronger result.

I Theorem 16. IfM is a po-model such that Th(M) ⊇ λπφ, then the partial ordering of
M is not connected.

4 On the order-incompleteness of λ-calculus

The open problem of the order-incompleteness of λ-calculus was raised by Selinger in [13]:
does there exist a λ-theory which does not arise as the theory of a non-trivial po-model?
Such a problem can be also characterised in terms of connected components of a partial
ordering (minimal subsets which are both upward and downward closed): a λ-theory T is
order-incomplete if, and only if, every po-model, having T as equational theory, is partitioned
in an infinite number of connected components, each one containing exactly one element. In
other words, the partial order is the equality.

So far we have shown that the subtractive equations force their models not to be connected
as partial orders. However, the order-incompleteness is far more distant to connectedness.
Toward order-incompleteness, we propose a strengthening T of the λ-theory λπφ having the
following property: every po-model M such that Th(M) ⊇ T has an infinite number of
connected components among which that of |Ω| is a singleton set. Moreover each connected
component contains the denotation of at most one βη-normal form.

We are now going to introduce the above-mentioned strenghtening of λπφ. It will make
use of another mute term, that we will call Θ2, obtained as follows:

Define inductively A0 ≡ x and An+1 ≡ λy.yAn, where y 6≡ x. Note that FV(An) = {x},
for each n ∈ N.
Now set B2 ≡ λx.xA2, C2 ≡ (λz.zB2) and Θ2 ≡ B2C2.

It is not difficult to check that Θ2 is a mute closed term. Moreover Ω, Θ and Θ2 are pairwise
non-λπ-convertible: this is an immediate consequence of the confluence of →λπ and of the
form of the reduction graphs of the terms in question.

Let T be the theory axiomatized over λπφ by the following equations:

Θ2Ω = K;
Θ2(ΘMN) = S, M and N distinct closed βη-normal forms.

A. Carraro and A. Salibra 163

Next we show that T is consistent. In order to do that it suffices, by compactness reasons,
to prove that any finite subset of the above equations is eliminable from a proof of T ` K = S
via the Jacopini–Kuper technique. The proof of this fact closely resembles the consistency
proof given for λπφ (see Section 3.2), so we will just sketch it, only considering the extension
of λπ by three equations Θ2(ΘMN) = S, Θ2Ω = K and λx.ΘxΩ = I, where (M,N) is an
arbitrary but fixed pair of closed distinct βη-normal forms.

Define the two sequences ~P = Θ2(ΘMN),Θ2Ω, λx.ΘxΩ and ~Q = S,K, I.
We observe that it follows directly from Lemma 11 that ~P is λπ-operationally less defined

than ~Q.

I Lemma 17. ~P is λπ-proof-substitutable by ~Q.

Proof. In this proof Ψ and Ψ2 range, respectively, over Gβ(Θ) and Gβ(Θ2). Let F1, F2 be
closed λ-terms and suppose F1 ~P =λπ F2 ~P . Since the reduction →λπ is confluent, then the
two sides of the equality are the beginning of two reduction paths σ1 and σ2 that end in a
common term R.

Consider now the labelled term
A1 ≡ F1(Θ2(ΘMN))1(Θ2Ω)4(λx.ΘxΩ)10

A2 ≡ F2(Θ2(ΘMN))2(Θ2Ω)5(λx.ΘxΩ)11

Then there exist labelled reduction paths σ′i starting with Ai (i = 1, 2) such that σ′i ≡ σi.
We denote by Ri the last labelled term in the reduction path σ′i. Then we have R ≡ Ri
(i = 1, 2). Let S be the term obtained by superposition of R1 and R2. Then the labels of
S range over the set L = {1, 2, 3, 4, 5, 9, 10, 11}. Note that if S has a labelled subterm of
the shape (Θ2Ω)l, then l ∈ {4, 5, 9} because the contrary would require ΘMN →λπ Ω (by
Theorem 8(ii)), which is impossible because it would imply λπ `M = N , contradicting the
consistency of λπ (as a consequence of Böhm’s Theorem [1, Thm. 10.4.2]).

We now describe how to extract a witness of λπ-proof-substitutability by suitably modi-
fying S. All residuals with label 3 ,9, or 21 in S are common to the reduction paths σ′1 and
σ′2. Then, if we mimic the reduction path σi starting from FiI (i = 1, 2), we will find in place
of the residuals with label 21 the term I for (λx.ΨxΩ)21; M for (ΨMΩ)21 and a term N

(λπ-convertible with Ω) for (Ω)21. Similarly those residuals with labels 3 and 9 are replaced
by S and K, respectively. Then we let

S′ ≡ S[I/(λx.ΨxΩ)21;M/(ΨMΩ)21; Ω/(Ω)21; S/(Θ2(ΘMN))3; K/(Θ2Ω)9]

and we define a term H out of S′ by replacing bottom-up some subterms (labeled by i ∈ L),
using fresh variables x1, x2, x3, x4, x5, x10, x11 as follows

for i = 10, 11

(λx.ΨxΩ)i with xi;
(ΨMΩ)i with xiM ;
(Ω)i with xiΩ.

for i = 4, 5 and j = 1, 2
{

(Ψ2Ω)i with xi;
(Ψ2(ΨMN))j with xj .

Finally, as in the proof of Lemma 12, it is possible to find a term G such that:

G~P ~Q �β H[(Ψ2(ΨMN))/x1; S/x2; (Ψ2Ω)/x4; K/x5; I/x10; (λx.ΨxΩ)/x11] =λπ F1 ~Q

G~Q~P �β H[S/x1; (Ψ2(ΨMN))/x2; K/x4; (Ψ2Ω)/x5; (λx.ΨxΩ)/x10; I/x11] =λπ F2 ~Q

J

The following theorem, which relies on Lemma 17, it is analogous to Theorem 13.

CSL’12

164 On the equational consistency of order-theoretic models of the λ-calculus

I Theorem 18. The λ-theory T is consistent.
We conclude the section with a theorem that improves a result in [12], where it is

shown that every po-modelM such that Th(M) = λπ has an infinite number of connected
components.
I Theorem 19. Let M be a po-model such that Th(M) ⊇ T . Then M has an infinite
number of connected components and it has the following properties:
1. The interpretation inM of two distinct βη-normal forms belongs to different connected

components;
2. The connected component of |Ω| is a singleton set.
Proof. Let M,N be two distinct βη-normal forms and suppose, by way of contradiction,
that |M | and |N | lie in the same connected component of M. Then M |= ΘMN = Ω
by Lemma 14(i). But then from M |= S = Θ2(ΘMN) and M |= Θ2Ω = K we derive
that M |= S = K, which contradicts the non-triviality of M. Hence each denotation of
a βη-normal form belongs to exactly one connected component. The second part of the
statement follows directly from Lemma 14(ii). J

5 Subtractivity and orderings

The inspiration for the subtractive equations comes from a general algebraic framework,
developed by Ursini [14], called subtractivity. Salibra in [12] investigated the weaker notion
of semi-subtractivity, linking it to properties of po-models of λ-calculus. Here we follow that
path illustrating the stronger properties of subtractivity.

We start the section briefly reviewing the connection established by Selinger in [13]
between the absolute unorderability and the validity of certain Mal’cev-type conditions.

Let A be an algebra of some variety V (i.e., equational class). A preorder ≤ on A is
compatible if it is monotone in each coordinate of every function symbol of V. Then we
have: (i) A is unorderable if it admits only equality as a compatible partial order; (ii) A
is absolutely unorderable if, for every algebra B ∈ V and every embedding f : A→ B (i.e.,
injective homomorphism), the algebra B is unorderable.

Let V be a variety, A ∈ V and X be a set of indeterminates. We denote by A[X] the
free extension of A in the variety V. The algebra A[X] is defined up to isomorphism by
the following universal mapping properties: (1) A ∪X ⊆ A[X]; (2) A[X] ∈ V; (3) for every
B ∈ V, homomorphism h : A → B and every function f : X → B, there exists a unique
homomorphism f : A[X]→ B extending h and f . When X = {x1, . . . , xn} is finite, we write
A[x1, . . . , xn] for A[X].

The following result by Selinger [13] characterises those algebras which are absolutely
unorderable.
I Theorem 20. Let V be a variety. An algebra A ∈ V is absolutely unorderable if, and only
if, there exist a natural number n ≥ 1 and ternary terms p1, . . . , pn in the type of V such that
the algebra A[x, y] satisfies the following identities:

x = p1(x, y, y);
pi(x, x, y) = pi+1(x, y, y) (i = 1, . . . , n− 1);
pn(x, x, y) = y.

In the case the variety V has a constant 0, then we can relativise the Mal’cev identities
as follows: 0 = p1(0, y, y);

pi(0, 0, y) = pi+1(0, y, y) (i = 1, . . . , n− 1);
pn(0, 0, y) = y.

A. Carraro and A. Salibra 165

This suggests that the absolute unorderability relative to the element 0 can be expressed by
the following identities defining n-subtractivity.

I Definition 21. Let V be a variety of algebras with a constant 0. We say that V is
n-subtractive (n ≥ 2) if there exist n− 1 binary terms s1(x, y), . . . , sn−1(x, y) such that V
satisfies the following identities:

0 = s1(x, x)
si(x, 0) = si+1(x, x) (i = 1, . . . , n− 2);

sn−1(x, 0) = x.

Then Ursini’s subtractivity (see Definition 5) means 2-subtractivity.
Every model of the two equations (π) and (φ) is subtractive, when we define the binary

operator s1(x, y) defining subtractivity as the λ-term Θxy. As a consequence of the consistency
of the λ-theory λπφ, it follows that there exists a non-trivial subtractive variety of combinatory
algebras.

I Definition 22. An algebra A is 0-unorderable if, for every compatible partial order ≤ on
A and every a 6= 0 ∈ A, neither 0 ≤ a nor a ≤ 0.

I Definition 23. Let V be a variety. An algebra A ∈ V is said to be absolutely 0-unorderable
if, for any algebra B ∈ V and embedding f : A→ B, B is 0-unorderable.

Let R1 (resp. R2) be the smallest compatible preorder on A[x] such that xR10 (resp.
0R2x).

I Lemma 24. Let V be a variety. An algebra A ∈ V is absolutely 0-unorderable iff 0R1x

and xR20.

Proof. Assume that A is not absolutely 0-unorderable. Then there exists an embedding
f : A→ B ∈ V, where B has a non-trivial partial ordering ≤ and there exists an element
b 6= 0 ∈ B such that either 0 ≤ b or b ≤ 0. Consider the unique homomorphism g : A[x]→ B
extending f such that g(x) = b. Define aSc in A[x] iff g(a) ≤ g(c) in B. We have that S is
a compatible preorder on A[x] such that either 0Sx or xS0 but not both (!). If xS0, then
R1 ⊆ S but not 0R1x. If 0Sx, then R2 ⊆ S but not xR20. J

Note that, as a consequence of Lemma 24, if A is absolutely 0-unorderable, then R1 = R2.

I Theorem 25. Let V be a variety. An algebra A ∈ V is absolutely 0-unorderable if, and
only if, the free extension A[x] of A is n-subtractive for some n ≥ 2.

Proof. The argument is similar to Selinger’s proof of [13, Theorem 3.4]. Define a relation
≺ on A[x] as follows: t ≺ u iff there exists a polynomial p(x, y) ∈ A[x, y] such that
A[x] |= t = p(x, x) and A[x] |= p(x, 0) = u.

We start by showing that tR1u iff t ≺∗ u.
(⇒) The relation ≺ is compatible and contains the pair (x, 0) since the polynomial p(x, y) ≡ y
witnesses x ≺ 0. Hence by its minimality, R1 is contained in ≺∗.
(⇐) On the other hand suppose t ≺ u and let p(x, y) ∈ A[x, y] be such that A[x] |= t = p(x, x)
and A[x] |= p(x, 0) = u. Then t = p(x, x)R1p(x, 0) = u by compatibility and the fact that
xR10. Finally the transitivity of R1 implies that ≺∗⊆ R1.

By Lemma 24 and the above paragraph, if A is absolutely 0-unorderable, then there are
p1, . . . , pn−1 ∈ A[x, y] such that p1 ≺ · · · ≺ pn−1. These polynomials witness n-subtractivity.

Conversely if A is n-subtractive, then 0 ≺∗ x and hence A is absolutely 0-unorderable. J

CSL’12

166 On the equational consistency of order-theoretic models of the λ-calculus

I Corollary 26.(i) The term model of the λ-theory λπφ is absolutely |Ω|-unorderable in the
variety of combinatory algebras.

(ii) IfM is a λ-model such that Th(M) ⊇ λπφ, thenM is absolutely |Ω|-unorderable in the
variety of combinatory algebras.

We would like to conclude this paper by remarking that Ursini [14] has shown that
subtractive algebras have a good theory of ideals. We recall that ideals in general algebras
generalize normal subgroups, ideals in rings, filters in Boolean or Heyting algebras, ideals in
Banach algebra, in l-groups, etc. One feature of subtractive varieties is that their ideals are
exactly the congruence classes of 0, but one does not have the usual one-one correspondence
ideals-congruences: mapping a congruence θ to its equivalence class 0/θ only establishes
a lattice homomorphism between the congruence lattice and the ideal lattice. This points
to another feature: the join of two congruences is a tricky thing to deal with. The join of
two ideals in a subtractive algebra behaves nicely: for I, J ideals, we have that b ∈ I ∨ J
iff for some a ∈ I, s(b, a) ∈ J . Thanks to the consistency of the subtractive equations with
λ-calculus, the theory of ideals for subtractive varieties can be applied to all λ-theories
extending λπφ.

References
1 Barendregt H.P., The lambda calculus: Its syntax and semantics, North-Holland Publishing

Co., Amsterdam, 1984.
2 Berarducci A., Infinite lambda-calculus and nonsensible models, Logic and Algebra, Lecture

Notes in Pure and Applied Mathematics, Marcel Dekker Inc., (1996), 339–378.
3 Burris S. and H.P. Sankappanavar, A course in universal algebra, Springer-Verlag, Berlin,

1981.
4 Duda J., On two schemes applied to Mal’cev type theorems, Ann. Univ. Sci. Budapest,

Section Math. 26 (1983), 39–45.
5 Honsell F. and Plotkin G.D., On the completeness of order-theoretic models of the λ-calculus,

Information and Computation 207(5) (2009), 583–594.
6 Honsell F. and Ronchi della Rocca S., An approximation theorem for topological λ-models

and the topological incompleteness of λ-calculus, Journal Computer and System Science 45
(1992), 49–75.

7 Jacopini, G., A condition for identifying two elements of whatever model of combinatory
logic, in “Lambda Calculus and Computer Science” (C. Bohm, Ed.), Springer-Verlag, Berlin
(1975), pp. 213–219.

8 Kuper J., On the Jacopini technique, Information and Computation 138 (1997), 101–123.
9 Lusin S. and Salibra A., The lattice of lambda theories. Journal of Logic and Computation

14 (2004), 373–394.
10 Manzonetto G. and Salibra A., Applying universal algebra to lambda calculus, J. Log. Com-

put., 20(4) (2010), 877–915.
11 Plotkin G.D., On a question of H. Friedman, Information and Computation 126 (1996),

74–77.
12 Salibra A., Topological incompleteness and order incompleteness of the lambda calculus,

ACM TOCL 4(3) (2003).
13 Selinger P., Order-incompleteness and finite lambda reduction models, Theoretical Com-

puter Science 309 (2003), 43–63.
14 Ursini A., On subtractive varieties, I, Algebra Universalis, 31(2) (1994), 204–222.

Faster Algorithms for Alternating Refinement
Relations
Krishnendu Chatterjee1, Siddhesh Chaubal2, and Pritish Kamath2

1 IST Austria (Institute of Science and Technology Austria)
2 IIT Bombay

Abstract
One central issue in the formal design and analysis of reactive systems is the notion of refine-
ment that asks whether all behaviors of the implementation is allowed by the specification. The
local interpretation of behavior leads to the notion of simulation. Alternating transition systems
(ATSs) provide a general model for composite reactive systems, and the simulation relation for
ATSs is known as alternating simulation. The simulation relation for fair transition systems is
called fair simulation. In this work our main contributions are as follows: (1) We present an
improved algorithm for fair simulation with Büchi fairness constraints; our algorithm requires
O(n3 ·m) time as compared to the previous known O(n6)-time algorithm, where n is the number
of states and m is the number of transitions. (2) We present a game based algorithm for altern-
ating simulation that requires O(m2)-time as compared to the previous known O((n ·m)2)-time
algorithm, where n is the number of states and m is the size of transition relation. (3) We present
an iterative algorithm for alternating simulation that matches the time complexity of the game
based algorithm, but is more space efficient than the game based algorithm.

1998 ACM Subject Classification D.2.4 Formal methods

Keywords and phrases Simulation and fair simulation, Alternating simulation, Graph games

Digital Object Identifier 10.4230/LIPIcs.CSL.2012.167

1 Introduction

Simulation relation and extensions. One central issue in formal design and analysis of
reactive systems is the notion of refinement relations. The refinement relation (system A

refines system A′) intuitively means that every behavioral option of A (the implementation)
is allowed by A′ (the specification). The local interpretation of behavorial option in terms of
successor states leads to refinement as simulation [15]. The simulation relation enjoys many
appealing properties, such as it has a denotational characterization, it has a logical charac-
terization and it can be computed in polynomial time (as compared to trace containment
which is PSPACE-complete). While the notion of simulation was originally developed for
transition systems [15], it has many important extensions. Two prominent extensions are as
follows: (a) extension for composite systems and (b) extension for fair transition systems.
Alternating simulation relation. Composite reactive systems can be viewed as multi-
agent systems [16, 9], where each possible step of the system corresponds to a possible move
in a game which may involve some or all component moves. We model multi-agent systems
as alternating transition systems (ATSs) [1]. In general a multi-agent system consists of a set
I of agents, but for algorithmic purposes for simulation we always consider a subset I ′ ⊆ I

of agents against the rest, and thus we will only consider two-agent systems (one agent is
the collection I ′ of agents, and the other is the collection of the rest of the agents). Consider
the composite systems A||B and A′||B, in environment B. The relation that A refines A′

© Krishnendu Chatterjee, Siddhesh Chaubal, and Pritish Kamath;
licensed under Creative Commons License NC-ND

Computer Science Logic 2012 (CSL’12).
Editors: Patrick Cégielski, Arnaud Durand; pp. 167–182

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2012.167
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

168 Faster Algorithms for Alternating Refinement Relations

without constraining the environment B is expressed by generalizing the simulation rela-
tion to alternating simulation relation [2]. Alternating simulation also enjoys the appealing
properties of denotational and logical characterization along with polynomial time comput-
ability. We refer the readers to [2] for an excellent exposition of alternating simulation and
its applications in design and analysis of composite reactive systems. We briefly discuss
some applications of alternating simulation relation. Given a composite system with many
components, the problem of refinement of a component (i.e., a component C can be replaced
with its implementation C ′) without affecting the correctness of the composite system is an
alternating simulation problem. Similarly, refinement for open reactive systems is also an
alternating simulation problem. Finally, graph games provide the mathematical framework
to analyze many important problems in computer science, specially in relation to logic, as
there is a close connection of automata and graph games (see [17, 8] for details). Alternat-
ing simulation provides the technique for state space reduction for graph games, which is a
pre-requisite for efficient algorithmic analysis of graph games. Thus computing alternating
simulation for ATSs is a core algorithmic question in the formal analysis of composite sys-
tems, as well as in the heart of efficient algorithmic analysis of problems related to logic in
computer science.

Fair simulation relation. Fair transition systems are extension of transition systems with
fairness constraint. A liveness (or weak fairness or Büchi fairness) constraint consists of
a set B of live states, and requires that runs of the system visit some live state infinitely
often. In general the fairness constraint can be a strong fairness constraint instead of a
liveness constraint. The notion of simulation was extended to fair transition systems as fair
simulation [11]. It was shown in [11] that fair simulation also enjoys the appealing properties
of denotational and logical characterization, and polynomial time computability (see [11] for
many other important properties and discussion on fair simulation). Again the computation
of fair simulation with Büchi fairness constraints is an important algorithmic problem for
design and analysis of reactive systems with liveness requirements.

Our contributions. In this work we improve the algorithmic complexities of computing fair
simulation with Büchi fairness constraints and alternating simulation. In the descriptions
below we will denote by n the size of the state space of systems, and by m the size of the
transition relation. Our main contributions are summarized below.
1. Fair simulation. First we extend the notion of fair simulation to alternating fair simula-

tion for ATSs with Büchi fairness constraints. There are two natural ways of extending
the definition of fair simulation to alternating fair simulation, and we show that both the
definitions coincide. We present an algorithm to compute the alternating fair simulation
relation by a reduction to a game with parity objectives with three priorities. As a spe-
cial case of our algorithm for fair simulation, we show that the fair simulation relation
can be computed in O(n3 · m) time, as compared to the previous known O(n6)-time
algorithm of [11]. Observe that m is at most O(n2) and thus the worst case running time
of our algorithm is O(n5). Moreover, in many practical examples systems have constant
out-degree (for examples see [5]) (i.e., m = O(n)), and then our algorithm requires O(n4)
time.

2. Game based alternating simulation. We present a game based algorithm for alternating
simulation. Our algorithm is based on a reduction to a game with reachability objectives,
and requires O(m2) time, as compared to the previous known algorithm that requires
O((n ·m)2) time [2]. One key step of the reduction is to construct the game graph in
time linear in the size of the game graph.

3. Iterative algorithm for alternating simulation. We present an iterative algorithm to com-

K. Chatterjee, S. Chaubal, and P. Kamath 169

pute the alternating simulation relation. The time complexity of the iterative algorithm
matches the time complexity of the game based algorithm, however, the iterative al-
gorithm is more space efficient. (see paragraph on space complexity of Section 4.2 for
the detailed comparision). Moreover, both the game based algorithm and the iterative
algorithm when specialized to transition systems match the best known algorithms to
compute the simulation relation.
We remark that the game based algorithms we obtain for alternating fair simulation

and alternating simulation are reductions to standard two-player games on graphs with
parity objectives (with three priorities) and reachability objectives. Since such games are
well-studied, standard algorithms developed for games can now be used for computation of
refinement relations. Our key technical contribution is establishing the correctness of the
efficient reductions, and showing that the game graphs can be constructed in linear time in
the size of the game graphs. For the iterative algorithm we establish an alternative charac-
terization of alternating simulation, and present an iterative algorithm that simultaneously
prunes two relations, without explicitly constructing game graphs (thus saving space), to
compute the relation obtained by the alternative characterization. Proofs omitted due to
lack of space are available in [4].

2 Definitions

In this section we present all the relevant definitions, and the previous best known results.
We present definitions of labeled transition systems (Kripke structures), labeled alternating
transitions systems (ATS), fair simulation, and alternating simulation. All the simulation
relations we will define are closed under union (i.e., if two relations are simulation relations,
then so is their union), and we will consider the maximum simulation relation. We also
present relevant definitions for graph games that will be later used for the improved results.

I Definition 1 (Labeled transition systems (TS)). A labeled transition system (TS) (Kripke
structure) is a tuple K = 〈Σ,W, ŵ, R, L〉, where Σ is a finite set of observations; W is a
finite set of states and ŵ is the initial state; R ⊆ W ×W is the transition relation; and
L : W → Σ is the labeling function that maps each state to an observation. For technical
convenience we assume that for all w ∈W there exists w′ ∈W such that (w,w′) ∈ R.

Runs, fairness constraint, and fair transition systems. For a TS K and a state w ∈ W ,
a w-run of K is an infinite sequence w = w0, w1, w2, . . . of states such that w0 = w and
R(wi, wi+1) for all i ≥ 0. We write Inf(w) for the set of states that occur infinitely often in
the run w. A run of K is a ŵ-run for the initial state ŵ. In this work we will consider Büchi
fairness constraints, and a Büchi fairness constraint is specified as a set F ⊆ W of Büchi
states, and defines the fair set of runs, where a run w is fair iff Inf(w) ∩ F 6= ∅ (i.e., the
run visits F infinitely often). A fair transition system K = 〈K,F 〉 consists of a TS K and a
Büchi fairness constraint F ⊆W for K. We consider two TSs K1 = 〈Σ,W1, ŵ1, R1, L1〉 and
K2 = 〈Σ,W2, ŵ2, R2, L2〉 over the same alphabet, and the two fair TSs K1 = 〈K1, F1〉 and
K2 = 〈K2, F2〉. We now define the fair simulation between K1 and K2 [11].

I Definition 2 (Fair simulation). A binary relation S ⊆W1 ×W2 is a fair simulation of K1
by K2 if the following two conditions hold for all (w1, w2) ∈W1 ×W2:
1. If S(w1, w2), then L1(w1) = L2(w2).
2. There exists a strategy τ : (W1 ×W2)+ ×W1 → W2 such that if S(w1, w2) and w =

u0, u1, u2, . . . is a fair w1-run of K1, then the following conditions hold: (a) the outcome
τ [w] = u′0, u

′
1, u
′
2, . . . is a fair w2-run of K2 (where the outcome τ [w] is defined as follows:

CSL’12

170 Faster Algorithms for Alternating Refinement Relations

for all i ≥ 0 we have u′i = τ((u0, u
′
0), (u1, u

′
1), . . . , (ui−1, u

′
i−1), ui)); and (b) the outcome

τ [w] S-matches w; that is, S(ui, u′i) for all i ≥ 0. We say τ is a witness to the fair
simulation S.

We denote by �fair the maximum fair simulation relation between K1 and K2. We say that
the fair TS K2 fairly simulates the fair TS K1 iff (ŵ1, ŵ2) ∈�fair.

We have the following result for fair simulation from [11] (see item 1 of Theorem 4.2
from [11]).

I Theorem 3. Given two fair TSs K1 and K2, the problem of whether K2 fairly simulates
K1 can be decided in time O((|W1|+ |W2|) · (|R1|+ |R2|) + (|W1| · |W2|)3).

I Definition 4 (Labeled alternating transition systems (ATS)). A labeled alternating trans-
itions system (ATS) is a tuple K = 〈Σ,W, ŵ, A1, A2, P1, P2, L, δ〉, where (i) Σ is a finite set
of observations; (ii) W is a finite set of states with ŵ the initial state; (iii) Ai is a finite set
of actions for Agent i, for i ∈ {1, 2}; (iv) Pi : W → 2Ai \ ∅ assigns to every state w in W
the non-empty set of actions available to Agent i at w, for i ∈ {1, 2}; (v) L : W → Σ is the
labeling function that maps every state to an observation; and (vi) δ : W × A1 × A2 → W

is the transition relation that given a state and the joint actions gives the next state.

Observe that a TS can be considered as a special case of ATS with A2 singleton (say
A2 = {⊥}), and the transition relation R of a TS is described by the transition relation
δ : W ×A1 × {⊥} →W of the ATS.

I Definition 5 (Alternating simulation). Given two ATS, K = 〈Σ,W, ŵ, A1, A2, P1, P2, L, δ〉
and K ′ = 〈Σ,W ′, ŵ′, A′1, A′2, P ′1, P ′2, L′, δ′〉 a binary relation S ⊆ W ×W ′ is an alternating
simulation from K to K′ if for all states w and w′ with (w,w′) ∈ S, the following conditions
hold :
1. L(w) = L′(w′)
2. For every action a ∈ P1(w), there exists an action a′ ∈ P ′1(w′) such that for every action

b′ ∈ P ′2(w′), there exists an action b ∈ P2(w) such that (δ(w, a, b), δ′(w′, a′, b′)) ∈ S.
We denote by �altsim the maximum alternating simulation relation between K and K ′. We
say that the ATS K ′ simulates the ATS K iff (ŵ, ŵ′) ∈�altsim.

The following result was shown in [2] (see proof of Theorem 3 of [2]).

I Theorem 6. For two ATSs K and K ′, the alternating simulation relation �altsim can be
computed in time O(|W |2 · |W ′|2 · |A1| · |A′1| · |A2| · |A′2|).

In the following section we will present an extension of the notion of fair simulation for
TSs to alternating fair simulation for ATSs, and present improved algorithms to compute
�fair and �altsim. Some of our algorithms will be based on reduction to two-player games on
graphs. We present the required definitions below.
Two-player Game graphs. A two-player game graph G = ((V,E), (V1, V2)) consists of a
directed graph (V,E) with a set V of n vertices and a set E of m edges, and a partition
(V1, V2) of V into two sets. The vertices in V1 are player 1 vertices, where player 1 chooses
the outgoing edges; and the vertices in V2 are player 2 vertices, where player 2 (the ad-
versary to player 1) chooses the outgoing edges. For a vertex u ∈ V , we write Out(u) =
{v ∈ V | (u, v) ∈ E} for the set of successor vertices of u and In(u) = {v ∈ V | (v, u) ∈ E}
for the set of incoming edges of u. We assume that every vertex has at least one out-going
edge. i.e., Out(u) is non-empty for all vertices u ∈ V .

K. Chatterjee, S. Chaubal, and P. Kamath 171

Plays. A game is played by two players: player 1 and player 2, who form an infinite path
in the game graph by moving a token along edges. They start by placing the token on an
initial vertex, and then they take moves indefinitely in the following way. If the token is on
a vertex in V1, then player 1 moves the token along one of the edges going out of the vertex.
If the token is on a vertex in V2, then player 2 does likewise. The result is an infinite path
in the game graph, called a play. We write Ω for the set of all plays.
Strategies. A strategy for a player is a rule that specifies how to extend plays. Formally,
a strategy α for player 1 is a function α: V ∗ · V1 → V such that for all w ∈ V ∗ and all
v ∈ V1 we have α(w · v) ∈ Out(v), and analogously for player 2 strategies. We write A and
B for the sets of all strategies for player 1 and player 2, respectively. A memoryless strategy
for player 1 is independent of the history and depends only on the current state, and can
be described as a function α : V1 → V , and similarly for player 2. Given a starting vertex
v ∈ V , a strategy α ∈ A for player 1, and a strategy β ∈ B for player 2, there is a unique
play, denoted ω(v, α, β) = 〈v0, v1, v2, . . .〉, which is defined as follows: v0 = v and for all
k ≥ 0, if vk ∈ V1, then α(vk) = vk+1, and if vk ∈ V2, then β(vk) = vk+1. We say a play ω is
consistent with a strategy of a player, if there is a strategy of the opponent such that given
both the strategies the unique play is ω.
Objectives. An objective Φ for a game graph is a desired subset of plays. For a play
ω = 〈v0, v1, v2, . . .〉 ∈ Ω, we define Inf(ω) = {v ∈ V | vk = v for infinitely many k ≥ 0} to be
the set of vertices that occur infinitely often in ω. We define reachability, safety and parity
objectives with three priorities.
1. Reachability and safety objectives. Given a set T ⊆ V of vertices, the reachability

objective Reach(T) requires that some vertex in T be visited, and dually, the safety
objective Safe(F) requires that only vertices in F be visited. Formally, the sets of
winning plays are Reach(T) = {〈v0, v1, v2, . . .〉 ∈ Ω | ∃k ≥ 0. vk ∈ T} and Safe(F) =
{〈v0, v1, v2, . . .〉 ∈ Ω | ∀k ≥ 0. vk ∈ F}. The reachability and safety objectives are dual
in the sense that Reach(T) = Ω \ Safe(V \ T).

2. Parity objectives with three priorities. Consider a priority function p : V → {0, 1, 2}
that maps every vertex to a priority either 0, 1 or 2. The parity objective requires that
the minimum priority visited infinitely often is even. In other words, the objectives
require that either vertices with priority 0 are visited infinitely often, or vertices with
priority 1 are visited finitely often. Formally the set of winning plays is Parity(p) ={
ω | Inf(ω) ∩ p−1(0) 6= ∅ or Inf(ω) ∩ p−1(1) = ∅

}
.

Winning strategies and sets. Given an objective Φ ⊆ Ω for player 1, a strategy α ∈ A is
a winning strategy for player 1 from a vertex v if for all player 2 strategies β ∈ B the play
ω(v, α, β) is winning, i.e., ω(v, α, β) ∈ Φ. The winning strategies for player 2 are defined
analogously by switching the role of player 1 and player 2 in the above definition. A vertex
v ∈ V is winning for player 1 with respect to the objective Φ if player 1 has a winning
strategy from v. Formally, the set of winning vertices for player 1 with respect to the
objective Φ is the set W1(Φ) = {v ∈ V | ∃α ∈ A. ∀β ∈ B. ω(v, α, β) ∈ Φ}. Analogously, the
set of all winning vertices for player 2 with respect to an objective Ψ ⊆ Ω is W2(Ψ) =
{v ∈ V | ∃β ∈ B. ∀α ∈ A. ω(v, α, β) ∈ Ψ} .

I Theorem 7 (Determinacy and complexity). The following assertions hold.
1. For all game graphs G = ((V,E), (V1, V2)), all objectives Φ for player 1 where Φ is

reachability, safety, or parity objectives with three priorities, and the complementary
objective Ψ = Ω \Φ for player 2, we have W1(Φ) = V \W2(Ψ); and memoryless winning
strategies exist for both players from their respective winning set [7].

2. The winning set W1(Φ) can be computed in linear time (O(|V | + |E|)) for reachability

CSL’12

172 Faster Algorithms for Alternating Refinement Relations

and safety objectives Φ [12, 3]; and in quadratic time (O(|V | · |E|)) for parity objectives
with three priorities [13].

3 Fair Alternating Simulation

In this section we will present two definitions of fair alternating simulation, show their
equivalence, present algorithms for solving fair alternating simulations, and our algorithms
specialized to fair simulation will improve the bound of the previous algorithm (Theorem 3).
Similar to fair TSs, a fair ATS K = 〈K,F 〉 consists of an ATS K and a Büchi fairness
constraint F for K.

To extend the definition of fair simulation to fair alternating simulation we consider the
notion of strategies for ATSs. Consider two ATSs K = 〈Σ,W, ŵ, A1, A2, P1, P2, L, δ〉 and
K ′ = 〈Σ,W ′, ŵ′, A′1, A′2, P ′1, P ′2, L′, δ′〉 and the corresponding fair ATSs K = 〈K,F 〉 and
K′ = 〈K ′, F ′〉. We use the following notations:
− τ : (W ×W ′)+ → A1 is a strategy employed by Agent 1 in K. The aim of the strategy

is to choose transitions in K to make it difficult for Agent 1 in K′ to match them. The
strategy acts on the past run on both systems.

− τ ′ : (W ×W ′)+ × A1 → A′1 is a strategy employed by Agent 1 in K′. The aim of this
strategy is to match actions in K′ to those made by Agent 1 in K. The strategy acts on
the past run on both the systems, as well as the action chosen by Agent 1 in K.

− ξ′ : (W ×W ′)+ × A1 × A′1 → A′2 is a strategy employed by Agent 2 in K′. The aim of
this strategy is to choose actions in K′ to make it difficult for Agent 2 to match them in
K. The strategy acts on the past run of both the systems, as well as the actions chosen
by Agent 1 in K and K′.

− ξ : (W ×W ′)+×A1×A′1×A′2 → A2 is a strategy employed by Agent 2 in K. Intuitively,
the aim of this strategy of Agent 2 is to choose actions in K to show that Agent 1 is not
as powerful in K as in K′, i.e., in some sense the strategy of Agent 2 will witness that
the strategy of Agent 1 in K does not satisfy certain desired property. The strategy acts
on the past run of both the systems, as well as the actions chosen by Agent 1 in K and
both the agents in K′.

− ρ(w,w′, τ, τ ′, ξ, ξ′) is the run that emerges in K if the game starts with K on state w,
K′ on state w′ and the agents employ strategies τ , τ ′, ξ and ξ′ as described above, and
ρ′(w,w′, τ, τ ′, ξ, ξ′) is the corresponding run that emerges in K′.

I Definition 8 (Weak fair alternating simulation). A binary relation S ⊆ W ×W ′ is a weak
fair alternating simulation (WFAS) of K by K′ if the following two conditions hold for all
(w,w′) ∈W ×W ′:
1. If S(w,w′), then L(w) = L′(w′).
2. There exists a strategy τ ′ : (W ×W ′)+ × A1 → A′1 for Agent 1 in K′, such that for all

strategies τ : (W ×W ′)+ → A1 for Agent 1 in K, there exists a strategy ξ : (W ×W ′)+×
A1×A′1×A2 → A′2 for Agent 2 inK, such that for all strategies ξ′ : (W×W ′)+×A1×A′1 →
A′2 for Agent 2 on K′, if S(w,w′) and ρ(w,w′, τ, τ ′, ξ, ξ′) is a fair w-run of K, then
− ρ′(w,w′, τ, τ ′, ξ, ξ′) is a fair w′-run of K′; and
− ρ′(w,w′, τ, τ ′, ξ, ξ′) S-matches ρ(w,w′, τ, τ ′, ξ, ξ′).

We denote by �weak
fairalt the maximum WFAS relation between K and K′. We say that the fair

ATS K′ weak-fair-alternate simulates the fair ATS K iff (ŵ, ŵ′) ∈�weak
fairalt.

I Definition 9 (Strong fair alternating simulation). A binary relation S ⊆W ×W ′ is a strong
fair alternating simulation (SFAS) of K by K′ if the following two conditions hold for all
(w,w′) ∈W ×W ′:

K. Chatterjee, S. Chaubal, and P. Kamath 173

1. If S(w,w′), then L(w) = L′(w′).
2. There exist strategies τ ′ : (W ×W ′)+×A1 → A′1 for Agent 1 in K′ and ξ : (W ×W ′)+×

A1 × A′1 × A2 → A′2 for Agent 2 in K, such that for all strategies τ : (W ×W ′)+ → A1
for Agent 1 in K and ξ′ : (W ×W ′)+×A1×A′1 → A′2 for Agent 2 on K′, if S(w,w′) and
ρ(w,w′, τ, τ ′, ξ, ξ′) is a fair w-run of K, then

− ρ′(w,w′, τ, τ ′, ξ, ξ′) is a fair w′-run of K′; and
− ρ′(w,w′, τ, τ ′, ξ, ξ′) S-matches ρ(w,w′, τ, τ ′, ξ, ξ′).

We denote by �strong
fairalt the maximum SFAS relation between K and K′. We say that the fair

ATS K′ strong-fair-alternate simulates the fair ATS K iff (ŵ, ŵ′) ∈�strong
fairalt .

The difference in the definitions of weak and strong alternating fair simulation is in the
order of the quantifiers in the strategies. In the weak version the quantifier order is exists
forall exists forall, whereas in the strong version the order is exists exists forall forall. Thus
strong fair alternating simulation implies weak fair alternating simulation. We will show
that both the definitions coincide and present algorithms to compute the maximum fair
alternating simulation. Also observe that both the weak and strong version coincide with
fair simulation for TSs. We will present a reduction of weak and strong fair alternating
simulation problem to games with parity objectives with three priorities. We now present a
few notations related to the reduction.
Successor sets. Given an ATS K, for a state w and an action a ∈ P1(w), let
Succ(w, a) = {w′ | ∃b ∈ P2(w) such that w′ = δ(w, a, b)} denote the possible successors of
w given an action a of Agent 1 (i.e., successor set of w and a). Let Succ(K) =
{Succ(w, a) | w ∈W,a ∈ P1(w)} denote the set of all possible successor sets. Note that
|Succ(K)| ≤ |W | · |A1|.
Game construction. Let K = 〈Σ,W, ŵ, A1, A2, P1, P2, L, δ〉 and K ′ =
〈Σ,W ′, ŵ′, A′1, A′2, P ′1, P ′2, L′, δ′〉 be two ATSs, and let K = 〈K,F 〉 and K′ = 〈K ′, F ′〉 be
the two corresponding fair ATSs. We will construct a game graph G = ((V,E), (V1, V2))
with a parity objective. Before the construction we assume that from every state w ∈ K
there is an Agent-1 strategy to ensure fairness in K. The assumption is without loss of
generality because if there is no such strategy from w, then trivially all states w′ with same
label as w simulate w (as Agent 2 can falsify the fairness from w). The states in K from
which fairness cannot be ensured can be identified with a quadratic time pre-processing step
in K (solving Büchi games), and hence we assume that in all remaining states in K fairness
can be ensured. The game construction is as follows:

− Player 1 vertices: V1 = {〈w,w′〉 | w ∈W,w′ ∈W ′ such that L(w) = L′(w′)} ∪(
Succ(K)× Succ(K ′)

)
∪ {/}

− Player 2 vertices: V2 = Succ(K)×W ′ × {#, $}
− Edges. We specify the edges as the following union: E = E1 ∪ E2 ∪ E3 ∪ E1

4 ∪ E2
4 ∪ E5

E1 = {(〈w,w′〉 , 〈Succ(w, a), w′,#〉) | 〈w,w′〉 ∈ V1, a ∈ P1(w)}

E2 = {(〈T,w′,#〉 , 〈T, Succ(w′, a′)〉) | 〈T,w′,#〉 ∈ V2, a
′ ∈ P ′1(w′)}

E3 = {(〈T, T ′〉 , 〈T, r′, $〉) | 〈T, T ′〉 ∈ V1, r
′ ∈ T ′}

E1
4 = {(〈T, r′, $〉 , 〈r, r′〉) | 〈T, r′, $〉 ∈ V2, r ∈ T, L(r) = L′(r′)}

E2
4 = {(〈T, r′, $〉 ,/) | 〈T, r′, $〉 ∈ V2 such that ∀r ∈ T · L(r) 6= L′(r′)}

E5 = {(/,/)}

CSL’12

174 Faster Algorithms for Alternating Refinement Relations

The intuitive description of the game graph is as follows: (i) the player 1 vertices are either
state pairs 〈w,w′〉 with same label, or pairs 〈T, T ′〉 of successor sets, or a state /; and
(ii) the player 2 vertices are tuples 〈T,w′, ./〉 where T is a successor set in Succ(K), w′ a
state in K ′ and ./∈ {#, $}. The edges are described as follows: (i) E1 describes that in
vertices 〈w,w′〉 player 1 can choose an action a ∈ P1(w), and then the next vertex is the
player 2 vertex 〈Succ(w, a), w′,#〉; (ii) E2 describes that in vertices 〈T,w′,#〉 player 2 can
choose an action a′ ∈ P1(w′) and then the next vertex is 〈T, Succ(w′, a′)〉; (iii) E3 describes
that in states 〈T, T ′〉 player 1 can choose a state r′ ∈ T ′ (which intuitively corresponds to
an action b′ ∈ P ′2(w′)) and then the next vertex is 〈T, r′, $〉; (iv) the edges E1

4 ∪E2
4 describes

that in states 〈T, r′, $〉 player 2 can either choose a state r ∈ T that matches the label of
r′ and then the next vertex is the player 1 vertex 〈r, r′〉 (edges E1

4) or if there is no match,
then the next vertex is /; and (v) finally E5 specifies that the vertex / is an absorbing
(sink) vertex with only self-loop. The three-priority parity objective Φ∗ for player 2 with the
priority function p is specified as follows: for vertices v ∈ (W × F ′) ∩ V1 we have p(v) = 0;
for vertices v ∈ ((F ×W ′ \W × F ′) ∩ V1) ∪ {/} we have p(v) = 1; and all other vertices
have priority 2. The following proposition establishes the equivalence of the winning set for
player 2 with strong and weak fair alternating simulation.
I Proposition 10. Let Win2 = {(w1, w2) | 〈w1, w2〉 ∈ V1, 〈w1, w2〉 ∈W2(Φ∗)} be the winning
set for player 2. Then we have Win2 =�weak

fairalt=�
strong
fairalt .

I Lemma 11. For the game graph constructed for fair alternating simulation we have |V1|+
|V2| ≤ O(|W | · |W ′| · |A1| · |A′1|); and |E| ≤ O(|W | · |W ′| · |A1| · (|A′1| · |A′2|+ |A2|)).

The above lemma bounds the size of the game, and we require that the game graph
can be constructed in time quadratic in the size of the game graph and in the following
section we will present a more efficient (than quadratic) construction of the game graph.
Proposition 10, along with the complexity to solve parity games with three priorities gives
us the following theorem. The result for fair simulation follows as a special case and the
details are presented in [4].

I Theorem 12. We have �weak
fairalt=�

strong
fairalt , the relation �strong

fairalt can be computed in time
O(|W |2 · |W ′|2 · |A1|2 · |A′1| · (|A′1| · |A′2| + |A2|)) for two fair ATSs K and K′. The fair
simulation relation �fair can be computed in time O(|W | · |W ′| · (|W | · |R′|+ |W ′| · |R|)) for
two fair TSs K and K′.

I Remark. We consider the complexity of fair simulation, and let n = |W | = |W ′| and
m = |R| = |R′|. The previous algorithm of [11] requires time O(n6) and our algorithm
requires time O(n3 · m). Since m is at most n2, our algorithm takes in worst case time
O(n5) and in most practical cases we have m = O(n) and then our algorithm requires O(n4)
time as compared to the previous known O(n6) algorithm.

4 Alternating Simulation

In this section we will present two algorithms to compute the maximum alternating simu-
lation relation for two ATSs K and K ′. The first algorithm for the problem was presented
in [2] and we refer to the algorithm as the basic algorithm. The basic algorithm iteratively
considers pairs of states and examines if they are already witnessed to be not in the al-
ternating simulation relation, removes them and continues until a fix-point is reached (see
Theorem 3 of [2]). The correctness of the basic algorithm was shown in [2], and the time
complexity of the algorithm is O(|W |2 · |W ′|2 · |A1| · |A′1| · |A2| · |A′2|) (see fuller version for
further explanation).

K. Chatterjee, S. Chaubal, and P. Kamath 175

4.1 Improved Algorithm Through Games
In this section we present an improved algorithm for alternating simulation by reduction to
reachability-safety games.
Game construction. Given two ATSs K = (Σ,W, ŵ, A1, A2, P1, P2, L, δ) and K ′ =
(Σ,W ′, ŵ′, A′1, A′2, P ′1, P ′2, L′, δ′), we construct a game graph G = ((V,E), (V1, V2)) as fol-
lows:

Player 1 vertices: V1 = (W ×W ′) ∪
(
Succ(K)× Succ(K ′)

)
;

Player 2 vertices: V2 = Succ(K)×W ′ × {#, $};
Edges: The edge set E is specified as the following union: E = E1 ∪ E2 ∪ E3 ∪ E4

E1 = {(〈w,w′〉 , 〈Succ(w, a), w′,#〉) | w ∈W,w′ ∈W ′, a ∈ P1(w)}
E2 = {(〈T,w′,#〉 , 〈T, Succ(w′, a′)〉) | T ∈ Succ(K), w′ ∈W ′, a′ ∈ P ′1(w′)}
E3 = {(〈T, T ′〉 , 〈T, r′, $〉) | T ∈ Succ(K), T ′ ∈ Succ(K ′), r′ ∈ T ′}
E4 = {(〈T, r′, $〉 , 〈r, r′〉) | T ∈ Succ(K), r′ ∈W ′, r ∈ T}

Let T = {〈w,w′〉 | L(w) 6= L′(w′)} be the state pairs that does not match by the labeling
function, and let F = V \ T . The objective for player 1 is to reach T (i.e., Reach(T)) and
the objective for player 2 is the safety objective Safe(F). In the following proposition we
establish the connection of the winning set for player 2 and �altsim.
I Proposition 13. Let Win2 = {(w,w′) | w ∈W,w′ ∈W ′, 〈w,w′〉 ∈W2(Safe(F))} Then we
have Win2 =�altsim.

The algorithmic analysis will be completed in two steps: (1) estimating the size of the
game graph; and (2) analyzing the complexity to construct the game graph from the ATSs.

I Lemma 14. For the game graph constructed for alternating simulation, we have |V1| +
|V2| ≤ O(|W | · |W ′| · |A1| · |A′1|) and |E| ≤ O(|W | · |W ′| · |A1| · (|A′1| · |A′2|+ |A2|)).

Game graph construction complexity. We now show that the game graph can be
constructed in time linear in the size of the game graph. The data strucutre for the game
graph is as follows: we map every vertex in V1 ∪ V2 to a unique integer, and construct the
list of edges. Given this data structure for the game graph, the winning sets for reachability
and safety objectives can be computed in linear time [3, 12]. We now present the details of
the construction of the game graph data structure.
Basic requirements. We start with some basic facts. For two sets A and B, if we have
two bijective functions fA : A ↔ {0, . . . , |A| − 1} and fB : B ↔ {0, . . . , |B| − 1}, then we
can assign a unique integer to elements of A × B in time O(|A| · |B|). Since it is easy to
construct bijective functions forW andW ′, we need to construct such bijective functions for
Succ(K) and Succ(K ′) to ensure that every vertex has a unique integer. We will present data
structure that would achieve the following: (i) construct bijective function fK : Succ(K)↔
{0, . . . , |Succ(K)| − 1}; (ii) construct function hK : W × A1 → {0, . . . , |Succ(K)| − 1} such
that for all w ∈ W and a ∈ P1(w) we have hK((w, a)) = fK(Succ(w, a)), i.e., it gives
the unique number for the successor set of w and action a; (iii) construct function gK :
{0, 1, . . . , |Succ(K)| − 1} → 2W such that for all T ∈ Succ(K) we have gK(fK(T)) is the list
of states in T . We will construct the same for K ′, and also ensure that for all T we compute
gK(fK(T)) in time proportional to the size of T . We first argue how the above functions are
sufficient to construct every edge in constant time: (i) edges in E1 can be constructed by
considering state pairs 〈w,w′〉, actions a ∈ P1(w), and with the function hK((w, a)) we add

CSL’12

176 Faster Algorithms for Alternating Refinement Relations

the required edge, and the result for edges E2 is similar with the function hK′ ; (ii) edges in
E3 and E4 are generated using the function gK that gives the list of states for gK(fK(T))
in time proportional to the size of T . Hence every edge can be generated in constant time,
given the functions, and it follows that with the above functions the game construction is
achieved in linear time. We now present the data structure to support the above functions.
Binary tree data structure. Observe that Succ(K) is a set such that each element is a suc-
cessor set (i.e., elements are set of states). Without efficient data structure the requirements
for the functions fK , hK , and gK cannot be achieved. The data structure we use is a binary
tree data structure. We assume that states in W are uniquely numbered from 1 to |W |.
Consider a binary tree, such that every leaf has depth |W |, i.e., the length of the path from
root to a leaf is |W |. Each path from the root to a leaf represents a set — every path
consists of a |W | length sequence of left and right choices. Consider a path π in the binary
tree, and the path π represents a subset Wπ of W as follows: if the i-th step of π is left,
then wi /∈Wπ, if the i-th step is right, then wi ∈Wπ. Thus, Succ(K) is the collection of all
sets represented by paths (from root to leaves) in this tree. We have several steps and we
describe them below.

1. Creation of binary tree. The binary tree BT is created as follows. Initially the tree BT is
empty. For all w ∈ W and all a ∈ P1(w) we generate the set Succ((w, a)) as a Boolean
array Ar of length |W | such that Ar[i] = 1 if wi ∈ Succ(w, a) and 0 otherwise. We use
the array Ar to add the set Succ((w, a)) to BT as follows: we proceed from the root,
if Ar[0] = 0 we add left edge, else the right edge, and proceed with Ar[1] and so on.
For every w ∈ W and a ∈ P1(w), the array Ar is generated by going over actions in
P2(w), and the addition of the set Succ(w, a) to the tree is achieved in O(|W |) time.
The initialization of array Ar also requires time O(|W |). Hence the total time required
is O(|W | · |A1| · (|W |+ |A2|)). The tree has at most |W | · |A1| leaves and hence the size
of the tree is O(|W |2 · |A1|).

2. The functions fK , gK and hK . Let Lf denote the leaves of the tree BT, and note that
every leaf represents an element of Succ(K). We do a DFT (depth-first traversal) of
the tree BT and assign every leaf the number according to the order of leaves in which
it appears in the DFT. Hence the function fK is constructed in time O(|W |2 · |A1|).
Moreover, when we construct the function fK , we create an array GAr of lists for the
function gK . If a leaf is assigned number i by fK , we go from the leaf to the root and
find the set T ∈ Succ(K) that the leaf represents and GAr[i] is the list of states in T .
Hence the construction of gK takes time at most O(|W | · |A1| · |W |). The function hK
is stored as a two-dimensional array of integers with rows indexed by numbers from 0
to |W | − 1, and columns by numbers 0 to |A1| − 1. For a state w and action a, we
generate the Boolean array Ar, and use the array Ar to traverse BT, obtain the leaf for
Succ((w, a)), and assign hK((w, a)) = fK(Succ(w, a)). It follows that hK is generated in
time O(|W | · |A1| · (|W |+ |A2|)).

From the above graph construction, Proposition 13, Lemma 14, and the linear time al-
gorithms to solve games with reachability and safety objectives we have the following result
for computing alternating simulation.

I Theorem 15. The relation �altsim can be computed in time O(|W | · |W ′| · |A1| · (|A′1| ·
|A′2|+ |A2|) + |W |2 · |A1|+ |W ′|2 · |A′1|) for two ATSs K and K ′. The relation �altsim can be
computed in time O(|W | · |R′|+ |W ′| · |R|) for two TSs K and K ′.

The result for the special case of TSs is obtained by noticing that for TSs we have both
|V | and |E| at most |W | · |R′|+ |W ′| · |R| (see [4] for details), and our algorithm matches the

K. Chatterjee, S. Chaubal, and P. Kamath 177

complexity of the best known algorithm of [10] for simulation for transition systems. Let us
denote by n = |W | and n′ = |W ′| the size of the state spaces, and by m = |W | · |A1| · |A2| and
m′ = |W ′| · |A′1| · |A′2| the size of the transition relations. Then the basic algorithm requires
O(n · n′ ·m ·m′) time, whereas our algorithm requires at most O(m ·m′ + n ·m + n′ ·m′)
time, and when n = n′ and m = m′, then the basic algorithm requires O((n ·m)2) time and
our algorithm takes O(m2) time.

4.2 Iterative Algorithm
In this section we will present an iterative algorithm for alternating simulation. For our al-
gorithm we will first present a new and alternative characterization of alternating simulation
through successor set simulation.

I Definition 16 (Successor set simulation). Given two ATSs K =
(Σ,W, ŵ, A1, A2, P1, P2, L, δ) and K ′ = (Σ,W ′, ŵ′, A′1, A′2, P ′1, P ′2, L′, δ′), a relation
u⊆W ×W ′ is a successor set simulation from K to K ′, if there exists a companion relation
uS⊆ Succ(K ′)× Succ(K), such that the following conditions hold:

for all (w,w′) ∈u we have L(w) = L′(w′);
if (w,w′) ∈u, then for all actions a ∈ P1(w), there exists an action a′ ∈ P ′1(w′) such that
(Succ(w′, a′),Succ(w, a)) ∈uS ; and
if (T ′, T) ∈uS , then for all r′ ∈ T ′, there exists r ∈ T such that (r, r′) ∈u.

We denote by u∗ the maximum successor set simulation.

The following lemma shows that successor set simulation and alternating simulation coin-
cide. Wepresent the iterative algorithm to compute themaximum successor set simulationu∗.

I Lemma 17. The following assertions hold: (1) Every successor set simulation is an al-
ternating simulation, and every alternating simulation is a successor set simulation. (2) We
have u∗=�altsim.

We will now present our iterative algorithm to compute u∗, and we will denote
by uS the witness companion relation of u∗. Our algorithm will use the following
graph construction: Given an ATS K, we will construct the graph GK = (VK , EK)
as follows: (1) VK = W ∪ Succ(K), where W is the set of states; and (2) EK =
{(w,Succ(w, a)) | w ∈W ∧ a ∈ P1(w)}∪{(T, r) | T ∈ Succ(K) ∧ r ∈ T}. The graph GK can
be constructed in time O(|W |2 · |A1|) using the binary tree data structure described earlier.
Our algorithm will use the standard notation of Pre and Post: given a graph G = (V,E),
for a set U of states, Post(U) = {v | ∃u ∈ U, (u, v) ∈ E} is the set of successor states of U ,
and similarly, Pre(U) = {v | ∃u ∈ U, (v, u) ∈ E} is the set of predecessor states. If U = {q}
is singleton, we will write Post(q) instead of Post({q}). Note that in the graph GK for
the state T ∈ Succ(K) we have Post(T) = {q | q ∈ T} = T . Given ATSs K and K ′ our
algorithm will work simultaneously on the graphs GK and GK′ using three data structures,
namely, sim, count and remove for the relation u∗ (resp. simS , countS and removeS for the
companion relation uS). The data structures are as follows: (1) Intuitively sim will be an
overapproximation of u∗, and will be maintained as a two-dimensional Boolean array so
that whenever the i, j-th entry is false, then we have a witness that the j-th state w′j of K ′
does not simulate the i-th state wi of K (similary we have simS over Succ(K ′) and Succ(K)
for the relation uS). (2) The data structure count is two-dimensional array, such that for
a state w′ ∈ W ′ and T ∈ Succ(K) we have count(w′, T) is the number of elements in the
intersection of the successor states of w′ and the set of all states that T simulates according

CSL’12

178 Faster Algorithms for Alternating Refinement Relations

to simS ; and we also have similar array countS for T,w′ elements. (3) Finally, the data
structure remove is a list of sets, where for every w′ ∈ W ′ we have remove(w′) is a set such
that every element of the set belongs to Succ(K). Similarly for every T ∈ Succ(K) we have
removeS(T) is a set of states. Intuitively the interpretation of remove data structure will
be as follows: if T ∈ Succ(K) belongs to remove(w′), then no element w of T is simulated
by w′. Our algorithm will always maintain sim (resp. simS) as overapproximation of u∗
(resp. uS), and will iteratively prune them. Our algorithm is iterative and we denote by
prevsim (resp. prevsimS) the sim (resp. simS) of the previous iteration. To give an intuitive
idea of the invariants maintained by the algorithm (Algorithm 1) let us denote by sim(w)
the set of w′ such that sim(w,w′) is true, and let us denote by invsim(w′) the inverse of
sim(w′), i.e., the set of states w such that (w,w′)-th element of sim is true (similar notation
for invprevsim(w′), invsimS(T) and invprevsimS(T)). The algorithm will ensure the following
invariants at different steps:
1. For w ∈W,w′ ∈W ′ and T ∈ Succ(K), T ′ ∈ Succ(K ′),

a. if sim(w,w′) is false, then (w,w′) /∈u∗;
b. similarly, if simS(T ′, T) is false, then (T ′, T) /∈uS .

2. For w′ ∈W ′ and T ∈ Succ(K),
a. count(w′, T) = |Post(w′) ∩ invsimS(T)|; and
b. count(T,w′) = |Post(T) ∩ invsim(w′)| = |T ∩ invsim(w′)|

3. For w′ ∈W ′ and T ∈ Succ(K),
a. remove(w′) = Pre(invprevsim(w′)) \ Pre(invsim(w′))
b. remove(T) = Pre(invprevsimS(T)) \ Pre(invsimS(T)).
The algorithm has two phases: the initialization phase, where the data structures are

initialized; and then a while loop. The while loop consists of two parts: one is pruning
of sim and the other is the pruning of simS and both the pruning steps are similar. The
initialization phase initializes the data structures and is described in Steps 1, 2, and 3 of
Algorithm 1. Then the algorithm calls the two pruning steps in a while loop. The condition
of the while loop checks whether prevsim and sim are the same, and it is done in constant
time by simply checking whether remove is empty. We now describe one of the pruning
procedures and the other is similar. The pruning step is similar to the pruning step of the
algorithm of [10] for simulation on transition systems. We describe the pruning procedure
PruneSimStrSucc. For every state w′ ∈ W ′ such that the set remove(w′) is non-empty,
we run a for loop. In the for loop we first obtain the predecessors T ′ of w′ in GK′ (each
predecessor belongs to Succ(K ′)) and an element T from remove(w′). If simS(T ′, T) is true,
then we do the following steps: (i) We set simS(T ′, T) to false, because we know that there
does not exist any element w ∈ T such that w′ simulates w. (ii) Then for all s′ that are
predecessors of T ′ in GK′ we decrement count(s′, T), and if the count is zero, then we add
s′ to the remove set of T . Finally we set the remove set of w′ to ∅. The description of
PruneSimStr to prune sim is similar.
Correctness. Our correctness proof will be in two steps. First we will show that invariant 1
(both about sim and simS) and invariant 2 (both about count and countS) are true at the
beginning of step 4.1. The invariant 3.(a) (on remove) is true after the procedure call
PruneSimStr (step 4.4) and invariant 3.(b) (on removeS) is true after the procedure call
PruneSimStrSucc (step 4.3). We will then argue that these invariants ensure correctness
of the algorithm.
Maintaining invariants. We first consider invaraint 1, and focus on invariant 1.(b) (as the
other case is symmetric). In procedure PruneSimStrSucc when we set simS(T ′, T) to false,
we need to show that (T ′, T) 6∈uS . The argument is as follows: when we set simS(T ′, T)

K. Chatterjee, S. Chaubal, and P. Kamath 179

Algorithm 1 Iterative Algorithm

Input: K = (Σ,W, ŵ, A1, A2, P1, P2, L, δ), K ′ = (Σ,W ′, ŵ′, A′1, A′2, P ′1, P ′2, L′, δ′).
Output: u∗.
1. Initialize sim and simS:

1.1. for all w ∈W,w′ ∈W ′
prevsim(w,w′)← true;
if L(w) = L′(w′), then sim(w,w′)← true;
else sim(w,w′)← false;

1.2. for all T ∈ Succ(K) and T ′ ∈ Succ(K ′)
prevsimS(T ′, T) = simS(T ′, T)← true;

2. Initialize count and countS:
2.1. for all w′ ∈W ′ and T ∈ Succ(K)

count(w′, T)← |Post(w′) ∩ invsimS(T)| = |Post(w′)|;
countS(T,w′)← |Post(T) ∩ invsim(w′)|;

3. Initialize remove and removeS:
3.1. for all w′ ∈W ′

remove(w′)← Succ(K) \ Pre(invsim(w′));
3.2. for all T ∈ Succ(K)

removeS(T)← ∅;
Pruning while loop:
4. while prevsim 6= sim

4.1 prevsim← sim;
4.2 prevsimS ← simS ;
4.3 Procedure PruneSimStrSucc;
4.4 Procedure PruneSimStr;

5. return {(w,w′) ∈W ×W ′ | sim(w,w′) is true};

to false, we know that since T ∈ remove(w′) we have countS(T,w′) = 0 (i.e., Post(T) ∩
invsim(w′) = ∅). This implies that for every w ∈ T we have that w′ does not simulate w.
Also note that since countS is never incremented, if it reaches zero, it remains zero. This
proves the correctness of invariant 1.(b) (and similar argument holds for invariant 1.(a)). The
correctness for invariant 2.(a) and 2.(b) is as follows: whenever we decrement count(s′, T) we
have set simS(T ′, T) to false, and T ′ was earlier both in Post(s′) as well as in invsimS(T), and
is now removed from invsimS(T). Hence from the set Post(s′) ∩ invsimS(T) we remove the
element T ′ and its cardinality decreases by 1. This establishes correctness of invariant 2.(a)
(and invariant 2.(b) is similar). Finally we consider invariant 3.(a): when we add s′ to
removeS(T), then we know that count(s′, T) was decremented to zero, which means T ′
belongs to invprevsimS(T), but not to invsimS(T). Thus s′ belongs to Pre(invprevsimS(T))
(since s′ belongs to Pre(T ′)), but not to Pre(invsimS(T)). This shows that s′ belongs to
removeS(T), and establishes correctness of the desired invariant (argument for invariant
3.(b) is similar).
Invariants to correctness. The initialization part ensures that sim is an overapproximation of
u∗ and it follows from invariant 1 that the output is an overapproximation of u∗. Similarly
we also have that simS in the end is an overapproximation of uS . To complete the correctness
proof, let sim and simS be the result when the while loop iterations end. We will now show
that sim and simS are witnesses to satisfy successor set simulation. We know that when

CSL’12

180 Faster Algorithms for Alternating Refinement Relations

Algorithm 2 Procedure PruneSimStrSucc

1. forall w′ ∈W ′ such that remove(w′) 6= ∅
1.1. forall T ′ ∈ Pre(w′) and T ∈ remove(w′)

1.1.1 if (simS(T ′, T))
simS(T ′, T)← false;
1.1.1.A. forall (s′ ∈ Pre(T ′))

count(s′, T)← count(s′, T)− 1;
if (count(s′, T) = 0)

removeS(T)← removeS(T) ∪ {s′};
1.2. remove(w′)← ∅;

Algorithm 3 Procedure PruneSimStr

1. forall T ∈ Succ(K) such that removeS(T) 6= ∅
1.1. forall w ∈ Pre(T) and w′ ∈ removeS(T)

1.1.1 if (sim(w,w′))
sim(w,w′)← false;
1.1.1.A. forall (D ∈ Pre(w))

countS(D,w′)← countS(D,w′)− 1;
if (countS(D,w′) = 0)

remove(w′)← remove(w′) ∪ {D};
1.2. removeS(T)← ∅;

the algorithm terminates, remove(w′) = ∅ for every w′ ∈ W ′, and removeS(T) = ∅ for
every T ∈ Succ(K) (this follows since sim = prevsim). To show that sim and simS are
witness to satisfy successor set simulation, we need to show the following two properties:
(i) If sim(w,w′) is true, then for every a ∈ P1(w), there exists a′ ∈ P ′1(w′) such that
simS(Succ(w′, a′),Succ(w, a)) is true. (ii) If simS(T ′, T) is true, then for every s′ ∈ T ′, there
exists s ∈ T such that sim(s, s′) is true. The property (i) holds because for every a ∈ P1(w),
we have that count(w′, T) > 0, where T = Succ(w, a), (because otherwise, w′ would have
been inserted in remove(T), but since remove(T) is empty, consequently sim(w,w′) must have
been made false). Hence we have that Post(w′) ∩ invsimS(T) is non-empty and hence there
exists T ′ ∈ Post(w′) such that simS(T ′, T) is true. Similar argument works for (ii). Thus we
have established that sim is both an overapproximation of u∗ and also a witness successor
set relation. Since u∗ is the maximum successor set relation, it follows that Algorithm 1
correctly computes u∗=�altsim (u∗=�altsim by Lemma 17).
Space complexity. We now argue that the space complexity of the iterative algorithm is
superior as compared to the game based algorithm. We first show that the space taken
by Algorithm 1 is O(|W |2 · |A1| + |W ′|2 · |A′1| + |W | · |W ′| · |A1| · |A′1|). For the iterative
algorithm, the space requirements are, (i) sim and simS require at most O(|W | · |W ′|) and
O(|W | · |W ′| · |A1| · |A′1|) space, respectively; (ii) count and countS require at most O(|W | ·
|W ′| · |A1|) space each; (iii) remove and removeS maintained as an array of sets require at
most O(|W | · |W ′| · |A1|), space each. Also, for the construction of graphs GK and GK′

using the binary tree data structure as described earlier, the space required is at most
O(|W |2 · |A1|) and O(|W ′|2 · |A′1|), respectively. As compared to the space requirement of

K. Chatterjee, S. Chaubal, and P. Kamath 181

the iterative algorithm, the game based algorithm requires to store the entire game graph
and requires at least O(|W |·|W ′|·|A1|·|A′1|·|A′2|) space (to store edges in E3) as well as space
O(|W |2 · |A1|+ |W ′|2 · |A′1|) for the binary tree data structure. The iterative algorithm can
be viewed as an efficient simultaneous pruning algorithm that does not explicitly construct
the game graph (and thus saves at least a factor of |A′2| in terms of space). We now show
that the iterative algorithm along with being space efficient matches the time complexity of
the game based algorithm.

Time complexity. The data structures for sim (also simS) and count (also countS) are as
described earlier. We store remove and removeS as a list of lists (i.e., it is a list of sets, and
sets are stored as lists). It is easy to verify that all the non-loop operations take unit cost,
and thus for the time complexity, we need to estimate the number of times the different
loops could run. Also the analysis of the initialization steps are straight forward, and we
present the analysis of the loops below: (1) The while loop (Step 4) of Algorithm 1 can
run for at most |W | · |W ′| iterations because in every iteration (except the last iteration)
at least one entry of sim changes from true to false (otherwise the iteration stops), and sim
has |W | · |W ′|-entries. (2) The forall loop (Step 1) in Algorithm 2 can overall run for at
most |W ′| · |W | · |A1| iterations. This is because elements of remove(w′) are from Succ(K)
and elements T from Succ(K) are included in remove(w′) at most once (when countS(T,w′)
is set to zero, and once countS(T,w′) is set to zero, it remains zero). Thus remove(w′) can
be non-empty at most |Succ(K)| times, and hence the loop runs at most |W | · |A1| times
for states w′ ∈ W ′. (3) The forall loop (Step 1.1) in Algorithm 2 can overall run for at
most |W ′| · |A′1| · |A′2| · |W | · |A1| iterations. The reasoning is as follows: for every edge
(T ′, w′) ∈ GK′ and T ∈ Succ(K) the loop runs at most once (since every T is included in
remove(w′) at most once). Hence the number of times the loop runs is at most the number
of edges in GK′ (at most |W ′| · |A′1| · |A′2|) times the number of elements in Succ(K) (at
most |W | · |A1|). Thus overall the number of iterations of Step 1.1 of Algorithm 2 is at most
|W ′| · |A′1| · |W | · |A1|. (4) The forall loop (Step 1.1.1.A) in Algorithm 2 can overall run for
at most |W ′| · |A′1| · |A′2| · |W | · |A1| iterations because every edge (s′, T ′) in GK′ would be
iterated at most once for every T ∈ Succ(K) (as for every T, T ′ we set simS(T, T ′) false at
most once, and the loop gets executed when such an entry is set to false). The analysis of
the following items (5), (6), and (7), are similar to (2), (3), and (4), respectively. (5) The
forall loop (Step 1) in Algorithm 3 can overall run for at most |W | · |A1| · |W ′| iterations,
because removeS(T) can be non-empty at most |W ′| times (i.e., the number of different T is
at most |Succ(K)| = |W | · |A1|). (6) The forall loop (Step 1.1) in Algorithm 3 can overall
run for at most |W | · |A1| · |A2| · |W ′| iterations because every edge (w, T) in GK can be
iterated over at most once for every w′ (the number of edges in GK is |W | · |A1| · |A2| and
number of states w′ is at most |W ′|). (7) The forall loop (Step 1.1.1.A) in Algorithm 3
can overall run for at most |W | · |A1| · |A2| · |W ′| iterations because every edge (w,D) in
GK would be iterated over at most once for every w′ ∈ W ′. Adding the above terms, we
get that the total time complexity is O

(
|W | · |W ′| · |A1| · (|A′1| · |A′2|+ |A2|)

)
, i.e., the time

complexity matches the time complexity of the game reduction based algorithm. We also
remark that for transition systems (TSs), the procedure PruneSimStrSucc coincides with
PruneSimStr and our algorithm simplifies to the algorithm of [10], and thus matches the
complexity of computing simulation for TSs.

I Theorem 18. Algorithm 1 correctly computes �altsim in time O
(
|W | · |W ′| · |A1| · (|A′1| ·

|A′2|+ |A2|) + |W |2 · |A1|+ |W ′|2 · |A′1|
)
.

CSL’12

182 Faster Algorithms for Alternating Refinement Relations

5 Conclusion

In this work we presented faster algorithms for alternating simulation and alternating fair
simulation which are core algorithmic problems in analysis of composite and open reactive
systems, as well as state space reduction for graph games (that has deep connection with
automata theory and logic). Moreover, our algorithms are obtained as efficient reductions
to graph games with reachability and parity objectives with three priorities, and efficient
implementations exist for all these problems (for example, see [14] for implementation of
games with reachability and parity objectives, and [6] for specialized implementation of
games with parity objectives with three priorities).
Acknowledgements. The research was supported by Austrian Science Fund (FWF) Grant No
P 23499-N23 on Modern Graph Algorithmic Techniques in Formal Verification, FWF NFN Grant
No S11407-N23 (RiSE), ERC Start grant (279307: Graph Games), and Microsoft faculty fellows
award.

References
1 R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal logic. JACM,

49:672–713, 2002.
2 R. Alur, T.A. Henzinger, O. Kupferman, and M.Y. Vardi. Alternating refinement relations.

In CONCUR’98, LNCS 1466, pages 163–178. Springer, 1998.
3 C. Beeri. On the membership problem for functional and multivalued dependencies in

relational databases. ACM Trans. on Database Systems, 5:241–259, 1980.
4 K. Chatterjee, S. Chaubal, and P Kamath. Faster algorithms for alternating refinement

relations. CoRR, abs/1201.4449, 2012.
5 E.M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
6 L. de Alfaro and M. Faella. An accelerated algorithm for 3-color parity games with an

application to timed games. In CAV, pages 108–120, 2007.
7 E.A. Emerson and C. Jutla. Tree automata, mu-calculus and determinacy. In FOCS’91,

pages 368–377. IEEE, 1991.
8 Y. Gurevich and L. Harrington. Trees, automata, and games. In STOC’82, pages 60–65.

ACM Press, 1982.
9 J. Y. Halpern and R. Fagin. Modeling knowledge and action in distributed systems. Dis-

tributed Computing, 3:159–179, 1989.
10 M.R. Henzinger, T.A. Henzinger, and P.W. Kopke. Computing simulations on finite and

infinite graphs. In FOCS, pages 453–462. IEEE, 1995.
11 T.A. Henzinger, O. Kupferman, and S. Rajamani. Fair simulation. I & C., 173:64–81,

2002.
12 N. Immerman. Number of quantifiers is better than number of tape cells. JCSS, 22:384–406,

1981.
13 M. Jurdzinski. Small progress measures for solving parity games. In STACS’00, pages

290–301. LNCS 1770, Springer, 2000.
14 M. Lange and O. Friedmann. The pgsolver collection of parity game solvers. 2009.
15 R. Milner. An algebraic definition of simulation between programs. In Second International

Joint Conference on Artificial Intelligence, pages 481–489. The British Computer Society,
1971.

16 L.S. Shapley. Stochastic games. Proc. Nat. Acad. Sci. USA, 39:1095–1100, 1953.
17 W. Thomas. Languages, automata, and logic. In G. Rozenberg and A. Salomaa, edit-

ors, Handbook of Formal Languages, volume 3, Beyond Words, chapter 7, pages 389–455.
Springer, 1997.

A Systematic Approach to Canonicity in the
Classical Sequent Calculus
Kaustuv Chaudhuri1, Stefan Hetzl2, and Dale Miller1

1 INRIA & LIX/Ecole Polytechnique, France
{kaustuv.chaudhuri,dale.miller}@inria.fr

2 Vienna University of Technology, Austria
hetzl@logic.at

Abstract
The sequent calculus is often criticized for requiring proofs to contain large amounts of low-
level syntactic details that can obscure the essence of a given proof. Because each inference
rule introduces only a single connective, sequent proofs can separate closely related steps—such
as instantiating a block of quantifiers—by irrelevant noise. Moreover, the sequential nature
of sequent proofs forces proof steps that are syntactically non-interfering and permutable to
nevertheless be written in some arbitrary order. The sequent calculus thus lacks a notion of
canonicity: proofs that should be considered essentially the same may not have a common
syntactic form. To fix this problem, many researchers have proposed replacing the sequent
calculus with proof structures that are more parallel or geometric. Proof-nets, matings, and
atomic flows are examples of such revolutionary formalisms. We propose, instead, an evolutionary
approach to recover canonicity within the sequent calculus, which we illustrate for classical first-
order logic. The essential element of our approach is the use of a multi-focused sequent calculus
as the means of abstracting away the details from classical cut-free sequent proofs. We show
that, among the multi-focused proofs, the maximally multi-focused proofs that make the foci as
parallel as possible are canonical. Moreover, such proofs are isomorphic to expansion proofs—a
well known, minimalistic, and parallel generalization of Herbrand disjunctions—for classical first-
order logic. This technique is a systematic way to recover the desired essence of any sequent
proof without abandoning the sequent calculus.

1998 ACM Subject Classification F.4.1 Mathematical Logic: Proof theory

Keywords and phrases Sequent Calculus, Canonicity, Classical Logic, Expansion Trees

Digital Object Identifier 10.4230/LIPIcs.CSL.2012.183

1 Introduction

The sequent calculus, initially described by Gentzen for classical and intuitionistic first-order
logic [10], has become a standard proof formalism for a wide variety of logics. One of the
chief reasons for its ubiquity is that it defines provability in a logic parsimoniously and
modularly, with every logical connective defined by introduction rules, and with the logical
properties defined by structural rules. Sequent rules can thus be seen as the atoms of logical
inference. Different logics can be described simply by choosing different atoms. For instance,
linear logic [11] differs from classical logic by removing the structural rules of weakening and
contraction, and letting the multiplicative and the additive variants of introduction rules
introduce different connectives. The proof-theoretic properties of the logics can then be
derived by analyzing these atoms of inference. For example, the cut-elimination theorem
directly shows that the logic is consistent.

© Kaustuv Chaudhuri, Stefan Hetzl, and Dale Miller;
licensed under Creative Commons License NC-ND

Computer Science Logic 2012 (CSL’12).
Editors: Patrick Cégielski, Arnaud Durand; pp. 183–197

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2012.183
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

184 A Systematic Approach to Canonicity in the Classical Sequent Calculus

Yet, despite its success as a framework for establishing proof-theoretic properties, the
sequent proofs themselves seem to obscure the “essence” of a proof. One quickly feels that
sequent proofs are syntactic monsters: they record the exact sequence of inferences and
detours even when it is not really relevant to the essential high level features of the proof.

The usual approach over the years to dealing with this syntactic morass of the sequent
calculus—and some other proof systems with similar issues—is one of revolution. Instead of
the sequent calculus, new proof formalisms are proposed that are supposedly free of syntactic
bureaucracy. Usually, such formalisms are more parallel or geometric than sequent proofs.
We list here several examples—not an exhaustive list—of such revolutionary proof systems.

1. The mating method [2] and the connection method [5] represent proofs as a graph structure
among the literals in (an expansion of) a formula.

2. Expansion trees [27] record only the instantiations of quantifiers using a tree structure.
3. Proof-nets [11] eschew inference rules for more geometric representations of proofs in

terms of axiom linkages.
4. Atomic flows [13] track only the flow of atoms in a proof and can expose the dynamics of

cut-elimination.
5. Even Gentzen’s natural deduction calculus [10] is arguably a principally different repre-

sentation of proofs.

These revolutionary approaches continue by providing a means of de-sequentializing
sequent proofs into the new formalism, and then arguing that two sequent proofs are
essentially the same if they de-sequentialize to the same form. While compelling, it is worth
noting that such approaches are not without problems. At a basic level, showing when
a proposed structure is correct—that it actually represents a “proof”—generally requires
checking global criteria such as connectedness, acyclicity, or well-scoping. Such formalisms
generally lack local correctness criteria, wherein a partial (unfinished) proof object can be
ensured to have only correct finished forms. By contrast, every instance of a rule in a (partial)
sequent proof can easily be checked to be an instance of a proper rule schema.

A second and bigger issue with such revolutionary formalisms is that none of them is
as general as the sequent calculus. Proof-nets, to pick an example, are only well defined
for the unit-free multiplicative linear logic (MLL) [11]. Even adding the multiplicative units
is tricky [22] and for larger fragments such as MALL with units the problem of finding a
proof-net formalism remains open.

In this paper, we consider instead an evolutionary approach to extracting the essence of
sequent proofs without discarding the sequent calculus. We simply add abstractions to the
sequent calculus as follows.

1. Analysis of the permutation properties of sequent rules shows that some rules are invertible,
and hence require no choice, while others are non-invertible and the proofs must record
the choices made for them. These two classes of rules can be used to organize sequent
proofs in such a way that the inference atoms coalesce into larger inference molecules
– several small inference steps combine into synthetic steps or actions. The essential
information in a proof is then moved to the action boundaries. Focusing [1] is the general
technique for this kind of synthesis for cut-free sequent calculi, and it can be described as
a simple local modification of the usual sequent rules that preserves completeness. We
then simply remove unfocused proofs.

2. The standard focusing technique can be extended to allow multi-focusing, where multiple
actions can be done in parallel, simultaneously. The exact order of the inferences

K. Chaudhuri, S. Hetzl, and D. Miller 185

constituting two simultaneous actions can then be elided from sequent proofs. Proofs
with the same parallel action structure are identified, which we call action equivalence.

3. Finally, if we insist on as much parallelism as possible, i.e., on maximal multi-focusing,
then such proofs are action-canonical. That is, two equivalent maximal multi-focused
proofs can be shown to be action equivalent. Thus, for each multi-focused proof, its
equivalent maximal form is action canonical.

In this paper, we apply this method to classical first-order logic. We show not only that the
evolutionary approach gives us canonical sequent proofs at the level of the action abstraction
but also that these proofs induce the same notion of identity as expansion proofs [27], an
existing parallel (revolutionary) approach for classical first-order (and higher-order) logic.
This result is surprising because it is known that expansion trees can be more compact than
sequent proofs by an exponential factor [4].

In section 2, we give some background on the sequent calculus and multi-focusing.
Section 3 provides the definition of expansion trees and their interconversion with sequent
proofs. Section 4 presents the main technical result that maximal multi-focused proofs are
isomorphic to expansion proofs. We begin with a quick summary of related work.

1.1 Related Work
1.1.1 Denotational Semantics of Classical Proofs
It is well known that cut-elimination using Gentzen’s cut-reduction rules is non-confluent
for LK proofs [12, 3, 17]. It is generally believed that classical logic lacks a denotational
semantics for proofs akin to Cartesian-closed categories (CCC) for intuitionistic logic or
?-autonomous categories for linear logic. For example, if one tries to enrich the usual CCC
semantics for intuitionistic logic with an involutive negation, then the CCC degenerates into
a poset that equates all proofs of a formula (Joyal’s paradox) [23].

This problem has been attacked from both the syntactic and the semantic ends. Of the
syntactic approaches, one can recover confluence (up to a small equivalence relation) as well
as strong normalization by fixing particular cut-reduction strategies [8]. If one refrains from
fixing a reduction strategy one may still obtain a strongly normalizing though non-confluent
system by using sufficiently strong local reductions [31, 32]. Another approach is to carry out
cut-elimination in a more abstract formalism, similar to a proof-net, on the level of quantifiers
(see [14] and [25]). The reduction in such a setting is typically not confluent and strong
normalization is open [25] or known not to hold [14]. Confluence (up to the equivalence
relation of having the same expansion tree) as well as normalization can be recovered for a
class of proofs [19] by considering a maximal abstract reduction based on tree grammars [18]
which contains all concrete reductions. Extension of these results to all proofs is open.

From the semantic end, briefly, there are two principal approaches. The first approach
rejects the involutive negation, which results in negation having a computational content
that can be reified in the λµ calculus with a semantics in terms of control categories (see [15]
for a survey). The second approach rejects the Cartesian structure for conjunctions, which
requires a variant of proof-nets called flow graphs for the proofs and a semantics in terms of
enriched Boolean categories [21, 30].

1.1.2 Cut-Free Formalisms
This paper deals with the question of recovering the essence of cut-free sequent proofs. There
are a number of alternative approaches to this question. For example, the notion of proof-nets

CSL’12

186 A Systematic Approach to Canonicity in the Classical Sequent Calculus

while well-behaved on MLL does not scale nicely to larger logics. Girard sketched a design of
proof-nets for classical logic [12] that was subsequently fully formalized by Robinson [29], but
these nets differentiate between some sequent proofs that are related by rule permutations
because of the non-canonicity of weakening nodes. Similar problems also exist for the B/N-net
formalisms [22] based on flow graphs, or the combinatorial proofs of Hughes [20]. It is possible
to recover the canonicity lost with Robinson’s proof-nets by removing weakening (with the
use of MIX) and rigidly controlling contraction [26]. This results in expansion nets, which
are related to expansion trees [27], but are limited to the propositional fragment.

Expansion trees, because they generalize Herbrand disjunctions, are applicable to first-
order and even higher-order logics. They achieve this generality by recording only the
quantifier instances in a tree structure, and therefore have an expensive correctness criterion
involving checking that the deep formula for an expansion tree is a tautology. The mating
method [2] or the connection method [5] represents these tautological checks using graph
structures, but the correctness criteria for such structures are no less expensive to check than
deciding whether the deep formula is a tautology.

To our knowledge, there has been only a single attempt to produce canonical proof
structures directly in the sequent calculus, in this case for >-free propositional MALL [7].
This attempt also used multi-focusing as its abstraction mechanism, and it is actually the
first place where the concept of maximally multi-focused proofs appears in the literature. It
is important to note that the notion of a maximal multi-focused proof strictly generalizes
existing canonical forms in other contexts. For example, for intuitionistic logic, if one uses
the focused sequent calculus LJF [24] with just the two negative connectives of implication
and universal quantification and with negative atomic formulas, then maximal multi-focused
proofs are the same as singly focused proofs. Moreover, they correspond to the familiar
β-normal η-long forms of the typed λ-calculus [9].

2 Background: Sequent Calculus, Focusing, and Canonicity

We use the usual syntax for (first-order) formulas (A,B, . . .) and connectives drawn from
{∧,>,∨,⊥,¬,∀,∃}. Atomic formulas (a, b, . . .) are of the form p(t1, . . . , tn) where p repre-
sents a predicate symbol and t1, . . . , tn are first-order terms (n ≥ 0). Formulas are assumed
to be identical up to α-equivalence and in negation-normal form (i.e., only atomic formulas
can be ¬-prefixed). We use literal to refer to either an atomic formula or a negated atomic
formula. We write (A)⊥ to stand for the De Morgan dual of A, and [t/x]A for the capture-
avoiding substitution of term t for x in A. We also write ∃~x.A for ∃x1. . . .∃xn. A, ∀~x.A for
∀x1. . . .∀xn. A, and [~t/~x] for [t1/x1] · · · [tn/xn] if ~x = x1, . . . , xn and ~t = t1, . . . , tn.

2.1 Sequent Calculus

We use one-sided sequents `Γ in which Γ is a multiset of formulas. Figure 1 contains the
inference rules for our sequent calculus that we call LKN. There is no cut rule, the initial rule
is restricted to atomic formulas, and all the rules except for ∃ are invertible. Since invertible
rules are associated with the negative polarity in focused proof systems, we use the N in
LKN to highlight the fact that is a variant of Gentzen’s LK calculus in which most rules are
invertible. The following rules are admissible in LKN; in these rules, A can be any formula.

`Γ, A `Γ, (A)⊥

`Γ cut `Γ, (A)⊥, A
arbinit `Γ

`Γ, A weak
`Γ
` [t/x]Γ subst

K. Chaudhuri, S. Hetzl, and D. Miller 187

`Γ,¬a, a init
`Γ, A `Γ, B
`Γ, A ∧B ∧ `Γ,> >

`Γ, A,B
`Γ, A ∨B ∨

`Γ
`Γ,⊥ ⊥

`Γ, A
`Γ, ∀x.A ∀

`Γ, [t/x]A
`Γ,∃x.A ∃

`Γ,∆
`Γ contr

Notes:
1. In the ∀ rule, the principal formula is implicitly α-converted so x is not free in the conclusion.
2. In the contr rule, ∅ 6= ∆ ⊆set Γ. Here, ∆ ⊆set Γ denotes the set inclusion of the underlying

sets of the multisets ∆ and Γ.

Figure 1 Rules of LKN.

These admissible rules easily allow us to mimic any of the other standard inference rules for
this logic in LKN, including Gentzen’s original LK calculus, so completeness is immediate.
Soundness is equally trivial as every rule preserves classical validity under the interpretation
of a sequent `A1, . . . , An as the formula A1 ∨ · · · ∨An.

The reflexive-symmetric-transitive-congruence closure of the permutation steps defines
the equivalence relation ∼ over LKN proofs. One of the standard goals of proof theory is to
find canonical syntactic representatives of the permutative equivalence classes for a given
sequent calculus. We shall employ focusing to produce such representatives of LKN proofs,
following a technique introduced in [7] for >-free multiplicative-additive linear logic (MALL)
using the technical device of multi-focusing.

There is one critical difference between the approach of [7] and that of this paper: we
restrict permutation steps to cases where both of the rules being permuted have at least one
premise. In other words, >/r and init/r permutation steps are impossible for any rule r; in
particular, we disallow the following permutation step.

`Γ,∆,> >

`Γ,> contr −→
`Γ,> >

If such permutation steps were to be allowed, then the induced equivalence on LKN proofs
would equate arbitrary sub-proofs and defeat any attempt at canonicity. Observe that
preventing such permutations does not affect the classical symmetries, i.e., A continues to
be identical to ((A)⊥)⊥.

2.2 Focused Sequent Calculus
The proof-theoretic analysis of the logic programming paradigm developed in the 1980s
accounted for notions of goal-reduction and back-chaining as two alternating phases in
the construction of (cut-free) sequent proofs [28]. Andreoli [1] developed the notion of
focused sequent proofs for classical linear logic as a generalization of this earlier work in
logic programming. Subsequently, focused sequent calculus proofs have been written for
intuitionistic and classical logics [24]. Such proof systems are increasingly being seen as
general proof-theoretic tools for uncovering structures within proofs.

A focused calculus partitions formulas into positive and negative polarities based on
the permutation properties of their sequent rules. Similarly, the introduction rules in a
focused calculus appear in either one of two phases. The asynchronous or negative phase

CSL’12

188 A Systematic Approach to Canonicity in the Classical Sequent Calculus

Invertible

`Γ, L ⇑∆
`Γ ⇑∆, L store

`Γ ⇑∆, A `Γ ⇑∆, B
`Γ ⇑∆, A ∧B ∧ `Γ ⇑∆,> >

`Γ ⇑∆, A,B
`Γ ⇑∆, A ∨B ∨

`Γ ⇑∆
`Γ ⇑∆,⊥ ⊥

`Γ ⇑∆, A
`Γ ⇑∆, ∀x.A ∀

Existential

`Γ ⇓∆, [t/x]A
`Γ ⇓∆, ∃x.A ∃

Structural

`Γ,¬a, a ⇑ · init
`Γ ⇓∆
`Γ ⇑ · decide

`Γ ⇑∆
`Γ ⇓∆ release

Notes:
1. In the store rule, L is a literal or an existential formula.
2. In the ∀ rule, the principal formula is implicitly α-converted so x is not free in the conclusion.
3. In the decide rule, ∆ contains only existential formulas and ∅ 6= ∆ ⊆set Γ.
4. In the release rule, ∆ contains no existential formulas.

Figure 2 Rules of LKNF.

consists of applying1 all available invertible rules to the negative non-atomic formulas, in
an arbitrary order, until none remains. The synchronous or positive phase is then launched
per sequent by focusing on one or more positive formulas using a rule called decide. In this
phase, non-invertible rules are applied to the focused formulas and, crucially, the focus is
maintained on the positive subformulas in the premises of the applied rule. The positive
phase persists until the focused formulas all become negative; the proof then switches back
to the negative phase by a rule named release.

Formally, we will use a sequent calculus that closely resembles the LKF system as given
in [24], with some important differences. First, LKF allows only a single focus formula while
our calculus will allow multiple foci. (It is a simple matter to add multi-focusing to LKF.) A
second and bigger difference is that the LKF proof system contains a positive and negative
version of both conjunction and disjunction, while we will use only the negative versions of
these connectives. This choice is motivated by our desire to model the Herbrand disjunctions
underlying expansion proofs, where the propositional content is elided. The last difference is
that the positive phase in LKF can contain instances of the initial and ∃-introduction rules,
but for our goal of obtaining a variant of Herbrand’s theorem we will need a clean separation
of quantification rules and propositional rules. The critical issue is that in LKF there is only
a single proof of `¬p(a),∃x. p(x) ⇑ ·, while there are infinitely many expansion proofs of
¬p(a) ∨ ∃x. p(x) that simply differ in their numbers of instances of the existential quantifier.
One way to limit the focusing strength of LKF to obtain these other proofs is to replace all
the occurrences of positive literals L with a delayed literal (L ∧ >), which is equivalent but
of negative polarity.

In Figure 2 we present our focused sequent calculus LKNF. It can be seen as the multi-
focused variant of LKF with only negative propositional connectives and implicitly delayed
positive literals. Since the positive phase of LKNF only involves the existential quantifier,
we rename the “positive phase” of LKF as the “existential phase”. The two phases of LKNF

1 In this paper we use “apply” to stand for a reading of an inference rule from conclusion to premises.

K. Chaudhuri, S. Hetzl, and D. Miller 189

proofs are depicted using two different sequent forms: negative sequents of the form `Γ ⇑∆
and positive sequents of the form `Γ ⇓∆. In either form, Γ is a multiset of literals or
existential formulas, and ∆ is a multiset of arbitrary formulas. In the positive sequent
`Γ ⇓∆, we say that the formulas in ∆ are its foci and we require ∆ to be non-empty. We
write `Γ m∆ to stand for either sequent form.

The inference rules of LKNF are divided into three classes. The invertible rules all apply
to negative sequents and contain no essential non-determinism. The existential rule is
non-invertible: the witness terms must be recorded in the proof. The final class of structural
rules includes: the init rule for initial sequents; the decide rule where a number of existential
formulas are copied, possibly more than once, to the foci of a new positive phase; and the
release rule to leave the positive phase when none of the foci is an existential formula.

LKNF is sound and complete with respect to LKN; to make this statement precise, we
inject LKNF proofs to LKN proofs.

I Definition 1. For any LKNF proof π, we write [π] to stand for that LKN proof that:
replaces all sequents of the form `Γ m∆ with `Γ,∆;
removes all instances of the rules store and release; and
renames decide to contr in π.

I Theorem 2 (LKNF vs. LKN).
1. If π is an LKNF proof of `Γ m∆, then [π] is an LKN proof of `Γ,∆ (soundness).
2. If `∆ is provable in LKN, then ` · ⇑∆ is provable in LKNF (completeness).

Proof. Soundness is immediate by inspection. Completeness follows by observing that the
LKF calculus of [24], which is complete for LK (and hence also for LKN), is simply a singly
focused fragment of LKNF if all its connectives are negatively biased and delays are inserted
as needed around literals. J

We can also define an equivalence over LKNF proofs in terms of rule permutations. The
permutations in the focused setting are subtle; certain permutations such as decide/store are
simply impossible. We therefore exploit the injection of definition 1 to bootstrap the LKNF
equivalence using the LKN equivalence.

I Definition 3. Two LKNF proofs π1 and π2 of the same sequent are equivalent, written
π1 ∼ π2, iff [π1] ∼ [π2].

2.3 Canonicity

The main benefit of focusing is that the introduction rules of the unfocused calculus (LKN)
coalesce into larger synthetic rules that represent actions. Every action begins at the bottom
with an instance of decide, and the action ends with premises of the form `Γ ⇑ ·. The
underlying LKN rules inside a single action can be freely permuted with each other, and it
is not important to record their particular sequence. In other words, two equivalent LKNF
proofs should be considered “the same” if they use the decide rules in the same way; we call
such proofs action equivalent.

I Definition 4. Two LKNF proofs π1 and π2 of the same sequent are action equivalent,
written π1 ∼= π2, iff they are equivalent (definition 3) and are tree-isomorphic for the instances
of the decide rules.

CSL’12

190 A Systematic Approach to Canonicity in the Classical Sequent Calculus

Action equivalence gives us the “essence” of cut-free focused sequent proofs. Since two
action equivalent proofs have the same decide rules, one can reason about such proofs by
induction on the decision depth—i.e., the depth of the decide rules—in the LKNF proof. If
from a proof we simply elide all but the decide rules, and record the existential witnesses
along with these instances of decide, we can then obtain a canonical synthetic representation
of the proof directly in the sequent calculus. (It is indeed possible to build a sequent calculus
that uses solely synthetic sequent rules [6].)

Two equivalent LKNF derivations need not be action equivalent as they may perform the
decide steps in a different order or with different foci. However, each equivalence class of
LKNF proofs does have a canonical form where the foci of each decide rule are selected to be
as numerous as possible.

I Definition 5 (Maximality). Given an LKNF proof π that ends in an instance of decide, we
write foci (π) for the foci in the premise of that instance of decide. We say that the instance
is maximal iff for every π′ ∼ π, it is the case that foci (π′) ⊆multiset foci (π). An LKNF proof
is maximal iff every instance of decide in it is maximal.

The two main properties of maximal proofs are that equivalent maximal proofs are action
equivalent, and that for every proof there is an equivalent maximal proof. This pair of results
guarantees that the maximal proofs are canonical (action equivalent) representatives of their
∼-equivalence classes. Similar theorems have appeared in [7, 6].

I Theorem 6 (Canonicity).
1. Every LKNF proof has an equivalent maximal proof.
2. Two equivalent maximal LKNF proofs are action equivalent.

Proof. Because init/contr and >/contr permutations are disallowed, equivalent proofs have
the same multiset union of all the foci of their decide rules. Using the consolidated form of
contr/contr permutations, the foci of the instances of decide can be divided or combined as
needed. Therefore, there is a merge operation that, starting from the bottom of an LKNF
proof and going upwards, permutes and merges foci into the lowermost decide instances
by splitting them from higher instances. This merge operation obviously terminates (by
induction on the decision depth); moreover, the result is maximal by definition 5.

To see that two given equivalent maximal proofs are action equivalent, suppose the
contrary. Then there is a lowermost instance of decide in the two proofs that have an
incomparable multiset of foci (if they were comparable, then either one of the proofs is not
maximal or they are action equivalent). Since the proofs are equivalent, these two decide rules
themselves permute; hence, their foci can be merged as above, contradicting our assumption
that they are maximal. J

I Definition 7. Theorem 6 shows that for every LKNF proof π there is a unique action
equivalence class corresponding to the maximal proofs of π. We write max(π) for this class.

In other words, max(π) is the maximally parallel structure of decide and existential
inferences corresponding to π. A simple corollary of the completeness of LKNF and canonicity
is Herbrand’s theorem for prenex formulas.

I Corollary 8 (Herbrand’s theorem). The formula ∃~x.A, where A is quantifier-free, is valid
if and only if there is a sequence of vectors of terms ~t1, . . . ,~tn such that the disjunction
[~t1/~x]A ∨ · · · ∨ [~tn/~x]A is valid.

K. Chaudhuri, S. Hetzl, and D. Miller 191

Proof. One direction is trivial. Suppose ∃~x.A is valid, i.e., the LKN sequent `∃~x.A is
provable. By theorem 2 ` · ⇑ ∃~x.A is provable in LKNF, i.e., `∃~x.A ⇑ · is provable as only
store applies to the former. Because A is quantifier-free, the decide rule can only apply to
∃~x.A; thus, the equivalent maximal proof (which exists by Theorem 6) performs only (at
most) a single decide at the bottom, producing a number of focused copies of ∃~x.A. In the
positive phase, the ∃s are removed from the foci to give the required term vectors. J

3 Expansion Trees

Herbrand’s theorem [16] tells us that recording how quantifiers are instantiated is sufficient
to describe a proof of a prenex normal formula. Gentzen [10] noticed this also in (cut-free)
proofs of a prenex normal sequents via the mid-sequent. Miller [27] defined expansion trees
for full higher-order logic as a structure to record such substitution information without
restriction to prenex normal form. We will use a first-order version of this notion here.

I Definition 9. Expansion trees and a function Sh(·) (for shallow) that maps an expansion
tree to a formula are defined as follows:
1. A literal L is an expansion tree with Sh(L) = L and top node L.
2. If E1 and E2 are expansion trees and ◦ ∈ {∧,∨}, then E1 ◦ E2 is an expansion tree with

top node ◦ and Sh(E1 ◦ E2) = Sh(E1) ◦ Sh(E2).
3. If E is an expansion tree with Sh(E) = [y/x]A and y is not an eigenvariable of any node in

E, then ∀x.A+y E is an expansion tree with top node ∀x.A and Sh(∀x.A+y E) = ∀x.A.
The variable y is called an eigenvariable of its top node.

4. If {t1, . . . , tn} is a set of terms and E1, . . . , En are expansion trees with Sh(Ei) = [ti/x]A
for i = 1, . . . , n, then E′ = ∃x.A +t1 E1 . . . +tn En is an expansion tree with top node
∃x.A and Sh(E′) = ∃x.A. The terms t1, . . . , tn are known as the expansion terms of its
top node. We allow the case where n = 0.

Note that the requirement of y not being an eigenvariable of any node in E in the clause
for the universal node ensures that each eigenvariable appears only once in an expansion
tree. In the context of proofs this condition is often formulated globally and called regularity.
The reason for requiring this property of expansion trees is that the correctness criterion
is global and hence needs globally unique variable names. In contrast, the correctness of a
sequent proof is locally checkable, so the (local) eigenvariable condition is enough. We shall
consider eigenvariables within expansion trees to be bound over the entire expansion tree
and that systematic changes to eigenvariable names (α-conversion) result in equal trees.

There is a simple way to coerce a formula into an expansion tree: use the bound variable
of a universally quantified subformula as that quantifiers eigenvariable and use the empty
set of terms to expand an existentially quantified formula. Whenever we use a formula to
denote an expansion tree, we shall assume that we use this coercion.

I Example 10. The expression

∃x. (¬d(x) ∨ ∀y. d(y)) +c (¬d(c) ∨ (∀y. d(y) +u d(u))) +u (¬d(u) ∨ (∀y. d(y) +v d(v)))

is an expansion tree that can alternatively be written as follows.

CSL’12

192 A Systematic Approach to Canonicity in the Classical Sequent Calculus

∃x. (¬d(x) ∨ ∀y. d(y))

¬d(c) ∨ ∀y. d(y) ¬d(u) ∨ ∀y. d(y)

¬d(c) ∀y. d(y)

d(u)

¬d(u) ∀y. d(y)

d(v)

c u

u v

So far, we have only described a basic data structure for storing quantifier instances; we still
lack a correctness criterion for deciding when such a tree is a proof. For this criterion we
need the following function Dp(·) (for deep).

I Definition 11. For an expansion tree E, the quantifier-free formula Dp(E), called the
deep formula of E, is defined as:

Dp(E) = E for a literal E,
Dp(E1 ◦ E2) = Dp(E1) ◦Dp(E2), for ◦ ∈ {∧,∨},
Dp(∀x.A+y E) = Dp(E), and
Dp(∃x.A+t1 E1 . . .+tn En) =

∨n
i=1 Dp(Ei). If n = 0 then Dp(∃x.A) = ⊥.

In addition to considering expansion trees (of formulas) we will also consider expansion
sequents (of sequents). If S = `A1, . . . , An is a sequent and E1, . . . , En are expansion trees
with Sh(Ei) = Ai, then `E1, . . . , En is called an expansion sequent of S if whenever Ei and
Ej share an eigenvariable then i = j. For an expansion sequent E = `E1, . . . , En, define
Dp(E) = `Dp(E1), . . . ,Dp(En) and Sh(E) = ` Sh(E1), . . . ,Sh(En). A second component of
the correctness criterion involves the following dependency relation.

I Definition 12. Let E be an expansion tree or expansion sequent and let <0
E be the binary

relation on the occurrences of the expansion terms in E defined by t <0
E s if there is an x

which is free in s and which is the eigenvariable of a node dominated by t. Then <E , the
transitive closure of <0

E , is called the dependency relation of E .

In terms of the sequent calculus, t <E s means that the inference corresponding to t must
be below the inference corresponding to s.

I Definition 13. Let A be a formula (S be a sequent). An expansion tree E of A (or
respectively an expansion sequent E of S) is called an expansion proof of A (respectively S)
if <E is acyclic and Dp(E) is a tautology.

I Example 14. Let E be the expansion tree of example 10. It has two expansion terms: c and
u. We have c <E u because the node labeled with c dominates the ∀-node with eigenvariable
u. However u ≮E c, so <E is acyclic; furthermore, Dp(E) = ¬d(c)∨d(u)∨¬d(u)∨d(v), which
is a tautology. So, E is an expansion proof of the formula Sh(E) = ∃x. (¬d(x) ∨ ∀y. d(y)).

3.1 Expansions from Proofs
We now turn to describing how to read off an expansion proof from a sequent calculus proof.
To that aim, the following merge-operation on expansion trees will be useful.

I Definition 15. Let E1 and E2 be expansion trees with Sh(E1) = Sh(E2). Then their
merge E1 ∪ E2 is defined as follows:

K. Chaudhuri, S. Hetzl, and D. Miller 193

1. If A is a literal then E1 ∪ E2 = E1 = E2 = A.
2. If E1 = E′1 ◦E′′1 and E2 = E′2 ◦E′′2 for ◦ ∈ {∧,∨}, then E1 ∪E2 = (E′1 ∪E′2) ◦ (E′′1 ∪E′′2).
3. If E1 = ∀x.B +y1 E′1 and E2 = ∀x.B +y2 E′2, then E1 ∪ E2 = ∀x.B +y1 (E′1 ∪ [y1/y2]E′2).

Alphabetic change of eigenvariable names in E′1 and E′2 might be necessary to do this
merge in general.

4. If E1 = ∃x.B +r1 E1,1 . . . +rk E1,k +s1 F1 . . . +sl Fl and E2 = ∃x.B +r1 E2,1 . . . +rk

E2,k +t1 G1 . . .+tm Gm where {s1, . . . , sl} ∩ {t1, . . . , tm} = ∅, then E1 ∪ E2 =

∃x.B +r1 (E1,1 ∪ E2,1) . . .+rk (E1,k ∪ E2,k) +s1 F1 . . .+sl Fl +t1 G1 . . .+tm Gm

The merge of expansion sequents is component-wise.

We now present an explicit mapping from LKN proofs to expansion proofs.

I Definition 16. Let π be an LKN-proof. The expansion sequent E(π) is defined by induction:
if π is the initial rule with conclusion `Γ,¬a, a, then let E(π) = Γ,¬a, a. (It is straightforward
to coerce the formulas in Γ into expansion trees.) The analogous translation is needed for
the introduction rule for >. The remaining cases for π are the following.

(a)

(π1)
`Γ, A

(π2)
`Γ, B

`Γ, A ∧B ∧ (b)

(π′)
`Γ, A
`Γ, ∀x.A ∀

(c)

(π′)
`Γ, [t/x]A
`Γ, ∃x.A ∃ (d)

(π′)
`Γ,∆
`Γ contr

For case (a), if E(π1) = E1, E1 and E(π2) = E2, E2, then E(π) = E1 ∪ E2, E1 ∧ E2. Analogous
definitions apply for the other propositional rules. For case (b), if E(π′) = E , E, then
E(π) = E ,∀x.A +y [y/x]E where y is not an eigenvariable of a node in E , E. For case (c),
if E(π′) = E , E, then E(π) = E ,∃x.A +t E. Finally, for case (d), let Γ = A1, . . . , An with
corresponding expansion trees E1, . . . En in E(π′). For i ∈ {1, . . . , n} let ki be the number of
copies of Ai in ∆ and let Ei,1, . . . , Ei,ki

be the expansion trees corresponding to them. Then
E(π) = E1

⋃k1
j=1E1,j , . . . , En

⋃kn

j=1En,j .

The above definition extends to the focused setting in a straightforward way by defining
E(π) = E([π]) for an LKNF-proof π.

I Theorem 17. If π is an LKN- or LKNF-proof, then E(π) is an expansion proof.

Proof. That Dp(E(π)) is a tautology can be shown by induction on the depth of π treating
each of the cases of definition 16. Acyclicity of <E(π) follows from the side condition of the
∀-rule and the appropriate choice of variable names in definition 16. J

3.2 Sequentialization
For translating expansion trees to LKNF-proofs we will proceed in two phases: first we
translate an expansion tree to a proof in an intermediate calculus LKNFE which has the
structure of LKNF but instead of working on sequents it works on expansion sequents.
Secondly we map an LKNFE-proof π to an LKNF-proof Sh(π) which is defined by applying
Sh(·) to every expansion tree appearing in the proof. This operation will indeed yield a
valid LKNF-proof as the Sh-image of a LKNFE-rule will be a LKNF-rule. In particular, the
decide-rule of LKNFE is the following, where ∆ is a choice of some instances which are
present in Γ and Γ′ are the remaining instances.

`Γ′ ⇓∆
`Γ ⇑ · decide

CSL’12

194 A Systematic Approach to Canonicity in the Classical Sequent Calculus

Formally: Γ = E1, . . . , En where Ei = ∃x.Ai+ti,1 Ei,1 · · ·+ti,ni Ei,ni and Γ′ = E′1, . . . , E
′
n

where E′i = ∃x.Ai +ti,1 Ei,1 · · · +ti,ki Ei,ki
with 0 ≤ ki ≤ ni and ∆ = ∆1, . . . ,∆n where

∆i = {∃x.Ai +ti,j Ei,j | ki < j ≤ ni}. The rule for existentials in LKNFE is:

`Γ ⇓∆, E
`Γ ⇓∆,∃x.A+t E

The other rules are adapted in the natural way.
When writing down expansion trees for formulas which contain blocks of quantifiers

we will abbreviate using a vector notation. For example, the expansion term ∃x. ∃y.A+t

(∃y. [t/x]A+s1 E1 +s2 E2) is abbreviated as ∃(x, y). A+(t,s1) E1 +(t,s2) E2. If the length of a
vector is irrelevant, we write ~x for a vector of variables and ~t for a vector of terms.

We distinguish proofs and derivations in a calculus. While the initial sequents of a proof
are among those declared in the definition of the calculus, the initial sequents of a derivation
are arbitrary. The construction of an LKNFE-proof from an expansion proof will be done in
a phase-wise manner, the derivation containing the negative phase is defined as follows.

I Definition 18 (π−). Let `Γ ⇑∆ be a focused expansion sequent where ∆ consists of
non-existential expansion trees only. Define the LKNFE-derivation π−`Γ⇑∆ of `Γ ⇑∆ by
exhaustive application of negative rules and stores. These lead to expansion sequents
`Γ,∆1 ⇑ ·, . . . , `Γ,∆n ⇑ · and to finishing the proof in case n = 0.

We now define a derivation corresponding to the positive phase in a way that will have
the effect that sequentializations of expansion trees are always maximal. This property will
be crucial for the main theorem of this paper.

I Definition 19 (π+). Let `Σ ⇑ · be a focused expansion sequent and define the LKNFE-
derivation π+

`Σ⇑· of `Σ ⇑ · as follows. Let Σ = Γ,∆ where Γ are the non-existential
expansion trees and ∆ = {E1, . . . , En} are the existential expansion trees of Σ. Then
Ei = ∃~x.Ai +~ti,1 Ei,1 · · ·+~ti,ni Ei,ni

where Ai is a negative formula. For i ∈ {1, . . . , n} let
w.l.o.g. {1, . . . , ki} = {j | 1 ≤ j ≤ ni, all terms in ~ti,j are <Σ -minimal}. Define ∆′i as
{∃~x.Ai +~ti,1 Ei,1, . . . ,∃~x.Ai +~ti,ki Ei,ki

} and ∆′′ as {E′′1 , . . . , E′′n} where E′′i = ∃~x.Ai +~ti,ki+1

Ei,ki+1 · · ·+~ti,ni Ei,ni
and apply the decide rule as

`Γ,∆′′ ⇓∆′1, . . . ,∆′n
`Σ ⇑ · decide

Because all the expansion terms in ∆′i are <Σ-minimal, exhaustive application of existential
inferences is possible and, followed by a release, leads to a sequent `Γ,∆′′ ⇑Θ where Θ
consists of non-existential expansion trees only.

I Theorem 20 (Sequentialization). If E is an expansion proof, then ` ⇑ Sh(E) in LKNF.

Proof. First, let the LKNFE-proof πE of ` · ⇑ E be
(ψ)
`Γ ⇑∆....
` · ⇑ E

where ∆ consists of non-existential expansion trees only and ψ is obtained by alternating
instances of π− and π+ for appropriate expansion sequents. This construction can be carried
out as Dp(F) is a tautology for every expansion sequent F in ψ and it terminates as the
number of nodes of the current expansion sequent strictly decreases with each line of the
proof. Then Sh(πE) is indeed an LKNF-proof of ` · ⇑ Sh(E). J

K. Chaudhuri, S. Hetzl, and D. Miller 195

I Definition 21 (Sequentialization). The LKNF-proof Sh(πE) constructed in the above proof
of the sequentialization theorem will be denoted by Seq(E).

4 Equivalence

A first central observation concerning the relationship of rule permutations and expansion
trees is that the former do not change the latter.

I Theorem 22. If π1 and π2 are LKN-proofs with π1 ∼ π2 then E(π1) = E(π2).

Proof. Instead of spelling out the proof for every rule permutation, here is just the ∧/∃-
case. Here, π1 contains a subproof of the form (a) below, where E(π′1) = E1, E1, E

′ and
E(π′′1) = E2, E2, E

′′.

(a)

(π′
1)

`Γ, A, [t/x]C
(π′′

1)
`Γ, B, [t/x]C

`Γ, A ∧B, [t/x]C
∧

`Γ, A ∧B,∃x.C ∃ (b)

(π′
1)

`Γ, A, [t/x]C
`Γ, A, ∃x.C ∃

(π′′
1)

`Γ, B, [t/x]C
`Γ, B, ∃x.C ∃

`Γ, A ∧B,∃x.C ∧

By definition 16, the expansion sequent of this subproof is E1∪E2, E1∧E2,∃x.C+t (E′∪E′′).
The corresponding subproof in π2 has the form (b) above and the corresponding expansion
sequent is E1 ∪ E2, E1 ∧ E2, (∃x.C +t E′) ∪ (∃x.C +t E′′) which by definition 15 is equal to
E1 ∪ E2, E1 ∧ E2,∃x.C +t (E′ ∪ E′′). J

We now turn back to the sequentialization procedure for constructing an LKNF-proof from
an expansion proof. The procedure used in Theorem 20 has been designed for producing
only maximal proofs as shown in the following lemma.

I Lemma 23. If E is an expansion proof, then Seq(E) is maximal.

Proof. Suppose Seq(E) is not maximal, then it contains a subproof π ending with a decide
inference s.t. there exists a proof π′ with π ∼ π′ and foci (π) ⊂multiset foci (π′). So there is
an existential formula ∃x.A in foci (π′) \ foci (π) to which in πE corresponds an expansion
∃x.A+tE′. As rule permutations allow to shift down the instantiation of the expansion term
t over all ∀-inferences, the term t must be <F -minimal for F being the expansion sequent
corresponding to the conclusion sequent of π in Seq(E). This is a contradiction to the choice
of ∆′′ and ∆′i made in definition 19. J

I Lemma 24. If π is a maximal LKNF-proof, then π ∼= Seq(E(π)).

Proof. We proceed by induction on the decision depth of π. If π ends with a positive phase,
it is of the form (a) below where the Ai are non-existential formulas and π′ ∼= Seq(E(π′)) by
induction hypothesis.

(a)

(π′)
`Γ′ ⇓ [~t1/~x1]A1, . . . , [~tn/~xn]An....
`Γ′ ⇓ ∃~x.A1, . . . , ∃x.An

`Γ ⇑ · decide (b)

(π1)
`Γ,∆1 ⇑ · · · ·

(πn)
`Γ,∆n ⇑ ·....

`Γ ⇑∆
`Γ ⇓∆ release

As π is maximal, the existential inferences in this phase are in 1-1 correspondence to the
<E(π)-minimal expansion terms of E(π). Therefore, by definition 19, Seq creates the shown
segment of π from E(π) up to permutations of the existential inferences inside this segment.

CSL’12

196 A Systematic Approach to Canonicity in the Classical Sequent Calculus

If π ends with a negative phase, then it is of the form (b) above where ∆ does not
contain an existential formula. If n = 0, then π consists only of this phase and we are done.
Otherwise we have πi ∼= Seq(E(πi)) for i = 1, . . . , n by induction hypothesis. For fixed ∆,
the sequents `Γ,∆1 ⇑ ·, . . . , `Γ,∆n ⇑ · are uniquely determined and there are no decide
and existential inferences in the negative phase so we obtain π ∼= Seq(E(π)). J

A maximal proof corresponding to π can be obtained via rule permutations as in the first
part of theorem 6. Reading off an expansion tree from π and then re-sequentializing this
tree gives an alternative way to compute a maximal proof as the following theorem shows.

I Theorem 25. For any LKNF proof π: Seq(E(π)) ∈ max(π).

Proof. By the first part of theorem 6 there is a π′ ∼ π with π′ ∈ max(π). Applying lemma 24
to π′ shows that π′ ∼= Seq(E(π′)) and hence Seq(E(π′)) ∈ max(π) but by theorem 22 we have
E(π′) = E(π), so we obtain Seq(E(π)) ∈ max(π). J

We can now finally obtain the equivalence of expansion trees and maximal proofs with respect
to the induced identity notion for proofs. This theorem is our main technical result about
proofs in first-order classical logic: the abstractions of LKNF proofs provided by expansion
trees and by maximal multi-focusing are the same.

I Theorem 26. Let π1, π2 be LKNF proofs. Then E(π1) = E(π2) iff max(π1) = max(π2).

Proof. For the left-to-right direction let E = E(π1) = E(π2). Theorem 25 then implies that
that Seq(E) is in both max(π1) and max(π2), so max(π1) = max(π2). The right-to-left
direction follows directly from theorem 22. J

5 Conclusion

We have illustrated that, instead of discarding the sequent calculus in search of canonical
proof systems, sequent proofs can be systematically abstracted by (maximal) multi-focusing
into canonical structures. In this paper, we have imposed a particular focusing discipline on
classical sequent proofs—negatively polarized propositional connectives and delayed literals—
and have then showed that maximal multi-focusing in the sequent calculus yields the parallel
and minimalistic notion of proofs based on expansion trees. Our framework is obviously
generative as well: there are other polarizations within classical logic and in focused proof
systems for intuitionistic and linear logics. Maximal multi-focusing yields different canonical
structures for these other polarizations.

Acknowledgments

This research has been funded in part by the ERC Advanced Grant ProofCert and by the
ANR-FWF project STRUCTURAL.

References
1 J.-M. Andreoli. Logic programming with focusing proofs in linear logic. J. of Logic and

Computation, 2(3):297–347, 1992.
2 P. B. Andrews. Theorem-proving via general matings. J. ACM, 28:193–214, 1981.
3 M. Baaz and S. Hetzl. On the non-confluence of cut-elimination. J. of Symbolic Logic,

76(1):313–340, 2011.

K. Chaudhuri, S. Hetzl, and D. Miller 197

4 M. Baaz, S. Hetzl, and D. Weller. On the complexity of proof deskolemization. J. of
Symbolic Logic, 77(2):669–686, 2012.

5 W. Bibel. Matrices with connections. J. of the ACM, 28:633–645, 1981.
6 K. Chaudhuri. Focusing strategies in the sequent calculus of synthetic connectives. LPAR

2008, LNCS 5330, pages 467–481. Springer, Nov. 2008.
7 K. Chaudhuri, D. Miller, and A. Saurin. Canonical sequent proofs via multi-focusing. In

IFIP TCS, IFIP 273, pages 383–396. Springer, Sept. 2008.
8 V. Danos, J.-B. Joinet, and H. Schellinx. A new deconstructive logic: Linear logic. Journal

of Symbolic Logic, 62(3):755–807, 1997.
9 A. Felty. Transforming specifications in a dependent-type λ-calculus to specifications in an

intuitionistic logic. In G. Huet and G. D. Plotkin, eds, Logical Frameworks. CUP 1991.
10 G. Gentzen. Investigations into logical deduction. In M. E. Szabo, editor, The Collected

Papers of Gerhard Gentzen, pages 68–131. North-Holland, Amsterdam, 1969.
11 J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
12 J.-Y. Girard. A new constructive logic: classical logic. Math. Structures in Comp. Science,

1:255–296, 1991.
13 A. Guglielmi, T. Gundersen, and M. Parigot. A proof calculus which reduces syntactic

bureaucracy. In RTA 2010, LIPIcs 6, pages 135–150, July 2010.
14 W. Heijltjes. Classical proof forestry. A. of Pure and Applied Logic, 161:1346–1366, 2010.
15 H. Herbelin and A. Saurin. λ-calculus and Λ-calculus: a capital difference. Unpublished

manuscript, 2010.
16 J. Herbrand. Recherches sur la Théorie de la Démonstration. PhD thesis, Paris, 1930.
17 S. Hetzl. The Computational Content of Arithmetical Proofs. to appear in volume 53 of

the Notre Dame Journal of Formal Logic.
18 S. Hetzl. Applying Tree Languages in Proof Theory. In Language and Automata Theory

and Applications (LATA) 2012, LNCS 7183, pages 301–312. Springer, 2012.
19 S. Hetzl and L. Straßburger. Herbrand-Confluence for Cut-Elimination in Classical First-

Order Logic. In Computer Science Logic (CSL) 2012. to appear.
20 D. J. D. Hughes. Proofs without syntax. A. of Mathematics, 143(3):1065–1076, Nov. 2006.
21 F. Lamarche and L. Straßburger. Naming proofs in classical propositional logic. In P. Urzy-

czyn, editor, TLCA 2005, LNCS 3461, pages 246–261. Springer, 2005.
22 F. Lamarche and L. Straßburger. From proof nets to the free *-autonomous category.

Logical Methods in Computer Science, 2(4:3):1–44, 2006.
23 J. Lambek and P. J. Scott. Introduction to Higher Order Categorical Logic. Cambridge

University Press, 1986.
24 C. Liang and D. Miller. Focusing and polarization in linear, intuitionistic, and classical

logics. Theoretical Computer Science, 410(46):4747–4768, 2009.
25 R. McKinley. Herbrand expansion proofs and proof identity. In CL&C 2008.
26 R. McKinley. Expansion nets: Proof-nets for propositional classical logic. In C. G. Fermüller

and A. Voronkov, editors, LPAR 2010 LNCS 6397, pp 535–549, Indonesia, Springer.
27 D. Miller. A compact representation of proofs. Studia Logica, 46(4):347–370, 1987.
28 D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uniform proofs as a foundation for

logic programming. Annals of Pure and Applied Logic, 51:125–157, 1991.
29 E. P. Robinson. Proof nets for classical logic. J. of Logic and Comp., 13(5):777–797, 2003.
30 L. Straßburger. What is the problem with proof nets for classical logic? In CiE 2010,

LNCS 6158, pages 406–416, Ponta Delgada, Azores, Portugal, June 2010. Springer.
31 C. Urban. Classical Logic and Computation. PhD thesis, University of Cambridge, 2000.
32 C. Urban and G. M. Bierman. Strong normalisation of cut-elimination in classical logic.

Fundamenta Informaticae, 45(1–2):123–155, 2001.

CSL’12

ML with PTIME complexity guarantees∗

Jacek Chrząszcz and Aleksy Schubert

University of Warsaw, ul. Banacha 2, 02-097 Warsaw, Poland
{chrzaszcz,alx}@mimuw.edu.pl

Abstract
Implicit Computational Complexity is a line of research where the possibility to inference a valid
property for a program implies that the program runs in particular complexity class. Soft type
systems are one of the research threads within the field. We present here a soft type system
with ML-like polymorphism that enjoys decidable typechecking, type inference and typability
problems and gives polynomial time computational guarantees for the running time of typed
programs.

1998 ACM Subject Classification F.3.3 Studies of program constructs, F.4.1 Mathematical logic

Keywords and phrases implicit computational complexity, polymorphism, soft type assignment

Digital Object Identifier 10.4230/LIPIcs.CSL.2012.198

1 Introduction

The design of a programming language may be focused on guarantees the language gives to a
programmer or a software consumer. Implicit Computational Complexity studies machine-
free methods to characterise particular complexity class, e.g. PTIME, NP, PSPACE. This
line of research may lead not only to an interesting programming language, but also can
give new insights to the theoretical analysis of the subject class.

Soft type systems proposed by Gaboardi et al. [11, 12] that emerged from the Soft Linear
Logic (SLL) of Lafont [19], are one of the proposals which makes the expected guarantees
with relatively low annotation burden. One drawback of the soft type systems is that
they use full second-order polymorphism to gain necessary uniformity of representation [20].
This, however, results in undecidable type-checking and type inference [6]. We regain the
necessary uniformity by introduction of special constants similar in fashion to the ones used
in [8] to obtain the completeness.

Linear logic brought many characterisations of complexity classes in addition to the well
established proposals such as [5, 7, 9, 18, 23, 27], to mention few. This was started by
Girard in [16] where the Light Linear Logic (LLL) and Elementary Linear Logic (ELL) were
proposed to characterise polynomial and elementary time complexities respectively by means
of the cut elimination procedure. The ideas of LLL were taken up by Asperti and Roversi
[1] who designed a more flexible affine variant of Girard’s logic called Light Affine Logic.
A type system which is based on these ideas was presented in [4]. Another line of research
on linear logic and complexity classes was started by Lafont’s Soft Linear Logic (SLL) [19]
which characterises polynomial time complexity and is the starting point for the Soft Type
Assignment (STA) systems by Gaboardi et al. [11, 12, 14] where certain form of typability
guarantees reduction of lambda terms in polynomial time. The light logic principles have
been used to characterise other interesting complexity classes for instance [25] uses Light

∗ This work was partially supported by the Polish government grant no N N206 355836.

© Jacek Chrząszcz and Aleksy Schubert;
licensed under Creative Commons License NC-ND

Computer Science Logic 2012 (CSL’12).
Editors: Patrick Cégielski, Arnaud Durand; pp. 198–212

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2012.198
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

J. Chrząszcz and A. Schubert 199

Linear Logic with additional operation + to characterise NP; LOGSPACE is characterised
by different versions of Stratified Bounded Affine Logic (SBAL) in e.g. [30, 21].

The type systems that are based on linear logic employ linear modalities (e.g. ! or §) to
guard the necessary restrictions. The modalities control duplication of data by marking in
the type the particular function argument that is multiplied during the computation. This
has effect similar to the one obtained by Bellantoni, Cook and Leivant, but in a way which
results from more basic assumptions. For instance, their restriction is obtained by Baillot
et al. in [2] due to prefixing of arguments with § and ! in Def. 5. Similar function has the
prefixing with ! in STA by Gaboardi and Ronchi Della Rocca [14].

In this paper we present a version of STA [14] with ML-like polymorphism and useful
data types such as booleans, integers and strings. The ambition of the paper is similar to
the one of [2] to present a contribution close to real language. However, we move the focus
here to polymorphism which is not present in the contribution of Baillot et al. nor in earlier
papers on monomorphic calculi [10, 6]. The ML polymorphism in our setting is presented
in a traditional way which contrasts with the presentation of [22] where a division into
upper class and lower class types is used. Moreover, we use linear equations over natural
numbers to express the necessary constraints, which is conceptually simpler to the approach
by Dal Lago, Schöpp where E-unification is used or the approach by Baillot, Martin [3]
where additional disequality constraints are used.

We observe that the set of obtained functionals, in addition to the running time guar-
antees, provides a natural way to program in a design pattern present in imperative pro-
gramming. When the pattern is followed all the memory is allocated before any essential
computation is done. In this way the dynamic allocation is no longer needed in the course
of computation. This way of programming is advised both by the Java Card manufacturers,
see e.g. [15, Sect. 2.4.3], and by software verification community, see e.g. [26, Sect. 3].

This paper is structured as follows. We present the syntax and semantics of the system
in Sect. 2. Then we explain the primitives of the language in Sect. 3. Basic properties of
MLSTA are presented in Sect. 4. The complexity guarantees of the system are proved in
Sect. 5 while the decidability of type related problems in Sect. 6. We conclude in Sect. 7.

2 ML-like system MLSTA

We propose a type system which makes possible a more uniform treatment of input data.
The system is inspired by ML and uses several algebraic types. Its syntax and types are
defined as follows:

A ::= α | σ(A | A⊗B | S!j
i | (S

!j
i)k �A | N!j | B (Linear Types)

s ::= !i∀~α.A (Type Schemes)
σ ::= !iA (Types)
M ::= x | λx.M |M1M2 | let x = M1 in M2 | c (Terms)

(1)

where α ∈ V, which is a countable set of type variables, i, j, k ∈ N, i.e. natural numbers,
with !0 meaning no ! at all, and c is a constant from the set ConstMLSTA listed in Fig. 2.
The set of linear types generated from the nonterminal A above is denoted TA, the set of
type schemes generated from the nonterminal s is denoted Ts, and the set of types generated
from the nonterminal σ is denoted Tσ. The contexts in this system are sets of pairs x : σ
or x : s.

The reduction relation contains β rules and δ rules presented in Fig. 2. The presentation
of the typing rules requires a notion of a closure with respect to a context. For a type A

CSL’12

200 ML with PTIME complexity guarantees

and a context Γ we define the closure of A with respect to Γ as Clos(Γ;A) = ∀α1, . . . , αn.A

where {α1, . . . , αn} = FTV(A)\FTV(Γ). The typing rules of the system are presented in
Fig. 1. To express that Γ ` M : A is derivable in MLSTA we write Γ `MLSTA M : A. We
introduce a succinct notation for derivations inspired by the Church-style form:

D ::=xA | xA≤s | 〈D, x : A〉w | λxσ.D | D1D2 | 〈ξx1, . . . , xn : σ.D, x : !σ〉m | 〈D〉sp |
let x!i∀~α.B = D1 in D2

The subsequent cases in the above definition are in direct correspondence with the rules
presented in Fig. 1. This correspondence makes possible to represent uniquely derivations in
MLSTA with the terms defined above (still some terms generated with the grammar above
have no corresponding derivation in MLSTA). We sometimes write 〈D, ~x : ~A〉wn to denote
n-times application of the rule (w) with pairs x1 : A1, . . . , xn : An. In case a derivation D

ends with a judgement Γ `M : σ then we let Dterm = M , Dctxt = Γ, and Dtype = σ.

s ≥ A
x : s ` x : A (Ax) x : s ∈ ConstMLSTA s ≥ A

` x : A (AxC) Γ `M : σ
Γ, x : A `M : σ (w)

Γ, x : σ `M : A
Γ ` λx.M : σ(A

((I) Γ `M : σ(A ∆ ` N : σ Γ#∆
Γ,∆ `MN : A ((E)

Γ, x1 : ξ, . . . , xn : ξ `M : τ ξ ∈ Tσ ∪ Ts
Γ, x : !ξ `M [x/x1, . . . , x/xn] : τ (m) Γ `M : σ

!Γ `M : !σ (sp)

Γ `M1 : !iB ∆, x : !iClos(Γ,∆;B) `M2 : A Γ#∆
Γ,∆ ` let x = M1 in M2 : A (let)

Figure 1 The typing rules of MLSTA.

3 Gentle introduction to MLSTA

The main feature of soft type systems is their ability to control multiplication of data. One
piece of the mechanism is realised by the (m) rule. This rule makes explicit the demand of
an operator to duplicate some portion of data. The multiplication is reflected by ! in the
type. The second piece of the mechanism is realised by the (sp) rule. The latter is used when
the term it types is to be directly multiplied by a substitution present in the β-reduction.
Note that when a term M1 is directly multiplied k1 times and is used inside another term
M2 that is directly multiplied k2 times the number of occurrences of M1 at some point of
the computation may be as high as k1 · k2.

The traditional soft type assignment systems use the full polymorphism of the System F.
This makes possible to conveniently define data types and iterators over them, but it leads
to undecidability of the type inference and type checking problems [6]. In our proposal,
we provide access to the polymorphic expressibility in a structured fashion. It is achieved
through two mechanisms. The first one brings a few fixed algebraic types: strings, naturals,
booleans and products with appropriate constructors, destructors and iterators. The set of
algebraic types could be richer. This, however, would make the design of the model language
unnecessarily complicated. The second mechanism is the traditional let-polymorphism which
makes possible to define generic operations that work for different kinds of data.

The language we propose contains also a type of lists of booleans S!j
i , called here strings,

which is our main recursive data structure The numbers i and j describe the complexity of the

J. Chrząszcz and A. Schubert 201

let x = M1 in M2 →β M2[M1/x]
(λx.M)N →β M [N/x]

Constants:
The typed constants c : τ listed below belong to the set ConstMLSTA.

Product
〈·, ·〉 : ∀αβ.α(β (α⊗ β

match : ∀αβγ.α⊗ β ((α(β (γ)(γ

match 〈M1,M2〉 N →δ N M1 M2

Booleans
0 : B
1 : B

ifte : ∀α.B(α(α

ifte 0 M1 M2 →δ M1

ifte 1 M1 M2 →δ M2

Natural numbers
n : N!j

add : N!j1 (N!j2 (N! max(j1,j2)+1

add n m→δ n+m

mul : N!j1 (N!j2 (N!(j1+j2)

mul n m→δ n ∗m
iter : ∀α.N!j (!j(α(α)(α(α

iter n F M →δ F (. . . (F M) . . .) (F applied n times to M)
Strings

[·; . . . ; ·] : Bi (· · ·(Bi (S!j
i

create : N!j (!jBi (S!j
i

create n M →δ [M ; . . . ;M] (n copies of M)
concat : S!j1

i (S!j2
i (S! max(j1,j2)+1

concat [M1; . . . ;Mm] [N1; . . . ;Nn]→δ [M1; . . . ;Mm;N1; . . . ;Nn]
len : S!j

i (N!j

len [M1; . . . ;Mm]→δ m

Looping constructs
localvars : ∀α.S!j

i (· · ·(S!j
i (α((S!j

i)k � α (k + 1 arguments)
p0, . . . , pk−1 : ∀α.(S!j

i)k � α(S!j+1
i

pk : ∀α.(S!j
i)k � α(α

pl(localvars M0 . . . Mk)→δ Ml

step : ((Bi ⊗ B)k ⊗ Bq ((Bi ⊗ Bl)k ⊗ Bq)((S!j
i)k � Bq ((S!j

i)k � Bq

where l = dlog(k + 1)e
step F (localvars M0 . . . Mk)→δ localvars M ′0 . . . M

′
k

where F 〈hd(M0), . . . , hd(Mk−1),Mk〉 →∗βδ 〈N0, . . . , Nk−1,M
′
k〉

Ni = 〈Pi, li〉
where l denotes the binary encoding of a number l

M ′j = Pi1 :: · · · :: Piw :: tl(Mj)
where i1 . . . iw is the subsequence of 0 . . . k − 1 such that
∀p lip = j and Mip 6= []

hd([]) = 〈0i,1〉 tl([]) = []
hd([A1; . . . ;Am]) = 〈A1,0〉 tl([A1; . . . ;Am]) = [A2; . . . ;Am]

Figure 2 MLSTA constants, their types and reduction rules of MLSTA. Note that j, j1, j2 ≥ 1
when they represent the number of !’s. In addition the superscript of the form !j indicates that the
type has j ‘hidden’ bangs (they become explicit after a translation to STA, see Fig. 4).

CSL’12

202 ML with PTIME complexity guarantees

string: i corresponds to the size of a symbol in the string — each symbol is of type Bi, which
is a shorthand for B ⊗ · · · ⊗ B (i times), while j, roughly speaking, reflects the complexity
of the string creation. Strings are used in the framework to simulate PTIME computations.
We provide a number of usual operators over strings. A string which combines n pieces of
basic data can be obtained using the bracket construct [a1; . . . ; an]. We can also create a
string of n copies of a particular piece of data create n a. The strings s1, s2 obtained in
one or another way can be combined by concatenation done with concat s1 s2.

Note that traditional iterative operation fold from functional languages is missing in
MLSTA. In principle we could introduce it to our language. However the traditional type
of the operation imposes too strict restrictions on the type of function that operates on
strings. In particular it is impossible to transform one string to another since this requires
duplication of the string constructor which is prohibited in the context of linear types.

We adopt a different approach. In order to do iterative programs on strings, we introduce
a step function, inspired by the encoding of a Turing Machine in [24]. Its functionality is to
put a program fragment, represented by the first argument f , into the context of an iterative
loop. Then step takes a tuple of several strings (S!j

i)k�α “federated” into a context of “local
variables”. This structure is created with the localvars operation and it is the structure
over which the iteration is actually performed. In one iteration step the heads of the strings
can be freely moved around or dumped, but not duplicated. Some information can also
be stored in the accumulator, represented here by α. One application of step f maps the
operation on heads done by its argument function f onto the corresponding operation on
federated strings. The mapped operation can then be iterated by iter as many times as
necessary in order to complete the whole string processing and in the end we can extract
the result using one of the projections p0, . . . , pk. Note that since the calculation is done in
constant space, all allocations must occur before starting the iteration. Indeed, it would be
impossible to extend any of the strings in the iterated function, as this would make types
incompatible. The simplest example of step usage is string reversal:

let rev = let fr = λ ((a0,b0),(a1,b1),q). ((a0,1),(a1,1),q) in
λs. p1 (iter (len s) (step fr) (localvars s [] 0))

In the above example we use a few syntactic simplifications, which are straightforward to
translate into core MLSTA. The federated tuple consists here of two strings and a (dummy)
boolean. In the beginning, the left string is the initial string s and the right one is the
empty string. The function fr takes two “heads”: a0 and a1 paired with the booleans b0
and b1 respectively, carrying the information if the given head is real or dummy (in case
the given string is empty). Its result tells the step function to attach both a0 and a1 to
the right string in the order from right to left, i.e., a1 is attached first (where it came from)
and then a0. In case one of the strings was initially empty (here it is only possible for the
right one), the head on the corresponding position would be attached with a dummy cons
(observe condition Mip 6= [] in Fig. 2), i.e. would not be attached at all.

Now it is also possible to write the map function on strings:

let map = let fm = λ f ((a1,b1), (ar,br), (a2,b2)), q).
if q then ((a1,1), (ar,1), (a2,2), if b1 then 0 else 1)
else ((a1,1), (f ar,2), (a2,2), 1)

in λ f s. let n = len s in
p2 (iter (add (mul 2 n) 1) (step (fm f)) (localvars s [] [] 0));;

Another syntactic simplification can be seen here: although the two branches of if share
variables, the term can be written as linear using the trick if b then t[a] else s[a] ≡

J. Chrząszcz and A. Schubert 203

(if b then λa.t[a] else λa.s[a]) a. The function operates in two phases: in the first
phase the input string (put initially on the left federated string) is reversed and placed on
the middle string. In the second phase the middle string is mapped using f to the right
string, and reversed back to the original order in the process. The number of iterations is
2n+ 1, which is n for each phase and 1 for phase change. The phase number is encoded as
a boolean, initially true (0) and then changed to false (1).

let fsel = λ ((sortedPartHead, sortedPartHasHead),
(maxSoFar, maxUsable),
(unsortedPartHead, unsortedPartHasHead),
(soFarSeenHead, soFarSeenHasHead), x).

if not maxUsable and unsortedPartHasHead and not soFarSeenHasHead then
(* start of selection phase *)

(sortedPartHead, 0), (maxSoFar, 1),
(unsortedPartHead, 1), (soFarSeenHead, 3), x

else if maxUsable and unsortedPartHasHead then (* selection phase in progress *)
cmp maxSoFar unsortedPartHead (fun smaller greater ->

(sortedPartHead, 0), (greater, 1),
(smaller, 3), (soFarSeenHead, 3), x)

else if maxUsable and not unsortedPartHasHead then (* end of selection phase *)
if sortedPartHasHead then (* end of selection phase for the first selection *)

(maxSoFar, 0), (sortedPartHead, 0),
(unsortedPartHead, 2), (soFarSeenHead, 3), x

else (* end of selection phase for other selections *)
(sortedPartHead, 0), (maxSoFar, 0),
(unsortedPartHead, 2), (soFarSeenHead, 3), x

else (* preparation for the next selection phase *)
if unsortedPartHasHead and soFarSeenHasHead then

(sortedPartHead, 0), (maxSoFar, 1),
(soFarSeenHead, 2), (unsortedPartHead, 2), x

else
(sortedPartHead, 0), (maxSoFar, 1),
(unsortedPartHead, 2), (soFarSeenHead, 2), x

let ssort = λl. let n = len l in
p0 (iter (add (mul n n) n) (step fsel) (localvars [] [] l [] 0))

Figure 3 Selection sort. We encourage the reader to try to understand the algorithm herself.

It is very interesting to note that the type of a map function defined in this way is
!j+2(Bi (Bi) (!S!j

i (S!j+1
i , while the type of a map function defined directly in STA

corresponds to !j(Bi (Bi) (S!j
i (S!j+1

i . The difference comes from the fact that in
MLSTA one iterates over natural numbers and in STA directly on the string itself.

Using this technique it is possible to program more complex functions on lists, e.g.
sorting, in particular selection sort, as shown in Fig. 3. This example uses another syn-
tactic trick: since boolean values can be freely multiplied using terms similar to cnt ≡
λb.ifte b 〈0,0〉 〈1,1〉 one does not need to worry about how many times a given boolean
variable is used in the term. Technically, sorting consists in running n phases of selecting
the largest element from unsorted remaining part of the initial string. In each phase one
needs to reverse the list twice, that is why we need n2 + n steps. It is interesting to note
that the choice of applying the cons in the same order as they appeared originally comes at
a cost of breaking symmetry of certain operations between two strings. Indeed, while it is

CSL’12

204 ML with PTIME complexity guarantees

straightforward to reverse a string from left to right (as in the rev example above), reversing
it from right to left (as is done in the third case in Fig. 3) is a bit more technical.

It is worth stressing that the simulation of a Turing Machine we present below is in fact
a paradigmatic example of a natural computation that can be performed in our language.

4 Properties of MLSTA

Many of the results in this paper can be obtained in a simpler way when we operate not just
on any derivation, but on a derivation in a special, regular form. We start with its present-
ation, which is of interest not only for technical reasons but also, as usual in such cases,
it indicates the presence of a few important tautologies (however, their further exploration
goes beyond the topic of the paper).

I Definition 1 (derivations in normal form). A derivation D of MLSTA is in normal form
when D = 〈D̂, x : A〉w with D̂ in normal form and x 6∈ FV(D̂term) or is in (m)-normal form.

A derivation D of MLSTA is in (m)-normal form when D = 〈ξx : A.〈D̂, x : A〉w, y :
!nA〉mn with D̂ in (m)-normal form and x 6∈ FV(D̂term) or is in (sp)-normal form.

A derivation D of MLSTA is in (sp)-normal form when D = 〈D̂〉sp with D̂ in (sp)-normal
form or in logical normal form.

A derivation D of MLSTA is in logical normal form when it is
xA for some variable x,
xA≤s for some variable x,
λxσ.D̂ for some variable x and D̂ in logical normal form,
λxσ.〈D̂, x : A〉w for some variable x and D̂ in logical normal form with x 6∈ FV(D̂term),
λxσ.〈ξx : A.D̂, x : !kA〉mk for some variable x and D̂ in logical normal form with x 6∈
FV(D̂term),
D1D2 where D1 is in logical normal form and D2 is in (sp)-normal form,
let x!i∀~α.B = D1 in D2 where D1 is in normal form and D2 is in logical normal form.

I Proposition 2 (properties of derivations). If Γ `MLSTA M : σ then the judgement has a
derivation in normal form.

Proof. The proof is using a special kind of reduction the normal forms of which are the
defined above normal forms. J

As a corollary we obtain a condition that says in which way we can drop a bang in the
final type of a term.

I Corollary 3 (dropping final bang). If Γ `MLSTA M : !σ then there is a context Γ′ such that
!Γ′ ⊆ Γ and Γ′ `MLSTA M : σ and for each x : τ ∈ Γ\!Γ′ we have x 6∈ FV(M).

Proof. By Prop. 2 there is a derivation of Γ `MLSTA M : !σ in normal form. We observe
that we can one by one remove the final (w) and (m) rules. At the end we have to arrive at
an (sp) rule since no logical normal form can assign a ! type to a term. J

A crucial part of the subject reduction proof is the interaction between substitutions and
the derivations. This is expressed in the following proposition.
I Proposition 4 (derivations and substitutions). If Γ ` M : A then for each substitution
U : V ⇀ TA we have U(Γ) `M : U(A).

Proof. Induction over the inference of Γ `M : A by cases according to its final rule. J

J. Chrząszcz and A. Schubert 205

Let expressions Tensor products Booleans
let x = M in N = (λx.M)N A⊗B = ∀α.(A(B (α)(α

〈·, ·〉 = λmnz.zmn

match = λpf.pf

B = ∀α.α(α(α

0 = λtf.t

1 = λtf.f

ifte = λbxy.bxy
Natural numbers
N!j = ∀α.!j(α(α)(α(α

n = λfx.f(. . . (fx) . . .) (f applied n times to x)
add = λpqsz.ps(qsz)
mul = λpqsz.p(qs)z
iter = λpfx.pfx

Strings
S!j
i = ∀α.!j(Bi (α(α)(α(α

[·; . . . ; ·] = λa1 . . . ancz.ca1(. . . (canz) . . .)
create = λnacz.n(ca)z
concat = λs1s2cz.s1c(s2cz)
len = λsfz.s(λx.f)z

Local variables (for the sake of clarity we retain abbreviations related to ⊗ and B)
(S!j
i)k �A = ∀α.!j+1(Bi (α(α)((α(α)k ⊗A

localvars = λs0 . . . sk−1qλc.〈s0c, . . . , sk−1c, q〉
pn = λv.λc.match (vc) λs0 . . . sk−1q.si for n = 0 . . . k − 1
pk = λv.match (vλx.I) λs0 . . . sk−1q.q

step =
λfvc.match (Dec vc) λc0a0b0t0 . . . ck−1ak−1bk−1tk−1q.

Enc c0 . . . ck−1(f〈〈a0, b0〉, . . . , 〈ak−1, bk−1〉, q〉)〈t0, . . . , tk−1〉, where
Dec = λvc.match (v F[c]) λs̃0 . . . s̃k−1q.

match (s̃0〈λaz.z,0i,1, λz.z〉) λc0a0b0t0. . . .

match (s̃k−1〈λaz.z,0i,1, λz.z〉) λck−1ak−1bk−1tk−1.

〈c0, a0, b0, t0, . . . , ck−1, ak−1, bk−1, tk−1, q〉
where F[c] = λaz.match z λc′a′b′t′.〈c, a,0, c′a′ ◦ t′〉
and
Enc = λc0 . . . ck−1wv.match w λh0 . . . hk−1q

′.

match h0 λa
′
0p0. . . . match hk−1 λa

′
k−1p

′
k−1.

match (Add p0c0a
′
0(. . . (Add pk−1ck−1a

′
k−1v) . . .))

λs′0 . . . s
′
k−1.〈s′0, . . . , s′k−1, q

′〉, where
Add = λp.match p CASEdlog(k+1)e[I0, . . . , Ik−1][I], where
In = λcam.match m λs0 . . . sk−1.〈s0, . . . , sn−1, c a ◦ sn, sn+1 . . . , sk−1〉, and
I = λcam.m, and

CASEw[t0, . . . , tn−1][t] =

λb0.ifte b0 CASEw−1[t0, . . . , t2w−1−1][t]
CASEw−1[t2w−1 , . . . , tn−1][t] if w > 0 and n > 2w−1

λb0.ifte b0 CASEw−1[t0, . . . , tn−1][t]
CASEw−1[][t] if w > 0 and 0 < n ≤ 2w−1

t0 if w = 0 and n = 1
λb0 . . . bw−1.t if n = 0

Figure 4 Translation of MLSTA to STA.

The proposition above makes it possible to describe the way the type instantiation op-
eration works in the context of derivations.
I Proposition 5. If ∆ ` N : A then ∆ ` N : A′ if Clos(∆, A) ≥ A′.

Proof. This is an instance of Prop. 4, since if A′ = U(A) then dom(U) ∩ FTV(∆) = ∅ and
therefore U(∆) = ∆. J

We can now combine the previous two statements and obtain the substitution lemma for
our system.

I Lemma 6 (substitution lemma). If Γ;x : !i∀α.A `MLSTA M : τ and ∆ `MLSTA N : !iA
where α 6∈ FTV(∆), then Γ; ∆ `MLSTA M [N/x] : τ

CSL’12

206 ML with PTIME complexity guarantees

Proof. The proof can be done almost in the same way as the proof of the Substitution
Lemma 2.7 in [13], i.e., by generalising the statement to many simultaneous substitutions
and proceeding by induction on the derivation by analysis of the last rule. The new/different
rules in MLSTA are (Ax), (AxC) and (let).

If the last step is (Ax) then M = x and we have x : ∀α.A ` x : B with ∀α.A ≥ B

and ∆ ` N : A where α 6∈ FTV(∆). Therefore one has ∆ ` N : B, by Prop. 5, because
Clos(∆;A) ≥ B.

It is impossible that the last step is (AxC), because the context is empty.
If the last rule is (let), the result follows easily by induction hypothesis.
Other MLSTA rules are identical to their STAB counterparts. J

As a result of the substitution lemma we obtain the subject reduction property.

I Theorem 7 (subject reduction). If Γ `MLSTAM : A andM →βδ M
′ then Γ `MLSTAM

′ : A.

5 MLSTA and PTIME

Observe that the MLSTA can easily be embedded into STA, in the same fashion as usual
ML can be embedded in System F [17, Section 3], see Fig. 4. This gives us polynomial
guarantee on the length of reductions.

I Theorem 8. Given a derivation Γ `MLSTA M : σ, the number of reductions from M

can be bounded by |M |O(d) where: |M | is the size of the term M , defined as usual with one
caveat — the size of a natural constant n is n; d is the degree of a derivation, defined as
the maximum nesting of (sp) rules in the derivation.

Proof. The translation of MLSTA into STA preserves types and degree of derivations, and
guarantees that every MLSTA reduction step is translated to a number of steps in STA.
The result of translation is bigger only by a linear factor from its original. In the end the
polynomial bound established for STA (Theorem 15 in [14]) works for MLSTA as well. J

Now, we aim at a proof that each TM in PTIME can be simulated in MLSTA by a term.
We start by a version of Lemma 16 and 17 from [14] for our built-in naturals and booleans:

I Lemma 9 (polynomials). Let P be a polynomial with positive coefficients in the variable x
of the degree deg(P). There is a term P such that `MLSTA P : !deg(P)N!1 (N!(2 deg(P)+1).

I Lemma 10 (boolean functions). Each boolean total function f : {0, 1}n → {0, 1}m for
m,n ≥ 1 can be defined by a term f typable in MLSTA as ` f : Bn(Bm.

The following theorem shows how one can encode polynomial Turing Machines in MLSTA.
For simplicity, we encode only deterministic machines which move their head (left or right)
at every step. Therefore a transition function can be encoded as δ : Σ ×Q → Σ ×Q × B,
where Σ is the alphabet, Q the set of states and the last boolean value denotes the head
move: 0 denotes ‘left’ and 1 ‘right’. Since Σ and Q are finite, there exist sufficiently large
k and k′, such that Σ ≡ Bk with 0k representing blank and Q ≡ Bk′ . Hence, according to
Lemma 10, there exists δ : Bk ⊗ Bk′ (Bk ⊗ Bk′ ⊗ B representing δ.

I Theorem 11. Let M be a Turing Machine. There is an MLSTA term MM such that
`MLSTA MM : !dSk (B for some d where for each input s the termMM s reduces to 0 using
R(|s|) of reductions with R being a polynomial of degree O(d) if and only if M accepts s.
Moreover, MM can be constructed fromM in polynomial time.

J. Chrząszcz and A. Schubert 207

Proof. LetM be a deterministic TM with alphabet Σ ≡ Bk, the set of states Q ≡ Bk′ and
transition function δ. Let S be a polynomial defining the maximal length of auxiliary tape
of M for all input strings of a given length. Let T be a polynomial defining the maximal
number of steps needed for all input strings of a given length. It is enough to construct the
space using S, the time using T and combine it all into the term MM equal

λs.let time = T (len s) in

let tape0 = concat s (create (S (len s)) 0k) in

let conf0 = localvars [] tape0 q0 in

is_acc (p2 (iter time (step Fδ) conf0))

where is_acc is a function of type Q (B returning 0 if the state it receives as input is
accepting and Fδ is a simple wrapper around δ to match the input specification of step.

Fδ = λ((al,bl),(a,b),q). match (δ(a,q)) λa’q’d. ifte d ((al,1),(a’,1),q’)
ifte bl ((a’,0),(al,0),q’) ((al,0),(a’,0),q’)

The degree of the type derivation of MM, the degree of terms MM s for any s and the
parameter d depend in a linear way on the degree of the polynomials T and S. By Theorem 8
each term MM s can be reduced to a normal form in the number of reductions bound by a
polynomial of degree O(d). J

6 Decidability of typechecking with ML polymorphism

MLSTA enjoys decidable typechecking, type inference and typability problems. To prove
this we adapt the algorithm W also known as Hindley-Milner algorithm following [29].

The type checking problem (TCP) is the problem: given a term M , a type A, and a
context Γ, is Γ `M : A derivable? The type inference problem (TIP) is the problem: given
a term M and a context Γ, is there a type A such that Γ `M : A is derivable? Finally, the
typability problem (TP) is the problem: given a term M , are there a context Γ and a type
A such that Γ ` M : A is derivable? We describe the way the problems can be solved with
W -lin in the proof of Theorem 16.

The basic building block of the algorithm is the procedure of unification [28]. To make use
of the procedure we divide the type variables V into two infinite disjoint parts Vv ∪ Vc = V.
The set Vv contains substitutable type variables, called simply type variables below, and Vc
contains variables that serve the role of constants in unification, called constants below.
A substitution U that substitutes expressions on type variables (e.g. α, β etc.) is a unifier
of A .= A′ when U(A) = U(A′). It is important to note that elements of Vv do not occur in
the substitution applied to obtain an instance of a type in rules (Ax) and (AxC) in Fig. 1.
This unification enjoys the most general unifier property, but we cannot use it directly here.
Therefore we provide a special version of the most general unifier in Def. 13 below.

To express the procedure for typechecking, type inference, or typability we need a few
technical definitions. We say that Γ is full with regard to a termM when dom(Γ) = FV(M)
this fact is denoted by Full(Γ;M). We say that Γ is linear with regard to a term M

when for each x : σ ∈ Γ the variable x occurs freely exactly once in M . This is denoted by
Linear(Γ;M). The set of algebraic constants defined in Fig. 1 is denoted as ConstMLSTA. The
algorithm we study here is presented in Fig. 5. The input for the algorithm is an environment
Γ, a term M , and a type A. The output is a substitution U and a set of equations E. The
situation that U,E are a valid output for Γ,M,A is denoted as Γ `Wl M : A ; (U,E).

CSL’12

208 ML with PTIME complexity guarantees

β0, . . . , βn are fresh c : ∀α1 · · ·αn.A ∈ ConstMLSTA

` c : ∅, N �A[β1/α1, . . . , βn/αn] ; (∅, {N .= 0})
(AxC)

x : N �A ` x : N �A; (∅, {N .= 0})
(Ax) Γ `M : N2 �A2 ; (U,E) x 6∈ FV(M)

Γ, x : N1 �A1 `M : N2 �A2 ; (U,E) (w)

Γ, x : α1 � α2 `M : α3 � α4 ; (U1, E1) α0, α1, α2, α3, α4 are fresh
mgu({U1(α0 � ((α1 � α2)(α4)) .= U1(N �A)}) = (U2, E2)

E′2 = E1 ∪ E2 ∪ {N
.= 0, α3

.= 0} Full(Γ;λx.M) Linear(Γ;λx.M)
Γ ` λx.M : N �A; (U2 ◦ U1, E′2) ((I)

Γ `M : α1 � ((α2 � α3)(N �A) ; (U1, E1) α1, α2, α3, α
′
2, α
′
3 are fresh

{x : α′x � αx | x : Nx �Ax ∈ ∆, α′x, αx are fresh} `M ′ : α′2 � α′3 ; (U2, E2)
mgu({U1(Ax) .= U2(αx) | x : Ax ∈ ∆} ∪ {U1(α2 � α3) .= U2(α′2 � α′3)}) = (U3, E3)

E4 = E1 ∪ E2 ∪ E3∪
{N .= 0, α1

.= 0} ∪ {Nx
.= α′2 + βx | x : Nx �Ax ∈ ∆, βx are fresh}

Γ#∆ Full(Γ,∆;MM ′) Linear(Γ,∆;MM ′) Full(Γ;M) Full(∆;M ′)
Γ,∆ `MM ′ : N �A; (U3 ◦ U2 ◦ U1, E4) ((E)

Γ, x1 : α� α′, . . . , xn : α� α′ `M : α2 � α′2 ; (U1, E1)
mgu(U1(α′′ � α′) .= U1(N1 �A1), U1(α2 � α′2) .= U1(N2 �A2)) = (U2, E2)

E3 = E1 ∪ E2 ∪ {α+ 1 .= N1} α, α′, α2, α
′
2, α
′′ are fresh

Full(Γ, x : N1 �A1;M [x/x1, . . . , x/xn]) Full(Γ, x1 : α� α′, . . . , xn : α� α′;M)
Γ, x : N1 �A1 `M [x/x1, . . . , x/xn] : N2 �A2 ; (U2 ◦ U1, E3) (m)

Γ `M1 : α1 � α2 ; (U1, E1) α1, α2, β1 . . . , βn are fresh
U1(∆), x1 : β1 �B1, . . . , xn : βn �Bn `M ′2 : U1(N ′ �A) ; (U2, E2)

M2 = M ′2[x/x1, . . . , x/xn] Fresh(B0, Bi) for i = 1, . . . , n B0 = Clos(U1(Γ);U1(α2))
E3 = E1 ∪ E2 ∪ {βi + ε

.= α1 + β′i | i = 1, . . . , n, β′i are fresh}∪
{Nx

.= α1 + βx | x : Nx �Ax ∈ Γ, βx are fresh} ε = [n > 1]
Γ#∆ Full(Γ,∆; let x = M1 in M2) Linear(Γ,∆; let x = M1 in M2)

Γ,∆ ` let x = M1 in M2 : N �A; (U2 ◦ U1, E3) (let)

Figure 5 The algorithm W -lin, ([n > 1] is 1 when n > 1 and 0 otherwise).

The intent is that in case this relation holds then for each solution U ′ of E the relation
U ◦ U ′(Γ) `MLSTA M : U ◦ U ′(A) holds as well. This property does not hold directly, but it
is spelled out in full technical detail by Lemma 15(4).

The actual algorithm works on types in a different syntax defined by this grammar:

A ::= N � C N ::= α | N1 +N2 | n
C ::= α | A1 (A2 | A1 ⊗A2 | S!j

i | (S
!j
i)k �A | N!j

s ::= N � ∀~α.A

where n, i, j ∈ N. The set of types generated from the nonterminal A here is denoted as
T �A , similarly generated from N is denoted as T �N , and from C — T �C , and the set of type
schemes T �s . We use a general term �-types to refer to elements of T �A . The elements
generated from N are supposed to be expressions over natural numbers. We are free to
perform any operations as soon as they are correct. For example the expression 3 + 4 +α is
understood to be equal to 7 +α. We divide the set of type variables Vv = Vvl ∪Vvn into two
disjoint sets Vvl for type variables that are used to generate T �C and Vvn for type variables
that are use to generate T �N . We impose additional restriction on the substitutions below
that variables in Vvl can be replaced by types from T �C only and variables in Vvn by types

J. Chrząszcz and A. Schubert 209

from T �N only. Types defined in (1) as Tσ can now be translated to T �A and back using the
following transformations:

I Definition 12 (from types to �-types and back). We need a helper operation
We define now the transformation (·)• : Tσ → T �A
(!iα)• = (i+ α′)� α, where i ≥ 0, α′ ∈ Vvn is fresh,
(!i(A�B))• = (i+α)� ((A)•� (B)•), where i ≥ 0, α ∈ Vvn is fresh and � ∈ {(,⊗,�},
(!iH)• = (i+α)�H where i ≥ 0, α ∈ Vvn is fresh andH ∈ {S!j

i |, i, j ∈ N}∪{N!j | j ∈ N}.

The transformation back J·K : T �A → Tσ is defined as
Jα� α′K = α′,
J(n)�BK =!nJBK, where !0A = A,
Jα� (A�B)K = JAK� JBK, where � ∈ {(,⊗,�},
Jα�HK = H where α ∈ Vvn and H ∈ {S!j

i |, i, j ∈ N} ∪ {N!j | j ∈ N}.
Note that the translation back is correct only in case the translation in the context Jα�(A(
N�C)K is always applied so that N = 0. A substitution S is proper wrt. a set of expressions
E when S(N) = 0 in the subexpressions of the form α� (A(N �C) of expressions in E.
The operations (·)• and J·K extend to environments so that (Γ)∗ = {x : (A)∗ | x : A ∈ Γ}
where (·)∗ ∈ {(·)•, J·K}.

The intuition behind the expressions presented here is that they make possible to more
explicitly control the ! modalities. These must be, however, controlled in a non-standard
way which cannot be handled with first-order unification techniques. The unification has
the usual first-order ingredient, but to control the numbers of ! in ((E) and (let) rules we
need a sort of second-order operation that can handle the presence of (sp) rules to obtain
the type of the argument (see the definition of E4 in the rule of ((E) in Fig. 5). The
number cannot be handled locally since an occurrence of a variable in a different part of a
derivation may require a higher number of (sp) that is immediately visible in the currently
handled rule. Therefore, we split unification into two parts, i.e. one tractable by first-order
techniques and one that operates on numerals and must be solved globally after the global
information on the use of the (sp) rule is gathered. This separation requires a more subtle
definition of the most general unifier operation. This is presented in the definition below.

I Definition 13 (most general unification pair). The operation mgu(·) : E × Subst→ Subst×
EN ∪ {fail}, where E is the set of sets of pairs A .= A′ with A,A′ ∈ T �A ∪ T

�
B , Subst is the

set of substitutions Vvl ⇀ T �C , and EN is the set of sets of pairs B .= B′ with B,B′ ∈ T �B ,
is defined inductively as follows:

mgu({A1 �A′1
.= A2 �A′2} ∪ E,U0) = fail when � 6= �,

mgu({N1 �A1
.= N2 �A2} ∪ E,U0) = fail when mgu({A1

.= A2} ∪ E,U0) = fail,
mgu({N1 � A1

.= N2 � A2} ∪ E,U0) = (U,E′ ∪ {N1
.= N2}) when mgu({A1

.= A2} ∪
E,U0) = (U,E′),
mgu({A1 (N1 � A′1

.= A2 (N2 � A′2} ∪ E,U0) = fail when mgu({A1
.= A2, A

′
1
.=

A′2} ∪ E,U0) = fail,
mgu({A1 (N1 � A′1

.= A2 (N2 � A′2} ∪ E,U0) = (U,E′ ∪ {N1
.= 0, N2

.= 0}) when
mgu({A1

.= A2, A
′
1
.= A′2} ∪ E,U0) = (U,E′),

mgu({N1�A1�N ′1�A′1
.= N2�A2�N ′2�A′2}∪E,U0) = fail when mgu({A1

.= A2, A
′
1
.=

A′2} ∪ E,U0) = fail for � ∈ {⊗,�},
mgu({N1 � A1 � N ′1 � A′1

.= N2 � A2 � N ′2 � A′2} ∪ E,U0) = (U,E′ ∪ {N1
.= 0, N2

.=
0, N ′1

.= 0, N ′2
.= 0}) when mgu({A1

.= A2, A
′
1
.= A′2} ∪ E,U0) = (U,E′) for � ∈ {⊗,�},

mgu({C1
.= C2} ∪ E,U0) = fail when C1, C2 are different type constants

mgu({C .= C} ∪ E,U0) = mgu(E,U0) when C is a type constant,

CSL’12

210 ML with PTIME complexity guarantees

mgu({α .= A} ∪ E,U0) = fail when A 6= α and α occurs in A,
mgu({α .= A}∪E,U0) = mgu(E[A/α], [A/α]◦U0) when A = α or α does not occur in A,
mgu(∅, U0) = (U0, ∅).

By default mgu(E) = (U,E) where mgu(E, ∅) = (U ′, E) and U = R ◦ U ′ where R is a
renaming of all variables in dom(U) to fresh variables.

This most general unification pair enjoys the following natural property:
I Proposition 14 (correctness and completness of mgu(·)).

If mgu(E) = (U,E′) and E′ is solvable with U ′ proper wrt. E then for each A .= A′ ∈ E
where A,A′ ∈ T �A ∪ T

�
B it holds that U ′(U(A)) = U ′(U(A′)).

If there is U proper wrt. E such that Z(U(A)) = Z(U(A′)) for each A .= A′ ∈ E where
A,A′ ∈ T �A ∪ T

�
B and Z(α) = 0 for each α ∈ Vvn then mgu(E) = (U1, E1) and there is a

substitution U ′ : Vvl ⇀ T �A and a solution U ′′ of E1 such that for each α ∈ dom(U) the
equality Z(U(α)) = Z(U ′(U1(U ′′(α)))) holds.

Proof. A standard proof is left to the reader. J

The main technical lemma that describes the operation of W -lin looks as follows.

I Lemma 15 (key lemma).
1. If Γ `M : A; (U1, E1) then FTV(Γ, A) ∩ FTV({U1(α)|α ∈ dom(U1)}) = ∅.
2. For any term M and context Γ at most one rule in Fig. 5 can be used.
3. For any term M , context Γ, and type σ if a rule in Fig. 5 is applied then for each of the

premises Γ′ `M ′ : σ′ and x : τ ∈ Γ′ we have τ = B � C.
4. If W -lin started with (Γ)• ` M : (A)• returns (Γ)• ` M : (A)• ; (U1, E1), and E1

is unifiable with U#
1 then for U = U#

1 ◦ U1 it holds that JU(Γ)K `MLSTA M : JU(A)K.
Moreover, the number of rules in the run of W -lin is the same as the number of rules
different than (sp) in the resulting derivation in MLSTA.

5. Let Γ be a context and M a term. If there is a substitution U such that U(Γ) `MLSTA
M : U(A) then the algorithm W -lin infers (Γ)• ` M : (A)• ; (U1, E1), the set E1 is
unifiable by U#

1 , and there is a substitution U ′ such that for each variable β ∈ dom(U)
Z((U(β))•) = Z(U ′(U#

1 (U1(β)))). Moreover, the number of rules other than (sp) in
a derivation in MLSTA is the same as the number of rules different than (sp) in the
resulting run of W -lin.

6. For each Γ,M,A the algorithm W -lin terminates.

I Theorem 16 (decidability of TCP, TIP, and TP). The TCP, TIP, and TP for the system
MLSTA are decidable.

Proof. We use here the algorithm W -lin. Note that is always terminating by Lemma 15(6).
In case of TCP we are given a context Γ, a termM , and a type σ. We may assume that σ

does not start with ! by Corollary 3. Then we applyW -lin with the input (Γ)• `M : (σ)•. In
case this is derivable we obtain by Lemma 15(5) a pair (U,E) where E is unifiable with some
U#. We now see that Z(∅(U#(U((Γ)•))) `M : Z(∅(U#(U((σ)•)))) is derivable in MLSTA,
but this is exactly the initial judgement as there are no variables in Γ, σ. In case this is not
derivable by W -lin the initial judgement cannot be derivable in MLSTA by Lemma 15(4).

In case of TIP and TP we proceed in the same way, but we introduce substitutable
variables for types the existence of which we have to discover, namely for the resulting type
in case of TIP, and for the resulting type and the types in the context in case of TP. In
case of TP we have to, in addition, guess which variables in the context should have type
schemes. These variables must be packed by suitable let expression, essentially to manage
the polymorphism in the way compatible with W -lin. J

J. Chrząszcz and A. Schubert 211

7 Conclusions and Further Work

The system MLSTA we propose here can be viewed, similarly as ML in relation to System F,
as a kind of interface over the system with full polymorphism, STA. The system offers
a reasonable polymorphism with algebraic data structures such as naturals, booleans, and
strings as well as recursion over the data types. All these features have their impredicative
counterparts in STA. This view suggests a number of enhancements that can be done.
One could develop the full theory of algebraic data types in our MLSTA, in particular
polymorphic lists or polymorphic binary trees. Another possible improvement is to introduce
more flexibility in the use of available constants. Currently, the programmer must provide
the numerical parameters such as j1, j2 in add that express the level of natural numbers the
addition operates in. One can extend our rule (AxC) to include the automatic calculation
of the indexes. At last one can try to exploit other systems such as STA+ or STAB [12] and
give their ML-like versions.

References

1 Andrea Asperti and Luca Roversi. Intuitionistic light affine logic. ACM Trans. Comput.
Logic, 3:137–175, January 2002.

2 Patrick Baillot, Marco Gaboardi, and Virgile Mogbil. A polytime functional language from
light linear logic. In Andrew D. Gordon, editor, Programming Languages and Systems, 19th
European Symposium on Programming, ESOP 2010, volume 6012 of LNCS, pages 104–124.
Springer-Verlag, 2010.

3 Patrick Baillot and Martin Hofmann. Type inference in intuitionistic linear logic. In Pro-
ceedings of the 12th International ACM SIGPLAN Symposium on Principles and Practice
of Declarative Programming, PPDP ’10, pages 219–230. ACM, 2010.

4 Patrick Baillot and Kazushige Terui. Light types for polynomial time computation in
lambda calculus. Information and Computation, 207:41–62, January 2009.

5 Stephen Bellantoni and Stephen Cook. A new recursion-theoretic characterization of the
polytime functions. Computational Complexity, 2:97–110, December 1992.

6 Jacek Chrząszcz and Aleksy Schubert. The role of polymorphism in the characterisation
of complexity by soft types. In Piotr Sankowski and Filip Murlak, editors, Mathematical
Foundations of Computer Science — 36th International Symposium, MFCS 2011, volume
6907 of LNCS, pages 219–230. Springer-Verlag, 2011.

7 Alan Cobham. The intrinsic computational difficulty of functions. In Proceedings of the
1964 International Congress for Logic, Methodology, and the Philosophy of Science, pages
24–30. North-Holland, 1964.

8 Paolo Coppola, Ugo Dal Lago, and Simona Ronchi Della Rocca. Light logics and the
call-by-value lambda calculus. Logical Methods in Computer Science, 4(4), 2008.

9 Ronald Fagin. Contriburions to the model theory of‘finire srructures. PhD thesis, University
of California at Berkeley, 1973.

10 Marco Gaboardi and Simona Ronchi della Rocca. Type inference for a polynomial lambda
calculus. In Stefano Berardi, Ferruccio Damiani, and Ugo De’Liguoro, editors, Types for
Proofs and Programs, International Conference, TYPES 2008, volume 5497 of LNCS, pages
136–152. Springer-Verlag, 2009.

11 Marco Gaboardi, Jean-Yves Marion, and Simona Ronchi Della Rocca. A logical account of
PSPACE. In George C. Necula and Philip Wadler, editors, Proceedings of the 35th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL’08,
pages 121–131. ACM, 2008.

CSL’12

212 ML with PTIME complexity guarantees

12 Marco Gaboardi, Jean-Yves Marion, and Simona Ronchi Della Rocca. Soft linear logic and
polynomial complexity classes. ENTCS, 205:67–87, April 2008.

13 Marco Gaboardi, Jean-Yves Marion, and Simona Ronchi Della Rocca. An implicit charac-
terization of pspace. ACM Trans. Comput. Logic, 13(2):18:1–18:36, April 2012.

14 Marco Gaboardi and Simona Ronchi Della Rocca. A soft type assignment system for λ-
calculus. In Jacques Duparc and Thomas A. Henzinger, editors, Computer Science Logic,
21st International Workshop, CSL 2007, 16th Annual Conference of the EACSL, volume
4646 of LNCS, pages 253–267. Springer-Verlag, 2007.

15 Gemalto. Java CardTM & STK Applet Development Guidelines. Gemalto, 2009.
16 Jean-Yves Girard. Light linear logic. Information and Computation, 143:175–204, June

1998.
17 Robert Harper and John C. Mitchell. On the type structure of Standard ML. ACM Trans.

Program. Lang. Syst., 15(2):211–252, April 1993.
18 Neil Immerman. Languages that capture complexity classes. SIAM Journal of Computing,

16:760–778, August 1987.
19 Yves Lafont. Soft linear logic and polynomial time. Theoretical Computer Science, 318:163–

180, June 2004.
20 Ugo Dal Lago and Patrick Baillot. On light logics, uniform encodings and polynomial time.

Mathematical Structures in Comp. Sci., 16(4):713–733, August 2006.
21 Ugo Dal Lago and Ulrich Schöpp. Functional programming in sublinear space. In An-

drew D. Gordon, editor, Programming Languages and Systems, 19th European Symposium
on Programming, ESOP 2010, volume 6012 of LNCS, pages 205–225. Springer-Verlag, 2010.

22 Ugo Dal Lago and Ulrich Schöpp. Type inference for sublinear space functional program-
ming. In Kazunori Ueda, editor, Programming Languages and Systems — 8th Asian Sym-
posium, APLAS 2010, volume 6461 of LNCS, pages 376–391. Springer-Verlag, 2010.

23 Daniel Leivant. Stratified functional programs and computational complexity. In Mary
S. Van Deusen and Bernard Lang, editors, Proceedings of the 20th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’93, pages 325–333.
ACM, 1993.

24 Harry Mairson and Kazushige Terui. On the computational complexity of cut-elimination
in linear logic. In Carlo Blundo and Cosimo Laneve, editors, Theoretical Computer Science,
8th Italian Conference, ICTCS 2003, volume 2841 of LNCS, pages 23–36. Springer-Verlag,
2003.

25 François Maurel. Nondeterministic light logics and NP-time. In Martin Hofmann, editor,
Typed Lambda Calculi and Applications, 6th International Conference, TLCA 2003, volume
2701 of LNCS, pages 241–255. Springer-Verlag, 2003.

26 Wojciech Mostowski. Rigorous development of JavaCard applications. In T. Clark,
A. Evans, and K. Lano, editors, Proceedings of Fourth Workshop on Rigorous Object-
Oriented Methods, London, 2002.

27 Christos H. Papadimitriou. A note on the expressive power of Prolog. Bulletin of the
EATCS, pages 21–22, 1985.

28 J. Robinson. A machine-oriented logic based on the resolution principle. Journal of the
ACM, 12(1):23–41, 1965.

29 David A. Schmidt. The Structure of Typed Programming Languages. The MIT Press, 1994.
30 Ulrich Schöpp. Stratified bounded affine logic for logarithmic space. In Proceedings of the

22nd Annual IEEE Symposium on Logic in Computer Science, LICS 2007, pages 411–420.
IEEE Computer Society, 2007.

Definability of linear equation systems over groups
and rings∗

Anuj Dawar1, Erich Grädel2, Bjarki Holm1, Eryk Kopczynski3, and
Wied Pakusa2

1 University of Cambridge Computer Laboratory
{anuj.dawar,bjarki.holm}@cl.cam.ac.uk

2 Mathematical Foundations of Computer Science, RWTH Aachen University
{graedel,pakusa}@logic.rwth-aachen.de

3 Institute of Informatics, University of Warsaw
erykk@mimuw.edu.pl

Abstract
Motivated by the quest for a logic for PTIME and recent insights that the descriptive complexity
of problems from linear algebra is a crucial aspect of this problem, we study the solvability of linear
equation systems over finite groups and rings from the viewpoint of logical (inter-)definability.
All problems that we consider are decidable in polynomial time, but not expressible in fixed-
point logic with counting. They also provide natural candidates for a separation of polynomial
time from rank logics, which extend fixed-point logics by operators for determining the rank of
definable matrices and which are sufficient for solvability problems over fields.

Based on the structure theory of finite rings, we establish logical reductions among various
solvability problems. Our results indicate that all solvability problems for linear equation systems
that separate fixed-point logic with counting from PTIME can be reduced to solvability over
commutative rings. Further, we prove closure properties for classes of queries that reduce to
solvability over rings. As an application, these closure properties provide normal forms for logics
extended with solvability operators.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes, F.4.1 Math. Logic

Keywords and phrases finite model theory, logics with algebraic operators

Digital Object Identifier 10.4230/LIPIcs.CSL.2012.213

1 Introduction

The quest for a logic for PTIME [10, 13] is one of the central open problems in both finite
model theory and database theory. Specifically, it asks whether there is a logic in which a
class of finite structures is expressible if, and only if, membership in the class is decidable in
deterministic polynomial time.

Much of the research in this area has focused on the logic FPC, the extension of inflationary
fixed-point logic by counting terms. In fact, FPC has been shown to capture polynomial time
on many natural classes of structures, including planar graphs and structures of bounded
tree-width [12, 13, 15]. Most recently, it was shown by Grohe [14] that FPC captures

∗ The first and third authors were supported by EPSRC grant EP/H026835/1 and the fourth and fifth
authors were supported by ESF Research Networking Programme GAMES. The fourth author was also
partially supported by the Polish Ministry of Science grant N N206 567840. An extended version of this
paper is available at http://arxiv.org/abs/1204.3022.

© Anuj Dawar, Erich Grädel, Bjarki Holm, E. Kopczynski, and W. Pakusa;
licensed under Creative Commons License NC-ND

Computer Science Logic 2012 (CSL’12).
Editors: Patrick Cégielski, Arnaud Durand; pp. 213–227

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2012.213
http://arxiv.org/abs/1204.3022
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

214 Definability of linear equation systems over groups and rings

polynomial time on all classes of graphs with excluded minors, a result that generalises most
of the previous partial capturing results. On the other side, already in 1992, Cai, Fürer
and Immerman [6] constructed a query on a class of finite graphs that can be decided in
polynomial time, but which is not definable by any sentence of FPC. But while this CFI
query, as it is now called, is very elegant and has led to new insights in many different
areas, it can hardly be called a natural problem in polynomial time. Therefore, it was often
remarked that possibly all natural polynomial-time properties of finite structures could be
expressed in FPC. However, this hope was eventually refuted in a strong sense by Atserias,
Bulatov and Dawar [3] who proved that the very important problem of solvability of linear
equation systems (over any fixed finite Abelian group) is not definable in FPC and that,
indeed, the CFI query reduces to this problem. This motivates the systematic study of the
relationship between finite model theory and linear algebra, and suggests that operators
from linear algebra could be a source of new extensions to fixed-point logic, in an attempt
to find a logical characterisation of PTIME. In [8], Dawar et al. pursued this direction of
study by adding operators for expressing the rank of definable matrices over finite fields to
first-order logic and fixed-point logic. They showed that fixed-point logic with rank operators
(FPR) can define not only the solvability of linear equation systems over any finite field, but
also the CFI query and essentially all other properties that were known to separate FPC
from PTIME. However, although FPR is strictly more expressive than FPC and to date
no examples are known to separate PTIME from FPR, it seems rather unlikely that FPR
suffices to capture PTIME on the class of all finite structures.

A natural class of problems that might witness such a separation arises from linear
equation systems over finite domains other than fields. Indeed, the results of Atserias,
Bulatov and Dawar [3] imply that FPC fails to express the solvability of linear equation
systems over any finite ring. On the other side, it is known that linear equation systems
over finite rings can be solved in polynomial time [1], but it is unclear whether any notion
of matrix rank is helpful for this purpose. We remark in this context that there are several
non-equivalent notions of matrix rank over rings, but both the computability in polynomial
time and the relationship to linear equation systems remains unclear. Thus, rather than
matrix rank, the solvability of linear equation systems could be used directly as a source of
operators (in the form of generalised quantifiers) for extending fixed-point logics.

Instead of introducing a host of new logics, with operators for various solvability problems,
we set out here to investigate whether these problems are inter-definable. In other words,
are they reducible to each other within FPC? Clearly, if they are, then any logic that
generalises FPC and can define one, can also define the others. We thus study relations
between solvability problems over (finite) rings, fields and Abelian groups in the context of
logical many-to-one and Turing reductions, i.e., interpretations and generalised quantifiers.
In this way, we show that solvability both over Abelian groups and over arbitrary (possibly
non-commutative) rings reduces to solvability over commutative rings. We also show that
solvability over commutative rings reduces to solvability over local rings, which are the basic
building blocks of finite commutative rings. Finally, in the other direction, we show that
solvability over rings endowed with a linear order and solvability over k-generated local rings,
i.e. local rings for which the maximal ideal is generated by k elements, reduces to solvability
over cyclic groups of prime-power order. These results indicate that all solvability problems
for linear equation systems that separate FPC from PTIME can be reduced to solvability
over commutative rings. Further, we prove closure properties for classes of queries that
reduce to solvability over rings, and establish normal forms for first-order logic extended
with operators for solvability over finite fields.

A. Dawar, E. Grädel, B. Holm, Eryk Kopczynski, and Wied Pakusa 215

2 Background on logic and algebra

Throughout this paper, all structures (and in particular, all algebraic structures such as
groups, rings and fields) are assumed to be finite. Furthermore, it is assumed that all groups
are Abelian, unless otherwise noted.

2.1 Logic and structures

The logics we consider in this paper include first-order logic (FO) and inflationary fixed-point
logic (FP) as well as their extensions by counting terms, which we denote by FOC and
FPC, respectively. We also consider the extension of first-order logic with operators for
deterministic transitive closure, which we denote by DTC. For details see [9, 10].

A vocabulary τ is a finite sequence of relation and constant symbols (R1, . . . , Rk, c1, . . . , cl)
in which every Ri has an arity ri ≥ 1. A τ -structure A = (D(A), RA

1 , . . . , R
A
k , c

A
1 , . . . , c

A
l)

consists of a non-empty set D(A), called the domain of A, together with relations RA
i ⊆

D(A)ri and constants cA
j ∈ D(A) for each i ≤ k and j ≤ l. Given a logic L and a vocabulary

τ , we write L[τ] to denote the set of τ -formulas of L. A τ -formula φ(~x) with | ~x | = k defines
a k-ary query that takes any τ -structure A to the set φ(~x)A := {~a ∈ D(A)k | A |= φ[~a]}.

Lindström quantifiers and extensions. Let σ = (R1, . . . , Rk) be a vocabulary and
consider a class K of σ-structures that is closed under isomorphism. With K we associate a
Lindström quantifier QK whose type is the tuple (r1, . . . , rk). For a logic L, we define the ex-
tension L(QK) by adding rules for constructing formulas of the kind QK~x1 . . . ~xk . (φ1, . . . , φk),
where φ1, . . . , φk are formulas and each ~xi has length ri. The semantics of the quantifier QK
is defined such that A |= QK~x1 . . . ~xk . (φ1, . . . , φk) if (D(A), φ1(~x1)A, . . . , φk(~xk)A) ∈ K as
a σ-structure (see [18, 20]). Similarly we can consider the extension of L by a collection Q of
Lindström quantifiers. The logic L(Q) is defined by adding a rule for constructing formulas
with Q, for each Q ∈ Q, and the semantics is defined by considering the semantics for each
quantifier Q ∈ Q, as above. For m ≥ 1, we write Km to denote the m-ary vectorisation of K.
If Qm is the Lindström quantifier associated with Km then we write 〈QK〉 := {Qm | m ∈ N}
to denote the vectorised sequence of Lindström quantifiers associated with K (see [7]).

Interpretations and logical reductions. Consider signatures σ and τ and a logic L. An
m-ary L-interpretation of τ in σ is a sequence of formulas of L in vocabulary σ consisting
of: (i) a formula δ(~x); (ii) a formula ε(~x, ~y); (iii) for each relation symbol R ∈ τ of arity k,
a formula φR(~x1, . . . , ~xk); and (iv) for each constant symbol c ∈ τ , a formula γc(~x), where
each ~x, ~y or ~xi is an m-tuple of free variables. We call m the width of the interpretation. We
say that an interpretation I associates a τ -structure I(A) = B to a σ-structure A if there is
a surjective map h from the m-tuples δ(~x) = {~a ∈ D(A)m | A |= δ[~a]} to B such that:

h(~a1) = h(~a2) if, and only if, A |= ε[~a1,~a2];
RB(h(~a1), . . . , h(~ak)) if, and only if, A |= φR[~a1, . . . ,~ak]; and
h(~a) = cB if, and only if, A |= γc[~a].

I Definition 1 (Logical reductions). Let C be a class of σ-structures and D a class of
τ -structures closed under isomorphism.

C is said to be L-many-to-one reducible to D (C ≤L D) if there is an L-interpretation I of
τ in σ such that for every σ-structure A it holds that A ∈ C if, and only if, I(A) ∈ D.
C is said to be L-Turing reducible to D (C ≤L-T D) if C is definable in L(〈QD〉). �

CSL’12

216 Definability of linear equation systems over groups and rings

2.2 Rings and systems of linear equations
We recall some definitions from commutative and linear algebra, assuming that the reader
has knowledge of basic algebra and group theory (for further details see Atiyah et al. [2]).
For m ≥ 2, we write Zm to denote the ring of integers modulo m.

Commutative rings. Let (R, ·,+, 1, 0) be a commutative ring. An element x ∈ R is a unit
if xy = yx = 1 for some y ∈ R and we denote by R× the set of all units. Moreover, we say
that y divides x (written y | x) if x = yz for some z ∈ R. An element x ∈ R is nilpotent if
xn = 0 for some n ∈ N, and we call the least such n ∈ N the nilpotency of x. The element
x ∈ R is idempotent if x2 = x. Clearly 0, 1 ∈ R are idempotent elements, and we say that an
idempotent x is non-trivial if x /∈ {0, 1}. Two elements x, y ∈ R are orthogonal if xy = 0.

We say that R is a principal ideal ring if every ideal of R is generated by a single element.
An ideal m ⊆ R is called maximal if m 6= R and there is no ideal m′ (R with m (m′. A
commutative ring R is local if it contains a unique maximal ideal m. We often consider chain
rings that are both local and principal. For example, all prime rings Zpn are chain rings and
so too are all finite fields. More generally, a k-generated local ring is a local ring for which
the maximal ideal is generated by k elements. See McDonald [19] for further background.

I Remark. When we speak of a “commutative ring with a linear order”, then in general the
ordering does not respect the ring operations (cf. the notion of ordered rings from algebra).

Systems of linear equations. We consider systems of linear equations over groups and
rings whose equations and variables are indexed by arbitrary sets, not necessarily ordered.
In the following, if I, J and X are finite and non-empty sets then an I × J matrix over X is
a function A : I × J → X. An I-vector over X is defined similarly as a function b : I → X.

A system of linear equations over a group G is a pair (A,b) with A : I × J → {0, 1} and
b : I → G. By viewing G as a Z-module (i.e. by defining the natural multiplication between
integers and group elements respecting 1 ·g = g, (n+1) ·g = n ·g+g, and (n−1) ·g = n ·g−g),
we write (A,b) as a matrix equation A · x = b, where x is a J-vector of variables that range
over G. The system (A,b) is said to be solvable if there exists a solution vector c : J → G

such that A · c = b, where we define multiplication of unordered matrices and vectors in
the usual way by (A · c)(i) =

∑
j∈J A(i, j) · c(j) for all i ∈ I. We represent linear equation

systems over groups as finite structures over the vocabulary τles-g := {G,A, b}∪ τgroup, where
τgroup := {+, e} denotes the language of groups, G is a unary relation symbol (identifying
the elements of the group) and A, b are two binary relation symbols.

Similarly, a system of linear equations over a commutative ring R is a pair (A,b) where A
is an I × J matrix with entries in R and b is an I-vector over R. As before, we usually write
(A,b) as a matrix equation A · x = b and say that (A,b) is solvable if there is a solution
vector c : J → R such that A · c = b. In the case that the ring R is not commutative, we
represent linear systems in the form Al · x + x ·Ar = b.

We consider three different ways to represent linear systems over rings as relational structures.
For simplicity, we restrict to commutative rings here. Firstly, we consider the case where
the ring is part of the structure. Let τles-r := {R,A, b} ∪ τring, where τring = {+, ·, 1, 0} is
the language of rings, R is a unary relation symbol (identifying the ring elements), and A
and b are ternary and binary relation symbols, respectively. Then a finite τles-r-structure S
describes the linear equation system (AS,bS) over the ring RS = (RS,+S, ·S). Secondly,
we consider a similar encoding but with the additional assumption that the elements of the
ring (and not the equations or variables of the equation systems) are linearly ordered. Such
systems can be seen as finite structures over the vocabulary τ6les-r := τles-r ∪ {6}. Finally, we

A. Dawar, E. Grädel, B. Holm, Eryk Kopczynski, and Wied Pakusa 217

consider linear equation systems over a fixed ring encoded in the vocabulary: for every ring R,
we define the vocabulary τles(R) := {Ar, br | r ∈ R}, where for each r ∈ R the symbols Ar

and br are binary and unary, respectively. A finite τles(R)-structure S describes the linear
equation system (A,b) over R where A(i, j) = r if, and only if, (i, j) ∈ AS

r and similarly
for b (assuming that the AS

r form a partition of I × J and that the bS
r form a partition of I).

Finally, we frequently say that two linear equation systems S and S′ over a common
domain X are equivalent if either both systems are solvable over X or neither system is
solvable over X.

3 Solvability problems over different algebraic domains

It follows from the work of Atserias, Bulatov and Dawar [3] that FPC cannot express solvability
of linear equation systems (‘solvability problems’) over any class of (finite) groups or rings.
In this section we study solvability problems over such different algebraic domains in terms of
logical reductions. Our main result here is to show that the solvability problem over groups
(SlvAG) DTC-reduces to the corresponding problem over commutative rings (SlvCR) and
that solvability over commutative rings equipped with a linear ordering (SlvCR6) FP-
reduces to solvability over cyclic groups (SlvCycG). Note that over any non-Abelian group,
the solvability problem is NP-complete [11].

SlvCycG SlvAG

SlvCR6 SlvCR SlvR

SlvLRk SlvF SlvLR

FP DTC

DTC

FO-T
FP-T

Figure 1 Logical reductions between solv-
ability problems. Curved arrows (↪→) denote
inclusion of one class in another.

Our methods can be further adapted to
show that solvability over arbitrary (not ne-
cessarily commutative) rings (SlvR) DTC-
reduces to SlvCR. We then consider solvabil-
ity restricted to special classes of commutative
rings: local rings (SlvLR) and k-generated
local rings (SlvLRk), which generalises solvab-
ility over finite fields (SlvF). The reductions
that we establish are illustrated in Figure 1.

In the remainder of this section we describe
three of the outlined reductions: from com-
mutative rings equipped with a linear order
to cyclic groups, from groups to commutative
rings, and finally from general rings to com-
mutative rings. To give the reductions from commutative rings to local rings and from
k-generated local rings to commutative linearly ordered rings we need to delve further into
the theory of finite commutative rings, which is the subject of §4.

I Theorem 2. SlvCR6 ≤FP SlvCycG.

Proof. Consider a system of linear equations (A,b) over a commutative ring R of charac-
teristic m and let 6 be a linear order on R. In the following we describe a mapping that
translates the system (A,b) into a system of equations (A?,b?) over the cyclic group Zm

which is solvable if, and only if, (A,b) has a solution over R.
Let {g1, . . . , gk} ⊆ R be a (minimal) generating set for the additive group (R,+) and

let `i denote the order of gi. We consider the group generated by gi as a subgroup of
Zm, i.e. 〈gi〉 = Z`i

∼= (m/`i)Zm ≤ Zm. Then (R,+) ∼=
⊕

i(m/`i)Zm and we obtain a
unique representation for each element r ∈ R as r = (r1, . . . , rk) where ri ∈ (m/`i)Zm.
Similarly, we identify variables x ranging over R with tuples x = (x1, . . . , xk) where xi ranges
over (m/`i)Zm. Note that, in general, subgroups (m/`)Zm are definable in linear systems
over Zm: the equation ` · x = 0 ensures that the variable x takes values in (m/`)Zm.

CSL’12

218 Definability of linear equation systems over groups and rings

To translate linear equations over R into equivalent equations over Zm, we consider the
multiplication of a coefficient r ∈ R with a variable x with respect to the chosen representation,
i.e. the formal expression r · x = (r1, . . . , rk) · (x1, . . . , xk). If we write all products gi · gj of
pairs of generators as elements in

⊕
i(m/`i)Zm, then the product r ·x is uniquely determined

as a k-tuple of the form (
∑

i b
1
i,r · xi, . . . ,

∑
i b

k
i,r · xi), where for every ` ≤ k the coefficients

b`
1,r, . . . , b

`
k,r only depend on r = (r1, . . . , rk) and `, and where xi ranges over (m/`i)Zm.

Furthermore, the decomposition
⊕

i(m/`i)Zm allows us to handle addition component-wise.
Hence, altogether we can translate each linear equation of the original system (A,b) into k
equations over Zm and obtain a system of linear equations (A?,b?) over Zm which is solvable
if, and only if, the original system (A,b) has a solution over R.

We proceed to show that the mapping (A,b) 7→ (A?,b?) can be expressed in FP. Here,
we crucially rely on the given order on R to fix a set of generators. More specifically, as we can
compute a set of generators in time polynomial in |R |, it follows from the Immerman-Vardi
theorem [17, 22] that there is an FP-formula φ(x) such that φ(x)R = {g1, . . . , gk} generates
(R,+) and g1 6 · · · 6 gk. Having fixed a set of generators, it is obvious that the map
ι : R→ (m/`1)Zm × · · · × (m/`k)Zm taking r 7→ (r1, . . . , rk), is FP-definable. Furthermore,
the map (l, i, r) 7→ bl

i,r can easily be formalised in FP, since we have bl
i,r =

∑k
j=1 rj · cij

l

where cij
l is the coefficient of gl in the expression gi · gj =

∑k
y=1 c

ij
y · gy. Splitting the original

system of equations component-wise into k systems of linear equations and combining them
again to a single system over Zm is trivial.

Finally, we note that a linear system over the ring Zm can be reduced to an equivalent
system over the group Zm, by rewriting terms ax with a ∈ Zm as x+x+ · · ·+x (a-times). J

So far, we have shown that solvability problems over linearly ordered commutative rings can
be reduced to solvability problems over basic groups. This raises the question whether a
translation in the other direction is also possible; that is, whether we can reduce solvability
over groups to solvability over commutative rings. Essentially, such a reduction requires an
interpretation of a commutative ring in a group, which is what we describe in the proof of
the following theorem.

I Theorem 3. SlvAG ≤DTC SlvCR.

Proof. Let (A,b) be a system of linear equations over a group (G,+G, e), where A ∈ {0, 1}I×J

and b ∈ GI . For the reduction, we first construct a commutative ring φ(G) from G and then
lift (A,b) to a system of equations (A?,b?) which is solvable over φ(G) if, and only if, (A,b)
is solvable over G.

We consider G as a Z-module in the usual way and write ·Z for multiplication of group
elements by integers. Let d be the least common multiple of the order of all group elements.
Then we have ordG(g) | d for all g ∈ G, where ordG(g) denotes the order of g. This allows us
to obtain from ·Z a well-defined multiplication of G by elements of Zd = {[0]d, . . . , [d− 1]d}
which commutes with group addition. We write +d and ·d for addition and multiplication
in Zd, where [0]d and [1]d denote the additive and multiplicative identities, respectively.
We now consider the set G × Zd as a group, with component-wise addition defined by
(g1,m1) + (g2,m2) := (g1 +G g2,m1 +d m2), for all (g1,m1), (g2,m2) ∈ G× Zd, and identity
element 0 = (e, [0]d). We endow G × Zd with a multiplication • which is defined as
(g1,m1) • (g2,m2) :=

(
(g1 ·Z m2 +G g2 ·Z m1), (m1 ·d m2)

)
.

It is easily verified that this multiplication is associative, commutative and distributive
over +. It follows that φ(G) := (G × Zd,+, •, 1, 0) is a commutative ring, with identity
1 = (e, [1]d). For g ∈ G and z ∈ Z we set g := (g, [0]d) ∈ φ(G) and z := (e, [z]d) ∈ φ(G). Let

A. Dawar, E. Grädel, B. Holm, Eryk Kopczynski, and Wied Pakusa 219

ι : Z ∪G→ φ(G) be the map defined by x 7→ x. Extending ι to relations in the obvious way,
we write A? := ι(A) ∈ ι(Zd)I×J and b? := ι(b) ∈ ι(G)I .

Claim. The system (A?,b?) is solvable over φ(G) if, and only if, (A,b) is solvable over G.

Proof of claim. In one direction, observe that a solution s to (A,b) gives the solution ι(s) to
(A?,b?). For the other direction, suppose that s ∈ φ(G)J is a vector such that A? · s = b?.
Since each element (g, [m]d) ∈ φ(G) can be written uniquely as (g, [m]d) = g +m, we write
s = sg + sn, where sg ∈ ι(G)J and sn ∈ ι(Zd)J . Observe that we have g •m ∈ ι(G) ⊆ φ(G)
and n •m ∈ ι(Zd) ⊆ φ(G) for all g ∈ G and n,m ∈ Z. Hence, it follows that A? · sn ∈ ι(Zd)I

and A? · sg ∈ ι(G)I . Now, since b? ∈ ι(G)I , we have b? = A? · s = A? · sg +A? · sn = A? · sg.
Hence, sg gives a solution to (A,b), as required.

All that remains is to show that our reduction can be formalised as a DTC-interpretation.
Essentially, this comes down to showing that the ring φ(G) can be interpreted in G by
formulas of DTC. By elementary group theory, we know that for elements g ∈ G of maximal
order we have ord (g) = d. It is not hard to see that the set of group elements of maximal
order can be defined in DTC; hence, we can interpret Zd in G. Also, it is not hard to show
that the the multiplication of φ(G) is DTC-definable, which completes the proof. J

We conclude this section by describing a DTC-reduction from the solvability problem over
general rings R to solvability over commutative rings. As a technical preparation, we first
give a first-order interpretation that transforms a linear equation systems over R into an
equivalent system with the following property: the linear equation system is solvable if, and
only if, the solution space contains a numerical solution, i.e. a solution over Z.

For convenience, we only consider left-multiplicative linear systems, which are systems of
the form A · x = b; however, the more general case of linear equation systems of the form
Al · x + x ·Ar = b can be treated similarly.

I Lemma 4. There is an FO-interpretation I of τles-r in τles-r such that for every linear
system S : A · x = b over R, I(S) describes a linear system S? : A? ·Z x? = b? over the
Z-module (R,+) such that S is solvable over R if, and only if, S? has a solution over Z.

Proof (sketch). Let A ∈ RI×J and b ∈ RI . For S?, we introduce for each variable xj

(j ∈ J) and each element s ∈ R a new variable xs
j , i.e. the index set for the variables of S? is

J ×R. Finally, we replace all terms of the form rxj by
∑

s∈R rsx
s
j . J

By Lemma 4, we can restrict to linear systems (A,b) over the Z-module (R,+) that have
numerical solutions. At this point, we reuse our construction from Theorem 3 to obtain a
linear system (A?,b?) over the commutative ring R? := φ((R,+)), where A? := ι(A) and
b? := ι(b). We claim that (A?,b?) is solvable over R? if, and only if, (A,b) is solvable
over R. For the non-trivial direction, suppose s is a solution to (A?,b?) and decompose
s = sg +sn into group elements and number elements, as explained in the proof of Theorem 3.
Recalling that r1 • r2 = 0 for all r1, r2 ∈ R, it follows that A? • (sg + sn) = A? • sn = b?.
Hence, there is a solution sn to (A?,b?) that consists only of number elements, as claimed.

I Theorem 5. SlvR ≤DTC SlvCR.

CSL’12

220 Definability of linear equation systems over groups and rings

4 The structure of finite commutative rings

In this section we study structural properties of (finite) commutative rings and present the
remaining reductions for solvability outlined in §3: from commutative rings to local rings,
and from k-generated local rings to commutative rings with a linear order. Recall that a
commutative ring R is local if it contains a unique maximal ideal m. The importance of the
notion of local rings comes from the fact that they are the basic building blocks of finite
commutative rings. We start by summarising some of their useful properties.

I Proposition 6 (Properties of local rings). For any finite commutative ring R we have:
If R is local, then the unique maximal ideal is m = R \R×.
R is local if, and only if, all idempotent elements in R are trivial.
If x ∈ R is idempotent then R = x ·R⊕ (1− x) ·R as a direct sum of rings.
If R is local then its cardinality (and hence its characteristic) is a prime power.

By this proposition we know that finite commutative rings can be decomposed into local
summands that are primary ideals generated by pairwise orthogonal idempotent elements.
Indeed, this decomposition is unique (for details, see e.g. [5]).

I Proposition 7 (Decomposition into local rings). Let R be a (finite) commutative ring. Then
there is a unique set B(R) ⊆ R of pairwise orthogonal idempotents elements for which it holds
that (i) e ·R is local for each e ∈ B(R); (ii)

∑
e∈B(R) e = 1; and (iii) R =

⊕
e∈B(R) e ·R.

We next show that the ring decomposition R =
⊕

e∈B(R) e · R is FO-definable. As a first
step, we note that B(R) (the base of R) is FO-definable over R.

I Lemma 8. There is φ(x) ∈ FO(τring) such that φ(x)R = B(R) for commutative rings R.

Proof (sketch). It can be shown that B(R) consists precisely of those non-trivial idempotent
elements of R which cannot be expressed as the sum of two orthogonal non-trivial idempotents,
which is a first-order definable property. In particular, if R is local then trivially B(R) = {1}.
To test for locality, it suffices by Proposition 6 to check whether all idempotent elements in
R are trivial and this can be expressed easily in first-order logic. J

The next step is to show that the canonical mapping R→
⊕

e∈B(R) e ·R can be defined in FO.
To this end, recall from Proposition 6 that for every e ∈ B(R) (indeed, for any idempotent
element e ∈ R), we can decompose the ring R as R = e ·R⊕ (1− e) ·R. This fact allows us
to define for all base elements e ∈ B(R) the projection of elements r ∈ R onto the summand
e ·R in first-order logic, without having to keep track of all local summands simultaneously.

I Lemma 9. There is a formula ψ(x, y, z) ∈ FO(τring) such that for all rings R, e ∈ B(R)
and r, s ∈ R, it holds that (R, e, r, s) |= ψ if, and only if, s is the projection of r onto e ·R.

It follows that any relation over R can be decomposed in first-order logic according to the
decomposition of R into local summands. In particular, a linear equation system (A | b)
over R is solvable if, and only if, each of the projected linear equation systems (Ae | be) is
solvable over eR. Hence, we obtain:

I Theorem 10. SlvCR ≤FO-T SlvLR.

In §3 we proved that solvability over rings with a linear ordering can be reduced in fixed-point
logic to solvability over cyclic groups. This naturally raises the question: which classes
of rings can be linearly ordered in fixed-point logic? By Lemma 9, we know that for this

A. Dawar, E. Grädel, B. Holm, Eryk Kopczynski, and Wied Pakusa 221

question it suffices to focus on local rings, which have a well-studied structure. The simplest
type of local ring are rings of the form Zpn and the natural ordering of such rings can be
easily defined by a formula of FP. Moreover, the same holds for finite fields as they have
a cyclic multiplicative group [16]. In the following lemma, we are able to generalise these
insights in a strong sense: for any fixed k ≥ 1 we can define an ordering on the class of all
local rings for which the maximal ideal is generated by at most k elements. We refer to such
rings as k-generated local rings. Note that for k = 1 we obtain the notion of chain rings which
include all finite fields and rings of the form Zpn . For increasing values of k the structure
of k-generated local rings becomes more and more sophisticated. For instance, the ring
Rk = Z2[X1, . . . , Xk]/(X2

1 , . . . , X
2
k) is a k-generated local ring which is not (k− 1)-generated.

I Lemma 11 (Ordering k-generated local rings). There is an FP-formula φ(x, z1, . . . , zk; v, w)
such that for all k-generated local rings R there are α, π1, . . . , πk ∈ R such that

φR(α/x, ~π/~z; v, w) = {(a, b) ∈ R×R | (R,α, ~π; a, b) |= φ}, is a linear order on R.

Proof. Firstly, there are FP-formulas φu(x), φm(x), φg(x1, . . . , xk) that define in each k-
generated local ring R the set of units, the maximal ideal m (which is the set of non-units)
and the property of being a set of size k that generatesm, respectively. More specifically, for all
(π1, . . . , πk) ∈ φR

g we have that
∑

i πiR = φR
m is the maximal ideal of R and R× = φR

u = R\m.
In particular there is a first-order interpretation of the field k := R/m in R.

The idea of the proof is to represent the elements of R as polynomial expressions of
a certain kind. Let q := | k | and define Γ(R) := {r ∈ R : rq = r}. It can be seen that
Γ(R) \ {0} forms a multiplicative group which is known as the Teichmüller coordinate set [5].
Now, the map ι : Γ(R) → k defined by r 7→ r +m is a bijection. Indeed, for two different
units r, s ∈ Γ(R) we have r − s /∈ m. Otherwise, we would have r − s = x for some x ∈ m
and thus r = (s + x)q = s +

∑q
k=1

(
q
k

)
xksq−k. Since q ∈ m and r − s = x we obtain that

x = xy for some y ∈ m. Hence x(1− y) = 0 and since (1− y) ∈ R× this means x = 0.
As explained above, we can define in FP an order on k by fixing a generator α ∈ k×

of the cyclic group k×. Combining this order with ι−1, we obtain an FP-definable order
on Γ(R). The importance of Γ(R) lies in the fact that every ring element can be expressed as a
polynomial expression over a set of k generators of the maximal ideal m with coefficients lying
in Γ(R). To be precise, let π1, . . . , πk ∈ m be a set of generators form, i.e.m = π1R+· · ·+πkR,
where each πi has nilpotency ni for 1 ≤ i ≤ k. We claim that we can express r ∈ R as

r =
∑

(i1,...,ik)≤lex(n1,...,nk)

ai1···ik
πi1

1 · · ·π
ik

k , with ai1···ik
∈ Γ(R). (P)

To see this, consider the following recursive algorithm:

If r ∈ R×, then for a unique a ∈ Γ(R) we have that r ∈ a+m, so r = a+(π1r1 +· · ·+πkrk)
for some r1, . . . , rk ∈ R and we continue with r1, . . . , rk.
Else r ∈ m, and r = π1r1 + · · ·+ πkrk for some r1, . . . , rk ∈ R; continue with r1, . . . , rk.

Observe that for all pairs a, b ∈ Γ(R) there exist elements c ∈ Γ(R), r ∈ m such that
aπi1

1 · · ·π
ik

k + bπi1
1 · · ·π

ik

k = cπi1
1 · · ·π

ik

k + rπi1
1 · · ·π

ik

k . Since πi1
1 · · ·π

ik

k = 0 if il ≥ nl for some
1 ≤ l ≤ k, the process is guaranteed to stop and the claim follows.

Note that this procedure neither yields a polynomial-time algorithm nor do we obtain a
unique expression, as for instance, the choice of elements r1, . . . , rk ∈ R (in both recursion
steps) need not to be unique. However, knowing only the existence of an expression of this
kind, we can proceed as follows. For any sequence of exponents (`1, . . . , `k) ≤lex (n1, . . . , nk)

CSL’12

222 Definability of linear equation systems over groups and rings

define the ideal R[`1, . . . , `k] E R as the set of all elements having an expression of the
form (P) where ai1···ik

= 0 for all (i1, . . . , ik) ≤lex (`1, . . . , `k).
It is clear that we can define the ideal R[`1, . . . , `k] in FP. Having this, we can use the

following recursive procedure to define a unique expression of the form (P) for all r ∈ R:
Choose the minimal (i1, . . . , ik) ≤lex (n1, . . . , nk) such that r = aπi1

1 · · ·π
ik

k + s for some
(minimal) a ∈ Γ(R) and s ∈ R[i1, . . . , ik]. Continue the process with s.

Finally, the lexicographical ordering induced by the ordering on n1×· · ·×nk and the ordering
on Γ(R) yields an FP-definable order on R (with parameters for generators of k× and m). J

I Corollary 12. SlvLRk ≤FP-T SlvCR6 ≤FP SlvCycG.

5 Solvability problems under logical reductions

In the previous two sections we studied reductions between solvability problems over different
algebraic domains. Here we change our perspective and investigate classes of queries that
are reducible to solvability over a fixed commutative ring. Our motivation for this work was
to study extensions of first-order logic with generalised quantifiers which express solvability
problems over rings. In particular, the aim was to establish various normal forms for such
logics. However, rather than defining a host of new logics in full detail, we state our results
in this section in terms of closure properties of classes of finite structures that are themselves
defined by reductions to solvability problems. We explain the connection between the specific
closure properties and the corresponding logical normal forms in more detail below.

To state our main results formally, let R be a commutative ring and write Slv(R) to
denote the solvability problem over R, as a class of τles(R)-structures. Let Σqf

FO(R) and
ΣFO(R) denote the classes of queries that are reducible to Slv(R) under quantifier-free and
first-order many-to-one reductions, respectively. Then we show that Σqf

FO(R) and ΣFO(R) are
closed under first-order operations for any commutative ring R, which also shows that Σqf

FO(R)
contains any FO-definable query. Furthermore, we prove that if R has prime characteristic,
then Σqf

FO(R) and ΣFO(R) are closed under oracle queries. Thus, if we denote by ΣT
FO(R) the

class of queries reducible to Slv(R) by first-order Turing reductions, then for all commutative
rings R of prime characteristic the three solvability reduction classes coincide, i.e. we have
Σqf

FO(R) = ΣFO(R) = ΣT
FO(R).

To relate these results to logical normal forms, we let D = Slv(R) and write FOSR :=
FO(〈QD〉) to denote first-order logic extended by generalised Lindström quantifiers deciding
solvability over R. Then the closure of ΣFO(R) under first-order operations amounts to
showing that the fragment of FOSR which consists of formulas without nested solvability
quantifiers has a normal form which consists of a single application of a solvability quantifier
to a first-order formula. Moreover, for the case when R has prime characteristic, the closure
of Σqf

FO(R) = ΣFO(R) under first-order oracle queries amounts to showing that nesting of
solvability quantifiers can be reduced to a single quantifier. It follows that FOSR has a strong
normal form: one application of a solvability quantifier to a quantifier-free formula suffices.

5.1 Closure under first-order operations
Let R be a fixed commutative ring of characteristic m. In this section we prove the closure
of Σqf

FO(R) and ΣFO(R) under first-order operations. To this end, we need to establish a
couple of technical results. Of particular importance is the following key lemma, which gives
a simple normal form for linear equation systems: up to quantifier-free reductions, we can

A. Dawar, E. Grädel, B. Holm, Eryk Kopczynski, and Wied Pakusa 223

restrict ourselves to linear systems over rings Zm, where the constant term of every equation
is 1 ∈ Zm. The proof of the lemma crucially relies on the fact that the ring R is fixed.

I Lemma 13 (Normal form for linear equation systems). There is a quantifier-free interpretation
I of τles(Zm) in τles(R) so that for all τles(R)-structures S it holds that
I(S) is an equation system (A,b) over Zm, where A is a {0, 1}-matrix and b = 1; and
S ∈ Slv(R) if, and only if, I(S) ∈ Slv(Zm).

Proof. We describe I as the composition of three quantifier-free transformations: the first
one maps a system (A,b) over R to an equivalent system (B, c) over Zm, where m is the
characteristic of R. Secondly, (B, c) is mapped to an equivalent system (C,1) over Zm.
Finally, we transform (C,1) into an equivalent system (D,1) over Zm, where D is a {0, 1}-
matrix. The first transformation is obtained by adapting the proof of Theorem 2. It can be
seen that first-order quantifiers and fixed-point operators are not needed if R is fixed.

For the second transformation, suppose that B is an I × J matrix and c a vector indexed
by I. We define a new linear equation system T which has in addition to all the variables
that occur in S, a new variable ve for every e ∈ I and a new variable wr for every r ∈ R. For
every element r ∈ Zm, we include in T the equation (1− r)w1 + wr = 1. It can be seen that
this subsysem of equations has a unique solution given by wr = r for all r ∈ Zm. Finally,
for every equation

∑
j∈J B(e, j) · xj = c(e) in S (indexed by e ∈ I) we include in T the two

equations ve +
∑

j∈J B(e, j) · xj = 1 and ve + wc(e) = 1.
Finally, we translate the system T : Cx = 1 over Zm into an equivalent system over

Zm in which all coefficients are either 0 or 1. For each variable v in T, the system has the
m distinct variables v0, . . . , vm−1 together with equations vi = vj for i 6= j. By replacing
all terms rv by

∑
1≤i≤r vi we obtain an equivalent system. However, in order to establish

our original claim we need to rewrite the auxiliary equations of the form vi = vj as a set
of equations whose constant terms are equal to 1. To achieve this, we introduce a new
variable v−j for each vj , and the equation vj + v−j + w1 = 1. Finally, we rewrite vi = vj as
vi + v−j + w1 = 1. The resulting system is equivalent to T and has the desired form. J

I Corollary 14. Σqf
FO(R) = Σqf

FO(Zm), ΣFO(R) = ΣFO(Zm) and ΣT
FO(R) = ΣT

FO(Zm).

It is a basic fact from linear algebra that solvability of a linear equation system A · x = b is
invariant under applying elementary row and column operations to the augmented coefficient
matrix (A | b). Over fields, this insight justifies the method of Gaussian elimination, which
transforms the augmented coefficient matrix of a linear system into row echelon form. Over
the integers, a generalisation of this method can be used to transform a linear system into
Hermite normal form. The following lemma shows that a similar normal form exists over
chain rings. The proof uses the fact that in a chain ring R, divisibility is a total preorder.

I Lemma 15 (Hermite normal form). For every k × `-matrix A over a chain ring R, there
exists an invertible k × k-matrix S and an `× `-permutation matrix T so that

SAT =
(
Q

0

)
with Q =

a11 · · · ?

0
. . .

...
0 0 akk

 ,

where a11 | a22 | a33 | · · · | akk and for all 1 ≤ i, j ≤ k it holds that aii | aij.

Now we are ready to prove the closure of Σqf
FO(R) and ΣFO(R) under first-order operations.

First of all, it can be seen that conjunction and universal quantification can be handled

CSL’12

224 Definability of linear equation systems over groups and rings

easily by combining independent subsystems into a single system. Thus, the only non-trivial
part of the proof is to establish closure under complementation. To do that, we describe an
appropriate reduction that translates from non-solvability to solvability of linear systems.

First of all, we consider the case where R has characteristic m = p for a prime p. In
this case we know that Σqf

FO(R) = Σqf
FO(Zp) and ΣFO(R) = ΣFO(Zp) by Corollary 14, where

Zp is a finite field. Over fields, the method of Gaussian elimination guarantees that a
linear equation system (A,b) is not solvable if, and only if, for some vector x we have
x · (A | b) = (0, . . . , 0, 1). In other words, the vector b is not in the column span of A if, and
only if, the vector (0, . . . , 0, 1) is in the row span of (A | b). This shows that (A | b) is not
solvable if, and only if, the system ((A | b)T , (0, . . . , 0, 1)T) is solvable. In other words, over
fields this reasoning translates the question of non-solvability to the question of solvability.
In the proof of the next lemma, we generalise this approach to chain rings, which enables us
to translate from non-solvability to solvability over all rings of prime-power characteristic.

I Lemma 16 (Non-solvability over chain rings). Let (A,b) be a linear equation system over a
chain ring R with maximal ideal πR and let n be the nilpotency of π. Then (A,b) is not
solvable over R if, and only if, there is a vector x such that x · (A | b) = (0, . . . , 0, πn−1).

Proof. If such a vector x exists, then (A,b) is not solvable. On the other hand, if no such x
exists, then we apply Lemma 15 to transform the augmented matrix (A | b) into Hermite
normal form (A′ | b′) with respect to A (that is, A′ = SAT as in Lemma 15 and b′ = Sb).
We claim that for every row index i, the diagonal entry aii in the transformed coefficient
matrix A′ divides the i-th entry of the transformed target vector b′. Towards a contradiction,
suppose that there is some aii not dividing b′i. Then aii is not a non-unit in R and can be
written as aii = uπt for some unit u and t ≥ 1. By Lemma 15, it holds that aii divides
every entry in the i-th row of A′ and thus we can multiply the i-th row of the augmented
matrix (A′ | b′) by an appropriate non-unit to obtain a vector of the form (0, . . . , 0, πn−1),
contradicting our assumption. Hence, in the transformed augmented coefficient matrix,
diagonal entries divide all entries in the same row, which implies solvability of (A | b). J

Along with our previous discussion, Lemma 16 now yields the closure of Σqf
FO(R) and ΣFO(R)

under complementation if R has prime-power characteristic. For a linear systems (A,b) over
a non-local ring Zm (i.e. m is not a prime power), we can consider the decomposition of Zm

into a direct sum of local rings and apply the Chinese remainder theorem.

I Theorem 17. Σqf
FO(R), ΣFO(R) and ΣT

FO(R) are closed under first-order operations.

5.2 Solvability over rings of prime characteristic
From now on we assume that the commutative ring R is of prime characteristic p. We prove
that in this case, the three reduction classes Σqf

FO(R), ΣFO(R) and ΣT
FO(R) coincide. First

of all, we note that, by definition, we have Σqf
FO(R) ⊆ ΣFO(R) ⊆ ΣT

FO(R). Also, since we
know that solvability over R can be reduced to solvability over Zp (Corollary 14), it suffices
for our proof to show that Σqf

FO(Zp) ⊇ ΣT
FO(Zp). Furthermore, by Theorem 17 it follows

that Σqf
FO(Zp) is closed under first-order operations, so it only remains to prove closure

under oracle queries. Recalling that the original motivation for this study was to establish
normal forms for logics with solvability quantifiers, it can be seen that proving closure under
oracle queries corresponds to showing that for every formula of FOSR with nested solvability
quantifiers, where R has prime characteristic, there is an equivalent FOSR-formula with
no nested solvability quantifiers. Since Σqf

FO(R) is closed under first-order operations, any

A. Dawar, E. Grädel, B. Holm, Eryk Kopczynski, and Wied Pakusa 225

FO-definable query is contained in Σqf
FO(R); thus, we can conclude that every FOSR-formula

is equivalent to the single application of a solvability quantifier to a quantifier-free formula.

x

x

Ak

Al

~a

~b

·x = 1 O(A)

I(~a,~b)(A)

C~a~b · y = 1

Figure 2 Each entry (~a,~b) of the coefficient mat-
rix of the outer linear equation system O(A) is de-
termined by the corresponding inner linear system
C~a~b · y = 1 described by I(~a,~b)(A): this entry is 1
if I(~a,~b)(A) is solvable and 0 otherwise.

More specifically in terms of the classes
Σqf

FO(Zp), it can be seen that proving clos-
ure under oracle queries amounts to show-
ing that nesting of linear equation sys-
tems can be reduced to a single system
only. To formalise this, let I(~x, ~y) be a
quantifier-free interpretation of τles(Zp) in
σ with parameters ~x, ~y of length k and l,
respectively. We extend the signature σ to
σX := σ ∪ {X} and restrict our attention
to those σX -structures A (with domain A)
where the relation symbol X is interpreted
as XA = {(~a,~b) ∈ Ak×l | I(~a,~b)(A) ∈
Slv(Zp)}. Then it remains to show that
for any quantifier-free interpretation O of
τles(Zp) in σX , there is a quantifier-free interpretation of τles(Zp) in σ that describes linear
equation systems equivalent to O. Hereafter, for any σX -structure A and tuples ~a and ~b, we
will refer to O(A) as an “outer” linear equation system and refer to I(~a,~b)(A) as an “inner”
linear equation system. By applying Lemma 13 and Theorem 17, it is sufficient to consider
the case where for σX -structures A, O(A) describes a linear system (M,1), where M is the
{0, 1}-matrix of the relation XA. For an illustration of this setup, see Figure 2.

I Theorem 18 (Closure under oracle queries). For I, O as above, there exists a quantifier-free
interpretation K of τles(Zp) in σ such that for all σX-structures A it holds that O(A) ∈
Slv(Zp) if, and only if, K(A) ∈ Slv(Zp).

Proof. For a σ-structure A, let Mo denote the {0, 1}-coefficient matrix of the outer linear
equation system O(A). Then for (~a,~b) ∈ Ak×l we have Mo(~a,~b) = 1 if, and only if, the inner
linear system I(~a,~b)(A) is solvable. By identifying the variables of O(A) by {v~b | ~b ∈ A

l},
we can express the equations of O(A) as

∑
~b∈Al Mo(~a,~b) · v~b = 1, for ~a ∈ Ak.

We begin to construct the system K(A) over the set of variables {v~a,~b | (~a,~b) ∈ A
k×l}

by including the equations
∑

~b∈A v~a,~b = 1 for all ~a ∈ Ak. Our aim is to extend K(A) by
additional equations so that in every solution to K(A), there are values v~b ∈ Zp such that
for all ~a ∈ Ak, we have v~a,~b = Mo(~a,~b) · v~b. Assuming this to be true, it is immediate that
O(A) is solvable if, and only if, K(A) is solvable, which is what we want to show.

In order to enforce the condition “v~a,~b = Mo(~a,~b) · v~b” by linear equations, we need to
introduce a number of auxilliary linear subsystems to K(A). The reason why we cannot
express this condition directly by a linear equation is because Mo(~a,~b) is determined by
solvability of the inner system I(~a,~b)(A). Therefore, if we were to treat both the elements of
Mo(~a,~b) and the v~b as individual variables, then that would require to express the non-linear
term Mo(~a,~b) · v~b. To overcome this issue, we introduce new subsystems in K(A) to ensure
that for all ~a,~b,~c ∈ A:

if v~a,~b 6= 0 then Mo(~a,~b) = 1; and (∗)

if v~a,~b 6= v~c,~b then {Mo(~a,~b),Mo(~c,~b)} = {0, 1}. (†)

Assuming we have expressed (∗) and (†), it can be seen that solutions of K(A) directly
translate into solutions for O(A) and vice versa. To express (∗) we proceed as follows: for

CSL’12

226 Definability of linear equation systems over groups and rings

each (~a,~b) ∈ Ak×l we introduce I(~a,~b)(A) as an independent linear subsystem in K(A) in
which we additionally add to each single equation the term (v~a,~b + 1). Now, if in a solution
of K(A) the variable v~a,~b is evaluated to 0, then the subsystem corresponding to I(~a,~b)(A) is
trivially solvable (recall, that the target vector is 1). However, if a non-zero value is assigned
to v~a,~b, then this value is a unit in Zp and thereby a solution for K(A) necessarily contains a
solution of the subsystem I(~a,~b)(A); that is, we have Mo(~a,~b) = 1.

For (†) we follow a similar approach. For fixed tuples ~a, ~b and ~c, the condition on the
right-hand side of (†) is a simple Boolean combination of solvability queries. Hence, by
Theorem 17, this combination can be expressed by a single linear equation system. Again we
embed the respective linear equation system as a subsystem in K(A) where we add to each of
its equations the term (1 + v~a,~b − v~c,~b). With the same reasoning as above we conclude that
this imposes the constraint (†) on the variables v~a,~b and v~c,~b, which concludes the proof. J

I Corollary 19. If R has prime characteristic, then Σqf
FO(R) = ΣFO(R) = ΣT

FO(R).

As explained above, our results have some important consequences. For a prime p, let us
denote by FOSp first-order logic extended by quantifiers deciding solvability over Zp, similar
to what we have discussed before. Corresponding extensions of first-order logic by rank
operators over prime fields (FORp) were studied by Dawar et al. [8]. Their results imply
that FOSp = FORp over ordered structures, and that both logics have a strong normal form
over ordered structures, i.e. that every formula is equivalent to a formula with only one
application of a solvability or rank operator, respectively [21]. Corollary 19 allows us to
generalise the latter result for FOSp to arbitrary structures.

I Corollary 20. Every φ ∈ FOSp is equivalent to a formula with a single solvability quantifier.

6 Discussion

Motivated by the question of finding extensions of FPC to capture larger fragments of
PTIME, we have analysed the (inter-)definability of solvability problems over various classes
of algebraic domains. Similar to the notion of rank logic [8] one can consider solvability
logic, which is the extension of FPC by (generalised Lindström) quantifiers that decide
solvability of linear equation systems. In this context, our results from §3 and §4 can be
seen to relate fragments of solvability logic obtained by restricting quantifiers to different
algebraic domains, such as Abelian groups or commutative rings. We have also identified
many classes of algebraic structures over which the solvability problem reduces to the very
basic problem of solvability over cyclic groups of prime-power order. This raises the question,
whether a reduction even to groups of prime order is possible. In this case, solvability logic
would turn out to be a fragment of rank logic.

With respect to specific algebraic domains, we proved that FPC can define a linear
order on the class of all k-generated local rings, i.e. on classes of local rings for which every
maximal ideal can be generated by k elements, where k is a fixed constant. Together with
our results from §4, this can be used to show that all natural problems from linear algebra
over (not necessarily local) k-generated rings reduce to problems over ordered rings under
FP-reductions. An interesting direction of future research is to explore how far our techniques
can be used to show (non-)definability in fixed-point logic of other problems from linear
algebra over rings.

Finally, we mention an interesting topic of related research, which is the logical study of
permutation group membership problems (GM for short). An instance of GM consists of a

A. Dawar, E. Grädel, B. Holm, Eryk Kopczynski, and Wied Pakusa 227

set Ω, a set of generating permutations π1, . . . , πn on Ω and a target permutation π, and
the problem is to decide whether π is generated by π1, . . . , πn. This problem is known to be
decidable in polynomial time (indeed it is in NC [4]). We can show that all the solvability
problems we have studied in this paper reduce to GM under first-order reductions (basically,
an application of Cayley’s theorem). In particular this shows that GM is not definable in
FPC. By extending fixed-point logic by a suitable operator for GM we therefore obtain a
logic which extends rank logics and in which all studied solvability problems are definable.
This logic is worth a further study as it can uniformly express all problems from (linear)
algebra that have been considered so far in the context of understanding the descriptive
complexity gap between FPC and PTIME.

References
1 V. Arvind and T. C. Vijayaraghavan. Classifying problems on linear congruences and

abelian permutation groups using logspace counting classes. Comp. Compl., 19:57–98, 2010.
2 M. F. Atiyah and I. G. Macdonald. Introduction to commutative algebra, volume 29.

Addison-Wesley, 1969.
3 A. Atserias, A. Bulatov, and A. Dawar. Affine systems of equations and counting infinitary

logic. Theoretical Computer Science, 410:1666–1683, 2009.
4 L. Babai, E. Luks, and A. Seress. Permutation groups in NC. In STOC ’87, page 409–420.

ACM Press, 1987.
5 G. Bini and F. Flamini. Finite Commutative Rings and Their Applications. Kluwer Aca-

demic Publishers, 2002.
6 J-Y. Cai, M. Fürer, and N. Immerman. An optimal lower bound on the number of variables

for graph identification. Combinatorica, 12(4):389–410, 1992.
7 A. Dawar. Generalized quantifiers and logical reducibilities. J. Logic Comp., 5(2):213, 1995.
8 A. Dawar, M. Grohe, B. Holm, and B. Laubner. Logics with Rank Operators. In LICS ’09,

pages 113–122. IEEE Computer Society, 2009.
9 H.-D. Ebbinghaus and J. Flum. Finite model theory. Springer-Verlag, 2nd edition, 1999.

10 E. Grädel et. al. Finite Model Theory and Its Applications. Springer-Verlag, 2007.
11 Mikael Goldmann and Alexander Russell. The complexity of solving equations over finite

groups. Inf. Comput., 178:253–262, October 2002.
12 M. Grohe. Fixed-point logics on planar graphs. In LICS ’98, pages 6—15, 1998.
13 M. Grohe. The quest for a logic capturing PTIME. In LICS ’08, pages 267–271, 2008.
14 M. Grohe. Fixed-point definability and polynomial time on graph with excluded minors.

In LICS ’10, pages 179 – 188, 2010.
15 M. Grohe and J. Mariño. Definability and descriptive complexity on databases of bounded

tree-width. In ICDT ’99, volume 1540, pages 70–82. Springer-Verlag, 1999.
16 B. Holm. Descriptive complexity of linear algebra. PhD thesis, Univ. of Cambridge, 2010.
17 N. Immerman. Relational queries computable in polynomial time. Inf. and Control, 68:86–

104, 1986.
18 P. Lindström. First order predicate logic with generalized quantifiers. Theoria, 32:186–195,

1966.
19 B. R. McDonald. Finite rings with identity. Dekker, 1974.
20 M. Otto. Bounded Variable Logics and Counting — A Study in Finite Models, volume 9 of

Lecture Notes in Logic. Springer-Verlag, 1997.
21 W. Pakusa. Finite model theory with operators from linear algebra. Staatsexamensarbeit,

RWTH Aachen University, 2010.
22 M. Y. Vardi. The complexity of relational query languages. In STOC ’82, pages 137–146.

ACM Press, 1982.

CSL’12

Cut Reduction in Linear Logic as
Asynchronous Session-Typed Communication∗

Henry DeYoung1, Luís Caires2, Frank Pfenning1, and
Bernardo Toninho1,2

1 Computer Science Department, Carnegie Mellon University
Pittsburgh, PA, USA
{hdeyoung, fp, btoninho}@cs.cmu.edu

2 Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa
Lisboa, Portugal
luis.caires@di.fct.unl.pt

Abstract
Prior work has shown that intuitionistic linear logic can be seen as a session-type discipline for
the π-calculus, where cut reduction in the sequent calculus corresponds to synchronous process
reduction. In this paper, we exhibit a new process assignment from the asynchronous, polyadic
π-calculus to exactly the same proof rules. Proof-theoretically, the difference between these inter-
pretations can be understood through permutations of inference rules that preserve observational
equivalence of closed processes in the synchronous case. We also show that, under this new asyn-
chronous interpretation, cut reductions correspond to a natural asynchronous buffered session
semantics, where each session is allocated a separate communication buffer.

1998 ACM Subject Classification F.3.2 Semantics of Programming Languages

Keywords and phrases linear logic, cut reduction, asynchronous π-calculus, session types

Digital Object Identifier 10.4230/LIPIcs.CSL.2012.228

1 Introduction

Ever since linear logic was originally proposed, researchers have been discovering and exploring
its deep and perhaps surprising connections with concurrency in a variety of ways. Girard
himself first sketched a connection of linear logic with concurrency, by giving a high-level
pattern of communication that manifested itself in proof nets [13]. Others expanded upon
this with further models based on proof nets and related structures, e.g., [1, 6, 5, 16]. In a
different vein, two of the present authors recently developed a Curry-Howard interpretation
of intuitionistic linear logic [8], where propositions are interpreted as session types [15, 14],
sequent calculus proofs are interpreted as π-calculus processes, and proof reduction during
cut elimination is interpreted as synchronous communication.

A natural follow-up question to this work is whether a Curry-Howard correspondence
between linear logic and an asynchronous process calculus can be established. An answer
is relevant both to the concurrency theorist and the logician. For the concurrency theorist,
asynchronous communication is a more realistic (and challenging) model for concurrency,
and so being able to establish properties of asynchronous processes by static typing is of
great interest. For the logician, asynchrony can be seen as eliminating at least some of the

∗ Support was provided by the Fundação para a Ciência e a Tecnologia through the Carnegie Mellon
Portugal Program, under grants SFRH/BD/33763/2009 and INTERFACES NGN-44/2009, and CITI.

© Henry DeYoung, Luís Caires, Frank Pfenning, and Bernardo Toninho;
licensed under Creative Commons License NC-ND

Computer Science Logic 2012 (CSL’12).
Editors: Patrick Cégielski, Arnaud Durand; pp. 228–242

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2012.228
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

H. DeYoung, L. Caires, F. Pfenning, and B. Toninho 229

“bureaucracy of syntax,” so that the order in which certain proof rules are applied no longer
imposes artificial sequentiality.

Our novel interpretation assigns processes from the asynchronous polyadic π-calculus1 [7,
17] to a sequent calculus formulation of DILL [3, 10] (the same proof rules as [8]), and cut
reductions to asynchronous communication, as we detail in Section 2. Moreover, in Section 3
we formally determine the relationship between the prior synchronous interpretation with
our asynchronous one. We show that, proof-theoretically, the fundamental difference between
the two is that a class of commuting conversions that in the synchronous interpretation
corresponded to only observational equivalences, now map to natural structural equivalences in
the asynchronous π-calculus. Finally, in Section 4, we relate our asynchronous interpretation
to buffered communication.

2 Linear logic as asynchronous session-typed communication

2.1 Judgmental principles
Because processes offer services along designated channels, our basic session-typing judgment
is P :: x:A, meaning “process P offers service A along channel x.” However, to provide new
services, most processes must themselves rely on services offered by other processes. Thus,
more generally, we use the hypothetical judgment

x1:A1, . . . , xn:An ` P :: x:A ,

meaning “Using services Ai that are assumed to be provided along channels xi, process P
offers service A along channel x.” The channels xi and x must all be distinct, and are binding
occurrences with scope over the process P . (We use the metavariable ∆ and its decorated
variants to stand for an arbitrary context of services.)

When two processes interact, their state changes; one now offers, and the other uses, the
continuation of the initial service. Due to this change of state, our hypothetical judgment
can be seen as an annotation of the intuitionistic linear sequent A1, . . . , An ` A. The context
of services satisfies neither weakening nor contraction. It does satisfy exchange, however,
because antecedents are uniquely labeled. Our process interpretation also handles persistent
antecedents, but we postpone their introduction until Section 2.6 to keep the overhead of
initial exposition lower.

The sequent calculus cut and identity rules serve to clarify the relationship between
offering and using a service.

Cut as composition. In the sequent calculus, the cut rule composes a proof of lemma A
with its use in the proof of theorem C:

∆ ` A ∆′, A ` C
∆,∆′ ` C cut

Because proofs should correspond to processes, this reading suggests that the process
interpretation of the cut rule should compose a process that offers service A with one that
uses service A. Stated differently, an offer satisfies a use. Therefore, we annotate cut as

∆ ` P :: x:A ∆′, x:A ` Q :: z:C
∆,∆′ ` (νx)(P | Q) :: z:C cut

1 Our interpretation in fact uses only niladic, monadic, and dyadic processes, not general polyadic
communication; for brevity, however, we prefer to retain ‘polyadic’ as the collective term.

CSL’12

230 Cut Reduction in Linear Logic as Asynchronous Session-Typed Communication

The process (νx)(P | Q) allows to execute in parallel, as indicated by P | Q, and interact
along the private channel x, as indicated by the name restriction (νx). (The occurrence of x
in the name restriction (νx) is a binding occurrence, and is therefore subject to renaming.)

Identity as forwarding. The identity rule uses an antecedent to construct a proof directly:

A ` A id

This suggests an interpretation of id as a forwarding process, [y ↔ x]:

y:A ` [y ↔ x] :: x:A id

The process [y ↔ x] forwards messages received along channel x further on to channel y, and
vice versa, so that it offers A along x by directly using the service A that is available from y.
Stated differently, a use is one way to fulfill an offer.

2.2 Implication as input
In our process interpretation, the linear logical connectives correspond to various basic forms
of service. We adopt a verificationist perspective: the sequent calculus right rules will define
what it means to offer a service, whereas the left rules show how to use a service.

Consider linear implication, written A(B, and recall its right and left rules:

∆, A ` B
∆ ` A(B

(R
∆′

1 ` A ∆′
2, B ` C

∆′
1,∆′

2, A(B ` C (L

The right rule says that A(B is provable if B is provable using a proof of A. Correspondingly,
a process that offers service A(B should first input a channel offering service A and then
continue the session by using this service to offer service B. Conversely, a process that uses
service A(B should behave in a complementary way: the client must first output a new
channel offering service A and then continue the session by using service B.

Based on this intuition, a first attempt at an asynchronous process assignment might be:

∆, y:A ` P :: x:B
∆ ` x(y).P :: x:A(B

(R?
∆′

1 ` Q1 :: y:A ∆′
2, x:B ` Q2 :: z:C

∆′
1,∆′

2, x:A(B ` (νy)(x〈y〉 | Q1 | Q2) :: z:C (L?

The syntax x(y).P denotes a blocking input along channel x that guards process P ; here y
is a bound name and stands for the channel that will be received by the input. The syntax
x〈y〉 denotes an asynchronous output of y along channel x; we often think of it as a message
y somewhere in transit to x. Note that, in their premises, both typing rules reuse the session
channel of type A(B, namely x, as the channel for the session continuation at type B.

Unfortunately, there are two serious problems with this assignment. First, it leaves
outputs along the channel x unordered, violating the session contract. As an example,
consider the alleged typing derivation

∆1 ` P1 :: y1:A1

∆2 ` P2 :: y2:A2 ∆′, x:B ` Q :: z:C
∆2,∆′, x:A2 (B ` (νy2)(x〈y2〉 | P2 | Q) :: z:C (L?

∆1,∆2,∆′, x:A1 ((A2 (B) ` (νy1)
(
x〈y1〉 | P1 | (νy2)(x〈y2〉 | P2 | Q)

)
:: z:C

(L?

According to the contract imposed by the session type x:A1 ((A2 (B), a process listening
on channel x should expect to receive an A1 and then, only later, an A2. But, under the opera-
tional semantics of the asynchronous π-calculus, a process listening on x nondeterministically
receives either y1:A1 or y2:A2 when composed with the above process.

H. DeYoung, L. Caires, F. Pfenning, and B. Toninho 231

Second, it is possible that the output will be misdirected to the session’s continuation.
Because the (L rule types the continuation process Q2 with ∆′

2, x:B ` Q2 :: z:C, the
process Q2 may contain an input along channel x. Because the asynchronous output x〈y〉 is
in parallel with Q2, it is possible that such an input might unintentionally receive x〈y〉.

Fortunately, there is a single, elegant fix for both problems: rather than using the same
channel for the continuation, the session should continue along a fresh channel. Thus, the
left rule, (L, becomes

∆, y:A ` P :: x′:B
∆ ` x(y, x′).P :: x:A(B

(R
∆′

1 ` Q1 :: y:A ∆′
2, x

′:B ` Q2 :: z:C
∆′

1,∆′
2, x:A(B ` (νy)(νx′)(x〈y, x′〉 | Q1 | Q2) :: z:C (L

It is crucial that the (L process sends both y and x′, as represented by the dyadic output
x〈y, x′〉. If the process sent only y, then its session partner would not know where to
rendezvous for the session continuation. Accordingly, the right rule is a matching dyadic
input. (The names y and x′ are bound with scope over P in the input process x(y, x′).P .)

By using a fresh channel for the continuation, both problems are resolved. First, outputs
are now ordered. Since the (L rule types the continuation process as ∆′

2, x
′:B ` Q2 :: z:C, a

subsequent output in Q2 will occur along channel x′, not x. Because of the name restriction
(νx′), the channel x′ is unknown outside of this process. Thus, no other process can be
listening on x′ until it receives the output x〈y, x′〉 and learns of the new channel x′, thereby
imposing an order on outputs within a given session.

Pictorially, we might represent this ordering of outputs within a session as the sequence
x〈y1, x

′〉 , x′〈y2, x
′′〉 , x′′〈y3, x

′′′〉 , Because the typing discipline ensures that channels
x′, x′′, x′′′, . . . are not used elsewhere, this suggests a reading of well-typed processes as using
explicit communication buffers, such as the input buffer x〈y1, y2, y3, . . .] at endpoint x. This
intuition will be made precise in Section 4.

Second, the problem of misdirected outputs is also resolved by using a fresh channel
for the session continuation. The (L rule does not allow the previous session channel, x,
to appear in the continuation process Q2. Therefore, Q2 will not contain inputs along x,
precluding it from ever mistakenly receiving the output x〈y, x′〉.

Cut reduction as communication. In the linear sequent calculus, the principal cut reduction
for linear implication is a local check on the coherence of the (R and (L rules:

∆, A ` B
∆ ` A(B

(R
∆′

1 ` A ∆′
2, B ` C

∆′
1,∆′

2, A(B ` C (L

∆,∆′
1,∆′

2 ` C
cut −→

∆′
1 ` A ∆, A ` B

∆,∆′
1 ` B

cut ∆′
2, B ` C

∆,∆′
1,∆′

2 ` C
cut

Under the process interpretation, cut reduction is asynchronous session-typed communication.
When annotated according to the process interpretation, the above principal cut reduction
for linear implication yields the process reduction

(νx)
(
x(y, x′).P | (νy)(νx′)(x〈y, x′〉 | Q1 | Q2)

)
−→ (νx′)

(
(νy)(Q1 | P) | Q2

)
.

Modulo the structural congruences of the π-calculus (including α-renaming of bound names),
this is an instance of the standard asynchronous polyadic π-calculus process reduction that
drives asynchronous communication: x(w, z).P | x〈y, x′〉 −→ P{y/w, x′/z}. This justifies
our claim that cut reduction is asynchronous session-typed communication.

It is also possible to give a computational interpretation of identity expansion, the act of
reducing uses of the id rule at compound types to larger proofs that appeal to the id rule at
smaller types. We do not pursue it in this paper because it is not germane to our study of
cut reduction as communication and commuting conversions as the basis of asynchrony. For
the details of identity expansion in the synchronous case, see [9].

CSL’12

232 Cut Reduction in Linear Logic as Asynchronous Session-Typed Communication

2.3 Multiplicative conjunction as output
Even in the intuitionistic linear sequent calculus, there is a strong flavor of duality between
linear implication and multiplicative conjunction. This duality should similarly extend to
the process interpretation: just as a process of type A(B offers an input of an A and then
behaves as B, a process of type A�B should offer an output of an A and then behave as B.

Thus, we arrive at the following process assignment for the usual right and left rules.
∆1 ` P1 :: y:A ∆2 ` P2 :: x′:B

∆1,∆2 ` (νy)(νx′)(x〈y, x′〉 | P1 | P2) :: x:A�B
�R

∆′, y:A, x′:B ` Q :: z:C
∆′, x:A�B ` x(y, x′).Q :: z:C �L

Again, notice the use of a new channel, x′, for the session continuation at type B. If we tried
to reuse the original session channel, x, then we would again face the problems of unordered
and misdirected outputs that plagued our first, failed process assignment for implication. We
can verify that the �R and �L rules fit together by checking the principal cut reduction.

Cut reduction as communication. The principal cut reduction for A�B is
∆1 ` A ∆2 ` B
∆1,∆2 ` A�B

�R
∆′, A,B ` C

∆′, A�B ` C �L

∆1,∆2,∆′ ` C cut −→
∆2 ` B

∆1 ` A ∆′, A,B ` C
∆1,∆′, B ` C cut

∆1,∆2,∆′ ` C cut

The same reduction can be carried out under the process interpretation, yielding

(νx)
(
(νy)(νx′)(x〈y, x′〉 | P1 | P2) | x(y, x′).Q

)
−→ (νx′)

(
P2 | (νy)(P1 | Q)

)
.

Once again, modulo structural congruence, this is an instance of the standard asynchronous
polyadic communication rule.

2.4 Multiplicative unit as termination
Because it is the unit of �, it is often helpful to view the proposition 1 as the nullary form
of �. For instance, the inference rules for 1 are nullary versions of the rules for A�B. We
can extend this to our process interpretation:

· ` x〈〉 :: x:1 1R
∆′ ` Q :: z:C

∆′, x:1 ` x().Q :: z:C 1L

The right rule outputs an empty message and has no continuation; the left rule inputs the
empty message. Because the right rule has no continuation, the empty message serves as a
session termination signal: the process will not offer any further service.

As the left rule is given, a process using a terminated session must block until it receives
the termination signal, because the prefix x() guards the continuation Q. We can enable
more parallelism by modifying the left rule:

∆′ ` Q :: z:C
∆′, x:1 ` x().0 | Q :: z:C 1L

The left rule’s continuation, Q, can now run in parallel while waiting to receive the termination
signal. The 1L rule is no longer an exact nullary version of the �L rule, but the process
assignment is still in bijective correspondence with the proof rules.

Cut reduction as communication. The principal cut reduction at type 1 is

· ` 1 1R ∆′ ` C
∆′,1 ` C 1L

∆′ ` C cut −→ ∆′ ` C

H. DeYoung, L. Caires, F. Pfenning, and B. Toninho 233

When annotated according to the process interpretation, we can extract the process reduction
(νx)

(
x〈〉 | (x().0 | Q)

)
−→ Q, which, modulo structural congruences, is an instance of the

asynchronous π-calculus reduction that matches a nullary output with a nullary input.

2.5 Additive conjunction and disjunction as choice
Processes should be able to offer the client a choice between two services, A and B. The
client selects one of the services and then uses the selected service. This type of external
choice corresponds to the additive conjunction A&B. We can assign processes to the rules:

∆ ` P1 :: x′
1:A ∆ ` P2 :: x′

2:B
∆ ` x.case((x′

1).P1, (x′
2).P2) :: x:A&B

&R

∆′, x′
1:A ` Q :: z:C

∆′, x:A&B ` (νx′
1)(x.inl〈x′

1〉 | Q) :: z:C
&L1

∆′, x′
2:B ` Q :: z:C

∆′, x:A&B ` (νx′
2)(x.inr〈x′

2〉 | Q) :: z:C
&L2

In the left rules, the client asynchronously sends his selection (either inl or inr) and a new
channel at which the session should continue. In the right rule, the server must be prepared
for either selection; it behaves like a case, waiting for a client’s selection and then continuing
accordingly.

The principal cut reductions and process reductions match: the process reductions are

(νx)
(
x.case((x′

1).P1, (x′
2).P2) | (νx′

1)(x.inl〈x′
1〉 | Q)

)
−→ (νx′

1)(P1 | Q)
(νx)

(
x.case((x′

1).P1, (x′
2).P2) | (νx′

2)(x.inr〈x′
2〉 | Q)

)
−→ (νx′

2)(P2 | Q) .

External choice is dual to internal choice, where a process offers one of two possible
services with the choice at its own discretion. Because A&B is dual to the additive disjunction
A � B in linear logic, A � B should be interpreted as internal choice and uses the same
process constructs in a dual manner. Due to space constraints, we omit the details here.

2.6 Exponential as persistent service
Thus far, we have focused on the purely linear fragment of intuitionistic linear logic, but
we can also give an asynchronous process interpretation of the ‘of course!’ exponential. In
the judgmental formulation of intuitionistic linear logic, the reusable antecedents provided
by the ‘of course!’ exponential are expressed with a new judgment, A valid, that is subject
to weakening, contraction, and exchange. To streamline notation, validity antecedents are
usually written in a separate zone of the sequent, as in dual intuitionistic linear logic [3, 10].
With the process annotations added, the sequent becomes

u1:B1, . . . , um:Bm;x1:A1, . . . , xn:An ` P :: x:A ,

where u1:B1, . . . , um:Bm are the reusable, validity antecedents. We use the metavariable Γ to
stand for an arbitrary context of validity antecedents. To match the new form for sequents,
all of the previously presented inference rules are extended to include a context Γ in the
conclusion and all premises.

2.6.1 Judgmental principles
A proposition A is valid if, and only if, A is true without linear antecedents. There are two
new judgmental rules: a cut principle for validity and a rule relating validity to linear truth.

Γ; · ` A Γ, A; ∆′ ` C
Γ; ∆′ ` C cut!

Γ, A; ∆′, A ` C
Γ, A; ∆′ ` C

copy

CSL’12

234 Cut Reduction in Linear Logic as Asynchronous Session-Typed Communication

What process interpretation should we give to validity and its cut! and copy rules?
Because validity antecedents persist throughout a proof we will interpret u:A as a server that
persistently provides service A. Specifically:

Γ; · ` P :: y:A Γ, u:A; ∆′ ` Q :: z:C
Γ; ∆′ ` (νu)(!u(y).P | Q) :: z:C cut!

Γ, u:A; ∆′, x:A ` Q :: z:C
Γ, u:A; ∆′ ` (νx)(u〈x〉 | Q) :: z:C

copy

The cut! rule shows that a persistent offer of service A is made by the replicated input !u(y).P .
According to the copy rule, the client process, Q, can obtain service A by asynchronously
sending the server, u, a new channel; the server spawns a copy of service A at that channel,
and the server continues to be available for future requests.

Note that, in contrast with all previous rules, the copy rule’s premise does not use a
renamed persistent channel in the continuation. From an operational perspective, this is
because persistent servers do not directly participate in long-lived sessions with clients.
Instead, they just receive individual messages from various clients and spawn linear sessions
to do the real work. Alternatively, from a proof-theoretic perspective, this is because there is
a commuting conversion between any adjacent copy inferences.

Cut reduction as communication. The server’s act of spawning a copy of service A is
reflected in the process interpretation of the cut reduction that arises when cut! meets copy.
When processes annotate the cut reduction

Γ; · ` A
Γ, A; ∆′, A ` C

Γ, A; ∆′ ` C
copy

Γ; ∆′ ` C cut! −→
Γ; · ` A

Γ; · ` A Γ, A; ∆′, A ` C
Γ; ∆′, A ` C cut!

Γ; ∆′ ` C cut

we obtain the following process reduction, which matches an output with a replicated input.

(νu)
(
!u(y).P | (νx)(u〈x〉 | Q)

)
−→ (νx)

(
P{x/y} | (νu)(!u(y).P | Q)

)
2.6.2 Right and left rules
In a judgmental formulation of the linear sequent calculus, the right and left rules for the ‘of
course!’ connective, written !A, are:

Γ; · ` A
Γ; · ` !A !R

Γ, A; ∆′ ` C
Γ; ∆′, !A ` C !L

How does !A relate to validity as persistent service? Essentially, we will interpret a service !A
as one that creates a persistent server that offers A. The process assignment that we use is

Γ; · ` P :: y:A
Γ; · ` (νu)(x〈u〉 | !u(y).P) :: x:!A !R

Γ, u:A; ∆′ ` Q :: z:C
Γ; ∆′, x:!A ` x(u).Q :: z:C !L

The right rule says that a process offering !A along x first chooses a new, persistent name, u,
for itself and registers that channel by sending it to its session partner. The process then
persistently provides service A by offering a replicated input at u. Conversely, the left rule
says that a process that uses !A must input a persistent channel, u, and may thereafter treat
u as the name of a persistent server offering A.

Our process interpretation of the !R and !L rules departs significantly from the prior
synchronous interpretations [8, 9], in ways that are orthogonal to asynchrony. Previously,
the !R rule was interpreted as a replicated input along a linear channel and the !L rule was

H. DeYoung, L. Caires, F. Pfenning, and B. Toninho 235

interpreted as either an implicit [8] or explicit [9] substitution. We contend that our process
assignment is proof-theoretically more pleasing: now, all of the non-invertible right and left
rules [2] ((L, �R, &Li, �Ri, and !R) have an output flavor, and all of the invertible right
and left rules ((R, �L, &R, �L, and !L) have an input flavor.

Cut reduction as communication. Once again, the principal cut reduction corresponds to
a process reduction. The principal cut reduction at type !A is

Γ; · ` A
Γ; · ` !A !R

Γ, A; ∆′ ` C
Γ; ∆′, !A ` C !L

Γ; ∆′ ` C cut −→
Γ; · ` A Γ, A; ∆′ ` C

Γ; ∆′ ` C cut!

When this cut reduction is annotated with processes, we obtain the process reduction

(νx)
(
(νu)(x〈u〉 | !u(y).P) | x(u).Q

)
−→ (νu)(!u(y).P | Q) .

Thus, cut reduction at !A corresponds to registering a server’s persistent name with its client.

3 Relationship between synchronous and asynchronous process
interpretations

Prior work has shown that the intuitionistic linear sequent calculus can be seen as a session-
type discipline for the synchronous π-calculus [8, 9]. In the previous section, we presented a
new process assignment from the asynchronous, polyadic π-calculus to exactly the same proof
rules. This section serves to make precise the claim that, proof-theoretically, the difference
between these interpretations lies in the commuting conversions that are permitted.

3.1 A synchronous, polyadic process interpretation
The first step in making our claim precise is to reconsider the synchronous process interpre-
tation from [8, 9]. There, all outputs were represented as prefixes guarding a continuation
process, as is standard in the synchronous π-calculus. For example, the assignment for the
�R rule was a synchronous monadic output and the �L rule was a monadic input:

Γ; ∆1 ` P1 :: y:A Γ; ∆2 ` P2 :: x:B
Γ; ∆1,∆2 ` (νy)x〈y〉.(P1 | P2) :: x:A�B

�R
Γ; ∆′, y:A, x:B ` Q :: z:C

Γ; ∆′, x:A�B ` x(y).Q :: z:C �L

These processes reuse the session channel x as the channel for the session’s continuation.
There is no possibility of unordered or misdirected outputs here because P1 and P2 may not
execute until the output guard, x〈y〉, synchronizes with another input process, x(y).Q.

Instead of relying on this implicit convention, we could modify the synchronous process
assignment to be explicit about reusing the session channel. The �R and �L rules would
thus become dyadic outputs and inputs, respectively, with the output explicitly transmitting
x as a channel to be used for the session continuation. But, in fact, once dyadic outputs
and inputs are used, there is no technical advantage to reusing the session channel, and we
may as well use a fresh channel for the session continuation. Figure 1 presents a polyadic
synchronous process interpretation in this style.

There is a very strong operational equivalence between this polyadic interpretation and
the monadic synchronous interpretation from [9] (there is also a correspondence with [8], if
we match their rules for 1). For example, consider the principal cut reduction at type A�B.
Under the monadic synchronous process assignment, it corresponds to

(νx)
(
(νy)x〈y〉.(P1 | P2) | x(y).Q

)
−→ (νx)

(
P2 | (νy)(P1 | Q)

)
.

CSL’12

236 Cut Reduction in Linear Logic as Asynchronous Session-Typed Communication

Γ; y:A ` [y ↔ x] :: x:A id
Γ; ∆ ` P :: x:A Γ; ∆′, x:A ` Q :: z:C

Γ; ∆,∆′ ` (νx)(P | Q) :: z:C
cut

Γ; · ` P :: y:A Γ, u:A; ∆′ ` Q :: z:C
Γ; ∆′ ` (νu)(!u(y).P | Q) :: z:C

cut!
Γ, u:A; ∆′, x:A ` Q :: z:C

Γ, u:A; ∆′ ` (νx)u〈x〉.Q :: z:C
copy

Γ; ∆, y:A ` P :: x′:B
Γ; ∆ ` x(y, x′).P :: x:A(B

(R
Γ; ∆′

1 ` Q1 :: y:A Γ; ∆′
2, x

′:B ` Q2 :: z:C
Γ; ∆′

1,∆′
2, x:A(B ` (νy)(νx′)x〈y, x′〉.(Q1 | Q2) :: z:C

(L

Γ; ∆1 ` P1 :: y:A Γ; ∆2 ` P2 :: x′:B
Γ; ∆1,∆2 ` (νy)(νx′)x〈y, x′〉.(P1 | P2) :: x:A�B

�R
Γ; ∆′, y:A, x′:B ` Q :: z:C

Γ; ∆′, x:A�B ` x(y, x′).Q :: z:C
�L

· ` x〈〉.0 :: x:1 1R
Γ; ∆′ ` Q :: z:C

Γ; ∆′, x:1 ` x().Q :: z:C
1L

Γ; ∆ ` P1 :: x′
1:A Γ; ∆ ` P2 :: x′

2:B
Γ; ∆ ` x.case((x′

1).P1, (x′
2).P2) :: x:A&B

&R

Γ; ∆′, x′
1:A ` Q :: z:C

Γ; ∆′, x:A&B ` x.inl〈x′
1〉;Q :: z:C

&L1
Γ; ∆′, x′

2:B ` Q :: z:C
Γ; ∆′, x:A&B ` x.inr〈x′

2〉;Q :: z:C
&L2

Γ; ∆ ` P :: x′
1:A

Γ; ∆ ` x.inl〈x′
1〉;P :: x:A�B

�R1
Γ; ∆ ` P :: x′

2:B
Γ; ∆ ` x.inr〈x′

2〉;P :: x:A�B
�R2

Γ; ∆′, x′
1:A ` Q1 :: z:C Γ; ∆′, x′

2:B ` Q2 :: z:C
Γ; ∆′, x:A�B ` x.case((x′

1).Q1, (x′
2).Q2) :: z:C

�L

Γ; · ` P :: y:A
Γ; · ` (νu)x〈u〉.!u(y).P :: x:!A !R

Γ, u:A; ∆′ ` Q :: z:C
Γ; ∆′, x:!A ` x(u).Q :: z:C

!L

Figure 1 A polyadic synchronous process assignment that is equivalent to one from [9].

Under the polyadic synchronous process assignment, the same cut reduction corresponds to

(νx)
(
(νy)(νx′)x〈y, x′〉.(P1 | P2{x′/x}) | x(y, x′).Q{x′/x}

)
−→ (νx′)

(
P2{x′/x} | (νy)(P1 | Q{x′/x})

)
.

Typing guarantees that x′ is not free in P1. Thus, by α-renaming x′ to x, we obtain the same
process after reduction as in the monadic synchronous assignment. In this way, there is a tight
operational correspondence between the monadic and polyadic synchronous assignments.

3.2 Commuting conversions as process equivalences
We can now turn to relating the interpretation of commuting conversions under the asyn-
chronous and synchronous process assignments. Having shown that the synchronous polyadic
process assignment of Figure 1 is equivalent to the synchronous monadic assignment of [9],
we can compare our asynchronous assignment from Section 2 with the synchronous polyadic
assignment and know that the comparison extends to the synchronous monadic assignment.

In proof theory, commuting conversions describe structural equivalences among proofs.
The following is an example of one commuting conversion between two adjacent cut inferences.

Γ; ∆1 ` B Γ; ∆2, B ` A
Γ; ∆1,∆2 ` A

cut Γ; ∆′, A ` C
Γ; ∆1,∆2,∆′ ` C cut ≡

Γ; ∆1 ` B
Γ; ∆2, B ` A Γ; ∆′, A ` C

Γ; ∆2,∆′, B ` C cut

Γ; ∆1,∆2,∆′ ` C cut

H. DeYoung, L. Caires, F. Pfenning, and B. Toninho 237

To what do such commuting conversions correspond under the synchronous and asynchronous
process assignments? The commuting conversions can be sorted into three classes.

Class 1. Some commuting conversions correspond to structural equivalences under both the
synchronous and asynchronous assignments. For example, both assignments interpret cut
with the same process. Thus, if we annotate the above cut/cut conversion accordingly, it can
be read as the following structural equivalence on processes:

(νx)
(
(νy)(P1 | P2) | Q

)
≡ (νy)

(
P1 | (νx)(P2 | Q)

)
, if x /∈ fn(P1) and y /∈ fn(Q).

This equivalence is derivable from more basic laws of the (synchronous and asynchronous) π-
calculus structural congruence, such as associativity and commutativity of parallel composition
and scope extrusion of name restrictions. (The side condition on the free names, denoted
fn(−), is only necessary in the untyped π-calculus; here it is guaranteed by typing.)

Class 2. Most commuting conversions do not yield structural process equivalences under
the synchronous interpretation. For example, one conversion between �R and (L is:

Γ; ∆ ` A1

Γ; ∆′
1 ` B1 Γ; ∆′

2, B2 ` A2

Γ; ∆′
1,∆′

2, B1 (B2 ` A2
(L

Γ; ∆,∆′
1,∆′

2, B1 (B2 ` A1 �A2
�R ≡

Γ; ∆′
1 ` B1

Γ; ∆ ` A1 Γ; ∆′
2, B2 ` A2

Γ; ∆,∆′
2, B2 ` A1 �A2

�R

Γ; ∆,∆′
1,∆′

2, B1 (B2 ` A1 �A2
(L

Under the synchronous interpretation, this commuting conversion does not correspond to
a structural process equivalence of the synchronous polyadic π-calculus because it reorders
two blocking outputs:

(νw)(νz′)z〈w, z′〉.
(
P | (νy)(νx′)x〈y, x′〉.(Q1 | Q2)

)
6≡ (νy)(νx′)x〈y, x′〉.

(
Q1 | (νw)(νz′)z〈w, z′〉.(P | Q2)

)
.

However, when composed with closed processes as required by the Γ and ∆,∆′
1,∆′

2, x:B1(B2
contexts, these two processes are observationally equivalent, according to (a simple dyadic
extension of) typed context bisimilarity as defined by Pérez et al. [20]. Essentially, the
reason is this: When composed with the required processes, only the actions along z:A1 �A2,
namely (νw)(νz′)z〈w, z′〉, are observable—all other interactions, such as (νy)(νx′)x〈y, x′〉,
are internal to the closed process—and so the reordering cannot be detected.

On the other hand, under our asynchronous process interpretation, this �R/(L com-
muting conversion can be read as the structural process equivalence

(νw)(νz′)
(
z〈w, z′〉 | P | (νy)(νx′)(x〈y, x′〉 | Q1 | Q2)

)
≡ (νy)(νx′)

(
x〈y, x′〉 | Q1 | (νw)(νz′)(z〈w, z′〉 | P | Q2)

)
, if w, z′ /∈ fn(Q1) and y, x′ /∈ fn(P).

Once again, this equivalence is derivable from laws of structural congruence that are standard
in the asynchronous π-calculus.

We contend that our asynchronous interpretation is therefore proof-theoretically more
pleasing: it maps certain structural equivalences of proofs to standard structural equivalences
of processes, whereas the synchronous interpretation only mapped these proof equivalences
to strictly weaker observational equivalences on processes.

Class 3. Another class of commuting conversions are those that involve rules to which
input-flavored processes are assigned. These conversions do not correspond to structural

CSL’12

238 Cut Reduction in Linear Logic as Asynchronous Session-Typed Communication

process equivalences under either the synchronous or asynchronous assignments. For example,
one such conversion is between �R and �L:

Γ; ∆1 ` A1

Γ; ∆2, B1, B2 ` A2
Γ; ∆2, B1 �B2 ` A2

�L

Γ; ∆1,∆2, B1 �B2 ` A1 �A2
�R ≡

Γ; ∆1 ` A1 Γ; ∆2, B1, B2 ` A2
Γ; ∆1,∆2, B1, B2 ` A1 �A2

�R

Γ; ∆1,∆2, B1 �B2 ` A1 �A2
�L

Under the synchronous assignment, this conversion is only an observational equivalence:

(νw)(νz′)z〈w, z′〉.
(
P | x(y, x′).Q

)
≈ x(y, x′).

(
(νw)(νz′)z〈w, z′〉.(P | Q)

)
.

The justification is similar to the previous one: When composed with closed processes required
by Γ and ∆1,∆2, B1 �B2, only the actions along z:A1 �A2, namely (νw)(νz′)z〈w, z′〉, are
observable because all other interactions, such as x(y, x′), are internal to the closed process.

Similarly, under the asynchronous process assignment, this commuting conversion does
not yield a structural equivalence because permuting the input outward blocks actions in P :

(νw)(νz′)
(
z〈w, z′〉 | P | x(y, x′).Q

)
6≡ x(y, x′).(νw)(νz′)(z〈w, z′〉 | P | Q) .

This exposes a fundamental asymmetry between outputs, which can be interpreted asyn-
chronously and give rise to very natural structural commutation laws, and inputs, which,
in a process calculus, are inherently points of synchronization and cannot obey structural
commutation laws since that would defeat the purpose of synchronization points.

With the above intuition for the three classes of conversions, we obtain the following.

I Theorem 1. For each commuting conversion listed in Figure 2, its asynchronous process
interpretation is a standard structural equivalence.

4 Correspondence with an asynchronous buffered session semantics

In Section 2, we presented a novel Curry-Howard interpretation of intuitionistic linear logic as
an asynchronous session-type system. Asynchronous outputs were represented abstractly as
free-floating messages waiting to be received by an input process. However, in keeping with
practical implementations of asynchronous communication, existing asynchronous session-
type systems use explicitly buffered communication channels [12, 11, 18]. To relate our
Curry-Howard interpretation to existing asynchronous session-type systems, we now show
that the use of fresh channels for session continuations serves as an encoding of FIFO buffers.
First, we must present a π-calculus with explicit two-sided FIFO buffers.

4.1 A π-calculus with explicit two-sided FIFO buffers
Syntax and structural congruence. Syntactically, this calculus extends the (synchronous)
π-calculus with a FIFO buffer (i.e., queue) construct, x[mk, . . . ,m1〉z. It represents an input
buffer at endpoint z that holds the sequence m1, . . . ,mk of messages that have been sent by
the peer endpoint x. A message m has one of several forms: a linear channel, y; a termination
signal, fin; left and right selectors, inl and inr; or registration of a persistent channel, !u.
We assume that a message sent by endpoint x immediately arrives at the tail of its peer
endpoint’s input buffer. It will also be useful to adopt z〈m1, . . . ,mk]x as alternate notation
for the queue x[mk, . . . ,m1〉z.

In addition to the usual basic laws of π-calculus structural congruence, we include the
equivalence x[〉z ≡ x〈]z. This expresses that an empty queue remains uncommitted to its
direction—either endpoint may place a message onto the empty queue.

H. DeYoung, L. Caires, F. Pfenning, and B. Toninho 239

Class 2:
(cut/(L/−), ((L/−/cut1) (νx)((νw, y′)(y〈w, y′〉 | P1 | P2) | Q)

≡ (νw, y′)(y〈w, y′〉 | P1 | (νx)(P2 | Q))

(cut/1L/−), (1L/cut1) (νx)((y().0 | P) | Q) ≡ y().0 | (νx)(P | Q)

(cut/&Li/−), (&Li/cut1) (νx)((νy′)(y.in[l/r]〈y′〉 | P) | Q) ≡ (νy′)(y.in[l/r]〈y′〉 | (νx)(P | Q))
(cut/copy/−), (copy/cut1) (νx)((νy)(u〈y〉 | P) | Q) ≡ (νy)(u〈y〉 | (νx)(P | Q))

(cut/−/(L1), (cut/−/�R1),
((L/cut/−), (�R/cut/−)

(νx)(P | (νw, y′)(y〈w, y′〉 | Q1 | Q2))
≡ (νw, y′)(y〈w, y′〉 | (νx)(P | Q1) | Q2)

(cut/−/(L2), (cut/−/�R2),
((L/−/cut2), (�R/−/cut)

(νx)(P | (νw, y′)(y〈w, y′〉 | Q1 | Q2))
≡ (νw, y′)(y〈w, y′〉 | Q1 | (νx)(P | Q2))

(cut/−/1L), (1L/cut2) (νx)(P | (y().0 | Q)) ≡ y().0 | (νx)(P | Q)

(cut/−/&Li), (cut/−/�Ri),
(&Li/cut2), (�Ri/cut2)

(νx)(P | (νy′)(y.in[l/r]〈y′〉 | Q)) ≡ (νy′)(y.in[l/r]〈y′〉 | (νx)(P | Q))

(cut/−/copy), (copy/cut2) (νx)(P | (νy)(u〈y〉 | Q)) ≡ (νy)(u〈y〉 | (νx)(P | Q))

((L/cut!/−), (�R/cut!/−) (νw, z′)(z〈w, z′〉 | (νu)(!u(y).P1 | P2) | Q)
≡ (νu)(!u(y).P1 | (νw, z′)(z〈w, z′〉 | P2 | Q))

((L/−/cut!), (�R/−/cut!) (νw, z′)(z〈w, z′〉 | P | (νu)(!u(y).Q1 | Q2))
≡ (νu)(!u(y).Q1 | (νw, z′)(z〈w, z′〉 | P | Q2))

(cut!/−/1L), (1L/cut!) (νu)(!u(y).P | (x().0 | Q)) ≡ x().0 | (νu)(!u(y).P | Q)

(cut!/−/&Li), (cut!/−/�Ri),
(&Li/cut!), (�Ri/cut!)

(νu)(!u(y).P | (νx′)(x.in[l/r]〈x′〉 | Q))
≡ (νx′)(x.in[l/r]〈x′〉 | (νu)(!u(y).P | Q))

(cut!/−/copy), (copy/cut!) (νu)(!u(y).P | (νx)(v〈x〉 | Q)) ≡ (νx)(v〈x〉 | (νu)(!u(y).P | Q))

((L/(L/−), ((L/−/(L1),
((L/−/�R1), (�R/(L/−)

(νy, x′)(x〈y, x′〉 | (νw, z′)(z〈w, z′〉 | P1 | P2) | Q)
≡ (νw, z′)(z〈w, z′〉 | P1 | (νy, x′)(x〈y, x′〉 | P2 | Q))

((L/1L/−), (�R/1L/−),
(1L/(L1), (1L/�R1)

(νy, x′)(x〈y, x′〉 | (z().0 | P) | Q) ≡ z().0 | (νy, x′)(x〈y, x′〉 | P | Q)

((L/&Li/−), (�R/&Li/−),
(&Li/(L1), (&Li/�R1)

(νy, x′)(x〈y, x′〉 | (νz′)(z.in[l/r]〈z′〉 | P) | Q)
≡ (νz′)(z.in[l/r]〈z′〉 | (νy, x′)(x〈y, x′〉 | P | Q))

((L/copy/−), (�R/copy/−),
(copy/(L1), (copy/�R1)

(νy, x′)(x〈y, x′〉 | (νz)(u〈z〉 | P) | Q)
≡ (νz)(u〈z〉 | (νy, x′)(x〈y, x′〉 | P | Q))

((L/−/(L2), ((L/−/�R2),
(�R/−/(L)

(νw, z′)(z〈w, z′〉 | P | (νy, x′)(x〈y, x′〉 | Q1 | Q2))
≡ (νy, x′)(x〈y, x′〉 | Q1 | (νw, z′)(z〈w, z′〉 | P | Q2))

((L/−/1L), (�R/−/1L),
(1L/(L2), (1L/�R2)

(νy, x′)(x〈y, x′〉 | P | (z().0 | Q)) ≡ z().0 | (νy, x′)(x〈y, x′〉 | P | Q)

((L/−/&Li), ((L/−/�Ri),
(�R/−/&Li), (&Li/(L2),
(&Li/�R2), (�Ri/(L)

(νy, x′)(x〈y, x′〉 | P | (νz′)(z.in[l/r]〈z′〉 | Q))
≡ (νz′)(z.in[l/r]〈z′〉 | (νy, x′)(x〈y, x′〉 | P | Q))

((L/−/copy), (�R/−/copy),
(copy/(L2), (copy/�R2)

(νy, x′)(x〈y, x′〉 | P | (νz)(u〈z〉 | Q))
≡ (νz)(u〈z〉 | (νy, x′)(x〈y, x′〉 | P | Q))

(1L/1L) x().0 | (z().0 | P) ≡ z().0 | (x().0 | P)

(1L/&Li), (1L/�Ri),
(&Li/1L), (�Ri/1L)

x().0 | (νz′)(z.in[l/r]〈z′〉 | P) ≡ (νz′)(z.in[l/r]〈z′〉 | (x().0 | P))

(1L/copy), (copy/1L) x().0 | (νz)(u〈z〉 | P) ≡ (νz)(u〈z〉 | (x().0 | P))

(&Li/&Lj), (&Li/�Rj),
(�Ri/&Lj)

(νx′)(x.in[l/r]〈x′〉 | (νz′)(z.in[l/r]〈z′〉 | P))
≡ (νz′)(z.in[l/r]〈z′〉 | (νx′)(x.in[l/r]〈x′〉 | P))

(copy/copy) (νx)(u〈x〉 | (νz)(v〈z〉 | P)) ≡ (νz)(v〈z〉 | (νx)(u〈x〉 | P))

Figure 2 Asynchronous structural equivalences that arise from commuting conversions.

CSL’12

240 Cut Reduction in Linear Logic as Asynchronous Session-Typed Communication

Syntax and structural congruence:

m,n ::= y | fin | inl | inr | !u
P,Q ::= (νx)P | (P | Q) | 0 | x〈y〉.P | x(y).P | x〈〉.0 | x().P | x.inl;P | x.inr;P | x.case(P,Q)

| x〈u〉.P | x(u).P | u〈x〉 | !u(y).P | x[~m〉z

All π-calculus laws of structural congruence, plus x[〉z ≡ x〈]z.

Untyped reductions:

x〈y〉.P | x[~m〉z −→ P | x[y, ~m〉z (S-ch) x[~m, y〉z | z(w).Q −→ x[~m〉z | Q{y/w} (R-ch)
x〈〉.0 | x[~m〉z −→ x[fin, ~m〉z (S-fin) x[fin〉z | z().Q −→ Q (R-fin)
x.inl;P | x[~m〉z −→ P | x[inl, ~m〉z (S-inl) x[~m, inl〉z | z.case(Q1, Q2) −→ x[~m〉z | Q1 (R-inl)
x.inr;P | x[~m〉z −→ P | x[inr, ~m〉z (S-inr) x[~m, inr〉z | z.case(Q1, Q2) −→ x[~m〉z | Q2 (R-inr)
x〈u〉.P | x[~m〉z −→ P | x[!u, ~m〉z (S-!ch) x[!u〉z | z(v).Q −→ Q{u/v} (R-!ch)

!u(y).P | u〈x〉.Q −→ !u(y).P | P{x/y} | Q (Rep)
Notational definitions:
(νz)(P | z[〉x) , P{x/z} x〈y〉.P , (νx′)(x〈y, x′〉 | P{x′/x})

(νz)
(
P2 | (νy)(P1 | z[~m, y〉x)

)
x(y).P , x(y, x′).P{x′/x}

, (νy)(νx′)
(
x〈y, x′〉 | P1 | (νz)(P2 | z[~m〉x′)

)
(νz)(z[fin〉x) , x〈〉 x〈〉.0 , x〈〉

(νz)(νu)(P | z[!u〉x) , (νu)(x〈u〉 | P) x〈u〉.P , x〈u〉 | P

(νz)(P | z[~m, inl〉x) , (νx′)
(
x.inl〈x′〉 | (νz)(P | z[~m〉x′)

)
x.inl;P , (νx′)(x.inl〈x′〉 | P{x′/x})

(νz)(P | z[~m, inr〉x) , (νx′)
(
x.inr〈x′〉 | (νz)(P | z[~m〉x′)

)
x.inr;P , (νx′)(x.inr〈x′〉 | P{x′/x})
x.case(P1, P2)

, x.case((x′
1).P1{x′

1/x}, (x′
2).P2{x′

2/x})

Figure 3 A π-calculus with explicit two-sided FIFO buffers.

Reduction semantics. The reductions are given in Figure 3. Reductions S-ch, S-fin, S-inl,
S-inr, and S-!ch show that an output from endpoint x can always be placed at the tail of its
peer endpoint’s input buffer. Thus, outputs are non-blocking. Conversely, reductions R-ch,
R-fin, R-inl, R-inr, and R-!ch show how the peer endpoint z responds to these messages
using inputs and cases. Note that receipt of a fin termination message (R-fin) causes the
buffer to be deallocated. Similarly, receipt of a persistent channel (R-!ch) deallocates the
buffer because persistent channels spawn linear sessions rather than establishing a persistent
pattern of communication in their own right.

4.2 Typing and well-typed reductions for buffered processes
In our asynchronous process assignment, the use of fresh channels for session continuations or-
ders outputs within a session into a queue: the sequence x〈y1, x

′〉 , x′〈y2, x
′′〉 , x′′〈y3, x

′′′〉 , . . .
can be read as a queue, x〈y1, y2, y3, . . .]. This intuition allows us to treat buffered processes
as notational definitions for polyadic asynchronous processes, as shown in Figure 3.

To type processes in the calculus with explicit buffers, we expand the definitions and type
the resulting process according the polyadic asynchronous process assignment. For instance,
to type the process (νz)

(
z〈〉.0 | (νy)(P1 | z[y〉x)

)
, we would expand the definitions, typing

(νy)(νx′)
(
x〈y, x′〉 | P1 | x′〈〉

)
instead. The reductions with explicit buffers also correspond

to reductions in the polyadic asynchronous process assignment:

I Theorem 2. Well-typed reductions respect the definitions from Figure 3.

H. DeYoung, L. Caires, F. Pfenning, and B. Toninho 241

Proof. As a representative example, consider the well-typed reductions derived from (S-ch)
and (R-ch). The well-typed reduction corresponding to (R-ch) is

(νx)
(
(νz)(P2 | (νy)(P1 | z[~m, y〉x)) | x(y).Q

)
−→ (νx)

(
(νz)(P2 | z[~m〉x) | (νy)(P1 | Q)

)
.

By expanding according to the notational definitions from Figure 3, the reducing process
is (νx)

(
(νy, x′)(x〈y, x′〉 | P1 | (νz)(P2 | z[~m〉x′)) | x(y, x′).Q{x′/x}

)
. By the principal cut

at � type, this reduces to (νx′)
(
(νz)(P2 | z[~m〉x′) | (νy)(P1 | Q{x′/x})

)
, which, modulo

α-conversion (since x′ is not free in P1 or P2), is the same as the direct result.
The well-typed reduction corresponding to (S-ch) is

(νx)
(
(νz)((νy)z〈y〉.(P1 | P2) | z[~m〉x) | Q

)
−→ (νx)

(
(νz)(P2 | (νy)(P1 | z[y, ~m〉x)) | Q

)
.

We can show by induction on the length of ~m that these processes are structurally equivalent
when the definitions from Figure 3 are applied. The inductive case is straightforward. In
the base case, it suffices to show that (νz)((νy)z〈y〉.(P1 | P2) | z[〉x) and (νz)(P2 | (νy)(P1 |
z[y〉x)) are structurally equivalent when the definitions are expanded. The former expands
to (νy, x′)(x〈y, x′〉 | P1 | P2{x′/z}) and so does the latter. J

This result shows that our asynchronous polyadic process assignment does indeed faithfully
represent buffered asynchronous session types.

5 Related Work

The connections between linear logic and concurrency have been studied by both the logic
and concurrency theory communities. Abramsky gave a process algebraic interpretation of
classical linear logic proofs [1]. Since then, some work has taken a “propositions as types”
approach. Two of the present authors proposed an interpretation of linear logic in which
synchronous π-calculus session-typed processes are intuitionistic linear logic proofs [8], giving
rise to several interesting extensions and applications [9].

The connections between asynchronous process algebras and linear logic are also not new.
Honda and Laurent [16] show a correspondence between polarized proof nets and typings
for the asynchronous polyadic π-calculus. In contrast to our work, they consider the much
simpler IO-type system, rather than session types. Moreover, they use classical proof nets,
whereas we capture asynchrony while remaining in a sequent calculus.

Bellin and Scott [6] also give a process interpretation of classical linear logic using proof
nets. They modify the synchronous π-calculus by adding structural laws that allow for
arbitrary prefix commutations. This greatly simplifies the match with the proof theory but
also makes the development somewhat artificial from the process calculus perspective. In
contrast, we compromise between the two worlds in an arguably more satisfying way.

Beauxis et al. [4] showed that, in an untyped setting, the asynchronous π-calculus
corresponds to using bags for buffered communication. Buffers for session-typed asynchrony
have been considered for binary session types in a functional language [12], an object-oriented
language [11], and for multiparty sessions [18]. The systems of [12, 11] are similar to ours but
lack a clean logical interpretation which we get from our operational correspondence results.

6 Conclusion

In this paper, we have exhibited a novel process assignment from the asynchronous, polyadic
π-calculus to the proof rules of intuitionistic linear logic (Section 2). By allowing non-blocking

CSL’12

242 Cut Reduction in Linear Logic as Asynchronous Session-Typed Communication

outputs, our asynchronous interpretation exposes additional parallelism inherent in linear logic
that remained hidden in the prior synchronous interpretation [8, 9]. Proof-theoretically, this
arises from a better match between proof equivalences and process equivalences (Section 3).

As future work, we would like to further study the behavioral theory of the asynchronous
process assignment. With this understanding, it should then be possible to relate the
synchronous and the asynchronous assignments by developing a form of delayed bisimulation
for synchronous processes. We would also like to extend the asynchronous assignment to
multiparty session types [18]; we conjecture that hybrid logic [19] might prove useful.

References
1 S. Abramsky. Computational interpretations of linear logic. Theoret. Comput. Sci., 111(1–

2):3–57, 1993.
2 J-M. Andreoli. Logic programming with focusing proofs in linear logic. J. Logic Comput.,

2(3):197–347, 1992.
3 A. Barber. Dual intuitionistic linear logic. Technical Report LFCS-96-347, Univ. of Edin-

burgh, 1996.
4 R. Beauxis, C. Palamidessi, and F. D. Valencia. On the asynchronous nature of the asyn-

chronous π-calculus. In Concurrency, Graphs and Models, pages 473–492, 2008.
5 E. Beffara. A concurrent model for linear logic. In 21st Ann. Conf. Math. Found. Program.

Semantics, pages 147–168, 2006.
6 G. Bellin and P. Scott. On the π-calculus and linear logic. Theoret. Comput. Sci., 135(1):11–

65, 1994.
7 G. Boudol. Asynchrony and the π-calculus. Rapport de recherche RR-1702, INRIA, 1992.
8 L. Caires and F. Pfenning. Session types as intuitionistic linear propositions. In 21st Int.

Conf. Concur. Theory, pages 222–236. LNCS 6269, 2010.
9 L. Caires, F. Pfenning, and B. Toninho. Towards concurrent type theory. In 8th ACM

SIGPLAN Workshop on Types in Language Design and Implementation, pages 1–12, 2012.
10 B-Y. E. Chang, K. Chaudhuri, and F. Pfenning. A judgmental analysis of linear logic.

Technical Report CMU-CS-03-131R, Carnegie Mellon Univ., 2003.
11 M. Dezani-Ciancaglini, S. Drossopoulou, D. Mostrous, and N. Yoshida. Objects and session

types. Inform. and Comput., 207(5):595–641, 2009.
12 S. Gay and V. T. Vasconcelos. Linear type theory for asynchronous session types. J. Funct.

Programming, 20(1):19–50, 2010.
13 J.-Y. Girard. Linear logic. Theoret. Comput. Sci., 50(1):1–102, 1987.
14 M. Giunti and V. T. Vasconcelos. A linear account of session types in the π-calculus. In

21st Int. Conf. Concur. Theory, pages 432–446. LNCS 6269, 2010.
15 K. Honda. Types for dyadic interaction. In 4th Int. Conf. Concur. Theory, pages 509–523.

LNCS 715, 1993.
16 K. Honda and O. Laurent. An exact correspondence between a typed π-calculus and

polarised proof-nets. Theoret. Comput. Sci., 411(22–24):2223–2238, 2010.
17 K. Honda and M. Tokoro. An object calculus for asynchronous communication. In 5th Eur.

Conf. Object-Oriented Programming, pages 133–147. LNCS 512, 1991.
18 K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session types. In 35th

ACM SIGPLAN-SIGACT Symp. Prin. Program. Lang., pages 273–284, 2008.
19 T. Murphy, VII. Modal Types for Mobile Code. PhD thesis, Carnegie Mellon Univ., January

2008. Available as technical report CMU-CS-08-126.
20 J. A. Pérez, L. Caires, F. Pfenning, and B. Toninho. Linear logical relations for session-

based concurrency. In 22nd Eur. Symp. Program., pages 539–558. LNCS 7211, 2012.

Bounded Combinatory Logic
Boris Düdder1, Moritz Martens1, Jakob Rehof1, and
Paweł Urzyczyn∗2

1 Department of Computer Science
Technical University of Dortmund
Dortmund, Germany
{boris.duedder,moritz.martens,jakob.rehof}@cs.tu-dortmund.de

2 Institute of Informatics,
University of Warsaw
Warszawa, Poland
urzy@mimuw.edu.pl

Abstract
In combinatory logic one usually assumes a fixed set of basic combinators (axiom schemes),
usually K and S. In this setting the set of provable formulas (inhabited types) is Pspace-
complete in simple types and undecidable in intersection types. When arbitrary sets of axiom
schemes are considered, the inhabitation problem is undecidable even in simple types (this is
known as Linial-Post theorem).

Bounded combinatory logic (bclk) arises from combinatory logic by imposing the bound k
on the depth of types (formulae) which may be substituted for type variables in axiom schemes.
We consider the inhabitation (provability) problem for bclk: Given an arbitrary set of typed
combinators and a type τ , is there a combinatory term of type τ in k-bounded combinatory logic?

Our main result is that the problem is (k+ 2)-Exptime complete for bclk with intersection
types, for every fixed k (and hence non-elementary when k is a parameter). We also show that
the problem is Exptime-complete for simple types, for all k.

Theoretically, our results give new insight into the expressive power of intersection types.
From an application perspective, our results are useful as a foundation for composition synthesis
based on combinatory logic.

1998 ACM Subject Classification F.4.1 Mathematical Logic, I.2.2 Automatic Programming

Keywords and phrases Intersection types, Inhabitation, Composition synthesis

Digital Object Identifier 10.4230/LIPIcs.CSL.2012.243

1 Introduction

In standard combinatory logic (see, e.g., [5]), one usually considers a fixed set of typed
combinators (a combinatory basis), for example S : (α → (β → γ))→ (α → β)→ (α → γ)
and K : α → β → α. Under the propositions-as-types correspondence, combinator types
correspond to axiom schemes of propositional logic in a Hilbert-style proof system, with
modus ponens and a rule of axiom scheme instantiation as the principles of deduction. The
schematic interpretation of axioms corresponds to implicit polymorphism of combinator
types, where type variables (α, β, γ, . . .) may be instantiated with arbitrary types. Thus,
the combinator K has types τ → σ → τ for all τ and σ.

∗ Partly supported by MNiSW grant N N206 355836.

© Boris Düdder, Moritz Martens, Jakob Rehof, and Paweł Urzyczyn;
licensed under Creative Commons License NC-ND

Computer Science Logic 2012 (CSL’12).
Editors: Patrick Cégielski, Arnaud Durand; pp. 243–258

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2012.243
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

244 Bounded Combinatory Logic

In this paper we consider bounded combinatory logic (bclk), which arises from combinatory
logic by imposing the bound k on the depth of types (formulae) which may be substituted for
type variables in axiom schemes. For example, in bclk the type scheme of the combinator K
can only be instantiated to τ → σ → τ for τ and σ with depth ≤ k. By imposing the bound,
inhabitation becomes decidable in cases where the unbounded problem is undecidable.

Our interest in bounded combinatory logic is motivated both by theoretical concerns and
from the standpoint of applications. Theoretically, we are interested in the complexity and
expressive power of the system, depending on the bound. From an application perspective,
we consider bounded combinatory logic as a foundation for type-based synthesis, following
[8]. In the present paper we generalize from the monomorphic case of [8] to arbitrary
bounded levels of polymorphism.
Bounded combinatory logic. In contrast to standard combinatory logic (see, e.g., [5]), we
bound the depth of types used to instantiate types of combinators, but rather than consider-
ing a fixed base of combinators (for example, the base S,K) as is usual in combinatory logic,
we consider the inhabitation problem relativized to an arbitrary set Γ of typed combinators,
given as part of the input:

Given Γ and τ , is there an applicative term e such that Γ `k e : τ?
The relativized problem is generally much harder than the fixed-base problem. For example,
inhabitation in standard (unbounded) simple-typed SK-calculus is Pspace-complete [11],
whereas the unbounded relativized problem is undecidable, even in simple types. We recall
that the latter type of problem has been considered since 1948 when Linial and Post [6]
initiated a line of work studying decision problems for arbitrary propositional axiom systems
(often referred to as partial propositional calculi, abbreviated PPC) answering a question
posed by Tarski in 1946. They proved (among other things) that there exists a PPC with
an unsolvable decision problem (Linial-Post theorem). Since then, many results have been
obtained for various PPC, e.g., Gladstone [3] and Singletary [9] showed that every r.e. degree
can be represented by a PPC. In 1974, Singletary [10] showed that the implicational fragment
of PPC can represent every r.e. many-one degree. The problem considered there is identical
to the unbounded relativized inhabitation problem for simple types.

Our main result is that the relativized inhabitation problems for bclk with intersection
types form an infinite hierarchy, being (k + 2)-Exptime-complete for each fixed k. A non-
elementary lower bound follows for the problem where k is taken as an input parameter.
Our lower bound techniques, which may be of independent interest, expose new aspects of
the expressive power of intersection types. We generically simulate alternating Turing ma-
chines operating in expk+1(n)-bounded space, where expm denotes the iterated exponential
function. For each k, we devise a numeral representation with intersection types in bclk
for numbers between 0 and expk+1(n) − 1, and we use this system to achieve a succinct
representation (exploiting k-bounded polymorphism) of the Turing tape. In contrast, we
show that the k-bounded inhabitation problem is Exptime-complete for simple types, for
all k.
A foundation for composition synthesis With this paper we continue the work begun in [8]
on investigating limited systems of combinatory logic as a foundation for type-based syn-
thesis (automatic synthesis of function compositions from a repository of typed functions).
In [8], we proved the monomorphic inhabitation problem Exptime-complete and devised
inhabitation algorithms that we have since implemented and applied to synthesis. In our
applications, the set Γ models a repository, the goal type τ is considered as a specification
of a desired composition, and the inhabitation algorithm automatically constructs solutions
(if any) to the synthesis problem. The relativized inhabitation problem is the natural basis

B. Düdder, M. Martens, J. Rehof, and P. Urzyczyn 245

for applications in synthesis, where Γ models a changing repository of functions. As argued
in [8], intersection types play a key role in these applications, since they can be used to
specify deep semantic properties.

A limited degree of polymorphism has been found to be very useful in applications, since
it allows for succinct specifications. In particular, the lowest level (bcl0) of the hierarchy
studied here turns out to be already of major importance. At this level, we are able to
instantiate type variables with atoms or intersections of such. Since type structure can be
atomized by introducing type names (atoms) for structured types through definitions, many
interesting problems can be specified and solved in bcl0.

As a simple example of succinctness, consider that we can represent any finite function
f : A → B as an intersection type τf =

⋂
a∈A a → f(a), where elements of A and B are

type constants. Suppose we have combinators Fi : τfi in Γ, and we want to synthesize
compositions of such functions represented as types (in some of our applications they could,
for example, be refinement types [2]). We might want to introduce composition combinators
of arbitary arity, say g : (A → A)n → (A → A). In the monomorphic system, a function
table for g would be exponentially large in n. In bcl0, we can represent g with the single
declaration G : (α0 → α1) → (α1 → α2) → · · · → (αn−1 → αn) → (α0 → αn) in Γ.
Through level-0 polymorphism, the action of g is thereby fully specified.

Interestingly, by the present results, the complexity of bcl0 is 2-Exptime complete and
hence comparable in complexity to other known synthesis frameworks (such as, e.g., variants
of temporal logic and of propositional dynamic logic). It is also interesting to observe that
the lower bound techniques of the present paper appear to reveal a methodology by which
inhabitation of intersection types can be used to express a form of logic programming at the
type level, which appears to be useful in synthesis. Space limitations preclude us from going
into further details here, and we report on our experience in synthesis in a separate paper.

2 Preliminaries

Types: Type expressions, ranged over by τ, σ etc., are defined by

τ ::= a | τ → τ | τ ∩ τ

where a, b, c, . . . range over atoms comprising of type constants, drawn from a finite set A
including the constant ω, and type variables, drawn from a disjoint denumerable set V ranged
over by α, β etc. We let T denote the set of all types.

As usual, types are taken modulo commutativity (τ∩σ = σ∩τ), associativity ((τ∩σ)∩ρ =
τ ∩ (σ ∩ ρ)), and idempotency (τ ∩ τ = τ). As a matter of notational convention, function
types associate to the right, and ∩ binds stronger than →. A type environment Γ is a finite
set of type assumptions of the form x : τ . We let Dm(Γ) and Rn(Γ) denote the domain
and range of Γ. Let Var(τ), Cnst(τ) and At(τ) denote, respectively, the set of variables,
the set of constants and the set of atoms occurring in τ , and we extend the definitions to
environments, written Var(Γ), Cnst(Γ) and At(Γ) in the standard way.

A type τ ∩ σ is said to have τ and σ as components. For an intersection of several
components we sometimes write

⋂n
i=1 τi or

⋂
i∈I τi or

⋂
{τi | i ∈ I}, where the empty

intersection is identified with ω.

CSL’12

246 Bounded Combinatory Logic

Subtyping: Subtyping ≤ is the least preorder (reflexive and transitive relation) on T, with

σ ≤ ω, ω ≤ ω → ω, σ ∩ τ ≤ σ, σ ∩ τ ≤ τ, σ ≤ σ ∩ σ;
(σ → τ) ∩ (σ → ρ) ≤ σ → τ ∩ ρ;
If σ ≤ σ′ and τ ≤ τ ′ then σ ∩ τ ≤ σ′ ∩ τ ′ and σ′ → τ ≤ σ → τ ′.

We identify σ and τ when σ ≤ τ and τ ≤ σ. The following distributivity properties follow
from the axioms of subtyping:

(σ → τ) ∩ (σ → ρ) = σ → (τ ∩ ρ) (σ → τ) ∩ (σ′ → τ ′) ≤ (σ ∩ σ′)→ (τ ∩ τ ′)

Paths: If τ = τ1 → · · · → τm → σ, then we write σ = tgtm(τ) and τi = argi(τ), for i ≤ m.
If argi(τ) = ρ for all i we also write τ = ρm → σ. A type of the form τ1 → · · · → τm → a,
where a 6= ω is an atom,1 is called a path of length m. A type τ is organized if it is a (possibly
empty) intersection of paths (those are called paths in τ). Note that premises in an organized
type do not have to be organized, i.e., organized is not necessarily normalized [4].

I Lemma 1. Every type τ is equal to an organized type τ , computable in polynomial time.

Proof. Define a = a if a is an atom and let τ ∩ σ = τ ∩ σ. If σ =
⋂
i∈I σi then take

τ → σ =
⋂
i∈I(τ → σi). J

Sets of paths: For an organized type σ, we let Pm(σ) denote the set of all paths in σ of
length m or more. We extend the definition to arbitrary τ by implicitly organizing τ , i.e.,
we write Pm(τ) as a shorthand for Pm(τ).
Type size: The size of a type τ , denoted |τ |, is defined to be the number of nodes in the
syntax tree of τ (this is identical to the textual size of τ). The path length of a type τ is
denoted ‖τ‖ and is defined to be the maximal length of a path in τ .
Substitutions: A substitution is a function S : V→ T such that S is the identity everywhere
but on a finite subset of V. For a substitution S, we define the support of S, written Supp(S),
as Supp(S) = {α ∈ V | α 6= S(α)}. We may write S : V → T when V is a finite subset
of V with Supp(S) ⊆ V . We write At(S) to denote the set {At(S(α)) | α ∈ Supp(S)}.
A substitution S is tacitly lifted to a function on types, S : T → T, by homomorphic
extension. Finally, a constant-function is a map c : A → A such that c(ω) = ω. Constant-
functions are tacitly lifted to functions c : T→ T.

The following property, probably first stated in [1], is often called beta-soundness. Note
that the converse is trivially true.

I Lemma 2. Let aj, for j ∈ J , be atoms.
1. If

⋂
i∈I(σi → τi) ∩

⋂
j∈J aj ≤ α then α = aj, for some j ∈ J .

2. If
⋂
i∈I(σi → τi) ∩

⋂
j∈J aj ≤ σ → τ , where σ → τ 6= ω, then the set

{i ∈ I | σ ≤ σi} is nonempty and
⋂
{τi | σ ≤ σi} ≤ τ .

I Lemma 3. Let
⋂
i∈I τi ≤ β1 → · · · → βm → p, where τi are paths. Then there is an i ∈ I

such that τi = α1 → · · · → αm → p and βj ≤ αj, for all j ≤ m.

Proof. Induction with respect to m, using the beta soundness (Lemma 2). J

1 Observe that τ1 → · · · → τm → ω = ω.

B. Düdder, M. Martens, J. Rehof, and P. Urzyczyn 247

I Lemma 4. Let S be a substitution and let c be a constant-function. Then σ ≤ τ implies
S(σ) ≤ S(τ) and c(σ) ≤ c(τ).

Proof. Induction with respect to the definition of σ ≤ τ . J

Alternating Turing Machines
An alternating Turing machine is a tuple M = (Σ, Q, q0, qa, qr,∆). The set of states
Q = Q∃] Q∀ is partitioned into a set Q∃ of existential states and a set Q∀ of univer-
sal states. There is an initial state q0 ∈ Q, an accepting state qa ∈ Q∀, and a rejecting
state qr ∈ Q∃. We take Σ = {0, 1, ␣}, where ␣ is the blank symbol (used to initialize the
tape but not written by the machine). The transition relation ∆ satisfies

∆ ⊆ Σ×Q× Σ×Q× {l,r},

where h ∈ {l,r} are the moves of the machine head (left and right). For b ∈ Σ and q ∈ Q,
we write ∆(b, q) = {(c, p, h) | (b, q, c, p, h) ∈ ∆}. We assume ∆(b, qa) = ∆(b, qr) = ∅, for all
b ∈ Σ, and ∆(b, q) 6= ∅ for q ∈ Q\{qa, qr}. A configuration ofM is a word wqw′ with q ∈ Q
and w,w′ ∈ Σ∗. The successor relation C ⇒ C′ on configurations is defined as usual [7],
according to ∆. We classify a configuration wqw′ as existential, universal, accepting etc.,
according to q. The notion of eventually accepting configuration is defined by induction:2

An accepting configuration is eventually accepting.
If C is existential and some successor of C is eventually accepting then so is C.
If C is universal and all successors of C are eventually accepting then so is C.

3 Bounded combinatory logic

I Definition 5. (Levels) Given a type τ we define the level of τ , written `(τ), as follows.

`(a) = 0, for a ∈ A ∪ V;
`(τ → σ) = 1 + max{`(τ), `(σ)};
`(

⋂n
i=1 τi) = max{`(τi) | i = 1, . . . , n}.

The level of a substitution S, written `(S), is defined as

`(S) = max{`(S(α)) | α ∈ V}.

A level-k type is a type τ with `(τ) ≤ k, and a level-k substitution is a substitution S with
`(S) ≤ k. For k ≥ 0, we let Tk denote the set of all level-k types. For a subset A of atomic
types, we let Tk(A) denote the set of level-k types with atoms (leaves) in the set A. J

Notice that the level of a type is independent from the width (number of arguments) of inter-
sections. Notice also that `(S) is completely determined by the restriction of S toSupp(S):
ifSupp(S) = ∅, then `(S) = 0, and if Supp(S) 6= ∅, then `(S) = max{`(S(α)) | α ∈ Supp(S)}.
Finally, we have `(S ◦ S′) ≤ `(S) + `(S′).
Type assignment: For each k ≥ 0 the system bclk(→,∩) (k-bounded combinatory logic with
intersection types) is defined by the type assigment rules shown in Figure 1. In rule (var), the

2 Formally we define the set of all eventually accepting configurations as the smallest set satisfying the
appropriate closure conditions.

CSL’12

248 Bounded Combinatory Logic

condition `(S) ≤ k is understood as a side condition to the axiom Γ, x : τ `k x : S(τ). The
restriction to simple types (types without ∩) is called bclk(→) and is defined by the rules
(var), (→E) and (≤), where τ and τ ′ range over simple types, by dropping all axioms from
the subtyping relation that involve ∩, and by considering only substitutions S mapping type
variables to simple types. Recall from [8] finite combinatory logic with intersection types,
denoted fcl. This system can be presented as the restriction of bclk in which the (var)
rule is simplified to the axiom Γ, x : τ ` x : τ .

In this paper we are addressing the following relativized inhabitation problem:
Given Γ and τ , is there an applicative term e such that Γ `k e : τ?

[`(S) ≤ k]
Γ, x : τ `k x : S(τ) (var)

Γ `k e : τ → τ ′ Γ `k e′ : τ
Γ `k (e e′) : τ ′ (→E)

Γ `k e : τ1 Γ `k e : τ2
Γ `k e : τ1 ∩ τ2

(∩I) Γ `k e : τ τ ≤ τ ′

Γ `k e : τ ′ (≤)

Figure 1 Bounded combinatory logic bclk.

Algorithm

In this section we formulate an algorithm to decide the relativized inhabitation problem
for bclk, and derive the (k + 2)-Exptime upper bound.

I Lemma 6. Let Γ `k e : τ and let S be a level-m substitution. Then there exists a derivation
of Γ `k+m e : S(τ) of the same depth.

Proof. Induction with respect to the derivation of Γ `k e : τ . J

I Lemma 7. Let Γ `k e : τ and let c be a constant-function such that c is the identity
on Cnst(Γ). Then there exists a derivation of Γ `k e : c(τ) of the same depth.

Proof. Induction with respect to the derivation of Γ `k e : τ . In case the derivation ends
with rule (≤), we use Lemma 4 and apply the induction hypothesis. J

Let Atω(Γ, τ) = At(Γ) ∪ At(τ) ∪ {ω}. The following proposition shows that, in order to
solve an inhabitation question Γ `k ? : τ , one needs only consider rule (var) restricted to
substitutions of the form S : Var(Γ)→ Tk(Atω(Γ, τ)).

We say that a substitution S occurs in a derivation D, whenever S is used in an applic-
ation of rule (var) in D.

I Proposition 8. If Γ `k e : τ , then there exists a derivation D of Γ `k e : τ such that
every substitution S occurring in D satisfies the conditions
1. Supp(S) ⊆ Var(Γ);
2. At(S) ⊆ Atω(Γ, τ).

Proof. By induction with respect to derivations, using Lemmas 6 and 7. J

B. Düdder, M. Martens, J. Rehof, and P. Urzyczyn 249

The following lemma shows that inhabitation in bclk(→,∩) is equivalent to inhabitation in
fcl modulo expansion of the type environment. Given a number k, an environment Γ and
a type τ , define for each x ∈ Dm(Γ) the set of substitutions

S(Γ,τ,k)
x = Var(Γ(x))→ Tk(Atω(Γ, τ))

and define the environment Γ(τ,k) with domain Dm(Γ) so that, for x ∈ Dm(Γ),

Γ(τ,k)(x) =
⋂
{S(Γ(x)) | S ∈ S(Γ,τ,k)

x }

I Lemma 9 (Expansion). One has Γ `k e : τ in bclk(→,∩) iff Γ(τ,k) ` e : τ in fcl.

Proof. If Γ `k e : τ by a derivation D, consider each application of rule (var) of the form
Γ′, x : σ `k x : S(σ), occurring in D. By Proposition 8, we can assume that S is a member
of the set S(Γ,τ,k)

x . Hence, one has Γ(τ,k) ` x : S(σ) in fcl, by an application of rule (var),
followed by an application of rule (≤). It follows that Γ(τ,k) ` e : τ holds in fcl.

For the implication in the other direction, consider that one has in bclk(→,∩)

Γ `k x :
⋂
{S(Γ(x)) | S ∈ S(Γ,τ,k)

x }

for all x ∈ Dm(Γ), by multiple applications of rule (var), followed by rule (∩I). J

I Lemma 10 (Path Lemma for fcl [8]). The following are equivalent conditions:
1. Γ ` x e1 . . . em : τ ;
2. There exists a set P of paths in Pm(Γ(x)) such that

a.
⋂
π∈P tgtm(π) ≤ τ ;

b. Γ ` ei :
⋂
π∈P argi(π), for all i ≤ m.

I Lemma 11 (Path Lemma for bclk(→,∩)). The following are equivalent conditions:
1. Γ `k x e1 . . . em : τ ;
2. There exists a set P of paths in Pm(

⋂
{S(Γ(x)) | S ∈ S(Γ,τ,k)

x }) such that
a.

⋂
π∈P tgtm(π) ≤ τ ;

b. Γ `k ei :
⋂
π∈P argi(π), for all i ≤ m.

Proof. Immediate, by Lemma 9 and Lemma 10. J

The following corollary will be used later.

I Corollary 12. Let Γ(x) =
⋂
j∈J(τ j1 → · · · → τ jm → σj). If Γ ` x e1 . . . em : τ then there

are substitutions S`, for ` ∈ L, and numbers j` such that
1.

⋂
`∈L S`(σj`) ≤ τ ;

2. Γ `k ei :
⋂
`∈L S`(τ

j`

i).

Let expk be the iterated exponential function, given by exp0(n) = n, expk+1(n) = 2expk(n).
The lemma below can be shown by an elementary counting argument.

I Lemma 13. For every k, there is a polynomial p(n) such that the number of level-k types
over n atoms is at most expk+1(p(n)), and the size of such types is at most expk(p(n)). The
number and size of simple level-k types (for a fixed k) is respectively bounded by a polynomial
and a constant.

I Theorem 14. Inhabitation in bclk(→,∩) is in (k + 2)-Exptime.

CSL’12

250 Bounded Combinatory Logic

Proof. The alternating Turing machine shown in Figure 2 is a decision procedure for in-
habitation in bclk(→,∩) for each k ≥ 0, being a direct alternating implementation of
Lemma 11. In Figure 2 we use shorthand notation for instruction sequences starting
from existential states (choose . . .) and instruction sequences starting from universal states
(forall(i = 1 . . . k)Si). A command of the form choose x ∈ S branches from an existen-
tial state to successor states in which x gets assigned distinct elements of S. A command
of the form forall(i = 1 . . . k)Si branches from a universal state to successor states from
which each instruction sequence Si is executed.

The machine operates in bounded space, because, for all Γ, τ, k, x, the set S(Γ,τ,k)
x is

finite. More precisely, it follows from Lemma 13 that the size of S(Γ,τ,k)
x can be bounded

by expk+1(p(n)), and the size of each level-k type can be bounded by expk(p(n)), for some
polynomial p(n). It follows that the types σ′ (Figure 2, line 2) can be written down in
space bounded by expk+1(p(n)), and hence the algorithm is bounded in alternating space
expk+1(p(n)). By the identity Aspace(f(n)) = Dtime(2O(f(n))) inhabitation is therefore
in (k + 2)-Exptime. J

Input : Γ, τ, k
loop :

1 choose (x : σ) ∈ Γ;
2 σ′ :=

⋂
{S(σ) | S ∈ S(Γ,τ,k)

x };
3 choose m ∈ {0, . . . , ‖σ′‖};
4 choose P ⊆ Pm(σ′);

5 if (
⋂
π∈P tgtm(π) ≤ τ) then

6 if (m = 0) then accept;
7 else
8 forall(i = 1 . . .m)
9 τ :=

⋂
π∈P argi(π);

10 goto loop;

Figure 2 Alternating Turing machine deciding inhabitation in bclk.

4 Simple types, bclk(→)

The upper bound for simple types is obtained as a special case of the analysis in Section 3.

I Theorem 15. Inhabitation in bclk(→) is in Exptime, for all k.

Proof. The proof uses the same argument as the proof of Theorem 14. The difference is
that now we only substitute simple types. Under this restriction, the machine of Figure 2
operates in alternating polynomial space, because all types of the form S(σ) are of linear
size. J

I Theorem 16. For every k ≥ 0, the inhabitation problem for bclk(→) is Exptime-
complete.

B. Düdder, M. Martens, J. Rehof, and P. Urzyczyn 251

Proof. Take an alternating TM, working in polynomial space p(n). We use fresh type atoms
to represent every state and tape symbol. A configuration C = wqw′, where w = b1 . . . bm−1
and w′ = bm . . . bp(n) is encoded as a type ϕC = b1 → · · · → bm−1 → q → bm → · · · → bp(n).
We define an environment Γ so that, for all C,

C is eventually accepting if and only if Γ ` ϕC . (*)

We put into Γ polymorphic patterns α1 → · · · → αm−1 → qa → αm → · · · → αp(n) for
accepting configurations, and types representing machine moves, as we now define.

For any q, b, the patterns ζbqm(~α) = α1 → · · · → αm−1 → q → b→ αm+1 → · · · → αp(n)
represents all configurations where ∆(b, q) is applicable. Let ∆(b, q) = {(cj , pj , hj) | j ≤ r},
and for j ≤ r, let ηbqmj(~α) represent the j-th successor configuration. For example, if hj = R
then ηbqmj(~α) = α1 → · · · → αm−1 → cj → pj → αm+1 → · · · → αp(n) .
If C = b1 . . . bm−1qbbm+1 . . . bp(n) then there exists exactly one substitution S (mapping
each αi to bi) such that S(ζbqm) = ϕC . In addition, if D1, . . . ,Dr are all the successor
configurations of C then we have S(ηbqmj) = ϕDj

. Now if q is an existential state then we
include in Γ all types of the form ηbqmj → ζbqm . For a universal q, we let Γ contain just one
type, namely ηbqm1 → · · · → ηbqmr → ζbqm .

The “only if” part of (*) can now be proved by induction with respect to the definition
of acceptance. In the “if” part we use induction with respect to proofs. J

5 Lower bound for intersection types

In this section we fix a number K and an expK+1(n)-space bounded alternating Turing
machineM. In what follows it is assumed that k ≤ K, whenever level k is considered. The
basic idea is to represent a configuration ofM by, essentially, a type of the form

⋂expK+1(n)−1
i=0 Cell(ai, q, 〈m〉K , 〈i〉K),

where ai ∈ Σ, q ∈ Q, 0 ≤ m ≤ expK+1(n) − 1. Each component Cell(ai, q, 〈m〉K , 〈i〉K)
represents one of the tape cells, where ai represents the symbol in the i-th cell, q represents
the current state, type 〈m〉K represents the address (number) of the cell which is under
the current ATM head position, and 〈i〉K represents the address of the cell itself. Notice
that the types q and 〈m〉K are identical across all the components of the type (i.e., across
all indexes i). The adresses 〈i〉K impose a numerical order on the cell representations, so
that we can represent a tape consisting of a sequence of cells. Moreover, we can use these
addresses to compute the head position of the ATM (moving left or right of the current cell
address).

Since we need a representation which is polynomial bounded in the size of the ATM
input, we cannot represent such types explicitly in our reduction. In order to achieve a suc-
cinct (polynomial sized) representation, we exploit polymorphism. The basic insight in
the reduction is to represent the large configuration types implicitly, as polymorphic types
Cell(α, q, β, γ), and to arrange the environment Γ coding the behavior ofM in such a way
that large expansions (under polymorphic instantiation) of such types become forced into
the explicit form shown. As in the proof of Theorem 16, the basic strategy for coding the
ATM behavior is to represent a computation sequence C1C2 · · · Cm by a sequence of forced
inhabitation goals in reverse order of implication, by (essentially) having the implications
[Ci+1] → [Ci] in Γ such that asking for inhabitation of [Ci] forces the inhabitation of [Ci+1]
(letting [C] denote the type representing the configuration C).

CSL’12

252 Bounded Combinatory Logic

Predicates

The predicates we use are certain type patterns serving as “containers” for their arguments.
The idea is that a predicate like F (τ, σ) encodes a pair of types τ and σ and a “flag” F in
a unique way. This is achieved by making sure that type F (τ, σ) is large enough to never
be substituted for a variable. In addition, τ and σ are placed inside F (τ, σ) several times to
avoid unwanted subtyping.

Some auxiliary notation for the beginning. Write F [1] for F and F [n+1] for F [n] → F .
For instance, F [4] = ((F → F)→ F)→ F . Also let Ωτ = (τ → τ)→ τ → τ .

Let N > K be a fixed number. Type F (τ1, τ2, τ3, τ4) (a predicate of four arguments) is
defined using a dedicated type constant F (the predicate identifier), as follows:

F (τ1, τ2, τ3, τ4) = (((F [N] → Ωτ1)→ Ωτ2)→ Ωτ3)→ Ωτ4 .
Predicates of fewer arguments are defined by repeating the last one, e.g. G(τ, σ) will stand
for G(τ, σ, σ, σ). In what follows, the word “predicate” may refer to any F (τ1, . . . , τ4).

The level of F (τ1, . . . , τ4) is larger than K, and therefore types of the form F (τ1, . . . , τ4)
never occur in the range of a substitution. Further properties are as follows:

I Lemma 17. For all types τ , σ and all predicates Φi and Φ:
1. If

⋂
i∈I Ωτi

≤ Ωσ then τi = σ, for some i.
2. If

⋂
i∈I Φi ≤ Φ then Φ = Φi, for some i.

Proof. Use Lemma 2. Details omitted. J

In our construction we use the following forms of predicates (for k ≤ K and j ≤ n):

Unary: Zerok(α), zk(α), mk(α), Maxk(α), Numk(α), nk(α), Numj(α), Bit(α), Tapej(α).
Binary: Succk(α, β), Diffk(α, β), dk(α, β), nk(α, β).
Ternary: Rk(α, β, γ), Lk(α, β, γ).
Quaternary: Cell(α, β, γ, δ).

In addition to that we also have the following constants (for j ≤ n):
0, 1, 0j , 1j , •.

and special constants for all internal states and tape symbols of the machine.

Intersection type numerals

Fix a natural number n. Let B[n] denote the union of n copies of B = {0, 1}, written
B[n] = {01, . . . , 0n} ∪ {11, . . . , 1n}. We let b range over B and we let b range over B[n]. The
sets of level-k numerals (k ≥ 0), denoted Nk, are constructed from B[n] by induction:

N0 = {
⋂n
i=1 bi | bi ∈ {0i, 1i} for i = 1 . . . n}

Nk+1 = {
⋂
τ∈Nk

(τ → bτ) | bτ ∈ {0, 1}, for τ ∈ Nk}

Clearly, the size of Nk is expk+1(n). The value of a numeral σ ∈ Nk is denoted JσK and is
defined by induction with respect to k:

k = 0: J
⋂n
i=1 biK =

∑n
i=1JbiK× 2i−1, with J0iK = 0 and J1iK = 1

k > 0: J
⋂
σ∈Nk

(τ → bτ)K =
∑
τ∈Nk

bτ × 2JτK

B. Düdder, M. Martens, J. Rehof, and P. Urzyczyn 253

For instance, if n = 4 then the value of 01 ∩ 12 ∩ 03 ∩ 14 is 2 + 8 = 10. And if n = 2 then the
value of ((01 ∩ 02)→ 0) ∩ ((01 ∩ 12)→ 1) ∩ ((11 ∩ 02)→ 0) ∩ ((11 ∩ 12)→ 1) is 10 as well.

It is easy to prove by induction that for σ ∈ Nk we have 0 ≤ JσK ≤ expk+1(n)− 1, and
for k > 0 we can write σ canonically as σ =

⋂expk(n)−1
i=0 (τi → bi), where JτiK = i and bi ∈ B,

and with JσK =
∑expk(n)−1
i=0 bi × 2i.

It is also straightforward to see that, for any x between 0 and expk+1(n) − 1, there is
exactly one σ ∈ Nk with JσK = x. We use the notation σ = 〈x〉k.

The encoding
Our goal is to define a bclK type environment Γ, representing the behavior of the ma-
chineM. The environment Γ consists of several groups of declarations, to handle predicates
over numerals, the tape, and the transition function. Note that each type σ in Γ is an
intersection which has a component of the form (•m → •), for some m, and that all other
components are arrows of m arguments, ending with predicates of the same identifier F .
We then say that σ, and the corresponding combinator, is m-ary, and that F is the target
identifier of σ.

I Lemma 18. If x is m-ary and Γ `K xe1 . . . er : • then r = m.

Proof. If Γ `K xe1 . . . er : • then by Lemma 11 we have
⋂
π∈P tgtr(π) ≤ •, for some set P

of paths in types of the form S(Γ(x)). The only such path is •m → •, whence m = r. J

I Lemma 19. Let Γ `K e : F (τ1, . . . , τ4) ∩ •, where F (τ1, . . . , τ4) is a predicate. Then
e = xe1 . . . em, for some m-ary combinator x with target identifier F . More precisely, Γ(x)
has the form ξ ∩ (ζ1 → · · · → ζm → F (ρ1, . . . , ρ4)), and there is a substitution S such that
S(ρi) = τi, for i = 1, . . . , 4, and Γ `K ei : S(ζi), for i = 1, . . . ,m.

Proof. The term e must be of the form e = xe1 . . . er, where x is a combinator of some
arity m in Γ. It follows from Lemma 18 that m = r, and from Corollary 12 we obtain that⋂
`∈L Φ` ∩ • ≤ F (τ1, . . . , τ4) ∩ •, where Φ` are predicates with the same target G. Since •

is a constant, we actually have
⋂
`∈L Φ` ≤ F (τ1, . . . , τ4). By Lemma 17, one of Φ` must be

equal to F (τ1, . . . , τ4), in particular F = G. Note that Φ` is obtained as S(tgtm(φ)), for
some component φ of Γ(x), and this S is the substitution required by the lemma. J

Numeral predicates
The declarations shown in Figure 3 and Figure 4 are included in Γ, for every k < K.
Together they specify the way numerals are handled at each level k. The predicates are
defined inductively with respect to k. Thus, in Figure 3 we define the base predicates for
numerals in N0, whereas Figure 4 contains definitions for predicates at all higher levels k+1.
These latter definitions may inductively refer to definitions at lower levels (for example, in
Figure 4, the declaration for the combinator Nk+1 refers to the lower level predicate Zerok).

Turing machine
Now we turn to the actual machine simulation. Declarations in Figure 5 are used to “create”
the initial configuration with input word a1 . . . an and with further tape cells filled with
blanks up to length expK+1(n). Tape cells are identified by numbers from 0 to expK+1(n)−1.

CSL’12

254 Bounded Combinatory Logic

Z0 : Zero0(01 ∩ 02 ∩ · · · ∩ 0n) ∩ •
M0 : Max0(11 ∩ 12 ∩ · · · ∩ 1n) ∩ •

N0 : [n2(α)→ Num0(11 ∩ α)] ∩ [n2(α)→ Num0(01 ∩ α)] ∩ [• → •]
n2

0 : [n3(α)→ n2(12 ∩ α)] ∩ [n3(α)→ n2(02 ∩ α)] ∩ [• → •]
. . . : . . .

nn0 : nn(1n) ∩ nn(0n) ∩ •

D0 : [d0(α, β)→ Num0(α)→ Num0(β)→ Diff0(α, β)] ∩ [• → • → • → •]
d0 :

⋂n
i=1(d0(0i ∩ α, 1i ∩ β) ∩ d0(1i ∩ α, 0i ∩ β)) ∩ •

S0 : [Num0(01 ∩ α)→ Num0(11 ∩ α)→ Succ0(01 ∩ α, 11 ∩ α)] ∩
[Num0(11 ∩ 02 ∩ α)→ Num0(01 ∩ 12 ∩ α)→ Succ0(11 ∩ 02 ∩ α, 01 ∩ 12 ∩ α)] ∩
. . .∩
[Num0(11 ∩ 12 ∩ · · · ∩ 1n−1 ∩ 0n)→

Num0(01 ∩ 02 ∩ · · · ∩ 0n−1 ∩ 1n)→
Succ0(11 ∩ 12 ∩ · · · ∩ 1n−1 ∩ 0n, 01 ∩ 02 ∩ · · · ∩ 0n−1 ∩ 1n)]∩

[• → • → •]

Figure 3 Numeral predicates, level 0.

Before we define the core part of our coding, we introduce one more notational convention.
A multiple implication τ1 → τ2 → · · · → τm → τ is sometimes written as (τ1, . . . , τm)→ τ .
We extend this style by using informal abbreviations for sequences of premises. For instance,
type τ1 → τ2 → τ3 → σ1 → σ2 → σ3 → τ may be written as A → B → τ , where
A = (τ1, τ2, τ3) and B = (σ1, σ2, σ3).

Given q and b, let ∆(b, q) = {(ci, pi, hi) | i = 1, . . . , r}. By Vqbi(δ) and Uqbi(α, δ, γ)
we abbreviate triples of types used to represent the transition defined by (ci, pi, hi). The
role of Vqbi(δ) is to encode the action at the presently scanned tape cell, while Uqbi(α, δ, γ)
applies to all other tape cells. Assume first that hi = l. Then we define:

Vqbi(δ) = (SuccK(β, δ), DiffK(ξ, ζ), Cell(ci, pi, β, δ)),
Uqbi(α, δ, γ) = (SuccK(β, δ), DiffK(γ, δ), Cell(α, pi, β, γ)).

If hi = r then the definition is altered as follows:

Vqbi(δ) = (SuccK(δ, β), DiffK(ξ, ζ), Cell(ci, pi, β, δ)),
Uqbi(α, δ, γ) = (SuccK(δ, β), DiffK(γ, δ), Cell(α, pi, β, γ)).

Now, if q is an existential state then for every i ≤ r there is a combinator

Stepqbi : [Vqbi(δ) → Cell(b, q, δ, δ)] ∩
[Uqbi(α, δ, γ)→ Cell(α, q, δ, γ)] ∩
[•3 → •]

For universal q, we declare one combinator Stepqb:

Stepqb : [Vqb1(δ) → · · · → Vqbr(δ) → Cell(b, q, δ, δ)] ∩
[Uqb1(α, δ, γ)→ · · · → Uqbr(α, δ, γ)→ Cell(α, q, δ, γ)] ∩
[•3 → · · · → •3 → •]

B. Düdder, M. Martens, J. Rehof, and P. Urzyczyn 255

B : Bit(0) ∩ Bit(1) ∩ •
Zk+1 : [Numk+1(α)→ zk+1(α)→ Zerok+1(α)] ∩ [• → • → •]
zk+1 : [zk+1(α)→ zk+1((β → 0) ∩ α)] ∩ [• → •]
z′k+1 : zk+1(β → 0) ∩ •

Mk+1 : [Numk+1(α)→ mk+1(α)→ Maxk+1(α)] ∩ [• → • → •]
mk+1 : [mk+1(α)→ mk+1((β → 1) ∩ α)] ∩ [• → •]
m′k+1 : mk+1(β → 1) ∩ •

Nk+1 : [Bit(γ)→ nk+1(β → γ, α)→ Zerok(β)→ Numk+1((β → γ) ∩ α)]∩
[• → • → • → •]

nk+1 : [Bit(ε)→ Succk(β, δ)→ nk+1(δ → ε, α)→ nk+1(β → γ, (δ → ε) ∩ α)]∩
[• → • → • → •]

n′k+1 : [Bit(ε)→ Succk(β, δ)→ Maxk(δ)→ nk+1(β → γ, δ → ε)]∩
[• → • → • → •]

Dk+1 : [dk+1(α, β)→ Numk+1(α)→ Numk+1(β)→ Diffk+1(α, β)]∩
[• → • → • → •]

dk+1 : dk+1((γ → 1) ∩ α, (γ → 0) ∩ β) ∩ dk+1((δ → 0) ∩ α, (δ → 1) ∩ β) ∩ •

Sk+1 : [Rk+1(β, α, γ)→ Zerok(β)→ Succk+1((β → 0) ∩ α, (β → 1) ∩ γ)] ∩
[Lk+1(β, α, γ)→ Zerok(β)→ Succk+1((β → 1) ∩ α, (β → 0) ∩ γ)]∩
[• → • → •]

sk+1 : [Succk(β, δ)→ Lk+1(δ, α, γ)→ Lk+1(β, (δ → 1) ∩ α, (δ → 0) ∩ γ)] ∩
[Succk(β, δ)→ Rk+1(δ, α, γ)→ Lk+1(β, (δ → 0) ∩ α, (δ → 1) ∩ γ)] ∩
[Succk(β, δ)→ Rk+1(δ, α, γ)→ Rk+1(β, (δ → 0) ∩ α, (δ → 0) ∩ γ)] ∩
[Succk(β, δ)→ Rk+1(δ, α, γ)→ Rk+1(β, (δ → 1) ∩ α, (δ → 1) ∩ γ)]∩
[• → • → •]

s′k+1 : [Maxk(δ)→ Succk(β, δ)→ Rk+1(β, δ → 0, δ → 0)] ∩
[Maxk(δ)→ Succk(β, δ)→ Rk+1(β, δ → 1, δ → 1)] ∩
[Maxk(δ)→ Succk(β, δ)→ Lk+1(β, δ → 0, δ → 1)]∩
[• → • → •]

Figure 4 Numeral predicates, level k + 1.

Properties of the coding
We now collect the main properties of our coding. The first two lemmas state that our
numeral system works properly.

I Lemma 20. For every k ≤ K there are terms Zerok, Maxk, Numk, Diff k, Succk, such
that for all types σ and τ :
1. If σ = 〈 0 〉k then Γ `K Zerok : Zerok(σ) ∩ • .
2. If σ = 〈 expk+1(n)− 1 〉k then Γ `K Maxk : Maxk(σ) ∩ • .
3. If σ ∈ Nk then Γ `K Numk : Numk(σ) ∩ • .
4. If σ, τ ∈ Nk, and JσK 6= JτK then Γ `K Diff k : Diffk(σ, τ) ∩ • .
5. If σ, τ ∈ Nk, and JσK + 1 = JτK then Γ `K Succk : Succk(σ, τ) ∩ • .

CSL’12

256 Bounded Combinatory Logic

Init : [ZeroK(α)→ Cell(a1, q0, α, α) ∩ Tape1(α)→ Tape] ∩ [• → • → •]
initi : [ZeroK(γ)→ SuccK(α, β)→ Tapei+1(β) ∩ Cell(ai, q0, γ, β)→ Tapei(α)] ∩

[ZeroK(γ)→ SuccK(α, β)→ Cell(η, q0, δ, ε)→ Cell(η, q0, δ, ε)] ∩
[• → • → • → •] (for all i < n)

initn : [ZeroK(γ)→ SuccK(α, β)→ Tapen(β) ∩ Cell(␣, q0, γ, β) → Tapen(α)] ∩
[ZeroK(γ)→ SuccK(α, β)→ Cell(η, q0, δ, ε)→ Cell(η, q0, δ, ε)] ∩
[• → • → • → •]

finit : [MaxK(α)→ • → Tapen(α)] ∩
[MaxK(α)→ Cell(η, q0, δ, ε)→ Cell(η, q0, δ, ε)] ∩ [• → • → •]

Figure 5 Initial configuration under construction.

Proof. Beginning with k = 0, we have Num0 = N0(n2
0(n3

0(. . . (nn−1
0 (nn0)) . . .))), Zero0 = Z0,

Max0 = M0, Diff 0 = D0d0Num0Num0, and Succ0 = S0Num0Num0. Take max = expk+1(n)
and for k ≥ 0 define Numk+1 = Nk+1B((nk+1BSucck)max−2(n′k+1BSucckMaxk))Zerok,
Zerok+1 = Zk+1Numk+1(zmax−1

k+1 (z′k+1)), and Maxk+1 = Mk+1Numk+1(mmax−1
k+1 (m′k+1)).

Now we can define successor Succk+1 = Sk+1((sk+1Succk)max−2(s′k+1MaxkSucck))Zerok,
and the last term we need is Diff k+1 = Dk+1dk+1Numk+1Numk+1. J

I Lemma 21. For every k ≤ K and every e:
1. If Γ `K e : Zerok(σ) ∩ • then σ = 〈 0 〉k.
2. If Γ `K e : Maxk(σ) ∩ • then σ = 〈 expk+1(n)− 1 〉k.
3. If Γ `K e : Numk(σ) ∩ • then σ ∈ Nk.
4. If Γ `K e : Diffk(σ, τ) ∩ • then σ, τ ∈ Nk, and JσK 6= JτK.
5. If Γ `K e : Succk(σ, τ) ∩ • then σ, τ ∈ Nk, and JσK + 1 = JτK.

Proof. The proof is by induction with respect to k, and we show the five claims in the
order of their numbers. Of the ten possible cases we consider Γ `K e : Numk+1(σ) ∩ • as
an example. It follows from Lemma 19 that e = Nk+1e1e2e3, and σ = S((β → γ) ∩ α)
and we can derive Γ `K e1 : Bit(S(γ)) ∩ •, Γ `K e2 : nk+1(S(β → γ), S(α)) ∩ •, and
Γ `K e3 : Zerok+1(S(β)) ∩ •, for some S. Then S(β) = 〈 0 〉k and S(γ) is 0 or 1. We prove
by induction that Γ `K e′ : nk+1(ϕ, τ) implies ϕ = 〈 i 〉k → ϕ′ and τ =

⋂
j>i〈 j 〉k → bj , for

some i, and conclude that σ =
⋂
j≥0〈 j 〉k → bj , i.e., that σ is indeed a numeral. J

Let C = wqw′ be a configuration of our machine M. Assume that w = b0 . . . bh−1 and
w′ = bh . . . bexpK+1(n)−1. That is, the address of the currently scanned tape cell is h. We take
the following type to be the encoding of C:

[C] =
expK+1(n)−1⋂

i=0
Cell(bi, q, 〈h〉K , 〈i〉K).

Now let C0 be the initial configuration for input a1 . . . an. (Thus bi = ai+1, for i < n.)

I Lemma 22. The intersection Tape ∩ • is inhabited in Γ iff so is [C0] ∩ •.

Proof. Suppose that Γ ` e : [C0] ∩ • . If Ti = initiZeroKSuccK , for i = 1, . . . , n, then

Γ ` InitZeroK(T1(T2(· · · (Tn−1(Tm−nn (finitMaxK e))) · · ·))) : Tape ∩ • .

B. Düdder, M. Martens, J. Rehof, and P. Urzyczyn 257

On the other hand, if Γ ` e : Tape ∩ • then e = xe1 . . . em, where x is m-ary (Lemma 18).
Since Γ ` e : Tape, the only possibility is that e = Init e1e2 , where Γ ` e1 : ZeroK(〈 0 〉K)
and Γ ` e2 : Tape1(〈 0 〉K) ∩ Cell(a1, q0, 〈 0 〉K , 〈 0 〉K 〉. We prove by induction wrt r that
e2 = T1(T2(· · · (e′) · · ·)), where e′ has type • ∩ Tape`(〈 r 〉) ∩

⋂
i≤r Cell(bi, q0, 〈 0 〉, 〈 i 〉), and

` = min{r + 1, n}. For r = expK+1(n)− 1, term e′ is of type • ∩ Tapen(〈 r 〉K) ∩ [C0]. J

I Lemma 23. A configuration C is eventually accepting iff Γ ` [C] ∩ •.

Proof. The “only if” part goes by induction with respect to the definition of acceptance.
If C is an accepting configuration (universal without successors) then we have a declaration

Stepqab : Cell(b, qa, δ, δ) ∩ Cell(α, qa, δ, γ) ∩ •,

for appropriate b, whence Γ ` Stepqab : [C] ∩ •. Let C = wqbw′ be existential, with q at
address t. If C → C′, with C′ eventually accepting then, by the induction hypothesis, [C′]∩• is
inhabited. Assume for example that C′ is obtained from C using a triple (ci, pi, hi) ∈ ∆(b, q),
with hi = l. Then [C′] differs from [C] in that we have Cell(ci, pi, 〈 t − 1 〉, 〈 t 〉) instead of
Cell(b, q, 〈 t 〉, 〈 t 〉) and Cell(bj , pi, 〈 t − 1 〉, 〈 j 〉) instead of Cell(bj , q, 〈 t 〉, 〈 j 〉), for all j 6= t.
It follows that Γ ` StepqbiSucckDiff k e : [C] ∩ •, where Succk and Diff k are defined as in
Lemma 20 for appropriate k, and e is an inhabitant of [C′] ∩ •.

In the universal case, we build an inhabitant of [C] ∩ • as

StepqbSucckDiff k e1 . . .SucckDiff k er

where Succk and Diff k are as above, and e1, . . . , er prove the codes of all successor config-
urations.

The proof from right to left is by induction with respect to length of inhabitants. Let
Γ ` e : [C] ∩ •. If e is a single combinator then e = Stepqab, by Lemma 19. Otherwise
e = xe1 . . . em, for an m-ary x. It is possible that e = initie0e1e2 or finite1e2, but then e2
also proves [C] ∩ •. Therefore the shortest inhabitant must begin with Stepqbi or Stepqb,
and we proceed as in the proof of Lemmas 21 and 22, using Lemma 19 as a basic tool. J

I Theorem 24. For every k ≥ 0, the relativized inhabitation problem for bclk(→,∩) is
complete in (k+2)-Exptime.

Proof. By a routine padding argument3 it suffices to prove that the halting problem for
expk+1(n)-space bounded ATM’s is reducible to inhabitation in bclk(→,∩). The latter
claim follows from Lemmas 22 and 23: to determine ifM accepts the input it is enough to
ask if Γ ` • ∩ Tape. J

References
1 H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A filter lambda model and the

completeness of type assignment. Journal of Symbolic Logic, 48(4):931–940, 1983.
2 T. Freeman and F. Pfenning. Refinement types for ML. In ACM Conference on Program-

ming Language Design and Implementation (PLDI), pages 268–277. ACM, 1991.
3 M. D. Gladstone. Some ways of constructing a propositional calculus of any required degree

of unsolvability. Transactions of the American Mathematical Society, 118:195–210, 1965.

3 If L ∈ Dtime(expk+1(p(n))) then L ≤log {w#p(n)−|w| | w ∈ L} ∈ Dtime(expk+1(n)).

CSL’12

258 Bounded Combinatory Logic

4 J. R. Hindley. The simple semantics for Coppo-Dezani-Sallé types. In M. Dezani-Ciancaglini
and U. Montanari, editors, International Symposium on Programming, volume 137 of
LNCS, pages 212–226. Springer, 1982.

5 J. R. Hindley and J. P. Seldin. Lambda-calculus and Combinators, an Introduction. Cam-
bridge University Press, 2008.

6 L. Linial and E. L. Post. Recursive unsolvability of the deducibility, Tarski’s completeness
and independence of axioms problems of propositional calculus. Bulletin of the American
Mathematical Society, 55:50, 1949.

7 Ch. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
8 J. Rehof and P. Urzyczyn. Finite combinatory logic with intersection types. In C.-H. Luke

Ong, editor, TLCA, volume 6690 of Lecture Notes in Computer Science, pages 169–183.
Springer, 2011.

9 W. E. Singletary. Recursive unsolvability of a complex of problems proposed by Post.
Journal of the Faculty of Science, University of Tokyo, 14:25–58, 1967.

10 W. E. Singletary. Many-one degrees associated with partial propositional calculi. Notre
Dame Journal of Formal Logic, XV(2):335–343, 1974.

11 R. Statman. Intuitionistic propositional logic is polynomial-space complete. Theoretical
Computer Science, 9:67–72, 1979.

Collapsing non-idempotent intersection types
Thomas Ehrhard

CNRS, PPS, UMR 7126, Univ Paris Diderot, Sorbonne Paris Cité
F–75205 Paris, France

Abstract
We proved recently that the extensional collapse of the relational model of linear logic coincides
with its Scott model, whose objects are preorders and morphisms are downwards closed relations.
This result is obtained by the construction of a new model whose objects can be understood as
preorders equipped with a realizability predicate. We present this model, which features a new
duality, and explain how to use it for reducing normalization results in idempotent intersection
types (usually proved by reducibility) to purely combinatorial methods. We illustrate this ap-
proach in the case of the call-by-value lambda-calculus, for which we introduce a new resource
calculus, but it can be applied in the same way to many different calculi.

1998 ACM Subject Classification F.3.2

Keywords and phrases Linear logic, λ-calculus, denotational semantics

Digital Object Identifier 10.4230/LIPIcs.CSL.2012.259

1 Introduction

The relational model of linear logic (LL) has been introduced implicitly by Girard in [12]
as a model of the λ-calculus and recognized only later as a model of LL by several authors
independently. Its objects are plain sets and a morphism from X to Y is a subset of X ×Y .
Often despised because it identifies many logical constructions of LL (most dramatically
X⊥ = X), this model is nevertheless extremely interesting as it preserves many relevant
information about programs: it is quantitative in the sense that the interpretation of func-
tions allows to recover how many times an argument is used to compute a given result. For
that reason, computation time can be recovered from the interpretation of terms, as shown
in [3, 4]. Arbitrary fixpoints of types are quite easy to compute and therefore many interest-
ing relational models of the pure λ-calculus and of its variants and extensions are available:
call-by-value (cbv) λ-calculus, λµ- calculus etc. Also, the relational model provides a natural
interpretation of the differential and resource λ-calculi and LL [7, 8, 9, 21, 19].

Scott semantics is of course older. It has been recognized as a model of LL a few years
after Girard’s discovery of LL, by Michael Huth [13, 14] and independently by Glynn Win-
skel [22, 23]. In this model, types are interpreted as prime algebraic complete lattices, or
equivalently as preorders, since any such lattice can be presented as the set of downwards
closed subsets of a preorder. The Kleisli category associated with this model of LL is (equi-
valent to) the category of prime-algebraic complete lattices and Scott-continuous functions.
This model forgets much more information about programs than the relational model: it is
purely qualitative in the sense that the interpretation of a function tells which parts of the
arguments are used to compute a given result, but not how many times they are used.

This difference between the relational model and the Scott model of LL materializes
itself in the fact that the Kleisli category of the second model is well-pointed (intuitively:
morphisms can be seen as functions), whereas the Kleisli category of the first model is
not. We proved in [6] that the the second model is the extensional collapse of the first

© Thomas Ehrhard;
licensed under Creative Commons License NC-ND

Computer Science Logic 2012 (CSL’12).
Editors: Patrick Cégielski, Arnaud Durand; pp. 259–273

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2012.259
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

260 Collapsing non-idempotent intersection types

one. The extensional collapse logical relation is a partial equivalence relation (PER) which
equates morphisms if they yield equal results when applied to equal arguments. We explain
now briefly how we proved that the second model is the “quotient” of the first one by the
extensional collapse PER.

An object in Rel (the relational model) is a plain set and an object in Pol (the preorder
model) is a structure S = (|S|,≤S) where |S| is a set (the web) and ≤S is a preorder
relation on |S|. We can define the Scott semantics of LL in such a way that the web of the
Pol object interpreting a formula coincide with the Rel object (set) interpreting the same
formula. Using this fact, we build a new model of LL whose objects – called preorder with
projections (pop) – are pairs E = (〈E〉,D(E)) where 〈E〉 is a preorder and D(E) is a subset of
P(|〈E〉|) which satisfies a closure property defined by an orthogonality relation. This allows
to define a PER on P(|〈E〉|): u and v are E-equivalent if they both belong to D(E) and have
the same 〈E〉-downwards closure. This PER coincides with the extensional collapse PER:
given pops E and F , the pop G = (E ⇒ F) = (!E (F) is such that w,w′ ⊆ |〈G〉| are
G-equivalent iff, for any u, u′ ⊆ |〈E〉|, if u and u′ are E-equivalent, then w(u) and w′(u′)
are F -equivalent (applications are computed in the relational model). The 〈G〉-downwards
closure of w is a morphism in the Scott model, which represents the equivalence class of
w. Since conversely any downwards closed subset of |〈G〉| belongs to D(G), the Scott model
coincides with the extensional collapse of the relational model. The constructions of [6] allow
also to extend this result to arbitrary fixpoints of types.

Content

Indeed, just as Rel and Pol, this new category Pop is a model of LL where all types
have least fixpoints, for a suitable notion of inclusion between pops. In the present paper,
we use this property to prove an adequacy result for a Scott model of the cbv λ-calculus,
which is defined as the least fixpoint US (for a suitable order relation on preorders) of the
operation S 7→ !S (!S. We can solve the same domain equation in Pop and we get an
object UP for which 〈UP〉 = US and UR = |〈UP〉| satisfies UR = !UR (!UR in Rel. Given a
term M of the cbv λ-calculus, that we assume to be closed for simplicity, we can therefore
compute its relational interpretation [M]R which is a subset of UR which belongs to D(UP)
and its Scott interpretation [M]S, which is a downwards closed subset of UR = |〈UP〉| (for
the preorder relation of 〈UP〉 = US). By induction on M , and using crucially the properties
of the model Pop, one proves that [M]S = ↓[M]R: this is an instance of the “extensional
collapse property” of this model. Now, adequacy of UR for the cbv λ-calculus (that is: if
[M]S 6= ∅ then M reduces to a value) can be proved purely combinatorially, introducing a
cbv resource λ-calculus and the fact that Rel satisfies a version of the Taylor formula. If
[M]S 6= ∅ then [M]R 6= ∅ since [M]S = ↓[M]R and so M reduces to a value. Whereas the
standard proofs of this kind of results for Scott semantics are based on reducibility (with the
noticeable exception of [2]), the present approach provides a purely semantical reduction of
this result to a combinatorial argument: all the reducibility argument has been encapsulated
in the model Pop. This approach can be used in the same way for many different calculi
(standard λ-calculus, PCF, λµ-calculus. . .).

This work can be understood as relating usual idempotent intersection typing systems –
points in the Pol model can be seen as idempotent intersection types – with non-idempotent
ones, which use points of the Rel model as types. We adopt this viewpoint in Sections 6.1
and 7.1 where we present the semantics of the cbv λ-calculus under consideration as typing
systems. Actually, in both systems, types are pairs (p, q) where p and q are finite multisets
of types but the systems differ by their typing rules. The type (p, q) could also nicely be
written p(q and “intersection” corresponds to multiset concatenation.

T. Ehrhard 261

Notations. We use [a1, . . . , an] for the multiset made of a1, . . . , an, taking multiplicities
into account. We use [] for the empty multiset and standard algebraic notations such as
m+m′ of

∑
imi for sums of multisets. We use |m| for the support of the multiset m, which

is the set of elements which appear at least once in m.

2 Categorical semantics of LL in a nutshell

Our main reference for categorical models of LL is the survey paper [16].
Let C be a Seely category. We recall briefly that such a structure consists of a category C,

whose morphisms should be thought of as linear maps, equipped with a symmetric monoidal
structure for which it is closed and ∗-autonomous wrt. a dualizing object ⊥. The monoidal
product (tensor product) is denoted as ⊗, the linear function space object from X to Y is
denoted as X (Y . We use ev ∈ C((X (Y) ⊗ X,Y) for the linear evaluation morphism
and λ(f) ∈ C(Z,X (Y) for the “linear curryfication” of a morphism f ∈ C(Z ⊗ X,Y).
The dual object X (⊥ is denoted as X⊥. Given an object X of C and a permutation
f ∈ Sn, we use σf for the induced automorphism of X⊗n in C; the operation f → σf is a
group homomorphism from Sn to the group of automorphisms of X⊗n in C.

We also assume that C is cartesian, with a cartesian product denoted as & and a terminal
object >. By ∗-autonomy, this implies that C is also cocartesian; we use ⊕ for the coproduct
and 0 for the initial object. If C has cartesian products of all countable families (Xi)i∈I of
objects, we say that it is countably cartesian, and in that case, C is also countably cocartesian.
If finite sums and finite products coincide, then each hom-set has a canonical commutative
monoid structure and all operations defined so far (composition, tensor product, linear
curryfication) are linear wrt. this structure. In that case we say that C is additive. We say
that it is countably additive if this property extends to countable sums and products, and in
that case hom-sets have countable sums. The corresponding operations are denoted using
the standard mathematical notations for sums.

Last, we assume that C is equipped with an endofunctor !_ which has a structure of
comonad (unit dX ∈ C(!X,X) called dereliction, multiplication pX ∈ C(!X, !!X) called
digging). Moreover, this functor must be equipped with a monoidal structure which turns
it into a symmetric monoidal functor from the symmetric monoidal category (C,&) to the
symmetric monoidal category (C,⊗): the corresponding isomorphisms m : 1 → !> and
mX,Y : !X ⊗ !Y → !(X & Y) are often called Seely isomorphisms. An additional diagram,
relating digging and the Seely isomorphisms is required, see [16].

2.1 Structural natural transformations

Using these structures, we can define a weakening natural transformation wX ∈ C(!X, 1) and
a contraction natural transformation cX ∈ C(!X, !X ⊗ !X) as follows. Since > is terminal,
there is a canonical morphism tX ∈ C(X,>) and we set wX = m−1 !tX . Similarly, we have
a diagonal natural transformation ∆X ∈ C(X,X & X) and we set cX = m−1

X,X !∆X .
One can also prove that the Kleisli category C! of the comonad !_ is cartesian closed,

with & as cartesian product and !X (Y as function space object: this is a categorical
version of Girard’s translation of intuitionistic logic into linear logic.

We use cnX : !X⊗n → !X⊗n ⊗ !X⊗n for the generalized contraction morphism which

is defined as the composition (!X)⊗n
(cX)⊗n

// (!X ⊗ !X)⊗n
σf // (!X)⊗n ⊗ (!X)⊗n where

f ∈ S2n is the bijection which maps 2k − 1 to k and 2k to n+ k (for k = 1, . . . , n).

CSL’12

262 Collapsing non-idempotent intersection types

Similarly, we define a generalized weakening morphism wnX as the composition of morph-

isms (!X)⊗n
(wX)⊗n

// (1)⊗n ν // 1 where ν is the unique canonical isomorphism in-
duced by the monoidal structure. Given f ∈ C((!X)⊗n, X), it is standard to define f ! ∈
C((!X)⊗n, !X), using the comonad and the monoidal structure of the functor !_. This oper-
ation is usually called promotion in LL. Given two LL models C and D, an LL functor from
C to D is a functor F : C → D which preserves all the structure defined above. For instance,
we must have F (f ⊗ g) = F (f) ⊗ F (g), F (pX) = pF (X) etc.

2.2 Weak differential LL models

The notion of categorical model recalled above allows to interpret standard classical linear
logic. If one wishes to interpret differential constructs as well (in the spirit of the differen-
tial λ-calculus or of differential linear logic), more structure and hypotheses are required.
Basically, we need:

that the cartesian and cocartesian category C be additive
and that the model be equipped with a codereliction natural transformation dX ∈
C(X, !X) such that dX dX = IdX .

More conditions are required if one wants to interpret the full differential λ-calculus of [7] or
full differential LL as presented in e.g. [18]: these conditions are a categorical axiomatization
of the usual chain rule of calculus, but this rule is not required in the present paper, see [10]
for a complete axiomatization. When these additional conditions hold, we say that the chain
rule holds in C.

If C is a weak differential LL model, we can define a coweakening morphism wX ∈ C(1, !X)
and a cocontraction morphism cX ∈ C(!X ⊗ !X, !X) as we did for wX and cX . Similarly
we also define cnX ∈ C((!X)⊗n, !X). Due to the naturality of dX we have wX dX = 0
and cX dX = dX ⊗ wX + wX ⊗ dX . We also define dnX = d⊗nX cnX ∈ C(!X,X⊗n) and
dnX = cnX d⊗nX ∈ C(X⊗n, !X).

2.3 The Taylor formula

Let C be a weak differential LL model which is countably additive. Remember that each
hom-set C(X,Y) is endowed with a canonical structure of commutative monoid in which
countable families are summable. We assume moreover that these monoids are idempotent.
This means that, if f ∈ C(X,Y), then f + f = f . We say that the Taylor formula holds in
C if, for any morphism f ∈ C(X,Y), we have !f =

∑∞
n=0 dnY f⊗n dnX

I Remark. If the idempotency condition does not hold in C, one has to require the hom-
sets to have a module structure over the rig of non-negative real numbers, and the Taylor
condition must be written in the more familiar way !f =

∑∞
n=0

1
n!d

n

Y f
⊗n dnX .

I Remark. If the chain rule holds in C, the Taylor condition reduces to the particular case
of identity morphisms: one has just to require that Id!X =

∑∞
n=0

1
n!d

n

XdnX (in the non-
idempotent case) or Id!X =

∑∞
n=0 dnXdnX (in the idempotent case).

3 The extensional collapse

We present the extensional collapse construction developed in [6].

T. Ehrhard 263

3.1 The relational model of LL
The model. The base category is Rel, the category of sets and relations. Identities
are diagonal relations and composition is the standard composition of relations. In this
category, the isomorphisms are the bijections. The symmetric monoidal structure is given
by 1 = {∗} (arbitrary singleton set) and X ⊗ Y = X × Y , we do not give the monoidal
isomorphisms which are obvious. This symmetric monoidal category (SMC) is closed, with
X (Y = X × Y and ev = {(((a, b), a), b) | a ∈ X and b ∈ Y }. It is ∗-autonomous with
dualizing object ⊥ = 1 so that X⊥ = X up to an obvious isomorphism.

Rel is countably cartesian with
˘
i∈I Xi =

⋃
i∈I{i}×Xi (disjoint union) and projections

πi = {((i, a), a) | a ∈ Xi}. It is also countably additive with
⊕

i∈I Xi =
˘
i∈I Xi. The sum

of a countable family of elements of Rel(X,Y) is its union, so that hom-sets are idempotent
monoids.

The exponential functor is given by !X =Mfin(X) (finite multisets of elements ofX) and,
ifR ∈ Rel(X,Y), one sets !R = {([a1, . . . , an], [b1, . . . , bn]) | n ∈ N and (a1, b1), . . . , (an, bn) ∈
R}. The Seely isomorphism m ∈ Rel(1, !>) is {(∗, [])} and the Seely natural isomorphism
mX,Y ∈ Rel(!X ⊗ !Y , !(X & Y)) is the bijection which maps ([a1, . . . , an], [b1, . . . , bp]) to
[(1, a1), . . . , (1, an), (2, b1), . . . , (2, bp)])}. Dereliction is dX ∈ Rel(!X,X) defined by dX =
{([a], a) | a ∈ X} and digging is pX ∈ Rel(!X, !!X) defined by pX = {(m1 + · · · +
mk, [m1, . . . ,mk]) | m1, . . . ,mk ∈ !X}. As easily checked, weakening is given by wX =
{([], ∗)} ∈ Rel(!X, 1) and binary contraction is cX = {(m1 +m2, (m1,m2))) | m1,m2 ∈ !X}.

This structure can also be extended to a weak differential LL model, codereliction being
defined as dX = {(a, [a]) | a ∈ X} ∈ Rel(X, !X). In this model, the Taylor formula holds as
easily checked.

Fixpoints of types. Let Rel⊆ be the class of sets, ordered by inclusion. It is closed under
arbitrary unions. A function (Rel⊆)n → Rel⊆ is continuous if it is monotone wrt. inclusion
and preserves all directed lubs. Any continuous function Φ : Rel⊆ → Rel⊆ admits a
least fixpoint defined as usual as

⋃
n∈N Φn(∅). All the LL constructions defined above are

continuous functions.

3.2 The Scott model of LL
The model. A preordered set is a pair S = (|S|,≤S) where |S| is a countable set and
≤S is a transitive and reflexive binary relation on |S|. We denote as I(S) the set of all
subsets of |S| which are downwards closed wrt. the ≤S relation. We set Sop = (|S|,≥S).
We use S × T for the product preorder. Scott semantics can also be presented as a model
of LL. The base category is Pol, the category whose objects are preordered sets and where
Pol(S, T) = I(Sop×T). The identity morphism at S is IdS = {(a, a′) ∈ |S|× |S| | a′ ≤S a}.
Composition is just the usual composition of relations.

I Lemma 1. There is an order isomorphism from Pol(S, T) to the set of functions I(S)→
I(T) which preserve arbitrary unions, ordered under the pointwise order. This isomorphism
maps the relation R to the function ξ 7→ Rξ = {b ∈ |T | | ∃a ∈ ξ (a, b) ∈ R}.

This is quite easy to prove, and this mapping from relation to functions is functorial. We
equip Pol with a symmetric monoidal structure, taking 1 = ({∗},=) and S ⊗ T = S × T
(product preorder).

If two preorders S and S′ are isomorphic as preorders through a bijection ϕ : |S| → |S′|,
then they are isomorphic in Pol by the relation {(a, a′) | a′ ≤S′ ϕ(a)} but the converse is

CSL’12

264 Collapsing non-idempotent intersection types

far from being true. In the first case we say that ϕ is a strong isomorphism from S to S′.
The isomorphisms of the symmetric monoidal structure of Pol are the obvious strong ones.
This SMC is closed, with S (T = Sop×T and linear evaluation ev ∈ Pol((S (T) ⊗ S, T)
given by ev = {(((a′, b), a), b′) | a′ ≤S a and b′ ≤T b}. Pol is ∗-autonomous with dualizing
object ⊥ = 1, so that, up to an obvious strong isomorphism, S⊥ = Sop. Observe that as in
Rel, the cotensor product ` coincides with the tensor product ⊗; both categories Rel and
Pol are compact closed.

Pol is countably cartesian: the cartesian product of a countable family (Si)i∈I of pre-
orders is S =

˘
i∈I Si defined by |S| =

⋃
i∈I{i} × |Si| preordered as follows: (i, a) ≤S (j, b)

if i = j and a ≤Si b. The projections are πi = {((i, a), a′) | a′ ≤Si a}. In particular, the
terminal object is (∅, ∅). The category Pol is therefore also cocartesian, and it is countably
additive with sums of morphisms defined as unions. We define the exponential functor by
!S = (Mfin(|S|),≤!S) where the preorder is defined by p ≤!S q if ∀a ∈ |p| ∃b ∈ |q| a ≤S b.
Given R ∈ Pol(S, T), we set !R = {(p, q) ∈ |!S| × |!T | | ∀b ∈ |q| ∃a ∈ |p| (a, b) ∈ R} and it is
quite easy to check that !R ∈ Pol(!S, !T), and that this operation is functorial.

I Remark. The crucial point in the definition of !S is that ≤!S does not take multiplicities
into account. Indeed, there is another possible definition, for which we use another notation:
we can set !sS = (Pfin(|S|),≤!sS), with preorder defined just as above: µ ≤!sS ν if ∀a ∈ µ∃b ∈
ν a ≤S b. The preorders !S and !sS are isomorphic (but not strongly isomorphic) through
the relation eS ∈ Pol(!S, !sS) defined by eS = {(p, µ) | ∀a ∈ µ∃a′ ∈ |p| a ≤S a′}. The
important point is that this natural isomorphism is compatible with all the structures of
both exponentials, so that the models defined by these exponentials are equivalent. We
prefer to use the multiset-based construction to present the model because it is closer to
the exponential of the relational model – this simplifies greatly the presentation of the
extensional collapse as we shall see – but keep in mind that we could give the same definitions
with the other version.

The Seely isomorphism m ∈ Pol(1, !>) is {(∗, [])} and the Seely natural isomorphism
mS1,S2 ∈ Pol(!S1 ⊗ !S2, !(S & T)) is {((p1, p2), q) | (i, a) ∈ |q| ⇒ ∃a′ ∈ |pi| a ≤Si

a′}.
Dereliction dS ∈ Pol(!S, S) is dS = {(p, a) | ∃a′ ∈ |p| a ≤S a′} and digging pS ∈ Pol(!S, !!S)
is pS = {(p, [p1, . . . , pn]) | i ∈ N and ∀i pi ≤!S p}. As easily checked, weakening is given
by wS = {(p, ∗) | p ∈ |!S|} ∈ Rel(!S, 1) and binary contraction is cS = {(p, (p1, p2))) |
p, p1, p2 ∈ |!S| p1 ≤!S p and p2 ≤!S p}. Unlike the relational model, this structure cannot
be extended into a weak differential LL model.

I Proposition 2. There is no natural transformation dS ∈ Pol(S, !S) such that dS dS = IdS .

Proof. We prove first that necessarily dS = {(a, p) ∈ |S| × |!S| | p ≤!S [a]}. First, let (a, p) ∈
dS . Let a′ ∈ |p|. By definition of dS , we have (p, a′) ∈ dS , and hence (a, a′) ∈ dS dS = IdS .
Therefore a′ ≤S a and hence p ≤!S [a]. Conversely, let a ∈ |S|. We have (a, a) ∈ IdS and
therefore there exists p such that (a, p) ∈ dS and (p, a) ∈ dS . By the second property, we can
find a′ ∈ |p| such that a ≤S a′. We have [a] ≤!S p and (a, p) ∈ dS ∈ Pol(S, !S). Therefore
(a, [a]) ∈ dS . It follows that, for any p such that p ≤!S [a], one has (a, p) ∈ dS .

Let S = ({0},=) and T = ({1, 2},=). Let R = {(0, 1), (0, 2)}, we have R ∈ Pol(S, T).
Observe that ([0], [1, 2]) ∈ !R (warning: this is of course not true in Rel) so that (0, [1, 2]) ∈
!R dS . But there is no b ∈ |T | such that (b, [1, 2]) ∈ dT and hence we do not have (0, [1, 2]) ∈
dT R, and this shows that dS is not a natural transformation. �

Fixpoints of types. Let S and T be preorders, we write S ⊆ T if |S| ⊆ |T | and, for any
a, a′ ∈ |S|, one has a ≤S a′ iff a ≤T a′. This is an order relation on the class of preorders

T. Ehrhard 265

and we use Pol⊆ for this partially ordered class. It is clear that any countable directed
family in Pol⊆ has a lub and that all the LL constructions presented above are continuous.
It is also clear that any continuous function Φ : Pol⊆ → Pol⊆ has a least fixpoint.

3.3 The collapsing model of LL
Our last model combines the two models above. It is based on a new duality.

The model. Let S be a preorder and let u, u′ ⊆ |S|. We write u ⊥ u′ if u ∩ u′ = ∅ ⇒
(↓Su) ∩ u′ = ∅.

Observe that (↓Su) ∩ u′ = ∅ holds iff (↓Su) ∩ (↓Sopu′) = ∅ so that u ⊥ u′ holds relatively
to S iff u′ ⊥ u holds relatively to Sop. Given D ⊆ P(|S|), we define D⊥(S) ⊆ P(|S|) by
D⊥(S) = {u′ ⊆ |S| | ∀u ∈ D u ⊥ u′}. It is clear that D ⊆ D⊥(S)⊥(Sop) and that D1 ⊆ D2 ⇒
D2
⊥(S) ⊆ D1

⊥(S), so that D⊥(S) = D⊥(S)⊥(Sop)⊥(S). Observe that I(Sop) ⊆ D⊥(S) ⊆ P(|S|)
so that, when D is “closed” in the sense that D = D⊥(S)⊥(Sop), one has I(S) ⊆ D ⊆ P(|S|).

The objects of the model are called preorders with projections (pop) and are pairs E =
(〈E〉,D(E)) where 〈E〉 is a preorder and D(E) ⊆ P(|〈E〉|) satisfies (D(E))⊥(〈E〉)⊥(〈E〉op) ⊆
D(E), that is (D(E))⊥(〈E〉)⊥(〈E〉op) = D(E). If E is a pop, we set E⊥ = (〈E〉op

, (D(E))⊥(〈E〉)).
Let E and F be pops. One defines E ⊗ F by 〈E ⊗ F 〉 = 〈E〉 × 〈F 〉 and D (E ⊗ F) =
{u× v | u ∈ D(E) and v ∈ D(F)}⊥(〈E〉×〈F 〉)⊥(〈E⊥〉×〈F⊥〉). Let E (F = (E ⊗ F⊥)⊥.

I Lemma 3. Let R ⊆ |〈E (F 〉|. One has R ∈ D(E (F) iff any of the following equivalent
conditions holds.

If u ∈ D(E) and v′ ∈ D(F⊥), then R ∩ (u× v′) = ∅ ⇒ R ∩ (↓〈E〉u× ↑〈F 〉v′) = ∅.
If u ∈ D(E), then Ru ∈ D(F) and R ↓u ⊆ ↓(Ru).
If u ∈ D(E), then Ru ∈ D(F) and ↓(Ru) = (↓〈E〉(〈F 〉R) (↓u).

Proof. See [6]. �

To define the category Pop of pops, we set Pop(E,F) = D(E (F). By Lemma 3
IdE = {(a, a) | a ∈ |〈E〉|} ∈ Pop(E,E), and if Q ∈ Pop(E,F) and P ∈ Pop(F,G), then
P Q ∈ Pop(E,G) and so identities and composition of Pop are defined as in Rel. This
category is ∗-autonomous: we have already defined the tensor product on objects. On
morphisms, it is defined just as in Rel. The internal hom object E (F has also been
defined above, and the linear evaluation relation is defined as in Rel again. Of course,
one has to check carefully that all these relations are Pop morphisms, this is done in [6].
Notice that, as shown in that paper, this category is not compact closed. The category
Pop is countably cartesian, E =

˘
i∈I Ei is defined by 〈E〉 =

˘
i∈I〈Ei〉 and w ⊆ D(E)

iff πi w ∈ D(Ei) for each i ∈ I (where πi is the ith projection in the relational model).
The projections morphism in Pop are those of the relational model. The category Pop is
therefore also countably cocartesian, and one checks easily that it is countably additive.

We define now the exponential !E of a pop E. One sets 〈!E〉 = !〈E〉 and therefore,
we have |〈!E〉| = !|〈E〉| = Mfin(|〈E〉|) by our definition of !E based on multisets and not on
sets, see the remark in Section 3.2. We set D(!E) = {u! | u ∈ D(E)}⊥(〈!E〉)⊥(〈!E〉op), where
u! =Mfin(u). Here is the main tool for dealing with this construction. See [6] for the proof.

I Proposition 4. Let E and F be pops and let R ∈ Rel(|〈!E〉|, |〈F 〉|). One has R ∈ Pop(!E,F)
iff, for any u ∈ D(E)

Ru! ∈ D(F)
R (↓〈E〉u)! ⊆ ↓〈F 〉(Ru!).

CSL’12

266 Collapsing non-idempotent intersection types

The Seely isomorphisms, and the dereliction and digging natural transformations are
defined exactly as in Rel.

Fixpoints of types. Let E and F be pops. We write E ⊆ F if 〈E〉 ⊆ 〈F 〉, D(E) ⊆ D(F)
and, for any v ∈ D(F), one has v ∩ |〈E〉| ∈ D(E) and ↓〈F 〉v ∩ |〈E〉| ⊆ ↓|〈E〉|(v ∩ |〈E〉|). This
is an order relation on the class of preorders with projections, and we write Pop⊆ for the
corresponding partially ordered class. It is shown in [6] that this partially ordered class is
complete (all directed lubs exist) and we define as usual the notion of continuous function
(Pop⊆)n → Pop⊆, one checks that all constructions of linear logic are continuous functions,
and that any continuous function Φ : Pop⊆ → Pop⊆ admits a least fixpoint

⋃∞
n=0 Φn(∅).

Forgetful LL functors. There is an obvious functor ρ : Pop → Rel defined on objects
by ρ(E) = |〈E〉| and which is the identity on morphisms. With a preorder with projection
E, we can also associate a preorder σ(E) = 〈E〉. This operation is extended to morphisms
as follows: let R ∈ Pop(E,F), we set σ(R) = ↓〈E〉(〈F 〉R.

I Lemma 5. Both ρ and σ are LL functors.

The proof can be found in [6]. The statement concerning ρ is straightforward. Concerning
σ, LL functoriality is made possible by the presence of the sets D(E). For instance func-
toriality results directly from Lemma 3 and Lemma 1. But notice that, given preorders S,
S′ and S′′ and arbitrary relations R ∈ Rel(|S|, |S′|) and R′ ∈ Rel(|S′|, |S′′|), the inclusion
(↓S′(S′′R

′) (↓S(S′R) ⊆ ↓S(S′′(R′R) does not hold in general.

I Lemma 6. When restricted to inclusions, ρ induces a continuous function Pop⊆ → Rel⊆

and σ induces a continuous function Pop⊆ → Pol⊆.

4 The cbv λ-calculus

Our syntax for the cbv λ-calculus is a slight modification of the ordinary λ-calculus syntax.
If V is a value, then 〈V 〉 is a term;
if M and N are terms, then M N is a term;
if x is a variable, then x is a value;
if M is a term and x is a variable, then λxM is a value.

We use Λt for the set of terms, Λv for the set of values and Λe for the disjoint union of
these two sets, whose elements will be called expressions and denoted with letters P,Q,
As usual, expressions are considered up to α-equivalence.

Reduction relations. One can define a general reduction relation βV for this calculus: it
is the contextual closure of the basic reduction rule 〈λxM〉 〈V 〉 βV M [V/x]. We use β∗V for
the transitive closure of βV. We also define a weak reduction relation β̂V which is included in
βV and which consists in reducing only redexes not occurring inside a value (that is, under
a λ). It is defined by the following rules.

〈λxM〉 〈V 〉 β̂V M [V/x]
M β̂V M

′

M N β̂V M
′N

N β̂V N
′

M N β̂V M N ′

T. Ehrhard 267

5 Linear-logic based models

Let C be an LL model. We present here a general notion of model for the cbv λ-calculus
C, which corresponds to a translation of intuitionistic logic into LL alluded to by Girard in
[11] and called by him “boring”. It is compatible with the translation of the cbv λ-calculus
into LL given in [15] and with other notions of model such as [20] and of course with [17] if
one keeps in mind that the functor “!” defines a strong monad on the Kleisli category C!.

A C-model of cbv as a triple (U, app, lam) where U is an object of C, app ∈ C(U, !U (!U)
and lam ∈ C(!U (!U,U) are such that app lam = Id!U(!U .

Given an expression P and a sequence of variables ~x = (x1, . . . , xn) adapted to P (this
means that the sequence is repetition-free and contains all the free variables of P), we define
[P]~x ∈ C((!U)⊗n, X) where X = U if P is a value and X = !U if P is a term. The definition
is by induction on P , and we consider first the cases where P is a term.

Assume first that P = 〈V 〉. By inductive hypothesis we have [V]~x : (!U)⊗(n) → U , and we
set [P]~x = ([V]~x)! : (!U)⊗(n) → !U . Assume next that P = M N . By inductive hypothesis,
we have [M]~x, [N]~x ∈ C((!U)⊗n, !U). Therefore app dU [M]~x ∈ C((!U)⊗n, !U (!U). So we
set [P]~x = ev ((app dU [M]~x) ⊗ [N]~x) cnU ∈ C((!U)⊗n, !U).

Now we interpret values. Assume first that P is a variable, so that P = xi for an
uniquely determined i ∈ {1, . . . , n}. Then we set [M]~x = w⊗(i−1)

U ⊗ dU ⊗ w⊗(n−i)
U :

(!U)⊗n → 1⊗(i−1) ⊗ U ⊗ (1)⊗(n−i) ' U (we keep this isomorphism implicit). Assume last
that P = λxM . We can assume that x does not occur in ~x. By inductive hypothesis, we
have [M]~x,x ∈ C((!U)⊗n ⊗ !U, !U) and hence λ([M]~x,x) ∈ C((!U)⊗n, !U (!U) and we set
[P]~x = (lamλ([P]~x,x)) ∈ C((!U)⊗n, U).

I Lemma 7 (Substitution Lemma). Let P be an expression, x a variable and V a value. Let
~x which does not contain x, is adapted to V and such that ~x, x is adapted to E. We have
[P [V/x]]~x = [P]~x,x ((!U)⊗n ⊗ ([V]~x)!) cnU where n is the length of ~x.

I Theorem 8. Let ~x be adapted to the expressions P and P ′ and assume that P βV P ′.
Then [P]~x = [P ′]~x.

6 A relational model and the associated type system

Let ΦR : Rel⊆ → Rel⊆ be the continuous function defined by ΦR(X) = !X (!X. Let UR
be its least fixpoint, then we have UR = !UR (!UR so that UR is a Rel-model of cbv with
app = lam = Id. An element of UR is a pair (p, q) where p and q are finite multisets of elements
of UR. The simplest of these elements is ε = ([], []), here is another one: ([ε, ε, ([ε], [])], [ε]).

6.1 Non-idempotent intersection types
We introduce a typing system for deriving judgments of shape Γ `M : m whereM is a term,
m ∈ !UR and Γ is a context (that is, a finite function from variables to !UR) and judgments
of shape Γ ` V : a where V is a value and a ∈ UR. The sum of contexts Γ + ∆ is defined
pointwise (using the sum of multisets), when Γ and ∆ have the same domain. A context
Γ is often written Γ = (x1 : m1, . . . , xn : mn) where the xi’s are pairwise distinct variables
and m1, . . . ,mn ∈ !UR. The typing rules for terms are

Γ `M : [(p, q)] ∆ ` N : p
Γ + ∆ `M N : q

Γ1 ` V : a1 · · · Γk ` V : ak
Γ1 + · · ·+ Γk ` 〈V 〉 : [a1, . . . , ak]

The second rule conveys the intuition that [a1, . . . , ak] represents the intersection of types
a1, . . . , an. The typing rules for values are

CSL’12

268 Collapsing non-idempotent intersection types

x1 : [], . . . , xn : [], x : [a] ` x : a
Γ, x : p `M : q

Γ ` λxM : (p, q)

I Proposition 9. Let P be an expression and let ~x = (x1, . . . , xn) be a list of variables
adapted to P . Let ~p ∈ (!UR)n and let α ∈ X (where X = UR if P is a value and X = !UR if
P is a term). Then one has (~p, α) ∈ [P]~xR iff the typing judgment x1 : p1, . . . , xn : pn ` P : α
is derivable.

The proof is a simple verification, by induction on the structure of P .

6.2 A CBV resource calculus
We introduce a resource calculus whose terms can be used to denote typing derivations in
the typing system described above.

6.2.1 Notation. Given a finite family (ai)i∈I and a predicate P on I, we use [ai | P (i)]
for the multiset whose elements are the ai’s such that P (i) holds, taking multiplicities into
account.

6.2.2 Syntax. We describe first the syntax of our resource calculus.
If v1, . . . , vn are simple values, then 〈v1, . . . , vn〉 is a simple term;
if s and t are simple terms, then s t is a simple term;
if x is a variable, then x is a simple value;
if x is a variable and s is a simple term, then λx s is a simple value.

Terms are sets of simple terms, and values are defined similarly. We speak of (simple)
expressions when we don’t want to be specific. We write these sets as a sums to insist on the
algebraic flavor of the semantical background. The above syntactic constructs are extended
to non simple expressions, by linearity. For instance, if v =

∑
i∈I vi and w =

∑
j∈J wj are

values (the summands being simple), the expression 〈v, w〉 denotes
∑
i∈I,j∈J 〈vi, wj〉. And

if s =
∑
i∈I si is a term, then λx s denotes

∑
i∈I λx si, which is a value.

Given a simple expression e and simple values v1, . . . , vn, we define the linear substitution
∂x(e; v1, . . . , vn), which is an expression of the same kind as e, by

∂x(e; v1, . . . , vn) =

∑
f∈Sn

e
[
v1/xf(1), . . . , vn/xf(n)

]
if n = degxe

0 otherwise

where degxe is the number of free occurrences of x in e and x1, . . . , xn are these occurrences
(in the case n = degxe).

6.2.3 Reduction rules. We can give now the reduction rules of the calculus. We define a
reduction relation denoted as δ from simple expressions to generally non simple expressions
by the following rules.

〈λx s〉 〈v1, . . . , vn〉 δ ∂x(s; v1, . . . , vn)
if n 6= 1

〈v1, . . . , vn〉 t δ 0
s δ s′

λx s δ λx s′

s δ s′

s t δ s′ t
t δ t′

s t δ s t′
v δ v′

〈v, v1, . . . , vn〉 δ 〈v′, v1, . . . , vn〉

T. Ehrhard 269

This reduction can be extended to non simple expressions, but this is not needed here
and is postponed to a longer version of this paper.

One defines a size function on simple expressions by ‖x‖ = 0, ‖λx s‖ = 1 + ‖s‖, ‖s t‖ =
‖s‖+ ‖t‖ and ‖〈v1, . . . , vk〉‖ =

∑k
j=1 ‖vj‖. In other words ‖e‖ is the number of of λ’s in e.

I Lemma 10. There is no infinite sequence (ei)i∈N+ of simple expressions such that, for
each i, ei δ e′ with ei+1 ∈ e′.

Proof. ‖ei+1‖ < ‖ei‖. �

6.3 Categorical denotational semantics
Let U be a C-model of cbv, where we assume moreover that C is a weak differential LL model
which is countably additive and where hom-sets have idempotent sums. We show how to
interpret the cbv resource calculus in such a structure.

We introduce a convenient notation. Let g1, . . . , gk ∈ C((!U)⊗n, U). We set 〈g1, . . . , gk〉 =
dkU (g1 ⊗ · · · ⊗ gk) cn,kU , where cn,kU ∈ C((!U)⊗n, ((!U)⊗n)⊗k) is an obvious generalization of
cnU .

Given a simple expression e and an adapted sequence of variables ~x, we define [e]~x ∈
C((!U)⊗n, X) where X = U if e is a value and X = !U if e is a term. The definition is
by induction on e. For the syntactical constructs which are similar to those of the cbv λ-
calculus (namely: variables, application and abstraction), the interpretation is the same as in
Section 5. To complete the definition we have just to define the semantics of 〈v1, . . . , vk〉. By
inductive hypothesis we have defined gj = [vj]~x ∈ C((!U)⊗n, U) and we set [〈v1, . . . , vk〉]~x =
〈g1, . . . , gk〉. If e is an expression, that is a set of simple expressions e =

∑
i∈I ei and a list

of variables ~x adapted to all xi’s, we set [e]~x =
∑
i∈I [ei]~x which is well defined because we

have assumed that the sum of morphisms is idempotent in C.

I Lemma 11. If e δ e′ and ~x is adapted to e and e′, then [e]~x = [e′]~x.

Proof. It suffices to prove the result in the case where e is simple, by induction on e. The
proof uses the following property of linear substitution wrt. the interpretation (substitution
lemma). Let e be a simple expression and v1, . . . , vk be simple values. Let ~x, x a sequence
of variable adapted to e and to all vj ’s. Let n be the length of ~x. Then we have

[∂x(e; v1, . . . , vk)]~x = [e]~x,x (!U⊗n ⊗
〈
[v1]~x, . . . , [vk]~x

〉
) cnU

and this is proved by a simple induction on e. �

For any expression P of the cbv λ-calculus, we define a set T (P) of simple expressions
by induction.

T (x) = {x} T (λxM) = {λx s | s ∈ T (M)}
T (M N) = {s t | s ∈ T (M) and t ∈ T (N)}
T (〈V 〉) = {〈v1, . . . , vk〉 | k ∈ N and ∀i vi ∈ T (V)} .

Observe that the set T (P) is infinite as soon as P has a subterm of shape 〈V 〉.

I Lemma 12. Let P be an expression and let V be a value. Let e ∈ T (P) and v1, . . . , vk ∈
T (V). Then ∂x(e; v1, . . . , vk) ⊆ T (P [V/x]).

Proof. Easy induction on P . �

CSL’12

270 Collapsing non-idempotent intersection types

I Lemma 13. If the Taylor formula holds in C then for any expression P and any ~x adapted
to P we have [P]~x =

∑
e∈T (P)[e]~x.

Proof. Easy induction on P . �

6.4 Adequacy in Rel
I Lemma 14. Let P, P ′ be expressions and let e ∈ T (P). If P β̂V P ′ then there exists
e′ ⊆ T (P ′) such that e δ e′.

Proof. Simple inspection, using Lemma 12. �

One has to be careful when using this lemma because, using the notations of the lemma,
nothing prevents the expression e′ – which is not simple in general – from being empty.

I Theorem 15. Let P be an expression. Let ~x be adapted to P and let n be the length of ~x.
Let m1, . . . ,mn ∈ !UR and let α ∈ X where X = UR if P is a value and X = !UR if P is a
term. If x1 : m1, . . . , xn : mn ` P : α then P is β̂V strongly normalizing.

Proof. By Proposition 9, our hypothesis means that (~m,α) ∈ [P]~x. By Lemma 13 there exists
e ∈ T (P) such that (~m,α) ∈ [e]~x. If P β̂V P ′ there then there exists e′ ⊆ T (P ′) such that
e δ e′ by Lemma 14. By Lemma 11 we have (~m,α) ∈ [e′]~x and hence there exists f ∈ e′ such
that (~m,α) ∈ [f]~x (so e′ is not empty!). Therefore, for any reduction P = P1 β̂V P2 . . . β̂V Pl
we can find e1 ∈ T (P1), . . . , el ∈ T (Pl) with ‖e1‖ > ‖e2‖ > · · · > ‖el‖ and (~m,α) ∈ [ei]~x for
each i. �

7 A Scott model and the associated type system

Let ΦS : Pol⊆ → Pol⊆ be the continuous functions defined by ΦS(S) = !S (!S. Let US be
the least fixpoint of ΦS, then US (equipped with two identity morphisms) is a Pol⊆-model
of the cbv λ-calculus. We use ≤ for the both preorder relations ≤US and ≤!US .

It is clear that |US| = UR, so that an element of |US| is a pair (p, q) where p and q are
finite multisets of elements of |US|. On finite multisets, the preorder is given by p ≤!US p

′

if ∀a ∈ |p| ∃a′ ∈ |p′| a ≤US a
′ and on pairs, the US-preorder is given by (p, q) ≤US (p′, q′) if

p′ ≤!US p and q ≤!US q
′.

7.1 Idempotent intersection types
We introduce a typing system for deriving judgments of shape Γ `S M : m and Γ `S V : a
with the same notations as in Section 6.1: just as in that section, the types are the elements
of |US| = UR and the contexts associate finite multisets of types with variables. But the
typing rules are different. For terms, they are given by

Γ `S M : [(p, q)] Γ `S N : p
Γ `S M N : q

Γ `S V : a1 · · · Γ `S V : ak
Γ `S 〈V 〉 : [a1, . . . , ak]

and for values, they are given by

[a] ≤ m
Γ, x : m `S x : a

Γ, x : p `S M : q
Γ `S λxM : (p, q)

Similar typing systems for cbv have already been proposed, see [5] in particular.

T. Ehrhard 271

I Proposition 16. Let P be an expression and let ~x = (x1, . . . , xn) be a list of variables
adapted to P . Let ~m ∈ (|!US|)n and let α ∈ |S| (where S = US if P is a value and S = !US if P
is a term). Then one has (~m,α) ∈ [P]~xS iff the typing judgment x1 : m1, . . . , xn : mn ` P : α
is derivable.

The proof is a simple verification, by induction on the structure of P .

I Remark. We can define a model U ′S of cbv λ-calculus using the exponential !s_ mentioned
in the remark of Section 3.2, and by this remark, the models US and U ′S are isomorphic
in Pol. Now the typing system associated with U ′S is exactly the same as the system
presented above, up to the fact that all multisets occurring in types should be replaced by
the corresponding sets and, up to this transformation, it is equivalent to the system above.
In that sense, the typing system of this section is actually an idempotent intersection typing
system. And indeed, if say `S M : p is derivable (where M is a closed term to simplify the
notations) and if p′ is equivalent to p in the preorder !US (in other words p ≤ p′ and p′ ≤ p),
then one can infer `S M : p′ by an isomorphic typing derivation. This is in particular the
case if p and p′ differ only by the multiplicities of their subtypes, that is if p− = p′− where
[a1, . . . , an]− = {a−1 , . . . , a−n } ∈ |!sU ′S| and (p, q)− ∈ (p−, q−) ∈ |U ′S|.

7.2 Adequacy in the idempotent case
One can prove an analog of Theorem 15 for this idempotent typing system, but the same
technique does not apply because, as we have seen with Proposition 2, Pol is not a model
of the cbv resource calculus. The standard method to prove adequacy in this model is by
reducibility, an example of such a proof will be given in a longer version of this paper.

I Theorem 17. Let P be an expression. Let ~x be adapted to P and let n be the length of ~x.
Let m1, . . . ,mn ∈ |!US| and let α ∈ |X| where X = US if P is a value and X = !US if P is a
term. If x1 : m1, . . . , xn : mn `S P : α then P is β̂V strongly normalizing.

We show now how to use the model Pop and the non-idempotent adequacy result to prove
this theorem.

7.3 Adequacy in the idempotent case, using preorders with projections
Let ΦP : Pop⊆ → Pop⊆ be the continuous function defined by ΦP(E) = !E (!E. Let UP
be the least fixpoint of ΦP, then UP (equipped with two identity morphisms) is a Pop-model
of the cbv λ-calculus.

By Lemma 6, we have ρ(UP) = UR and σ(UP) = US.
Let P be an expression and let ~x be a sequence of variables adapted to P , let n be the

length of ~x. Because ρ is an LL functor, we have [P]~xP = ρ([P]~xP) = [P]~xR, and similarly we
have σ([P]~xP) = [P]~xS . These properties are proved by a straightforward induction on P . As a
consequence, using the definition of the functor σ, we get the following result, which relates
the relational semantics of an expression to its Scott semantics.

I Theorem 18. Let P be an expression and let ~x be a sequence of variables of length n,
adapted to P . Then [P]~xS = ↓[P]~xR where the downwards closure is taken in (!US)⊗n (S

(with S = US if P is a value and S = !US if P is a term).

We prove Theorem 17. We deal with the case of a term, but the proof is of course similar
for values. So assume that x1 : m1, . . . , xk : mk `S M : m which means that (~m,m) ∈ [M]~xS
wherem1, . . . ,mn,m ∈ |!US|. Then by Theorem 18, we can findm′1, . . . ,m′n,m′ ∈ |!US| = !UR

CSL’12

272 Collapsing non-idempotent intersection types

with ∀i m′i ≤!US mi and m ≤!US m
′ and such that (m′1, . . . ,m′n,m′) ∈ [M]~xR. By Theorem 15,

M is β̂V strongly normalizing.

I Remark. It is quite instructive to try to prove Theorem 18 by a direct induction on
derivations in the idempotent typing system of Section 7.1 and to observe that it is not
as easy as one could think. Given a derivation of Γ `S P : α we want to find a derivation
Γ′ ` P : α′ such that α ≤ α′ and Γ′ ≤ Γ (this means that Γ and Γ′ have same domain
and that Γ′(x) ≤ Γ(x) for each x). Observe first that we cannot hope to have Γ′ = Γ
and α′ = α in general, because our proof would fail on its base case (variables). Assume
that the derivation ends with an application rule: P = M N , α = q, and we have (shorter)
derivations of Γ `S M : [(p, q)] and Γ `S N : p. By inductive hypothesis, we can find Γ′1, p′1, q′1
with Γ′1 ≤ Γ, p′1 ≤ p and q ≤ q′1 such that Γ′1 `M : [(p′1, q′1)] is derivable and also Γ′2, p′2 such
that Γ′2 ≤ Γ, p ≤ p′2 and Γ′2 ` N : p′2 is derivable. To build a typing derivation for M N in
this non-idempotent system, we would need to force p′2 = p′1 but nothing in our inductive
hypothesis guarantees that this is possible. It is precisely the point of the model UP in Pop
to show that, for “well behaved” sets of the relational model (those belonging to D(US))
downwards closure commutes with application – this is the main content of Lemma 3 –
and that the relational interpretation of cbv λ-calculus expressions are precisely such well-
behaved sets.

Conclusion

We have shown how to use a purely semantical construction (the model Pop) to reduce
the proof of an adequacy theorem usually proved by reducibility to a purely combinatorial
argument and we have illustrated this approach in the cbv λ-calculus. In further work, we’ll
apply this approach to other languages and other notions of normalization to understand
better how the reducibility structure is encoded in the model. We’ll also explore the probable
connections between our work and [1].

Acknowledgments

The author thanks the referees for their valuable suggestions and comments. This work has
been partly supported by the international ANR-NSFC project Locali.

References

1 Alexis Bernadet and Stéphane Lengrand. Filter models: Non-idempotent intersection types,
orthogonality and polymorphism. In CSL, Lecture Notes in Computer Science, pages 51–66.
Springer-Verlag, 2011. To appear.

2 René David. Every unsolvable lambda-term has a decoration. In Jean-Yves Girard, editor,
TLCA, volume 1581 of Lecture Notes in Computer Science, pages 98–113. Springer, 1999.

3 Daniel De Carvalho. Execution Time of λ-Terms via Denotational Semantics and Intersec-
tion Types. Research Report RR-6638, INRIA, 2008.

4 Daniel de Carvalho, Michele Pagani, and Lorenzo Tortora de Falco. A semantic measure of
the execution time in linear logic. Theoretical Computer Science, 412(20):1884–1902, 2011.

5 Joshua Dunfield and Frank Pfenning. Type assignment for intersections and unions in
call-by-value languages. In Andrew D. Gordon, editor, FoSSaCS, volume 2620 of Lecture
Notes in Computer Science, pages 250–266. Springer, 2003.

T. Ehrhard 273

6 Thomas Ehrhard. The Scott model of Linear Logic is the extensional collapse of its rela-
tional model. Theoretical Computer Science, 2011. To appear. A draft version is available
on http://www.pps.jussieu.fr/~ehrhard.

7 Thomas Ehrhard and Laurent Regnier. The differential lambda-calculus. Theoretical Com-
puter Science, 309(1-3):1–41, 2003.

8 Thomas Ehrhard and Laurent Regnier. Differential interaction nets. In Proceedings of
WoLLIC’04, volume 103 of Electronic Notes in Theoretical Computer Science, pages 35–
74. Elsevier Science, 2004.

9 Thomas Ehrhard and Laurent Regnier. Uniformity and the Taylor expansion of ordinary
lambda-terms. Technical report, Institut de mathématiques de Luminy, 2005. submitted
to Theoretical Computer Science.

10 Marcelo P. Fiore. Differential structure in models of multiplicative biadditive intuitionistic
linear logic. In Simona Ronchi Della Rocca, editor, TLCA, volume 4583 of Lecture Notes
in Computer Science, pages 163–177. Springer, 2007.

11 Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
12 Jean-Yves Girard. Normal functors, power series and the λ-calculus. Annals of Pure and

Applied Logic, 37:129–177, 1988.
13 Michael Huth. Linear Domains and Linear Maps. In Stephen D. Brookes, Michael G. Main,

Austin Melton, Michael W. Mislove, and David A. Schmidt, editors, MFPS, volume 802 of
Lecture Notes in Computer Science, pages 438–453. Springer-Verlag, 1993.

14 Michael Huth, Achim Jung, and Klaus Keimel. Linear types and approximation. Mathem-
atical Structures in Computer Science, 10(6):719–745, 2000.

15 John Maraist, Martin Odersky, David N. Turner, and Philip Wadler. Call-by-name, call-by-
value, call-by-need and the linear lambda calculus. Theoretical Computer Science, 228(1-
2):175–210, 1999.

16 Paul-André Melliès. Categorical semantics of linear logic. Panoramas et Synthèses, 27,
2009.

17 Eugenio Moggi. Notions of computation and monads. Information and Computation,
93(1):55–92, 1991.

18 Michele Pagani. The cut-elimination theorem for differential nets with promotion. In
Pierre-Louis Curien, editor, TLCA, volume 5608 of Lecture Notes in Computer Science,
pages 219–233. Springer, 2009.

19 Michele Pagani and Simona Ronchi Della Rocca. Solvability in resource lambda-calculus.
In C.-H. Luke Ong, editor, FOSSACS, volume 6014 of Lecture Notes in Computer Science,
pages 358–373. Springer-Verlag, 2010.

20 Alberto Pravato, Simona Ronchi Della Rocca, and Luca Roversi. The call-by-value lambda-
calculus: a semantic investigation. Mathematical Structures in Computer Science, 9(5):617–
650, 1999.

21 Paolo Tranquilli. Intuitionistic Differential Nets and Lambda-Calculus. Theoretical Com-
puter Science, 2008. To appear.

22 Glynn Winskel. A linear metalanguage for concurrency. In Armando Martin Haeberer,
editor, AMAST, volume 1548 of Lecture Notes in Computer Science, pages 42–58. Springer-
Verlag, 1998.

23 Glynn Winskel. Linearity and non linearity in distributed computation. In Thomas
Ehrhard, Jean-Yves Girard, Paul Ruet, and Philip Scott, editors, Linear Logic in Com-
puter Science, volume 316 of London Mathematical Society Lecture Note Series. Cambridge
University Press, 2004.

CSL’12

http://www.pps.jussieu.fr/~ehrhard

Descriptive complexity for pictures languages

Etienne Grandjean1 and Frédéric Olive2

1 Université de Caen Basse-Normandie / ENSICAEN / CNRS

GREYC – Caen, France

etienne.grandjean@info.unicaen.fr

2 Aix-Marseille Université / CNRS

LIF – Marseille, France

frederic.olive@lif.univ-mrs.fr

Abstract

This paper deals with logical characterizations of picture languages of any dimension by syn-

tactical fragments of existential second-order logic. Two classical classes of picture languages

are studied:

the class of recognizable picture languages, i.e. projections of languages defined by local

constraints (or tilings): it is known as the most robust class extending the class of regular

languages to any dimension;

the class of picture languages recognized on nondeterministic cellular automata in linear

time : cellular automata are the simplest and most natural model of parallel computation

and linear time is the minimal time-bounded class allowing synchronization of nondetermin-

istic cellular automata.

We uniformly generalize to any dimension the characterization by Giammarresi et al. [7]

of the class of recognizable picture languages in existential monadic second-order logic.

We state several logical characterizations of the class of picture languages recognized in

linear time on nondeterministic cellular automata. They are the first machine-independent

characterizations of complexity classes of cellular automata.

Our characterizations are essentially deduced from normalization results we prove for first-

order and existential second-order logics over pictures. They are obtained in a general and

uniform framework that allows to extend them to other ‘regular’ structures.

1998 ACM Subject Classification F.1.1 Models of Computation, F.1.3 Complexity Measures

and Classes, F.4.3 Formal Languages

Keywords and phrases Picture languages; locality and tiling; recognizability; linear time; cel-

lular automata; logical characterizations; second-order logic.

Digital Object Identifier 10.4230/LIPIcs.CSL.2012.274

1 Introduction

One goal of descriptive complexity is to establish logical characterizations of natural classes

of problems in finite model theory. Many results in this area involve second-order logic (SO)

and its restrictions, monadic second-order logic (MSO) and existential second-order logic

(ESO): see e.g. [5, 11] for descriptive complexity of formal languages and [5, 9, 8, 11] for the

one of complexity classes.

It is important to recall that the complexity class defined by a logic often depends heavily

on the underlying class of structures: words, trees, graphs, ordered or unordered structures,

etc. E.g., for words, a classical result by Büchi, Elgot and Trahtenbrot [2, 5, 11] states

that the class of languages definable in MSO equals the class of regular languages, in short,

© Etienne Grandjean and Frédéric Olive;
licensed under Creative Commons License NC-ND

Computer Science Logic 2012 (CSL’12).
Editors: Patrick Cégielski, Arnaud Durand; pp. 274–288

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2012.274
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

E. Grandjean and F. Olive 275

MSO = REG, whereas the same logic or even its existential second-order fragment EMSO

can define some NP-complete problems on graphs, e.g., the 3-colorability problem.

We are interested in descriptive complexity of picture languages. A d-picture language is

a set of d-pictures, i.e., d-dimensional words (or colored grids). First, notice the following

points:

In a series of papers culminating in [7], Giammarresi et al. proved that a 2-picture

language is recognizable, i.e. is the projection of a local (that means: tilable) 2-picture

language, iff it is definable in EMSO. In short: REC2 = EMSO.

In fact, the class REC2 contains some NP-complete problems. More generally, one

observes that, for each dimension d ≥ 1, the class RECd of recognizable languages can be

defined as the class of d-picture languages recognized by nondeterministic d-dimensional

cellular automata in constant time1.

The present work originates from two questions about word/picture languages:

1. How can we generalize the proof of the above-mentioned theorem of Giammarresi et al.

to any dimension? That is, can we establish the equality RECd = EMSO for any d ≥ 1?

2. Can we obtain logical characterizations of time complexity classes of cellular automata2?

In this paper, a d-picture language is a set of d-pictures p : [1, n]d → Σ, for a finite alphabet

Σ, i.e., d-dimensional Σ-words3, and we use two natural representations of a d-picture p as a

first-order structure:

as a pixel structure: on the pixel domain [1, n]d where the sets p−1(s), s ∈ Σ, are

encoded by unary relations (Qs)s∈Σ and the underlying d-dimensional grid is encoded by

d successor functions (see Definition 2);

as a coordinate structure: on the coordinate domain [1, n] where the sets p−1(s) are

encoded by d-ary relations (Qs)s∈Σ; moreover, one uses the natural linear order of the

coordinate domain [1, n] and its associate successor function (see Definition 3).

We establish logical characterizations of two classes of d-picture languages, for all dimen-

sions d ≥ 1:

1. On pixel structures: RECd = ESO(arity 1) = ESO(var 1) = ESO(∀1, arity 1). That

means a d-picture language is recognizable iff it is definable in monadic ESO (resp.

in ESO with 1 first-order variable, or in monadic ESO with 1 universally quantified

first-order variable) 4.

2. On coordinate structures: NLINd
ca = ESO(var d+1) = ESO(∀d+1, arity d+1); that means

a d-picture language is recognized by a nondeterministic d-dimensional cellular automaton

in linear time (see, e.g., [3, 14]) iff it is definable in ESO with d+ 1 distinct first-order

variables (resp. ESO with second-order variables of arity at most d + 1 and a prenex

first-order part of prefix ∀d+1).

1 That means: for such a picture language L, there is some constant integer c such that each
computation stops at instant c, and p ∈ L iff it has at least one computation that stops with each
cell in an accepting state: see Sommerhalder et al. [13], which, to our knowledge, was the first paper
involving this notion.

2 This originates from a question that J. Mazoyer asked us in 2000 (personal communication): give a
logical characterization of the linear time complexity class of nondeterministic cellular automata.

3 More generally, the domain of a d-picture is of the “rectangular” form [1, n1] × . . . × [1, nd]. For
simplicity and uniformity of presentation, we have chosen to present our results in the particular
case of “square” pictures of domain [n]d. Fortunately, they also hold with the same proofs for general
domains [1, n1]× . . .× [1, nd].

4 It is interesting to compare this result with some results by Borchert [1].

C S L ’ 1 2

276 Descriptive complexity for pictures languages

Items 1 and 2 proceed from normalization results of, respectively, first-order and ESO logics

that we prove over picture languages.

Significance of our results:

1. The normalization equality ESO(arity 1) = ESO(∀1, arity 1) of Item 1 is a consequence

of the fact that, on pixel structures (and, more generally, on structures that consist

of bijective functions and unary relations), any first-order formula is equivalent to a

boolean combination of cardinality formulas of the form: ‘there exist k distinct elements

x such that ψ(x)’, where ψ is a quantifier-free formula with only one variable. The

normalization equality explicitly expresses the local feature of EMSO on pictures – using

only one first-order variable. Using almost exclusively logical tools, the results of Item 1
can be regarded as an explicitation/simplification (using only one first-order variable)

and uniformisation of the (more combinatorial) proof and ideas of the main result of

Giammarresi et al. [7, 6]; this allows us to generalize it to any dimension and, potentially,

to other regular structures.

2. Intuitively, our characterization NLINd
ca = ESO(∀d+1, arity d + 1) of Item 2 naturally

reflects a symmetry property of the time-space diagram of any computation of a non-

deterministic d-dimensional cellular automaton: informally, the single first-order variable

representing time cannot be distinguished from any of the d variables that represent

the d-dimensional space; in other words, the d + 1 variables can be permuted without

increasing the expressive (or computational) power of the formula. This is the sense of

the inclusion ESO(∀d+1, arity d+ 1) ⊆ NLINd
ca whose proof is far from trivial.

2 Preliminaries

All along the paper, we denote by Σ, Γ some finite alphabets and by d a positive integer.

For any positive integer n, we set [n] := {1, . . . , n}. We are interested in sets of pictures of

any fixed dimension d.

I Definition 1. A d-dimensional picture or d-picture on Σ is a function p : [n]d → Σ where

n is a positive integer. The set dom(p)= [n]d is called the domain of picture p and its

elements are called points, pixels or cells of the picture. A set of d-pictures on Σ is called a

d-dimensional language, or d-language, on Σ.

Notice that 1-pictures on Σ are nothing but nonempty words on Σ.

2.1 Pictures as model theoretic structures

Along the paper, we will often describe d-languages as sets of models of logical formulas.

To allow this point of view, we must settle on an encoding of d-pictures as model theoretic

structures.

For logical aspects of this paper, we refer to the usual definitions and notations in logic

and finite model theory (see [5] or [11], for instance). A signature (or vocabulary) σ is a finite

set of relation and function symbols each of which has a fixed arity. A (finite) structure S of

vocabulary σ, or σ-structure, consists of a finite domain D of cardinality n ≥ 1, and, for any

symbol s ∈ σ, an interpretation of s over D, often denoted by s for simplicity. The tuple

of the interpretations of the σ-symbols over D is called the interpretation of σ over D and,

when no confusion results, it is also denoted σ. We will often deal with tuples of objects. We

denote them by bold letters.

E. Grandjean and F. Olive 277

Let us define the two natural representations of a picture as a logical structure.

I Definition 2. Given p : [n]d → Σ, we denote by pixeld(p) the structure

pixeld(p) = ([n]d, (Qs)s∈Σ, (succi)i∈[d], (mini)i∈[d], (maxi)i∈[d]).

Here:

succj is the (cyclic) successor function according to the jth dimension of [n]d, mapping

each (a1, . . . , ad) ∈ [n]d on (a(j)
1 , . . . , a

(j)
d) ∈ [n]d, where we set : a

(j)
j = aj + 1 if aj < n,

and a
(j)
j = 1 otherwise; a

(j)
i = ai for each i 6= j; in other words, for a ∈ [n]d, succj(a) is

the d-tuple a(j) obtained from a by ‘increasing’ its jth component according to the cyclic

successor on [n];
the mini’s, maxi’s and Qs’s are the following unary (monadic) relations: mini = {a ∈
[n]d : ai = 1}; maxi = {a ∈ [n]d : ai = n}; Qs = {a ∈ [n]d : p(a) = s}.

I Definition 3. Given p : [n]d → Σ, we denote by coordd(p) the structure

coordd(p) = 〈[n], (Qs)s∈Σ, <, succ,min,max〉. (1)

Here:

each Qs is the d-ary relation that is the set of cells of p labelled by an s, in other words:

Qs = {a ∈ [n]d : p(a) = s};
<, min, max are relations of respective arities 2, 1, 1, that are respectively the sets

{(i, j) : 1 ≤ i < j ≤ n}, {1} and {n};
succ is the cyclic successor, that is: succ(i) = i+ 1 for i < n and succ(n) = 1.

For a d-language L, we set pixeld(L) = {pixeld(p) : p ∈ L} and coordd(L) = {coordd(p) :
p ∈ L}.
I Remark. Several details are irrelevant in Definitions 2 and 3, i.e. our results still hold for

several variants, in particular:

in Definition 3, the fact that the linear order < and the equality = are allowed or not

and the fact that min, max are represented by individual constants or unary relations;

in both definitions, the fact that the successor function(s) is/are cyclic or not and is/are

completed or not by predecessor(s) function(s).

At the opposite, it is essential that, in both definitions,

the successor(s) is/are represented by function(s) and not by (binary) relation(s),

the min, max are explicitly represented.

2.2 Logics under consideration

All formulas considered hereafter belong to relational Existential Second-Order logic. Given

a signature σ, indifferently made of relation and function symbols, a relational existential

second-order formula of signature σ has the shape Φ ≡ ∃Rϕ(σ,R), where R = (R1, . . . , Rk)
is a tuple of relation symbols and ϕ is a first-order formula of signature σ ∪ {R}. We denote

by ESOσ the class thus defined. We will often omit to mention σ for considerations on these

logics that do not depend on the signature. Hence, ESO stands for the class of all formulas

belonging to ESOσ for some σ.

We will pay great attention to several variants of ESO. In particular, we will distinguish

formulas of type Φ ≡ ∃Rϕ(σ,R) according to: the number of distinct first-order variables

involved in ϕ, the arity of the second-order symbols R ∈ R, and the quantifier prefix of some

prenex form of ϕ.

C S L ’ 1 2

278 Descriptive complexity for pictures languages

With the logic ESOσ(∀d, arity `), we control these three parameters: it is made of

formulas of which first-order part is prenex with a universal quantifier prefix of length d,

and where existentially quantified relation symbols are of arity at most `. In other words,

ESOσ(∀d, arity `) collects formulas of shape ∃R∀xθ(σ,R,x) where θ is quantifier free, x is

a d-tuple of first-order variables, and R is a tuple of relation symbols of arity at most `.

Relaxing some constraints of the above definition, we set:

ESOσ(∀d) =
⋃
`>0

ESOσ(∀d, arity `) and ESOσ(arity `) =
⋃
d>0

ESOσ(∀d, arity `).

Finally, we write ESOσ(var d) for the class of formulas that involve at most d first-order

variables, thus focusing on the sole number of distinct first-order variables (possibly quantified

several times).

3 A logical characterization of recognizable picture languages

In this section, we define the class of local (resp. recognizable) picture languages and establish

the logical characterizations of the class of recognizable picture languages. In order to define

a notion of locality based on sub-pictures we need to mark the border of each picture.

I Definition 4. By Γ] we denote the alphabet Γ ∪ {]} where] is a special symbol not in Γ.

Let p be any d-picture of domain [n]d on Γ. The bordered d-picture of p, denoted by p], is

the function p] : [0, n+ 1]d → Γ] defined by p](a) = p(a) if a ∈ dom(p); p](a) =] otherwise.

Here, ‘otherwise’ means that a is on the border of p], i.e. some component ai of a is 0 or

n+ 1.

Let us now define our notion of local picture language or tilings language. It is based

on some sets of allowed patterns (called tiles) of the bordered pictures and is a simple

generalization to any dimension of the notion of hv-local 2-dimensional picture language

of [10] (see also [6]).

I Definition 5. 1. Given a d-picture p and an integer j ∈ [d], two cells a = (ai)i∈[d] and

b = (bi)i∈[d] of p are j-adjacent if they have the same coordinates, except the jth one for

which |aj − bj | = 1.

2. A tile for a d-language L on Γ is a pair in (Γ])2.

3. A picture p is j-tiled by a set of tiles ∆ ⊆ (Γ])2 if for any two j-adjacent points

a, b ∈ dom(p]): (p](a), p](b)) ∈ ∆.
4. Given d sets of tiles ∆1, . . . ,∆d ⊆ (Γ])2, a d-picture p is tiled by (∆1,. . . ,∆d) if p is j-tiled

by ∆j for each j ∈ [d].
5. We denote by L(∆1,. . . ,∆d) the set of d-pictures on Γ that are tiled by (∆1,. . . ,∆d).
6. A d-language L on Γ is local if there exist ∆1, . . . ,∆d ⊆ (Γ])2 such that L = L(∆1,. . . ,∆d).

We then say that L is (∆1, . . . ,∆d)-local , or (∆1, . . . ,∆d)-tiled .

I Remark. Our notion of locality (that generalizes the one of [10] to any dimension) is more

restrictive than the one given by Giammarresi and al. [7]. At the opposite, the locality notion

defined by Borchert [1] is the most general one: its is defined by the presence/absence or some

patterns/sub-pictures of any size in the picture, and, as he proved, his locality is equivalent

to definability by some universally quantified one-variable first-order sentence using non

cyclic successor functions and minimal and maximal predicates. Fortunately, the notion of

recognizability as defined below, is a robust notion that remains equivalent to the one defined

by either one of the locality notions of [1] and [7].

E. Grandjean and F. Olive 279

I Definition 6. A d-language L on Σ is recognizable if it is the projection (i.e. homomorphic

image) of a local d-language over an alphabet Γ. It means there exist a surjective function

π : Γ → Σ and a local d-language Lloc on Γ such that L = {π ◦ p : p ∈ Lloc}. Because of

the last item of Definition 5, one can also write: L is recognizable if there exist a surjective

function π : Γ→ Σ and d sets ∆1, . . . ,∆d ⊆ (Γ])2 such that L = {π◦p : p ∈ L(∆1, . . . ,∆d)}.
We write RECd for the class of recognizable d-languages.

A characterization of recognizable languages of dimension 2 by a fragment of existential

monadic second-order logic was proved by Giammarresi et al. [7]. They established:

I Theorem 7 ([7]). For any 2-language L: L ∈ REC2 ⇔ pixel2(L) ∈ ESO(arity 1).

In this section, we come back to this result. We simplify its proof, refine the logic it involves,

and generalize its scope to any dimension.

I Theorem 8. For any d > 0 and any d-language L, the following assertions are equivalent:

1. L ∈ RECd;

2. pixeld(L) ∈ ESO(∀1, arity 1);
3. pixeld(L) ∈ ESO(arity 1).

Theorem 8 is a straightforward consequence of Propositions 9 and 11 below.

I Proposition 9. For any d > 0 and any d-language L on Σ: L ∈ RECd ⇔ pixeld(L) ∈
ESO(∀1, arity 1).

Sketch of proof. ⇒ A picture belongs to L if there exists a tiling of its domain whose

projection coincides with its content. In the logic involved in the proposition, the ‘arity 1’

corresponds to formulating the existence of the tiling, while the ∀1 is the syntactic resource

needed to express that the tiling behaves as expected. Let us detail these considerations.

By Definition 5, there exist an alphabet Γ (which can be assumed disjoint from Σ), a

surjective function π : Γ → Σ and d subsets ∆1, . . . ,∆d ⊆ (Γ])2 such that L is the set

{π ◦ p′ : p′ ∈ L(∆1, . . . ,∆d)}.
The belonging of a picture p′ : [n]d → Γ to L(∆1, . . . ,∆d) is easily expressed on

pixeld(p′) = 〈[n]d, (Qs)s∈Γ, . . .〉 with a first-order formula which asserts, for each dimen-

sion i ∈ [d], that for any pixel x of p′, the couple (x, succi(x)) can be tiled with some element

of ∆i. Because it deals with each cell x separately, this formula has the form ∀xΨ(x, (Qs)s∈Γ),
where Ψ is quantifier-free.

Now, a picture p : [n]d → Σ belongs to L iff it results from a π-renaming of a picture

p′ ∈ L(∆1, . . . ,∆d). It means there exists a Γ-labeling of p (that is, a tuple (Qs)s∈Γ of

subsets of [n]d) corresponding to a picture of L(∆1, . . . ,∆d) (i.e. fulfilling ∀xΨ(x, (Qs)s∈Γ))
and from which the actual Σ-labeling of p (that is, the subsets (Qs)s∈Σ) is obtained via π

(easily expressed by a formula of the form ∀xΨ′(x, (Qs)s∈Σ, (Qs)s∈Γ)).
Finally, the formula (∃Qs)s∈Γ∀x : Ψ∧Ψ′ conveys the desired property and fits the required

form.

⇐ In order to prove the converse implication, it is convenient to first normalize the

sentences of ESO(∀1, arity 1). This is the role of the technical result below, which asserts

that on pixel encodings, each such sentence can be rewritten in a very local form where the

first-order part alludes only pairs of adjacent pixels of the bordered picture. We state it

without proof (see also [1]):

C S L ’ 1 2

280 Descriptive complexity for pictures languages

I Fact 10. On pixel structures, any ϕ ∈ ESO(∀1, arity 1) is equivalent to a sentence of the

form:

∃U∀x
∧
i∈[d]

mini(x) → mi(x) ∧
maxi(x) → Mi(x) ∧
¬maxi(x) → Ψi(x)

 . (2)

Here, U is a list of monadic relation variables and mi, Mi, Ψi are quantifier-free formulas

such that

atoms of mi and Mi have all the form Q(x);
atoms of Ψi have all the form Q(x) or Q(succi(x)),

where, in both cases, Q ∈ {(Qs)s∈Σ,U}.

Now, consider L such that pixeld(L) ∈ ESO(∀1, arity 1). Fact 10 ensures that pixeld(L) is

characterized by a sentence of the form (2) above. We have to prove that L is the projection

of some local d-language Lloc on some alphabet Γ, that is a (∆1,. . . , ∆d)-tiled language

for some ∆1,. . . , ∆d ⊆ Γ2. Let U1, . . . , Uk denote the list of (distinct) elements of the set

{(Qs)s∈Σ,U} of unary relation symbols of ϕ so that the first ones U1, . . . , Um are the Qs’s

(here, mini and maxi symbols are excluded). The trick is to put each subformula mi(x),
Mi(x) and Ψi(x) of ϕ into its complete disjunctive normal form with respect to U1, . . . , Uk.

Typically, each subformula Ψi(x) whose atoms are of the form Uj(x) or Uj(succi(x)), for

some j ∈ [k], is transformed into the following ‘complete disjunctive normal form’:

∨
(ε,ε′)∈∆i

 ∧
j∈[k]

εjUj(x) ∧
∧
j∈[k]

ε′jUj(succi(x))

 .

Here, the following conventions are adopted:

ε = (ε1, . . . , εk) ∈ {0, 1}k and similarly for ε′;

for any atom α and any bit εj ∈ {0, 1}, εjα denotes the literal α if εj = 1, the literal ¬α
otherwise.

For ε ∈ {0, 1}k, we denote by Θε(x) the ‘complete conjunction’
∧
j∈[k] εjUj(x). Intuitively,

Θε(x) is a complete description of x and the set Γ =
⋃
i∈[m]{0i−110m−i} × {0, 1}k−m is the

set of possible colours (remember that the Qs’s that are the Uj ’s for j ∈ [m] form a partition

of the domain). The complete disjunctive normal form of Ψi(x) can be written into the

suggestive form:
∨

(ε,ε′)∈∆i
(Θε(x) ∧Θε′(succi(x))).

If each subformula mi(x) and Mi(x) of ϕ is similarly put into complete disjunctive normal

form, that is
∨

(],ε)∈∆i
Θε(x) and

∨
(ε,])∈∆i

Θε(x), respectively (there is no ambiguity in our

implicit definition of the ∆i’s, since] 6∈ Γ), then the whole formula ϕ becomes the following

equivalent formula:

ϕ′ = ∃U∀x
∧
i∈[d]

mini(x) →
∨

(],ε)∈∆i

Θε(x) ∧

maxi(x) →
∨

(ε,])∈∆i

Θε(x) ∧

¬maxi(x) →
∨

(ε,ε′)∈∆i

(Θε(x) ∧Θε′(succi(x)))

Finally, let Lloc denote the d-language over Γ defined by the first-order sentence ϕloc

obtained by replacing each Θε by the new unary relation symbol Qε in the first-order part of

E. Grandjean and F. Olive 281

ϕ′. In other words, pixeld(Lloc) is defined by the following first-order sentence:

ϕloc = ∀x
∧
i∈[d]

mini(x) →
∨

(],ε)∈∆i

Qε(x) ∧

maxi(x) →
∨

(ε,])∈∆i

Qε(x) ∧

¬maxi(x) →
∨

(ε,ε′)∈∆i

(Qε(x) ∧Qε′(succi(x)))

Hence, Lloc = L(∆1, . . . ,∆d). That is, Lloc is indeed local and the corresponding sets of tiles

are the ∆i’s of the previous formula. It is now easy to see that our initial d-language L is

the projection of the local Lloc by the projection π : Γ→ Σ defined as follows: π(ε) = s iff

εi = 1 for i ∈ [m] and Ui is Qs. This completes the proof. J

I Proposition 11. ESO(arity 1) ⊆ ESO(∀1, arity 1) on pixel structures, for any d > 0.

Proof. In a pixel structure, each function symbol is interpreted as a bijective function (namely,

a cyclic successor). It has been proved in [4, 12] that any first-order formula on such a

structure can be rewritten as a so-called cardinality formula, that is as a boolean combination

of sentences of the form ψ≥k = ∃≥kxψ(x) (for k ≥ 1) where ψ(x) is a quantifier-free formula

(using the ‘bijective’ function symbols f and their inverses f−1) with the single variable x

and where the quantifier ∃≥kx means ‘there exist at least k elements x. . . ’. Therefore, it is

easily seen that proving the proposition amounts to showing that each sentence of the form

ψ≥k or ¬ψ≥k can be translated in ESO(∀1, arity 1) on pixel structures.

This is done as follows: for a given sentence ∃≥kxψ(x), we introduce new unary relations

U=1, U=2, . . . , U=k−1 and U≥k, with the intended meaning:

A pixel a ∈ [n]d belongs to U=j (resp. U≥k) iff there are exactly j (resp. at least k)

pixels b ∈ [n]d lexicographically smaller than or equal to a such that pixeld(p) |= ψ(b).

Then we have to compel these relation symbols to fit their expected interpretations, by means

of a universal first-order formula with a single variable. First, we demand the relations to

form a partition of the domain:

(1)
∧

i<j<k

(
¬U=i(x) ∨ ¬U=j(x)

)
∧
∧
i<k

(
¬U=i(x) ∨ ¬U≥k(x)

)
.

Let us temporarily denote by ≤lex the lexicographic order on [n]d inherited from the

natural order on [n], and by succlex, minlex, maxlex its associated successor function and

unary relations corresponding to extremal elements. Then the sets described above can be

defined inductively by the conjunction of the following six formulas:

(2) (minlex(x) ∧ ¬ψ(x))→ U=0(x)

(3) (minlex(x) ∧ ψ(x))→ U=1(x)

(4)
∧
i<k

(
(¬maxlex(x) ∧ U=i(x) ∧ ¬ψ(succlex(x))

)
→ U=i(succlex(x))

(5)
∧

i<k−1

(
(¬maxlex(x) ∧ U=i(x) ∧ ψ(succlex(x))

)
→ U=i+1(succlex(x))

(6)
(
(¬maxlex(x) ∧ U=k−1(x) ∧ ψ(succlex(x))

)
→ U≥k(succlex(x))

C S L ’ 1 2

282 Descriptive complexity for pictures languages

(7)
(
(¬maxlex(x) ∧ U≥k(x)

)
→ U≥k(succlex(x))

Hence, under the hypothesis (1) ∧ . . . ∧ (7), the sentences ψ≥k and ¬ψ≥k are equivalent,

respectively, to ∀x(maxlex(x)→ U≥k(x)) and ∀x(maxlex(x)→ ¬U≥k(x)).
To complete the proof, it remains to get rid of symbols succlex, minlex and maxlex that

are not allowed in our language. It is done by referring to these symbols implicitly rather

than explicitly. For instance, since succlex(x) = succisucci+1 . . . succd(x) for the smallest

i ∈ [d] such that
∧
j>i maxj(x), each formula ϕ involving succlex(x) actually corresponds to

the conjunction:

∧
i∈[d]

(¬maxi(x) ∧
∧

i<j≤d

maxj(x))→ ϕi

 ,

where ϕi is obtained from ϕ by the substitution succlex(x) succi . . . succd(x). Similar

arguments allow to get rid of minlex and maxlex. J

I Remark. In this proof, two crucial features of a structure of type pixeld(p) are involved:

its ‘bijective’ nature, that allows to rewrite first-order formulas as cardinality formulas; the

regularity of its predefined arithmetics (the functions succi defined on each dimension), that

endows pixeld(p) with a grid structure: it enables us to implicitly define an order on the whole

domain dom(p) by means of first-order formulas with a single variable, which in turn allows

to express cardinality formulas by ‘cumulative’ arguments, via the sets U=i. Proposition 11

straightforwardly generalizes to all structures – and there are a lot – that fulfill these two

properties.

4 A logical characterization of NLINca

The second main concept studied in this paper is the classical notion of linear time complexity

on nondeterministic cellular automata of any dimension (e.g., see [3, 14]). For simplicity

of notation, we only present here the notion of one-way d-dimensional cellular automaton,

instead of the more usual notion of two-way d-dimensional cellular automaton, but it is a

folklore result that in the nondeterministic case, the two linear-time complexity classes so

defined coincide (see [14]).

There are some technicalities in our definition of the transition function of a cellular

automaton here below. This is due to the need to distinguish the different possible positions of

the pixels of a picture w.r.t. its border: the one-way neighborhood of a cell x = (x1, . . . , xd),
that is the set of cells y = (y1, . . . , yd) such that 0 ≤ yi − xi ≤ 1 for each i ∈ [d], may be

incomplete according to the position of the cell x w.r.t. the border of the picture.

I Definition 12. A pixel x = (x1, . . . , xd) ∈ [n]d is in position a = (a1, . . . , ad) ∈ {0, 1}d in

a picture p : [n]d → Γ or in the domain [n]d if, for all i ∈ [d], we have ai = 0 if xi = n and

ai = 1 if xi < n.

We are going to define the transition function on a pixel x of a picture p according to

some ‘neighborhood’ (sub-picture) denoted pa,x whose domain, denoted by Doma, depends

on the position a of the pixel in the picture.

I Definition 13. For each a = (a1, . . . , ad) ∈ {0, 1}d, let us define the a-domain as Doma =
[0, a1]× · · · × [0, ad].

The a-neighborhood of some pixel x ∈ [n]d in position a in a picture p : [n]d → Γ is the

function pa,x : Doma → Γ defined as pa,x(b) = p(x+ b), where x+ b denotes the sum of the

vectors x and b.

E. Grandjean and F. Olive 283

We denote by neighba(Γ) the set of all possible a-neighborhoods on an alphabet Γ, that

is the set of functions ν : Doma → Γ.

We are now ready to define the ‘transition function’ of a cellular automaton:

IDefinition 14. A one-way nondeterministic d-dimensional cellular automaton (d-automaton,

for short) over an alphabet Σ is a tuple A = (Σ,Γ, δ, F), where

the finite alphabet Γ called the set of states of A includes the input alphabet Σ and the

set F of accepting states: Σ, F ⊆ Γ;

δ is the (nondeterministic) transition function of A: it is a family of a-transition functions

δ = (δa)a∈{0,1}d of the form δa : neighba(Γ)→ P(Γ).

Let us now define a computation.

I Definition 15. Let A = (Σ,Γ, δ, F) be a d-automaton and p, p′ : [n]d → Γ be two d-pictures

on Γ. We say that p′ is a successor of p for A, denoted by p′ ∈ A(p), if, for each position

a ∈ {0, 1}d and each point x of position a in [n]d, p′(x) ∈ δa(pa,x). The set of jth-successors

of p for A, denoted by Aj(p), is defined inductively:

A0(p) = {p} and, for j ≥ 0, Aj+1(p) =
⋃

p′∈Aj(p)

A(p′).

I Definition 16. A computation of a d-automaton A on an input d-picture p is a sequence

p1, p2, p3, . . . of d-pictures such that p1 = p and pi+1 ∈ A(pi) for each i. A computation is

accepting if it is finite – it has the form p1, p2, . . . , pk for some k – and the cell of minimal

coordinates, 1d = (1, . . . , 1), of its last configuration is in an accepting state: pk(1d) ∈ F .

I Definition 17. Let A = (Σ,Γ, δ, F) be a d-automaton and let T : N → N be such

that T (n) > n. A d-picture p on Σ is accepted by A in time T (n) if A admits an

accepting computation of length T (n) on p. That means, there exists a computation

p = p1, p2, . . . , pT (n) = AT (n)−1(p) of A on p such that pT (n)(1d) ∈ F . A d-language L on Σ
is accepted , or recognized , by A in time T (n) if it is the set of d-pictures accepted by A in

time T (n). That is L = {p : ∃p′ ∈ AT (n)−1(p) such that p′(1d) ∈ F}.
If T (n) = cn + c′, for some integers c, c′, then L is said to be recognized in linear time

and we write L ∈ NLINd
ca.

I Remark. The nondeterministic linear time class NLINd
ca is very robust, i.e. is not modified

by many changes in the definition of the automaton or in its time bound. In particular, it

is a folklore result that the constants c, c′ defining the bound T (n) = cn + c′ can be fixed

arbitrarily, provided T (n) > n. For example, the class NLINd
ca does not change if we take the

minimal time T (n) = n+ 1, called real time, i.e. the minimal time for that the information

of any pixel of p can be communicated to the reference pixel, 1d (see [14]).

Here is the second main result of this paper.

I Theorem 18. For any d > 0 and any d-language L, the following assertions are equivalent:

1. L ∈ NLINd
ca;

2. coordd(L) ∈ ESO(∀d+1, arity d+ 1);

3. coordd(L) ∈ ESO(var d+ 1).

This theorem is a straightforward consequence of Propositions 19 and 20 below.

I Proposition 19. For any d > 0 and any d-language L,

L ∈ NLINd
ca ⇔ coordd(L) ∈ ESO(∀d+1, arity (d+ 1)).

C S L ’ 1 2

284 Descriptive complexity for pictures languages

Sketch of proof. ⇒
Let L ∈ NLINd

ca. By the Remark preceding Theorem 18, L is recognized by a d-automaton

A = (Σ,Γ, δ, F) in real time, i.e. in time n+ 1. The sentence in ESO(var d+ 1) that we are

going to construct is of the form ∃(Rs)s∈Γ ∀x∀t ψ(x, t), where:

- ψ is a quantifier-free formula that uses a list of exactly d + 1 first-order variables

x = (x1, . . . , xd) and t. Intuitively, the d first ones represent the coordinates of any point in

dom(p) = [n]d and the last one represents any of the first n instants t ∈ [n] of the computation

(the last instant n+ 1 is not explicitly represented);

- ψ uses, for each state s ∈ Γ, a relation symbol Rs of arity d + 1. Intuitively,

Rs(a1, . . . , ad, t) holds, for any a = (a1, . . . , ad) ∈ [n]d and any t ∈ [n], iff the state of

cell a at instant t is s.

- ψ is the conjunction ψ(x, t) = init(x, t)∧ step(x, t)∧end(x, t) of three formulas whose

intuitive meaning is the following.

∀x∀t init(x, t) describes the first configuration of A, i.e. at initial instant 1, that is the

input picture p1 = p;

∀x∀t step(x, t) describes the computation between the instants t and t+1, for t ∈ [n−1],
i.e. describes the (t+ 1)th configuration pt+1 from the tth one pt, i.e. says pt+1 ∈ A(pt) ;

∀x∀t end(x, t) expresses that the nth configuration pn leads to a (last) (n + 1)th con-

figuration pn+1 ∈ A(pn) which is accepting, i.e. with an accepting state in cell 1d:
pn+1(1d) ∈ F .

Let us only give explicitly the second formula, step, which is the most central one (the

last formula, end, is similar; the first one, init, is easy to construct):

step(x, t) ≡∧
a∈{0,1}d

∧
ν∈neighba(Γ)

(¬max(t) ∧ Pa(x) ∧
∧

b∈Doma

Rν(b)(x + b, t)
)
→

⊕
s∈δa(ν)

Rs(x, succ(t))

Here,

⊕
denotes the exclusive disjunction. Furthermore:

For x ∈ [n]d and a = (a1, . . . , ad) ∈ {0, 1}d, the formula Pa(x) claims that the pixel x is

in position a. Namely: Pa(x) ≡
∧
i∈[d]

(¬i)max(xi), where (¬i) is ¬ if ai = 1, and nothing

otherwise.

For b = (b1, . . . , bd) ∈ {0, 1}d, x + b abbreviates the tuple of terms (θ1, . . . , θd) where, for

each i, the term θi is xi if bi = 0, and succ(xi) otherwise.

It is easy to verify that the formula ∀x step(x, t) means pt+1 ∈ A(pt), as claimed.

⇐ Assume coordd(L) ∈ ESO(∀d+1, arity d + 1). That is, there is some sentence Φ in

ESO(∀d+1, arity d + 1) such that p ∈ L ⇔ coordd(p) |= Φ. We want to prove L ∈ NLINd
ca,

i.e. L is recognized by some d-automaton in linear time. Let us give the main idea of the

proof for the simplest case d = 1 and a formula Φ ∈ ESO(∀2, arity 2) of the form

Φ = ∃R∀x∀yψ(x, y)

where R is a binary relation symbol and ψ is a quantifier-free formula where the only atoms

in which R occurs, called R atoms, are of the following forms (1-4):

(1) R(x, y); (2) R(succ(x), y); (3) R(x, succ(y)); (4) R(y, x).

First, notice that if the only atoms where R occurs are of the forms (1-3), i.e. the variables

x, y only appear in this unique order in the arguments of R, then formula Φ has a local

E. Grandjean and F. Olive 285

behaviour : points (x, y), (succ(x), y) and (x, succ(y) are neighbours, i.e. adjacent each other.

This allows to construct a 1-automaton (nondeterministic cellular automaton of dimension

1) A that mimics Φ. Roughly, A successively guesses ‘rows’ R(i, . . .), for i = 1, 2, . . . n, of

R, and in the same time, it checks locally the coherence of each instantiation ψ(i, j): more

precisely, at instant i, the state of each cell j, 1 ≤ j ≤ n, of A contains both values R(i, j)
and R(i+ 1, j). So, in case atoms of R are of the forms (1-3), the language L is recognized

by such a 1-automaton A in linear time as claimed.

Now, let us consider the general case where the formula includes all the forms (1-4). Of

course, the pixel of the form (4), R(y, x), is not adjacent to pixels of the form (1-3) but

is their symmetric (more precisely, is symmetric of R(x, y)) with respect to the diagonal

x = y. The intuitive idea is to cut or to fold the ‘picture’ R along this diagonal: R is

replaced by its two ‘half pictures’ denoted R1 and R2, that are superposed in the half

square x ≤ y above the diagonal. More precisely, R1 and R2 are binary relations whose

intuitive meaning is the following: for points (x, y) such that x ≤ y, one has the equivalence

R1(x, y) ⇔ R(x, y) and the equivalence R2(x, y) ⇔ R(y, x). By this transformation, each

pixel R2(x, y) that represents the original pixel R(y, x) lies at the same point (x, y) as pixel

R1(x, y) that represents pixel R(x, y), for x ≤ y. The case y ≤ x is similar. This solves the

problem of vicinity.

More precisely, the sentence Φ = ∃R∀x∀yψ(x, y) is normalized as follows. Let coherent(x, y)
denote the formula x = y → (R1(x, y)↔ R2(x, y)) whose universal closure ensures the co-

herence of R1 and R2 on the common part of R they both represent, that is the diagonal

x = y. Using R1 and R2, it is not difficult to construct a formula

ψ′(x, y) = coherent(x, y) ∧

 x < y → ψ<(x, y) ∧
x = y → ψ=(x, y) ∧
x > y → ψ>(x, y)

such that the sentence Φ′ = ∃R1∃R2∀x∀yψ′(x, y) in ESO(∀2, arity 2) is equivalent to Φ. Let

us describe and justify its precise form and meaning.

Table 1 Replacement of R-atoms by R1- or R2-atoms.

case formula R(x, y) R(succ(x), y) R(x, succ(y)) R(y, x)

x < y ψ<(x, y) R1(x, y) R1(succ(x), y) R1(x, succ(y)) R2(x, y)
x = y ψ=(x, y) R1(x, y) R2(x, succ(y)) R1(x, succ(y)) R1(x, y)
x > y ψ>(x, y) R2(y, x) R2(y, succ(x)) R2(succ(y), x) R1(y, x)

The formulas ψ<(x, y), ψ=(x, y) and ψ>(x, y) are obtained from formula ψ(x, y) by

substitution of R-atoms by R1- or R2-atoms according to the cases described in Table 1. It

is easy to check that each replacement is correct according to its case. For instance, it is

justified to replace each atom of the form R(x, succ(y)) in ψ by R2(succ(y), x) when x > y

(in order to obtain the formula ψ>(x, y)), because when x > y we get succ(y) ≤ x and hence

the equivalence R(x, succ(y))↔ R2(succ(y), x) holds, by definition of R2.

Notice that the variables x, y always occur in this order in each R1- or R2-atom of the

formulas ψ< and ψ= (see Table 1). At the opposite, they always occur in the reverse order

y, x in the formula ψ>(x, y). This is not a problem because, by symmetry, the roles of x and

y can be exchanged and the universal closure ∀x∀y(x > y → ψ>(x, y)) is trivially equivalent

to ∀x∀y(y > x → ψ>(y, x)). So, the above sentence Φ′ – and hence, the original sentence

C S L ’ 1 2

286 Descriptive complexity for pictures languages

Φ – is equivalent to the sentence denoted Φ” obtained by replacing in Φ′ the subformula

x > y → ψ>(x, y) by y > x→ ψ>(y, x). By construction, relation symbols R1, R2 only occur

in Φ in atoms of the three required ‘sorted’ forms: Ri(x, y), Ri(succ(x), y) or Ri(x, succ(y)).
Finally, to be precise, there remain two difficulties so that a 1-automaton can simulate

the ‘sorted’ sentence Φ” in linear time, by the informal algorithm described above:

the presence of equalities and inequalities in the sentence;

the forms of the atoms involving input relation symbols.

It is easy to get rid of equalities and inequalities by introducing new binary relation symbols

defined and used in a ‘sorted’ manner too (see (1-3)). Concerning the second point, we can

assume, without loss of generality, that the only atoms involving the input relation symbols

(Qs)s∈Σ are of the two forms Qs(x) or Qs(y). As we do for equalities and inequalities, we

can get rid of atoms of the form Qs(y) by introducing new binary ESO relation symbols :

intuitively, they convey each bit Qs(a) at each point of coordinates (a, . . .) or (. . . , a); those

new binary relations are also defined and used in a ‘sorted’ manner. The fact that all the

atoms involving the input are of the form Qs(x) allows to consider this input in the initial

configuration of the computation of the 1-automaton but in no later configuration as required.

So, the sketch of proof is complete for the case d = 1.

For the general case, i.e. for any dimension d, the ideas and the steps of the proof are

exactly the same as for d = 1 but the notations and details of the proof are much more

technical. To give an idea, let us succinctly describe the ESO relations of arity d+1 introduced

in the main normalization step. Here again, each ESO relation symbol R of the original

sentence Φ in ESO(∀d+1, arity d+ 1) is replaced by – or, intuitively, ‘divided into’ – (d+ 1)!
new ESO relation symbol Rα of the same arity d+ 1, where α is a permutation of the set of

indices [d+ 1]. The intended meaning of each relation Rα is the following: for each tuple

(a1, . . . , ad+1) ∈ [n]d+1 such that a1 ≤ a2 . . . ≤ ad+1, the equivalence

Rα(a1, . . . , ad+1)↔ R(aα(1), . . . , aα(d+1))

holds. Then, we introduce a partition of the domain [n]d+1 into subdomains, similar to

the partition of the domain [n]2 described above for d = 1 into the diagonal x = y and

the two half domains over and under the diagonal x < y and x > y. According to the

case (i.e. subdomain of the partition), this allows to replace each R atom in Φ by an atom

of one of the two following sorted forms, Rα(x) and Rα(x(i)), where x = (x1, . . . , xd+1),
1 ≤ i ≤ d+ 1 and x(i) is the tuple x where xi is replaced by succ(xi). Finally, the equalities

and inequalities are similarly eliminated in the sentence and we normalize it with respect

to the input d-ary relations (Qs)s∈Σ by using new ESO relation symbols of arity d + 1 to

convey the input information: in the final sorted sentence all the Qs atoms are of the unique

form Qs(x1, . . . , xd). For such a sorted ESO(∀d+1, arity d+ 1)-sentence Φ, it is now easy to

construct a d-automaton that generalizes the automaton described above in case d = 1, and

checks in linear time whether coordd(p) |= Φ. J

I Proposition 20. For any d > 0, ESO(var d) ⊆ ESO(∀d, arity d) on coordinate structures.

Sketch of proof. We first prove a kind of Skolemization of ESO(var d)-formulas, thus provid-

ing a first normalization of these formulas, in which the first-order part is universal and

includes the same number of first-order variables as the initial formula. To illustrate the

procedure that performs this preliminary normalisation, let us run it on a very simple

first-order formula with two variables: ϕ ≡ ∃x (∀yU(x, y) ∨ ∃yD(x, y)). We introduce three

E. Grandjean and F. Olive 287

new relation symbols R1, R2, R3 corresponding to the quantified subformulas of ϕ.

def1(R1) ≡ ∀x : R1(x) ↔ ∀y U(x, y)
def2(R2) ≡ ∀x : R2(x) ↔ ∃y D(x, y)
def3(R3) ≡ ∀x : R3(x) ↔ R1(x) ∨R2(x)

Hence our initial formula can be rewritten:

∃R1, R2, R3 :

 ∧
1≤i≤3

defi(Ri)

 ∧ ∃x R3(x). (3)

It is easily seen that (3) can be written as a conjunction of prenex formulas, each of which

involves no more than two variables and has a quantifier prefix of the shape ∀x∀y or ∀x∃y
(we include in this later form the subformula ∃x R3(x)). All in all, ϕ is equivalent to a

formula of the form:

∃R1, R2, R3 : ∀x∀yψ(x, y,R) ∧ ∀x∃yθ(x, y,R), (4)

where ψ and θ are quantifier-free. In order to put this conjunction under prenex form without

adding a new first-order variable, we have to ”replace” the existential quantifier by a universal

one. (Afterward ϕ, as a conjunction of formulas of prefix ∀x, y, could be written under the

requisite shape.) To proceed, we get use of the arithmetics embedded in coordinate structures.

It allows to defining a binary relation W with intended meaning: W(x, y) iff there exists

z ≤ y such that θ(x, z) holds. This interpretation is achieved thanks to the formula:

∀x, y : {min(y)→
(
W(x, y)↔ θ(x, y)

)
}∧{W(x, succ(y))↔

(
θ(x, succ(y))∨W(x, y)

)
} (5)

Under assumption (5), the assertion ∀x∃yθ(x, y) is equivalent to ∀x∀y : max(y)→W(x, y).
This allows to rewriting (4), and hence ϕ, as the ESO(∀2)-formula:

∃R1, R2, R3,W
(

(5) ∧ ∀x∀yψ(x, y,R) ∧ ∀x∀y
(
max(y)→W(x, y)

)
.
)

(6)

Thus, the above considerations allow to show the normalization ESO(var d) = ESO(∀d)
on coordinate structures. It remains to prove ESO(∀d) = ESO(∀d, arity d). It amounts to

build, for each formula Φ of type ∃R∀x1, . . . , xdϕ, where ϕ is quantifier-free and R is a

tuple of relation symbols of any arity, a formula Φ′ with the same shape, but in which all

relation symbols are of arity ≤ d, such that Φ and Φ′ have the same models, as far as pixel

structures are concerned. The possibility to replace a k-ary (k ≥ d) relation symbol R of

Φ by d-ary symbols rests in the limitation of the number of first-order variables in Φ: each

atomic formula involving R has the form R(t1, . . . , tk) where the ti’s are terms built on

x1, . . . , xd. Therefore, although R is k-ary, in each of its occurrences it behaves as a d-ary

symbol, dealing with the sole variables x1, . . . , xd. Hence, the key is to create a d-ary symbol

for each occurrence of R in Φ or, more precisely, for each k-tuple of terms (t1, . . . , tk) involved

in a R-atomic formula. Let us again opt for a ‘proof-by-example’ choice and illustrate the

procedure on a very simple case.

Let Φ be the ESO(∀2, arity 3)-formula ∃R∀x, yϕ(x, y,R), where ϕ ≡ R(x, y, x)∧¬R(y, x, y).
Introduce two new binary relation symbols R(x,y,x) and R(y,x,y) associated to the triple of

terms (x, y, x) and (y, x, y) involved in Φ, and fix their interpretation as follows: for any

∀a, b ∈ [n], R(x,y,x)(a, b)⇔ R(a, b, a) and R(y,x,y)(a, b)⇔ R(b, a, b). Then we get the equival-

ence: 〈S,R〉 |= ∀x, y : R(x, y, x)∧¬R(y, x, y) iff 〈S,R〉 |= ∀x, y : R(x,y,x)(x, y)∧¬R(y,x,y)(x, y)
which, in turn, yields the implication:

S |= ∃R∀x, y : R(x, y, x)∧¬R(y, x, y)⇒ S |= ∃R∀x, y : R(x,y,x)(x, y)∧¬R(y,x,y)(x, y) (7)

C S L ’ 1 2

288 Descriptive complexity for pictures languages

The converse implication would immediatly complete the proof. Unfortunately, it does not

hold, since the second formula has a model, while the first has not.

To get the right-to-left implication in (7), we have to strengthen the second formula

with some assertion that compels the tuple R(x,y,x), R(y,x,y) to be, in some sense, the binary

representation of some ternary relation. This last construction is more sophisticated than

the preceding ones, and we can’t detail it here. J

Acknowledgments

We warmly thank Gaétan Richard who has obtained in collaboration with us several results

of this paper, in particular Proposition 19 and Proposition 20. We also thank the anonymous

referees for their careful reading, corrections and suggestions that have helped to notably

improve the readability of the paper.

References

1 Bernd Borchert. Formal language characterizations of P, NP, and PSPACE. J. of

Automata, Languages and Combinatorics, 13(3/4):161–183, 2008.

2 J. R. Büchi. Weak second-order arithmetic and finite automata. Z. Math. Logik Grundla-

gen Math., 6:66–92, 1960.

3 M. Delorme and J. Mazoyer. Cellular automata: A parallel model. Springer, 373 pages,

Mathematics and Its Applications, 1998.

4 A. Durand and E. Grandjean. First-order queries on structures of bounded degree are

computable with constant delay. ACM Transactions on Computational Logic, V:1–18,

2006.

5 H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer-Verlag, 1995.

6 D. Giammarresi and A. Restivo. Two-dimensional languages, in: Handbook of Theoretical

Computer Science, volume 3- Beyond words, chapter 4, pages 215–267. Springer-Verlag

New York, 1997.

7 D. Giammarresi, A. Restivo, S. Seibert, and W. Thomas. Monadic second-order logic over

rectangular pictures and recognizability by tiling systems. Information and Computation,

125(1):32 – 45, 1996.

8 E. Grädel, Ph. G. Kolaitis, L. Libkin, M. Marx, J. Spencer, M. Y. Vardi, Y. Venema, and

S.Weinstein. Finite Model Theory and Its Applications. Texts in Theoretical Computer

Science. Springer, 2007.

9 N. Immerman. Descriptive Complexity. Graduate Texts in Computer Science. Springer,

1999.

10 M. Latteux and D. Simplot. Recognizable picture languages and domino tiling. Internal

Report IT-94-264, Laboratoire d’Informatique Fondamentale de Lille, Université de Lille,

France, 1994.

11 L. Libkin. Elements of Finite Model Theory. Springer, 2004.

12 Steven Lindell. A normal form for first-order logic over doubly-linked data structures.

Int. J. Found. Comput. Sci., 19(1):205–217, 2008.

13 Rudolph Sommerhalder and S. Christian van Westrhenen. Parallel language recognition

in constant time by cellular automata. Acta Inf., 19:397–407, 1983.

14 V. Terrier. Language recognition by cellular automata. In Handbook of Natural Comput-

ing, Section 1, Cellular Automata. Springer-Verlag, 2011.

Pebble Games and Linear Equations
Martin Grohe1 and Martin Otto∗2

1 Humboldt-Universität zu Berlin, Germany
grohe@informatik.hu-berlin.de

2 Technische Universität Darmstadt, Germany
otto@mathematik.tu-darmstadt.de

Abstract
We give a new, simplified and detailed account of the correspondence between levels of the Sherali–
Adams relaxation of graph isomorphism and levels of pebble-game equivalence with counting
(higher-dimensional Weisfeiler–Lehman colour refinement). The correspondence between basic
colour refinement and fractional isomorphism, due to Ramana, Scheinerman and Ullman [18], is
re-interpreted as the base level of Sherali–Adams and generalised to higher levels in this sense
by Atserias and Maneva [1], who prove that the two resulting hierarchies interleave. In carrying
this analysis further, we here give (a) a precise characterisation of the level k Sherali–Adams
relaxation in terms of a modified counting pebble game; (b) a variant of the Sherali–Adams
levels that precisely match the k-pebble counting game; (c) a proof that the interleaving between
these two hierarchies is strict. We also investigate the variation based on boolean arithmetic
instead of real/rational arithmetic and obtain analogous correspondences and separations for
plain k-pebble equivalence (without counting). Our results are driven by considerably simplified
accounts of the underlying combinatorics and linear algebra.

1998 ACM Subject Classification F.4.1, G.2.2

Keywords and phrases Finite model theory, finite variable logics, graph isomorphism, Weisfeiler-
Lehman algorithm, linear programming, Sherali–Adams hierarchy

Digital Object Identifier 10.4230/LIPIcs.CSL.2012.289

1 Introduction

We study a surprising connection between equivalence in finite variable logics and a linear
programming approach to the graph isomorphism problem. This connection has recently
been uncovered by Atserias and Maneva [1], building on earlier work of Ramana, Scheinerman
and Ullman [18] that just concerns the 2-variable case.

Finite variable logics play a central role in finite model theory. Most important for
this paper are finite variable logics with counting, which have been specifically studied
in connection with the question for a logical characterisation of polynomial time and in
connection with the graph isomorphism problem (e.g. [4, 8, 9, 13, 14, 17]). Equivalence in
finite variable logics can be characterised in terms of simple combinatorial games known as
pebble games. Specifically, Ck-equivalence can be characterised by the bijective k-pebble game
introduced by Hella [11]. Cai, Fürer and Immerman [4] observed that Ck-equivalence exactly
corresponds to indistinguishability by the k-dimensional Weisfeiler-Lehman (WL) algorithm,1

∗ This Martin gratefully acknowledges the other Martin’s academic hospitality at HU Berlin during his
sabbatical in the winter 2011/12.

1 The dimensions of the WL algorithm are counted differently in the literature; what we call “k-dimensional”
here is sometimes called “(k − 1)-dimensional”.

© Martin Grohe and Martin Otto;
licensed under Creative Commons License NC-ND

Computer Science Logic 2012 (CSL’12).
Editors: Patrick Cégielski, Arnaud Durand; pp. 289–304

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2012.289
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

290 Pebble Games and Linear Equations

a combinatorial graph isomorphism algorithm introduced by Babai, who attributed it to
work of Weisfeiler and Lehman in the 1970s. The 2-dimensional version of the WL algorithm
precisely corresponds to an even simpler isomorphism algorithm known as colour refinement.

The isomorphisms between two graphs can be described by the integral solutions of a
system of linear equations. If we have two graphs with adjacency matrices A and B, then
each isomorphism from the first to the second corresponds to a permutation matrix X such
that XtAX = B, or equivalently

AX = XB. (1)

If we view the entries of X as variables, this equation corresponds to a system of linear
equations. We can add inequalities that force X to be a permutation matrix and obtain
a system ISO of linear equations and inequalities whose integral solutions correspond to
the isomorphisms between the two graphs. In particular, the system ISO has an integral
solution if, and only if, the two graphs are isomorphic.

What happens if we drop the integrality constraints, that is, we admit arbitrary real
solutions of the system ISO? We can ask for doubly stochastic matrices X satisfying equation
(1). (A real matrix is doubly stochastic if its entries are non-negative and all row sums and
column sums are one.) Ramana, Scheinerman and Ullman [18] proved a beautiful result that
establishes a connection between linear algebra and logic: the system ISO has a real solution
if, and only if, the colour refinement algorithm does not distinguish the two graphs with
adjacency matrices A and B. Recall that the latter is equivalent to the two graphs being
C2-equivalent.

To bridge the gap between integer linear programs and their LP-relaxations, researchers
in combinatorial optimisation often add additional constraints to the linear programs to bring
them closer to their integer counterparts. The Sherali–Adams hierarchy [21] of relaxations
gives a systematic way of doing this. For every integer linear program IL in n variables and
every positive integer k, there is a rank-k Sherali–Adams relaxation IL(k) of IL, such that
IL(1) is the standard LP-relaxation of IL where all integrality constraints are dropped and
IL(n) is equivalent to IL. There is a considerable body of research studying the strength of
the various levels of this and related hierarchies (e.g. [2, 3, 5, 16, 20, 19]).

Quite surprisingly, Atserias and Maneva [1] were able to lift the Ramana–Scheinerman–
Ullman result, which we may now restate as an equivalence between ISO(1) and C2-
equivalence, to a close correspondence between the higher levels of the Sherali–Adams
hierarchy for ISO and the logics Ck. They proved for every k ≥ 2:
1. if ISO(k) has a (real) solution, then the two graphs are Ck-equivalent;
2. if the two graphs are Ck-equivalent, then ISO(k − 1) has a solution.
Atserias and Maneva used this results to transfer results about the logics Ck to the world of
polyhedral combinatorics and combinatorial optimisation, and conversely, results about the
Sherali–Adams hierarchy to logic.

Atserias and Maneva [1] left open the question whether the interleaving between the
levels of the Sherali–Adams hierarchy and the finite-variable-logic hierarchy is strict or
whether either the correspondence between Ck-equivalence and ISO(k) or the correspondence
between Ck-equivalence and ISO(k − 1) is exact. Note that for k = 2 the correspondence
between Ck-equivalence and ISO(k − 1) is exact by the Ramana–Scheinerman–Ullman
theorem. We prove that for all k ≥ 3 the interleaving is strict. However, we can prove an
exact correspondence between ISO(k − 1) and a variant of the bijective k-pebble game that
characterises Ck-equivalence. This variant, which we call the weak bijective k-pebble game,
is actually equivalent to a game called (k − 1)-sliding game by Atserias and Maneva.

M. Grohe and M. Otto 291

Maybe most importantly, we prove that a natural combination of equalities from ISO(k)
and ISO(k−1) gives a linear program ISO(k−1/2) that characterises Ck-equivalence exactly.

To obtain these results, we give simple new proofs of the theorems of Ramana, Scheinerman
and Ullman and of Atserias and Maneva. Whereas the previous proofs use two non-trivial
results from linear algebra, the Perron–Frobenius Theorem (about the eigenvalues of positive
matrices) and the Birkhoff–von Neumann Theorem (stating that every doubly stochastic
matrix is a convex combination of permutation matrices), our proofs only use elementary
linear algebra. This makes them more transparent and less mysterious (at least to us).

In fact, the linear algebra we use is so simple that much of it can be carried out not
only over the field of real numbers, but over arbitrary semirings. By using similar algebraic
arguments over the boolean semiring (with disjunction as addition and conjunction as
multiplication), we obtain analogous results to those for Ck-equivalence for the ordinary
k-variable logic Lk, characterising Lk-equivalence, i.e., k-pebble game equivalence without
counting, by systems of ‘linear’ equations over the boolean semiring.

For the ease of presentation, we have decided to present our results only for undirected
simple graphs. It is easy to extend all results to relational structures with at most binary
relations. Atserias and Maneva did this for their results, and for ours the extension works
analogously. An extension to structures with relations of higher arities also seems possible,
but is more complicated and comes at the price of loosing some of the elegance of the results.

Due to space limitations, we have to omit many details and proofs in this conference version
of the paper. They can be found in the full version of the paper [10]. The present version
of the paper contains a fairly complete account of our proof of the Ramana–Scheinerman–
Ullman theorem, including the linear algebra that is also underlying they higher-dimensional
results. Most proofs regarding the correspondence between the Sherali–Adams hierarchy and
Ck-equivalence are omitted.

2 Finite variable logics and pebble games

We assume the reader is familiar with the basics of first-order logic FO. We almost exclusively
consider first-order logic over finite graphs, which we view as finite relational structures
with one binary relation. We assume graphs to be undirected and loop-free. For every
positive integer k, we let Lk be the fragment of FO consisting of all formulae that contain
at most k distinct variables. We let Ck be the extension of Lk by counting quantifiers
∃≥n, where∃≥nxϕ means that there are at least n elements x such that ϕ is satisfied. Lk-
equivalence of structures A,B is denoted by A ≡k

L B and Ck-equivalence by A ≡k
C B. Both

equivalences can be characterised in terms of pebble games. We briefly sketch the bijective
k-pebble game [11] that characterises Ck-equivalence. The game is played by two players on a
pair A,B of structures. A play of the game consists of a (possibly infinite) sequence of rounds.
In each round, player I picks up one of his pebbles, and player II picks up her corresponding
pebble. Then player II chooses a bijection f between A and B (if no such bijection exists,
that is, if the structures have different cardinalities, player II immediately looses). Then
player I places his pebble on an element a of A, and player II places her pebble on f(a).
Note that after each round r there is a subset p ⊆ A×B consisting of the at most k pairs of
elements on which the pairs of corresponding pebbles are placed. We call p the position after
round r. Player I wins the play if every position that occurs is a local isomorphism, that is, a
local mapping from A to B that is injective and preserves membership and non-membership
in all relations (adjacency and non-adjacecny if A and B are graphs). Then A ≡k

C B if, and
only if, player II has a winning strategy for the game.

CSL’12

292 Pebble Games and Linear Equations

Ck-equivalence also corresponds to a simple combinatorial algorithm for graph isomorphism
testing known as the Weisfeiler-Lehman algorithm.

We refer the reader to the textbooks [6, 7, 12, 15] and the monograph [17] for a more
thorough exposition of the material sketched here.

3 Basic combinatorics and linear algebra

We consider matrices with entries in B = {0, 1}, Q or R. A matrix X ∈ Rm,n with m rows
and n columns has entry Xij in row i ∈ [m] = {1, . . . ,m} and column j ∈ [n] = {1, . . . , n}.
We write En for the n-dimensional unit matrix.

We write X > 0 to say that (the real or rational) matrix X has only non-negative entries,
and X > 0 to say that all entries are strictly positive. We also speak of non-negative or
strictly positive matrices in this sense. For a boolean matrix, strict positivity, X > 0 means
that all entries are 1. A square n×n-matrix is doubly stochastic if its entries are non-negative
and if the sum of entries across every row and column is 1. Permutation matrices are doubly
stochastic matrices over {0, 1}, with precisely one 1 in every row and in every column.

It will be useful to have the shorthand notation XD1D2 = 0 for the assertion that
Xd1d2 = 0 for all d1 ∈ D1, d2 ∈ D2.

3.1 Decomposition into irreducible blocks

With X ∈ Rn,n associate the directed graph G(X) := ([n], {(i, j) : Xij 6= 0}). The strongly
connected components of G(X) induce a partition of the set [n] = {1, . . . , n} of rows/columns
of X. X is called irreducible if this partition has just the set [n] itself.

Note that X is irreducible iff P tXP is irreducible for every permutation matrix P .

I Observation 3.1. Let X ∈ Rn,n > 0 with strictly positive diagonal entries. If X is
irreducible, then all powers X` for ` > n− 1 have non-zero entries throughout. Moreover, if
X is irreducible, then so is X` for all ` > 1.

Let us call two matrices Z,Z ′ ∈ Rn,n permutation-similar or Sn-similar, Z ∼Sn
Z ′, if

Z ′ = P tZP for some permutation matrix P , i.e., if one is obtained from the other by a
coherent permutation of rows and columns.

I Lemma 3.2. Every symmetric Z ∈ Rn,n > 0 is permutation-similar to some block diagonal
matrix diag(Z1, . . . , Zs) with irreducible blocks Zi ∈ Rni,ni .

The permutation matrix P corresponding to the row- and column-permutation p ∈ Sn that
puts Z into block diagonal form P tZP = diag(Z1, . . . , Zs) with irreducible blocks, is unique
up to an outer permutation that re-arranges the block intervals ([ki + 1, ki + ni])16i6s where
ki =

∑
j<i nj, and a product of inner permutations within each one of these s blocks.

The underlying partition [n] =
⋃̇

16i6sDi where Di := p([ki +1, ki +ni]) for ki =
∑

j<i nj ,
is uniquely determined by Z.2

In the following we refer to the partition induced by a symmetric matrix Z.

2 Here we regard two partitions as identical if they have the same partition sets, i.e., we ignore their
indexing/enumeration.

M. Grohe and M. Otto 293

I Observation 3.3. In the situation of Lemma 3.2, the partition [n] =
⋃̇

iDi induced by the
symmetric matrix Z is the partition of [n] into the vertex sets of the connected components
of G(Z). Then, for every pair i 6= j, ZDiDj

= 0, while all the minors ZDiDi
are irreducible.3

If, moreover, Z has strictly positive diagonal entries, then the partition induced by Z is
the same as that induced by Z`, for any ` > 1; for ` > n− 1, the diagonal blocks (Z`)DiDi

have non-zero entries throughout: (Z`)DiDi > 0 .

The last assertion says that for a symmetric n×n matrix Z with non-negative entries
and no zeroes on the diagonal, all powers Z` for ` > n− 1 are good symmetric in the sense
of the following definition.

I Definition 3.4. Let Z > 0 be symmetric with strictly positive diagonal. Then Z is called
good symmetric if w.r.t. the partition [n] =

⋃̇
iDi induced by Z, all ZDiDi

> 0.
More generally, a not necessarily symmetric matrix X > 0 without null rows or columns

is good if Z = XXt and Z ′ = XtX are good in the above sense.

The importance of this notion lies in the fact that, as observed above, for an arbitrary
symmetric n×n matrix Z > 0 without zeroes on the diagonal, the partition induced by Z is
the same as that induced by the good symmetric matrix Ẑ := Zn−1; and, as for any good
matrix, this partition can simply be read off from Ẑ: i, j ∈ [n] are in the same partition set
if, and only if, Ẑij 6= 0.

I Definition 3.5. Consider partitions [n] =
⋃̇

i∈IDi and [m] =
⋃̇

i∈ID
′
i of the sets [n] and

[m] with the same number of partition sets. We say that these two partitions are X-related
for some matrix X ∈ Rn,m if
(i) X > 0 has no null rows or columns, and
(ii) XDiDj

′ = 0 for every pair of distinct indices i, j ∈ I.

Note that partitions that are X-related are Xt-related in the opposite direction. More
importantly, each one of the X/Xt-related partitions can be recovered from the other one
through X according to

D′i = {d′ ∈ [m] : Xdd′ > 0 for some d ∈ Di},
Di = {d ∈ [n] : Xdd′ > 0 for some d′ ∈ D′i}.

For a more algebraic treatment, we associate with the partition sets Di of a partition
[n] =

⋃̇
i∈IDi the characteristic vectors di with entries 1 and 0 according to whether the

corresponding component belongs to Di:

di =
∑

d∈Di
ed,

where ed is the d-th standard basis vector. In terms of these characteristic vectors di for
[n] =

⋃̇
i∈IDi and d′i for [m] =

⋃̇
i∈ID

′
i, the X/Xt-relatedness of these partitions means that

D′i = {d′ ∈ [m] : (Xtdi)d′ > 0},
Di = {d ∈ [n] : (Xd′i)d > 0}.

3 Note that this does not depend on the enumeration of the partition set Di, because irreducibility is
invariant under permutation-similarity.

CSL’12

294 Pebble Games and Linear Equations

I Lemma 3.6. If two partitions [n] =
⋃̇

i∈IDi and [n] =
⋃̇

i∈ID
′
i of the same set [n] are

X-related for some doubly stochastic matrix X ∈ Rn,n, then |Di| = |D′i| for all i ∈ I, and
for the characteristic vectors di and d′i of the partition sets Di and D′i

di = Xd′i and d′i = Xtdi.

Proof. Observe that for all d ∈ [n] we have 0 ≤ (Xd′i)d =
∑

d′∈D′
i
Xdd′ ≤ 1. It follows

immediately from the definition of X-relatedness that (Xd′i)d = 0 for all d 6∈ Di. Therefore,

|Di| >
∑

d∈Di

(Xd′i)d =
∑

d∈[n]

(Xd′i)d =
∑

d′∈D′
i

∑
d∈[n]

Xdd′ = |D′i|.

Similarly, 0 ≤ (Xtdi)d′ ≤ 1 for d′ ∈ [n], and |D′i| ≥
∑

d′∈D′
i
(Xtdi)d′ = |Di|. Together,

we obtain

|Di| =
∑

d∈Di

(Xd′i)d = |D′i| =
∑

d′∈D′
i

(Xtdi)d′ .

As all summands are bounded by 1, this implies (Xd′i)d = 1 for all d ∈ Di and (Xtdi)d′ = 1
for all d′ ∈ Di. J

I Lemma 3.7. Let X > 0 be an m×n matrix without null rows or columns. Then the m×m
matrix Z := XXt and the n×n matrix Z ′ := XtX are symmetric with positive entries on
their diagonals. Moreover, the (unique) partitions of [m] and [n] that are induced by Z and
Z ′, respectively, are X/Xt-related.4

Proof. It is obvious that Z and Z ′ are symmetric with positive diagonal entries. Let
partitions [m] =

⋃̇
i∈IDi and [n] =

⋃̇
i∈I′D′i be obtained from decompositions of Z and Z ′

into irreducible blocks. We need to show that the non-zero entries in X give rise to a coherent
bijection between the index sets I and I ′ of the two partitions, in the sense that partition
sets Di and D′j are related if, and only if, some pair of members d ∈ Di and d′ ∈ D′j have a
positive entry Xdd′ . Then a re-numbering of one of these partitions will make them X-related
in the sense of Definition 3.5. Recall from Observation 3.3 that the Di are the vertex sets of
the connected components of G(XXt) on [m], while the D′i the are the vertex sets of the
connected components of G(XtX) on [n].

Consider the uniformly directed bipartite graph G(X) on [m] ∪̇ [n] with an edge from
i ∈ [m] to j ∈ [n] if Xij > 0. In light of the symmetry of the whole situation w.r.t. X and
Xt, it just remains to argue for instance that no i ∈ [m] can have edges into two distinct
sets of the partition [n] =

⋃̇
i∈I′D′i. But any two target nodes of edges from one and the

same i ∈ [n] are in the same connected component of G(XtX), hence in the same partition
set. J

In the situation of Lemma 3.7, powers of Z induce the same partitions as Z, and the
partitions induced by (Z`X)(Z`X)t = Z2`+1 are X/Xt-related as well as Z`X/XtZ`-related,
for all ` > 1.

For ` > n/2− 1, the matrix Z`X has no null rows or columns: else Z`X(Z`X)t = Z2`+1

would have to have a zero entry on the diagonal, contradicting the fact that this symmetric
matrix is good symmetric in the sense of Definition 3.4. The same reasoning shows that
Z`X is itself good in the sense of Definition 3.4.

4 As X/Xt-relatedness refers to partitions presented with an indexing of the partition sets, we need to
allow a suitable re-indexing for at least one of them, so as to match the other one.

M. Grohe and M. Otto 295

I Corollary 3.8. Let X > 0 be an m×n matrix without null rows or columns, Z = XXt,
Z ′ = XtX the associated symmetric matrices with non-zero entries on the diagonal. Then
for ` > m− 1, the matrix X̂ := Z`X = X(Z ′)` and its transpose X̂t = XtZ` = (Z ′)`Xt are
good and relate the partitions [m] =

⋃̇
iDi and [n] =

⋃̇
iD
′
i induced by Z and Z ′, respectively.4

Moreover,
(i) X̂DiD′

i
> 0 for all i, and

(ii) X̂DiD′
j

= 0 for all i 6= j.

Aside: boolean vs. real arithmetic
Looking at matrices with {0, 1}-entries, we may not only treat them as matrices over R as
we have done so far, but also over other fields, or as matrices over the boolean semiring
B = {0, 1} with the logical operations of ∨ for addition and ∧ for multiplication. Though not
even forming a ring, boolean arithmetic yields a very natural interpretation in the context
where we associate non-negative entries with edges, as we did in passage from X to G(X).
The ‘normalisation map’ χ : R>0 → {0, 1}, x 7→ 1 iff x > 0, relates the arithmetic of reals
x, y > 0 to boolean arithmetic in

χ(x+ y) = χ(x) ∨ χ(y) and χ(xy) = χ(x) ∧ χ(y).

This is the ‘logical’ arithmetic that supports, for instance, arguments used in Observa-
tion 3.1: for any real n×n matrix X > 0, (XX)ij =

∑
k XikXkj 6= 0 iff there is at least

one k ∈ [n] for which Xik 6= 0 and Xkj 6= 0 iff
∨

k∈[n](χ(Xik) ∧ χ(Xkj)) = 1. It is no sur-
prise, therefore, that several of the considerations apparently presented for real non-negative
matrices above, have immediate analogues for boolean arithmetic – in fact, one could argue,
that the boolean interpretation is closer to the combinatorial essence. We briefly sum up
these analogues with a view to their use in the analysis of Lk-equivalence, while the real
versions are related to Ck-equivalence. The boolean analogue of a doubly stochastic matrix
with non-negative real entries is a matrix without null rows or columns.

Also note that the definitions of irreducibility and X-relatedness are applicable to boolean
matrices without any changes. Observations 3.1 and 3.3 go through (as just indicated), and
so does Lemma 3.2. For Lemma 3.6, one may look at X-related partitions of sets [m] and [n],
where not necessarily n = m, by any boolean matrix X without null rows or columns, and
obtains the relationship between the characteristic vectors as stated there, now in terms of
boolean arithmetic – but of course we do not get any numerical equalities between the sizes
of the partition sets. Lemma 3.7, finally, applies to boolean arithmetic, exactly as stated.

I Lemma 3.9. In the sense of boolean arithmetic for matrices with entries in B = {0, 1}:
(a) Any symmetric Z ∈ Bn,n induces a unique partition of [n] for which the diagonal minors

induced by the partition sets are irreducible and the remaining blocks null; d, d′ ∈ [n] are
in the same partition set if, and only if, in the sense of boolean arithmetic (Z`)dd′ = 1
for any/all ` > n− 1.

(b) If two partitions (not necessarily of the same set) with the same number of partition sets
are related by some boolean matrix X ∈ Bm,n, then the characteristic vectors (di)i∈I

and (d′i)i∈I of the partitions are related by di = Xd′i and d′i = Xtdi in the sense of
boolean arithmetic.

(c) For any matrix X ∈ Bm,n without null rows or columns, the symmetric boolean matrices
Z = XXt and Z ′ = XtX have diagonal entries 1 and induce partitions that are X/Xt-
related, and agree with the partitions induced by higher powers of Z and Z ′ or on the
basis of Z`X and X(Z ′)` for any ` ∈ N. For ` > m− 1, n− 1, the partition blocks in Z

CSL’12

296 Pebble Games and Linear Equations

and Z ′ have entries 1 throughout, and Z`X and X(Z ′)` have entries 1 in all positions
relating elements from matching partition sets.

I Observation 3.10. For a symmetric boolean matrix Z ∈ Bn,n with Zdd = 1 for all d ∈ [n],
the characteristic vectors di of the partition [n] =

⋃̇
i∈IDi induced by Z satisfy the following

‘eigenvector’ equation in terms of boolean arithmetic:

Zdi = di (boolean), for all i ∈ I.

3.2 Eigenvalues and -vectors
I Lemma 3.11. If Z ∈ Rn,n is doubly stochastic, then it has eigenvalue 1. If Z is doubly
stochastic and irreducible with strictly positive diagonal entries, then the eigenspace for
eigenvalue 1 has dimension 1 and is spanned by the vector d := (1, . . . , 1)t.

Proof. It is obvious that d is an eigenvector of Z with eigenvalue 1. The eigenspace
with eigenvalue 1 is contained in that of Zn−1, which has entries strictly between 0 and
1 throughout if Z is irreducible with strictly positive diagonal, by Observation 3.1. For
1-dimensionality observe that all entries of Zn−1v are convex combinations of the entries of
v with coefficients strictly between 0 and 1. J

I Corollary 3.12. (a) Let Z ∈ Rn,n be doubly stochastic with positive diagonal, and [n] =⋃̇
iDi a partition with ZDiDj = 0 for i 6= j and such that the minors ZDiDi are irreducible

for all i. Then the eigenspace for eigenvalue 1 of Z is the direct sum of the 1-dimensional
subspaces spanned by the characteristic vectors di of the partition sets Di.

(b) If Z = XtX ∈ Rn,n for some doubly stochastic matrix X, then the eigenspace for
eigenvalue 1 is the direct sum of the spans of the characteristic vectors di from the
unique partition [n] =

⋃̇
iDi of [n] induced by Z according to Lemma 3.2.

3.3 Stable partitions
I Definition 3.13. Let A ∈ Rn,n and [n] =

⋃̇
i∈IDi a partition. We call this partition a

stable partition for A if there are numbers (sij)i,j∈I and (tij)i,j∈I such that for all i, j ∈ I:

d ∈ Di ⇒
∑

d′∈Dj

Add′ = sij and
∑

d′∈Dj

Ad′d = tij .

If there are sij such that
∑

d′∈Dj
Add′ = sij for all d ∈ Di, we call the partition row-stable;

similarly, for tij such that
∑

d′∈Dj
Ad′d = tij for all d ∈ Di, column-stable.

For symmetric A, column- and row-stability are equivalent (with tij = sij).
Note that the row and column sums in the definition are the Di-components of Adj and

of dt
jA = (Atdj)t, respectively. So, for instance, row stability precisely says that for all i the

vector Adi is in the span of the vectors dj .

I Lemma 3.14. Let A ∈ Rn,n commute with some symmetric matrix of the form Z =
XXt ∈ Rn,n for some doubly stochastic X ∈ Rn,n. Then the partition [n] =

⋃̇
iDi of [n]

induced by Z according to Lemma 3.2 is stable for A.

Proof. Using the characteristic vectors di of the partition sets again, we have ZAdi =
AZdi = Adi, and thus Adi is an eigenvector of Z with eigenvalue 1. Hence by Corollary 3.12,
it is in the span of the vectors dj , and this means that the partition is row stable. Column
stability is established similarly. J

M. Grohe and M. Otto 297

I Corollary 3.15. Let A commute with Z = XXt and B commute with Z ′ = XtX, where
X is doubly stochastic (cf. Lemma 3.14). Then the partitions induced by Z and Z ′, which
are X-related by Lemma 3.7, are stable for A and B, respectively.

Aside: boolean arithmetic
We give a separate elementary proof of the analogue of Lemma 3.14 for boolean arithmetic.
Here the definition of a boolean stable partition is this natural analogue of Definition 3.13.

I Definition 3.16. A partition [n] =
⋃̇

i∈IDi is boolean stable for A ∈ Bn,n if, in the sense
of boolean arithmetic,

∑
d′∈Dj

Add′ and
∑

d′∈Dj
Ad′d only depend on the set Di for which

d ∈ Di.

Note that boolean stability implies that, for the characteristic vectors di of the partition,
(Adj)d =

∑
d′∈Dj

Add′ is the same for all d ∈ Di, so that also here Adj is a boolean linear
combination of the characteristic vectors di.

I Lemma 3.17. Let A ∈ Bn,n commute, in the sense of boolean arithmetic, with some
symmetric matrix of the form Z = XXt ∈ Bn,n with entries Zdd = 1 for all d ∈ [n]. Then
the partition [n] =

⋃̇
iDi induced by Z according to Lemma 3.9 is boolean stable for A.

4 Fractional isomorphism

4.1 C2-equivalence and linear equations
The adjacency matrix of graph A is the square matrix A with rows and columns indexed
by vertices of A and entries Aaa′ = 1 if aa′ is an edge of A and Aaa′ = 0 otherwise. By
our assumption that graphs are undirected and simple, A is a symmetric square matrix
with null diagonal. It will be convenient to assume that our graphs always have an initial
segment [n] of the positive integers as their vertex set. Then the adjacency matrices are in
Bn,n ⊆ Rn,n. Throughout this subsection, we assume that A and B are graphs with vertex
set [n] and with adjacency matrices A,B, respectively. It will be notationally suggestive to
denote typical indices of matrices a, a′, . . . ∈ [n] when they are to be interpreted as vertices
of A, and b, b′, . . . ∈ [n] when they are to be interpreted as vertices of B.

Recall (from the discussion in the introduction) that two graphs A,B are isomorphic if,
and only if, there is a permutation matrix X such that AX = XB. We can rewrite this as
the following integer linear program in the variables Xab for a, b ∈ [n].

ISO
∑

b′∈[n] Xab′ =
∑

a′∈[n] Xa′b = 1,∑
a′∈[n] Aaa′Xa′b =

∑
b′∈[n] Xab′Bb′b,

Xab ≥ 0 for all a, b ∈ [n].

Then A and B are isomorphic if, and only if, ISO has an integer solution.

I Definition 4.1. Two graphs A,B are fractionally isomorphic, A ≈ B, if, and only if, the
system ISO has a real solution.

So graphs are fractionally isomorphic if, and only if, there is a doubly stochastic matrix
X such that AX = XA. Note that fractionally isomorphic graphs necessarily have the same
number of vertices (this will be different for the boolean analogue, which cannot count).

CSL’12

298 Pebble Games and Linear Equations

A stable partition of the vertex set of an undirected graph is a stable partition [n] =
⋃̇

i∈IDi

for its adjacency matrix in the sense of Definition 3.13. The characteristic parameters for a
stable partition [n] =

⋃̇
i∈IDi for A are the numbers sij = sA

ij such that sij =
∑

d′∈Dj
Add′

for all d ∈ Di. (As A is symmetric, the parameters tij of Definition 3.13 are equal to the sij .)
We call two stable partitions

⋃̇
i∈IDi for a matrix A and

⋃̇
i∈JD

′
i for a matrix B equivalent

if I = J and |Di| = |D′i| for all i ∈ I and sA
ij = sB

ij and for all i, j ∈ I.

I Lemma 4.2. A and B are C2-equivalent if, and only if, there are equivalent stable partitions⋃̇
i∈IDi for A and

⋃̇
i∈ID

′
i for B.

Proof sketch. The partition of the elements A and B according to their C2-type yields
equivalent stable partitions (two elements have the same C2-type if they satisfy the same
C2-formulae with one free variable). For the converse, it can be shown that equivalent stable
partitions give player II a winning strategy in the bijective 2-pebble game. J

I Theorem 4.3 (Ramana–Scheinerman–Ullman). Two graphs are C2-equivalent if, and only
if, they are fractionally isomorphic.

Proof. In view of Lemma 4.2, it suffices to prove that A and B have equivalent stable
partitions if, and only if, they are fractionally isomorphic.

For the forward direction, suppose that we have equivalent stable partitions
⋃̇

i∈IDi for A
and

⋃̇
i∈JD

′
i for B. For all a ∈ Di, b ∈ D′j we let Xab := δ(i, j)/ni, where ni := |Di| = |D′i|.

(Here and elsewhere we use Kronecker’s δ function defined by δ(i, j) = 1 if i = j and
δ(i, j) = 0 otherwise.) An easy calculation shows that this defines a doubly stochastic matrix
X with AX = XB, that is, a solution for ISO.

For the converse implication, suppose that X is a doubly stochastic matrix such that
AX = XB. Since A and B are symmetric, also XtA = BXt, which implies that A commutes
with Z := XXt and B with Z ′ := XtX.

From Lemma 3.14 and Corollary 3.15, the partitions [n] =
⋃̇

i∈IDi and [n] =
⋃̇

i∈ID
′
i

that are induced by the symmetric matrices Z and Z ′ are X-related and stable for A and for
B, respectively. We need to show that |Di| = |D′i| and that the partitions also agree w.r.t.
the parameters sij .

By Lemma 3.6 we have |Di| = |D′i| and di = Xd′i and d′i = Xtdi, where di and d′i for
i ∈ I are the characteristic vectors of the two partitions. Thus for all i, j ∈ I,

(d′i)tBd′j = (Xtdi)tBXtdj = dt
iXBX

tdj = dt
iAXX

tdj = dt
iAZdj = dt

iAdj ,

where the last equality follows from the fact that dj is an eigenvector of Z with eigenvalue
1 by Corollary 3.12. Note that dt

iAdj is the number of edges of A from Di to Dj . By
stability of the partition, we have sA

ij = dt
iAdj/|Di| and similarly sB

ij = (d′i)tBd′j/|D′i|, so
that sA

ij = sB
ij . J

4.2 L2-equivalence and boolean linear equations
W.r.t. an adjacency matrix A ∈ Bn,n, a boolean stable partition [n] =

⋃̇
i∈IDi has as

parameters just the boolean values ιAij defined by ιAij = 0 if ADiDj
= 0 and ιAij = 1 otherwise.

Boolean (row-)stability of the partition for A implies that ιAij = 1 if, and only if, for each
individual d ∈ Di there is at least one d′ ∈ Dj such that Add′ = 1.

To capture the situation of 2-pebble game equivalence, though, we now need to work
with similar partitions that are stable both w.r.t. A and w.r.t. to the adjacency matrix Ac of
the complement of the graph with adjacency matrix A. Here the complement of a graph

M. Grohe and M. Otto 299

A is the graph Ac with the same vertex set as A obtained by replacing edges by non-edges
and vice versa. Hence Ac

aa′ = 1 if Aaa′ = 0 and a 6= a′, and Ac
aa′ = 0 otherwise. While a

partition in the sense of real arithmetic is stable for A if, and only if, it is stable for Ac, this
is no longer the case for boolean arithmetic. Let us call a partition that is boolean stable for
both A and Ac, boolean bi-stable for A.

Then the following captures the situation of two graphs that are 2-pebble game equivalent.
We note that 2-pebble equivalence is a very rough notion of equivalence, if we look at just
simple undirected graphs – but the concepts explored here do have natural extensions to
coloured, directed graphs, and form the basis for the analysis of k-pebble equivalence, which
is non-trivial even for simple undirected graphs.

L2-equivalence of two graphs does not imply that the graphs have the same size. In the
following, we always assume that A,B are graphs with vertex sets [m], [n] respectively and
that A ∈ Bm,m and b ∈ Bn,n are their adjacency matrices. We call two bi-stable partitions
[m] =

⋃̇
i∈IDi for A (and Ac) and [n] =

⋃̇
i∈JD

′
i for B (and Bc) b-equivalent if I = J

and ιAij = ιBij and ιA
c

ij = ιB
c

ij and for all i, j ∈ I. Note that b-equivalence does not imply
|Di| = |D′i|.

I Lemma 4.4. A and B are L2-equivalent if, and only if, there are b-equivalent bi-stable
partitions [m] =

⋃̇
i∈IDi for A and [n] =

⋃̇
i∈JD

′
i for B.

I Definition 4.5. A and B are boolean isomorphic, A ≈bool B, if there is some boolean
matrix X without null rows or columns such that AX = XB and AcX = XBc.

I Theorem 4.6. Two graphs are L2-equivalent if, and only if, they are boolean isomorphic.

5 Relaxations in the style of Sherali–Adams

In this section we refine the connection between the Sherali–Adams hierarchy of LP relaxation
of the integer linear program ISO to equivalence in the finite variable counting logics.
Throughout this section, our parameter k > 2 is the number of variables available in the
logics Ck or Lk. As before, A and B are graphs with vertex sets [m] and [n], respectively,
and A and B are their adjacency matrices.

The level-(k − 1) Sherali–Adams relaxation of the integer linear program ISO is the
following linear program in the variables Xp for all p ⊆ [m]× [n] of size |p| < k. We write
p̂ab for the extension of p by the pair (a, b) (which need not be a proper extension).

ISO(k − 1) X∅ = 1 and
Xp =

∑
b′ Xp̂ab′ =

∑
a′ Xp̂a′b

for ` := |p|+ 1 < k, a ∈ [m], b ∈ [n]

 Cont(`) for ` < k

∑
a′ Aaa′X

p̂a′b
=

∑
b′ Xp̂ab′Bb′b

for ` := |p|+ 1 < k, a ∈ [m], b ∈ [n]

}
Comp(`) for ` < k

Xp ≥ 0 for |p| ≤ k − 1

We call the equations Comp(`) for 1 ≤ ` < k comaptibility equations and the equations
Cont(`) for 0 ≤ ` < k continuity equations, where we let Cont(0) be the equation X∅ = 1.
We will also consider these equations independently of ISO(k − 1), as in the next lemma.

CSL’12

300 Pebble Games and Linear Equations

I Lemma 5.1. If A ≡k
C B, then there is a non-negative solution (Xp) for the combination of

the continuity equations Cont(`) of levels ` 6 k (!) with the compatibility equations Comp(`)
of levels ` < k.

Proof. For tuples a ∈ [m]` and b ∈ [n]` of length ` ≤ k, we write tp(a) = tp(b) if A,a and
B,b satisfy the same Ck-formulae ϕ(x) (equality of Ck-types). We write p = ab to indicate
that p consist of the pairs aibi of corresponding entries in these tuples.

To define the solution, we let X∅ := 1. For p = ab, we let Xp = 0 if tp(a) 6= tp(b), and
we let Xp := 1/#b′(tp(a) = tp(b′)) otherwise. Tedious but straightforward calculations
show that this indeed defines a solution of the desired equations. J

Thus in particular, if A and B are Ck-equivalent then the system ISO(k−1) has a solution.
Unfortunately, the converse does not hold (as we will see later). The solvability of ISO(k− 1)
only implies a weaker equivalence between A and B, which we call C<k-equivalence. It is
defined in terms of a game, the weak bijective k-pebble game on A,B. The game is played by
two players. Positions of the game are sets p ⊆ [m]× [n] of size |p| ≤ k − 1, and the initial
position is ∅. A single round of the game, starting in position p, is played as follows.
1. If |p| = k − 1, player I selects a pair ab ∈ p. If |p| < k − 1, he omits this step.
2. Player II selects a bijection between [m] and [n]. If no such bijection exists, i.e., if m 6= n,

the game ends and player II loses.
3. Player I chooses a pair a′b′ from this bijection.
4. If p+ := p̂a′b′ is a local isomorphism then the new position is

p′ :=
{

(p\ab)̂a′b′ if |p| = k − 1,

p̂a′b′ if |p| < k − 1.

Otherwise, the play ends and player II loses.
Player II wins a play if it lasts forever. Structure A and B are C<k-equivalent, A ≡<k

C B, if
player II has a winning strategy for the game.

Note that the weak bijective k-pebble game requires more of the second player than
the bijective (k − 1)-pebble game, because p+ rather than just p′ is required to be a local
isomorphism. On the other hand, it requires less than the bijective k-pebble game: the
bijective k-pebble game precisely requires the second player to choose the bijection without
prior knowledge of the pair ab that will be removed from the position. A strategy for player
II in the weak version is good for the usual version if it is fully symmetric or uniform w.r.t.
the pebble pair that is going to be removed. However, this is only relevant if k ≥ 3. The
weak bijective 2-pebble game and the bijective 2-pebble game are essentially the same.

The core of the proof of the following is analogous to that of Theorem 4.3.

I Theorem 5.2. A ≡<k
C B if, and only if, ISO(k − 1) has a solution.

I Remark 5.3. The weak bijective k-pebble game is equivalent to a bisimulation-like game
with k − 1 pebbles where in each round the first player may slide a pebble along an edge of
one of the graphs and the second player has to respond by sliding the corresponding pebble
along an edge of the other graph. In this version, the game coresponds to the (k − 1)-pebble
sliding game introduced by Atserias and Maneva [1].

We will see in the next section that C<k-equivalence neither coincides with Ck−1-
equivalence nor with Ck-equivalence. Thus it remains to give a characterisation of Ck-
equivalence. By the previous theorem and the observation that Ck-equivalence is situated
between C<k-equivalence and C<k+1-equivalence, we know that we need a linear program

M. Grohe and M. Otto 301

that is “between” ISO(k − 1) and ISO(k). Surprisingly, we obtain such a linear program by
combining the two in a very simple way: we take the continuity equations from ISO(k) and
the compatibility equations from ISO(k − 1). Thus the resulting linear program, which we
call ISO(k − 1/2), has variables Xp for all p ⊆ [m]× [n] of size |p| ≤ k and consists of the
equations Cont(`) for ` ≤ k and the equations Comp(`) for ` ≤ k − 1, together with the
non-negativity constraints Xp ≥ 0. So Lemma 5.1 proves one implication of the theorem.

I Theorem 5.4. A ≡k
C B if, and only if, ISO(k − 1/2) has a solution.

5.1 Boolean arithmetic and Lk-equivalence
We saw in Section 4.2 that equations, which are direct consequences of the basic continuity
and compatibility equations w.r.t. the adjacency matrices A and B, may carry independent
weight in their boolean interpretation. This is no surprise, because the boolean reading is
much weaker, especially due to the absorptive nature of ∨, which unlike + does not allow for
inversion. AX = XB for doubly stochastic X and A,B ∈ Bn,n implies AcX = XBc.

We now augment the boolean requirements by corresponding boolean equations that
express
(a) compatibility also w.r.t. Ac and Bc, as in boolean fractional isomorphism,
(b) the new constraint Xp = 0 whenever p is not a local bijection.
In the presence of the continuity equations, which force monotonicity, it suffices for (b) to
stipulate Xaa′bb′ = 0 for all a, a′ ∈ [m], b, b′ ∈ [n] such that not a = a′ ⇔ b = b′. This is
captured by the constraint Match(2) below. So we now use the following boolean version of
the Sherali–Adams hierarchy ISO(k − 1) and ISO(k − 1/2) for k ≥ 2.

B-ISO(k − 1)

X∅ = 1 and
Xp =

∑
b′ Xp̂ab′ =

∑
a′ Xp̂a′b

for |p| < k, a ∈ [m], b ∈ [n]

 Cont(`) for ` < k

X
ab̂ab′ = 0 = X

ab̂a′b

for a 6= a′ ∈ [m], b 6= b′ ∈ [n]

}
Match(2)

∑
a′ Aaa′X

p̂a′b
=

∑
b′ Xp̂ab′Bb′b

for |p| < k − 1, a ∈ [m], b ∈ [n]

}
Comp(`) for ` < k

∑
a′ Ac

aa′Xp̂a′b
=

∑
b′ Xp̂ab′B

c
b′b

for |p| < k − 1, a ∈ [m], b ∈ [n]

}
Comp(`)c for ` < k

For B-ISO(k − 1/2) we require Cont(`) for all ` 6 k, i.e., additionally for ` = k.

I Remark 5.5. B-ISO(k − 1) and B-ISO(k − 1/2) are systems of boolean equations, and
the reader may wonder whether they can be solved efficiently. At first sight, it may seem
NP-complete to solve such systems (just like boolean satisfiability). However, our systems
consist of “linear” equations of the forms

∑
i∈I Xi =

∑
j∈J Xj and

∑
i∈I Xi = 0 (which is

actually a special case of the first for J = ∅) and
∑

i∈I Xi = 1. It is an easy exercise to prove
that such systems of linear boolean equations can be solved in polynomial time.

CSL’12

302 Pebble Games and Linear Equations

• ◦ • ◦ • ◦
1 1̄ 2 2̄ 3 3̄

[3] {1} {2} {3}

I

H3

O • ◦ • ◦ • ◦
1 1̄ 2 2̄ 3 3̄

∅ {2,3}{1,3}{1,2}

I

H̄3

O

Figure 1 The Cai–Fürer–Immerman gadgets.

a

b c

d
1|

1 2|1

3|1

2|2

3|2 3|3

Figure 2 Structure A.

We define a weak k-pebble game as a straightforward adaptation of the weak bijective
k-pebble game to the setting without counting, and we denote weak k-pebble equivalence as
in A ≡<k

L B.

I Theorem 5.6. W.r.t. boolean arithmetic:
(a) B-ISO(k − 1) has a solution if, and only if, A ≡<k

L B.
(b) B-ISO(k − 1/2) has a solution if, and only if, A ≡k

L B.

6 The gap

Based on a construction due to Cai, Fürer, and Immerman [4], for k > 3 we construct graphs
showing that A ≡<k

C B 6⇒ A ≡k
C B, and that A ≡k−1

C B 6⇒ A ≡<k
C B.

I Example 6.1. For every k > 3, there are graphs A and B such that A ≡k−1
C B but

A 6≡<k
C B.
We describe the graphs A and B for k = 4; the adaptation of the construction to

other k is straightforward. The graphs are the straight and the twisted version of the
Cai–Fürer–Immerman companions of the 4-clique.

We use copies of the standard degree 3 gadget H3 and its dual H̄3 shown in Figure 1. We
think of these as coloured graphs where the colours distinguish inner vertices (marked I) as
well as outer vertices (marked O) as well as the three pairs of outer vertices. This is without
loss of generality, since we may eliminate colours, e.g., by attaching simple, disjoint paths of
different lengths to the members of each group of vertices. The non-trivial automorphisms of
this decorated variant of H3 and H̄3 precisely allow for simultaneous swaps within exactly
two pairs of outer vertices.

Let A consist of four decorated copies of H3, copies a, b, c, d say, that are linked by edges
in corresponding outer nodes as shown in Figure 2. B consists of three decorated copies of
H3 (labelled a, b, c) and one of H̄3 (labelled d), and linked in the same manner.

It can be shown that player I has a winning strategy in the weak bijective 4-pebble game
on A,B, whereas player II has a winning strategy in the bijective 3-pebble game.

M. Grohe and M. Otto 303

I Example 6.2. For every k > 3, there are graphs A and B such that A ≡<k
C B but A 6≡k

C B.
We describe the graphs for k = 3. We use variants of A and B as in the last example,

but with one marked inner node: in both A and B we mark the inner node (a, [3]) by a
new colour (which can be eliminated by attaching a path of some characteristic length, as
observed above). We denote these modified structures as A∗ and B∗.

Then it can be shown that player I has a winning strategy in the bijective 3-pebble game
on A∗,B∗, whereas player II has a winning strategy in the weak bijective 3-pebble game.

References

1 A. Atserias and E. Maneva. Sherali–Adams relaxations and indistinguishability in counting
logics. In Innovations in Theoretical Computer Science (ITCS), 2012.

2 D. Bienstock and N. Ozbay. Tree-width and the Sherali-Adams operator. Discrete Optim-
ization, 1:13–21, 2004.

3 J. Buresh-Oppenheim, N. Galesi, S. Hoory, A. Magen, and T. Pitassi. Rank bounds and
integrality gaps for cutting planes procedures. In Proceedings of the 43rd Annual IEEE
Symposium on Foundations of Computer Science, pages 318–327, 2003.

4 J. Cai, M. Fürer, and N. Immerman. An optimal lower bound on the number of variables
for graph identification. Combinatorica, 12:389–410, 1992.

5 M. Charikar, K. Makarychev, and Y. Makarychev. Integrality gaps for Sherali-Adams
relaxations. In Proceedings of the 41st ACM Symposium on Theory of Computing, pages
283–292, 2009.

6 H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer-Verlag, 2nd edition, 1999.
7 E. Grädel, P.G. Kolaitis, L. Libkin, M. Marx, J. Spencer, M.Y. Vardi, Y. Venema, and

S. Weinstein. Finite Model Theory and Its Applications. Springer-Verlag, 2007.
8 E. Grädel and M. Otto. Inductive definability with counting on finite structures. In

E. Börger, G. Jäger, H. Kleine Büning, S. Martini, and M.M. Richter, editors, Computer
Science Logic, 6th Workshop, CSL ‘92, San Miniato 1992, Selected Papers, volume 702 of
Lecture Notes in Computer Science, pages 231–247. Springer-Verlag, 1993.

9 M. Grohe. Fixed-point definability and polynomial time on graphs with excluded minors.
In Proceedings of the 25th IEEE Symposium on Logic in Computer Science, 2010.

10 M. Grohe and M. Otto. Pebble games and linear equations, 2012. Full version of this paper.
Available on arXiv, arXiv:1204.1990.

11 L. Hella. Logical hierarchies in PTIME. In Proceedings of the 6th IEEE Symposium on
Logic in Computer Science, pages 360–368, 1992.

12 N. Immerman. Descriptive Complexity. Springer-Verlag, 1999.
13 N. Immerman and E. Lander. Describing graphs: A first-order approach to graph canoniz-

ation. In A. Selman, editor, Complexity theory retrospective, pages 59–81. Springer-Verlag,
1990.

14 B. Laubner. Capturing polynomial time on interval graphs. In Proceedings of the 25th
IEEE Symposium on Logic in Computer Science, pages 199–208, 2010.

15 L. Libkin. Elements of Finite Model Theory. Springer-Verlag, 2004.
16 C. Mathieu and A. Sinclair. Sherali-Adams relaxations of the matching polytope. In

Proceedings of the 41st ACM Symposium on Theory of Computing, pages 293–302, 2009.
17 M. Otto. Bounded variable logics and counting – A study in finite models, volume 9 of

Lecture Notes in Logic. Springer-Verlag, 1997.
18 M. Ramana, E. Scheinerman, and D. Ullman. Fractional isomorphism of graphs. Discrete

Mathematics, 132:247–265, 1994.

CSL’12

304 Pebble Games and Linear Equations

19 G. Schoenebeck. Linear level Lasserre lower bounds for certain k-CSPs. In Proceedings of
the 49th Annual IEEE Symposium on Foundations of Computer Science, pages 593–602,
2008.

20 G. Schoenebeck, L. Trevisan, and M. Tulsiani. Tight integrality gaps for Lovász-Schrijver
LP relaxations of vertex cover and max cut. In Proceedings of the 39th ACM Symposium
on Theory of Computing, pages 302–310, 2007.

21 H.D. Sherali and W.P. Adams. A hierarchy of relaxations between the continuous and
convex hull representations for zero-one programming problems. SIAM Journal on Discrete
Mathematics, 3:411, 1990.

Pebble Games and Linear Equations
Martin Grohe1 and Martin Otto∗2

1 Humboldt-Universität zu Berlin, Germany
grohe@informatik.hu-berlin.de

2 Technische Universität Darmstadt, Germany
otto@mathematik.tu-darmstadt.de

Abstract
We give a new, simplified and detailed account of the correspondence between levels of the Sherali–
Adams relaxation of graph isomorphism and levels of pebble-game equivalence with counting
(higher-dimensional Weisfeiler–Lehman colour refinement). The correspondence between basic
colour refinement and fractional isomorphism, due to Ramana, Scheinerman and Ullman [18], is
re-interpreted as the base level of Sherali–Adams and generalised to higher levels in this sense
by Atserias and Maneva [1], who prove that the two resulting hierarchies interleave. In carrying
this analysis further, we here give (a) a precise characterisation of the level k Sherali–Adams
relaxation in terms of a modified counting pebble game; (b) a variant of the Sherali–Adams
levels that precisely match the k-pebble counting game; (c) a proof that the interleaving between
these two hierarchies is strict. We also investigate the variation based on boolean arithmetic
instead of real/rational arithmetic and obtain analogous correspondences and separations for
plain k-pebble equivalence (without counting). Our results are driven by considerably simplified
accounts of the underlying combinatorics and linear algebra.

1998 ACM Subject Classification F.4.1, G.2.2

Keywords and phrases Finite model theory, finite variable logics, graph isomorphism, Weisfeiler-
Lehman algorithm, linear programming, Sherali–Adams hierarchy

Digital Object Identifier 10.4230/LIPIcs.CSL.2012.289

1 Introduction

We study a surprising connection between equivalence in finite variable logics and a linear
programming approach to the graph isomorphism problem. This connection has recently
been uncovered by Atserias and Maneva [1], building on earlier work of Ramana, Scheinerman
and Ullman [18] that just concerns the 2-variable case.

Finite variable logics play a central role in finite model theory. Most important for
this paper are finite variable logics with counting, which have been specifically studied
in connection with the question for a logical characterisation of polynomial time and in
connection with the graph isomorphism problem (e.g. [4, 8, 9, 13, 14, 17]). Equivalence in
finite variable logics can be characterised in terms of simple combinatorial games known as
pebble games. Specifically, Ck-equivalence can be characterised by the bijective k-pebble game
introduced by Hella [11]. Cai, Fürer and Immerman [4] observed that Ck-equivalence exactly
corresponds to indistinguishability by the k-dimensional Weisfeiler-Lehman (WL) algorithm,1

∗ This Martin gratefully acknowledges the other Martin’s academic hospitality at HU Berlin during his
sabbatical in the winter 2011/12.

1 The dimensions of the WL algorithm are counted differently in the literature; what we call “k-dimensional”
here is sometimes called “(k − 1)-dimensional”.

© Martin Grohe and Martin Otto;
licensed under Creative Commons License NC-ND

Computer Science Logic 2012 (CSL’12).
Editors: Patrick Cégielski, Arnaud Durand; pp. 289–304

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2012.289
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

290 Pebble Games and Linear Equations

a combinatorial graph isomorphism algorithm introduced by Babai, who attributed it to
work of Weisfeiler and Lehman in the 1970s. The 2-dimensional version of the WL algorithm
precisely corresponds to an even simpler isomorphism algorithm known as colour refinement.

The isomorphisms between two graphs can be described by the integral solutions of a
system of linear equations. If we have two graphs with adjacency matrices A and B, then
each isomorphism from the first to the second corresponds to a permutation matrix X such
that XtAX = B, or equivalently

AX = XB. (1)

If we view the entries of X as variables, this equation corresponds to a system of linear
equations. We can add inequalities that force X to be a permutation matrix and obtain
a system ISO of linear equations and inequalities whose integral solutions correspond to
the isomorphisms between the two graphs. In particular, the system ISO has an integral
solution if, and only if, the two graphs are isomorphic.

What happens if we drop the integrality constraints, that is, we admit arbitrary real
solutions of the system ISO? We can ask for doubly stochastic matrices X satisfying equation
(1). (A real matrix is doubly stochastic if its entries are non-negative and all row sums and
column sums are one.) Ramana, Scheinerman and Ullman [18] proved a beautiful result that
establishes a connection between linear algebra and logic: the system ISO has a real solution
if, and only if, the colour refinement algorithm does not distinguish the two graphs with
adjacency matrices A and B. Recall that the latter is equivalent to the two graphs being
C2-equivalent.

To bridge the gap between integer linear programs and their LP-relaxations, researchers
in combinatorial optimisation often add additional constraints to the linear programs to bring
them closer to their integer counterparts. The Sherali–Adams hierarchy [21] of relaxations
gives a systematic way of doing this. For every integer linear program IL in n variables and
every positive integer k, there is a rank-k Sherali–Adams relaxation IL(k) of IL, such that
IL(1) is the standard LP-relaxation of IL where all integrality constraints are dropped and
IL(n) is equivalent to IL. There is a considerable body of research studying the strength of
the various levels of this and related hierarchies (e.g. [2, 3, 5, 16, 20, 19]).

Quite surprisingly, Atserias and Maneva [1] were able to lift the Ramana–Scheinerman–
Ullman result, which we may now restate as an equivalence between ISO(1) and C2-
equivalence, to a close correspondence between the higher levels of the Sherali–Adams
hierarchy for ISO and the logics Ck. They proved for every k ≥ 2:
1. if ISO(k) has a (real) solution, then the two graphs are Ck-equivalent;
2. if the two graphs are Ck-equivalent, then ISO(k − 1) has a solution.
Atserias and Maneva used this results to transfer results about the logics Ck to the world of
polyhedral combinatorics and combinatorial optimisation, and conversely, results about the
Sherali–Adams hierarchy to logic.

Atserias and Maneva [1] left open the question whether the interleaving between the
levels of the Sherali–Adams hierarchy and the finite-variable-logic hierarchy is strict or
whether either the correspondence between Ck-equivalence and ISO(k) or the correspondence
between Ck-equivalence and ISO(k − 1) is exact. Note that for k = 2 the correspondence
between Ck-equivalence and ISO(k − 1) is exact by the Ramana–Scheinerman–Ullman
theorem. We prove that for all k ≥ 3 the interleaving is strict. However, we can prove an
exact correspondence between ISO(k − 1) and a variant of the bijective k-pebble game that
characterises Ck-equivalence. This variant, which we call the weak bijective k-pebble game,
is actually equivalent to a game called (k − 1)-sliding game by Atserias and Maneva.

M. Grohe and M. Otto 291

Maybe most importantly, we prove that a natural combination of equalities from ISO(k)
and ISO(k−1) gives a linear program ISO(k−1/2) that characterises Ck-equivalence exactly.

To obtain these results, we give simple new proofs of the theorems of Ramana, Scheinerman
and Ullman and of Atserias and Maneva. Whereas the previous proofs use two non-trivial
results from linear algebra, the Perron–Frobenius Theorem (about the eigenvalues of positive
matrices) and the Birkhoff–von Neumann Theorem (stating that every doubly stochastic
matrix is a convex combination of permutation matrices), our proofs only use elementary
linear algebra. This makes them more transparent and less mysterious (at least to us).

In fact, the linear algebra we use is so simple that much of it can be carried out not
only over the field of real numbers, but over arbitrary semirings. By using similar algebraic
arguments over the boolean semiring (with disjunction as addition and conjunction as
multiplication), we obtain analogous results to those for Ck-equivalence for the ordinary
k-variable logic Lk, characterising Lk-equivalence, i.e., k-pebble game equivalence without
counting, by systems of ‘linear’ equations over the boolean semiring.

For the ease of presentation, we have decided to present our results only for undirected
simple graphs. It is easy to extend all results to relational structures with at most binary
relations. Atserias and Maneva did this for their results, and for ours the extension works
analogously. An extension to structures with relations of higher arities also seems possible,
but is more complicated and comes at the price of loosing some of the elegance of the results.

Due to space limitations, we have to omit many details and proofs in this conference version
of the paper. They can be found in the full version of the paper [10]. The present version
of the paper contains a fairly complete account of our proof of the Ramana–Scheinerman–
Ullman theorem, including the linear algebra that is also underlying they higher-dimensional
results. Most proofs regarding the correspondence between the Sherali–Adams hierarchy and
Ck-equivalence are omitted.

2 Finite variable logics and pebble games

We assume the reader is familiar with the basics of first-order logic FO. We almost exclusively
consider first-order logic over finite graphs, which we view as finite relational structures
with one binary relation. We assume graphs to be undirected and loop-free. For every
positive integer k, we let Lk be the fragment of FO consisting of all formulae that contain
at most k distinct variables. We let Ck be the extension of Lk by counting quantifiers
∃≥n, where∃≥nxϕ means that there are at least n elements x such that ϕ is satisfied. Lk-
equivalence of structures A,B is denoted by A ≡k

L B and Ck-equivalence by A ≡k
C B. Both

equivalences can be characterised in terms of pebble games. We briefly sketch the bijective
k-pebble game [11] that characterises Ck-equivalence. The game is played by two players on a
pair A,B of structures. A play of the game consists of a (possibly infinite) sequence of rounds.
In each round, player I picks up one of his pebbles, and player II picks up her corresponding
pebble. Then player II chooses a bijection f between A and B (if no such bijection exists,
that is, if the structures have different cardinalities, player II immediately looses). Then
player I places his pebble on an element a of A, and player II places her pebble on f(a).
Note that after each round r there is a subset p ⊆ A×B consisting of the at most k pairs of
elements on which the pairs of corresponding pebbles are placed. We call p the position after
round r. Player I wins the play if every position that occurs is a local isomorphism, that is, a
local mapping from A to B that is injective and preserves membership and non-membership
in all relations (adjacency and non-adjacecny if A and B are graphs). Then A ≡k

C B if, and
only if, player II has a winning strategy for the game.

CSL’12

292 Pebble Games and Linear Equations

Ck-equivalence also corresponds to a simple combinatorial algorithm for graph isomorphism
testing known as the Weisfeiler-Lehman algorithm.

We refer the reader to the textbooks [6, 7, 12, 15] and the monograph [17] for a more
thorough exposition of the material sketched here.

3 Basic combinatorics and linear algebra

We consider matrices with entries in B = {0, 1}, Q or R. A matrix X ∈ Rm,n with m rows
and n columns has entry Xij in row i ∈ [m] = {1, . . . ,m} and column j ∈ [n] = {1, . . . , n}.
We write En for the n-dimensional unit matrix.

We write X > 0 to say that (the real or rational) matrix X has only non-negative entries,
and X > 0 to say that all entries are strictly positive. We also speak of non-negative or
strictly positive matrices in this sense. For a boolean matrix, strict positivity, X > 0 means
that all entries are 1. A square n×n-matrix is doubly stochastic if its entries are non-negative
and if the sum of entries across every row and column is 1. Permutation matrices are doubly
stochastic matrices over {0, 1}, with precisely one 1 in every row and in every column.

It will be useful to have the shorthand notation XD1D2 = 0 for the assertion that
Xd1d2 = 0 for all d1 ∈ D1, d2 ∈ D2.

3.1 Decomposition into irreducible blocks

With X ∈ Rn,n associate the directed graph G(X) := ([n], {(i, j) : Xij 6= 0}). The strongly
connected components of G(X) induce a partition of the set [n] = {1, . . . , n} of rows/columns
of X. X is called irreducible if this partition has just the set [n] itself.

Note that X is irreducible iff P tXP is irreducible for every permutation matrix P .

I Observation 3.1. Let X ∈ Rn,n > 0 with strictly positive diagonal entries. If X is
irreducible, then all powers X` for ` > n− 1 have non-zero entries throughout. Moreover, if
X is irreducible, then so is X` for all ` > 1.

Let us call two matrices Z,Z ′ ∈ Rn,n permutation-similar or Sn-similar, Z ∼Sn
Z ′, if

Z ′ = P tZP for some permutation matrix P , i.e., if one is obtained from the other by a
coherent permutation of rows and columns.

I Lemma 3.2. Every symmetric Z ∈ Rn,n > 0 is permutation-similar to some block diagonal
matrix diag(Z1, . . . , Zs) with irreducible blocks Zi ∈ Rni,ni .

The permutation matrix P corresponding to the row- and column-permutation p ∈ Sn that
puts Z into block diagonal form P tZP = diag(Z1, . . . , Zs) with irreducible blocks, is unique
up to an outer permutation that re-arranges the block intervals ([ki + 1, ki + ni])16i6s where
ki =

∑
j<i nj, and a product of inner permutations within each one of these s blocks.

The underlying partition [n] =
⋃̇

16i6sDi where Di := p([ki +1, ki +ni]) for ki =
∑

j<i nj ,
is uniquely determined by Z.2

In the following we refer to the partition induced by a symmetric matrix Z.

2 Here we regard two partitions as identical if they have the same partition sets, i.e., we ignore their
indexing/enumeration.

M. Grohe and M. Otto 293

I Observation 3.3. In the situation of Lemma 3.2, the partition [n] =
⋃̇

iDi induced by the
symmetric matrix Z is the partition of [n] into the vertex sets of the connected components
of G(Z). Then, for every pair i 6= j, ZDiDj

= 0, while all the minors ZDiDi
are irreducible.3

If, moreover, Z has strictly positive diagonal entries, then the partition induced by Z is
the same as that induced by Z`, for any ` > 1; for ` > n− 1, the diagonal blocks (Z`)DiDi

have non-zero entries throughout: (Z`)DiDi > 0 .

The last assertion says that for a symmetric n×n matrix Z with non-negative entries
and no zeroes on the diagonal, all powers Z` for ` > n− 1 are good symmetric in the sense
of the following definition.

I Definition 3.4. Let Z > 0 be symmetric with strictly positive diagonal. Then Z is called
good symmetric if w.r.t. the partition [n] =

⋃̇
iDi induced by Z, all ZDiDi

> 0.
More generally, a not necessarily symmetric matrix X > 0 without null rows or columns

is good if Z = XXt and Z ′ = XtX are good in the above sense.

The importance of this notion lies in the fact that, as observed above, for an arbitrary
symmetric n×n matrix Z > 0 without zeroes on the diagonal, the partition induced by Z is
the same as that induced by the good symmetric matrix Ẑ := Zn−1; and, as for any good
matrix, this partition can simply be read off from Ẑ: i, j ∈ [n] are in the same partition set
if, and only if, Ẑij 6= 0.

I Definition 3.5. Consider partitions [n] =
⋃̇

i∈IDi and [m] =
⋃̇

i∈ID
′
i of the sets [n] and

[m] with the same number of partition sets. We say that these two partitions are X-related
for some matrix X ∈ Rn,m if
(i) X > 0 has no null rows or columns, and
(ii) XDiDj

′ = 0 for every pair of distinct indices i, j ∈ I.

Note that partitions that are X-related are Xt-related in the opposite direction. More
importantly, each one of the X/Xt-related partitions can be recovered from the other one
through X according to

D′i = {d′ ∈ [m] : Xdd′ > 0 for some d ∈ Di},
Di = {d ∈ [n] : Xdd′ > 0 for some d′ ∈ D′i}.

For a more algebraic treatment, we associate with the partition sets Di of a partition
[n] =

⋃̇
i∈IDi the characteristic vectors di with entries 1 and 0 according to whether the

corresponding component belongs to Di:

di =
∑

d∈Di
ed,

where ed is the d-th standard basis vector. In terms of these characteristic vectors di for
[n] =

⋃̇
i∈IDi and d′i for [m] =

⋃̇
i∈ID

′
i, the X/Xt-relatedness of these partitions means that

D′i = {d′ ∈ [m] : (Xtdi)d′ > 0},
Di = {d ∈ [n] : (Xd′i)d > 0}.

3 Note that this does not depend on the enumeration of the partition set Di, because irreducibility is
invariant under permutation-similarity.

CSL’12

294 Pebble Games and Linear Equations

I Lemma 3.6. If two partitions [n] =
⋃̇

i∈IDi and [n] =
⋃̇

i∈ID
′
i of the same set [n] are

X-related for some doubly stochastic matrix X ∈ Rn,n, then |Di| = |D′i| for all i ∈ I, and
for the characteristic vectors di and d′i of the partition sets Di and D′i

di = Xd′i and d′i = Xtdi.

Proof. Observe that for all d ∈ [n] we have 0 ≤ (Xd′i)d =
∑

d′∈D′
i
Xdd′ ≤ 1. It follows

immediately from the definition of X-relatedness that (Xd′i)d = 0 for all d 6∈ Di. Therefore,

|Di| >
∑

d∈Di

(Xd′i)d =
∑

d∈[n]

(Xd′i)d =
∑

d′∈D′
i

∑
d∈[n]

Xdd′ = |D′i|.

Similarly, 0 ≤ (Xtdi)d′ ≤ 1 for d′ ∈ [n], and |D′i| ≥
∑

d′∈D′
i
(Xtdi)d′ = |Di|. Together,

we obtain

|Di| =
∑

d∈Di

(Xd′i)d = |D′i| =
∑

d′∈D′
i

(Xtdi)d′ .

As all summands are bounded by 1, this implies (Xd′i)d = 1 for all d ∈ Di and (Xtdi)d′ = 1
for all d′ ∈ Di. J

I Lemma 3.7. Let X > 0 be an m×n matrix without null rows or columns. Then the m×m
matrix Z := XXt and the n×n matrix Z ′ := XtX are symmetric with positive entries on
their diagonals. Moreover, the (unique) partitions of [m] and [n] that are induced by Z and
Z ′, respectively, are X/Xt-related.4

Proof. It is obvious that Z and Z ′ are symmetric with positive diagonal entries. Let
partitions [m] =

⋃̇
i∈IDi and [n] =

⋃̇
i∈I′D′i be obtained from decompositions of Z and Z ′

into irreducible blocks. We need to show that the non-zero entries in X give rise to a coherent
bijection between the index sets I and I ′ of the two partitions, in the sense that partition
sets Di and D′j are related if, and only if, some pair of members d ∈ Di and d′ ∈ D′j have a
positive entry Xdd′ . Then a re-numbering of one of these partitions will make them X-related
in the sense of Definition 3.5. Recall from Observation 3.3 that the Di are the vertex sets of
the connected components of G(XXt) on [m], while the D′i the are the vertex sets of the
connected components of G(XtX) on [n].

Consider the uniformly directed bipartite graph G(X) on [m] ∪̇ [n] with an edge from
i ∈ [m] to j ∈ [n] if Xij > 0. In light of the symmetry of the whole situation w.r.t. X and
Xt, it just remains to argue for instance that no i ∈ [m] can have edges into two distinct
sets of the partition [n] =

⋃̇
i∈I′D′i. But any two target nodes of edges from one and the

same i ∈ [n] are in the same connected component of G(XtX), hence in the same partition
set. J

In the situation of Lemma 3.7, powers of Z induce the same partitions as Z, and the
partitions induced by (Z`X)(Z`X)t = Z2`+1 are X/Xt-related as well as Z`X/XtZ`-related,
for all ` > 1.

For ` > n/2− 1, the matrix Z`X has no null rows or columns: else Z`X(Z`X)t = Z2`+1

would have to have a zero entry on the diagonal, contradicting the fact that this symmetric
matrix is good symmetric in the sense of Definition 3.4. The same reasoning shows that
Z`X is itself good in the sense of Definition 3.4.

4 As X/Xt-relatedness refers to partitions presented with an indexing of the partition sets, we need to
allow a suitable re-indexing for at least one of them, so as to match the other one.

M. Grohe and M. Otto 295

I Corollary 3.8. Let X > 0 be an m×n matrix without null rows or columns, Z = XXt,
Z ′ = XtX the associated symmetric matrices with non-zero entries on the diagonal. Then
for ` > m− 1, the matrix X̂ := Z`X = X(Z ′)` and its transpose X̂t = XtZ` = (Z ′)`Xt are
good and relate the partitions [m] =

⋃̇
iDi and [n] =

⋃̇
iD
′
i induced by Z and Z ′, respectively.4

Moreover,
(i) X̂DiD′

i
> 0 for all i, and

(ii) X̂DiD′
j

= 0 for all i 6= j.

Aside: boolean vs. real arithmetic
Looking at matrices with {0, 1}-entries, we may not only treat them as matrices over R as
we have done so far, but also over other fields, or as matrices over the boolean semiring
B = {0, 1} with the logical operations of ∨ for addition and ∧ for multiplication. Though not
even forming a ring, boolean arithmetic yields a very natural interpretation in the context
where we associate non-negative entries with edges, as we did in passage from X to G(X).
The ‘normalisation map’ χ : R>0 → {0, 1}, x 7→ 1 iff x > 0, relates the arithmetic of reals
x, y > 0 to boolean arithmetic in

χ(x+ y) = χ(x) ∨ χ(y) and χ(xy) = χ(x) ∧ χ(y).

This is the ‘logical’ arithmetic that supports, for instance, arguments used in Observa-
tion 3.1: for any real n×n matrix X > 0, (XX)ij =

∑
k XikXkj 6= 0 iff there is at least

one k ∈ [n] for which Xik 6= 0 and Xkj 6= 0 iff
∨

k∈[n](χ(Xik) ∧ χ(Xkj)) = 1. It is no sur-
prise, therefore, that several of the considerations apparently presented for real non-negative
matrices above, have immediate analogues for boolean arithmetic – in fact, one could argue,
that the boolean interpretation is closer to the combinatorial essence. We briefly sum up
these analogues with a view to their use in the analysis of Lk-equivalence, while the real
versions are related to Ck-equivalence. The boolean analogue of a doubly stochastic matrix
with non-negative real entries is a matrix without null rows or columns.

Also note that the definitions of irreducibility and X-relatedness are applicable to boolean
matrices without any changes. Observations 3.1 and 3.3 go through (as just indicated), and
so does Lemma 3.2. For Lemma 3.6, one may look at X-related partitions of sets [m] and [n],
where not necessarily n = m, by any boolean matrix X without null rows or columns, and
obtains the relationship between the characteristic vectors as stated there, now in terms of
boolean arithmetic – but of course we do not get any numerical equalities between the sizes
of the partition sets. Lemma 3.7, finally, applies to boolean arithmetic, exactly as stated.

I Lemma 3.9. In the sense of boolean arithmetic for matrices with entries in B = {0, 1}:
(a) Any symmetric Z ∈ Bn,n induces a unique partition of [n] for which the diagonal minors

induced by the partition sets are irreducible and the remaining blocks null; d, d′ ∈ [n] are
in the same partition set if, and only if, in the sense of boolean arithmetic (Z`)dd′ = 1
for any/all ` > n− 1.

(b) If two partitions (not necessarily of the same set) with the same number of partition sets
are related by some boolean matrix X ∈ Bm,n, then the characteristic vectors (di)i∈I

and (d′i)i∈I of the partitions are related by di = Xd′i and d′i = Xtdi in the sense of
boolean arithmetic.

(c) For any matrix X ∈ Bm,n without null rows or columns, the symmetric boolean matrices
Z = XXt and Z ′ = XtX have diagonal entries 1 and induce partitions that are X/Xt-
related, and agree with the partitions induced by higher powers of Z and Z ′ or on the
basis of Z`X and X(Z ′)` for any ` ∈ N. For ` > m− 1, n− 1, the partition blocks in Z

CSL’12

296 Pebble Games and Linear Equations

and Z ′ have entries 1 throughout, and Z`X and X(Z ′)` have entries 1 in all positions
relating elements from matching partition sets.

I Observation 3.10. For a symmetric boolean matrix Z ∈ Bn,n with Zdd = 1 for all d ∈ [n],
the characteristic vectors di of the partition [n] =

⋃̇
i∈IDi induced by Z satisfy the following

‘eigenvector’ equation in terms of boolean arithmetic:

Zdi = di (boolean), for all i ∈ I.

3.2 Eigenvalues and -vectors
I Lemma 3.11. If Z ∈ Rn,n is doubly stochastic, then it has eigenvalue 1. If Z is doubly
stochastic and irreducible with strictly positive diagonal entries, then the eigenspace for
eigenvalue 1 has dimension 1 and is spanned by the vector d := (1, . . . , 1)t.

Proof. It is obvious that d is an eigenvector of Z with eigenvalue 1. The eigenspace
with eigenvalue 1 is contained in that of Zn−1, which has entries strictly between 0 and
1 throughout if Z is irreducible with strictly positive diagonal, by Observation 3.1. For
1-dimensionality observe that all entries of Zn−1v are convex combinations of the entries of
v with coefficients strictly between 0 and 1. J

I Corollary 3.12. (a) Let Z ∈ Rn,n be doubly stochastic with positive diagonal, and [n] =⋃̇
iDi a partition with ZDiDj = 0 for i 6= j and such that the minors ZDiDi are irreducible

for all i. Then the eigenspace for eigenvalue 1 of Z is the direct sum of the 1-dimensional
subspaces spanned by the characteristic vectors di of the partition sets Di.

(b) If Z = XtX ∈ Rn,n for some doubly stochastic matrix X, then the eigenspace for
eigenvalue 1 is the direct sum of the spans of the characteristic vectors di from the
unique partition [n] =

⋃̇
iDi of [n] induced by Z according to Lemma 3.2.

3.3 Stable partitions
I Definition 3.13. Let A ∈ Rn,n and [n] =

⋃̇
i∈IDi a partition. We call this partition a

stable partition for A if there are numbers (sij)i,j∈I and (tij)i,j∈I such that for all i, j ∈ I:

d ∈ Di ⇒
∑

d′∈Dj

Add′ = sij and
∑

d′∈Dj

Ad′d = tij .

If there are sij such that
∑

d′∈Dj
Add′ = sij for all d ∈ Di, we call the partition row-stable;

similarly, for tij such that
∑

d′∈Dj
Ad′d = tij for all d ∈ Di, column-stable.

For symmetric A, column- and row-stability are equivalent (with tij = sij).
Note that the row and column sums in the definition are the Di-components of Adj and

of dt
jA = (Atdj)t, respectively. So, for instance, row stability precisely says that for all i the

vector Adi is in the span of the vectors dj .

I Lemma 3.14. Let A ∈ Rn,n commute with some symmetric matrix of the form Z =
XXt ∈ Rn,n for some doubly stochastic X ∈ Rn,n. Then the partition [n] =

⋃̇
iDi of [n]

induced by Z according to Lemma 3.2 is stable for A.

Proof. Using the characteristic vectors di of the partition sets again, we have ZAdi =
AZdi = Adi, and thus Adi is an eigenvector of Z with eigenvalue 1. Hence by Corollary 3.12,
it is in the span of the vectors dj , and this means that the partition is row stable. Column
stability is established similarly. J

M. Grohe and M. Otto 297

I Corollary 3.15. Let A commute with Z = XXt and B commute with Z ′ = XtX, where
X is doubly stochastic (cf. Lemma 3.14). Then the partitions induced by Z and Z ′, which
are X-related by Lemma 3.7, are stable for A and B, respectively.

Aside: boolean arithmetic
We give a separate elementary proof of the analogue of Lemma 3.14 for boolean arithmetic.
Here the definition of a boolean stable partition is this natural analogue of Definition 3.13.

I Definition 3.16. A partition [n] =
⋃̇

i∈IDi is boolean stable for A ∈ Bn,n if, in the sense
of boolean arithmetic,

∑
d′∈Dj

Add′ and
∑

d′∈Dj
Ad′d only depend on the set Di for which

d ∈ Di.

Note that boolean stability implies that, for the characteristic vectors di of the partition,
(Adj)d =

∑
d′∈Dj

Add′ is the same for all d ∈ Di, so that also here Adj is a boolean linear
combination of the characteristic vectors di.

I Lemma 3.17. Let A ∈ Bn,n commute, in the sense of boolean arithmetic, with some
symmetric matrix of the form Z = XXt ∈ Bn,n with entries Zdd = 1 for all d ∈ [n]. Then
the partition [n] =

⋃̇
iDi induced by Z according to Lemma 3.9 is boolean stable for A.

4 Fractional isomorphism

4.1 C2-equivalence and linear equations
The adjacency matrix of graph A is the square matrix A with rows and columns indexed
by vertices of A and entries Aaa′ = 1 if aa′ is an edge of A and Aaa′ = 0 otherwise. By
our assumption that graphs are undirected and simple, A is a symmetric square matrix
with null diagonal. It will be convenient to assume that our graphs always have an initial
segment [n] of the positive integers as their vertex set. Then the adjacency matrices are in
Bn,n ⊆ Rn,n. Throughout this subsection, we assume that A and B are graphs with vertex
set [n] and with adjacency matrices A,B, respectively. It will be notationally suggestive to
denote typical indices of matrices a, a′, . . . ∈ [n] when they are to be interpreted as vertices
of A, and b, b′, . . . ∈ [n] when they are to be interpreted as vertices of B.

Recall (from the discussion in the introduction) that two graphs A,B are isomorphic if,
and only if, there is a permutation matrix X such that AX = XB. We can rewrite this as
the following integer linear program in the variables Xab for a, b ∈ [n].

ISO
∑

b′∈[n] Xab′ =
∑

a′∈[n] Xa′b = 1,∑
a′∈[n] Aaa′Xa′b =

∑
b′∈[n] Xab′Bb′b,

Xab ≥ 0 for all a, b ∈ [n].

Then A and B are isomorphic if, and only if, ISO has an integer solution.

I Definition 4.1. Two graphs A,B are fractionally isomorphic, A ≈ B, if, and only if, the
system ISO has a real solution.

So graphs are fractionally isomorphic if, and only if, there is a doubly stochastic matrix
X such that AX = XA. Note that fractionally isomorphic graphs necessarily have the same
number of vertices (this will be different for the boolean analogue, which cannot count).

CSL’12

298 Pebble Games and Linear Equations

A stable partition of the vertex set of an undirected graph is a stable partition [n] =
⋃̇

i∈IDi

for its adjacency matrix in the sense of Definition 3.13. The characteristic parameters for a
stable partition [n] =

⋃̇
i∈IDi for A are the numbers sij = sA

ij such that sij =
∑

d′∈Dj
Add′

for all d ∈ Di. (As A is symmetric, the parameters tij of Definition 3.13 are equal to the sij .)
We call two stable partitions

⋃̇
i∈IDi for a matrix A and

⋃̇
i∈JD

′
i for a matrix B equivalent

if I = J and |Di| = |D′i| for all i ∈ I and sA
ij = sB

ij and for all i, j ∈ I.

I Lemma 4.2. A and B are C2-equivalent if, and only if, there are equivalent stable partitions⋃̇
i∈IDi for A and

⋃̇
i∈ID

′
i for B.

Proof sketch. The partition of the elements A and B according to their C2-type yields
equivalent stable partitions (two elements have the same C2-type if they satisfy the same
C2-formulae with one free variable). For the converse, it can be shown that equivalent stable
partitions give player II a winning strategy in the bijective 2-pebble game. J

I Theorem 4.3 (Ramana–Scheinerman–Ullman). Two graphs are C2-equivalent if, and only
if, they are fractionally isomorphic.

Proof. In view of Lemma 4.2, it suffices to prove that A and B have equivalent stable
partitions if, and only if, they are fractionally isomorphic.

For the forward direction, suppose that we have equivalent stable partitions
⋃̇

i∈IDi for A
and

⋃̇
i∈JD

′
i for B. For all a ∈ Di, b ∈ D′j we let Xab := δ(i, j)/ni, where ni := |Di| = |D′i|.

(Here and elsewhere we use Kronecker’s δ function defined by δ(i, j) = 1 if i = j and
δ(i, j) = 0 otherwise.) An easy calculation shows that this defines a doubly stochastic matrix
X with AX = XB, that is, a solution for ISO.

For the converse implication, suppose that X is a doubly stochastic matrix such that
AX = XB. Since A and B are symmetric, also XtA = BXt, which implies that A commutes
with Z := XXt and B with Z ′ := XtX.

From Lemma 3.14 and Corollary 3.15, the partitions [n] =
⋃̇

i∈IDi and [n] =
⋃̇

i∈ID
′
i

that are induced by the symmetric matrices Z and Z ′ are X-related and stable for A and for
B, respectively. We need to show that |Di| = |D′i| and that the partitions also agree w.r.t.
the parameters sij .

By Lemma 3.6 we have |Di| = |D′i| and di = Xd′i and d′i = Xtdi, where di and d′i for
i ∈ I are the characteristic vectors of the two partitions. Thus for all i, j ∈ I,

(d′i)tBd′j = (Xtdi)tBXtdj = dt
iXBX

tdj = dt
iAXX

tdj = dt
iAZdj = dt

iAdj ,

where the last equality follows from the fact that dj is an eigenvector of Z with eigenvalue
1 by Corollary 3.12. Note that dt

iAdj is the number of edges of A from Di to Dj . By
stability of the partition, we have sA

ij = dt
iAdj/|Di| and similarly sB

ij = (d′i)tBd′j/|D′i|, so
that sA

ij = sB
ij . J

4.2 L2-equivalence and boolean linear equations
W.r.t. an adjacency matrix A ∈ Bn,n, a boolean stable partition [n] =

⋃̇
i∈IDi has as

parameters just the boolean values ιAij defined by ιAij = 0 if ADiDj
= 0 and ιAij = 1 otherwise.

Boolean (row-)stability of the partition for A implies that ιAij = 1 if, and only if, for each
individual d ∈ Di there is at least one d′ ∈ Dj such that Add′ = 1.

To capture the situation of 2-pebble game equivalence, though, we now need to work
with similar partitions that are stable both w.r.t. A and w.r.t. to the adjacency matrix Ac of
the complement of the graph with adjacency matrix A. Here the complement of a graph

M. Grohe and M. Otto 299

A is the graph Ac with the same vertex set as A obtained by replacing edges by non-edges
and vice versa. Hence Ac

aa′ = 1 if Aaa′ = 0 and a 6= a′, and Ac
aa′ = 0 otherwise. While a

partition in the sense of real arithmetic is stable for A if, and only if, it is stable for Ac, this
is no longer the case for boolean arithmetic. Let us call a partition that is boolean stable for
both A and Ac, boolean bi-stable for A.

Then the following captures the situation of two graphs that are 2-pebble game equivalent.
We note that 2-pebble equivalence is a very rough notion of equivalence, if we look at just
simple undirected graphs – but the concepts explored here do have natural extensions to
coloured, directed graphs, and form the basis for the analysis of k-pebble equivalence, which
is non-trivial even for simple undirected graphs.

L2-equivalence of two graphs does not imply that the graphs have the same size. In the
following, we always assume that A,B are graphs with vertex sets [m], [n] respectively and
that A ∈ Bm,m and b ∈ Bn,n are their adjacency matrices. We call two bi-stable partitions
[m] =

⋃̇
i∈IDi for A (and Ac) and [n] =

⋃̇
i∈JD

′
i for B (and Bc) b-equivalent if I = J

and ιAij = ιBij and ιA
c

ij = ιB
c

ij and for all i, j ∈ I. Note that b-equivalence does not imply
|Di| = |D′i|.

I Lemma 4.4. A and B are L2-equivalent if, and only if, there are b-equivalent bi-stable
partitions [m] =

⋃̇
i∈IDi for A and [n] =

⋃̇
i∈JD

′
i for B.

I Definition 4.5. A and B are boolean isomorphic, A ≈bool B, if there is some boolean
matrix X without null rows or columns such that AX = XB and AcX = XBc.

I Theorem 4.6. Two graphs are L2-equivalent if, and only if, they are boolean isomorphic.

5 Relaxations in the style of Sherali–Adams

In this section we refine the connection between the Sherali–Adams hierarchy of LP relaxation
of the integer linear program ISO to equivalence in the finite variable counting logics.
Throughout this section, our parameter k > 2 is the number of variables available in the
logics Ck or Lk. As before, A and B are graphs with vertex sets [m] and [n], respectively,
and A and B are their adjacency matrices.

The level-(k − 1) Sherali–Adams relaxation of the integer linear program ISO is the
following linear program in the variables Xp for all p ⊆ [m]× [n] of size |p| < k. We write
p̂ab for the extension of p by the pair (a, b) (which need not be a proper extension).

ISO(k − 1) X∅ = 1 and
Xp =

∑
b′ Xp̂ab′ =

∑
a′ Xp̂a′b

for ` := |p|+ 1 < k, a ∈ [m], b ∈ [n]

 Cont(`) for ` < k

∑
a′ Aaa′X

p̂a′b
=

∑
b′ Xp̂ab′Bb′b

for ` := |p|+ 1 < k, a ∈ [m], b ∈ [n]

}
Comp(`) for ` < k

Xp ≥ 0 for |p| ≤ k − 1

We call the equations Comp(`) for 1 ≤ ` < k comaptibility equations and the equations
Cont(`) for 0 ≤ ` < k continuity equations, where we let Cont(0) be the equation X∅ = 1.
We will also consider these equations independently of ISO(k − 1), as in the next lemma.

CSL’12

300 Pebble Games and Linear Equations

I Lemma 5.1. If A ≡k
C B, then there is a non-negative solution (Xp) for the combination of

the continuity equations Cont(`) of levels ` 6 k (!) with the compatibility equations Comp(`)
of levels ` < k.

Proof. For tuples a ∈ [m]` and b ∈ [n]` of length ` ≤ k, we write tp(a) = tp(b) if A,a and
B,b satisfy the same Ck-formulae ϕ(x) (equality of Ck-types). We write p = ab to indicate
that p consist of the pairs aibi of corresponding entries in these tuples.

To define the solution, we let X∅ := 1. For p = ab, we let Xp = 0 if tp(a) 6= tp(b), and
we let Xp := 1/#b′(tp(a) = tp(b′)) otherwise. Tedious but straightforward calculations
show that this indeed defines a solution of the desired equations. J

Thus in particular, if A and B are Ck-equivalent then the system ISO(k−1) has a solution.
Unfortunately, the converse does not hold (as we will see later). The solvability of ISO(k− 1)
only implies a weaker equivalence between A and B, which we call C<k-equivalence. It is
defined in terms of a game, the weak bijective k-pebble game on A,B. The game is played by
two players. Positions of the game are sets p ⊆ [m]× [n] of size |p| ≤ k − 1, and the initial
position is ∅. A single round of the game, starting in position p, is played as follows.
1. If |p| = k − 1, player I selects a pair ab ∈ p. If |p| < k − 1, he omits this step.
2. Player II selects a bijection between [m] and [n]. If no such bijection exists, i.e., if m 6= n,

the game ends and player II loses.
3. Player I chooses a pair a′b′ from this bijection.
4. If p+ := p̂a′b′ is a local isomorphism then the new position is

p′ :=
{

(p\ab)̂a′b′ if |p| = k − 1,

p̂a′b′ if |p| < k − 1.

Otherwise, the play ends and player II loses.
Player II wins a play if it lasts forever. Structure A and B are C<k-equivalent, A ≡<k

C B, if
player II has a winning strategy for the game.

Note that the weak bijective k-pebble game requires more of the second player than
the bijective (k − 1)-pebble game, because p+ rather than just p′ is required to be a local
isomorphism. On the other hand, it requires less than the bijective k-pebble game: the
bijective k-pebble game precisely requires the second player to choose the bijection without
prior knowledge of the pair ab that will be removed from the position. A strategy for player
II in the weak version is good for the usual version if it is fully symmetric or uniform w.r.t.
the pebble pair that is going to be removed. However, this is only relevant if k ≥ 3. The
weak bijective 2-pebble game and the bijective 2-pebble game are essentially the same.

The core of the proof of the following is analogous to that of Theorem 4.3.

I Theorem 5.2. A ≡<k
C B if, and only if, ISO(k − 1) has a solution.

I Remark 5.3. The weak bijective k-pebble game is equivalent to a bisimulation-like game
with k − 1 pebbles where in each round the first player may slide a pebble along an edge of
one of the graphs and the second player has to respond by sliding the corresponding pebble
along an edge of the other graph. In this version, the game coresponds to the (k − 1)-pebble
sliding game introduced by Atserias and Maneva [1].

We will see in the next section that C<k-equivalence neither coincides with Ck−1-
equivalence nor with Ck-equivalence. Thus it remains to give a characterisation of Ck-
equivalence. By the previous theorem and the observation that Ck-equivalence is situated
between C<k-equivalence and C<k+1-equivalence, we know that we need a linear program

M. Grohe and M. Otto 301

that is “between” ISO(k − 1) and ISO(k). Surprisingly, we obtain such a linear program by
combining the two in a very simple way: we take the continuity equations from ISO(k) and
the compatibility equations from ISO(k − 1). Thus the resulting linear program, which we
call ISO(k − 1/2), has variables Xp for all p ⊆ [m]× [n] of size |p| ≤ k and consists of the
equations Cont(`) for ` ≤ k and the equations Comp(`) for ` ≤ k − 1, together with the
non-negativity constraints Xp ≥ 0. So Lemma 5.1 proves one implication of the theorem.

I Theorem 5.4. A ≡k
C B if, and only if, ISO(k − 1/2) has a solution.

5.1 Boolean arithmetic and Lk-equivalence
We saw in Section 4.2 that equations, which are direct consequences of the basic continuity
and compatibility equations w.r.t. the adjacency matrices A and B, may carry independent
weight in their boolean interpretation. This is no surprise, because the boolean reading is
much weaker, especially due to the absorptive nature of ∨, which unlike + does not allow for
inversion. AX = XB for doubly stochastic X and A,B ∈ Bn,n implies AcX = XBc.

We now augment the boolean requirements by corresponding boolean equations that
express
(a) compatibility also w.r.t. Ac and Bc, as in boolean fractional isomorphism,
(b) the new constraint Xp = 0 whenever p is not a local bijection.
In the presence of the continuity equations, which force monotonicity, it suffices for (b) to
stipulate Xaa′bb′ = 0 for all a, a′ ∈ [m], b, b′ ∈ [n] such that not a = a′ ⇔ b = b′. This is
captured by the constraint Match(2) below. So we now use the following boolean version of
the Sherali–Adams hierarchy ISO(k − 1) and ISO(k − 1/2) for k ≥ 2.

B-ISO(k − 1)

X∅ = 1 and
Xp =

∑
b′ Xp̂ab′ =

∑
a′ Xp̂a′b

for |p| < k, a ∈ [m], b ∈ [n]

 Cont(`) for ` < k

X
ab̂ab′ = 0 = X

ab̂a′b

for a 6= a′ ∈ [m], b 6= b′ ∈ [n]

}
Match(2)

∑
a′ Aaa′X

p̂a′b
=

∑
b′ Xp̂ab′Bb′b

for |p| < k − 1, a ∈ [m], b ∈ [n]

}
Comp(`) for ` < k

∑
a′ Ac

aa′Xp̂a′b
=

∑
b′ Xp̂ab′B

c
b′b

for |p| < k − 1, a ∈ [m], b ∈ [n]

}
Comp(`)c for ` < k

For B-ISO(k − 1/2) we require Cont(`) for all ` 6 k, i.e., additionally for ` = k.

I Remark 5.5. B-ISO(k − 1) and B-ISO(k − 1/2) are systems of boolean equations, and
the reader may wonder whether they can be solved efficiently. At first sight, it may seem
NP-complete to solve such systems (just like boolean satisfiability). However, our systems
consist of “linear” equations of the forms

∑
i∈I Xi =

∑
j∈J Xj and

∑
i∈I Xi = 0 (which is

actually a special case of the first for J = ∅) and
∑

i∈I Xi = 1. It is an easy exercise to prove
that such systems of linear boolean equations can be solved in polynomial time.

CSL’12

302 Pebble Games and Linear Equations

• ◦ • ◦ • ◦
1 1̄ 2 2̄ 3 3̄

[3] {1} {2} {3}

I

H3

O • ◦ • ◦ • ◦
1 1̄ 2 2̄ 3 3̄

∅ {2,3}{1,3}{1,2}

I

H̄3

O

Figure 1 The Cai–Fürer–Immerman gadgets.

a

b c

d
1|

1 2|1

3|1

2|2

3|2 3|3

Figure 2 Structure A.

We define a weak k-pebble game as a straightforward adaptation of the weak bijective
k-pebble game to the setting without counting, and we denote weak k-pebble equivalence as
in A ≡<k

L B.

I Theorem 5.6. W.r.t. boolean arithmetic:
(a) B-ISO(k − 1) has a solution if, and only if, A ≡<k

L B.
(b) B-ISO(k − 1/2) has a solution if, and only if, A ≡k

L B.

6 The gap

Based on a construction due to Cai, Fürer, and Immerman [4], for k > 3 we construct graphs
showing that A ≡<k

C B 6⇒ A ≡k
C B, and that A ≡k−1

C B 6⇒ A ≡<k
C B.

I Example 6.1. For every k > 3, there are graphs A and B such that A ≡k−1
C B but

A 6≡<k
C B.
We describe the graphs A and B for k = 4; the adaptation of the construction to

other k is straightforward. The graphs are the straight and the twisted version of the
Cai–Fürer–Immerman companions of the 4-clique.

We use copies of the standard degree 3 gadget H3 and its dual H̄3 shown in Figure 1. We
think of these as coloured graphs where the colours distinguish inner vertices (marked I) as
well as outer vertices (marked O) as well as the three pairs of outer vertices. This is without
loss of generality, since we may eliminate colours, e.g., by attaching simple, disjoint paths of
different lengths to the members of each group of vertices. The non-trivial automorphisms of
this decorated variant of H3 and H̄3 precisely allow for simultaneous swaps within exactly
two pairs of outer vertices.

Let A consist of four decorated copies of H3, copies a, b, c, d say, that are linked by edges
in corresponding outer nodes as shown in Figure 2. B consists of three decorated copies of
H3 (labelled a, b, c) and one of H̄3 (labelled d), and linked in the same manner.

It can be shown that player I has a winning strategy in the weak bijective 4-pebble game
on A,B, whereas player II has a winning strategy in the bijective 3-pebble game.

M. Grohe and M. Otto 303

I Example 6.2. For every k > 3, there are graphs A and B such that A ≡<k
C B but A 6≡k

C B.
We describe the graphs for k = 3. We use variants of A and B as in the last example,

but with one marked inner node: in both A and B we mark the inner node (a, [3]) by a
new colour (which can be eliminated by attaching a path of some characteristic length, as
observed above). We denote these modified structures as A∗ and B∗.

Then it can be shown that player I has a winning strategy in the bijective 3-pebble game
on A∗,B∗, whereas player II has a winning strategy in the weak bijective 3-pebble game.

References

1 A. Atserias and E. Maneva. Sherali–Adams relaxations and indistinguishability in counting
logics. In Innovations in Theoretical Computer Science (ITCS), 2012.

2 D. Bienstock and N. Ozbay. Tree-width and the Sherali-Adams operator. Discrete Optim-
ization, 1:13–21, 2004.

3 J. Buresh-Oppenheim, N. Galesi, S. Hoory, A. Magen, and T. Pitassi. Rank bounds and
integrality gaps for cutting planes procedures. In Proceedings of the 43rd Annual IEEE
Symposium on Foundations of Computer Science, pages 318–327, 2003.

4 J. Cai, M. Fürer, and N. Immerman. An optimal lower bound on the number of variables
for graph identification. Combinatorica, 12:389–410, 1992.

5 M. Charikar, K. Makarychev, and Y. Makarychev. Integrality gaps for Sherali-Adams
relaxations. In Proceedings of the 41st ACM Symposium on Theory of Computing, pages
283–292, 2009.

6 H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer-Verlag, 2nd edition, 1999.
7 E. Grädel, P.G. Kolaitis, L. Libkin, M. Marx, J. Spencer, M.Y. Vardi, Y. Venema, and

S. Weinstein. Finite Model Theory and Its Applications. Springer-Verlag, 2007.
8 E. Grädel and M. Otto. Inductive definability with counting on finite structures. In

E. Börger, G. Jäger, H. Kleine Büning, S. Martini, and M.M. Richter, editors, Computer
Science Logic, 6th Workshop, CSL ‘92, San Miniato 1992, Selected Papers, volume 702 of
Lecture Notes in Computer Science, pages 231–247. Springer-Verlag, 1993.

9 M. Grohe. Fixed-point definability and polynomial time on graphs with excluded minors.
In Proceedings of the 25th IEEE Symposium on Logic in Computer Science, 2010.

10 M. Grohe and M. Otto. Pebble games and linear equations, 2012. Full version of this paper.
Available on arXiv, arXiv:1204.1990.

11 L. Hella. Logical hierarchies in PTIME. In Proceedings of the 6th IEEE Symposium on
Logic in Computer Science, pages 360–368, 1992.

12 N. Immerman. Descriptive Complexity. Springer-Verlag, 1999.
13 N. Immerman and E. Lander. Describing graphs: A first-order approach to graph canoniz-

ation. In A. Selman, editor, Complexity theory retrospective, pages 59–81. Springer-Verlag,
1990.

14 B. Laubner. Capturing polynomial time on interval graphs. In Proceedings of the 25th
IEEE Symposium on Logic in Computer Science, pages 199–208, 2010.

15 L. Libkin. Elements of Finite Model Theory. Springer-Verlag, 2004.
16 C. Mathieu and A. Sinclair. Sherali-Adams relaxations of the matching polytope. In

Proceedings of the 41st ACM Symposium on Theory of Computing, pages 293–302, 2009.
17 M. Otto. Bounded variable logics and counting – A study in finite models, volume 9 of

Lecture Notes in Logic. Springer-Verlag, 1997.
18 M. Ramana, E. Scheinerman, and D. Ullman. Fractional isomorphism of graphs. Discrete

Mathematics, 132:247–265, 1994.

CSL’12

304 Pebble Games and Linear Equations

19 G. Schoenebeck. Linear level Lasserre lower bounds for certain k-CSPs. In Proceedings of
the 49th Annual IEEE Symposium on Foundations of Computer Science, pages 593–602,
2008.

20 G. Schoenebeck, L. Trevisan, and M. Tulsiani. Tight integrality gaps for Lovász-Schrijver
LP relaxations of vertex cover and max cut. In Proceedings of the 39th ACM Symposium
on Theory of Computing, pages 302–310, 2007.

21 H.D. Sherali and W.P. Adams. A hierarchy of relaxations between the continuous and
convex hull representations for zero-one programming problems. SIAM Journal on Discrete
Mathematics, 3:411, 1990.

Herbrand-Confluence for Cut Elimination in
Classical First Order Logic
Stefan Hetzl1 and Lutz Straßburger2

1 Institute of Discrete Mathematics and Geometry
Vienna University of Technology
Wiedner Hauptstraße 8-10, 1040 Vienna, Austria
hetzl@logic.at

2 INRIA Saclay – Île-de-France
Ecole Polytechnique, LIX
Rue de Saclay, 91128 Palaiseau Cedex, France
lutz@lix.polytechnique.fr

Abstract
We consider cut-elimination in the sequent calculus for classical first-order logic. It is well known
that this system, in its most general form, is neither confluent nor strongly normalizing. In
this work we take a coarser (and mathematically more realistic) look at cut-free proofs. We
analyze which witnesses they choose for which quantifiers, or in other words: we only consider
the Herbrand-disjunction of a cut-free proof. Our main theorem is a confluence result for a
natural class of proofs: all (possibly infinitely many) normal forms of the non-erasing reduction
lead to the same Herbrand-disjunction.

1998 ACM Subject Classification F.4.1. Mathematical Logic, F.4.2. Grammars and Other
Rewriting Systems, F.1.1. Models of Computation

Keywords and phrases proof theory, first-order logic, tree languages, term rewriting, semantics
of proofs

Digital Object Identifier 10.4230/LIPIcs.CSL.2012.320

1 Introduction

The constructive content of proofs has always been a central topic of proof theory and it
is also one of the most important influences that logic has on computer science. Classical
logic is widely used and presents interesting challenges when it comes to understanding the
constructive content of its proofs. These challenges have therefore attracted considerable
attention, see, for example, [24, 11, 10], [6], [26, 27], [8], [21], or [5], for different investigations
in this direction.

A well-known, but not yet well-understood, phenomenon is that a single classical proof
usually allows several different constructive readings. From the point of view of applications
this means that we have a choice among different programs that can be extracted. In [25]
the authors show that two different extraction methods applied to the same proof produce
two programs, one of polynomial and one of exponential average-case complexity. This
phenomenon is further exemplified by case studies in [26, 3, 4] as well as the asymptotic
results [2, 15]. The reason for this behavior is that classical “proofs often leave algorithmic
detail underspecified” [1].

On the level of cut-elimination in the sequent calculus this phenomenon is reflected by the
fact that the standard proof reduction without imposing any strategy is not confluent. In this

© Stefan Hetzl and Lutz Straßburger;
licensed under Creative Commons License NC-ND

Computer Science Logic 2012 (CSL’12).
Editors: Patrick Cégielski, Arnaud Durand; pp. 320–334

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2012.320
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

S. Hetzl and L. Straßburger 321

paper we consider cut-elimination in classical first-order logic and treat the question which
cut-free proofs one can obtain (by the strategy-free rewriting system) from a single proof
with cuts. As our aim is to compare cut-free proofs we need a notion of equivalence of proofs:
clearly the syntactic equality makes more differences than those which are mathematically
interesting. Being in a system with quantifiers, a natural and more realistic choice is to
consider two cut-free proofs equivalent if they choose the same terms for the same quantifiers,
in other words: if they have the same Herbrand-disjunction.

A cut-reduction relation will then be called Herbrand-confluent if all its normal forms
have the same Herbrand-disjunction. The main result of this paper is that, for a natural
class of proofs, the standard reduction without erasing of subproofs is Herbrand-confluent.
This result is surprising as this reduction is neither confluent nor strongly normalizing and
may produce normal forms of arbitrary size (which—as our result shows—arise only from
repetitions of the same instances).

As a central proof technique we use rigid tree languages which have been introduced
in [19] with applications in verification (e.g. of cryptographic protocols as in [20]) as their
primary purpose. To a proof we will associate a rigid tree grammar whose language is in-
variant under non-erasing cut-elimination and hence equal to the only obtainable Herbrand-
disjunction. This property suggests the new notion of Herbrand-content of a proof, which is
defined as the language of the grammar of the proof, and which is a strong invariant. A side
effect of this proof technique is a combinatorial description of how the structure of a cut-free
proof is related to that of a proof with cut. Such descriptions are important theoretical
results which underlie applications such as algorithmic cut-introduction as in [18].

In Section 2 we briefly review the sequent calculus and cut-elimination for classical first-
order logic. In Section 3 we describe regular and rigid tree grammars which we relate to
proofs in Section 4. Section 5 is devoted to proving the invariance of the Herbrand-content
under duplication of subproofs, and finally, in Section 6, we collect all results together.

2 Sequent Calculus and Cut-Elimination

For the sake of simplicity, we consider only a one-sided sequent calculus and formulas in
negation normal form, but the results can be proved for a two-sided sequent calculus in the
same way.

I Definition 1. A proof is a tree of multisets of formulas. Axioms are of the form A,A for
A atomic (where A denotes the De Morgan-dual of A). The inference rules are:

Γ, A[x\α]
−−−−−−−−−−− ∀
Γ, ∀xA

Γ, A[x\t]
−−−−−−−−−− ∃
Γ, ∃xA

Γ, A,A
−−−−−−−− c

Γ, A
Γ
−−−−− w
Γ, A

Γ, A ∆, B
−−−−−−−−−−−−−−−−− ∧
Γ,∆, A ∧B

Γ, A,B
−−−−−−−−−− ∨
Γ, A ∨B

Γ, A A,∆
−−−−−−−−−−−−−−− cut

Γ,∆
where α is called eigenvariable and does not appear in Γ,∀xA and t does not contain a bound
variable. We use the notation [x\α] for the substitution that replaces x by the eigenvariable
α. Similarly, [x\t] is the substitution that replaces x with t.

The explicitly mentioned formula in a conclusion of an inference rule, like A ∨ B for ∨ is
called main formula. Analogously, the explicitly mentioned formulas in the premises of an
inference rule, like A and B for ∨, are called auxiliary formulas. In the context of a concrete
derivation we speak about main and auxiliary occurrences of inferences.

I Definition 2. A proof is called regular if different ∀-inferences have different eigenvariables.

We use the following convention: We use lowercase Greek letters α, β, γ, δ, . . . for eigen-
variables in proofs, and π, ψ, . . . for proofs. For a proof π we write EV(π) for the set of

CSL’12

322 Herbrand-Confluence for Cut Elimination in Classical First Order Logic

Axiom reduction:

ψ

Γ, A A,A
−−−−−−−−−−−−−−−− cutΓ, A

;
ψ

Γ, A

Quantifier reduction:

ψ1

∆, A[x\t]
−−−−−−−−−−− ∃
∆,∃xA

ψ2

A[x\α],Γ
−−−−−−−−−−− ∀∀xA,Γ

−−−−−−−−−−−−−−−−−−−−−−−−− cutΓ,∆

;

ψ1

∆, A[x\t]

ψ2[α\t]

A[x\t],Γ
−−−−−−−−−−−−−−−−−−−−−−−−−−−− cutΓ,∆

Propositional reduction:

ψ1

Γ, A

ψ2

∆, B
−−−−−−−−−−−−−−−−−−− ∧Γ,∆, A ∧B

ψ3

A,B,Π
−−−−−−−−−− ∨
A ∨B,Π

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cutΓ,∆,Π

;
ψ2

∆, B

ψ1

Γ, A

ψ3

A,B,Π
−−−−−−−−−−−−−−−−−−−− cut

B,Γ,Π
−−−−−−−−−−−−−−−−−−−−−−−−−−−− cutΓ,∆,Π

Contraction reduction:

ψ1

Γ, A,A
−−−−−−−− cΓ, A

ψ2

A,∆
−−−−−−−−−−−−−−−−−−− cutΓ,∆

;

ψ1

Γ, A,A

ψ2ρ
′

A,∆
−−−−−−−−−−−−−−−−−−−− cutΓ,∆, A

ψ2ρ
′′

A,∆
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cutΓ,∆,∆

========= c∗Γ,∆

Weakening reduction:

ψ1

Γ
−−−− wΓ, A

ψ2

A,∆
−−−−−−−−−−−−−−−−−−− cutΓ,∆

;

ψ1

Γ
===== w∗Γ,∆

Unary inference permutation:

ψ1

Γ′, A
−−−−− rΓ, A

ψ2

A,∆
−−−−−−−−−−−−−−−−−−− cutΓ,∆

;

ψ1

Γ′, A

ψ2

A,∆
−−−−−−−−−−−−−−−−−−− cut

Γ′,∆
−−−−−− rΓ,∆

Binary inference permutation:

ψ1

Γ′
ψ2

Γ′′, A
−−−−−−−−−−−−−−−−−− rΓ, A

ψ3

A,∆
−−−−−−−−−−−−−−−−−−−−−−−−− cutΓ,∆

;
ψ1

Γ′

ψ2

Γ′′, A

ψ3

A,∆
−−−−−−−−−−−−−−−−−−− cut

Γ′′,∆
−−−−−−−−−−−−−−−−−−−−−−−−− rΓ,∆

Figure 1 Cut-reduction steps.

eigenvariables of ∀-inferences of π. Furthermore, we write |π| for the number of inferences
in π. Our results do not depend on technical differences in the definition of the calculus
(which in classical logic are inessential) such as the choice between multiplicative and ad-
ditive rules and the differences in the cut-reduction induced by these choices. However, for
the sake of precision, let us formally define the cut-reduction we use in this paper.

S. Hetzl and L. Straßburger 323

I Definition 3. Cut-reduction is defined on regular proofs and consists of the proof rewrite
steps shown in Figure 1 (as well as all their symmetric variants), where in the contraction
reduction step ρ′ = [α\α′]α∈EV(ψ2) and ρ′′ = [α\α′′]α∈EV(ψ2) are substitutions replacing
each eigenvariable occurrence α in ψ2 by fresh copies, i.e., α′ and α′′ are fresh for the whole
proof. We write for the compatible (w.r.t. the inference rules), reflexive and transitive
closure of ;.

The above system for cut-reduction consists of purely local, minimal steps and therefore
allows the simulation of many other reduction relations. We chose to work in this system
in order to obtain invariance results of maximal strength. Among the systems that can be
simulated literally are for example all color annotations of [11] in the multiplicative version
of LK defined there. The real strength of the results in this paper lies however in the general
applicability of the used proof techniques: the extraction of a grammar from a proof (that
is described in the next sections) is possible in all versions of sequent calculus for classical
logic and in principle also in other systems like natural deduction.

3 Regular and Rigid Tree Grammars

Formal language theory constitutes one of the main areas of theoretical computer science.
Traditionally, a formal language is defined to be a set of strings but this notion can be
generalized in a straightforward way to considering a language to be a set of first-order
terms. Such tree languages possess a rich theory and many applications, see e.g. [13], [9].
In this section we introduce notions and results from the theory of tree languages that we
will use for our proof-theoretic purposes.

A ranked alphabet Σ is a finite set of symbols which have an associated arity (their rank).
We write TΣ to denote the set of all finite trees (or terms) over Σ, and we write TΣ(X) to
denote the set of all trees over Σ and a set X of variables (seen as symbols of arity 0). We
also use the notion of position in a tree, which is a list of natural numbers. We write ε for
the empty list (the root position), and we write p.q for the concatenation of lists p and q.
we write p ≤ q if p is a prefix of q and p < q if p is a proper prefix of q. Clearly, ≤ is a
partial order and < is its strict part. We write Pos(t) to denote the set of all position in a
term t ∈ TΣ(X).

I Definition 4. A regular tree grammar is a tuple G = 〈N,Σ, θ, P 〉, where N is a finite set
of non-terminal symbols, and Σ is a ranked alphabet, such that N ∩ Σ = ∅, θ is the start
symbol with θ ∈ N , and P is a finite set of production rules of the form β → t with β ∈ N
and t ∈ TΣ(N).

The derivation relation →G of a regular tree grammar G = 〈N,Σ, θ, P 〉 is defined as
follows. We have s→G r if there is a production rule β → t in P and a position p ∈ Pos(s),
such that s|p = β and r is obtained from s by replacing β at p by t. The language of G is
then defined as L(G) = {t ∈ TΣ | θ→∗G t}, where →∗G is the transitive, reflexive closure of
→G. A derivation D of a term t ∈ L(G) is a sequence t0→G t1→G . . .→G tn with t0 = θ

and tn = t. Note that a term t might have different derivations in G.
In [19] the class of rigid tree languages has been introduced with applications in verifi-

cation (e.g. of cryptographic protocols as in [20]) as primary motivation. It will turn out
that this class is appropriate for describing cut-elimination in classical first-order logic. In
contrast to [19] we do not use automata but grammars—their equivalence is shown in [17].

I Definition 5. A rigid tree grammar is a tuple 〈N,NR,Σ, θ, P 〉, where 〈N,Σ, θ, P 〉, is a

CSL’12

324 Herbrand-Confluence for Cut Elimination in Classical First Order Logic

regular tree grammar and NR ⊆ N is the set of rigid non-terminals. We speak of a totally
rigid tree grammar if NR = N . In this case we will just write 〈NR,Σ, θ, P 〉.

A derivation θ = t0→G t1→G . . .→G tn = t of a rigid tree grammar G = 〈N,NR,Σ, θ, P 〉
is a derivation in the underlying regular tree grammar satisfying the additional rigidity
condition: If there are i, j < n, a non-terminal β ∈ NR, and positions p and q such that
ti|p = β and tj |q = β then t|p = t|q. The language L(G) of the rigid tree grammar G is
the set of all terms t ∈ TΣ which can be derived under the rigidity condition. For a given
derivation D : θ = t0→G t1→G . . .→G tn = t and a non-terminal β we say that p ∈ Pos(t) is
a β-position in D if there is an i ≤ n with ti|p = β, i.e., either a production rule β → s has
been applied at p in D , or β occurs at position p in t. In the context of a given grammar G,
we sometimes write D : α→∗G t to specify that D is a derivation starting with α and ending
with the term t.

I Lemma 6. Let G = 〈N,NR,Σ, θ, P 〉 be a rigid tree grammar and let t ∈ L(G). Then
there is a derivation θ→G . . .→G t which uses at most one β-production for each β ∈ NR.

Proof. Given any derivation of t, suppose both β → s1 and β → s2 are used at positions
p1 and p2 respectively. Then by the rigidity condition t|p1 = t|p2 and we can replace the
derivation at p2 by that at p1 (or the other way round). This transformation does not violate
the rigidity condition because it only copies existing parts of the derivation. J

I Lemma 7. Let G = 〈NR,Σ, θ, P 〉 be a totally rigid tree grammar and θ 6= β ∈ NR, such
that there is exactly one t with β → t in P . If G′ = 〈NR \ {β},Σ, θ, (P \ {β → t})[β\t]〉 then
L(G) = L(G′).

Proof. If a G-derivation of a term s uses β, it must replace β by t hence s is derivable
using the productions of G′ as well. The rigidity condition is preserved as the equality
constraints of the G′-derivation are a subset of those of the G-derivation. Conversely, given
a G′-derivation of a term s we obtain a derivation of s from the productions of G by replacing
applications of δ → r[β\t] by δ → r followed by a copy of β → t for each occurrence of β
in r. Let γ1, . . . , γn be the non-terminals that appear in t. By the rigidity condition for
i ∈ {1, . . . , n} there is a unique term at all γi-positions in the derivation. Hence β fulfills
the rigidity condition as well, and we have obtained a G-derivation of s. J

I Lemma 8. If a rigid tree grammar G′ is obtained from another rigid tree grammar G by
deletion of production rules, then L(G′) ⊆ L(G).

Proof. Every G′-derivation is a G-derivation. J

I Notation 9. For a given non-terminal β and a term t, we will write β ∈ t or t 3 β for
denoting that β occurs in t.

I Definition 10. Let G be a tree grammar. A path of G is a list P of productions α1 → t1,
. . . , αn → tn with n ≥ 1 and αi+1 ∈ ti for all i ∈ {1, . . . , n − 1}. The length of a path is
|P| = n. We will also write P : α1 → t1 3 α2 → . . . 3 αn → tn to denote a path.

For a given path P : α1 → t1 3 α2 → . . . 3 αn → tn we say that α1, . . . , αn are on the
path P and write αi ∈ P for that. We also write P : α1 99K tn and P : α1 99K αn, if we
do not want to explicitly mention the intermediate steps. For a fixed grammar G, we write
α 99K β to denote that there is a path P in G with P : α 99K β.

For a set P of production rules, we write α≺P β (or simply α≺ β, when P is clear from
context) if there is a production α → t in P with β ∈ t. We write ≺+ for the transitive

S. Hetzl and L. Straßburger 325

closure of ≺, and ≺∗ for its reflexive, transitive closure. Note that α 99K β implies α≺+ β,
but not the other way around, since β could be a non-terminal with no production β → s

in P .

I Definition 11. A tree grammar 〈N,Σ, θ, P 〉 is called cyclic if α ≺+
P α for some α ∈ N ,

and acyclic otherwise.

I Lemma 12. If G is totally rigid and acyclic, then up to renaming of the non-terminals
G = 〈{α1, . . . , αn},Σ, α1, P 〉 with L(G) = {α1[α1\t1] · · · [αn\tn] | αi → ti ∈ P}.

Proof. Acyclicity permits a renaming of non-terminals, such that αi ≺+
P αj implies i < j.

Then L(G) ⊇ {α1[α1\t1] · · · [αn\tn] | αi → ti ∈ P} is obvious. For the left-to-right inclusion,
let D : α0 = s0→G . . .→G sn = s ∈ TΣ be a derivation in G. By Lemma 6 we can assume
that for each j at most one production whose left-hand side is αj is applied, say αj → tj . By
acyclicity we can rearrange the derivation so that αj → tj is only applied after αi → ti for
all i < j. For those αj which do not appear in the derivation we can insert any substitution
without changing the final term so we obtain s = α0[α0\t0] · · · [αn\tn]. J

This lemma entails that |L(G)| ≤
∏n
i=1 |{t | αi → t ∈ P}|, in particular we are dealing

with a finite language. The central questions in this context are (in contrast to the standard
setting in formal language theory) not concerned with representability but with the size of
a representation.

4 Proofs as Grammars

We will now restrict our attention to a certain class of proofs, called simple proofs below.

I Definition 13. A proof π is called simple if it is regular, the end-sequent is of the form
∃x1 · · · ∃xnA with A quantifier-free, and every cut in π whose cut-formula contains a quan-
tifier is of the following form, where B is quantifier-free:

Γ,∃xB
B[x\α],∆
∀xB,∆

∀

Γ,∆ cut
(1)

The above definition requires regularity which is a necessary assumption in the context of
cut-elimination. The restriction of the end-sequent is done for expository purposes only, and
can be extended to arbitrary sequents. The requirement of the ∀-rule being applied directly
above the cut is natural as the rule is invertible. Moreover, any proof which does not fulfill
this requirement can be pruned to obtain one that does, by simply permuting ∀-inferences
down and identifying their eigenvariables when needed. The only significant restriction is
that of disallowing quantifier alternations in the cut formulas. We conjecture that the central
results extend to the general case. However, this will require the development of an adequate
class of grammars.

I Observation 14. Simple proofs have the technically convenient property of exhibiting a
1-1 relationship between eigenvariables and cuts. For an eigenvariable α we will therefore
write ∀α for the inference introducing α and cutα for the corresponding cut.

CSL’12

326 Herbrand-Confluence for Cut Elimination in Classical First Order Logic

I Definition 15. Let π be a proof of ∃x1 · · · ∃xnA and let ψ be a subproof of π. The
Herbrand-set H(ψ, π) of ψ with respect to π is defined as follows. If ψ is an axiom, then
H(ψ, π) = ∅. If ψ is of the form

ψ′

Γ, A[xn\t]
−−−−−−−−−−−− ∃
Γ, ∃xnA

then H(ψ, π) = H(ψ′, π) ∪ {A[x\t]}. If ψ ends with any other unary inference and ψ′ is its
immediate subproof then H(ψ, π) = H(ψ′, π). If ψ ends with a binary rule and ψ′ and ψ′′
are its immediate subproofs, then H(ψ, π) = H(ψ′, π)∪H(ψ′′, π). We write H(π) for H(π, π).

I Definition 16. Let Q be an occurrence of a formula ∃xA in a proof. We define the
set tm(Q) of terms associated with Q as follows: if Q is introduced as the main formula

of a weakening, then tm(Q) = ∅. If Q is introduced by a quantifier rule
Γ, A[x\t]
−−−−−−−−−− ∃
Γ, ∃xA

then

tm(Q) = {t}. If Q is the main formula in the conclusion of a contraction, and Q1 and
Q2 are the two occurrences of the same formula in the premise that are contracted, then
tm(Q) = tm(Q1) ∪ tm(Q2). In all other cases, an inference with the occurrence Q in the
conclusion has a corresponding occurrence Q′ of the same formula in one of its premises,
and we let tm(Q) = tm(Q′).

I Definition 17. Let π be a simple proof, let α ∈ EV(π), and let Q be the occurrence of
the existentially quantified cut-formula in the premise of cutα. Then we write B(α) for the
set { [α\t] | t ∈ tm(Q) } of substitutions and we define B(π) =

⋃
α∈EV(π) B(α).

Structures similar to the above B(π) have been investigated also in [14] and [22] where
they form the basis of proof net like formalisms using local reductions for quantifiers in
classical first-order logic. Our aim in this work is however quite different: we use these
structures for a global analysis of the sequent calculus.

I Definition 18. The grammar of a simple proof π is defined to be the totally rigid grammar
G(π) = 〈NR,Σ, θ, P 〉 with

NR = EV(π) ∪ {θ}
Σ = Σ(π) ∪ {∧,∨}
P = {θ → A | A ∈ H(π)} ∪ {α→ t | [α\t] ∈ B(π)}

where Σ(π) is the signature of π, the rank of ∧ and ∨ is 2, and θ does not occur in π.

I Lemma 19. If π is a simple proof, then G(π) is acyclic.

Proof. By induction on the number of cuts in π. The grammar of a cut-free proof is trivially
acyclic. For the induction step, let r be the lowest binary inference with subproofs π1 and π2
s.t. either (i) r is a cut or (ii) r is not a cut but both π1 and π2 contain at least one cut. Let
P , P1, and P2 be the set of productions induced by the cuts in π, π1, π2, respectively. In case
(ii), ≺P = ≺P1 ∪≺P2 , which is acyclic by induction hypothesis (since EV(π1)∩EV(π2) = ∅).
In case (i), let Pr be the productions induced by the cut r, then ≺P = ≺P1 ∪ ≺P2 ∪ ≺Pr .
By induction hypothesis, ≺P1 and ≺P2 are acyclic and as the cut-formula in r contains at
most one quantifier, also ≺Pr is acyclic. Therefore, a cycle in ≺+

P must be of the form
α1 ≺∗P1

β1 ≺Pr
α2 ≺+

P2
β2 ≺Pr

α1 where α1, β1 ∈ EV(π1) and α2, β2 ∈ EV(π2). However, r
contains only one quantifier and depending on its polarity all productions in Pr lead from
π1 to π2 or from π2 to π1 but not both, so ≺P is acyclic. J

S. Hetzl and L. Straßburger 327

We now come to a central definition of this paper.

I Definition 20. For a simple proof π, we define its Herbrand-content as [[π]] = L(G(π)).

Lemma 19 together with Lemma 12 implies that the Herbrand-content of a simple proof
π with n cuts can be written as

[[π]] = {A[α1\t1] · · · [αn\tn] | A ∈ H(π), [αi\ti] ∈ B(αi)}.

Note that for cut-free π we have [[π]] = H(π), i.e. the Herbrand-content is nothing else
but the Herbrand-disjunction induced by the proof. Furthermore, the Herbrand-content
is a strong invariant: it is not changed by axiom reduction, propositional reduction and
inference permutations as those transformations do not change the grammar. Furthermore,
Lemma 7 shows that [[π]] is not changed by quantifier reduction and Lemma 8 shows that
if π π′ is a step of weakening reduction then [[π′]] ⊆ [[π]]. A more difficult result is that
the Herbrand-content is even invariant under the reduction of a contraction; the following
section is devoted to proving this.

5 Invariance under Duplication

For simplifying the presentation, we assume in the following (without loss of generality) that
the ∀-side is on the right of a cut and the ∃-side on the left. Then, a production β → t in
G(π) corresponds to three inferences in π: a cut, an instance of the ∀-rule, and an instance
of the ∃-rule, that we denote by cutβ , ∀β , and ∃t, respectively, and that are, in general,
arranged in π as shown below.

Γ′, A[x\t]
−−−−−−−−−−− ∃tΓ′,∃xA

...
Γ,∃xA

A[x\β],∆′
−−−−−−−−−−−− ∀β∀xA,∆′

...
∀xA,∆

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cutβΓ,∆

(2)

The additional condition that ∀β is directly above cutβ , as indicated in (1) is only needed
because in the following we make extensive use of Observation 14: there is a one-to-one
correspondence between the cuts and the eigenvariables in π, and thus, the notation cutβ
makes sense.

Furthermore, we say that the instances cutβ , ∀β , and ∃t are on a path P in G(π) if the
production β → t is in P.

I Definition 21. Let π be a proof containing the configuration

...
−−−−−− r1
. . .

...
−−−−− r2

. .
.

−−−−−−−−−−−−−−−−−− r3
...

, where r1, r2,

and r3 are arbitrary rule instances, and r3 is a branching rule, and r1 and r2 might or might
not be branching. Then we say that r1 is on the left above r3, denoted by r1 � r3, and r2 is
on the right above r3, denoted by r3 � r2, and r1 and r2 are in parallel, denoted by r1 �� r2.

I Lemma 22. Let π be a simple proof and P : α1 → t1 3 α2 . . . → tn be a path in
G(π). Then there is a k ∈ {1, . . . , n} s.t. cutαk is lowermost among all inferences on P.
Furthermore, ∀α1 is on the right above cutαk and ∃tn is on the left above cutαk .

Proof. We proceed by induction on n. If n = 1, then n = k = 1. For the induction step
consider a path α1 → t1 3 . . . 3 αn → tn 3 αn+1 → tn+1. As αn+1 ∈ tn we know that ∃tn

CSL’12

328 Herbrand-Confluence for Cut Elimination in Classical First Order Logic

must be on the right above cutαn+1 . By induction hypothesis there is a k ∈ {1, . . . , n} such
that we are in one of the following two situations

...
−−−−− ∃tn+1. . .

...
−−−−− ∃tn. . .

...
−−−−− ∀α1

. .
.

−−−−−−−−−−−−−−−−−−− cutαk
. .
.

−−−−−−−−−−−−−−−−−−−−−−−−−−−− cutαn+1...

or

...
−−−−− ∃tn+1. . .

...
−−−−− ∃tn
. .
.

−−−−−−−−−−−−−−−−−−−−− cutαn+1. . .

...
−−−−− ∀α1

. .
.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cutαk...

In the first case we let l = n+ 1 and in the second we let l = k. In both cases cutαl has the
desired properties. J

I Lemma 23. Let π be a simple proof, G(π) = 〈NR,Σ, θ, P 〉, and β, α ∈ EV(π). If β 99K α
then either cutα � cutβ or cutα � cutβ or cutα �� cutβ.

Proof. Since β 99K α, we have a path β → . . . 3 α → t for some t. By Lemma 22 there
is a γ, such that ∃t � cutγ and cutγ � ∀β , and such that cutα and cutβ are not below cutγ .
Furthermore, cutα must be below ∃t, and cutβ below ∀β . If γ = β, then cutα � cutβ . If
γ = α, then cutα � cutβ . And if γ 6= β and γ 6= α, then cutα �� cutβ . J

I Lemma 24. Let G(π) = 〈NR,Σ, θ, P 〉 be the grammar of a simple proof π, such that there
are two paths

β → t 3 γ0 → s0 3 γ1 → s1 3 . . .→ sn−1 3 γn = α→ sn

β → t 3 δ0 → r0 3 δ1 → r1 3 . . .→ rm−1 3 δm = α→ rm

such that γ0 and δ0 occur at two different positions in t. Then we have one of the following
two cases:
1. we have γi = δj for some 0 ≤ i < n and 0 ≤ j < m, or

2. for all 0 ≤ i < n and 0 ≤ j < m we have cutα � cutγi and cutα � cutδj .

Proof. Note that because of acyclicity of G(π), we have that β 6= γi for all i ≤ n and β 6= δj
for all j ≤ m, in particular β 6= α. Assume, for the moment, that m,n > 0; the case of one
of them being zero will be treated at the very end of the proof. Then γ0 6= α and δ0 6= α.
If γ0 = δ0, we have case 1. So, assume also γ0 6= δ0. As β → t is a production in G(π),
the proof π contains a formula which contains both γ0 and δ0 hence ∀γ0 and ∀δ0 are not
parallel. Since we have cutγ0 � ∀γ0 and cutδ0 � ∀δ0 , we also have that cutγ0 and cutδ0 are not
parallel. Without loss of generality, assume that cutδ0 is below cutγ0 . Then cutδ0 � cutγ0

(since cutγ0 � cutδ0 would entail ∀γ0 ��∀δ0). Since we have δ0 99Kα, we can apply Lemma 23,
giving us three possibilities:

If cutα � cutδ0 then we have the situation

...
−−−−− ∃sn. . .

...
−−−−− ∀α
. .
.

−−−−−−−−−−−−−−−−−−− cutα
. . .

...
−−−−− ∃s0. . .

...
−−−−− ∀γ0

. .
.

−−−−−−−−−−−−−−−−−−− cutγ0

. .
.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cutδ0...

.

By Lemma 22 applied to the path γ0 99K sn we have that cutδ0 must coincide with cutγi
for some 0 ≤ i < n (since π is a tree), so δ0 = γi (by Observation 14), and we are in
case 1.

S. Hetzl and L. Straßburger 329

If cutα � cutδ0 then we are in both of the following two situations:

...
−−−−− ∃sn. . .

. . .

. . .

...
−−−−− ∀γ0

. .
.

−−−−−−−−−−−−−− cutγ0

. .
.

−−−−−−−−−−−−−−−−−−− cutδ0

. .
.

−−−−−−−−−−−−−−−−−−−−−−−−−− cutα
...

and
...

−−−−− ∃rm. . .

. . .

...
−−−−− ∀δ0

. .
.

−−−−−−−−−−−−−− cutδ0

. .
.

−−−−−−−−−−−−−−−−−−−−−−−− cutα
...

Thus, by Lemma 22 applied to the paths γ0 99K sn and δ0 99K rm we know that cutα =
cutγk = cutδl for some 0 ≤ k ≤ n and 0 ≤ l ≤ m hence γk = α = δl. Furthermore k = n

and l = m by acyclicity of G(π). Now consider any γi with 0 ≤ i < n. Since γi 99Kα, we
can apply Lemma 23 and get either cutα � cutγi or cutα � cutγi or cutα �� cutγi . Since by
Lemma 22 cutγi must be above cutα, we conclude cutα � cutγi . With the same reasoning
we can conclude that cutα � cutδj for all 0 ≤ j < m. We are therefore in case 2.
If cutα �� cutδ0 then we are in both of the following two situations:

...
−−−−− ∃sn.

.

−−−−−−−−−−−−−−−−−−− cutα
. . .

. . .

. . .

...
−−−−− ∀γ0

. .
.

−−−−−−−−−−−−−−−−− cutγ0

. .
.

−−−−−−−−−−−−−−−−−−−− cutδ0

. .
.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− r
...

and

...
−−−−− ∃rm.

.

−−−−−−−−−−−−−−−−−−− cutα
. . .

. . .

...
−−−−− ∀δ0

. .
.

−−−−−−−−−−−−−−−−− cutδ0

. .
.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− r
...

By Lemma 22 applied to the paths γ0 → . . . → sn and δ0 → . . . → rm, the rule r
coincides with cutγi and cutδj for some 0 < i < n and 0 < j < m, therefore γi = δj (by
Observation 14), and we are in case 1.

It remains to treat the case n = 0 or m = 0. If m = n = 0 then we are trivially in case 2
(there is no 0 ≤ i < n or 0 ≤ j < m). If n = 0 and m > 0, we can apply Lemma 22 to the
path δ0 → . . .→ rm and obtain an l ∈ {0, . . . ,m} such that we are in the situation

...
−−−−− ∃rm. . .

...
−−−−− ∀α
. .
.

−−−−−−−−−−−−−−−−−−− cutα
. . .

. . .

...
−−−−− ∀δ0

. .
.

−−−−−−−−−−−−−−−−− cutδ0

. .
.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cutδl...

But by the same argument as at the beginning of the proof, we also have that ∀α and
∀δ0 cannot be in parallel (α and δ0 both appear in t), and therefore either cutδ0 � cutα
or cutα � cutδ0 . Since δ0 99K α, the only possibility is cutα � cutδ0 , by Lemma 23. Thus
cutα = cutδl , and therefore l = m and we are in case 2. The case m = 0 and n > 0 is
similar. J

The following is the main result of this section:

I Proposition 25. Let π be a simple proof that contains a subproof ψ, shown on the left
below,

ψ =

ψ1

Γ, A,A
−−−−−−−− c

Γ, A

ψ2

A,∆
−−−−−−−−−−−−−−−−−−−− cut

Γ,∆

;

ψ1

Γ, A,A

ψ2ρ
′

A,∆
−−−−−−−−−−−−−−−−−−−−− cut

Γ,∆, A

ψ2ρ
′′

A,∆
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut

Γ,∆,∆
========= c∗

Γ,∆

= ψ′

CSL’12

330 Herbrand-Confluence for Cut Elimination in Classical First Order Logic

and let π′ be the proof obtained from π from replacing ψ by ψ′ shown on the right above, where
ρ′ = [α\α′]α∈EV(ψ2) and ρ′′ = [α\α′′]α∈EV(ψ2) are substitutions that replace all eigenvariables
in ψ2 by fresh copies. Then [[π]] = [[π′]].

Proof. Let us first show [[π]] ⊆ [[π′]]: write P for the productions of G(π) and P ′ for those of
G(π′). Let F ∈ [[π]] = L(G(π)) and D be its derivation. If the duplicated cut is quantifier-
free, then P ′ = Pρ′ ∪ Pρ′′ hence Dρ′ (as well as Dρ′′) is a derivation of F in G(π′). If
the duplicated cut contains a quantifier, let α be its eigenvariable, let t1, . . . , tk be its terms
coming from the left copy of A and tk+1, . . . , tn those from the right copy of A and let
Q = {α→ t1, . . . , α→ tn} ⊆ P . We then have

P ′ = (P \Q)ρ′ ∪ {α′ → t1, . . . , α
′ → tk} ∪ (P \Q)ρ′′ ∪ {α′′ → tk+1, . . . , α

′′ → tn} .

If D does not contain α, then Dρ′ (as well as Dρ′′) is a derivation of F in G(π′). If D

does contain α, then by Lemma 6 we can assume that it uses only one α-production, say
α→ ti. If 1 ≤ i ≤ k, then Dρ′ is a derivation of F in G(π′) and if k < i ≤ n, then Dρ′′ is a
derivation of F in G(π′).

Let us now show [[π′]] ⊆ [[π]]: let F be a formula in [[π′]] = L(G(π′)), and let D ′ be a
derivation of F in G(π′). We construct D = D ′(ρ′)−1(ρ′′)−1 by “undoing” the renaming of
the variables in ψ2. Then D is a derivation for F , using the production rules of G(π), but
possibly violating the rigidity condition.

First, observe that only non-terminals α ∈ EV(ψ2) can violate the rigidity condition in
D : if β /∈ EV(ψ2) violates the rigidity condition then there are β-positions p1, p2 in D with
F |p1 6= F |p2 and as βρ′ρ′′ = β the positions p1, p2 are also β-positions in D ′ and they violate
the rigidity condition in D ′ which is a contradiction to D ′ being a G(π′)-derivation.

Now define for each α ∈ EV(ψ2) the value n(D , α) to be the number of pairs (p1, p2) ∈
Pos(F)× Pos(F) where p1 and p2 are α-positions in D with p1 6= p2 and F |p1 6= F |p2 , and
define n(D) =

∑
α∈EV(ψ2) n(D , α). We proceed by induction on n(D) to show that D can

be transformed into a derivation which does no longer violate rigidity. If n(D) = 0 then D

obeys the rigidity condition, and we are done. Otherwise there is at least one α ∈ EV(ψ2)
with n(D , α) > 0. We now pick one such α which is minimal with respect to ≺∗ (which exists
since G(π) is acyclic). Let p1 and p2 be α-positions in D with p1 6= p2 and F |p1 6= F |p2 , let
p be the maximal common prefix of p1 and p2 and let q be the maximal prefix of p where
a production rule has been applied in D . Due to the tree structure of F , the position q is
uniquely defined, and q is a β-position for some non-terminal β, and some production rule
β → t has been applied at position q in D , and we have two paths:

β → t 3 γ0 → s0 3 γ1 → s1 3 . . .→ sn−1 3 γn = α→ sn

β → t 3 δ0 → r0 3 δ1 → r1 3 . . .→ rm−1 3 δm = α→ rm

where γ0 and δ0 occur at two different positions in t. Thus, we can apply Lemma 24, giving
us the following two cases:

We have γi = δj for some 0 ≤ i < n and 0 ≤ j < m. Say η = γi = δj , and let
pγ and pδ be the positions of γi and δj (respectively) in D . Since η ≺+ α we know
that η does not violate the rigidity condition (we chose α to be minimal), and therefore
F |pγ = F |pδ = F ′. Let Dγ : γi→∗G(π)F

′ and Dδ : δj→∗G(π)F
′ be the two subderivations of

D starting in positions pγ and pδ, respectively. Without loss of generality, we can assume
that n(Dγ) ≤ n(Dδ). Then let D̃ be the derivation obtained from D by replacing Dδ by
Dγ . Then D̃ is still a derivation for F , but n(D̃) < n(D).
For all 0 ≤ i < n and 0 ≤ j < m we have cutα � cutγi and cutα � cutδj . So all inferences
of the path γ0 → . . . → sn−1 as well as all inferences of δ0 → . . . → rm−1 are in ψ2.
Therefore all variables of of these paths are in EV(ψ2). As α violates the rigidity in D

S. Hetzl and L. Straßburger 331

one of p1, p2 must be a α′-position and the other a α′′-position in D ′ because D ′ does
satisfy the rigidity condition. Without loss of generality we can assume that p1 is the
α′-position and p2 the α′′-position. As the paths are contained completely in ψ2 we have
γ0 ∈ EV(ψ2)ρ′ and δ0 ∈ EV(ψ2)ρ′′ which is a contradiction as no term can contain both
a variable from EV(ψ2)ρ′ and one from EV(ψ2)ρ′′. J

6 Herbrand-Confluence

We now turn to cut reduction sequences that start with a simple proof. All the reductions
shown in Figure 1 preserve simplicity, except the following:

· · ·
· · ·

−−−−−−−− ∀α· · ·
−−−−−−−−−−−−−−−−−−−− cutα· · ·

· · ·
−−−−−−−− ∀β· · ·

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cutβ· · ·

;
· · ·

· · ·
−−−−−−−− ∀α· · ·

· · ·
−−−−−−−− ∀β· · ·

−−−−−−−−−−−−−−−−−−−−−−−−−−−− cutβ· · ·
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cutα· · ·

where cutα is permuted down under cutβ (using the bottommost reduction in Fig. 1) and
the cut formula of cutβ has its ancestor on the right side of cutα. So in the following, when
we speak about a reduction sequence of simple proofs we require that the above reduction is
immediately followed by permuting ∀α down as well, in order to arrive at

· · ·

· · ·
· · ·

−−−−−−−− ∀β· · ·
−−−−−−−−−−−−−−−−−−−−−−−− cutβ· · ·

−−−−−−−− ∀α· · ·
−−−−−−−−−−−−−−−−−−−−−−−−−−−− cutα· · ·

which is again simple. Recall that for our result this step is not strictly needed. We only
add it here to simplify the presentation.

Collecting together the results proved in this paper we then obtain the following theorem.

I Theorem 26. If π π′ is a reduction sequence of simple proofs, then [[π]] ⊇ [[π′]].

Proof. By induction on the length of the reduction π π′ making a case distinction on
the applied reduction step. If πi πi+1 is a propositional reduction, an axiom reduction
or a rule permutation, we even have G(πi) = G(πi+1). If it is a quantifier reduction, then
[[πi]] = [[πi+1]] by Lemma 7. If it is the reduction of a contraction, then [[πi]] = [[πi+1]] by
Proposition 25. If it is the reduction of a weakening, then [[πi]] ⊇ [[πi+1]] by Lemma 8. J

I Corollary 27. If π π′ is a reduction sequence of simple proofs and π′ is cut-free, then
H(π′) ⊆ [[π]].

This corollary shows that [[π]] is an upper bound (w.r.t. the subset relation) on the
Herbrand-disjunctions obtainable by cut-elimination from π. Let us now compare this result
with another upper bound that has previously been obtained in [16]. To that aim let G0(π)
denote the regular tree grammar underlying G(π) which can be obtained by setting all non-
terminals to non-rigid. In this notation, a central result of [16], adapted to this paper’s
setting of proofs of non-prenex formulas, is

I Theorem 28. If π π′ and π′ is cut-free, then H(π′) ⊆ L(G0(π)).

While the above theorem 28 applies also to non-simple proofs, Corollary 27 is stronger
in several respects:

First, the size of the Herbrand-content is by an exponential smaller than the size of the
bound given by Theorem 28. Indeed, it is a straightforward consequence of Lemma 12 that

CSL’12

332 Herbrand-Confluence for Cut Elimination in Classical First Order Logic

the language of a totally rigid acyclic tree grammar with n production rules is bound by nn.
On the other hand, there are acyclic regular tree grammars Gn with 2n productions and
|L(Gn)| = nn

n (by encoding in Gn the construction of a tree of depth n and branching degree
n with an independent choice between n constant symbols at each leaf). These grammars
can be obtained from appropriately constructed proofs.

Secondly, the class of totally rigid acyclic tree grammars can be shown to be in exact
correspondence with the class of simple proofs in the following sense. Not only can we use a
totally rigid acyclic tree grammar to simulate the process of cut-elimination, we can also—in
the other direction—use cut-elimination to simulate the process of calculating the language
of a grammar. It is shown in [17] how to transform an arbitrary acyclic totally rigid tree
grammar G into a simple proof that has a normal form whose Herbrand-disjunction is
essentially the language of G.

The third and—for the purposes of this paper—most important difference is that the
bound of Corollary 27 is tight (in a sense that we are going to make precise now). This
property of the Herbrand-content leads naturally to a confluence result for classical logic.

For tightening this bound, a first obvious observation is that there is no mechanism
for deletion in the grammar but there is one in cut-elimination: the reduction of weaken-
ing. So, any cut-elimination strategy that does exactly compute [[π]] must be non-erasing.
Consequently we define the non-erasing cut-reduction ne

 as without the reduction rule
for weakening. Note that a ne

 -normal form π is an analytic proof as well, e.g. H(π) is a
(tautological!) Herbrand-disjunction. In contrast to a -normal form (which might contain
implicit redundancy) a ne

 -normal form might also contain explicit redundancy in the form of
cuts whose cut-formulas are introduced by weakening on one or on both sides. Non-erasing
reduction is also of interest in the context of the λ-calculus where it is often considered in
the form of the λI-calculus and gives rise to the conservation theorem (see Theorem 13.4.12
in [7]). Our situation here is however quite different: neither nor ne

 is confluent and
neither of them is strongly normalizing. Nevertheless we obtain:
I Theorem 29. If π ne

 π′ is a reduction sequence of simple proofs, then [[π]] = [[π′]].
Proof. Inspection of the proof of Theorem 26 shows that the reduction of weakening is the
only step that does not preserve the Herbrand-content. J

I Definition 30 (Herbrand-confluence). A relation −→ on a set of proofs is called Herbrand-
confluent iff π −→ π1 and π −→ π2 with π1 and π2 being normal forms for −→ implies that
H(π1) = H(π2).
I Corollary 31. The relation ne

 is Herbrand-confluent on the set of simple proofs.
How do these results fit together with ne

 being neither confluent nor strongly normaliz-
ing? In fact, note that it is possible to construct a simple proof which permits an infinite ne

reduction sequence from which one can obtain normal forms of arbitrary size by bailing out
from time to time. This can be done by building on the propositional double-contraction
example found e.g. in [11, 12, 26] and in a similar form in [28]. While these infinitely many
normal forms do have pairwise different Herbrand-disjunctions when regarded as multisets,
Corollary 31 shows that as sets they are all the same. This observation shows that the lack
of strong normalization is taken care of by using sets instead of multisets as data structure.
But what about the lack of confluence? Results like [2] and [15] show that the number of
normal forms with different Herbrand-disjunctions can be enormous. On the other hand we
have just seen that ne

 induces only a single Herbrand-disjunction: [[π]]. The relation between
[[π]] and the many Herbrand-disjunctions induced by is explained by Corollary 27: [[π]]
contains them all as subsets.

S. Hetzl and L. Straßburger 333

7 Conclusion

We have shown that non-erasing cut-elimination for the class of simple proofs is Herbrand-
confluent. While there are different and possibly infinitely many normal forms, they all
induce the same Herbrand-disjunction. This result motivates the definition of this unique
Herbrand-disjunction as Herbrand-content of the proof with cut.

As future work, the authors plan to extend this result to arbitrary first-order proofs.
The treatment of blocks of quantifiers is straightforward: the rigidity condition must be
changed to apply to vectors of non-terminals. Treating quantifier alternations is more dif-
ficult: the current results suggest to use a stack of totally rigid tree grammars, each layer
of which corresponds to one layer of quantifiers (and is hence acyclic). Concerning further
generalizations, note that the method of describing a cut-free proof by a tree language is
applicable to any proof system with quantifiers that has a Herbrand-like theorem, e.g., even
full higher-order logic as in [23]. The difficulty consists in finding an appropriate type of
grammars.

Given the wealth of different methods for the extraction of constructive content from
classical proofs, what we learn from our work is this: the first-order structure possesses
(in contrast to the propositional structure) a unique and canonical unfolding. The various
extraction methods hence do not differ in the choice of how to unfold the first-order structure
but only in choosing which part of it to unfold. We therefore see that the effect of the
underspecification of algorithmic detail in classical logic is redundancy.

Acknowledgments

The authors would like to thank Paul-André Melliès for helpful comments on this work.
The first author was supported by a Marie Curie Intra European Fellowship within the 7th
European Community Framework Programme and by the projects I-603 N18 and P22028
of the Austrian Science Fund (FWF).

References
1 Jeremy Avigad. The computational content of classical arithmetic. In Solomon Feferman

and Wilfried Sieg, editors, Proofs, Categories, and Computations: Essays in Honor of
Grigori Mints, pages 15–30. College Publications, 2010.

2 Matthias Baaz and Stefan Hetzl. On the non-confluence of cut-elimination. Journal of
Symbolic Logic, 76(1):313–340, 2011.

3 Matthias Baaz, Stefan Hetzl, Alexander Leitsch, Clemens Richter, and Hendrik Spohr. Cut-
Elimination: Experiments with CERES. In Franz Baader and Andrei Voronkov, editors,
Logic for Programming, Artificial Intelligence, and Reasoning (LPAR) 2004, volume 3452
of Lecture Notes in Computer Science, pages 481–495. Springer, 2005.

4 Matthias Baaz, Stefan Hetzl, Alexander Leitsch, Clemens Richter, and Hendrik Spohr.
CERES: An Analysis of Fürstenberg’s Proof of the Infinity of Primes. Theoretical Computer
Science, 403(2–3):160–175, 2008.

5 Matthias Baaz and Alexander Leitsch. Cut-elimination and Redundancy-elimination by
Resolution. Journal of Symbolic Computation, 29(2):149–176, 2000.

6 Franco Barbanera and Stefano Berardi. A Symmetric Lambda Calculus for Classical Pro-
gram Extraction. Information and Computation, 125(2):103–117, 1996.

7 Hendrik Pieter Barendregt. The Lambda Calculus, volume 103 of Studies in Logic and the
Foundations of Mathematics. Elsevier, 1984.

CSL’12

334 Herbrand-Confluence for Cut Elimination in Classical First Order Logic

8 Ulrich Berger, Wilfried Buchholz, and Helmut Schwichtenberg. Refined Program Extraction
from Classical Proofs. Annals of Pure and Applied Logic, 114:3–25, 2002.

9 H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison,
and M. Tommasi. Tree Automata: Techniques and Applications. Available on: http:
//www.grappa.univ-lille3.fr/tata, 2007. release October, 12th 2007.

10 Pierre-Louis Curien and Hugo Herbelin. The Duality of Computation. In Proceedings of the
Fifth ACM SIGPLAN International Conference on Functional Programming (ICFP ’00),
pages 233–243. ACM, 2000.

11 Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. A New Deconstructive Logic:
Linear Logic. Journal of Symbolic Logic, 62(3):755–807, 1997.

12 Jean Gallier. Constructive Logics. Part I: A Tutorial on Proof Systems and Typed λ-
Calculi. Theoretical Computer Science, 110(2):249–339, 1993.

13 Ferenc Gécseg and Magnus Steinby. Tree Languages. In G. Rozenberg and A. Salomaa,
editors, Handbook of Formal Languages: Volume 3: Beyond Words, pages 1–68. Springer,
1997.

14 Willem Heijltjes. Classical proof forestry. Annals of Pure and Applied Logic, 161(11):1346–
1366, 2010.

15 Stefan Hetzl. The Computational Content of Arithmetical Proofs. to appear in the Notre
Dame Journal of Formal Logic.

16 Stefan Hetzl. On the form of witness terms. Archive for Mathematical Logic, 49(5):529–554,
2010.

17 Stefan Hetzl. Applying Tree Languages in Proof Theory. In Adrian-Horia Dediu and
Carlos Martín-Vide, editors, Language and Automata Theory and Applications (LATA)
2012, volume 7183 of Lecture Notes in Computer Science. Springer, 2012.

18 Stefan Hetzl, Alexander Leitsch, and Daniel Weller. Towards Algorithmic Cut-Introduction.
In Logic for Programming, Artificial Intelligence and Reasoning (LPAR-18), volume 7180
of Lecture Notes in Computer Science, pages 228–242. Springer, 2012.

19 Florent Jacquemard, Francis Klay, and Camille Vacher. Rigid tree automata. In Adrian Ho-
ria Dediu, Armand-Mihai Ionescu, and Carlos Martín-Vide, editors, Third International
Conference on Language and Automata Theory and Applications (LATA) 2009, volume
5457 of Lecture Notes in Computer Science, pages 446–457. Springer, 2009.

20 Florent Jacquemard, Francis Klay, and Camille Vacher. Rigid tree automata and applica-
tions. Information and Computation, 209:486–512, 2011.

21 Ulrich Kohlenbach. Applied Proof Theory: Proof Interpretations and their Use in Mathe-
matics. Springer, 2008.

22 Richard McKinley. Herbrand expansion proofs and proof identity. In Classical Logic
and Computation (CL&C) 2008, participant’s proceedings, 2008. available at http:
//wwwhomes.doc.ic.ac.uk/~svb/CLaC08/programme.html.

23 Dale Miller. A Compact Representation of Proofs. Studia Logica, 46(4):347–370, 1987.
24 Michel Parigot. λµ-Calculus: An Algorithmic Interpretation of Classical Natural Deduc-

tion. In Andrei Voronkov, editor, Logic Programming and Automated Reasoning (LPAR)
1992, volume 624 of Lecture Notes in Computer Science, pages 190–201. Springer, 1992.

25 Diana Ratiu and Trifon Trifonov. Exploring the Computational Content of the Infinite
Pigeonhole Principle. Journal of Logic and Computation, 22(2):329–350, 2012.

26 Christian Urban. Classical Logic and Computation. PhD thesis, University of Cambridge,
October 2000.

27 Christian Urban and Gavin Bierman. Strong Normalization of Cut-Elimination in Classical
Logic. Fundamenta Informaticae, 45:123–155, 2000.

28 J. Zucker. The Correspondence Between Cut-Elimination and Normalization. Annals of
Mathematical Logic, 7:1–112, 1974.

http://www.grappa.univ-lille3.fr/tata
http://www.grappa.univ-lille3.fr/tata
http://wwwhomes.doc.ic.ac.uk/~svb/CLaC08/programme.html
http://wwwhomes.doc.ic.ac.uk/~svb/CLaC08/programme.html

A Computational Interpretation of the Axiom of
Determinacy in Arithmetic
Takanori Hida

Research Institute for Mathematical Sciences, Kyoto University
Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
hida@kurims.kyoto-u.ac.jp

Abstract
We investigate the computational content of the axiom of determinacy (AD) in the setting of
classical arithmetic in all finite types with the principle of dependent choices (DC). By employing
the notion of realizability interpretation for arithmetic given by Berardi, Bezem and Coquand
(1998), we interpret the negative translation of AD. Consequently, the combination of the negative
translation with this realizability semantics can be seen as a model of DC, AD and the negation
of the axiom of choice at higher types. In order to understand the computational content of AD,
we explain, employing Coquand’s game theoretical semantics, how our realizer behaves.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases The axiom of determinacy, Gale-Stewart’s theorem, Syntactic continuity,
Realizability interpretation, Coquand’s game semantics

Digital Object Identifier 10.4230/LIPIcs.CSL.2012.335

1 Introduction

The theory of infinite games has proven to be very effective in the study of various fields of
logic and mathematics. There are a number of related works, and lots of game concepts have
been proposed. Prominent among infinite game theory is the two person infinite game with
perfect information, in which two players collaborate to define an infinite sequence of natural
numbers by choosing a natural number alternately. There are many intriguing questions over
this game, e.g., which games can be shown to be determined, in the sense that one of the
two players has a winning strategy? D. Gale and F.M. Stewart [6] proved that all games
for open or closed pay-off sets are determined. As the study of determinacy has revealed
several remarkable consequences to mathematics, the axiom of determinacy (AD, for short)
was introduced out of theoretical interest [17]: For every subset A of the Baire space ωω, the
game G(A) is determined. A substantial amount of research has been conducted over this
topic and a number of deep results have been obtained (see [8]).

The focus of this paper, however, is on a somewhat different aspect from prior set-
theoretical ones: what is the computational content of AD? For this purpose, we employ the
notion of realizability interpretation for arithmetic given in [2]. Realizability interpretation,
which is one formalization of BHK-interpretation, assigns a term to a valid formula. A
realizer of a formula provides computational evidence for that formula, and thus endows it
with computational content. Although there are other techniques for program extraction
from formal proofs such as Curry-Howard correspondence [19], the realizability interpretation
is better suited for our purpose: This methodology enables us to give interpretations even for
some non-trivial axioms and proofs using axioms, because the definition of the realizability
relation proceeds by induction not on proofs but on formulas.

© Takanori Hida;
licensed under Creative Commons License NC-ND

Computer Science Logic 2012 (CSL’12).
Editors: Patrick Cégielski, Arnaud Durand; pp. 335–349

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2012.335
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

336 A Computational Interpretation of the Axiom of Determinacy in Arithmetic

Several notions of realizability interpretation have been presented [21]. Nevertheless, in
terms of the usage of realizability for the exploration of the computational content of classical
proofs, existing research can be classified into two categories: direct and indirect approaches.
The former studies computational meanings immediately in the setting of classical logic.
The fact that such an approach is possible comes as rather a surprise; from the viewpoint
of computation, classical logic is much more difficult to deal with than intuitioninstic logic.
Among this line of research, Krivine’s classical realizability is of great importance [12, 13, 14].
This technique is developed as a generalization of forcing and, using the orthogonal structure
between terms and stacks, provides a way of examining computational content of classical
logic. On the other hand, the indirect approach, which we follow in this paper, consists
of two steps. The first step is to embed classical proofs into an intuitionistic system by a
negative translation; then by using some notion of intuitionistic realizability, we interpret
the translated proofs.

The rest of this paper is organized as follows. In the next section, we define the basic
terminology and provide background information briefly. In order to realize a negative
translation of AD, we formalize the statement of Gale-Stewart’s theorem in arithmetic
and prove it in section 3. After presenting the notion of realizability in section 4, we
interpret the negative translation of the statement “every subset of ωω is open” and, as a
consequence, obtain a required realizer in section 5. Corollaries of this result include the
(relative) consistency of the principle of dependent choices and AD in arithmetic. Since our
purpose is not just to give a realizer of AD but also to know its computational meaning, we
explain the behavior of the realizer using Coquand’s game theoretical semantics in section 6.
In the final section, we discuss future work.

2 Notations and Definitions

2.1 Infinite Games
I Definition 1. (Two person, infinite game with perfect information)

For an arbitrary subset A of the set ωω of all infinite sequences of natural numbers, G(A)
denotes the following game:

There are two players, Player I and Player II,
At each round i, Player I chooses an xi ∈ ω, then Player II chooses a yi ∈ ω,
I x0 x1 · · · xi · · ·
II y0 y1 · · · yi · · ·

Player I wins the game G(A) if the infinite sequence 〈x0, y0, x1, y1, . . . 〉 is in A.

Each choice is called a move of the game, and the infinite sequence 〈x0, y0, x1, y1, . . . 〉
is called a play of the game. We refer to A as the pay-off set for the game G(A). Perfect
information means that both players have complete access to the way the game has been
played so far.

I Definition 2. (Strategies)
A strategy for Player I is a function σ : {s ∈ ω<ω | s is of even length} → ω,
A strategy for Player II is a function τ : {s ∈ ω<ω | s is of odd length} → ω,

where ω<ω is the set of all finite sequences of natural numbers.

Each player decides his or her move according to a strategy as follows:

T. Hida 337

I Definition 3. (The plays σ ∗ y and x ∗ τ)
Let σ be a strategy for Player I. For each y = 〈y0, y1, . . . 〉, σ ∗ y denotes the play

〈a0, y0, a1, y1, . . . 〉, where a0 = σ(〈〉) and an+1 = σ(〈a0, y0, . . . , an, yn〉).
Let τ be a strategy for Player II. For each x = 〈x0, x1, . . . 〉, x ∗ τ denotes the play

〈x0, b0, x1, b1, . . . 〉, where bn = τ(〈x0, b0, . . . , xn〉).

I Definition 4. (Winning strategies)
A strategy σ is a winning strategy for Player I in G(A) if σ ∗ y ∈ A for all y ∈ ωω.
A strategy τ is a winning strategy for Player II in G(A) if x ∗ τ /∈ A for all x ∈ ωω.

I Definition 5. (Determined)
A game G(A) is determined if either Player I or Player II has a winning strategy in this

game.
A set A ⊂ ωω is determined if the game G(A) is determined.

One natural question over this property would be: How much determinacy is derivable?
It is easy to see that all finite and cofinite subsets are determined. More interestingly, it has
been proven that all open and closed subsets [6], and all Borel subsets [15] are determined.
(Recall that the standard topology on ωω is induced by an open base {O(s) | s ∈ ω<ω},
where O(s) := {f ∈ ωω | s is an initial segment of f}. This space is called the Baire space).

I Definition 6. (The axiom of determinacy (AD))
The axiom of determinacy (AD) is the statement that every A ⊂ ωω is determined.

The relationship between AD and choice principles is worth pointing out: AD contradicts
the (full) axiom of choice (AC) in ZF set theory[6], but implies a restricted version of the
axiom of countable choice [18]. As regards the principle of dependent choices (DC), which is
an essential tool in exploring the consequences of AD, it is known that DC is independent
from ZF+AD [9].

There are a number of striking results around AD, such as its role in the study of consis-
tency strength and applications to infinite combinatorics. The investigation of determinacy
extends even to the area of second order arithmetic, e.g., [16]. The reader can find more
information in, e.g., [8].

2.2 Systems of Arithmetic
In order to investigate AD in arithmetic, let us fix the basic terminology of arithmetic and
present fundamental results. Firstly, we describe minimal (HAω−), intuitionistic (HAω) and
classical (HAωc) arithmetic in all finite types. We borrow most of our notation from [2].

I Definition 7. (Formal systems HAω−, HAω and HAωc)
Types, terms and formulas of the three systems are the same and given by the following
grammars:
Types τ, τ ′ ::= N | τ → τ ′

Terms t, u ::= xτ | λxτ .tτ ′ | tτ→τ ′
uτ | 0N | sN→N | Recτ→((N→τ→τ)→(N→τ))

τ

where tτ or t : τ indicate that a term t is of type τ .
Formulas φ, ψ ::= ⊥ | tN = t

′N (prime formula) | φ ∧ ψ | φ⇒ ψ | ∀x : τ φ | ∃x : τ φ
For every formula φ, we write ¬φ in place of φ⇒ ⊥ for brevity.
Higher type equations are abbreviations, e.g., fN→N = gN→N stands for ∀n : N (fn = gn).

Theory of HAω−

CSL’12

338 A Computational Interpretation of the Axiom of Determinacy in Arithmetic

Axioms and rules for first order many sorted minimal logic (with each sort corresponding
to a type).
Equality axioms and the induction schema:

t = t (eq1)
t1 = s1 ⇒ · · · ⇒ tk = sk ⇒ ft1 · · · tk = fs1 · · · sk (eq2)
t1 = s1 ⇒ · · · ⇒ tk = sk ⇒ {P (t1, . . . , tk)⇔ P (s1, . . . , sk)} (eq3)

φ(0) ∧ ∀n {φ(n)⇒φ(sn)} ⇒ ∀nφ(n) (Ind)

Successor axioms:
¬ sn = 0 (Suc1) sn = sm⇒ n = m (Suc2)

The defining equations of the constant Recτ for each type τ :
Rec tu0 = t (Rec0) Rec tu(sv) = uv(Rec tuv) (Recs)

λ-calculus axiom and rules:
(λx.t)u = t[u/x] (β)

t = t′

tu = t′u
(Ap1) u = u′

tu = tu′
(Ap2) t = t′

λx.t = λx.t′
(ir)

The theory of HAω (resp. HAωc) is obtained from that of HAω− by changing the base
logic from minimal to intuitionistic (resp. classical).

From now on, we assume that the variables i, j, k, l,m, n are of type N, f, g are of N→ N
and χ is of (N→ N)→ N, and omit types whenever there is no fear of confusion.

We then consider the following schemata (parametric in φ):

I Definition 8. (Schemata Comp(τ), AC(τ, τ ′) and DC(τ))
Comp(τ) ∃χ : τ → N ∀x : τ {χ(x) = 1⇔ φ(x)}.
AC(τ, τ ′) ∀x : τ ∃y : τ ′ φ(x, y)⇒ ∃f : τ → τ ′ ∀x : τ φ(x, f(x)).
DC(τ) ∀x : τ ∃y : τ φ(x, y)⇒ ∀a : τ ∃f : N→ τ {f(0) = a ∧ ∀nφ(f(n), f(n+ 1))}.

Using this notation, CAC (the axiom of countable choice) and DC (the principle of
dependent choices) are expressed as AC(N, τ) for all types τ and DC(τ) for all types τ ,
respectively.
I Remark. We refer to the schema Comp(τ) as comprehension under the identification of
a set {x : τ | φ(x)} with a function χ : τ → N satisfying ∀x : τ {χ(x) = 1⇔ φ(x)}, namely
a (generalized) characteristic function for {x : τ | φ(x)}. This schema is not counted as an
axiom of HAωc , and this may be the reason why [2] avoids the standard notation “PAω”, in
which comprehension is usually assumed. The absence of comprehension in our systems of
arithmetic will be crucial in section 6.
I Proposition 9. For any type τ and τ ′, we have
1. HAω− ` AC(τ, τ)⇒ DC(τ).
2. HAωc ` DC(N→ τ)⇒ AC(N, τ), and hence DC implies CAC.
3. HAω− ` AC(τ, τ ′)⇒ AC(τ, N).
4. HAωc ` AC(τ, N)⇒ Comp(τ). In particular, CAC implies Comp(N).

For each formula φ of HAωc , let φK denote the negative translation of φ obtained by
prefixing all prime formulas and existentially quantified formulas by double negations. For
instance, {∀n∃m (n+ 1 = m)}K is ∀n¬¬∃m¬¬ (n+ 1 = m).

Let us point out a fact, which will be crucial in section 5. This translation enables us to
embed classical arithmetic further into minimal arithmetic:
I Proposition 10. [2] HAωc +DC ` φ implies HAω− +DCK ` φK .

T. Hida 339

3 Gale-Stewart’s Theorem in Classical Arithmetic

D. Gale and F.M. Stewart [6] proved in ZF set theory that all open subsets of the Baire
space are determined (Open Determinacy). In this section, we formalize that statement in
HAωc and show informally that it is also provable in classical arithmetic.

Before proceeding any further, it would be better to introduce several abbreviations in
order to enhance the readability of the following discussion:

“n is odd” is the prime formula odd?(n) = 1, where the term odd?(n) of HAωc is equal to
1 when n is odd, and 0 otherwise.
“k ≤ m” is the prime formula k ·− m = 0, where ·− is the term for the truncated
subtraction: k ·−m is k −m when k > m, and 0 otherwise.
“OP (χ)” is the formula ∀f {χ(f) = 1 ⇒ ∃m ∀g (eq≤m(f, g) = 1 ⇒ χ(g) = 1)}, where
the term “eq≤m(f, g)” of HAωc is equal to 1 when f(k) = g(k) for all k ∈ {0, . . . ,m}, and
0 otherwise.
“OP” is the formula ∀χ OP (χ).

I Remark. It will be easy to confirm that functions like odd?, ·− and eq≤m(f, g) can be
implemented as terms of HAω. Notice also that these defined symbols do not add any power,
for HAω− proves the equivalence between the prime formula odd?(n) = 1 (resp. eq≤m(f, g) =
1) and the formula ∃k (k ≤ n ∧ n = 2k+ 1) (resp. ∀k {k ≤ m⇒ f(k) = g(k)}). Henceforth,
we introduce defined symbols in this way, i.e., without presenting the implementation as
terms of HAω.
I Remark. χ : (N→ N)→ N can be seen as a (generalized) characteristic function for some
A ⊂ ωω: ∀f {χ(f) = 1 ⇔ f ∈ A}. With this in mind, the formula OP (χ) is read as “χ
represents an open subset of the Baire space ωω”.

In the sequel, we need an encoding of ω<ω into ω in order to formalize the theory of
infinite games within arithmetic; fix a primitive recursive bijection 〈〈·, . . . , ·〉〉 : ω<ω → ω.
We also write (n)j := aj (0 ≤ j < k) and lh(n) := k if n = 〈〈a0, . . . , ak−1〉〉.

By employing this encoding, the plays in Definition 3 can be expressed by the following
terms, where σ, y, τ and x are of type N→ N:

σ ∗ y (i) :=
{
y((i ·−1)/2) (i : odd)
σ(〈〈σ ∗ y (0), . . . , σ ∗ y (i ·−1)〉〉) (i : even)

,

x ∗ τ (i) :=
{
τ(〈〈x ∗ τ (0), . . . , x ∗ τ (i ·−1)〉〉) (i : odd)
x(i/2) (i : even)

.

Strictly speaking, we should use different symbols for ∗ in σ ∗ y : N→ N and x ∗ τ : N→ N,
since now all of σ, y, τ and x are of the same type. However, no confusion may be caused by
this, as it is clear from the context.

For convenience, we also adopt the following abbreviations:
“I has a w.s. in G(χ)” is the formula ∃σ : N→ N ∀y : N→ N χ(σ ∗ y) = 1.
“II has a w.s. in G(χ)” is the formula ∃τ : N→ N ∀x : N→ N ¬ χ(x ∗ τ) = 1.
“Det(χ)” is the formula ¬ (I has a w.s. in G(χ))⇒ (II has a w.s. in G(χ)).
“AD” is the formula ∀χ Det(χ).

Now, let us formalize open determinacy in the language of HAωc and prove it within
arithmetic. Although the proof is presented informally, it can easily be formalized in
HAωc + CAC.

I Theorem 11. (Gale-Stewart [6]) HAωc + CAC ` ∀χ {OP (χ)⇒ Det(χ)}.

CSL’12

340 A Computational Interpretation of the Axiom of Determinacy in Arithmetic

Proof. For each x : N with x = 〈〈n0, . . . , nk−1〉〉 and f : N→ N, let us define x@ f : N→ N by

x@ f := 〈n0, . . . , nk−1, f(0), f(1), f(2), . . . 〉.

Using this notation, for each χ : (N→ N)→ N and x : N, we introduce χ/x : (N→ N)→ N by

χ/x (f) = 1⇔ χ(x@ f) = 1.

I Lemma 12. For every x : N with lh(x) odd, if ¬ (I has a w.s. in G(χ/〈〈(x)0, . . . , (x)
lh(x) ·−2〉〉)),

then there exists a y such that ¬ (I has a w.s. in G(χ/〈〈(x)0, . . . , (x)
lh(x) ·−2, (x)

lh(x) ·−1, y〉〉)).

Proof. We show the contraposition of the above statement. If there exists an x such that
lh(x) is odd, and (I has a w.s. in G(χ/〈〈(x)0, . . . , (x)

lh(x) ·−1, y〉〉)) holds for all y, then CAC

yields a ϕ : N→ (N→ N) such that ϕ(y) is a winning strategy for Player I in the game
G(χ/〈〈(x)0, . . . , (x)

lh(x) ·−1, y〉〉). Define a strategy ρ : N→ N for Player I by:

ρ(n) =

(x)lh(x) ·−1 (n = 〈〈〉〉)
ϕ(y)〈〈p0, . . . , p2l ·−1〉〉 (n = 〈〈(x)lh(x) ·−1, y, p0, . . . , p2l ·−1〉〉)
0 (else)

.

Then, χ/〈〈(x)0, . . . , (x)
lh(x) ·−2〉〉(ρ∗z) = χ/〈〈(x)0, . . . , (x)

lh(x) ·−1, z(0)〉〉(ϕ (z(0))∗shift(z)) = 1 holds
for all z : N→ N, where shift(z) is λn. z(n+ 1). This means that ρ is a winning strategy for
Player I in the game G(χ/〈〈(x)0, . . . , (x)

lh(x) ·−2〉〉). J

I Lemma 13. There exists a τ : N→ N such that for all x : N, we have
{lh(x) is odd ∧ ¬ (I has a w.s. in G(χ/〈〈(x)0, . . . , (x)

lh(x) ·−2〉〉))⇒
¬ (I has a w.s. in G(χ/〈〈(x)0, . . . , (x)

lh(x) ·−1, τ(x)〉〉))}.

Proof. Apply CAC to the statement of the previous lemma. J

Assume OP (χ) and ¬ (I has a w.s. in G(χ)). We show that the above τ is indeed a
winning strategy for Player II. Assume for contradiction that there were an x : N→ N such
that χ(x ∗ τ) = 1; then there exists an m such that, for all g, eq≤m(x ∗ τ, g) = 1 implies
χ(x ∗ τ) = χ(g). In particular, if eq≤2m+1(x ∗ τ, g) = 1 holds, then χ(x ∗ τ) is equal to
χ(g). Therefore, for all y : N→ N, it follows that χ/〈〈x ∗ τ(0), . . . , x ∗ τ(2m + 1)〉〉((λn.0) ∗ y) =
χ(〈〈x ∗ τ (0), . . . , x ∗ τ (2m+ 1)〉〉@ ((λn.0) ∗ y)) = 1.

On the other hand, (m+ 1)-times applications of Lemma 13 to the hypothesis ¬(I has a
w.s. in G(χ)) yields ¬ (I has a w.s. in G(χ/〈〈x ∗ τ(0), . . . , x ∗ τ(2m + 1)〉〉)). This means that for
the strategy λn.0, there exists a y : N→ N with χ/〈〈x ∗ τ(0), . . . , x ∗ τ(2m + 1)〉〉((λn.0) ∗ y) 6= 1.
A contradiction. J

I Remark. By Proposition 9 and Theorem 11, we immediately see that HAωc +DC proves
∀χ {OP (χ)⇒ Det(χ)}.

4 Realizability Interpretation

This section is a recapitulation of the notion of the realizability interpretation given in [2].
Since we would like to interpret HAω in a programming language with this methodology,
we need first to present the (infinitary) programming language P. Roughly speaking, P is
an extension of Gödel’s system T with list operators, the fixed-point combinator and some
auxiliary constructs (needed for realizing DCK). The types and terms of P are extensions
of that of HAω.

T. Hida 341

I Definition 14. (The programming language P)
Types Given by the following grammar: τ, τ ′ ::= N | Unit | Abs | τ → τ ′ | τ × τ ′ | [τ]

Here, [τ] is the type for lists of objects of type τ .
Seen as a type of P, a type of HAω is called an N-type.

Terms Given by the following grammar:

t, u ::= xτ | λxτ .tτ
′
| tτ→τ

′
uτ (lambda terms)

| 0N | sN→N | Recτ→((N→τ→τ)→(N→τ))
τ (system T constants)

| Y (τ→τ)→τ
τ (the fixed-point combinator)

| 〈, 〉τ1→τ2→(τ1×τ2) | π(τ1×τ2)→τi

i (i = 1, 2) (pairing and projection)
| nil[τ] | consτ→[τ]→[τ] | Lrec(τ→[τ]→σ→σ)→σ→[τ]→σ (list operators)
| DummyAbs | AxiomN→Abs

i (i = 1, 2) | ()Unit (technical constants)
| (λλn.tτn)N→τ (an infinite term)

Infinite operator λλ allows us to built a single term λλn.tτn out of an arbitrary sequence
tτ0 , t

τ
1 , . . . of terms of type τ .

We abbreviate s0 as 1, ss0 as 2 and so on, and refer to them as numerals hereafter.
Formulas For each type τ , tτ1 = tτ2 is a formula.
Theory

The defining equations of the constant Recτ for each type τ (see Definition 7).
λ-calculus axiom and rules (see Definition 7).
The axiom for the fixed-point combinator Yτ : Yt = t(Yt) (Y)
Pairing axioms and list axioms:

πi〈t1, t2〉 = ti (i = 1, 2) (pri)
Lrec(f, u, nil) = u (Lrec0)
Lrec(f, u, cons(t, L)) = f(t, L, Lrec(f, u, L)) (Lrec1)

The axiom for infinite terms: (λλn.tn)k = tk (ββ)

I Remark. Although infinite terms and unfamiliar constants appear to be ad hoc, such terms
are not included for computational purposes. In fact, every theorem of HAω− +DCK can be
realized without them [2]; moreover, these technical terms are not so important for the rest
of this paper. However, the infinite operator λλ and two constants Axiom1 and Axiom2 are
necessary for testing termination of realizers of CACK and DCK [2].

Let us list several known facts about P [2, Section 3.4]:
There exists a reduction relation such that its reflexive, symmetric and transitive
closure coincides with =.
Moreover, this reduction relation enjoys the following:
The Church-Rosser property,
Every closed normal form of type N (resp. Unit) is a numeral (resp. ()),
Every closed normal form of type Abs is either Dummy or of the form Axiomik.

We present two preparatory definitions in advance of the main definition of the realizability
relation. With each formula φ of HAω, we associate a type |φ| of P as follows:

I Definition 15. (Associated type |φ| of P)
|t = t′| is Unit,
|⊥| is Abs,

CSL’12

342 A Computational Interpretation of the Axiom of Determinacy in Arithmetic

|φ⇒ ψ| is |φ| → |ψ|,
|φ ∧ ψ| is |φ| × |ψ|,
|∀x : τ φ| is τ → |φ|,
|∃x : τ φ| is τ × |φ|.

For every closed term t of P of the N-type, the technical notion of reducibility is given by
induction on the N-type:

I Definition 16. (Reducible terms of N-type)
t : N is reducible if t reduces to k for some k ∈ ω,
t : τ → τ ′ is reducible if tu : τ ′ is reducible for all reducible u : τ .

All terms of HAω are clearly reducible.
We cite the following property of P from [2, Section 3.4] without proof. Note that this

so-called syntactic continuity1 can also be taken as a topological continuity: χ is a continuous
function from the Baire space ωω to the discrete space ω.

I Proposition 17. For every reducible terms χ : (N→ N)→ N and f : N→ N, there exists an
m ∈ ω such that for all reducible g : N→ N with f(i) = g(i) (∀ i ≤ m), we have χf = χg.

This proposition says that the closed normal form of χf is determined only from finitely
many outputs of f . This property does not come as a surprise, for f is used (essentially)
finitely many times during the reduction of χf to a numeral.

We are now in a position to define the realizability relation t : |φ| ® φ for a closed formula
φ of HAω possibly including closed reducible terms of P, and for a closed term t of P of
type |φ|. This notion of realizability is essentially the so-called modified realizability [11],
except the restriction to the reducible terms when interpreting quantifiers, and the existence
of a term t satisfying that t ® ⊥.

I Definition 18. (Realizability relation)
t : Abs ® ⊥ if t = Axiomik for some k ∈ ω and i = 1, 2,
t : Unit ® t1 = t2 if t = () and both t1 and t2 reduce to the same numeral in P,
t : |φ1| → |φ2| ® φ1 ⇒ φ2 if tu ® φ2 whenever u ® φ1,
t : |φ1| × |φ2| ® φ1 ∧ φ2 if t = 〈t1, t2〉 and ti ® φi (i = 1, 2),
t : τ → |φ| ® ∀x : τ φ if tu ® φ [u/x] for all reducible u : τ ,
t : τ × |φ| ® ∃x : τ φ if t = 〈p, u〉 with p : τ reducible and u ® φ [p/x].

I Remark. Since P contains the fixed-point combinator Y, the non-termination problem
arises. For exactly this reason, quantification should be restricted to reducible terms, in
other words, to hereditarily normalizing terms. Otherwise, there could be problems such as,
(i) a realizer of an existential formula may fail to give a witness, and (ii) the identity axiom
“∀x (x = x)” cannot be realized.

1 It has been proved by Čeitin (independently by Kreisel, Lacombe and Shoenfield) that for every effective
operation e and total recursive index y, a modulus of continuity for e at y can be computed by a
partial recursive function under the assumption of Markov principle (see [1, Chapter IV, Theorem 3.1]).
However, it would be impossible here to adopt this theorem to show the existence of a modulus-of-
continuity functional, i.e., a partial recursive function which compute a modulus of continuity. This is
because our setting is far from intensional. Furthermore, f and g can be non-recursive here due to the
existence of the infinite operator. In fact, it is known that there is no extensional modulus-of-continuity
functional [1, Chapter IV, Section 3.3].

T. Hida 343

I Remark. If, for every term t and formula φ, t ® φ holds if and only if t ® φK holds, then
the negative translation K plays no effective role in realizing a formula. The first clause of
the above definition is demanded to break this equivalence, at the price of the non-existence
of a realizer for the ex falso axiom: ⊥ ⇒ φ. Moreover, this definition allows us to use Axiomi

for computing witnesses [2, Section 4.4]: These terms catch a witness n of an existential
formula ∃nφ(n) during reduction and freeze that datum as in the form of Axiomin. When
the execution of a program stops, one can pick up that n out of the residue of the calculation.

We say a formula φ is realizable when there exists a {λλ, Axiomi(i = 1, 2)}-free term t

satisfying that t : |φ| ® φ. The main theorem of [2] reads in this notation as follows:

I Theorem 19. [2] Every theorem of HAω− +DCK is realizable.

I Remark. In [2], the most difficult cases, the realizations of CACKand DCK , are managed
with bar recursion and continuity. The problem of the termination of realizers, which
boils down to the problem of the termination of bar recursion used in them, is proved
non-constructively. The difficulty is to be attributed to the fact that the negatively translated
choice principles are much more powerful than the choice principles themselves in HAω. In
fact, [7] shows that HAω +AC(N, N) +AC(N, N→ N) is conservative over Heyting arithmetic.

I Corollary 20. ∀χ {OP (χ)⇒ Det(χ)}K is realizable.

By closely following the proof of Theorem 11, we obtain the following realizer of the
formula ∀χ {OP (χ)⇒ Det(χ)}K (see Appendix for detail): λχθζη.ΦP2(ζ, η, θ)H2(χ)[].

5 A Realizer of the Negative Translation of AD

In view of Corollary 20, it suffices to realize OPK for realizing ADK .
Let us consider again the formula OP :

∀χ ∀f {χ(f) = 1⇒ ∃m ∀g (eq≤m(f, g) = 1⇒ χ(g) = 1)},
which expresses that “every χ represents an open subset of ωω”. More precisely, OP states
that for every element f of (the set represented by) χ, there exists an m such that a basic
open neighborhood {g | eq≤m(f, g) = 1} at f is contained in χ. Following [1], we call this m
a modulus for χ at f .

Let us recall Proposition 17 here: for every reducible χ and f , the existence of a modulus
m for χ at f is assured there from the external viewpoint. This, however, does not imply
the existence of an internally definable term t such that t(χ, f) is a modulus for χ at f . It
would be impossible to build such a term t in our setting (see footnote 1).

To realize OP itself will also be impossible, for if there were a realizer s of OP , a modulus
could be computed internally as follows: Take any reducible χ and f with χ(f) = 1. Then,
from s ® OP and () ® χ(f) = 1, we see that sχf() witnesses ∃m ∀g (eq≤m(f, g) = 1 ⇒
χ(g) = 1), and hence, π1(sχf()) reduces to a modulus.

The thing is quite different when it comes to realizing the negative translation OPK of
OP . In contrast to the realization of OP , where we do have to calculate a modulus only
from χ and f internally, it suffices to indicate the existence of a modulus m externally when
realizing OPK . This point—internal or external—is to be noted as an essential difference
between intuitionistic and classical logic.
I Remark. The reader may still have some doubt if it is really possible to realize even the
negative translation of such a strange statement. This happens by virtue of the absence of
the comprehension schema Comp(N→ N) at type N→ N. In fact, Comp(N→ N) implies the
existence of a “set” χ satisfying ∀f {χ(f) = 1⇔ ∀n (f(n) = 0)}; but such χ is not open.

CSL’12

344 A Computational Interpretation of the Axiom of Determinacy in Arithmetic

Now we prove:

I Lemma 21. OPK is realizable.

Proof. First of all, let us recall the formula OPK :
∀χ∀f {¬¬χ(f) = 1⇒ ¬¬∃m ∀g (¬¬ eq≤m(f, g) = 1⇒ ¬¬χ(g) = 1)}.

To realize this, we introduce a term Θ by

Θχfuvn := v〈n, λgpq. t(n, g, p, q)〉, with
t(n, g, p, q) := if eq≤n(f, g) = 0 then p(λr.Dummy) else

if χ(f) = χ(g) then uq else Θχfuv(sn),
where if n = m then · · · else · · · is a syntactic sugar.

In the following, we show that λχfuv.Θχfuv0 ® OPK . Take arbitrary reducible terms
χ and f . We need to prove ΘχfUV 0 ® ⊥ for every term U and V with U ® ¬¬χ (f) = 1
and V ® ¬∃m ∀g (¬¬ eq≤m(f, g) = 1⇒ ¬¬χ(g) = 1).

We first claim that, for every n, ΘχfUV sn ® ⊥ implies ΘχfUV n ® ⊥. Assume that
ΘχfUV sn ® ⊥. Since we have V ® {∃m ∀g (¬¬ eq≤m(f, g) = 1 ⇒ ¬¬χ(g) = 1) ⇒ ⊥}
and ΘχfUV n = V 〈n, λgpq. t(n, g, p, q)〉, in order to show our first claim, it suffices to prove
λgpq. t(n, g, p, q) ® ∀g (¬¬ eq≤n(f, g) = 1⇒ ¬¬χ(g) = 1). Take an arbitrary reducible term
g : N→ N and terms P and Q satisfying P ® ¬¬ eq≤n(f, g) = 1 and Q ® ¬χ (g) = 1. We
have to examine the following three cases to verify t(n, g, P,Q) ® ⊥:

Case 1: ∃i ≤ n f(i) 6= g(i) — t(n, g, P,Q) reduces to P (λr.Dummy). Since we have
eq≤n(f, g) = 0 and P ® ¬¬ eq≤n(f, g) = 1, we conclude that P (λr.Dummy) ® ⊥.

Case 2: ∀i ≤ n f(i) = g(i) and χ(f) = χ(g) — t(n, g, P,Q) reduces to UQ. Since we have
U ® ¬¬χ (f) = 1 and Q ® ¬χ (g) = 1, it follows that UQ ® ⊥.

Case 3: ∀i ≤ n f(i) = g(i) and χ(f) 6= χ(g) — In this case, t(n, g, P,Q) reduces to
ΘχfUV sn. Hence we have t(n, g, P,Q) ® ⊥ by the hypothesis.

Next, we claim that if m is a modulus for χ at f , then ΘχfUV m ® ⊥ holds. The proof
proceeds along the same line as above except the last case, which no longer happen by the
fact that m is a modulus.

Since Proposition 17 assures the existence of a modulus m for χ at f , though we know
the existence only externally, ΘχfUV 0 ® ⊥ follows from the foregoing arguments. J

I Remark. Inspired by [2], U. Berger and P. Oliva presented a similar result axiomatically in
[3]. Instead of implementing a bar recursion as a term of P using the fixed-point combinator
Y, they extended the calculus by directly adding the so-called modified bar recursion (MBR),
which allows us to approximate a choice function and to realize DCK . We have an impression
that OPK is not realizable in their framework. If an unbounded search used as in Θ were
primitive recursively definable (p.r.d.) in MBR, the functional µ̂ would also be p.r.d. in
MBR, where µ̂(χ, f) := min{ k | χ(f �k @ λn.0) = χ(f �k @ λn.1)}. If so, Kohlenbach’s bar
recursion (KBR) is p.r.d. in MBR, because KBR is p.r.d. in µ̂ plus Spector’s bar recursion
(SBR) [10], and SBR is p.r.d. in MBR [4]. However, KBR is not p.r.d. in MBR [4].

I Theorem 22. ADK is realizable.

Proof. Follows easily from Corollary 20 and Lemma 21. J

I Corollary 23. ¬AC(N→ N, N)K is realizable.

T. Hida 345

Proof. HAωc + AC(N→ N, N) proves an instance ∃χ∀f {χ(f) = 1 ⇔ ∀n (f(n) = 0)} of
Comp(N→ N) by Proposition 9 . In view of the remark above Lemma 21, we find that
HAωc +AC(N→ N, N) +OP is inconsistent. Thus, HAωc proves OP ⇒ ¬AC(N→ N, N), and
hence, OPK ⇒ ¬AC(N→ N, N)K is realizable. The assertion follows from Lemma 21. J

I Remark. Corollary 23 shows that it is impossible to realize the axiom of choice at higher
order in the framework of [2]. But even further is indicated by the above discussion: To
realize such an axiom would be hopeless in any reasonable setting—at least if one sticks to
the usual indirect approach. If we assume continuity, we will fail to realize AC(N→ N, N)K .
This is because we may interpret OPK , which contradicts the axiom of choice at higher type
as we saw. On the other hand, if we drop the assumption of continuity, to realize even CAC
becomes difficult. It is only a novel idea, if any, that can open the possibility for the higher
order.

From these results, we find that the combination of the negative translation K and the
realizability semantics à la [2] can be seen as a model of HAωc +DC +AD+¬AC(N→ N, N).
Therefore, we can reduce the consistency of this system to that of P:

I Corollary 24. HAωc +DC +AD + ¬AC(N→ N, N) is consistent.

The next is a straightforward consequence of the previous corollary and Proposition 9.

I Corollary 25. HAωc +DC ` AC(N, τ), but HAωc +DC 0 AC(N→ N, N).

As far as the author knows, Corollaries 24 and 25 do not follow trivially from known
results in set theory.2 One future work is to investigate whether or not Corollary 24 remains
true in the presence of Comp(N→ N).

Note that the foregoing three corollaries are still valid even if we replace AC(N→ N, N)
by AC(N→ N, τ) for an arbitrary type τ (see Proposition 9).

6 How Does the Realizer Behave?

By combining the realizer of OPK given in the proof of Lemma 21 and the realizer of
∀χ {OP (χ)⇒ Det(χ)}K given after Corollary 20 (see also Appendix), we obtain a realizer
of ADK . This section is devoted to the explanation of its behavior.

Our realizer takes the following two steps:
Step 1: construct a strategy τ for Player II

In order to facilitate understanding of this step, let us employ Coquand’s game theoretical
semantics [5]. Firstly we give a recapitulation of that semantics below. The semantics is
defined for an infinitary propositional calculus. The formulas of this calculus are defined
inductively as: (i) 0 and 1 are (atomic) formulas, and (ii) if φi (i ∈ I) are formulas, where I
is a countable set, then both

∧
i∈I φi and

∨
i∈I φi are formulas. Note that each arithmetical

formula can be represented as a formula of this infinitary propositional calculus in a natural
way. For instance, AD is expressed as:∨

σ

∧
y

χ(σ ∗ y) = 1 ∨
∨
τ

∧
x

χ(x ∗ τ) = 1. (∗)

2 As regards Corollary 24, one may think that at least the consistency of HAωc +DC+AD follow trivially
from that of ZF +DC +AD. This is certainly so, but the consistency of ZF +DC +AD itself is much
stronger than that of ZFC [8].

CSL’12

346 A Computational Interpretation of the Axiom of Determinacy in Arithmetic

Henceforth, some formulas of HAωc will be considered as formulas of this calculus without
further explanation.

We then introduce the notion of classical validity by specifying the set V of classically
valid formulas. V is the smallest set of formulas satisfying: (i) 1 ∈ V, (ii)

∧
i∈I φi ∈ V if

φi ∈ V for all i ∈ I, and (iii)
∨
i∈I φi ∈ V if there exists an i0 ∈ I such that either φi0 is 1, or

φi0 is of the form
∧
j∈J φi0j with φi0j ∨

∨
i∈I φi ∈ V for all j ∈ J .3

Game theoretical semantics for this calculus is given as a perfect information game over
a formula between two players: ∃loise, who plays for existential formulas, and ∀belard,
who plays for universal formulas. Here, we regard atomic formulas as both universal and
existential. The game for a formula φ is played as follows: If ∃loise (resp. ∀belard) has to
play and φ is atomic, then ∃loise (resp. ∀belard) wins if φ is 1 (resp. 0). If φ is universal of
the form

∧
i∈I φi, then ∀belard has to choose an i ∈ I and ∃loise starts the game for φi. If φ

is existential of the form
∨
i∈I φi, then ∃loise chooses an i ∈ I and wins if φi is 1, looses if φi

is 0. When φi is universal of the form
∧
j∈J φij , ∃loise can start the game not for φij but for

φij ∨
∨
i∈I φi after ∀belard returns a j ∈ J . The rule of this game is rather unfair to ∀belard;

it is only ∃loise who is allowed to change her mind and backtrack in her choice. It will be
easy to verify that
I Proposition 26. [5] ∃loise has a winning strategy for φ ⇔ φ is classically valid.

Then, in order to describe this step, let us consider the following instance of the axiom of
countable choice used in the proof of Lemma 13:

CACφ :=
∨
x

∧
y

φxy ∨
∨
τ

∧
x

φxτ(x), with

φxy := (lh (x) is odd)K ∨ (I has a w.s. in G(χ/〈〈(x)0, . . . , (x)
lh(x) ·−2〉〉))

K∨

(I has a w.s. in G(χ/〈〈(x)0, . . . , (x)
lh(x) ·−1, y〉〉))K ,

where the formula φ is the complement of a formula φ obtained by interchanging 0 and 1,
∨

and
∧
. Observe that φxy is the direct translation of the statement of Lemma 12.

How our realizer constructs a strategy τ is illustrated by the following dialog.4 ∀belard’s
answers should be read as values provided by arguments of our realizer, in other words, the
environment. ∃loise’s way of answering should be compared to the way our realizer returns
values to the environment:

∃loise: Let me kick off the game by choosing, say τ0 = λn.0.
∀belard: Then, my choice is x = x0. By this, I can win in the game for φx0 τ0(x0)(= φx00).

I Now the formula is CACφ ∨ φx00.
∃loise: What is your answer when I play x = x0 in the game for

∨
x

∧
y
φxy?

∀belard: In that case, I choose y = y0. This can make you lose in the game for φx0y0 .
I Now the formula is CACφ ∨ φx00 ∨ φx0y0 .

∃loise: Since it is you who said that φx0y0 is false, φx0y0 should be true, right?
(∀belard: Oops!) Then I backtrack my previous choice τ0 and select
τ1 := λx. if x = x0 then y0 else τ0(x).

∀belard: Well, x = x1 is fine. This time, I can defeat you in the game for φx1τ1(x1).

3 Since only the original paper [5] employs φi0j ∨
∨
i∈I−{i0}

φi instead of φi0j ∨
∨
i∈I φi in the formulation

of the classical validity, we shall adopt the formulation given in the subsequent papers.
4 Strictly speaking, the following “game” is different from the concept defined so far; now that τ ranges

over the (uncountable) set of all functions from N to N. In fact, by introducing conjunctions and
disjunctions over N→ N, cut-elimination theorem, which holds in the original version, is no longer true
[2, Section 2.3]. It serves only as an explanation of the behavior.

T. Hida 347

I Now the formula is CACφ ∨ φx00 ∨ φx0y0 ∨ φx10.
∃loise: If I choose x = x1 in the game for

∨
x

∧
y
φxy, what is your choice?

∀belard: Again that question!? · · · (sigh). y = y1 is the best option; I will win in the
game for φx1y1 .
I Now the formula is CACφ ∨ φx00 ∨ φx0y0 ∨ φx10 ∨ φx1y1 .

∃loise: Wait a minute. It means φx1y1 should be true, doesn’t it. (∀belard: Oh no!)
I do not have to stick to my previus move any more; let me choose
τ2 := λx. if x = x1 then y1 else τ1(x).

...

Both players continue playing in this way and, at each round, ∃loise updates a strategy
τ using ∀belard’s previous answers xi and yi. If ∀belard decides his move on finitely much
information from the move of ∃loise, then, for some n and m with n < m, his choice
for x in the n-th and m-th round will be the same one: xn = xm. (This assumption on
∀belard comes true in P due to continuity). Observe that, at that point, the formula is
CACφ ∨ · · · ∨ φxnyn ∨ · · · ∨ φxmyn .
Step 2: derive the determinacy

Our realizer at last witnesses the determinacy. Let us continue employing the terminology
of Coquand’s game.
∃loise plays the game for the formula CACφ ∨ · · · ∨ φxnyn ∨ · · · ∨ φxmyn . Since either

φxmyn
or φxnyn

is true, ∃loise can certainly win by playing the games for φxmyn
and φxnyn

alternately. If it turns out that φxmyn is true, the realizer concludes that τ satisfies
∧
x φxτ(x).

This is because τ has been constructed so that φx τ(x) holds for all possible moves x of
∀belard. With the help of the property OPK , which is verified by just a simple unbounded
search for a modulus, τ is understood as a winning strategy for Player II, in other words,∧
x χ(x ∗ τ) = 1 is verified. (Recall the proof of Theorem 11 here: the construction of a

winning strategy τ for Player II is conducted without appealing to OP . In other words,
OP has nothing to do with the construction of τ—the role of OP is to confirm that if a
τ : N→ N satisfies

∧
x φxτ(x), then it is indeed a required one). On the other hand, when

φxnyn
is true, our realizer tries to disprove the non-existence of a winning strategy for Player

I by actually constructing a winning strategy for Player I as in the proof of Lemma 12 and,
as a consequence,

∨
σ

∧
y χ(σ ∗ y) = 1 is verified. Neither ∀belard nor ∃loise knows which

player—Player I or Player II—is shown to have a winning strategy. This is because we cannot
calculate the modulus m internally (cf. the previous section).

In summary, our realizer behaves as follows: It first constructs a strategy τ for Player
II not by choosing values herself but by making use of ∀belard’s returns x0, y0, x1, y1, . . .

against her attempt at exposing falsehood. When a good approximation is made, it either
verifies that τ is indeed a winning strategy for Player II with the help of OP , or shifts the
blame to the assumption that Player I has no winning strategy.

The behavior of our realizer reflects the proof of Theorem 11: Since we proved that
theorem by constructing a winning strategy for Player II under the assumption that Player I
does not have a winning strategy, the resulting realizer constructs a winning strategy for
Player II. If we change the proof so that it constructs a winning strategy for Player I assuming
that there is no winning strategy for Player II, the corresponding realizer will try to construct
a winning strategy for Player I. One future work is, based on a game theoretical intuition, to
build a realizer of ADK that works symmetrically, in other words, a realizer which behaves
in such a way that winning strategies for Player I and Player II are constructed alternately
by backtracking. (see (∗)—the formula itself is symmetric).

CSL’12

348 A Computational Interpretation of the Axiom of Determinacy in Arithmetic

7 Future Work

As emphasized previously, our focus is on the computational content of the AD rather
than on the set theoretical applications. Since, insofar as the author knows, there are
not so much research on the computational aspect of AD, the author wishes more work
would be conducted in this area. This paper will conclude with suggestions for future research:
Indirect approach to AD: Over the property determinacy, several axioms have been
proposed and explored [8]. It would be interesting to see whether these variants are
realizable. The following intriguing problem should also be addressed: To realize ADK

not in arithmetic but in stronger systems, e.g., in ZF set theory.
Direct approach to AD: Krivine’s classical realizability is a machinery which enables
us to extract the computational content directly from second order classical logic. All
axioms of ZF set theory are realizable in that framework [12]. Moreover, by adding the
quote (or clock) instruction to the calculus, both CAC and DC become realizable [13]. It
would be interesting to ask, for realizing AD, what kind of instruction we should add
to the calculus? What instruction is indispensable? If we can realize AD with some
instructions, this technology will attract more attention of set theorists. This is because
Krivine’s classical realizability yields a new model of ZF+DC+AD, if AD is realizable.

Consistency in arithmetic: In ZF set theory, (full) AC contradicts AD [6]. This is
because a well-ordering of the set of all strategies, the existence of which follows from an
equivalent of AC, enables us to build a non-determined pay-off set by means of transfinite
induction. It seems hard to adjust that proof to the setting of arithmetic. Does full AC
and AD contradict in HAωc ? Or, does AC(N→ N, N) refute AD in HAωc ?

Acknowledgements I thank my master thesis supervisors Kazushige Terui and Masahito
Hasegawa for lots of helpful comments, Stefano Berardi for explaining the underlying ideas
of his joint work [2], and Makoto Tatsuta for drawing my attention to [1]. Finally, I would
like to thank the anonymous referee who made a lot of useful suggestions.

A The Realizer of the Negative Translation of Open Determinacy

λχθζη.ΦP2(ζ, η, θ)H2(χ)[] ® ∀χ {OP (χ)⇒ Det(χ)}K , where
ΦPHL := P (fun L, λx. rea L x (λx′x′′. Hxλ〈y, z〉.ΦPH ((x, y, z) : L))) ;
fun [(x0, y0, z0), . . . , (xn, yn, zn)] x := yi (when ∃ i ≤ n (x = xi)), := 0 (otherwise);
rea [(x0, y0, z0), . . . , (xn, yn, zn)] x a := zi (when ∃ i ≤ n (x = xi)), := a (otherwise);
H2(χ) := λsh.h〈0, λ〈w1, w2〉v. if (lh(s) is odd)

then c1χs(λq.q())H1(h) P1(s, w2) else w1(λe. Dummy)〉;
P2(ζ, η, θ) := λ〈τ, q〉.η〈τ, λxξ.θ(x ∗ τ)ξ(λ〈m,u〉.Q1(ζ, q, x ∗ τ,m)Q2(u, x ∗ τ)) 〉;
H1(h) := λm′z′.h〈m′, λzx.xz′〉;
P1(s, w2) := λ〈σ, p〉.w2 (λr. r〈F ′(σ, s), λy′. p y′(0) shift(y′)〉) ;
c1 := λχsuh′p′.if (lh(s) is odd) then Φp′h′[] else u(λr.Dummy);
Q1(ζ, q, x ∗ τ,m) := Rec ζ (λnz. q 〈〈x ∗ τ (0), . . . , x ∗ τ (2n)〉〉〈λd. d(), z〉)m+ 1;
Q2(u, x ∗ τ,m) := λl. l〈λj. 0, λy. u F (x ∗ τ,m, y) (λk.k())〉;
F (x ∗ τ,m, y)(n) := λn.if n ≤ 2m+ 1 then x ∗ τ (n) else ((λn.0) ∗ y) (n ·−2m ·−2);

F ′(σ, s)(n) :=

(s)lh(s) ·−1 (n = 〈〈〉〉)
σ(m)〈〈k0, . . . , k2j+1〉〉 (n = 〈〈(s)lh(s) ·−1,m, k0, . . . , k2j+1〉〉)
0 (else)

.

T. Hida 349

References
1 M.J. Beeson: Foundations of constructive mathematics. A series of modern surveys in

mathematics, Springer Verlag, pp. xxiii+466, 1985
2 S. Berardi, M. Bezem and Th. Coquand: On the computational content of the axiom of

choice. J. Symbolic Logic vol. 63, no. 2, pp. 600–622, 1998
3 U. Berger and P. Oliva: Modified bar recursion and classical dependent choice. Lecture

Notes in Logic vol. 20, pp. 89–107, 2005
4 U. Berger and P. Oliva: Modified bar recursion. Math. Structures Comput. Sci. vol. 16,

issue 2, pp. 163–183, 2006
5 Th. Coquand: A semantics of evidence for classical arithmetic. J. Symbolic Logic vol. 60,

no. 1, pp. 325–337, 1995
6 D. Gale and F.M. Stewart: Infinite games with perfect information. In: H.W. Kuhn and

A.W. Tucker (eds.) Contributions to the theory of games, vol 2. Ann. Math. Studies 28.
Princeton Univ. Press, pp. 245–266, 1953

7 N. Goodman: Intuitionistic arithmetic as a theory of constructions. PhD thesis, Stanford
University, pp. 222, 1968

8 A. Kanamori: The higher infinite, second edition. Springer monographs in mathematics,
pp. xxii+536, 2003

9 A.S. Kechris: The axiom of determinacy implies dependent choices in L(R). J. Symbolic
Logic vol. 49, no. 1, pp. 161–173, 1984

10 U. Kohlenbach: Theory of majorizable and continuous functionals and their use for the
extraction of bounds from non-constructive proofs: effective moduli of uniqueness for
best approximations from ineffective proofs of uniqueness (German). PhD thesis, Goethe-
Universität Frankfurt, pp. xxii+278, 1990

11 U. Kohlenbach: Applied proof theory: Proof interpretations and their use in mathematics.
Springer monographs in mathematics, pp. xix+532, 2008

12 J.-L. Krivine: Typed lambda-calculus in classical Zermelo-Frænkel set theory. Arch. Math.
Logic 40, no. 3, pp. 189–205, 2001

13 J.-L. Krivine: Dependent choice, ‘quote’ and the clock. Theoret. Comput. Sci. vol. 308, pp.
259–276, 2003

14 J.-L. Krivine: Realizability algebras II: new models of ZF+DC. http://www.pps.jussieu.
fr/~krivine/articles/R_ZF.pdf

15 D.A. Martin: Borel determinacy. Ann. Math. vol. 102, no. 2, pp. 363–371, 1975
16 A. Montalbán and R.A. Shore: The limits of determinacy in second order arithmetic. Proc.

London Math. Soc. vol. 104, part 2, pp.223–252, 2012
17 J. Mycielski and H. Steinhaus: A mathematical axiom contradicting the axiom of choice.

Bulletin de l’Académie Polonaise des Sciences, Série des Sciences Mathématiques, As-
tronomiques et Physiques 10, pp.1–3, 1962

18 J. Mycielski and S. Swierczkowski: On the Lebesgue measurability and the axiom of deter-
minateness. Fundamenta Mathematicae vol. 54, pp. 67–71, 1964

19 M.H. Sørensen and P. Urzyczyn: Lectures on the Curry-Howard isomorphism. Stud. Logic
Found. Math. 149, Elsevier, pp. xiv+442, 2006

20 C. Spector: Provably recursive functionals of analysis: a consistency proof of analysis
by an extension of principles in current intuitionistic mathematics. In: F.D.E. Dekker
(ed.) Recursive function theory: Proc. Symposia in Pure Mathematics, vol. 5, American
Mathematical Society, Providence, Rhode Island, pp. 1–27, 1962

21 A.S. Troelstra: Realizability. In: S.R. Buss (ed.) Handbook of proof theory. Stud. Logic
Found. Math. 137, Elsevier, pp. 407–473, 1998

CSL’12

http://www.pps.jussieu.fr/~krivine/articles/R_ZF.pdf
http://www.pps.jussieu.fr/~krivine/articles/R_ZF.pdf

Church-Rosser Properties of Normal Rewriting∗

Jean-Pierre Jouannaud1,2 and Jianqi Li3,4

1 INRIA-LIAMA, Beijing, China
2 Software Chair, Tsinghua University, Beijing, China
3 School of Software, Tsinghua University, Beijing, China
4 Tsinghua National Laboratory for Information Science and Technology,

Beijing, China

Abstract
We prove a general purpose abstract Church-Rosser result that captures most existing such results
that rely on termination of computations. This is achieved by studying abstract normal rewriting
in a way that allows to incorporate positions at the abstract level. New concrete Church-Rosser
results are obtained, in particular for higher-order rewriting at higher types.

1998 ACM Subject Classification F4.2. Grammars and Other Rewriting Systems

Keywords and phrases abstract normal rewriting, Church-Rosser property

Digital Object Identifier 10.4230/LIPIcs.CSL.2012.350

1 Introduction

Background. Rewrite rules have been used in mathematics and computer science for ages.
Orienting an equation into a rewrite rule is most convenient when the obtained set of rules
is terminating, since many other properties, such as “unique normal form”, become then
decidable. Orienting all equations at hand into rewrite rules is not always possible, forcing
us to distinguish a subset of rules from the subset of remaining equations. Consider the set:
Inv : x+ x−1 = 0, Z : x+ 0 = x, A : (x+ y) + z = x+ (y + z), C : x+ y = y + x.
Termination forbids orienting C, and orienting A contradicts termination in C-congruence
classes: it becomes necessary to distinguish rules from equations. Having A,C,Z as equa-
tions allows for cheaper pattern-matching and unification than A,C alone, but ACZ-con-
gruence classes are infinite, raising problems. A winning schema is to restrict computations
to terms in Z normal form modulo AC [4, 11, 16]. Rewriting with Inv then operates modulo
ACZ, but on terms in Z modulo AC normal form.
Goal. In this paper, we investigate rewriting with a set of rules R (Inv in our example)
modulo a set itself made of a set of rules S (Z) and a set of equations E (AC). Another
example is Nipkow’s higher-order rewriting, for which R is the user’s set of higher-order rules,
S corresponds to β-reduction and η-expansions which are built, together with α-conversion
(E), in the rewriting mechanism via higher-order pattern-matching. Higher-order rewriting is
indeed our main target, and our interest is in checking its confluence under some termination
assumption.
State of the art. Rewriting with rules only (when E and S are both empty) is called plain
rewriting. Confluence of plain rewriting reduces, under a termination assumption, to the

∗ INRIA Project FORMES, Laboratory of Formal Methods, Institute of Software Theory and System,
Tsinghua University. This work was supported by the Tsinghua National Laboratory for Information
Science and Technology (TNList) Cross-discipline Foundation 2011-9, Chinese National 973 Plan grant
2010CB328003, the NSFC-ANR grant 60811130468 and NSFC grant 60903030.

© Jean-Pierre Jouannaud and Jianqi Li;
licensed under Creative Commons License NC-ND

Computer Science Logic 2012 (CSL’12).
Editors: Patrick Cégielski, Arnaud Durand; pp. 350–365

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2012.350
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

J.-P. Jouannaud and J. Li 351

joinability of its critical pairs, which are minimal divergent computations obtained by unify-
ing lefthand sides of rules at non-variable subterms [14]. When rewriting terms with mixed
sets of rules and equations, confluence must be replaced by the more general Church-Rosser
property [10]. There are several approaches corresponding to different definitions of rewriting
in presence of equations. In the first three, S is empty. Huet uses plain rewriting with R and
joinability modulo E, but must assume strong linearity conditions on E and R [9]. Lankford
uses plain rewriting with R in equivalence classes of terms modulo E [15]. His class rewrit-
ing may require searching the entire class of a term to be rewritten. The de facto standard
introduced by Peterson and Stickel, rewriting modulo, uses instead plain rewriting with all
possible E-variants of the instances of rules in R, which is implemented via E-pattern match-
ing [21]. All three approaches require finiteness of E-equivalence classes [10], see also [2].
To remove this assumption, Marché defined normalized rewriting, a complex schema where
the rules in S are confluent modulo E in Stickel’s sense and a term is first normalized with
S modulo E before being rewritten with R modulo E [16]. Normalized rewriting assumes
termination of R ∪ S in E-equivalence classes. Nipkow uses a subtle variation of the latter
requiring termination of R modulo E ∪S, in which simply typed higher-order terms in nor-
mal form for S modulo E are rewritten modulo S∪E (using higher-order pattern-matching)
with some set of higher-order rules which lefthand sides are patterns à la Miller [17].

In all these approaches, the Church-Rosser property is reduced, via a termination as-
sumption, to the joinability modulo E of some critical pairs. This reduction is doable
provided rewriting a term does not change its structure before it is pattern-matched. This
is the case of all definitions but that of class rewriting and of normalized rewriting. In the
latter case, the analysis of divergent computations leads to a notion of critical pair which is
quite complex. On the other hand, Nipkow’s variant, which we call normal rewriting, has
not lead yet to a general Church-Rosser test.

Very early on, the rewriting community has developed an abstract approach to the
analysis of the confluence and Church-Rosser properties [23], or to similar results such as the
finite development theorem in lambda calculus [8, 22]. This trend has been very successful
for orthogonal systems and extensions thereof, but has not yet delivered all its promises for
the case of terminating systems for which the presence of critical pairs requires a slightly
different analysis. A tentative to capture both cases within a unique framework, decreasing
diagrams, has been carried out by van Oostrom [20]. If this work has been very successful
at the abstract level of relations, it has not yet bared fruits in the more difficult case of
concrete relations over terms.

Contributions. Our main contribution is a careful investigation of an abstract rewriting
relation, normal rewriting, with a set of rules R modulo a pair (S,E), which set of rules
S is itself convergent modulo the set of equations E. Normal rewriting is then defined
as a compositional paradigm: normalization in the S ∪ E-structure is modulo E, while
normalization in the (R∪(S∪E))-structure is modulo S∪E on S modulo E normal forms. We
then reduce the abstract Church-Rosser property to properties of abstract critical rewriting
patterns. Our abstract treatment departs from the usual practice by introducing a setting
of ternary relations on an abstract set of terms and an abstract set of positions, which we
call abstract positional rewriting. This setting allows us to develop our notion of abstract
normal rewriting, and then to study the reduction from its Church-Rosser property to the
critical rewriting patterns quite smoothly, therefore solving the aforementioned problem.

Our second contribution, an application of the above results, is a careful investigation of
the Church-Rosser properties of first-order normal rewriting first, then of various variants of
Nipkow’s higher-order normal rewriting. These applications are direct reductions from ab-

CSL’12

352 Church-Rosser Properties of Normal Rewriting

stract critical patterns to concrete critical pairs, which exploit the term structure explicitly.
A major strength of our result is that it allows to capture the existing notions of rewrit-
ing in both the first-order and higher-order cases. While its application to the first-order
case yields limited new results, it allows us in the higher-order case to overcome all typing
restrictions imposed in Nipkow’s work.

While it may seem that rewriting is a subject beaten to death, recent work has shown
that confluence of normal rewriting is indeed at the heart of important problems such as [1],
hence making the present contributions very timely. An early attempt appeared in [12].

Surveys are [7, 23, 22] for first and higher-order rewriting and [5] for typed lambda
calculus.

Organization. Section 2 investigates the Church-Rosser properties of abstract normal re-
writing. First-order rewriting is developed in Section 3 which ends with a study of our
introductory example. After a brief introduction of simply-typed lambda-calculi, higher-
order rewriting at simple types is studied in section 4.1 and at higher-types in Section 4.2.
Various definitions of formal derivation serve illustrating the results. Concluding remarks
come in Section 5.

2 Normal rewriting

We introduce the notion of normal rewriting on an abstract set, investigating then its
Church-Rosser properties. Our treatment differs from similar attempts by introducing ab-
stract positions from the start. This allows us to carry out the investigation of the abstract
Church-Rosser property much further, and reduce it to the joinability of abstract critical
patterns via clean, technically simpler proofs than in the current literature. The ability to
analyze the Church-Rosser property at the abstract level up to the analysis of critical pairs
is the key to the obtention of our main result, Theorem 2.5, which proof is quite delicate.

2.1 Abstract positional rewriting

2.1.1 Abstract terms and positions

In the entire Section 2, we assume given two abstract sets:
T which elements are called terms ;
P which elements are called positions, equipped with a partial order >P and a min-
imum Λ.

A domain Pp is any set of positions p′≥P p such that p′ ∈ Pp and p′≥P q≥P p implies
q ∈ Pp. A domain is meant to be the set of non-variable positions of some lefthand side of
rule in a term.

Lexicography: we shall use the letters s, t, u, v, w for terms and p, q for positions, the
notations Pp and Qq for domains, and the notation DP for the set of domains over P. We
write p#q for incomparable positions p, q, and q>P Pp for q≥P p and ∀p′ ∈ Pp . p′ 6 ≥P q.
We will freely use the following key property of domains, which first 3 cases are called
respectively “disjoint case”, “critical case” and “ancestor case” in the litterature:

∀p ∈ P ∀Pp ∈ P.(q#p ∨ q ∈ Pp ∨ q>P Pp ∨ p>P q).

J.-P. Jouannaud and J. Li 353

2.1.2 Relations
We use the notation u

Pp−→v with u, v ∈ T , Pp ∈ DP for an arbitrary ternary relation in
T ×DP×T . We may omit any of u, v, Pp, in which case they are existentially quantified. We
also write for short u p−→v, where p is understood as the minimum of some domain Pp, or

u
p∈P
−−→v to indicate the property P that the position p should satisfy, or even u P−→v, with

the same meaning. In practice, P will usually be the property (≥P q) for some given q,
characterizing the set of positions {p | p≥P q}.

The relation −→ is reflexive if ∀u ∈ T . u−→u, symmetric if for all s, t, p, s p−→t iff t p−→s,
and transitive if for all u, v, w s.t. u−→v−→w then u−→w. Given −→, we write ←− for its
inverse,←→ for its symmetric closure, +−→ for its transitive closure and ∗−→ for its reflexive,
transitive closure (domains become lists thereof in the latter two closures).

The term t is a successor below p ∈ P of s for −→ if s
≥P p
−−→t, and s is in normal form below

p if it has no successor below p. We denote by s↓p the term in normal form below p such

that s
(≥P p)∗
−−−→ s↓p. We omit the mention below p and write s↓ whenever p = Λ. A term s is

strongly normalizing below p for −→ iff it is in normal form below p, or if otherwise all its
successors are themselves strongly normalizing below p. The relation −→ is terminating if
all terms are strongly normalizing below Λ.

2.1.3 Rewriting modulo
I Definition 2.1 (Rewriting modulo). Given two relations p−→X and q←→

Z
(assumed sym-

metric) on T × DP × T , rewriting with X modulo Z at p is defined as:

p−→XZ :=
(≥P p)∗
←−−−→

Z

p−→X

Z and modulo Z are omitted if Z = ∅. The symmetric closure of Z should be understood
in case Z is not symmetric.

The beauty of rewriting modulo a theory lies in the assumption that equality steps can
only occur below the rewriting position: at the term level, rules can be fired by pattern
matching lefthand sides modulo the theory, avoiding searching the equivalence class of the
term to be rewritten.

Rewriting modulo is assumed to satisfy the commutation (*) and joinability (**) prop-
erties:

(*) X
p←− q−→Y ⊆

p−→Y X
q←− if p#q

(**) X
Pp←− q−→Y ⊆

(>P p)∗
−−−→ Y X

q←− Y

(>P Pp)∗
←−−−− if q>P Pp

Note that (*) is a particular case of (**), apart from the condition which could be generalized.
We prefer to distinguish these two axioms because they lead to different calculations in the
proof of our main result. Note also the absence of a “monotonicity” axiom allowing to move
rewrites up, which is achieved by changing the position incorporated to the rewrite.

2.1.4 Normal rewriting
I Definition 2.2. A normal abstract rewriting system (NARS) is a tuple (T ,P, R, S,E),
where T and P are (possibly omitted) abstract sets of terms and positions, while −→R, −→S

CSL’12

354 Church-Rosser Properties of Normal Rewriting

and ←→
E

are ternary relations on T ×DP× T called respectively rewriting R, simplification
S and equality E, the latter being supposed symmetric, such that:

(i) the relation SE , called E-simplification, is Church-Rosser modulo E below any position
p:

s
(≥P p)∗
←−−−→
S∪E

t iff s
(≥P p)∗
−−−→ SE

(≥P p)∗
←−−−→

E
SE

(≥P p)∗
←−−−− t

(ii) −→RSE ∪−→SE is E-terminating: the relation s � t iff s =E (−→RSE ∪ −→SE) =E t

is well-founded, where RSE stands for rewriting with R modulo S ∪ E
(iii) operating on terms in ↓pSE normal form, normal rewriting at q below p with R modulo

(S,E) is defined as s
p−→RSE↓

t = s
q≥P p
−−→RSE u↓pSE t.

The main reason for orienting simplifiers is indeed to bypass two fundamental assump-
tions of rewriting modulo: termination of −→R in finite S ∪ E-equivalence classes. The
finiteness assumption will disappear, while the termination assumption will be weakened.

Normal rewriting maintains SE normal forms below p, and satisfies (*, **). Nipkow’s
definition assumes p = Λ. Our definition is relative to a given position p, as are all our
rewriting notions. This definition is actually flexible. We might have chosen to operate on
terms in↓qSE -normal form or to normalize the result up to position Λ. These changes would
not impact our result for which p is Λ.

Notations. We use, possibly omitting the upper-index p: s
↓−→t for s ∗−→t with t = t↓,

s↓p for s↓pSE , s↓↓p for (s↓pSE)↓pRSE↓ , =E for the equivalence ∗←→
E

,
←→
SE

(SE) for ←→
S
∪←→

E
, and ←→

RSE
(RSE) for ←→

R
∪←→

S
∪←→

E
.

2.2 Church-Rosser properties of NARS
Our goal here is to reduce the Church-Rosser property of a terminating NARS to local prop-
erties of the rewrite relations involved that can be checked for concrete rewrite relations on
terms. After introducing key notations, we recall some Church-Rosser notions and introduce
our local properties which correspond exactly to critical patterns.

I Definition 2.3. We define:
convertibility of a pair (s, t) below p as s

(≥P p)∗
←−−−→
RSE

t ;

normal joinability of a convertible pair (s, t) below p as s↓↓p (≥P)∗←−−→
E

t↓↓p

normal Church-Rosser as the normal-joinability of all convertible pairs ;
local peaks (resp. cliffs) as triples (s, u, t) s.t. s p←−u (resp. s p←→

E
u) and u q−→t ;

joinability below p of a triple (s,u,t) or a pair (s,t) as s
(≥P p)∗
−−−→ SE∪RSE

(≥P p)∗
←−−−→

E
SE∪RSE

(≥P p)∗
←−−−− t.

I Definition 2.4 (Critical local peaks and cliffs).
(i) critical rewrite peak v R

Pp←−u q−→RSE w s.t. q ∈ Pp and u = u↓pSE
(ii) critical rewrite cliff s

p←→
E

u
q−→RSE t s.t. q∈Pp\{p}

(iii) critical simplification peak v R
Pp←−u q−→SE w s.t. q ∈ Pp

(iv) critical simplification cliff v S
p←−u q−→RSE w s.t. q ∈ Pp \ {p} and u = u↓qSE

J.-P. Jouannaud and J. Li 355

u = u↓S
���

���
���

HHH
HHH

HHj
v

R
w

RSE

Pp q ∈ Pp

(i)
J
J
J
J
JĴ

J
J
J
J
Ĵ

�

�

--��s t

≥P p ≥P p

≥P p
Joinability

Critical rewrite peak

u
���

���
�����
��

��
��* HHH

HHH
HHj

v

E

w
RSE

Pp q ∈ Pp \ {p}

(ii)
J
J
J
J
JĴ

J
J
J
J
Ĵ

�

�

--��s t

≥P p ≥P p

≥P p
Joinability

Critical rewrite cliff

u
���

����

HHH
HHHj

v R wSE

Pp q ∈ Pp

(iii) ??

≥P p
SE

??

66≥P p

?
w′

p

R
?? ��--�� ≥P p≥P p

≥P p
Shallow joinability

Critical simplification peak

u = u↓qSE���
���

���

HHH
HHH

HHj
v

S
w

RSE

Pp q ∈ Pp \ {p}

(iv)
J
J
J
J
JĴ

J
J
J
J
Ĵ

�

�

--��s t

≥P p ≥P p

≥P p
Joinability

Critical simplification cliff

LEGEND: -- Rewrite steps with RSE ∪ SE --�� Equality steps withE

Figure 1 Abstract critical peaks.

Unlike standard practice, our local properties are critical in that they specialize as the
usual notions of critical peaks at the concrete level. Criticality follows from two observations:
(i) each peak must satisfy the condition q ∈ Pp (or q ∈ Pp \{p}), which implies the existence
of an overlap; (ii) all local properties use a plain step from u at p, this is crucial to compute a
critical pair by equating two different calculations of u|q, requiring the absence of equational
steps above q.

Our figures also show the properties expected from the critical peaks: joinability below
p for all except critical simplification peaks, for which shallow joinability is required.

We can now state and prove our key abstract Church-Rosser result, without help of
any intermediate step involving non-local peaks corresponding to local confluence, local
coherence and the like: despite the complex hierarchical structure of a NARS, our abstract
approach allows us to reduce directly the Church-Rosser property to the joinability of the
critical peaks introduced above.

I Theorem 2.5. A NARS is normal Church-Rosser if its critical (i) rewrite peaks, (ii) re-
write cliff, (iii) simplification cliffs are joinable, and its (iv) critical simplification peaks are
shallow joinable.

Proof. By definition of rewriting modulo, ∗←−−→
RSE

=
∗

←−−−→
RSE∪SE∪E

. The proof is by induction

on conversions
∗

←−−−→
RSE∪SE∪E

. Conversions are interpreted by multisets which elements are

pairs of terms (u, v) written as u v, and are therefore compared in the well-founded order

CSL’12

356 Church-Rosser Properties of Normal Rewriting

��:= ((�)lex)mul. Each step in a conversion contributes with one or two pairs: a step
s−→RSE t with s t ; a step s−→SE t with t s ; a step s←→

E
t with both s t and t s.

By definition, the shape of a normal joinable conversion s
∗

←−−−→
RSE∪SE∪E

t must be of the form

s
↓−→SE (−→RSE

↓−→SE)∗ ∗←→
E

(RSE←−SE
↓←−)∗SE

↓←− t. It follows that conversions which are
not already normal joinable must contain one of the six (up to symmetry) following patterns:
u

p−→RSE v with u 6= u↓p, v RSE
p←−u q−→RSE w with u = u↓p and u = u↓q, v←→

E
u

p−→RSE w

with u = u↓p, v SE←−u
p−→RSE w with u = u↓p, v SE←−u−→SE w, and v←→

E
u−→SE w.

In each case, we provide a smaller conversion for (v, w) yielding a smaller conversion for
(s, t), hence allowing us to conclude by induction. We are indeed rewriting conversions in
the style of [3].

1. v SE←−u−→SE w, a local peak interpreted by {u v,w u}. By definition of a NARS,
we have v ∗−→SE

∗←→
E

SE
∗←−w, which interpretation contains pairs all (strictly) smaller than

u v (or w u).
2. v←→

E
u−→SE w, a cliff interpreted by {v u, u v, w u}. By definition of a NARS, we

have v−→SE v
′ ∗−→SE

∗←→
E

w′ SE
∗←−w, which interpretation contains pairs all smaller than

v u.
3. u

p−→RSE v with u 6= u ↓p, a step which interpretation is {u v}. By definition of
normal form below p, u q−→SEw (hence u � w) for some w and q≥P p. By definition
of rewriting modulo, w−→RSE v. The resulting conversion is interpreted by the smaller
multiset {w u,w v}.

4. v
p←→
E

u
Qq−→RSEw, a cliff interpreted by {v u, u v, uw}. We conclude by (*) if p#q,

definition of RSE if p≥P q, (**) if p>P Qq and assumption (ii) if p ∈ Qq \ {q}. In all cases,
the obtained proof is interpreted by pairs which are strictly smaller than v u or uw.

5. v SE

Pp←−u q−→RSE w, a peak interpreted by {v u, uw}. Thanks to the first case, we
can assume that u = u↓q. There are therefore three possible cases:
– p#q. Then v q−→RSE t SE

p←−w by (*), interpreted by {v t, t w} smaller than {v u, uw}.
– q>P Pp. By (**), we get the (smaller) joinability proof v(≥P p)∗−→ RSEv

′
SE

p←−w′RSE
(≥P p)∗←− w.

– q ∈ Pp \ {p}. By definition of rewriting modulo, v S
p←−un

pn←→
E
· · · p1←→

E
u0 = u, with

∀i ∈ [1..n] pi≥P p. Note that all ui are in SE-normal form below q since this is true of u.

We now show the existence of terms wi such that ui
qi≥P p
−−−→RSE wi, hence u � wi (requiring

here an order on E-equivalence classes), and ∀i ∈ [1..n] the pair (wi−1, wi) is joinable with
steps which interpretation is made of pairs smaller than {uw}. Letting w0 = w and q = q0,
we use an induction on i: the case i = 0 is by assumption. Assuming the property up to
i − 1, we proceed as follows: if qi#pi+1, by (*) ; if pi+1≥P qi, by definition of rewriting
modulo ; if qi>P Ppi+1, by (**) ; and if qi ∈ Ppi+1, by assumption (ii). We close the
diagram by definition of rewriting modulo if qn = p, by assumption (iv) applied to the peak
v S

p←−un
qn−→RSE wn if qn ∈ Pp (see the coming picture) and by property (**) if qn>P Pp,

yielding a smaller conversion each time.

un
�

�
�
�	

p

S

wn+1=

v

-�pn≥P p
E

un−1 ... u1
-�p1≥P p

E
u0 = u

@
@
@
@R

q0 = q>P p

RSE
w0(ii)

=

w

@
@
@
@R
w1

RSE

≥P p

??

≥P p

??

≥P p

--�� ≥P p

...

...

@
@
@
@R
wn(iv)

≥P p
RSE

??

≥P p

??

≥P p

--�� ≥P p

J.-P. Jouannaud and J. Li 357

6. v RSE
Pp←−u q−→RSE w. Thanks to the first case, we can assume wlog that u is in

normal form below p and q, which comparison yields three cases up to symmetry:
– p#q. Then v q−→RSE u

′
RSE

p←−w by (*), yielding a smaller conversion.
– q>P Pp. Property (**) yields a smaller conversion.

– q ∈ Pp. Then v R
p←−u′0

(≥P p)∗
←−−−→

SE
u

q−→RSE w by definition of rewriting modulo, and u is in
SE-normal form below p. As shown on the picture below, we proceed in three steps.

First: we move u′0
p−→R from u′0 to some u′n in SE-normal form s.t. u′n

(≥P p)∗←−−→
E

u and

∀i ∈ [1..n], u′i−1
(≥P p)∗
−−−→SE

(≥P p)∗←−−→
E

u′i
p−→R w

′
i and the pair (w′i−1, w

′
i) is joinable. Hence

u−→RSE w
′
i and therefore u � w′i. The proof of the claim is by induction on i. If u′0 = u′0↓SE ,

we are done with n = 0 and w′0 = w. Otherwise u′0
≥P p
−−→S u

′
1. By assumption (iii) (case

shown on the picture) or property (**), u′0
(≥P p)∗
−−→SE

(≥P p)∗←−−→
E

u′1
p−→R w

′
1 and the pair (w′0, w′1)

is joinable. SE being Church-Rosser below p, u′1
(≥P p)∗
−−−→SE

(≥P p)∗←−−→
E

u. Induction hypothesis
applied to u′1 concludes.

Second: let u = u0, ∀i ∈ [1..l], ui−1
≥P p←−−→
E

ui and ul = u′n. We proceed moving u0
≥p−→RSE

from u0 to ul showing the existence of terms wi such that: ∀i ∈ [0..l], ui
qi≥P p−→ RSEwi and

the pair (wi−1, wi) is joinable below p. This is done by induction on i. Case i = 0 is clear.
The step case uses: if p1#q0, assumption (*); if p1≥P q0, the definition of rewriting modulo,
hence w1 = w0 ; if q0>P p1, property (**) or assumption (ii) (the case shown on the picture).
For all i ∈ [0..l], the property u � wi follows from the fact that u =E ui−→SE∪RSE wi.

Third: we close the obtained local peak w′n R
p←−u′n = ul

ql−→RSEwl thanks to property
(**) or assumption (i) (case on the picture), using the fact that u′n = ul is in SE-normal
form below p.

u′0
�

�
�
�	

p

R

w′0=

v

--≥P p
SE

--��≥P p
E

u′1 ... u′n = ul ... u1
-� p1≥P p

E
u0 = u

@
@
@
@R

q0 = q>P p

RSE
w0=

w

@
@
@
@R
w1 (ii)

RSE

≥P p

??

≥P p

??

≥P p

--�� ≥P p...

@
@
@
@R
wl(i) ...

�
�
�
�	
w′n...

??

≥P p

??--��

�
�

�
�	
w′1(iii)

p

R

??

≥P p

?? --�� ≥P p≥P p ...
All steps in the resulting conversion w′0 . . . w′n . . . wl . . . w0 are interpreted by pairs which

we have shown to be all strictly smaller than uw, hence we are done. J
We are ready for applying our main result to a first-order, and then higher-order, concrete
setting.

3 First-order rewriting systems
There are many versions of first-order rewriting, all covered by normal rewriting except class
and normalized rewriting as discussed in introduction.

3.1 Terms and rules.
We denote by T (F ,X) the free algebra of terms generated from a signature F of function
symbols and a denumerable set X of variables. We assume the usual definitions of terms,

CSL’12

358 Church-Rosser Properties of Normal Rewriting

positions, and substitutions [7, 23], adopting notations from the former. We use Var(t) for
the set of variables of the term t, Pos(t) for the set of positions in t, and FPos(t) for its set
of non-variable positions, and · for concatenation of positions. The subterm of t at position
p is denoted by t|p, and we write t[u]p for the result of replacing t|p at position p in t by u.
Positions are compared in the prefix ordering. Substitutions are homomorphic extensions
of a map from variables to terms, to a map from terms to terms. t is an instance of s by
the substitution σ if t = sσ, using postfix notation for the substitution operation also called
instantiation. Computing σ is called (plain) pattern matching. Substitution τ subsumes
substitution σ if σ = τγ for some substitution γ. Two terms s, t are unifiable if sσ = tσ,
and σ is called a (unique up to renaming of variables) most general (plain) unifier (mgu for
short) when it is minimal wrt the (well-founded) subsumption partial order.

A rewrite system is a set of pairs called rewrite rules, written as R = {li → ri}i, where
li is a non-variable term called its lefthand side and ri is a term called its righthand side
such that Var(ri) ⊆ Var(li). A term u (plain) rewrites to a term v with the rule li → ri at
position p ∈ Pos(u), if u|p = liσ for some substitution σ and v = [riσ]p. liσ is called a redex

and riσ its reduct. We write u
p·FPos(li)
−−−→ li→ri v or u p−→R v, or simply u p−→ v.

A set of equations E is a symmetric rewrite system, in which case rewriting with E at
position p is written s p←→

E
t. The conversion relation =E is called the equational theory of E.

t is an E-instance of s with the substitution σ if t =E sσ. Computing σ is called E-pattern
matching. A substitution σ is an E-unifier of the terms s, t if sσ =E tσ. We are interested
in theories, like AC, having a finite complete set of unifiers CSU(s, t) for an arbitrary pair
(s, t) of terms: any unifier of s = t is then an E-instance of a unifier in CSU(s, t).

3.2 Plain rewriting [14]
Plain rewriting corresponds to empty sets S and E. Plain rewriting satisfies the properties
(*,**). The termination assumption of the NARS implies termination of the relation −→R.
Then, the Church-Rosser property of R reduces to the joinability of local rewrite peaks
s l→r∈R

p←−u q−→R t with q ∈ FPos(l).

I Definition 3.1. Given two rules g → d and l → r in R s.t. Var(g) ∩ Var(l) = ∅,
and a position p ∈ FDom(g) such that l and g|p unify with most general unifier σ, then
〈dσ, (g[r]p)σ〉 is called a plain critical pair of l → r onto g → d at p, of which lσ is the
overlap.

The proof of theKnuth andBendix theorem now reduces to the sole classical critical pair case:

I Theorem 3.2 (Knuth and Bendix). Assume R is terminating. Then R is Church-Rosser
iff its plain critical pairs are joinable with −→R.

3.3 Rewriting modulo [21, 10]
We consider here the case where the set R is Church-Rosser modulo a theory E such as
associativity and commutativity, S being empty. Rewriting uses then pattern matching
modulo E. Our assumption that =E −→RE =E is terminating is called E-termination of R.
Again, rewriting modulo enjoys the properties (*,**), which is not true of plain rewriting in
E-congruence classes of terms.

We need to define critical pairs modulo:

I Definition 3.3. Given two rules g → d and l → r in R s.t. Var(g) ∩ Var(l) = ∅, and a
position p ∈ FDom(g) s.t. l and g|p unify with a complete set of most general unifiers Σ,

J.-P. Jouannaud and J. Li 359

then {〈dσ, (g[r]p)σ〉 | σ ∈ Σ} is called a complete set of E-critical pairs of l→ r onto g → d

at p, of which lσ is the E-overlap.

We then recall the notion of extension introduced by Peterson and Stickel in the AC-case,
and by Jouannaud and Kirchner in the general case:

I Definition 3.4. Given a rule g → d ∈ E and a rule l → r ∈ R such that Var(g) ∩
Var(l) = ∅, and a position p ∈ FDom(g) \ {Λ} such that l unifies with g|p modulo E, then
the rule g[l]p → g[r]p is called an E-extension of R.

I Theorem 3.5 (Jouannaud and Kirchner). Assume R is E-terminating and closed under E-
extensions. Then R is Church-Rosser modulo E provided all its E-critical pairs are joinable.

Proof. We omit the proof of joinability of critical rewrite peaks under the assumption that
E-critical pairs are joinable, and concentrate on the critical rewrite cliffs. Let s Pp←→

E
u

q−→RSE t

with g = d ∈ E, Pp = FPos(g) and l→ r ∈ R. By monotonicity of rewriting, we can assume
p = Λ and q ∈ FPos(g) \ {Λ}. Then s = dσ and t = gσ while t|q = lσ and u = l[dσ]p. We
get (g|q)σ =E lσ, hence g[l] → g[r] ∈ R by closure assumption. Since s←→

E
(g[l]q)σ, then

s−→RE t = (g[r]p)σ. J

As shown in [21], extensions are finitely many for AC, and more generally when E is a
set of permutative axioms, since extensions of extensions are then useless.

As a simple illustrating example, let E = AC and R = {x + 0 → x}. E-termination
is obvious since AC-equivalence classes are size-preserving while the rule is size decreasing.
There are no E-critical pairs since x + 0 does not E-unify with 0. Finally, R happens to
be closed under extensions by pure luck: since (x + 0) + y =AC (x + y) + 0, the extension
(x+ 0) + y → x+ y is indeed an AC-instance of the original rule.

3.4 Normal rewriting
We now come to the general case, where R,S,E are sets of rules and equations satisfying
our termination assumption. Note that our version of normal rewriting below p satisfies our
assumptions (*,**), which is not the case of Nipkow’s variant for which terms are normalized
above p, destroying both. We actually only need that RSE , SE and E satisfy (*,**) to show
that RSE∪SE is Church-Rosser under our assumptions that they satisfy the local properties,
which indeed implies the desired property for both variants.

We now need to characterize the joinability properties of the critical patterns (i, ii, iii, iv).
For rewrite peaks, we need to check for joinability complete sets of critical pairs of R

modulo S ∪E. This assumes that such complete sets exist. Note that it is possible to filter
out the pairs which overlap is simplifiable by SE .

For rewrite cliffs, we generate a normalized E-extension g[l]p ↓→ g[r]p ↓ for each rule
l→ r with respect to the equation g = d ∈ E at p ∈ FPos(g) \ {Λ} provided l and g|p unify
modulo E ∪ S (and symmetrically with d).

For simplification cliffs, we generate a normalized oriented S-extension g[l]p↓→ g[r]p↓
for each rule l→ r with respect to the rule g → d ∈ S at p ∈ FPos(g) \ {Λ} provided l and
g|p unify modulo E ∪ S.

We are left with simplification peaks, which require a new kind of extension:
I Definition 3.6. Given rules l → r ∈ R and g → d ∈ S, and a position q ∈ FPos(l)
such that l|q and g are E-unifiable with a complete set of unifiers Σ, then the rules in
{(l[d]q)σ↓→ (rσ)↓ | σ ∈ Σ are called simplification pairs of g → d onto l→ r at position q.

CSL’12

360 Church-Rosser Properties of Normal Rewriting

I Lemma 3.7. Assume (R,S,E) is closed under simplification pairs. Then critical simpli-
fication peaks are shallow-joinable.

Proof. Note that s−→RSE
t for any simplification pair s → t, hence R can be closed by

these extensions without compromising soundness nor termination.
By monotonicity of rewriting, we can assume wlog that p = Λ. Let u Λ−→R v with l→ r ∈

R and u
q∈FPos(l)\{Λ}
−−−→ SE w with g → d ∈ S, and w = lτ [d]qτ (assuming Var(l)∩Var(g) = ∅).

Then, u|q = (l|q)τ =E gτ . By closure assumption, some rule l[g]σ↓ → rσ↓ belongs to R for

some σ such that τ =E σθ. Therefore, we get w = (l[d]q)τ
(≥P q)∗
←−−−→

E
(l[d]q)σθ

∗−→SE (l[d]q)σ↓ θ

−→R rσ↓ θ SE
∗←− rτ = v and we are done. J

Note that we need to generate an extension for each substitution in CSU(l|q, g) rather
than the single extension l[d]q → r as for the other cases, since the latter would not yield
shallow-joinability. On the other hand, we could require that simplification pairs satisfy
shallow joinability, and indeed adding them as rules ensures that property.

We are now ready for the main result of this section:
I Theorem 3.8. Let (R,S,E) be a NARS s.t.
(i) SE-critical pairs of R are joinable,
(ii) R is closed under normalized E-extensions,
(iii) R is closed under normalized simplification pairs, and
(iv) R is closed under normalized oriented S-extensions.
Then normal rewriting is Church-Rosser.

Normal rewriting has many advantages: first, it allows rewriting with R modulo SE,
despite the fact that congruence classes modulo SE may be infinite; second, compared to
rewriting modulo SE, it allows to narrow down the sets of critical pairs and extensions;
third, normal rewriting has a stronger rewriting power than normalized rewriting, and less
critical pairs need be computed.

3.5 Example
We consider the example of the introduction: R = {x + x−1 → 0}, S = {x + 0 → x} and
E = AC. First, the termination assumption is satisfied. This is classically shown by a
polynomial interpretation. Define [[x + y]] = [[x]] + [[y]]; [[x−1]] = 1 + [[x]] and [[0]] = 0. We
then verify that equations in S ∪E are invariant under the interpretation, while the rule in
S decreases strictly. A lexicographic argument yields termination of RSE ∪ SE .

We know that S is Church-Rosser modulo AC, which we did as an application of The-
orem 3.5.

Finally, we need to show that normal rewriting with R is Church-Rosser. x+x−1 unifies
with the strict subterm y + z of A, hence we need to add the extension x + x−1 + y → y

(simplifying the righthand side (0 + y) into y) to R. To ensure local confluence with SE , we
need to add 0−1 → 0 to R which has become R = {x+x−1 → 0, (x+x−1)+y → y, 0−1 → 0}.
We can then verify that the resulting system satisfies our result, hence is Church-Rosser.

4 Higher-order rewriting systems
Our interest here is in higher-order rewriting as introduced by Nipkow [19, 17]. Nipkow and
Mayr assume that rules in R are simply typed, of basic type, in η-long β-normal form and
that their lefthand sides are patterns. Higher-order rules are fired via higher-order pattern
matching. Other, related approaches to higher-order rewriting are considered and compared
in [22].

J.-P. Jouannaud and J. Li 361

We now consider a simply typed lambda calculus λ→ generated by sets of function
symbols Fn with arity n ≥ 0 and a set of variables X , the type structure being itself
generated by a set S of type constants. We use a, b for types, and s, t for (raw) terms:

a, b := S | a→ b

s, t := x | f(s1, . . . , sn) | λx : a . s | (s t)
Typing judgements are of the form Γ ` s : a, where Γ is a set of declarations of the form
{x1 : a1, . . . , xn : an} such that xi 6= xj if i 6= j. A term s is typable of type a in the
environment Γ if the judgement Γ ` s : a can be proved from the following rules:

var: Γ ∪ x : a ` x : a

fun: Γ ` s1 : a1, . . . ,Γ ` sn : an
Γ ` f(s1, . . . , sn) : a

if f : a1 → . . .→ an → a ∈ Fn

abs: Γ ∪ x : a ` s : b
Γ ` (λx : a . s) : a→ b

app: Γ ` s : a→ b Γ ` t : a
Γ ` (s t) : b

As usual, substitutions are capture-avoiding “morphism” written {x1 7→ s1, . . . , xn 7→ sn}
when finitely variables are involved, such that xi and si have the same type in the environ-
ment Γ.

λ→ comes equipped with three equations:
alpha: λx : a . s = λy : a . s{x 7→ y} if y 6∈ Var(s)
beta: ((λx : a . s) t) = s{x 7→ t}
eta: λx : a . (s x) = s if x 6∈ Var(s)

beta is oriented as a rule from left to right, while eta can be oriented as a reduction from
left to right or as an expansion from right to left. The set S of simplifiers is made of beta
and a choice of orientation for eta.

Let us now recall that the presence of binders forces to rewrite modulo α-conversion,
even when rewriting with the beta rule alone. The simplest example is due to Barendregt
and Klop:
(λx.(x x) λs.λz.(s z))−→(λs.λz.(s z) λs.λz.(s z))−→ λz.(λs.λz.(s z) z)−→λz.λz.(z z).
which last step has resulted in the variable z being captured by λz.We should instead rename
the inside binder λz., showing once more that rewriting modulo (here, α-conversion) surfaces
everywhere:
λz.(λs.λz.(s z) z) (≥1)∗←−−→

α
λz.(λs′.λz′.(s′ z′) z) 1−→

β
λz.λz′.(z z′).

We now move to our higher-order rewrite rule format, which definition is the following:

I Definition 4.1. A rewrite rule is a tuple (Γ, l, r, σ) s.t.
(i) l and r are in SE-normal form,
(ii) Γ ` l : σ and Γ ` r : σ,
(iii) l = f(l1, . . . , ln) for some f ∈ Fn, and is a pattern [18],
(iv) Var(r) ⊆ Var(l).

We write Γ ` l→ r : σ or simply l→ r if no ambiguity.

It is actually not necessary to assume that lefthand sides of rules are headed by a function
symbol, but, besides being a natural assumption, it simplifies the critical pairs analysis. We
shall however explain what are the additional computations needed when this assumption
is not met.

CSL’12

362 Church-Rosser Properties of Normal Rewriting

On the other hand, the pattern assumption cannot be dispensed with as pointed out to
us by Vincent van Oostrom:
Given type constants o, i, let F = {f : (o→ o)→ o, a : o, h : o→ i, g : i→ o}, X = {o →
o,X : i}, and R = {f(λx : o . F (F (x))→ a, h(g(X))→ X}.
Then a←−f(λx.g(h(g(h(x)))))−→f(λx . g(h(x))) with both terms in normal form despite
the fact that there are no critical pairs in the usual sense since f(λx . F (F (x))) has no
subterm of type i. The role of the pattern restriction is indeed to rule out these non-intuitive
higher-order phenomena.

The assumption that rules are in SE-normal form is important as well to ensure the
absence of simplification peaks in most cases.

We will use variations of a single example, differentiation, writing u(v) instead of (u v):

R : ∗ % type of reals
×2 : R→ R→ R % arity 2
diff1 : (R→ R)→ (R→ R) % arity 1
sin1, cos1 : R→ R % arity 1
×2
→ : (R→ R)→ (R→ R)→ (R→ R)

F : R→ R
diff(λx. sin(F (x)))→ λx. cos(F (x))×→ diff(F)

The idea here is to embed composition into the definition, the usual rule for differentiating
a sinus being recovered thanks to higher-order matching by instantiating F by the identity.
Note that patterns occur naturally in examples.

Our termination assumption can be verified easily here by using the Normal Higher-
Order Recursive path Ordering introduced in [13]. All the coming variants can be dealt
with as well.

Although βη-congruence classes are infinite, termination of higher-order rules like the
above one is usually easy to show because the top function symbols in the rules are different
from those of the λ-calculus. Normal rewriting therefore appears to be a very good fit with
higher-order computations.

4.1 Higher-order rewriting at simple types
4.1.1 η as an expansion [19, 17]
E is α-conversion and S is made of β-reduction and η-expansion saturating arrow types:

v[u]p−→ηv[λx : a . (ux)]p

if

u : a→ b

x 6∈ Var(u)
if p = q · 1, then v|q is not an application

To comply with the so-called Nipkow’s format for which rules must operate at base types,
the example becomes:

diff(λx. sin(F (x)))(y)→ cos(F (y))× diff(λx.F (x))(y)
There are of course no extensions associated with α-conversion.
Since η is used as an expansion, and has therefore a variable as its lefthand side, there are

no oriented extensions associated with the η-rule, and no simplification extensions either,
since rules in R are in normal form for the simplification rules.

There are no oriented extension for the β-rule since the rules in R being of base type,
their lefthand side cannot unify with an abstraction, which is the sole strict non-variable
subterm of the lefthand side of the beta rule. Note that the argument still holds for lefthand
sides which are not headed by a function symbol. There are no simplification extensions

J.-P. Jouannaud and J. Li 363

either: since rules are in η-long β-normal form, no subterm of a rule can unify with the
lefthand side of β except for subterms of the form (X x), where X is a higher-order variable
and x a variable bound above. Instantiating X by λy.u for some term u yields a term which
is a higher-order instance of l, hence rewrites to the corresponding instance of the righthand
side. It appears therefore that rules in R are their own simplification pairs. Therefore,

I Theorem 4.2 ([17]). Higher-order rewriting with R is Church-Rosser provided
(i) −→Rβη ∪ −→βη−1 is α-terminating;
(ii) irreducible higher-order critical pairs are joinable.

where higher-order critical pairs are defined a usual by solving equations of the form l|p =βηα

g for some rules l→ r and g → d. Note the strong analogy with Theorem 3.2. This is due to
the choice of orienting η as an expansion, and to rule out user’s rules at higher-type. Note
also that the presence of α in our termination assumption, which is usually omitted (that
is, left implicit).

This version of Nipkow’s result requires to prove that the relation (−→Rβη ∪ −→βη−1 is
α-terminating, instead of −→Rβη and −→βη−1 being separately α-terminating as in Nipkow’s
original result. On the other hand, we conclude for the stronger Church-Rosser property
instead of confluence as does Nipkow. Note also the little improvement, compared with
Nipkow’s result, obtained by eliminating the reducible higher-order critical pairs from the
joinability test.

4.1.2 η as a reduction:
S is now made of β and η reductions. We will nevertheless recover the advantages of
η-expansions by having arities for the variables as in Klop’s framework: they can be η-
expanded up to the saturation of their arity, as in λxy.X(x, y) for X of arity two and x, y
of arity zero. This η-expanded term is indeed η-reduced, since X(x) and X are not terms
in this setting.

The only difference with the previous case is therefore the orientation of η. Since sim-
plification pairs require the unification (modulo α) of the lefthand side of the η-rule with a
subterm of a lefthand side of R, the only potential case is that of a subterm of a lefthand side
of rule in R being of the form λx.X(x) where X is a free higher-order variable. Rewriting
this subterm with η is not possible, though, since it would violate the arity of X. We are
therefore left with oriented extensions, for which a lefthand side of rule would unify the
only non-variable strict-subterm of the lefthand side of η, which is impossible with our rule
format (which could actually be relaxed).

I Theorem 4.3. Higher-order rewriting with R is Church-Rosser provided
(i) −→Rβη ∪ −→βη is α-terminating;
(ii) irreducible higher-order critical pairs are joinable.

This shows that the choice of orienting eta as a reduction or an expansion has no impact
on confluence when rewriting is only possible at simple types.

4.2 Higher-order rewriting at higher types
To understand the importance of the type assumption in Nipkow’s format, let us consider his
motivating example R = {λx.a → λx.b}, where a and b are constants of a given base type.
a and b are convertible terms in η-long β-normal form since a Λ←→

β
(λx.a u) 1←→

R
(λx.b u) Λ←→

β
b,

but not joinable.
This has motivated Nipkow’s restriction that the lefthand side of a higher-order rule is

of base type, and therefore, is not an abstraction. Of course, it would be easy to change the

CSL’12

364 Church-Rosser Properties of Normal Rewriting

rule into a → b (making it satisfy our definition of rule), therefore avoiding the problem,
but this cannot be done in general. Consider for instance the rewrite rule λx. f(x, Z(x))→
λx. g(x, Z(x)). Removing the abstraction yields f(X,Z(X)) → g(X,Z(X)), a rule which
left-hand side is no pattern.

Nipkow’s example shows a case of critical simplification peak: adding the normalized
β-extension of the original rule λx.a → λx.b, that is a → b solves the problem. In general,
the normalized β-extension of a rule λx.l(x) → r is the rule l(x) → @(r, x)↓. Since one
abstraction is pulled out, a rule can have only finitely many such extensions which are easily
computable.

Our format rules out the need for these extensions, since lefthand sides cannot be ab-
stractions. The previous argument that simplification pairs are not needed remains valid.
Therefore,

I Theorem 4.4. Higher-order rewriting with R is Church-Rosser provided
(i) −→Rβη ∪ −→βη−1 is α-terminating,
(ii) irreducible higher-order critical pairs are joinable.
We can therefore reformulate our example as follows:

diff1 : (R→ R)→ (R→ R)
sin0, cos0 : → (R→ R)
F 0 : → (R→ R)
×1
→ : (R→ R)→ (R→ R)

diff(sin ◦ F)→ diff(sin)×1
→ diff(F)

Orienting eta as a reduction would yield the same result again for our rule format.

4.3 Adding algebraic equations in E
Our main abstract result allows us to also consider equations like AC in E which would
then contain both AC and α, see [6] for examples. Of course the presence of AC requires
checking new pairs for the corresponding local properties. Higher-order unification modulo
AC of higher-order patterns yields finite complete sets of unifiers [6], hence the calculations
which require higher-order unification yield decidable tests when lefthand sides of rules are
patterns.

5 Conclusion
We have given a framework for normal rewriting terms that covers a wide variety of rewriting
applications, whether first or higher-order. These results are very economic thanks to an
abstract framework which incorporates a lightweight axiomatization of positions. Besides,
they solve a long-standing open problem regarding how to check the Church-Rosser property
of higher-order rewriting at any type, whether basic or functional.

We believe that the application of our main abstract result to higher-order rewriting can
be pushed further, by allowing for polymorphic or dependent types.

A referee strongly suggested many potential extensions of the framework, to a fully
hierarchical setting, to non-terminating normal rewriting (using decreasing diagrams), to
graph rewriting, and more. Although we are not interested ourselves in those extensions at
this point, we would of course welcome efforts in these directions. Such extensions would
provide the appropriate theoretical basis for several recent applications, the most surprising
to us being [1].

Acknowledgements: to Delia Kesner, Femke van Raamsdonk and Albert Rubio for
discussing actively this topic in the past.

J.-P. Jouannaud and J. Li 365

References
1 O. Al-Hassani, Q.-A. Mahesar, C. Sacerdoti Coen, and V. Sorge. A term rewriting system

for Kuratowski’s closure-complement problem. In Tiwari A., editor, RTA, volume 15 of
LIPIcs, pages 38–52. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2012.

2 L. Bachmair. Canonical Equational Proofs. Birkhäuser, Boston, 1991.
3 L. Bachmair, N. Dershowitz, and J. Hsiang. Orderings for equational proofs. In Proc. 1st

LICS, 1986.
4 T. Baird, Peterson G. E., and Wilkerson R. Complete sets of reductions modulo Associ-

ativity, Commutativity and Identity. In Proc. 3rd RTA, LNCS 355, pages 29–44. Springer,
1989.

5 H. Barendregt. Handbook of Theoretical Computer Science, volume B, chapter Functional
Programming and Lambda Calculus. North-Holland, 1990.

6 A. Boudet and E. Contejean. AC-unification of higher-order patterns. In Int. Conf. on
Constraint Programming, 1997, pages 267–281, 1997.

7 N. Dershowitz and J.-P. Jouannaud. Handbook of Theoretical Computer Science, volume B,
chapter Rewrite Systems. North Holland, 1990.

8 G. Gonthier, J.-J. Lévy, and P.-A. Mellies. An abstract standardisation theorem. In LICS,
pages 72–81. IEEE Computer Society, 1992.

9 G. Huet. Confluent reductions: abstract properties and applications to term rewriting
systems. Journal of the ACM, 27(4):797–821, October 1980.

10 J.-P. Jouannaud and H. Kirchner. Completion of a set of rules modulo a set of equations.
SIAM Journal of Computing, 15(4):1155–1194, 1986.

11 J.-P. Jouannaud and C. Marché. Termination and completion modulo associativity, com-
mutativity and identity. Theoretical Computer Science, 104:29–51, 1992.

12 J.-P. Jouannaud and F. van Raamsdonk. Confluence properties of terminating higher-
order rewrite relations. In Mathematical Theories of Abstraction, substitution and naming
in Computer Science, ICMS, Edinburgh, may 2007.

13 J.-P. Jouannaud and A. Rubio. Higher-order orderings for normal rewriting. In F. Pfenning,
editor, RTA, volume 4098 of LNCS, pages 387–399. Springer, 2006.

14 D. E. Knuth and P. B. Bendix. Simple word problems in universal algebras. In J. Leech,
editor, Computational Problems in Abstract Algebra. Elsevier, 1970.

15 D. S. Lankford and Ballantyne A. M. Decision procedures for simple equational theories
with commutative-associative axioms: Complete sets of commutative-associative reduc-
tions. Memo ATP-39, University of Texas, Austin, August 1977.

16 C. Marché. Normalised rewriting and normalised completion. In Proc. 9th LICS, 1994.
17 R. Mayr and T. Nipkow. Higher-order rewrite systems and their confluence. Theoretical

Computer Science, 192:3–29, 1998.
18 D. Miller. A logic programming language with lambda-abstraction, function variables, and

simple unification. Journal of Logic and Computation, 1(4):497–536, 1991.
19 T. Nipkow. Higher-order critical pairs. In Proceedings of the 6th annual IEEE Symposium

on Logic in Computer Science (LICS ’91), pages 342–349, Amsterdam, The Netherlands,
July 1991.

20 V. van Oostrom. Confluence by decreasing diagrams converted. In Voronkov A., editor,
RTA, volume 5117 of Lecture Notes in Computer Science, pages 306–320. Springer, 2008.

21 G. E. Peterson and M. E. Stickel. Complete sets of reductions for some equational theories.
Journal of the ACM, 28(2):233–264, April 1981.

22 F. van Raamsdonk. Higher-order rewriting. In P. Narendran and M. Rusinowitch, editors,
Proc. RTA, LNCS 1631, pages 220–239. Springer, 1999.

23 Terese. Term rewriting systems. In Cambridge Tracts in Theoretical Computer Science,
M. Bezem, J. W. Klop, and R. de Vrijer editors. Cambridge University Press, 2003.

CSL’12

A Counting Logic for Structure Transition Systems
Łukasz Kaiser1 and Simon Leßenich∗2

1 LIAFA, CNRS & Université Paris Diderot – Paris 7, France
2 Mathematische Grundlagen der Informatik, RWTH Aachen

Abstract
Quantitative questions such as “what is the maximum number of tokens in a place of a Petri
net?” or “what is the maximal reachable height of the stack of a pushdown automaton?” play a
significant role in understanding models of computation. To study such problems in a systematic
way, we introduce structure transition systems on which one can define logics that mix temporal
expressions (e.g. reachability) with properties of a state (e.g. the height of the stack). We propose
a counting logic Qµ[#MSO] which allows to express questions like the ones above, and also many
boundedness problems studied so far. We show that Qµ[#MSO] has good algorithmic properties,
in particular we generalize two standard methods in model checking, decomposition on trees and
model checking through parity games, to this quantitative logic. These properties are used to
prove decidability of Qµ[#MSO] on tree-producing pushdown systems, a generalization of both
pushdown systems and regular tree grammars.

1998 ACM Subject Classification F.4.1, I.2.4

Keywords and phrases Logic in Computer Science, Quantitative Logics, Model Checking

Digital Object Identifier 10.4230/LIPIcs.CSL.2012.366

1 Introduction

Models of computation describe temporal changes of a state of a system or a machine.
For example, pushdown automata describe transformations of the stack, term rewriting
systems capture modifications of terms, and Turing machines specify changes of the tape.
Questions about computations of systems often ask about temporal events intertwined with
properties of the state, e.g. reachability (temporal) of an empty stack (state property) or
never encountering a tree of height less than one. We propose an abstract definition which
distinguishes temporal transitions from the state of the system and allows to investigate
properties of such systems and the corresponding logics in a uniform and systematic way.

I Definition 1. A structure transition system (STS) is a labeled transition system (Kripke
structure) with an additional assignment m of finite relational structures to the nodes of the
system. Formally, given a set of transition labels R and a relational signature τ , an STS is
a tuple S = (S,∆,m) where S is a set of states, ∆ ⊆ S ×R × S is a set of transitions, and
m ∶ S → FinStr(τ) assigns a finite τ -structure to each state.

Computing machines of various kinds can be viewed as finite objects which represent and
generate infinite structure transition systems. Let us consider a few prominent examples.

Pushdown automata induce structure transition systems in which the relational structures
assigned to the nodes represent the current stack of the automaton, i.e. are words over
the stack alphabet. The transition relation in the STS copies the one in the automaton.

∗ This author was supported by the ESF Research Networking Programme GAMES and the DFG Research
Training Group 1298 (AlgoSyn).

© Łukasz Kaiser and Simon Leßenich;
licensed under Creative Commons License NC-ND

Computer Science Logic 2012 (CSL’12).
Editors: Patrick Cégielski, Arnaud Durand; pp. 366–380

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2012.366
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Ł. Kaiser and S. Leßenich 367

Turing machines generate STSs in a similar way to pushdown automata: the structure
assigned to each node of the STS is again a word, and it represents the tape of the
machine at that time. Transitions are induced from the ones of the machine.
Petri nets give rise to STSs in which elements of the relational structures correspond to
tokens in the net. Elements labeled by a predicate Pl correspond to tokens in place l in
the net and firing of the net results in transitions of the STS.
Term rewriting systems (TRSs) produce STSs in which one assigns a term to each node,
i.e. the relational structure m(s) is always a labeled tree, representing the term in s. The
transition relation ∆ is derived from the application of rewriting rules.
Graph rewriting systems induce STSs in a similar way as TRSs, but the structures assigned
to nodes are arbitrary graphs, or even hypergraphs in case of hypergraph rewriting.

Interesting properties of structure transition systems mix temporal events with state
attributes. To specify them, we thus compose a temporal logic with another logic for the
states. In such composition, the predicates of the temporal logic are replaced by sentences of
the state logic, which in turn are evaluated on the relational structure assigned by m.

Consider the logic LTL[MSO], which allows to use MSO sentences in place of predicates
in LTL. For example, the formula G(∃xa(x)) expresses that an a-labeled element exists in
the relational structure assigned to each reachable state of an STS. Since MSO sentences
define regular languages of words and trees, one can express in LTL[MSO] over an STS
the reachability of a state in which the stack belongs to a regular language (for pushdown
systems) or in which a regular configuration appears on the tape (for Turing machines) or
in which the term belongs to a regular tree language (for TRSs). Note that a LTL[MSO]
formula defines a property in a uniform way, for pushdown systems, Turing machines and
TRSs at the same time. Moreover, we can systematically inspect which temporal logic and
which state logic can be combined to an efficient formalism on which classes of STS.

If the state logic is trivial, i.e. consists only of the two formulas true and false, one obtains
classical action-based temporal logics like LTL or the µ-calculus Lµ. Model-checking these
logics is decidable on pushdown systems [13] and for linear-time logics (e.g. LTL) it is
also decidable on Petri nets [5]. On the other hand, already model-checking action-based
branching-time logics, e.g. Lµ, is undecidable on Petri nets [5].
One can consider the logic Reach[MSO] in which formulas have the form Reach(ψ) for
some ψ ∈ MSO and express that an MSO-definable configuration is reachable. Model-
checking this logic is decidable on pushdown systems [13] and also on Petri nets [14].
Model-checking LTL[MSO] is decidable on STSs generated by pushdown systems [6], but
the use of MSO makes it undecidable on STSs corresponding to Petri nets [5].
For Lµ[MSO], the modal µ-calculus with MSO sentences as predicates, the model checking
problem is decidable on context-free and prefix-recognizable rewrite systems, and thus
also on pushdown systems [13]. It is also decidable on some classes of graph or structure
rewriting systems, e.g. for separated structure rewriting [11].

Combinations of temporal and state logics, as the ones above, allow to express interesting
properties of structure transition systems, but, since the formulas of these logics are Boolean,
they are limited to yes-or-no answers. For example, it is not possible to ask “how high will the
stack get on all runs?” of a pushdown automaton or “how many tokens will there maximally
be in a place?” of a Petri net. Such questions are often very important for understanding
the behavior of the system. Note also that the answer to a question of this kind might be
either an integer or ±∞, in case the stack size or the number of tokens is unbounded. Such
boundedness problems have been studied extensively for many models.

CSL’12

368 A Counting Logic for Structure Transition Systems

The question whether the maximal stack size on runs of a pushdown system is bounded
or not, intertwined with temporal properties, has been studied in [2, 9], and is a special
case of the problem solved in this work.
The boundedness problem for Petri nets was shown to be decidable in [12] and became
one of the most important tools in Petri net analysis.
On Turing machines, establishing the bound on the size of the tape during a computation
is the same as determining its space complexity.
Graph rewriting systems are used to model e.g. biochemical processes and one often asks
for the number of particles of certain kind produced in the process.

In the next section, we introduce a counting logic Qµ[#MSO] which allows to express
queries like the ones discussed above. Fundamental algorithmic techniques from model
checking generalize to this logic, as we show in Section 3. We apply these methods in
Section 4 to compute the value of Qµ[#MSO] formulas on tree-producing pushdown systems.
In the proof, we use two key lemmas, proved in Section 5 and Section 6.

2 Counting µ-Calculus on Structure Transition Systems

To express questions of the above form, we propose the counting µ-calculus, a quantitative
logic in which each formula has not just a Boolean value, but it evaluates to a number in
Z∞ ∶= Z ∪ {−∞,∞}. This logic, denoted Qµ[#MSO], allows to use counting terms on state
structures and maximum, minimum and fixed-point operations in the temporal part. This
suffices to express all the example questions presented above and to query for boundedness.
Note that it is not a probabilistic logic, and we do not introduce operators for sums over
different paths. Qµ[#MSO] is composed of the quantitative µ-calculus [7], and for quantitative
predicates uses counting terms on top of MSO formulas, defined as follows.

I Definition 2. An MSO counting term has the form #x1⋯xnϕ(x1,⋯, xn), where {x1,⋯, xn}
is the set of all free variables of the MSO formula ϕ. On a finite structure A, the term
represents the number of tuples a1,⋯, an such that A ⊧ ϕ(a1,⋯, an),

⟦#x ϕ(x)⟧A ∶= ∣{a ∣ A ⊧ ϕ(a)}∣.

For a formula ϕ without free variables, we set #ϕ = 1 if ϕ holds and #ϕ = 0 in the other case.

Using the above counting terms as predicate symbols, formulas of Qµ[#MSO] are built
according to the following grammar, analogous to [7].

ψ ∶∶= #xϕ(x) ∣X ∣ ¬ψ ∣ ψ ∧ ψ ∣ ψ ∨ ψ ∣ ◻r ψ ∣ ◇r ψ ∣ µX.ψ ∣ νX.ψ,

where r ∈ R are labels of the transitions and each X ∈ Var is a fixed point variable and must
appear positively in ϕ, i.e. under an even number of negations. We will often write ◇ for
the disjunction of ◇r over all r ∈ R for a finite R, and ◻ analogously. The semantics of
Qµ[#MSO] combines the quantitative µ-calculus [7] with MSO counting terms.

I Definition 3. Let S = (S,∆,m) be a structure transition system and F ∶= {f ∶ S → Z∞} the
set of quantitative assignments to the states of S. Given an evaluation of fixed point variables
ε ∶ Var→ F we define the evaluation of a Qµ[#MSO] formula ψ, denoted ⟦ψ⟧Sε ∶ S → Z∞, in
the following inductive way.

⟦X⟧Sε = ε(X)
⟦#xϕ(x)⟧Sε (s) = ⟦#xϕ(x)⟧m(s) = ∣{a ∣ m(s) ⊧ ϕ(a)}∣

Ł. Kaiser and S. Leßenich 369

⟦¬ψ⟧Sε = −1 ⋅ ⟦ψ⟧Sε
⟦ψ1 ∧ ψ2⟧Sε = min(⟦ψ1⟧Sε , ⟦ψ2⟧Sε), ⟦ψ1 ∨ ψ2⟧Sε = max(⟦ψ1⟧Sε , ⟦ψ2⟧Sε)
⟦◇rψ⟧Sε (s) = sup{s′ ∣ (s,r,s′)∈∆} ⟦ψ⟧

S
ε (s′), ⟦◻rψ⟧Sε (s) = inf{s′ ∣ (s,r,s′)∈∆} ⟦ψ⟧Sε (s′)

⟦µX.ψ⟧Sε is the least and ⟦νX.ψ⟧Sε the greatest fixed point of the operator f ↦ ⟦ψ⟧Sε[X←f]
To compute the fixed point, we consider F as a complete lattice with pointwise order, i.e.
f ≤ g if and only if f(s) ≤ g(s) for all states s ∈ S.

Note that the above definition is very similar to the classical, Boolean µ-calculus. As
in the standard case, one can evaluate fixed points inductively, e.g. the least fixed point
starting from a function which assigns −∞ to all states. The Boolean logic Lµ[MSO] can in
fact be embedded in Qµ[#MSO] as follows: take a formula ψ of Lµ[MSO] in negation normal
form and replace each literal ¬ϕ by #¬ϕ and each ϕ by #ϕ. These terms have now value 1
if ϕ holds and 0 in the other case, and since the semantics coincide, the Qµ[#MSO] formula
obtained in this way will evaluate to ∞ or 1 if ψ holds and to 0 or −∞ otherwise. In this sense
the logic Qµ[#MSO] subsumes Lµ[MSO], and therefore also several other Boolean logics, e.g.
LTL[MSO] and CTL[MSO]. But, of course, in addition to Boolean ones, Qµ[#MSO] allows
to express quantitative properties, e.g. the following.

The formula ψ# = µX.(#x(x = x) ∨◇X) calculates the bound on the size of structures
appearing on all runs of the STS from where it is evaluated. Therefore ϕ#(s) ≠∞ if and
only if there is a bound on the size of the structures on all runs from s, and checking if
ϕ#(s) ≠∞ answers the boundedness problems mentioned before.
The formula ψ× = νX.(#x,y(a(x) ∧ b(y)) ∧ ◻X) computes the minimal product of the
number of a-labeled elements and b-labeled ones on all paths from the node in which it is
evaluated.
For two atoms ϕ1 and ϕ2, we will denote the formula µX.(ϕ2 ∨ (ϕ1 ∧◇X)) by ϕ1 untilϕ2,
as it is the standard Lµ formula expressing the LTL until modality. In the quantitative
setting, this formula calculates the maximal value of ϕ1 at the last node in which ϕ1 > ϕ2
on all paths. If we set ϕ1 = #xa(x) and ϕ2 = #xb(x) then ϕ1 untilϕ2, on words, computes
the maximal number of as reached on prefixes of runs on which there are more as than bs.

3 Model Checking Games and Decomposition

The logic Qµ[#MSO] is a composition of a quantitative extension of the µ-calculus Lµ and
a counting extension of MSO. Good algorithmic properties of Lµ stem from its connection
to parity games, and decidability of MSO on linear orders and trees has its roots in the
decomposition property. It is therefore natural to ask whether these basic methods generalize
to Qµ[#MSO]. We give a positive answer, showing both model-checking games for Qµ on
structure transition systems and a decomposition theorem for #MSO. These two tools will
be crucial in the decidability proof in the next section.

3.1 Model-Checking Games
To model-check Qµ one can use quantitative parity games, as shown in [7]. We use an almost
identical notion (except for discounts) for Qµ[#MSO] on structure transition systems.

I Definition 4. A quantitative parity game (QPG) G is a tuple G = (V,Vmax, Vmin,E, λ,Ω)
such that (V,E) is a directed graph whose vertices V are partitioned into positions Vmax
of Maximizer and positions Vmin of Minimizer. Every vertex is assigned a color by Ω ∶ V →
{0,⋯, d} and terminal vertices T = {v ∈ V ∣ vE = ∅} are labeled by the payoff function
λ ∶ T → Z.

CSL’12

370 A Counting Logic for Structure Transition Systems

How to play. Every play starts at some vertex v ∈ V . For every vertex in Vmax, Maximizer
chooses a successor vertex and the play proceeds from that vertex (analogously for Minimizer).
If the play reaches a terminal vertex, it ends. We denote by π = v0v1 . . . the (possibly infinite)
play through vertices v0v1 . . ., given that (vn, vn+1) ∈ E for every n. The outcome p(π) of a
finite play π = v0 . . . vk is given by λ(vk). The outcome of an infinite play depends only on
the lowest priority seen infinitely often. We will assign the value −∞ to every infinite play
where the lowest priority seen infinitely often is odd, and ∞ to those where it is even.

Goals. The two players have opposing objectives regarding the outcome of the play.
Maximizer wants to maximize the outcome, while Minimizer wants to minimize it.

Strategies. A strategy of Maximizer (Minimizer) is a function s ∶ V ∗Vmax → V (s ∶
V ∗Vmin → V) with (v, s(hv)) ∈ E for each h, v. A play π = v0v1 . . . is consistent with a
strategy s of Maximizer if vn+1 = s(v0 . . . vn) for every n such that vn ∈ Vmax, and dually
for strategies of Minimizer. For strategies f, g of the two players, we denote by αf,g(v) the
unique play starting at v which is consistent with both f and g.

Determinacy. A game is determined if, for each position v, the highest outcome Maximizer
can assure from this position and the lowest outcome Minimizer can assure coincide,

sup
f∈Σmax

inf
g∈Σmin

p(αf,g(v)) = inf
g∈Σmin

sup
f∈Σmax

p(αf,g(v)) =∶ valG(v),

where Σmin,Σmax are the sets of all possible strategies for Minimizer and Maximizer and the
achieved outcome is called the value of G at v.

As shown in [7], quantitative parity games are determined and can be used for model-
checking. We adapt the construction from [7] and construct a model-checking game satisfying
the following properties.

I Theorem 5 (c.f. [7]). For every ψ ∈ Qµ[#MSO] and every STS S one can construct
the quantitative parity game MC (S, ψ) = (V,Vmax, Vmin,E, λ,Ω) which is a model-checking
game for ψ and S, i.e. it satisfies the following properties:

(1) V = (S × Sub(ψ)) ∪ {(∞), (−∞)}, where Sub(ψ) is the set of subformulas of ψ.
(2) In terminal positions (s,ψ) the formula ψ has the form #xϕ(x) or ¬#xϕ(x).
(3) If ((s,ψ), (s′, ψ′)) ∈ E then either s = s′ or (s, s′) ∈ ∆.
(4) Ω(s,ψ) depends only on ψ, not on s.
(5) val MC (S, ψ) (s,ψ) = ⟦ψ⟧S(s).

The construction of the model-checking game corresponds to the one in [7], only that in
the setting of STS, discounts are not needed and have thus been removed.

In this work, we will be especially interested in pushdown quantitative parity games. For
a finite stack alphabet Γ, bottom symbol � /∈ Γ and a finite state set Q, we define a pushdown
process A = (Q,↪) in the standard way (see Definition 1 in [16]) and we denote by E↪ the
corresponding one-step transition relation. We say that a QPG is a pushdown game over
A if it has positions from A, i.e. of the form (q, s) for s ∈ Γ∗ and q ∈ Q, moves given by
E↪, and the partition into Vmax and Vmin and the color Ω of a position (q, s) depend only
on q and not on s. We say that a pushdown process or QPG is pop-free if ↪ contains no
pop-rules, equivalently if for each edge in E = E↪ from (q, s) to (q′, s′) it holds that ∣s′∣ ≥ ∣s∣.
In Section 5 we adapt the ideas from [19] to prove the following reduction.

I Theorem 6. For every pushdown QPG G over A = (Q,↪) one can compute a finite set
Q′, q′0 ∈ Q′, a pop-free pushdown process A′ = (Q ×Q′,↪′) and a QPG G′ over A′ such that
valG(q, ε) = valG′((q, q′0), ε) for each q ∈ Q.

Ł. Kaiser and S. Leßenich 371

3.2 #MSO Decomposition on Trees
The technique above allows us to reduce model-checking of the temporal part of a Qµ[#MSO]
formula to solving a QPG. But to provide algorithms for Qµ[#MSO] we also need a method
to handle the counting terms, at least on structures such as words and trees. For MSO, e.g.
on trees, this can be done by decomposing a formula: instead of checking ϕ on the whole
tree, one can compute tuples of formulas to check on the subtrees. Here we show that this
method can be extended to MSO counting terms.

Trees. We consider at most k-branching finite trees with nodes labeled by symbols
from a finite alphabet Γ. We accordingly represent them by relational structures over the
signature τ = {S1,⋯, Sk} ∪ {P ∶ P ∈ Γ}, where each Si is a binary relation representing the
i-th successor. We use Pi and Qj for the symbols from Γ and write P − t1⋯ tl for the tree
with P -labeled root and subtrees ti. We write tQ for the tree of height 1 consisting of only
the root labeled by Q.

Types. Recall that an m-type in n variables τm,n ⊆ MSO is a maximal satisfiable set of
formulas with quantifier rank at most m and free variables among x1, . . . , xn. We will use
Hintikka formulas to finitely represent types, as in the following lemma.

I Lemma 7 (Hintikka Lemma [10]). Given m ∈ N and variables x = x1,⋯, xn, one can
compute a finite set Hm,n of formulas with quantifier rank m and free variables x such that:

For every tree t and vertices v1,⋯, vn ∈ t there is a unique τ ∈Hm,n such that t ⊧ τ(v).
If τ1, τ2 ∈Hm,n and τ1 ≠ τ2 then τ1 ∧ τ2 is unsatisfiable.
If τ ∈ Hm,n and ϕ(x) is a formula with qr(ϕ) ≤ m, then either τ ⊧ ϕ or τ ⊧ ¬ϕ.
Furthermore, given such τ and ϕ, it is computable which of these two possibilities holds.

Elements of Hm,n are called (m,n)-Hintikka formulas and Hm,≤n = ⋃i≤nHm,i.

Let us fix a counting term #xϕ(x), which we will decompose. In this section, if we omit
the quantifier rank m, we mean m = qr(ϕ). For a tuple x = (x1,⋯, xn) of variables we write
[x]l = (x0,⋯, xl) for a partition of x into l + 1 disjoint sets, and {[x]l} for the set of all such
partitions. Let us first recall the standard MSO decomposition theorem on trees.

I Theorem 8 ([18, 8]). Let t = Q − t1⋯ tl be a tree and ϕ(x) an MSO formula. One can
compute a finite set Φ = {(ϕ0(x0), ϕ1(x1),⋯, ϕl(xl)) ∣ (x0,⋯, xl) ∈ {[x]l}}, where all ϕi have
a quantifier rank not exceeding that of ϕ, such that

t ⊧ ϕ(x) ⇐⇒ there ex. a ϕ ∈ Φ with tQ ⊧ ϕ0(x0) and ti ⊧ ϕi(xi) for all i ∈ {1, . . . , l}.

Observe that the condition above is a disjunction over the (l+1)-tuples in Φ of conjunctions
over each tuple. We prove a similar decomposition theorem for #MSO in which, intuitively,
the disjunctions are replaced by sums and the conjunctions by products. Note that counting
terms can count, e.g., the product of the number of as in the left subtree and the number of
bs in the right one. But in such case, the free variables in the decomposition are split, and
thus the number of terms in a product is limited by the number of free variables. To ensure
that assignments are not counted twice, we decompose to Hintikka formulas.

I Theorem 9. Let t = Q − t1⋯ tl be a tree and let #xϕ(x) be a counting term. Then, for
every partition [x]l = (x0,⋯, xl) of x, one can compute a finite set Ψ[x]l

of (l + 1)-tuples of
Hintikka formulas from Hqr(ϕ),≤∣x∣ such that

⟦#xϕ(x)⟧t = ∑
[x]l∈{[x]l}

∑
τ∈Ψ[x]

⟦#x0τ0(x0)⟧tQ ⋅ ⟦#x1τ1(x1)⟧t1 ⋅ . . . ⋅ ⟦#xl
τl(xl)⟧tl .

CSL’12

372 A Counting Logic for Structure Transition Systems

4 Qµ[#MSO] on Tree-Producing Pushdown Systems

In this section we show our main result, namely that Qµ[#MSO] can be effectively evaluated
on STSs generated by tree-producing pushdown systems, which generalize both pushdown
processes and regular tree grammars with control states and universal application. This
is therefore an extension of the classical decidability results for MSO and Lµ on pushdown
systems and regular trees to the quantitative setting.

I Definition 10. An increasing tree-rewriting rule for P ∈ Γ has the form P ← t, where t is
a Γ-labeled tree of height ≤ 2, i.e. t = Q −Q1⋯Qk or t = tQ.

Note that increasing tree-rewriting rules are exactly the same as productions in a normal-
ized regular tree grammar. But we apply these rules universally, i.e. always to all leaves to
which a rule can be applied. Formally, for two Γ-labeled trees t1, t2 and a rule r ∶ P ← t, we
write t1

rÐ→ t2, or r(t1) = t2, if t2 is obtained from t1 by replacing every P -labeled leaf by t.
We denote the set of all increasing tree-rewriting rules for Γ-labeled trees by RΓ, or just R.

Let us take a starting tree, say tQ, and apply a sequence of rules r = r1, . . . , rn resulting
in the tree t = rn⋯ r1(tQ). In the qualitative setting, given an MSO sentence ϕ, one asks
which sequences of rules lead to a tree t such that t ⊧ ϕ. The set of such sequences of rules
turns out to be regular (c.f. [11] Theorem 2) and one can effectively construct an automaton
to recognize it. Our main technical result, stated below, generalizes this to the quantitative
setting of MSO counting terms using integer counters and affine update functions. Recall
that a function f ∶ Nk → Nk is affine if f(c) = Ac +B for some matrix A ∈ Nk×k and B ∈ Nk.

I Theorem 11. For all Q ∈ Γ, ϕ ∈ MSO, one can compute k ∈ N, an initial value I ∈ Nk, an
evaluation vector E ∈ N1×k and an affine update function upr ∶ Nk → Nk for each r ∈R such
that, for all finite sequences r1,⋯, rn ∈R∗,

⟦#xϕ(x)⟧rn⋯ r1(tQ) = E ⋅ (upr1 ○ ⋯ ○ uprn
)(I) = E ⋅ (uprn

(. . . (upr1(I))) . . .).

Also, k,E and the functions upr depend only on the quantifier rank and free variables of ϕ.

The proof of this theorem is given in Section 6, but we will first show how it can be
applied to evaluate Qµ[#MSO] on tree-producing pushdown systems.

I Definition 12. A tree-producing pushdown system (TPPDS) T = (Q,E) is a directed graph
with (R ∪ {�}) × (R ∪ {pop, ε})-labeled edges, i.e. E ⊆ Q × (R ∪ {�}) × (R ∪ {pop, ε}) ×Q.

A TPPDS T = (Q,E) with initial tree tP gives rise to the infinite structure transition
system S(T) = (S,∆,m) with states S = Q ×R∗, the structure assignment m(q, r) = r(tP)
and transitions as in a pushdown process:

∆ = {((q, ε), r′, (q′, r′)) ∣ q, q′ ∈ Q, (q,�, r′, q′) ∈ E}
∪ {((q, rr), r′, (q′, rrr′)) ∣ q, q′ ∈ Q, (q, r, r′, q′) ∈ E}
∪ {((q, rr), ε, (q′, rr)) ∣ q, q′ ∈ Q, (q, r, ε, q′) ∈ E}
∪ {((q, rr),pop, (q′, r)) ∣ q, q′ ∈ Q, (q, r,pop, q′) ∈ E}.

Observe that standard pushdown systems are subsumed by TPPDS. To obtain the stack
in the corresponding STS one uses rules where the right-hand side is a tree of branching
degree 1, i.e. a word. Properties like stack unboundedness can be formulated in Qµ[#MSO]
as was shown in Section 2.

Ł. Kaiser and S. Leßenich 373

q0 q1

q2

r01

r10

r 0
2 r20

r12

r01 = P ← P − PPP
r02 = P ← Q − PP
r10 = pop
r12 = P ← P

r20 = P ← Q − PP

run q0q1q0q2 q0q1q2

tree Q

P P

P

P P P

Figure 1 Example of a TPPDS with 2 initial runs from (q0, tP).

I Example 13. Consider the TPPDS in Figure 1. The resulting trees of two initial runs,
starting in state q0 with initial tree tP , are given in the table on the right.

Let us remark that the underlying transition graph of the STS generated by a TPPDS
is always a pushdown graph, no matter whether one uses rules that generate trees or only
words. But there is a substantial difference when quantitative questions are asked, e.g. about
the size of the structure generated by a run. Trees allow to model richer classes of systems
(c.f. Corollary 16), but their size can grow exponentially in the number of rewriting steps
and thus they require more refined counting techniques than words.

Our main decidability result, stated below, is a consequence of Theorem 11, the existence
of model-checking games (Theorem 5), pop elimination (Theorem 6), and an algorithm to
solve counter parity games [1].

I Theorem 14. Given a formula ψ ∈ Qµ[#MSO], a TPPDS T = (Q,E), a state q ∈ Q and a
starting symbol P ∈ Γ, one can compute ⟦ψ⟧S(T)(q, tP).

Proof. First, we transform ψ to negation normal form. By Theorem 5, to compute
⟦ψ⟧S(T)(q, tP) it suffices to determine the value of the game MC = MC(S(T), (q, tP)) =
(V,Vmax, Vmin,E, λ,Ω) from ((q, ε), ψ). By Theorem 5 (5), the vertices in V have the form
((q, r), ψ) or (±∞), and V can be infinite. Observe that MC is a pushdown QPG with states
Q × Sub(ψ). By Theorem 6, MC can be transformed into an equivalent pop-free pushdown
QPG MC′ with states Q′. We define a finite game M̂C with labeled edges which removes
the dependence of moves on the top stack symbol and still represents MC′ in the sense
that the payoff of a play in MC′ can be computed from the sequence of visited labels in
M̂C ∶= (V̂ , V̂max, V̂min, Ê, Ω̂). The positions V̂ ∶= (Q′×(R∪{ε}))∪{(∞), (−∞)} have generally
the form (q, r) and simply omit all but the last rule r from the stack in the position in MC′.
The (R ∪ {ε})-labeled edge relation:

Ê ∶= {((q, r), r′, (q′, r′)) ∣ ((q, rr), (q′, rrr′)) ∈ E′}
∪ {((q, r), ε, (q′, r)) ∣ ((q, rr), (q′, rr)) ∈ E′}
∪ {((q, r), r, (±∞)) ∣ ((q, rr), (±∞)) ∈ E′}.

Note that from each position (q, r) in M̂C there are exactly the same possible moves as from
each position (q, rr) in MC′. Since the stack in a position in MC′ is a function of the starting
tree tP and the observed rules r, there is a one-to-one correspondence between plays and
strategies in both games.

We define the coloring function Ω̂(q, r) = Ω′(q, rr) for any tree r, and it is well defined
since in a QPG the value Ω(q, rr) depends only on q, not on the stack. The payoff of an
infinite play in M̂C depends on the minimal color seen infinitely often, exactly as in MC′, and
is thus equal to the payoff of the corresponding play in the original model-checking game.
For a finite play π = v0 ⋅ r1 ⋅ v1 ⋅ r2 ⋅ ⋯ ⋅ rn ⋅ vn, the last position, by Theorem 5 (5), either

CSL’12

374 A Counting Logic for Structure Transition Systems

corresponds to a formula #xϕ(x), or to a formula ¬#xϕ(x), or to (±∞). In the first case we
set the payoff in M̂C to ⟦#xϕ(x)⟧rn⋯ r1(tP), in the second one to −1 ⋅ ⟦#xϕ(x)⟧rn⋯ r1(tP) and
for (±∞) to ±∞. This definition of payoffs clearly ensures that corresponding plays in MC′

and M̂C result in the same outcome, and due to the one-to-one correspondence mentioned
above, the value of MC′ from ((q, ε), ψ) is the same as the value of M̂C from ((q, ε), ψ),
which we compute below, thus also solving MC.

Let {ϕ1, . . . , ϕl} be an enumeration of the MSO formulas in ψ which are counted, i.e.
of {ϕ ∣ #x ϕ(x) ∈ Sub(ψ)}. By Theorem 11, for each such ϕi there is the corresponding
dimension ki, initial values Ii, evaluation vector Ei and update functions upir. We combine
the initial values to an aggregate initial I = ⟨I1, . . . , I l⟩, which is a vector of dimension
k = k1 + . . . + kl. The aggregate update functions are also composed component-wise:

upr(⟨c1, . . . , cl⟩) = ⟨up1
r(c1), . . .uplr(cl)⟩,

and we extend each evaluation vector Ei to a vector Êi of dimension k by filling it with 0s
on all dimensions except for the ki ones. By Theorem 11, we have that

⟦#xϕi(x)⟧rn⋯ r1(tP) = Êi ⋅ (upr1 ○ ⋯ ○ uprs
)(I). (1)

Let us thus use the aggregate functions to transform M̂C into a game M̃C, played on the
same arena, in which in each move an affine function is applied to a vector of k integers.
To construct M̃C, we replace every edge label r in M̂C by the function upr and the payoff
function λ in M̃C, depending on the current value of the vector c, is given by

λ(s, c) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

±∞ if s = (±∞),
Ei ⋅ c if s = (p, #xϕi(x)),
−Ei ⋅ c if s = (p, ¬#xϕi(x)).

By (1), the payoffs of corresponding plays in M̂C and in M̃C are the same, and due to the
one-to-one correspondence of moves, plays and strategies we also get that the value of M̃C
from ((q, ε), ψ) starting with vector I is the same as the value of M̂C from this position, and
thus equal to ⟦ψ⟧S(T)(q, tP). But the game M̃C is a special case of a counter parity game
with k counters [1], and, as proved in [1], its value can be computed. J

The above theorem demonstrates that Qµ[#MSO] indeed allows to apply the methods
known for qualitative logics to the quantitative case. As TPPDS subsume pushdown systems,
we obtain the following corollary.

I Corollary 15. Given a formula ψ ∈ Qµ[#MSO], a pushdown process A = (Q,↪) generating
an STS P, and a state q0 ∈ Q, one can compute ⟦ψ⟧P(q0,�).

Furthermore, the class of tree-producing pushdown systems includes finite systems and,
as shown in [11], MSO formulas on separated structure rewriting systems can also be reduced
to formulas to be checked on a TPPDS.

I Corollary 16. Given a formula ψ ∈ Qµ[#MSO], a separated structure rewriting system
(c.f. [11]) generating an STS S, and an initial state s ∈S, one can compute ⟦ψ⟧S(s).

Before, we reduced model-checking Lµ[MSO] to computing the values of Qµ[#MSO]
formulas. Thus, we can say that Corollary 15 strictly generalizes previous results on model-
checking LTL[MSO] and Lµ[MSO] on pushdown systems [13, 6] and Corollary 16 subsumes the
result from [11] for Lµ[MSO] on separated structure rewriting systems. On the quantitative
side, these corollaries also subsume the result from [7] for Qµ on finite systems and model-
checking parity conditions with unboundedness on pushdown systems [2, 9].

Ł. Kaiser and S. Leßenich 375

5 Eliminating pop from Pushdown QPGs

In this section, we prove Theorem 6 using methods similar to the ones developed in [19] and
later in [3] and [15], but with a construction symmetric with respect to the players.

I Theorem 6. For every pushdown QPG G over A = (Q,↪) one can compute a finite set
Q′, q′0 ∈ Q′, a pop-free pushdown process A′ = (Q ×Q′,↪′) and a QPG G′ over A′ such that
valG(q, ε) = valG′((q, q′0), ε) for each q ∈ Q.

Construction of the game G′. Intuitively, G′ simulates G, but in each push-move the
player makes claims about minimal colors that will be seen in G until the stack pops back to
the same content, if it does. The opponent is then asked to either proceed as if the claim
happened – moving to a claimed state with one of the claimed colors – or to allow the push
and accept to lose if a pop satisfying the claim occurs later.

To construct the set Q′, let d be the maximal color assigned by Ω in G and [d] = {0, . . . , d}.
We consider the set of claims defined as C = {C ∶ Q → P([d])}, i.e. a claim C assigns to
each state a set of colors. We define Q′ as the disjoint union of three kinds of states,
Q′ = {�} ∪Q′

0 ∪Q′
1: the state � for the empty stack, Q′

0 = [d] × C × {max,min} for positions
where players make claims, and the set Q′

1 = Γ × C × {max,min} × ({�} ∪Q′
0) for positions

where players answer to claims.
We construct the relation ↪′ and the game G′ in the following way. Positions (q,�,�) and

(q,m,C, p, s) belong to the same player to whom q belongs in G. The epsilon-moves from
↪, i.e. the ones which do not change the stack, are preserved in G′ and lead to (q′,�,�) or,
respectively, to (q′,min(m,Ω(q′)),C, p, s) updating the minimal color for C. The pop-moves
do not occur in G′, but, if a pop-move to q′ was allowed in G from (q, s), then in G′ there is
a move from (q,m,C, p, s) to a sink position. This sink position is winning for player p who
made the claim if the claim was true, and winning for the opponent otherwise. Formally,
it has payoff +∞ if p = max and min(m,Ω(q′)) ∈ C(q′) (true claim) or if p = min and
min(m,Ω(q′)) /∈ C(q′) (false claim), and −∞ otherwise. The payoff at a terminal position
(q, x, s) in G′ is the same as the payoff in (q, s) in G.

The push-moves from G translate to claims made in G′ as depicted in Figure 2. If ↪
allowed to push a ∈ Γ in G from (q, s) leading to a state q′, then in G′ we add the moves from
(q, x, s), for x = � or x ∈ Q′

0, to (q′, a,C, p, x, s), where C is any claim and p is the player to
whom q belongs in G, i.e. the one who makes the claim.

Positions where claims are answered, i.e. of the form (q′, a,C, p, x, s), belong to the
opponent of the player p who just made the claim. From each such position there is exactly
one possible push-move leading to (q′,Ω(q′),C, p, sa), i.e. the push is made as intended.
Additionally, for each color dc and state qc ∈ Q such that dc ∈ C(qc), there is a move
to the position (qc, x′, s) which corresponds to playing as in the claim. In this case, if
x = � then x′ = � as well and we set Ω(qc,�,�) = min(Ω(qc), dc). If x = (m,C0, p0), then
x′ = (min(m,dc),C0, p0), i.e. the minimal color is updated, and we again set Ω(qc, x′, s) =
min(Ω(qc), dc).

Correctness of the construction. Let σ be a strategy of one of the players in G. We
define the corresponding truthful strategy σ′ in G′ by induction on the length of play prefixes.
Also, to each play prefix π′ consistent with σ′ we assign a corresponding play prefix π in
G consistent with σ. Intuitively, when the player is supposed to make a claim in G′, he
considers all plays extending π in G and consistent with σ and, in σ′, chooses a claim with
the colors that really occur. When the opponent makes a claim in G′ and indeed there is
an extension consistent with σ which returns to the same stack in the claimed state and

CSL’12

376 A Counting Logic for Structure Transition Systems

q, m, C0, p0, s

q′, a, C, p, m, C0, p0, s

push a→ q′; claim C

q′, Ω(q′), C, p, sa

push a

qc, min(m, dc), C0, p0, s

dc ∈ C(qc)

Figure 2 Claims and moves corresponding to push operations.

color, then σ′ accepts this claim, and the corresponding play in G is prolonged to the point
in which the stack pops back to the claimed state. If no play is consistent with the claim of
the opponent, i.e. it is false, then the push-move is made. A formal proof of correctness is
similar to the one in Chapter 5 of [17].

6 #MSO Evaluation Using Counters

In this section we prove Theorem 11. Let us therefore fix a symbol P ∈ Γ and an MSO formula
ϕ. This also fixes the quantifier rankm = qr(ϕ) and x as the free variables of ϕ. We will prove,
for an arbitrary sequence r1, . . . , rn ∈R∗, that ⟦#xϕ(x)⟧rn⋯ r1(tP) = E ⋅ (upr1 ○⋯ ○ uprn

)(I).
The proof will be by induction on the length of the sequence r1, . . . , rn; the appropriate

I,E and upr will be constructed in the process. For clarity, we omit the easy case of rules
P ← tQ and we first assume that the types of the subtrees rn⋯ ri+1(tP) are known. In
subsection 6.1 we show how these types can be guessed and checked afterwards, and in 6.2
we provide the final construction and proof of Theorem 11.

Notation. We consider the sequence of rules r1, . . . , rn and denote the tree after i
rewritings by ti, i.e. the rewriting sequence can be written as tP

r1Ð→ t1
r2Ð→ ⋯ rnÐ→ tn. We

will also evaluate terms on the subtrees which result from rewriting a symbol P ∈ Γ from the
i-th step on, i.e. on rn⋯ ri+1(tP). For a Hintikka formula τ ∈Hm,≤∣x∣ and a symbol P ∈ Γ we
write ⟦τ(y), P ⟧i ∶= ⟦#y τ(y)⟧rn⋯ ri+1(tP)

, i.e. ⟦τ,P ⟧i is the number of tuples a such that τ(a)
holds on the subtree generated from P in the last n − i rewriting steps.

By Λ we denote the set of all unordered sequences (τ,P) = {(τ1(y1), P1) ,⋯, (τk(yk), Pk)} ,
where Pi ∈ Γ, (y1,⋯, yk) is a partition into nonempty sets yi ≠ ∅ of a subset y ⊆ x of free
variables of ϕ, and each τi ∈Hm,≤∣x∣ is a Hintikka formula with free variables yi. We will use
elements of Λ as indices, i.e. we will operate on a vector c ∈ N∣Λ∣ and we will write c [(τ,P)]
for the number in c corresponding to position (τ,P). Let us prove the first induction step.

I Lemma 17 (First step). There exists a c ∈ N∣Λ∣ such that

⟦#xϕ(x)⟧rn⋯ r1(tP) = ∑
(τ,P)∈Λ

c [(τ,P)] ⋅ ∏
(τ,P)∈(τ,P)

⟦τ,P ⟧1
.

Proof. Assume that r1 = P ← Q −Q1⋯Ql. By Lemma 9, ⟦#xϕ(x)⟧rn⋯ r1(tP) equals

∑
[x]l∈{[x]l}

∑
τ∈Ψ[x]l

⟦#x0τ0(x0)⟧tQ ⋅ ⟦#x1τ1(x1)⟧rn⋯ r2(Q1) ⋅ . . . ⋅ ⟦#xl
τl(xl)⟧rn⋯ r2(Ql).

Using the notation introduced above, each product in the inner sum can be written as
⟦τ0(x0)⟧tQ ⋅∏l

i=1⟦τi(xi),Qi⟧1.

Ł. Kaiser and S. Leßenich 377

In each inner product ∏l
i=1⟦τi(xi),Qi⟧1, the factors ⟦τi(xi),Qi⟧1 in which τi is a sentence

are known to be either 0 or 1. If they are 1, they can safely be omitted, otherwise the whole
product becomes 0. Furthermore, if, after the removal, two inner products coincide for two
different τ0 and τ ′0, then the sum of the two outer products can be written as

⟦τ0(x0)⟧tQ ⋅
l

∏
i=1

⟦τi(xi),Qi⟧1 + ⟦τ ′0(x0)⟧tQ ⋅
l

∏
i=1

⟦τi(xi),Qi⟧1

= (⟦τ0⟧tQ + ⟦τ ′0⟧
tQ) ⋅

l

∏
i=1

⟦τi(xi),Qi⟧1.

We set c [(τ,P)] to the sum of the ⟦τ0(x0)⟧tQ over all products where the inner products
coincide with (τ,P), i.e. to the sum of those where {(τi,Qi) ∣ 1 ≤ i ≤ l, xi ≠ ∅} = (τ,P). J

Note that the vector c constructed above depends only on the first rule r1 and which
sentences τi hold in rn⋯ r2(tP), for each P . We will remove the dependence on the types τi
in subsection 6.1. First, we show that the sum of the above form can be maintained further
into the rewriting sequence and that the vector c only needs to be updated in a linear way.

I Lemma 18 (Induction step). Let c ∈ N∣Λ∣ be a vector such that

(S) ∶= ⟦#xϕ(x)⟧rn⋯ r1(tP) = ∑
(τ,P)∈Λ

c [(τ,P)] ⋅ ∏
(τ,P)∈(τ,P)

⟦τ,P ⟧i−1
.

Then there exists a vector c̃ ∈ N∣Λ∣ such that

(S) = ∑
(τ,P)∈Λ

c̃ [(τ,P)] ⋅ ∏
(τ,P)∈(τ,P)

⟦τ,P ⟧i,

and each c̃ [(τ,P)] can be computed as a linear combination of the numbers c [(τ,P)].
Proof. Let ri = R ← Q −Q1⋯Ql be the i-th rule. By applying Lemma 17 to the sequence
rn⋯ ri(tR), we get that for all τ there exists c′ such that:

⟦τ(y),R⟧i−1 = ∑
(τ,P)∈Λ

c′ [(τ,P)] ∏
(τ,P)∈(τ,P)

⟦τ,P ⟧i. (2)

For symbols P ≠ R, the trees rn⋯ ri(tP) and rn⋯ ri+1(tP) coincide, thus ⟦τ,P ⟧i−1 = ⟦τ,P ⟧i.
Recall the sum for position i− 1. This sum can be split into two parts, namely over those

(τ,P) where R does not occur, and those where it does:

(S) = ∑
(τ,P)∈Λ,R/∈P

c [(τ,P)] ⋅ ∏
(τ,P)∈(τ,P)

⟦τ,P ⟧i−1

´¹¹¸¹¹¶
(A)

+ ∑
(τ,P)∈Λ,R∈P

c [(τ,P)] ⋅ ∏
(τ,P)∈(τ,P)

⟦τ,P ⟧i−1

´¹¹¸¹¹¶
(B)

.

For (A), it holds that all ⟦τ,P ⟧i−1 are equal to their corresponding ⟦τ,P ⟧i. For (B), the
sum is updated: when considering a summand c [(τ,P)]∏τ,P ⟦τ,P ⟧i−1 with R ∈ P , each
factor ⟦τ,R⟧i−1 is replaced by the corresponding sum from (2), resulting in:

c [(τ,P)]
⎛
⎝ ∏
τ,P,P≠R

⟦τ,P ⟧i
⎞
⎠
⋅
⎛
⎝∏τ,R

⎛
⎝ ∑

(τ,P)′
c′ [(τ,P)′] ∏

τ ′,P ′
⟦τ ′, P ′⟧i

⎞
⎠

´¹¹¸¹¹¹¶
right-hand side of (2) for ⟦τ,R⟧i−1

⎞
⎠
.

CSL’12

378 A Counting Logic for Structure Transition Systems

As in the decomposition for a ⟦τ,R⟧i−1 the only free variables z are those of τ , it follows that
c′ [(τ,P)] = 0 for all (τ,P) where some (τ,P) ∈ (τ,P) has free variables other than z. Note
that, for all ⟦τ,P ⟧i with R ≠ P that already were there before inserting the right-hand sides
of (2), the τ have free variables disjoint from z. Thus, when multiplied out after omitting all
summands with c′[(τ,P)] = 0, we obtain a sum over Λ of c-weighted products. This can be
joined with (A) to obtain (S) = ∑(τ,P)∈Λ c̃ [(τ,P)] ⋅∏(τ,P)∈(τ,P) ⟦τ,P ⟧i, where c̃ is as follows.

Calculating c̃. We show now how to linearly combine different entries of c to get the
entries of c̃. To this end, we create, for all σ ∈ Hm,≤∣x∣, a set Dσ, collecting all (τ,P) from
the right-hand side of (2) for ⟦σ,R⟧i−1 along with the respective c′ [(τ,P)].

Dσ = { ((τ,P) , c′ [(τ,P)]) ∣ (τ,P)occurs in right-hand side of (2) for ⟦σ,R⟧i−1}.

Since only positive values of c′ [(τ,P)] are of interest, we collect all Dσ in the following set:

D = {(σ, (τ,P) , d) ∣ σ ∈Hm,≤∣x∣, ((τ,P) , d) ∈ Dσ, d > 0} .

To determine the value of c̃ [(τ,P)], all those c [(τ,P)′] have to be considered in which a
factor ⟦σ,R⟧i−1 is replaced, and, when multiplying out, a product over (τ,P) results. We do
this by adding — for every subset (τ,P)′ of (τ,P) and every τ such that c′ [(τ,P)′] appears
on the right-hand side of (2) for ⟦σ,R⟧i−1 — the entries in c for the set obtained from (τ,P)
by replacing (τ,P)′ with (σ,R), weighted with the respective c′ [(τ,P)′]. This amounts to
a sum over the set D defined above. In addition, if R /∈ P , we have to copy the old counter
value, as in the respective subtrees nothing was changed. Thus, let old [(τ,P)] = c [(τ,P)] if
R /∈ P and old [(τ,P)] = 0 otherwise. We obtain the following equation.

c̃ [(τ,P)] = old [(τ,P)] + ∑
(τ,P)′⊆(τ,P)

∑
(σ,(τ,P)′,d)∈D

d ⋅ c [(τ,P) ∖ (τ,P)′ + (σ,R)] . (3)

J

Note that the construction of c̃ above depends only on the vectors c′ from the right-hand
sides of (2), which are in turn obtained from Lemma 17 and depend only on the rule ri and
which Hintikka sentences hold in rn⋯ ri+1(tP), for each P .

6.1 Guessing Types of Subtrees
In this subsection, we remove the dependency on the Hintikka sentences described above
by correctly guessing the types of the subtrees. To this end, we will extend the vector c we
operate on by additional entries, corresponding to type functions which guess the types.

We represent types by Hintikka sentences: for any tree t, the m-type tpm(t) is the unique
τ ∈Hm,0 such that t ⊧ τ .

I Definition 19. For a set of symbols Γ and a natural numberm, a type function L ∶ Γ→Hm,0
assigns an m-type to every symbol from Γ.

Notice that, for every finite Γ and every m, there are only finitely many type functions,
thus the set L = {L ∶ Γ → Hm,0} (for our fixed Γ and m = qr(ϕ)) is finite. Denote by LF
the unique type function that assigns to every P the type of tP . For a sequence r1, . . . , rn
of rules from R we say that L0, . . . , Ln is the compatible sequence of type functions if
Li(P) = tpm(rn⋯ ri+1(tP)) for all P. Note that Ln = LF . We show that compatible type
functions can be computed backwards and in a uniform way.

Ł. Kaiser and S. Leßenich 379

I Lemma 20. There exists a computable function pre ∶ L×R→ L such that for all sequences
r1, . . . , rn of rules, pre together with LF induces a compatible sequence, i.e. L0,⋯, Ln with
Ln = LF and Li−1 = pre(Li, ri) is compatible.

Instead of updating the vector c depending on the correct types, we will now maintain
a separate vector cL for every type function L. Each vector cL will be updated as if the
types given by L were the correct ones, and the types will be updated by pre, i.e. we define
c̃L [(τ,P)] exactly as in (3) but using cpre(L,ri) [(τ,P)] for c [(τ,P)]. At the end, the correct
L = LF will be chosen and the above lemma guarantees correctness, as proved below.

6.2 Proof of Theorem 11
I Theorem 11. For all Q ∈ Γ, ϕ ∈ MSO, one can compute k ∈ N, an initial vector I ∈ Nk, an
evaluation vector E ∈ N1×k and an affine update function upr ∶ Nk → Nk for each r ∈R such
that, for all finite sequences r1,⋯, rn ∈R∗,

⟦#xϕ(x)⟧rn⋯ r1(tQ) = E ⋅ (upr1 ○ ⋯ ○ uprn
)(I).

Also, E,k and the functions upr depend only on the quantifier rank and free variables of ϕ.

Proof. Let m be the quantifier rank of ϕ and Λ and L as defined above. We set k ∶= ∣L∣ ⋅ ∣Λ∣.
To define the initial vector I, we compute the Hintikka disjunction τ1 ∨⋯∨ τs ≡ ϕ. For every
L ∈ L, we define the vector IL ∈ N∣Λ∣ in which all positions are set to 0, except for those where
(τ,P) = (τi,Q), for 1 ≤ i ≤ s, which are set to 1. We fix an enumeration L1,⋯, L∣L∣ of L, and
set I ∶= ⟨IL1 ,⋯, IL∣L∣⟩ ∈ Nk.

Let pre be the function from Lemma 20. For every r ∈R, we define the update function
upr(⟨c1,⋯, c∣L∣⟩) ∶= ⟨c̃1,⋯, c̃∣L∣⟩, where c̃L [(τ,P)] is set as in (3) but with cpre(L,ri) used in
place of c. By Lemmas 18 and 20, after the last step, the vector cLF

contains the entries
evaluated for the compatible type sequence, and thus the value of the counting term

⟦#xϕ(x)⟧rn⋯ r1(tQ) = ∑
(τ,P)∈Λ

cLF
[(τ,P)] ⋅ ∏

(τ,P)∈(τ,P)
⟦τ⟧tP .

Note that every ⟦τ⟧tP is a constant and so is π(τ,P) ∶= ∏(τ,P)∈(τ,P) ⟦τ⟧
tP for every (τ,P).

Thus, the above sum is equal to the product of the updated vector c with the row vector E,
which has π(τ,P) in the component corresponding to cLF

[(τ,P)] and 0 everywhere else. J

7 Conclusion

The question how well-known methods used for regular languages can be extended to the
quantitative setting has been approached recently from several angles. From the side of
automata, this problem has been investigated in [4] and related papers with focus on counting,
and from the logic side, progress has been made in the study of quantitative temporal logics
[7]. The counting logic Qµ[#MSO] introduced in this work is the first formalism which
exhibits the desirable properties of a well-behaved quantitative temporal logic and allows
at the same time to apply decomposition techniques, the logical counterpart of automata.
As we show, the value of a Qµ[#MSO] formula is computable on an important class of
infinite structure transition systems which generalize both pushdown systems and regular
tree grammars. This raises interesting new questions whether this result can be extended,
e.g. if the value of a Qµ[#MSO] formula is computable on higher-order pushdown systems or
recursion schemes, and in general which results for Boolean logics can be generalized to the

CSL’12

380 A Counting Logic for Structure Transition Systems

counting case. The decomposition theorem we proved for Qµ[#MSO] allows us to conjecture
that many results which rely on automata techniques can indeed be extended to Qµ[#MSO],
and that it may lead to a canonical quantitative counting logic for regular languages.

Acknowledgment. We are very grateful to Igor Walukiewicz for pointing out that the
methods from [19] can also be applied in the quantitative setting, as is done in Section 5.

References
1 D. Berwanger, Ł. Kaiser, and S. Lessenich. Solving counter parity games. In Proc. of

MFCS’12, LNCS. Springer, 2012. To appear.
2 A.-J. Bouquet, O. Serre, and I. Walukiewicz. Pushdown games with unboundedness and

regular conditions. In Proc. of FSTTCS’03, vol. 2914 of LNCS, pp. 88–99. Springer, 2003.
3 A. Carayol, M. Hague, A. Meyer, C.-H. L. Ong, and O. Serre. Winning regions of higher-

order pushdown games. In Proc. of LICS’08, pp. 193–204. IEEE Computer Society, 2008.
4 T. Colcombet. The theory of stabilisation monoids and regular cost functions. In

Proc. of ICALP’09, Part II, vol. 5556 of LNCS, pp. 139–150. Springer, 2009.
5 J. Esparza. On the decidability of model checking for several µ-calculi and Petri nets. In

Proc. of CAAP’94, vol. 787 of LNCS, pp. 115–129. Springer, 1994.
6 J. Esparza, A. Kučera, and S. Schwoon. Model checking LTL with regular valuations for

pushdown systems. Inf. Comput., 186(2):355 – 376, 2003.
7 D. Fischer, E. Grädel, and Ł. Kaiser. Model checking games for the quantitative µ-calculus.

Theory Comput. Syst., 47(3):696–719, 2010.
8 T. Ganzow and Ł. Kaiser. New algorithm for weak monadic second-order logic on inductive

structures. In Proc. of CSL’10, vol. 6247 of LNCS, pp. 366–380. Springer, 2010.
9 H. Gimbert. Parity and exploration games on infinite graphs. In Proc. of CSL’04, vol. 3210

of LNCS, pp. 56–70. Springer, 2004.
10 J. Hintikka. Distributive normal forms in the calculus of predicates. Acta Philosophica

Fennica, 6, 1953.
11 Ł. Kaiser. Synthesis for structure rewriting systems. In Proc. of MFCS’09, vol. 5734 of

LNCS, pp. 415–427. Springer, 2009.
12 R. M. Karp and R. E. Miller. Parallel program schemata. J. Comput. Syst. Sci., 3(2):147–

195, 1969.
13 O. Kupferman and M. Y. Vardi. An automata-theoretic approach to reasoning about

infinite-state systems. In Proc. of CAV’00, vol. 1855 of LNCS, pp. 36–52. Springer, 2000.
14 E. W. Mayr. An algorithm for the general Petri net reachability problem. In Proc. of

STOC’81, pp. 238–246. ACM, 1981.
15 S. Salvati and I. Walukiewicz. Krivine machines and higher-order schemes. In Proc. of

ICALP’11 (2), vol. 6756 of LNCS, pp. 162–173. Springer, 2011.
16 O. Serre. Note on winning positions on pushdown games with ω-regular conditions. Inf.

Process. Lett., 85(6):285–291, 2003.
17 O. Serre. Contribution à l’étude des jeux sur des graphes de processus à pile. PhD thesis,

Université Paris 7, 2004.
18 S. Shelah. The monadic theory of order. Ann. Math., 102:379–419, 1975.
19 I. Walukiewicz. Pushdown processes: Games and model checking. In Proc. of CAV ’96,

vol. 1102 of LNCS, pp. 62–74. Springer, 1996.

Parametricity in an Impredicative Sort
Chantal Keller1 and Marc Lasson2

1 INRIA Saclay–Île-de-France at École Polytechnique
Chantal.Keller@inria.fr

2 École Normale Supérieure de Lyon, Université de Lyon, LIP ∗

marc.lasson@ens-lyon.org

Abstract
Reynold’s abstraction theorem is now a well-established result for a large class of type systems.
We propose here a definition of relational parametricity and a proof of the abstraction theorem
in the Calculus of Inductive Constructions (CIC), the underlying formal language of Coq, in
which parametricity relations’ codomain is the impredicative sort of propositions. To proceed,
we need to refine this calculus by splitting the sort hierarchy to separate informative terms from
non-informative terms. This refinement is very close to CIC, but with the property that typing
judgments can distinguish informative terms. Among many applications, this natural encoding
of parametricity inside CIC serves both theoretical purposes (proving the independence of propo-
sitions with respect to the logical system) as well as practical aspirations (proving properties of
finite algebraic structures). We finally discuss how we can simply build, on top of our calculus,
a new reflexive Coq tactic that constructs proof terms by parametricity.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases Calculus of Inductive Constructions; parametricity; impredicativity; Coq;
universes.

Digital Object Identifier 10.4230/LIPIcs.CSL.2012.381

1 Introduction

The Coq system [24] is a proof assistant based on the Curry-Howard correspondence: propo-
sitions are represented as types and their proofs are their inhabitants. The underlying
type system is called the Calculus of Inductive Constructions (CIC in short). In this type
system, types and their inhabitants are expressions built from the same grammar and every
well-formed expression has a type.

One specificity of Coq among other interactive theorem provers based on Type Theory
is the presence of an impredicative sort to represent the set of propositions: Prop. Impred-
icativity means that propositions may be built by quantification over objects which types
inhabit any sort, including the sort of propositions (for instance the Agda language has a
similar type system except that propositions live in predicative universes [18]). This sort
plays a decisive role in the Coq system: in addition to guaranteeing the compositionality of
the propositional world, it contains the non-computational content, i.e., expressions meant
to be erased by the program extraction process. In particular, it allows the user to add
axioms (like the law of excluded middle, axiom of choice, proof irrelevance, etc...) without
jeopardizing program extraction.

∗ UMR 5668 CNRS ENS Lyon UCBL INRIA

© Chantal Keller and Marc Lasson;
licensed under Creative Commons License NC-ND

Computer Science Logic 2012 (CSL’12).
Editors: Patrick Cégielski, Arnaud Durand; pp. 381–395

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2012.381
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

382 Parametricity in an Impredicative Sort

The other sorts are a predicative hierarchy of universes called Type0, Type1, Contrary
to Prop, it is stratified: one is not allowed to form a type of a given universe by quantifying
over objects of types of higher universes (stratification has been introduced in order to
overcome Girard’s paradox, see [7] for details). The sort Type0 (also called Set) contains
data-types and basic informative types. And Type1 contains types that are quantified over
elements of Type0, and so on.

One major component of Coq is its extraction mechanism [15], which produces an untyped
term of a ML-like language from any well typed term of Coq. One obvious interest is to
obtain certified ML code. Roughly speaking, it proceeds by replacing type annotations and
propositional subterms by a dummy constant. A difficulty of program extraction is to decide
which terms are informative and which may be erased. The presence of the sort Prop only
partially solves this problem in Coq since the system has to distinguish computations over
data types from computations over types, although they all live in Type.

In this paper, we propose a new calculus which refines the Calculus of Inductive Con-
structions, called CICr. By adding a new predicative hierarchy of sorts Set0, Set1, ..., it
confines the types of all informative expressions and purges the hierarchy Type0, Type1, ...
of all computational content. In other words, it guarantees that inhabitants of types in Set
are the only expressions which do not disappear during the extraction process.

In spite of that, this new calculus may be naturally embedded into CIC by a very simple
forgetful operation. Moreover it remains very close to CIC and in practice only few terms are
not representable in CICr. That is why it represents a big step towards an implementation in
the Coq system.

Being able to identify expressions with computational content – or in other words programs
– was essential to achieve our initial goal: formalizing the parametricity theory for the Calculus
of Inductive Constructions.

Parametricity is a concept introduced by Reynolds [22] to study the type abstraction
of System F. It expresses the fact that well-typed programs must behave uniformly over
their arguments with an abstract type: if the type is abstract, then the functions do not
have access to its implementation. Wadler [26] explained how this could be used to deduce
interesting properties shared by all programs of the same type. Later, Plotkin and Abadi [21]
introduced a logic in which these uniformity properties can be expressed and proved. This
logic may be generalized into a second-order logic with higher-order individuals [23,27].

The main tools of parametricity theory are logical relations defined inductively over the
structure of types together with the so-called abstraction theorem, which builds a proof that
any closed program is related to itself for the relation induced by its type. For instance
the relation induced by the type ∀α, (α→ α)→ α→ α of Church numerals is given by the
following definition (represented here in Coq using the standard encoding of relations):

λ(f f ′ : ∀α.(α→ α)→ α→ α).∀αα′ (R : α→ α′ → Prop) (g : α→ α)(g′ : α′ → α′).
(∀xx′.R xx′ → R (g x) (g′ x′))→ ∀z z′.R z z′ → R (f α g z) (f ′ α′ g′ z′)

The abstraction theorem tells that any closed term F of type ∀α, (α → α) → α → α is
related to itself according to this relation.

Recently, the work from Bernardy et al. [5] generalized these constructions up to a large
class of Pure Type Systems and showed that parametricity theory accommodates well with
dependent types. But this cannot be straightforwardly adapted to CIC, because parametricity
relations live in higher universes instead of using the standard encoding of relations in Prop.
Besides, it is difficult to make parametricity relations live inside Prop while conserving
abstraction.

C. Keller and M. Lasson 383

But parametricity in a system like Coq would be profitable: it could lead to more
automation, for instance for developing mathematical theories: we give here an example in
finite group theory (Section 5.3). Basing on our refined calculus, we started an implementation
of a Coq tactic that can build closed instances of the abstraction theorem [1].

The paper is organized as follows. After explaining in details why we need to refine
the Calculus of Inductive Constructions, we present CICr in Sections 2 and 3. Section 4 is
devoted to the definition of relational parametricity, and the proof of the abstraction theorem,
without and with inductive types. In Section 5, we present different kinds of “theorems
for free” that are derived from the general abstraction theorem, like independence of the
law of excluded middle with respect to CICr or standard properties of finite groups. We
finally explain the algorithm behind the implementation of the Coq tactic (Section 6) before
discussing related works and concluding.

2 CICr: a refined calculus of constructions with universes

2.1 The need for a refinement
In older versions of CIC, Set was not a synonym for Type0 but a special impredicative sort
containing data-types and basic informative types. However, there is a smaller demand from
the users for the impredicativity of Set rather than the possibility to add classical axioms
to CIC, and having both may lead to the inconsistency of the system (the conjunction of
excluded middle and description conflicts with the impredicativity of Set [10]). As a result,
nowadays Set is predicative and behaves in CIC as the first level of the hierarchy of universes.

In CICr, we want to reintroduce the sort Set of informative types in order to mark the
distinction between expressions with computational content and expressions which are erased
during the extraction process. To stay close to CIC, we want Set to be predicative, so we
introduce a hierarchy of sorts Set0, Set1, . . .

In the refinement, the CIC hierarchy of sorts Type is thus divided into two classes : a
hierarchy of sorts Set, whose inhabitants have a computational content, and a hierarchy
of sorts Type, whose inhabitants are uninformative. There is a difference of level between
inhabitants of Set and inhabitants of Type: the inhabitants of Set are inhabited only by
non-habitable expressions whereas Type contains the signatures of predicates and type
constructors which are themselves, when fully applied, inhabited respectively by proofs and
programs.

In Coq, deciding to which of this two classes an expression of type Type belongs is
essential in the extraction mechanism. In the original two-sorted calculus of constructions
(i.e. without universes), the top-sort contains only arities and therefore the level of terms
can be easily obtained by looking at the type derivation and the extraction procedure is
simple [19]. However, in Coq, to extract the computational content of an inhabitant of sort
Type, the extraction algorithm decides if a type is informative by inspecting the shape of its
normal form [16,17]. Therefore termination of extraction relies on the normalization of CIC.
It makes the correction of the extraction difficult to formally certify.

2.2 Presentation of the calculus
The syntax of CICr is the same as the standard calculus of constructions except that we
extend the set of sorts. Terms are generated by the following grammar:

A,B := x | s | ∀x : A.B | λx : A.B | (AB)

CSL’12

384 Parametricity in an Impredicative Sort

i < j (Sub1−1)Seti <: Setj
i < j (Sub1−2)Typei <: Typej

A <: B (Sub2)∀x : C.A <: ∀x : C.B

Figure 1 Subtyping rules.

where s ranges over the set
{

Prop} ∪ {Seti, Typei+1 |i ∈ N
}
of sorts and x ranges over the

set of variables. In the remaining of the paper, when no confusion is possible, Set stands for
“Seti for some i”, and Type stands for “Typei for some i”. The notation i ∨ j represents the
maximum of i and j.

As usual, we will consider terms up to α-conversion and we denote by A[B/x] the term
built by substituting the term B to each free occurrence of x in A. The β-reduction B is
defined as in CIC, and we write A ≡ B to denote the β-conversion.

A context Γ is a list of couples x : A where x is a variable and A is term. The empty
context is written 〈〉. The system has subtyping, given by the rules in Figure 1. The typing
rules of CICr are given in Figure 2.

The word type is a synonymous for a term that can be typed by a sort following those
rules. We call informative types inhabitants of Set, programs inhabitants of informative
types, propositions inhabitants of Prop and proofs inhabitants of propositions. The sort
Typei adds a shallow level to the system; it is populated with two kinds of terms: arities,
which are terms whose head normal forms have the form ∀(x1 : A1) . . . (xn : An).s where s is
either Prop, Setj or Typej with j < i; and higher-order functions that manipulate arities,
and whose types are arities with Typei+1 as a conclusion. We say that a term has some sort
s if s is the type of its type.

3 Inductive types

The calculus is extended with inductive definitions and fixpoints. The presentation is very
similar to Chapter 4.5 of the Reference Manual of Coq [24], and one can report to it to have
further details.

3.1 Inductive types and fixpoints
The grammar of CICr terms is extended with:

A,B, P,Q, F · · · := · · · | I | c | caseI(A,
−→
Q,P,

−→
F) | fix (x : A).B

We write Indp(I : A, c1 : C1, . . . , ck : Ck) to state that I is a well-formed inductive
definition typed with p parameters, of arity A, with k constructors c1, . . . , ck of respective
types C1, . . . , Ck. It requires that:

1. the names I and cj are fresh;
2. A is a well-typed arity of conclusion Prop of Set: it is convertible to ∀

−−−−→
(x : P)

p−−−−→
(y : B)

n
.r

where r ∈ {Prop, Set};
3. for any j, Cj has the form ∀

−−−−→
(x : P)

p−−−−−→
(z : Ej)

nj

.I −→x p
−→
Dj

n
where I may appear inside the

Ejs only as a conclusion. This is called the strict positivity condition, and is mandatory
for the system to be coherent [8];

C. Keller and M. Lasson 385

(Ax1)` Prop : Type1
(Ax2)` Seti : Typei+1

(Ax3)` Typei : Typei+1

Γ ` A : sx 6∈ Γ, s ∈ S (Var)Γ, x : A ` x : A
Γ ` B : C Γ ` A : sx 6∈ Γ, s ∈ S (Weak)Γ, x : A ` B : C

Γ ` A : C Γ ` B : sB ≡ C, s ∈ S (Conv)Γ ` A : B
Γ ` A : B

B <: C (Cum)Γ ` A : C

Γ ` A : r Γ, x : A ` B : Seti
r ∈ {Prop, Seti, Typei} (∀1)Γ ` ∀x : A.B : Seti

Γ ` A : r Γ, x : A ` B : Typeir ∈ {Prop, Seti, Typei} (∀2)Γ ` ∀x : A.B : Typei

Γ ` A : s Γ, x : A ` B : Prop
s ∈ S (∀3)Γ ` ∀x : A.B : Prop

Γ `M : ∀x : A.B Γ ` N : A (App)
Γ `M N : B[N/x]

Γ, x : A ` B : C (Abs)Γ ` λx : A.B : ∀x : A.C

Figure 2 The refined calculus of construction with universes : CICr.

4. for any j, ∀
−−−−−→
(z : Ej)

nj

.I −→x p
−→
Dj

n
is a well-typed expression of sort r under the context

(
−−−−→
(x : P)

p
, I : A).

Notice that we do not allow inductive definitions in a nonempty context, but this is only for
a matter of clarity.

Declaring a new inductive definition adds new constants I and cj to the system, together
with the top left two typing rules presented in Figure 3.

The bottom rule of Figure 3 is the typing rule for the case construction which is used to
implement elimination schemes. Two sorts are involved in eliminations: s, the sort of the
inductive type we eliminate, which may be Prop or Set; and r, the type of the type of the
term we construct, which may be Prop, Set or Type. The four cases of elimination that do

(Ind)` I : A (Constr)` cj : Cj
Γ, f : A `M : A

f is guarded (Fix)
Γ ` fix(f : A).M : A

Γ `M : I −→Q
p−→
G
n

Γ ` T : ∀
−−−−−−−−−−→
y : B[−→Q

p
/−→x p]

n

.I
−→
Q
p−→y n → r(

Γ ` Fj : ∀
−−−−−−−−−−−−→
(z : Ej [

−→
Q
p
/−→x p])

nj

.T
−−−−−−−−→
Dj [
−→
Q
p
/−→x p]

n

(cj
−→
Q
p−→z nj)

)
j=1...k(under restr.) (Case)

Γ ` caseI(M,
−→
Q
p
, T,
−→
F
k
) : T −→G

n
M

Figure 3 The rules for an inductive type Indp(I : A, c1 : C1, . . . , ck : Ck).

CSL’12

386 Parametricity in an Impredicative Sort

not involve Type are called small eliminations. They are used to build:
proofs and programs by inspecting programs;
proofs by inspecting proofs;
programs by inspecting proofs under restriction (1) (see below).

The other two cases are called large eliminations. Strong elimination is mainly used to build
propositions by case analysis and to internally prove the minimality of informative inductive
definitions. For instance, using large elimination over nat, one may build a predicate P
of type nat → Prop such that P 0 ≡ > and P (S 0) ≡ ⊥ and thus proves that 0 6= (S 0).
Similarly, large elimination may be used to build informative types (for instance, to build
a “type constructor” Tα,β : nat→ Set parametrized by a type α and an informative type
β such that Tα,β n ≡ α → · · · → α → β with n occurrences of α) or to build arities (for
instance, to build an “arity constructor” Aα : nat→ Type parametrized by a type α such
that Aα n ≡ α→ · · · → α→ Prop with n occurrences of α).

Eliminations from Prop to other sorts are restricted to inductive definitions that have at
most one constructor, and such that all the arguments (which are not parameters) of this
constructor are of sort Prop:

k = 0 or
(
k = 1 and ` E : Prop for any E ∈ −→E1

n1
)

(1)

This is essential for coherence [7] and has a computational interpretation: it is natural that
computing an informative type should not rely on any proof structure, that would disappear
during program extraction [15,16].

I Example 1. Here are a few examples of inductive definitions:
Ind0(nat : Set0, 0 : nat, S : nat→ nat)
Ind1(listi : Seti → Seti, nili : ∀A : Seti . listi A, consi : ∀A : Seti .A →
listi A→ listi A)
Ind0(True : Prop, I : True)
Ind0(False : Prop)
Ind2(eqi : ∀(A : Seti).A→ A→ Prop, refli : ∀(A : Seti)(x : A). eqi xx)
Ind2(eqP : ∀(A : Prop).A→ A→ Prop, reflP : ∀(A : Prop)(x : A). eqP xx)
Ind2(eqTi : ∀(A : Typei).A→ A→ Prop, reflTi : ∀(A : Typei)(x : A). eqTi xx)

Note that we have three levels of Leibniz equality: eqi for comparing programs, eqP for
comparing proofs and eqTi for comparing everything else (we find the same kind of triplica-
tion for other standard encodings like cartesian product, disjoint sum and the existential
quantifier).

The second operator to deal with inductive definitions is fixpoint definition. The typing
rule for the fixpoint is defined on the top right of Figure 3. It is also restricted to avoid
non-terminating terms, which would lead to absurdity. The restriction is called the guard
condition: one argument should have an inductive type, and must structurally decrease on
each recursive call. One may refer to [11] for further details.

We extend the reduction with the ι-reduction rules:

caseI(cj
−→
Q
p−→
M

nj

,
−→
Q
p
, T,
−→
F
k
) B Fj

−→
M

nj

(fix(f : A).M) (cj
−→
Q
p−→
M

nj

) B M [fix(f : A).M/f] (cj
−→
Q
p−→
M

nj

)

and ≡ denotes the βι-equivalence.

C. Keller and M. Lasson 387

3.2 Embedding CICr into CIC and coherence
This calculus embeds easily into CIC by mapping Seti and Typei onto the sort Typei of CIC:
I Lemma 1. Let | • | be the context-closed function from terms of CICr to terms of CIC such
that | Prop | = Prop and | Typei | = | Seti | = Typei, then we have :

Γ ` A : B ⇒ |Γ| `CIC |A| : |B|

Since |∀X : Prop .X| = ∀X : Prop .X, the logical coherence (the existence of an unprovable
proposition) of CIC ensures the coherence of CICr.

Conversely, some terms of CIC do not have a counterpart in the refinement: we cannot
mix informative and uninformative types. An example is the following Coq definition:

fun (b:bool) ⇒ if b then nat else Set

4 Relational parametricity

In this setting, we have a natural notion of parametricity: we can define a translation that
maps types to relations and other terms to proofs that they belong to those relations. What
is new is that relations over objects of type Prop or Set have Prop as a codomain, which is
more natural in a calculus with an impredicative sort for propositions.

We go step by step. First, we define parametricity for the calculus without inductive
types, and show the abstraction theorem for this restriction. Subsequently, we add inductive
types with large eliminations forbidden, and finally see how large eliminations behave with
parametricity.

4.1 Parametricity for the calculus without inductive types
I Definition 1 (Parametricity relation). The parametricity translation J•K is defined by induction
on the structure of terms:

J〈〉K = 〈〉 (1)
JΓ, x : AK = JΓK, x : A, x′ : A′, xR : JAKxx′ (2)

JsK =λ(x : s)(x′ : s).x→ x′ → ŝ (3)
JxK =xR (4)

J∀x :A.BK =λ(f : ∀x : A.B)(f ′ : ∀x′ : A′.B′). ∀(x : A)(x′ : A′)(xR : JAKxx′).
JBK (f x) (f ′ x′) (5)

Jλx : A.BK =λ(x : A)(x′ : A′)(xR : JAKxx′).JBK (6)
J(AB)K = (JAKBB′ JBK) (7)

with ˆProp = ˆSeti = Prop and ˆTypei = Typei and where A′ denotes the term A in which we
have replaced each variable x by a fresh variable x′.

It is easy to prove by induction that the previous definition is well-behaved with respect
to substitution and conversion:
I Lemma 2 (Substitution lemmas). 1. (A[B/x])′ = A′[B′/x′]
2. JA[B/x]K = JAK[B/x][B′/x′] [JBK/xR]
3. A1 ≡β A2 ⇒ JA1K ≡β JA2K

CSL’12

388 Parametricity in an Impredicative Sort

ΘI(
−→
Q
p
, T,
−→
F
n
) =λ

−−−−−−−−−−−−−−−−−−−−−→
(x : A)(x′ : A′)(xR : JAKxx′)

n

(a : I −→Q
p−→x n)(a′ : I

−→
Q′

p−→
x′
n

)

(aR : JIK
−−−−−−→
QQ′ JQK

p−−−−→
xx′ xR

n

a a′).

JT K
−−−−→
xx′ xR

n

a a′ aR (caseI (a,−→Q
p
, T,
−→
F
n
)) (caseI (a′,

−→
Q′

p

, T ′,
−→
F ′

n

))

Figure 4 The definition of ΘI .

The abstraction theorem states that the parametricity transformation preserves typing.
I Theorem 1 (Abstraction without inductive definitions). If Γ ` A : B, then JΓK ` A : B,
JΓK ` A′ : B′, and JΓK ` JAK : JBKAA′.

Proof. The proof is a straightforward induction on the derivation of Γ ` A : B. The first item
is essentially proved by invoking structural rules and by propagating induction hypothesis.
The key steps of the second items are the rule (Ax2), which requires cumulativity, and the
rules (∀1-∀3), which involve many abstraction and product rules. J

4.2 Why does not it work directly in CIC?
In the syntactic theory of parametricity for dependent types presented in [5], relations over a
type of some universe are implemented as predicates ranging in the same universe. This can
be read in the following piece of definition : JTypeiK = λ(xx′ : Typei).x→ x′ → Typei. We
cannot simply replace the conclusion with Prop, because in CIC one has ` Typei : Typei+1,
and the abstraction theorem would require that ` JTypeiK : JTypei+1K Typei Typei which is
equivalent to ` λ(xx′ : Typei).x→ x′ → Prop : Typei → Typei → Prop but this last sequent
is not derivable. In our refinement, JPropK and JSetK have Prop as a conclusion, but this is
not a problem since we do not have ` Seti : Seti+1.

This refined calculus is very convenient to set the basis for parametricity. As we argued, it
has also nice properties regarding realizability and extraction: as an example, the correctness
of extraction in this calculus would not rely on the termination of the β-reduction. Even if
possible, obtaining the same result directly in CIC would have required a complete reworking
of parametricity relations.

The calculus is very close to CIC, though. In Section 6, we discuss if it is possible to write
a tactic in Coq that would exploit this work, without changing Coq’s calculus.

4.3 Adding inductive types
As a first step, we restrict ourselves to small eliminations: we do not allow large eliminations.
We will see in Subsection 4.4 that we are actually able to handle large eliminations over a
big class of inductive definitions.

We write Γ `SE A : B to denote sequents typable in CICr where large eliminations are
forbidden. Let us suppose that Indp(I : A,−−→c : C

k
), we will define a fresh inductive symbol

JIK and a family (JciK)i=1...k of fresh constructor names. Then we extend Definition 1 with

Jfix(x : A).BK = (fix(xR : JAKxx′).JBK) [fix(x : A).B/x][fix(x′ : A′).B′/x′]

JcaseI(M,
−→
Q
p
, T,
−→
F
n
)K = caseJIK(JMK,

−−−−−−−→
Q,Q′, JQK

p

,ΘI(
−→
Q
p
, T,
−→
F
n
),
−−→
JF K

n
)

where ΘI is defined in Figure 4.
We want to extend Theorem 1 with inductive definitions. We prove the following theorem:

C. Keller and M. Lasson 389

I Theorem 2 (Abstraction with inductive definitions). 1. If Indp(I : A,−−→c : C
k
) is a valid in-

ductive definition then so is Ind3p(JIK : JAK I I,
−−−−−−−−→
JcK : JCK c c′

k
).

2. If Γ `SE A : B then JΓK `SE A : B, JΓK `SE A′ : B′, and JΓK `SE JAK : JBKAA′.

Proof. The first item requires to check the constraints to build inductive types: the typing
and the strict positivity. As for Theorem 1, the second item is proved by induction on
the structure of the proof of Γ ` A : B. One needs to check that the guard condition is
preserved in the (Fix) rule and that the (Case) rule is well-formed. The key idea here is
that the translation of terms containing only small eliminations also contains only small
eliminations. J

4.4 Overcoming the restriction over large elimination
Suppose we now authorize the whole large elimination (with restriction (1)). The definition
generated by the following inductive definition Ind0(boxi : Seti+1, closei : Seti → boxi) is

Ind0 (
JboxiK : boxi → boxi → Prop,

JcloseiK : ∀(AA′ : Seti).(A→ A′ → Prop)→ JboxiK (closei A) (closei A′)
)

If we want to prove parametricity for the (Case) rule when we build a Type, one should provide
an inhabitant of: ∀(AA′ : Seti).JboxiK (closei A) (closei A′) → (A → A′ → Prop). But
since JboxiK (closei A) (closei A′) has type Prop and A→ A′ → Prop has type Type, we
cannot build the expected relation by deconstructing a proof of JboxiK (closei A) (closei A′):
this is forbidden by restriction (1).

However, let us consider the following example:

Ind0(I : Set,N : nat→ I,B : bool→ I)

Let say we need to translate the following large elimination (for the sake of readability, we
present it with the Coq syntax):

Definition f (x : I) := match x with
| N n ⇒ vector n
| B b ⇒ nat

end.

We can swap the destruction of xR for two nested destructions of x and x′ which produces k2

branches (where k in the number of constructors). But only k of them are actually possible
(we use here the Program keyword in order to let the system infer dependent type annotations
for each match):

Program Definition f_R (x x’ : I) (x_R : J I K x x’) :=
match x with
| N n ⇒ match x’ with

| N n’ ⇒ let n_R := inv n n’ x_R in J vector n K
| B b’ ⇒ absurd (vector n→ nat→ Prop) (abs12 n b’ x_R)
end

| B b ⇒ match x’ with
| N n’ ⇒ absurd (nat→ vector n’→ Prop) (abs21 b n’ x_R)
| B b ⇒ J nat K
end

end.

CSL’12

390 Parametricity in an Impredicative Sort

where the following terms are all implemented with an authorized large elimination:

inv : ∀(nn′ : nat).JIK (Nn) (Nn′)→ JnatKnn′

abs12 : ∀(n : nat)(b′ : bool).JIK (Nn) (B b′)→ False

abs21 : ∀(b : bool)(n′ : nat).JIK (B b) (Nn′)→ False

absurd : ∀(α : Type). False→ α

We notice that this example runs smoothly because all the arguments of all the constructors
have type Prop or Set, which avoids the pitfall of the box example.

That is why we propose to restrict large elimination from Set to Type to the class of
small inductive definitions (this class was introduced by Paulin in [20] to restrict the large
elimination in vanilla Coq where the sort Set of informative types is impredicative):

I Definition 2 (Small inductive definitions). We say that Indp(I : A,−−→c : C
k
) is a small inductive

definition if all the arguments of each constructor are of sort Prop or Setm for some m. More
formally, if for all 1 ≤ i ≤ k, ` ci : ∀

−−−−→
(x : P)

p−−−−→
(y : B)

ni

.I −→x p
−→
Dj

n
then −−−→x : P

p
,
−−−→
y : B

j−1
` Bj : r

with r = Prop or r = Setm for some m.

With this restriction, the abstraction theorem holds in presence of large elimination:

I Theorem 3. Theorem 2 holds when `SE stands for derivability where large elimination is
authorized over small inductive definitions and forbidden otherwise.

5 Examples of “free theorems”

In this section we give a few examples of consequences of the abstraction theorem. Most
examples that can be found in the literature (see for instance [5,26]) may be easily implemented
in our framework. To improve readability, we use "=α" and "∃x : α" to denote respectively
standard inductive encodings of the Leibniz equality and existential quantifier.

5.1 The type of Church numerals

Let churchi be ∀α : Seti, (α → α) → α → α, the type of Church numerals. Let iteri be
the following expression

fix iteri : nat→ churchi .λ(n : nat)(α : Seti)(f : α→ α)(z : α).
case(n, λk : nat .α, z, λp : nat .f (iteri pα f z))

which is the primitive recursive operator which composes a function n times with itself.
The relation JchurchiK : churchi → churchi → Prop is the relation unfolded in the

introduction. One can prove easily the following property on any f : churchi:

JchurchiK f f → ∃n : nat .∀(α : Seti)(g : α→ α)(z : α). iteri nα g z =α f α g z

which states that, if f is in relation with itself by JchurchiK, then there exists an integer n
such that f is extensionally equal to iteri n. Now suppose we have a closed term F such
that ` F : churchi. By the abstraction theorem we obtain a proof JF K that JchurchiKF F
and therefore that F is extensionally equal to iteri n for some n.

C. Keller and M. Lasson 391

5.2 The tree monad
Binary trees carrying information of type α on their leaves may be implemented by the
following inductive definition :

Ind1(treei : Seti → Seti+1, leafi : ∀α : Seti .α→ T α, nodei : ∀α : Seti .T α→ T α→ T α)

and it is possible to represent in CIC the function mapi of type ∀(αβ : Seti).(α → β) →
treei α→ treei β which maps a function to all the leaves of a tree.

The generated relation JtreeiK tells that two trees are related if they have the same shape
and elements at the same position in each tree are related. It is then not difficult to prove
for any function f : α→ α′ that JtreeiKαα′Rf is a relation representing the graph of the
map function where Rf is λ(x : α)(x′ : α′).fx =α′ x′ and represents the graph of f .

We can also define in the system the multiplication of the monad by programming
an expression µi of type ∀α. treei (treei α) → treei α with the following computational
behavior:

µi α (leafi αx) ≡ x and µi α (nodei αx y) ≡ nodei α (µi αx) (µi α y)

As µi is closed, an application of the abstraction theorem which instantiates the relation to
the graph of f proves the naturality of µi.

5.3 Parametricity and algebra
Obtaining “free theorems” by parametricity can be extended to data types with structure.
In this section, we take the example of finite groups, which is directly related to the Ssreflect
library [12] developed in Coq; but our reasoning applies to a large variety of algebraic
structures.

In Chapter 3.4 of his PhD. thesis [9], François Garillot observed that algebraic devel-
opments require lots of proofs by isomorphism, which often look similar. Intuitively, a
polymorphic function operating on groups can only compose elements using the laws given
by the group’s structure, and thus cannot create new elements.

More formally, we take an arbitrary group H defined by a carrier α : Set0, a unit element
e : α, a composition law · : α→ α→ α, an inverse function inv : α→ α, and the standard
axioms stating that · is associative, e is neutral on the left and composing with the inverse
on the left produces the unit. On top of this, we define the type of all the finite subgroups of
H with the following one-constructor inductive definition:

Ind0
(

fingrp : Set0, Fingrp : ∀ elements : listα.

e ∈ elements→
(∀x y.x ∈ elements→ y ∈ elements→ x · y ∈ elements)→
(∀x.x ∈ elements→ invx ∈ elements)→ fingrp

)
where ∈: α → listα → Prop is the standard inductive predicate stating if an element
appears in a list.

Suppose we have a closed term Z : fingrp→ fingrp (examples of such terms abound:
eg. the center, the normalizer, the derived subgroup. . .). The abstraction theorem states
that for any R : α→ α→ Prop compatible with the laws of H and for any GG′ : fingrp,
JfingrpKRGG′ → JfingrpKR (Z G) (Z G′) where JfingrpKR is the relation on subgroups
induced by R. Given this, we can prove the following properties:

for any G, Z G ⊂ G (if we take R : x y 7→ x ∈ G);

CSL’12

392 Parametricity in an Impredicative Sort

for any G, for any φ a morphism of H, φ(Z G) = Z φ(G) (if we take R : x y 7→ y = φ(x)).
It entails that Z G is a characteristic subgroup of H.

To prove this, we use the axiom of proof irrelevance (that can be safely added to the system
as we will show in the next subsection). The proof is straightforward by unfolding the
definitions. A complete Coq script can be found online [1].

5.4 Classical axioms
One interesting feature of Coq is the ability to add axioms in the system. However when the
parametricity transformation J·K will encounter the axiom, it will ask for a proof that it is
related to itself. Let consider an axiom P such that ` P : s where s is Prop or Set. Here
three situations are possible:

Either P is what we call provably parametric: the user can provide a proof of ∀h : P.JP Khh
and this proof may be used by the abstraction theorem to prove parametricity for terms
involving the axiom.
Or P is provably not parametric: there exists a proof that ∀(hh′ : P).¬(JP Khh′). It
means that the axiom would break the parametricity of the system: there is no way to
invoke the abstraction theorem on a term which uses that axiom.
Or it is neither provably parametric nor provably not parametric or the user does not
know. In this case, the parametricity of the axiom may be added as a new axiom at the
user’s risk.

Note that if ¬P is provable then P is both provably parametric and provably not parametric
and by the abstraction theorem, if P is provable then it is of course provably parametric.
It is also easy to deduce from the abstraction theorem that if P → Q is provable then P
provably parametric implies Q provably parametric, and Q provably not parametric implies
P provably not parametric. Hence these notions do not depend on the formulation of your
axioms.

5.4.1 Proof irrelevance
The axiom of proof irrelevance PI = ∀(X : Prop)(p q : X), p =X q states that there is at most
one proof of any proposition. It is provably parametric since

JPIKhh′ = ∀(XX ′ : Prop) (XR : X → X ′ → Prop)
(p : X)(p′ : X ′)(pR : XR p p

′)(q : X)(q′ : X ′)(qR : XR q q
′).JeqPKXX ′ p p′ pR q q

′ qR

may be proved (with PI) equivalent to

∀(XX ′ : Prop) (XR : X → X ′ → Prop)(p : X)(p′ : X ′)(pR : XR p p
′).

JeqPKXX ′ p p′ pR p p
′ pR

which is directly provable by JreflPK. Therefore PI may be safely added to the system.

5.4.2 Independence of the law of excluded middle
From a user perspective provably not parametric axioms are bad news, but it provides
meta-theoreticians a very simple way to prove independence results. Indeed, if a formula is
provably not parametric then the abstraction theorem tells you this formula is not provable
without large elimination over not small inductive definitions.

C. Keller and M. Lasson 393

I Lemma 3. If P is provably not parametric, there is no closed term A of type P (in the
restriction of large elimination to small inductive definitions).

For instance, Peirce’s law Peirce = ∀(X Y : Prop).((X → Y) → X) → X (which is
known to be equivalent to the excluded middle) is provably not parametric.

6 Towards a Coq implementation

This paper sets the theoretical foundation for an implementation of a reflexive Coq tactic
generating the consequences of parametricity for definitions in the Calculus of Constructions.
Two approaches are possible:

modify Coq’s calculus to implement CICr. The implementation of the translation becomes
straightforward;
do not modify Coq’s calculus, but let the translation distinguish informative terms.

The first approach would require to transform Coq radically. We followed the second
approach, and started the implementation of a prototype for Coq commands and tactics for
parametricity, called CoqParam [1].

In a system like Coq, reflection establishes a correspondence between:
a subset of the Coq terms: this is called the shallow embedding;
a Coq inductive data type representing these terms: this is called the deep embedding;
the OCaml internal representation of those terms.

The deep embedding and the OCaml representation give access to the structure of the terms
(whereas the shallow embedding does not), which is very useful to build properties and
proofs by computing over this structure. This process, called computational reflection, is a
well-known way to design powerful automatic tactics in Coq [2, 13,14].

Parametricity comes well within the spirit of computational reflection: the abstraction
theorem is a way to build proofs of terms by inspecting their structures. Our tactic is based
on this remark: given a well-typed closed term ` A : B, it builds the well-typed proof
` JAK : JBKAA, going from the shallow embedding to the OCaml internal representation
(this step is called reification), and the other way round. The difficulty is to decide, during
reification, whether objects of type Type in Coq should have type Set or Type in CICr. The
tactic does not handle this yet (as well as full inductive types).

Notice that, with this method, we do not have to generally prove the abstraction theorem
in Coq: Coq’s type checker will prove it on each instance. One may also be interested in
a formal proof of the abstraction theorem. It means that the deep embedding should be
defined. As the refinement is very close to Coq, this would thus require a large effort.

7 Related works and discussion

Since the introduction of parametricity for system F [22,26], it has been extended to many
logical systems based on Type Theory. Among others, we can cite system Fω by Vytiniotis
and Weirich [25] and a large subset of PTSs by Bernardy et al. [5,6]. In all these presentations,
no sort is impredicative, and parametricity relations live either in a meta-logic or in a different
sort than propositions. To our knowledge, this is the first time parametricity relations live in
an impredicative sort representing propositions, making them more usable in a system like
Coq.

Bernardy et al. [5] also explain two possible ways to handle inductive definitions: one
by translating induction principles, and one by defining a new inductive data-type as the
translation of the initial data-type. Our approach is close to the second method proposed

CSL’12

394 Parametricity in an Impredicative Sort

by [5]. We also show how to translate fixpoint definitions, which are more common than
inductive principles.

Parametricity and parts of the abstraction theorem have been formalized for deep
embeddings of logical systems in Agda [5] and in Coq [3, 4]. Our approach is different: we do
not want to have a formal proof of the abstraction theorem (in a first step), but we want to
have a practical tool that actually computes results produced by the abstraction theorem.
This does not compromise soundness anyway, since the terms produced by this tool are
type-checked by Coq’s kernel.

8 Conclusion

As we argue throughout the article, the system presented here distinguishes clearly via typing
which expressions will be computationally meaningful after extraction. It allows us to define
a notion of parametricity for which relations lie in the sort of propositions. This opens up a
new way to define automatic tactics in interactive theorem provers based on Type Theory.

Moreover it is known that parametricity and realizability seen as syntactic constructions
are closely related [6]. That is why it seems possible to build an internal realizability theory
inside our framework. It would permit to develop a similar tactic to prove automatically
that program extracted from any closed term will realize its own type. The user would then
be able to use this proof to show the correctness of his programs without relying on the
implementation of the extraction function.

Finally, it remains to understand why parametric relations do not fit in the sort of
proposition in presence of large elimination on non-small data types. We conjecture that
parametric relations for large inductive definitions are not proof-irrelevant (in particular,
they cannot be interpreted as set-theoretical relations).

Acknowledgments The authors are particularly grateful to François Garillot and Georges
Gonthier who suggested the use of parametricity to obtain theorems from free in the setting
of algebra, and provided the stimulus for this work. We also thank Assia Mahboubi for
providing useful help about the spirit of the Ssreflect library. We finally thank the anonymous
reviewers for their encouragements and constructive remarks.

References

1 Preliminary implementation of a Coq tactic. http://www.lix.polytechnique.fr/
~keller/Recherche/coqparam.html.

2 Michaël Armand, Germain Faure, Benjamin Grégoire, Chantal Keller, Laurent Théry, and
Benjamin Werner. A Modular Integration of SAT/SMT Solvers to Coq through Proof
Witnesses. In Jean-Pierre Jouannaud and Zhong Shao, editors, CPP, volume 7086 of
Lecture Notes in Computer Science, pages 135–150. Springer, 2011.

3 Robert Atkey. A deep embedding of parametric polymorphism in Coq. In Workshop on
Mechanizing Metatheory, 2009.

4 Robert Atkey. Syntax for Free: Representing Syntax with Binding Using Parametricity.
In Pierre-Louis Curien, editor, TLCA, volume 5608 of Lecture Notes in Computer Science,
pages 35–49. Springer, 2009.

5 Jean-Philippe Bernardy, Patrik Jansson, and Ross Paterson. Parametricity and dependent
types. In Paul Hudak and Stephanie Weirich, editors, ICFP, pages 345–356. ACM, 2010.

http://www.lix.polytechnique.fr/~keller/Recherche/coqparam.html
http://www.lix.polytechnique.fr/~keller/Recherche/coqparam.html

C. Keller and M. Lasson 395

6 Jean-Philippe Bernardy and Marc Lasson. Realizability and Parametricity in Pure Type
Systems. In Martin Hofmann, editor, FOSSACS, volume 6604 of Lecture Notes in Computer
Science, pages 108–122. Springer, 2011.

7 Thierry Coquand. An Analysis of Girard’s Paradox. In LICS, pages 227–236. IEEE Com-
puter Society, 1986.

8 Thierry Coquand and Christine Paulin. Inductively defined types. In Per Martin-Löf and
Grigori Mints, editors, Conference on Computer Logic, volume 417 of Lecture Notes in
Computer Science, pages 50–66. Springer, 1988.

9 François Garillot. Generic Proof Tools and Finite Group Theory. PhD thesis, École Poly-
technique, 2011.

10 Herman Geuvers. Inconsistency of classical logic in type theory. Unpublished notes, 2001.
11 Eduardo Giménez. Codifying Guarded Definitions with Recursive Schemes. Types for

proofs and Programs, pages 39–59, 1995.
12 Georges Gonthier, Assia Mahboubi, Laurence Rideau, Enrico Tassi, and Laurent Théry.

A Modular Formalisation of Finite Group Theory. In Klaus Schneider and Jens Brandt,
editors, TPHOLs, volume 4732 of Lecture Notes in Computer Science. Springer, 2007.

13 Benjamin Grégoire and Assia Mahboubi. Proving Equalities in a Commutative Ring Done
Right in Coq. In Joe Hurd and Thomas F. Melham, editors, TPHOLs, volume 3603 of
Lecture Notes in Computer Science, pages 98–113. Springer, 2005.

14 Benjamin Grégoire, Laurent Théry, and Benjamin Werner. A Computational Approach to
Pocklington Certificates in Type Theory. Functional and Logic Programming, 2006.

15 Pierre Letouzey. A New Extraction for Coq. In Herman Geuvers and Freek Wiedijk, editors,
TYPES, volume 2646 of Lecture Notes in Computer Science, pages 200–219. Springer, 2002.

16 Pierre Letouzey. Programmation fonctionnelle certifiée: L’extraction de programmes dans
l’assistant Coq. PhD thesis, Université Paris-Sud, July 2004.

17 Pierre Letouzey. Extraction in Coq: An Overview. In Arnold Beckmann, Costas Dimi-
tracopoulos, and Benedikt Löwe, editors, CiE, volume 5028 of Lecture Notes in Computer
Science, pages 359–369. Springer, 2008.

18 Ulf Norell. Towards a Practical Programming Language Based on Dependent Type Theory.
PhD thesis, Chalmers Univ. of Tech, 2007.

19 Christine Paulin-Mohring. Extracting F(omega)’s Programs from Proofs in the Calculus
of Constructions. In POPL, pages 89–104, 1989.

20 Christine Paulin-Mohring. Inductive definitions in the system coq rules and properties. In
Marc Bezem and Jan Groote, editors, Typed Lambda Calculi and Applications, volume 664
of Lecture Notes in Computer Science, pages 328–345. Springer Berlin / Heidelberg, 1993.
10.1007/BFb0037116.

21 Gordon D. Plotkin and Martín Abadi. A Logic for Parametric Polymorphism. In Marc
Bezem and Jan Friso Groote, editors, TLCA, volume 664 of Lecture Notes in Computer
Science, pages 361–375. Springer, 1993.

22 John C. Reynolds. Types, Abstraction and Parametric Polymorphism. In IFIP Congress,
pages 513–523, 1983.

23 Izumi Takeuti. An Axiomatic System of Parametricity. Fundam. Inform., 33(4), 1998.
24 The Coq Development Team. The Coq Proof Assistant: Reference Manual. INRIA, 2012.
25 Dimitrios Vytiniotis and Stephanie Weirich. Parametricity, Type Equality, and Higher-

Order Polymorphism. Journal of Functional Programming, 20(02):175–210, 2010.
26 Philip Wadler. Theorems for free! In Proceedings of the fourth international conference on

Functional programming languages and computer architecture, FPCA ’89, pages 347–359,
New York, NY, USA, 1989. ACM.

27 Philip Wadler. The Girard-Reynolds isomorphism (second edition). Theor. Comput. Sci.,
375(1-3):201–226, 2007.

CSL’12

Two-Variable Universal Logic with Transitive
Closure∗

Emanuel Kieroński and Jakub Michaliszyn

Institute of Computer Science, University of Wrocław, Poland
{kiero,jmi}@cs.uni.wroc.pl

Abstract
We prove that the satisfiability problem for the two-variable, universal fragment of first-order logic
with constants (or, alternatively phrased, for the Bernays-Schönfinkel class with two universally
quantified variables) remains decidable after augmenting the fragment by the transitive closure
of a single binary relation. We give a 2-NExpTime-upper bound and a 2-ExpTime-lower bound
for the complexity of the problem. We also study the cases in which the number of constants
is restricted. It appears that with two constants the considered fragment has the finite model
property and NExpTime-complete satisfiability problem. Adding a third constant does not
change the complexity but allows to construct infinity axioms. A fourth constant lifts the lower
complexity bound to 2-ExpTime. Finally, we observe that we are close to the border between
decidability and undecidability: adding a third variable or the transitive closure of a second
binary relation lead to undecidability.

1998 ACM Subject Classification F.4 Mathematical Logic and Formal Languages

Keywords and phrases two-variable logic, transitive closure, decidability

Digital Object Identifier 10.4230/LIPIcs.CSL.2012.396

1 Introduction

Classical papers from the 1930s showed that the satisfiability problem for first-order logic,
FO, is undecidable. This raised the question which natural fragments of FO are decidable.
A large research program led to a complete characterization, with respect to the decidability,
of the so-called quantifier prefix classes. In particular, the Bernays-Schönfinkel class, i.e. the
class of all formulas starting from a quantifier prefix of the form ∃∗∀∗ followed by a quantifier
free formula, appeared to be decidable. Note that, as existential quantifiers can be simulated
by constants, the Bernays-Schönfinkel class may be alternatively viewed as the universal
fragment of FO (i.e. the class of universal prenex-normal form FO formulas) with constants.

Another interesting decidable fragment of FO is the two-variable fragment, FO2. With
respect to the number of variables it appears to be the maximal fragment whose satisfiability
problem is decidable, as undecidability of FO3 follows from [8]. Decidability of FO2 was
shown in [15] by establishing a finite model property, namely, that every satisfiable formula
has a finite model of size at most doubly exponential with respect to its length. This bound
on the size of models was later improved in [5] to singly exponential, which implied a Nexp-
Time-upper bound on the complexity of the satisfiability problem. A corresponding lower
bound follows from [4, 13], so the satisfiability problem for FO2 is NExpTime-complete.

The importance of FO2 can be justified by the fact that it or its natural extensions
and variants embed many formalisms used in computer science, such as modal, temporal

∗ Partially supported by Polish Ministry of Science and Higher Education grant N N206 371339.

© Emanuel Kieroński and Jakub Michaliszyn;
licensed under Creative Commons License NC-ND

Computer Science Logic 2012 (CSL’12).
Editors: Patrick Cégielski, Arnaud Durand; pp. 396–410

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2012.396
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

E. Kieroński and J. Michaliszyn 397

or description logics. Unfortunately, FO2 has a drawback, which becomes significant when
one thinks about practical applications: it cannot express transitivity of a binary relation.
Moreover, in contrast to modal logic or to some variants of the guarded fragment [16, 12],
extending FO2 by transitivity statements leads to undecidability [6, 10].

Actually, in applications for program verification or knowledge representation it would be
even more desirable to have a transitive closure operator. While in the world of modal logics
there exist decidable variants equipped with transitive closure operators, with a notable
example of propositional dynamic logic, PDL [3], not too many natural decidable fragments
of first-order logic with transitive closure are known. One exception is an extension of the
two-variable guarded fragment with a transitive closure operator applied to binary symbols
appearing only in guards. This is shown to be decidable and 2-ExpTime-complete in [14]. In
a recent paper [11], FO2 with the equivalence closure (i.e. reflexive, symmetric and transitive
closure) operator is show to be decidable, and 2-NExpTime-complete, if the closure operator
is applied to two distinguished binary symbols.

In [7] the universal fragment of first-order logic with constants is shown to be decidable
when extended with the deterministic transitive closure operator, DTC, applied to a single,
distinguished binary symbol, provided that only positive occurrences of DTC are allowed
(thus we cannot say, e.g. that an element satisfying P is forbidden to be connected by a
deterministic path to an element satisfying Q).

Some related results are obtained also in [2] where a logic motivated by the two-variable
Bernays-Schönfinkel class extended with datalog is considered. This logic allows to state
that some paths exist among constants, however, as it is actually a fragment of first-order
logic, it is not able to express transitive closures.

In this paper we consider the universal, two-variable fragment of first-order logic with
constants, and extend it with the transitive closure of a single, distinguished binary relation.
In contrast to the mentioned fragment with DTC, we allow also for negative occurrences of
transitive closures.

In [7] it is shown that if we allow to use the deterministic transitive closure or the
transitive closure of a single binary relation both positively and negatively, then the universal
fragment of FO becomes undecidable. The proof uses four universally quantified variables.
Actually, Corollary 10 from [7] suggests that also the fragment with just two variables, two
constants, and the transitive closure of one relation is undecidable. However, the statement
of that corollary is not precise and there is no detailed proof. In this paper we clarify this
issue by showing that in the case of two variables the satisfiability problem is decidable.

We also find quite intriguing that hardness of the investigated fragment depends on the
number of constants (or, alternatively phrased, on the number of existential quantifiers in
∃∗∀2 formulas).

Our results and outline of the paper. To present our results precisely we introduce
the following notation. We denote by ∀nTC [m, k] the set of first-order formulas of the
form ∀x1 . . . xnϕ, with quantifier free ϕ, over signatures containing m pairs of distinguished
binary relation symbols: R1, R

+
1 , . . . , Rm, R

+
m, k constant symbols c1, . . . , ck, and no function

symbols of arity greater than 0; the equality symbol is also allowed. We consider satisfiability
of such formulas over structures in which for all 1 ≤ i ≤ m the interpretation of R+

i is the
transitive closure of the interpretation of Ri. We define also the classes of formulas in which
the number of constants is unbounded as ∀nTC [m]=

⋃∞
i=0 ∀nTC [m, i].

We prove that the satisfiability problem for ∀2
TC [1] is decidable in 2-NExpTime (Section

6). In the case of ∀2
TC [1, 2] we show even an exponential model property, so it can be decided

in NExpTime (Section 4). Slightly surprisingly, ∀2
TC [1, 3] lacks the finite model property

CSL’12

398 Two-Variable Universal Logic with Transitive Closure

(Section 3), but we still are able to show a NExpTime-upper complexity bound (Section 7).
The satisfiability problem for ∀2

TC [1, 4] becomes 2-ExpTime-hard (Section 5). We also note
some contrasting undecidability results, namely for ∀3

TC [1] and ∀2
TC [2] (Section 7).

2 Preliminaries

2.1 Conventions
We mostly work with ∀2

TC [1] and its fragments with bounded number of constants. In this
case, we suppose without loss of generality that signatures contain only unary and binary
relation symbols (cf. [5]), we denote by R the distinguished binary relation whose transitive
closure is available, and use R+ for this transitive closure. To simplify the presentation
we assume that constants are not explicitly present in the signature, but rather they are
simulated by means of special unary predicates K1, . . . ,Kk. In this case we require that in a
model of a given formula there exists exactly one element satisfying Ki, for all 1 ≤ i ≤ k; we
simply denote this element by ci. We do not obey this assumption when presenting example
formulas and proving lower bounds. Eliminating constants in favor of such special unary
predicates can be done in a standard way.

We use a standard convention and if A is a structure then we denote its universe by A.
Similarly, if V ⊆ A then we denote by V the substructure of A induced by V , i.e. A�V .

2.2 Atomic types
An (atomic) 1-type (over a given signature) is a maximal satisfiable set of atoms or negated
atoms with free variable x. Similarly, an (atomic) 2-type is a maximal satisfiable set of atoms
and negated atoms with free variables x, y. We assume that literals built using our special
symbol R+ are also members of atomic types. Note that the numbers of 1-types and 2-types
are bounded exponentially in the size of the signature. We often identify a type with the
conjunction of all its elements.

Observe that in the case of signatures restricted to unary and binary symbols, to com-
pletely describe a structure it is enough to list the 2-types of all pairs of elements. However,
we usually start our constructions by defining 1-types.

For a given σ-structure A, and a ∈ A we say that a realizes a 1-type α if α is the unique
1-type such that A |= α[a]. We denote by tpA(a) the 1-type realized by a. Similarly, for
distinct a, b ∈ A, we denote by tpA(a, b) the unique 2-type realized by the pair a, b, i.e. the
type β such that A |= β[a, b]. We denote by α[A] the set of all 1-types, and by β[A] the
set of all 2-types realized in A. For S1, S2 ⊆ A, we denote by αA[S1] the set of all 1-types
realized in S1, by βA[S1, S2] the set of all 2-types tpA(a1, a2) with ai ∈ Si. We sometimes
skip subscripts if the structure is clear from the context.

2.3 Small cliques
Let A be a structure. We say that C ⊆ A is an R+-clique, or simply a clique, if C is a
maximal set of elements such that for all distinct a, b ∈ C we have A |= aR+b ∧ bR+a. In
the other words an R+-clique is a maximal strongly R-connected component in A. We show
that we can restrict our attention to structures with cliques of a bounded size.

I Lemma 1. Let ϕ be a formula in ∀2
TC [1] and let A |= ϕ. Then there exists a model of ϕ

such that the size of every R+-clique in this model is bounded exponentially in |ϕ|.

E. Kieroński and J. Michaliszyn 399

Towards a proof of this lemma we first show how to replace a single R+-clique C in A

by its small counterpart C ′. In [14] the following lemma is proved.

I Lemma 2. Let ϕ be an FO2 formula and M |= ϕ its strongly R-connected model (an
R+-clique). Then there exists a strongly R-connected model M′ |= ϕ of size bounded expo-
nentially in |ϕ| such that α[M] = α[M′].

We apply the above lemma to C and ψ = ϕ∧ψc, where ψc = ∀xy
∧
i(Ki(x)∧Ki(y)→ x = y),

obtaining a structure C′. In particular C′ contains realizations of the same special predicates
Ki as C, and each of them is realized at most once. It remains to connect C′ with A�A \ C.
For any a ∈ A\C and any α ∈ α[C], if there exists b ∈ C, of type α, such that A |= aRb∨bRa
then we set b′ = b. Otherwise we choose an arbitrary element of type α in C as b′. For every
element b′′ ∈ C ′ of type α we set tpA′(a, b′′) = tpA(a, b′). Let us denote by A′ the structure
so obtained. The proof of the following claim is omitted due to page limit.
I Claim 3. A′ is indeed a model of ϕ.

In the case of a finite model we apply the above step successively to all R+-cliques,
obtaining finally a model with small cliques. For the case of an infinite model, note that
∀2
TC [1] satisfies downward Löwenheim-Skolem property, so we may assume that the initial

model is countable, and apply our procedure to all R+-cliques in countably many steps.
The desired model with small R+-cliques is the natural limit of the described process. This
finishes our proof of Lemma 1.

For a pair of distinct elements a, b we say that they are in free position in A if A |=
¬aR+b ∧ ¬bR+a. A clique C1 is in free position with C2 if every element from C1 is in free
position with every element of C2.

2.4 Saturations
In our constructions it is sometimes convenient to have structures with many R-edges.
Let A be a structure and let us build A′ by adding to A a number of R-edges, in the
following way. If there is a pair of elements a1, a2 ∈ A such that A |= a1Ra2 ∧ ¬a2R

+a1
and a pair of elements b1, b2 ∈ A, such that tpA(a1) = tpA(b1), tpA(a2) = tpA(b2) and
A |= b1R

+b2∧¬b1Rb2∧¬b2R
+b1, then we modify the 2-type of b1, b2 by setting tpA′(b1, b2) =

tpA(a1, a2). We repeat this step until no further modifications are possible. We call the
obtained structure an R-saturation of A. A structure which is its own R-saturation is called
R-saturated.

Note that the R-edges added in the above process do not change the R+-relations among
the elements. As all the modified 2-types are realized in A, we have the following proposition.
I Proposition 4. Let ϕ be a ∀2

TC [1] formula and A its model. Then an R-saturation of
A is an R-saturated model of ϕ.

3 An infinity axiom

To demonstrate the strength of the considered fragment we show in this section that there
exists a ∀2

TC [1, 3]-formula η = ∀xyη0 which is satisfiable but has only infinite models.
We define η0 as the conjunction of formulas (1)-(3) below.

(1) there exists a path from c1 to c2 and there are no R+-loops.

c1R
+c2 ∧ ¬xR+x,

CSL’12

400 Two-Variable Universal Logic with Transitive Closure

c1

c2

c3

P P P

Q Q Q

Figure 1 An infinite model of η.

(2) P and Q are disjoint, every element in P has an R+ path to c3, and every element in
Q has an R+-path to c2.

(Px ∧Qx→ ⊥) ∧ (Px→ xR+c3) ∧ (Qx→ xR+c2),

(3) R-edges are allowed only between elements of specific types.

xRy → ((x = c1 ∧ Py) ∨ (Px ∧Qy) ∨ (Qx ∧ Py) ∨ (Px ∧ y = c2) ∨ (Qx ∧ y = c3)).

It is not hard to see that η is satisfied in the infinite model depicted in Fig.1. Also any
model of η must embed an infinite chain of elements, on which predicates P and Q alternate.

4 A finite model property for formulas with two constants

Now we show that the presence of three constants in the previous section was essential.

I Lemma 5. Every satisfiable ∀2
TC [1, 2]-formula ϕ has a finite model of size bounded expo-

nentially in |ϕ|.

Let A |= ϕ be a model with cliques bounded exponentially in |ϕ|, as guaranteed by
Lemma 1. By Proposition 4 we may assume that A is R-saturated. Let C1 be the clique
containing c1, and C2 be the clique containing c2.

Note that if C1=C2 then A�C1 |= ϕ, and that if A |= ¬c1R
+c2 ∧ ¬c2R

+c1 then A�
C1 ∪ C2 |= ϕ. In both cases we have finite models of ϕ of exponentially bounded size.

Consider the case when A |= c1R
+c2 ∧ ¬c2R

+c1 (the symmetric case can be treated
analogously). Let us take a shortest path π from c1 to c2. Let us write π as c1 =
a11, a12, . . . , a1k1 , a21, a22, . . . , a2k2 , . . . , al1, al2, . . . , alkl

= c2, where for each i the path
ai1, . . . , aiki

is the maximal fragment of π containing elements from the same clique. We
denote by Ci the clique containing the elements aij . Observe that if π leaves a clique Ci
then it never enters it again, i.e. if 1 ≤ i < j ≤ l then Ci 6= Cj .

We claim that A′ = A�C1 ∪ . . . ∪ Cl is a model of ϕ. Indeed, if two elements belong to
the same clique in A′ then they also belong the same clique in A; if a pair of elements is
connected non-symmetrically by R+ in A′ then they are also connected non-symmetrically
by R+ in A; finally, there are no elements in free position in A′. Thus all atomic 2-types
realized in A′ are also realized in A, which implies that A′ |= ϕ. Note that taking whole
cliques of elements from π to A′, instead of considering just A�π, is important, as ϕ may
require some elements to lie on an R-cycle.

E. Kieroński and J. Michaliszyn 401

We claim that the size of A′ is bounded exponentially in |ϕ|. This follows from the fact
that for 1 ≤ i < j ≤ l we have tp(ai1) 6= tp(aj1). Indeed, assume to the contrary that for
some i, j we have that tp(ai1) = tp(aj1). Then the path π′ obtained from π by removing
the fragment ai1, . . . , aj−1,kj−1 is a path from c1 to c2, which is shorter than π. Note that
π′ is indeed an R-path, since A |= ai−1,ki−1Rai1, and thus, by R-saturation of A, we have
also A |= ai−1,ki−1Raj1. Thus the number of cliques in A′ is not greater than |α|, the size
of every clique is bounded exponentially in |ϕ|, and thus also |A′| is bounded exponentially
in |ϕ|.

This finishes the proof of Lemma 5. It naturally leads to the following complexity result.

I Theorem 6. The satisfiability problem for ∀2
TC [1, 2] is decidable in NExpTime.

A corresponding lower bound can be obtained even in the absence of constants (assuming
that we consider satisfiability in non-empty structures). The idea is similar to the proof of
Theorem 5 from [7]. We construct a formula whose models are grids of exponential size.
Instead of using two constants to distinguish the left-upper and the right-lower corners of
the grid we say that every element is R-reachable from itself but not by a direct R-edge:
xR+x ∧ ¬xRx. We allow edges only between elements which are neighbors on a snake-like
path through the whole grid. We allow also for an R-edge from the right-lower corner to the
left-upper corner. Thus models are R-cycles which have to contain all elements of the grid.

I Theorem 7. The satisfiability problem for ∀2
TC [1, 0] is NExpTime-hard.

5 Lower bound for formulas with four constants

Now we show that in the presence of four constants the lower bound for the satisfiability
problem can be lifted to 2-ExpTime. To simplify the presentation we assume first that
there are nine constants available, and then we present a trick which allows to get rid of five
of them.

5.1 A construction involving nine constants
The proof goes by a reduction from alternating Turing machines with exponentially bounded
space. The general idea of the proof and the shape of intended models are similar to the
ones used in [9]. However, the lack of existential quantifiers makes the tasks of enforcing
desired shapes of models and then simulating Turing machines more tricky.

Tree-like structures. To simulate a run of an alternating Turing machine it is convenient
to have a structure which resembles an infinite binary tree, with each node being able to
encode a single configuration, and identify its successor nodes. Let us describe how to enforce
a desired structure.

We use unary predicates P0, . . . , Pn−1 and assume that for any element a they encode a
value 0 ≤ P̄ (a) < 2n in a natural way, i.e. Pi(a) is true exactly if the ith bit of the binary
representation of P̄ (a) is equal to 1. Let us abbreviate by P̄ (x) = P̄ (y), P̄ (x) = P̄ (y) + 1,
P̄ (x) = k (for 0 ≤ k < 2n) quantifier-free formulas with an obvious meaning. Such formulas
can be constructed of size polynomial in n in a standard fashion.

We say that elements a0, . . . , a2n−1 form a node in a structure A if P̄ (ai) = i and
A |= ai−1Rai for 0 < i < 2n. The purpose of a node will be to encode information about
a single configuration of a Turing machine. We use unary predicates Hd

i for 0 ≤ i < 4,
d ∈ {L,R} to distinguish eight types of nodes. An additional predicate HI serves for
distinguishing an initial node.

CSL’12

402 Two-Variable Universal Logic with Transitive Closure

cI

to cL
1 to cR

1

from cL
2 from cR

2 from cL
2 from cR

2

to cL
3 to cR

3

from cL
0 from cR

0

to cL
1 to cR

1

cL
0 cR

0

cL
2 cR

2

cL
1 cR

1

cL
3 cR

3

2n−1 2 1 0

0 1HL
1 HR

1

HL
2 HR

2 HL
2 HR

2

HL
3 HR

3

HL
0 HR

0

HL
1 HR

1

HL
0 , H

I

Figure 2 An initial fragment of the structure T from the proof of the lower bound.

Let T be the structure depicted in Fig. 2. It is drawn in a way suggesting its similarity to
a binary tree, note however that actually this structure is shallow: every R-path has length
not greater than 2n + 2.

I Claim 8. There exists a formula λ such that:

(a) T |= λ

(b) any model A |= λ locally resembles T, i.e. there exists a node of type HL
0 satis-

fying HI , and for every node a0, . . . , a2n−1 of type Hd
i there exists a left successor

node aL0 , . . . , aL2n−1 of type HL
i+1 mod 4 and a right successor node aR0 , . . . , aR2n−1 of type

HR
i+1 mod 4 such that if i is even then A |= a2n−1Ra

L
0 ∧ a2n−1Ra

R
0 and if i is odd then

A |= aL2n−1Ra0 ∧ aR2n−1Ra0.

We construct λ from five conjuncts. Conjuncts (1) and (2) say that for some elements
there are paths from or to some constants. Conjuncts (3)-(5) say that R-edges are allowed
only between elements of specific 1-types (actually only such types whose realizations are
connected by an R-edge in T). Below we describe these conjuncts in more details.

(1) there is an R-path from cI to cL1 .
(2) every element satisfying HL

0 or HR
0 can reach (by some R+-paths) elements cL1 and

cR1 ; every element satisfying HL
2 or HR

2 can reach elements cL3 and cR3 ; every element
satisfying HL

1 or HR
1 can be reached from elements cL2 and cR2 ; every element satisfying

HL
3 or HR

3 can be reached from elements cL0 and cR0 .
(3) (edges incident to constants) for i ∈ {0, 2} and d ∈ {L,R} element cdi has no incoming

R-edges, and has outgoing R-edges only to elements a such that P̄ (a) = 0 and Hd
i (a)

holds; for i ∈ {1, 3} and d ∈ {L,R} element cdi has no outgoing R-edges, and has
incoming R-edges only from elements a such that P̄ (a) = 2n − 1 and Hd

i (a) holds;
cI has no incoming R-edges and has outgoing R-edges only to elements a such that
P̄ (a) = 0 and HL

0 (a) ∧HI(a) holds.
(4) (edges inside nodes) if an element a satisfies P̄ (a) < 2n−1∧Hd

i (a) than it has outgoing
edges only to elements b satisfyingHd

i (b) such that P̄ (b) = P̄ (a)+1 andHI(a)↔ HI(b);

E. Kieroński and J. Michaliszyn 403

if an element a satisfies P̄ (a) > 0∧Hd
i (a) than it has incoming edges only from elements

b satisfying Hd
i (b) such that P̄ (a) = P̄ (b) + 1 and HI(a)↔ HI(b);

(5) (edges among nodes) an element a such that P̄ (a) = 2n−1 and Hd
i (a) for i ∈ {0, 2} hold

has incoming edges only from elements in Hd
i , and has outgoing edges only to elements

b such that P̄ (b) = 0 and HL
i+1(b)∨HR

i+1(b)∨HL
i−1 mod 4(b)∨HR

i−1 mod 4(b); an element
a such that P̄ (a) = 0 and Hd

i (a) for i ∈ {1, 3} hold has an outgoing edges only from
elements in Hd

i , and has incoming edges only from elements b such that P̄ (b) = 2n − 1
and HL

i+1 mod 4(b) ∨HR
i+1 mod 4(b) ∨HL

i−1(b) ∨HR
i−1(b).

Clearly T |= λ. Consider an arbitrary model A |= λ. By (1) there must be a path
from CI to cL1 . By (3) this path must begin with an edge to an element a0 such that
A |= P̄ (a0) = 0 ∧ HI(a0) ∧ HL

0 (a0). Then, by (4) this path must go through a whole
node of type HL

0 , satisfying also HI . The last element of this node must have by (2) a
path to cL1 and a path to cR1 . By (5) the first of this paths must go through an element
aL1 satisfying A |= P̄ (aL1) = 0 ∧ HL

1 (aL1), and the other through an element aR1 satisfying
A |= P̄ (aR1) = 0 ∧HR

1 (aR1). Both paths must then go through whole nodes of appropriate
types. Elements aL1 and aR1 must have by (2) paths from cL2 and cR2 , which again have to
go through whole nodes of types HL

2 and HR
2 . This reasoning can be generalized to an

inductive argument that part (b) of Claim 8 holds.

Simulating alternating Turing machines. A well-known theorem from [1] says that
2-ExpTime is equal to AExpSpace, the class of problems solvable by alternating Turing
machines in exponentially bounded space.

For a given alternating machineM and its input w we can construct a formula κMw which
is satisfiable iff M accepts w. We define κMw as the conjunction of λ and some formulas
encoding computations of M . Every element of a model of λ corresponds to single tape cell
of M , and stores information about this cell, as well as about the two neighboring cells.
Thus, formulas of the form (xR+y ∧ P̄ (x) = P̄ (y) ∧ Hd

i (x) ∧ Hd
i+1 mod 4(y)) → . . . can be

used to say that two consecutive nodes of a model describe two consecutive configurations
of M . Details are omitted due to space limit.

5.2 Four constants suffice
The following lemma will be used to reduce the number of constants required in the proof
of 2-ExpTime-hardness from nine to four. Actually, it has a stronger statement and allows
to reduce satisfiability of ∀2

TC [1, n] and even ∀2
TC [1] in polynomial time to satisfiability

of ∀2
TC [1, 4], assuming that we consider only structures in which relation R+ restricted to

constants is a partial order.

I Lemma 9. For each n and each ∀2
TC [1, n] sentence ϕ there is a polynomially computable

∀2
TC [1, 4] formula ϕ′ such that ϕ′ has a model if and only if ϕ has a model in which for all
i < j there is no R-path from cj to ci.

We sketch the main idea of the proof. Assume that constants c1, . . . , c4 are available.
We simulate n additional constants by n fresh unary predicates S1, . . . , Sn. We use also
auxiliary unary predicates P1, . . . , Pn, Q1, . . . , Qn. We say that each of the predicates Si,
Pi, Qi is satisfied in at most one element. We want to enforce that each of Si is satisfied
at least once, and for i < j, each pair of realizations of Si, Sj may appear either in free
position or may be connected by an R+ path from the one satisfying Si to the one satisfying
Sj . To do so we enforce first the upper and the lower horizontal chains of elements from
Fig. 3. Then we say that the element satisfying Pi has an R-path to the element satisfying

CSL’12

404 Two-Variable Universal Logic with Transitive Closure

Q1 Q2 Q3 Q4 Q5 Qn−1 Qn

S1 S2 S3 S4 S5 Sn−1 Sn

P1 P2 P3 P4 P5 Pn−1 Pn

c1 c2

c3 c4

Figure 3 A model of ψ.

Qi. By an appropriate restriction of 2-types containing R we can enforce that these paths
go through elements satisfying Si. We guarantee that all Si are realized, by saying that
there are no R-paths from Pi to Qj for i > j. Here the assumption from the statement of
the lemma, about admissible R+-connections among constants is relevant. Details of the
proof of Lemma 9 are omitted due to space limit.

We are now ready to formulate the following theorem.

I Theorem 10. The satisfiability problem for ∀2
TC [1, 4] is 2-ExpTime-hard.

Proof. We define λ∗ by renaming the constants in λ in the following way: cI → c1, cL2 → c2,
cR2 → c3, cL4 → c4, cR4 → c5, cL1 → c6, cR1 → c7, cL3 → c8, cR3 → c9. Clearly, renaming the
constants does not change the properties of formulas. Moreover, λ∗ guarantees that c1 − c5
have no incoming edges and c6 − c9 have no outgoing edges, and therefore in any model of
λ∗ there are no paths from cj to ci for any i < j. We apply Lemma 9 to λ∗ obtaining λ′.
We can now replace λ by λ′ when constructing κMw from the previous subsection. J

6 Decidability of formulas with an unbounded number of constants

In this section we show that the satisfiability problem for ∀2
TC [1] is decidable. We use a

standard approach which consists in an analysis of arbitrary models and rebuilding them
to obtain a shape which admits descriptions of a bounded size. In this case we show that
every formula has a model which can be divided into at most doubly exponentially many
fragments, called zones, each of which is either a clique or an infinite, regular chain of cliques.

6.1 Clique types
Let A be a structure. We say that a clique C has a clique type δ = (C,A,B) in A, if C is the
set of atomic 1-types realized in C, A is the set of atomic 1-types of the elements located
above C, i.e. the elements b such that for all a ∈ C we have A |= bR+a ∧ ¬aR+a, and B
is the set of atomic 1-types of the elements located below C, i.e. the elements b such that
for all a ∈ C we have A |= aR+b ∧ ¬bR+a. We denote by ∆[A] the set of all clique types
realized in A. Note that |∆[A]| is bounded doubly exponentially in the signature.

6.2 Zones
For a pair of cliques C1, C2 we write C1 ≤c C2 if C1 = C2 or for all a1 ∈ C1, a2 ∈ C2
we have a1R

+a2. Relation ≤c naturally induces a relation ≤δ on clique types. We define:

E. Kieroński and J. Michaliszyn 405

δ1 ≤δ δ2 iff there exist cliques C1, C2 ⊆ A, Ci of type δi, such that C1 ≤c C2. Let ≤∗δ be the
transitive closure of ≤δ. Let δ1 ≈ δ2 iff δ1 ≤∗ δ2 and δ2 ≤∗ δ1. Clearly, ≈ is an equivalence
relation over ∆[A]. The set of elements of A, belonging to the cliques realizing the extended
types from the same equivalence class of ≈, is called a zone. Note that the number of zones
of A is bounded doubly exponentially in the signature.

We say that a zone V is singular if every R+-connection inside V is symmetric. A few
simple properties of zones, having straightforward proofs, are collected below.

I Proposition 11. (i) Let δ1 = (C1,A1,B1) and δ2 = (C2,A2,B2) be two clique types
realized in a zone V . Then A1 = A2 and B1 = B2.
(ii) If a zone V is singular then V contains only realizations of a single clique type.
(iii) Let δ = (C,A,B) be a clique type realized in a non-singular zone V . Then for every
α ∈ C we have α ∈ A and α ∈ B.
(iv) Let α1 and α2 be atomic types realized in a non-singular zone V . Then there exists a
pair of elements a1, a2 in A (but not necessarily in V) such that tp(a1) = α1, tp(a2) = α2,
and A |= a1R

+a2 ∧ ¬a2R
+a1.

(v) Let π be a path connecting two elements belonging to a non-singular zone V . Then
every element a on π belongs to V .

6.3 Making zones regular
Let V be a zone in a structure A. We show how to replace V by a zone V′ being either a
single clique or an infinite, regular chain of cliques, in such a way that the resulting structure
A′ satisfies all ∀2

TC [1] formulas satisfied in A.

Building a singular zone. If V is singular then it consists of some number of cliques in
free position, and, by Proposition 11 (ii), all of them have the same clique type δ. In this
case V′ is a single realization of δ.

Building a non-singular zone. Consider a non-singular zone V . By Proposition 11 (i)
there are A, B such that every clique type realized in V has the form (C,A,B) for some set
C. The construction of a regular version of a V relies on the following proposition.

I Proposition 12. There exists a sequence of (not necessarily distinct) clique types
δ0, . . . , δl−1, where δi = (Ci,A,B), and atomic types αin0 , αout0 , . . . , αinl−1, α

out
l−1 such that:

(a) l is bounded exponentially in the size of the signature,
(b) for every α ∈ α[V] there exists i such that α ∈ Ci,
(c) for every i, δi is a clique type of a clique in V,
(d) for every i we have αini , αouti ∈ Ci,
(e) for every i there exists in A a realization a of αouti and a realization b of αini+1 mod l

such that A |= aRb ∧ ¬bR+a.

Proof. Let δ′0, . . . , δ′s−1 be an enumeration of all clique types from ∆[V]. By the definition
of a zone and the relation ≤δ there is a ≤δ-path from δ′i to δ′i+1 mod s

, for every 0 ≤ i < s.
By concatenating such paths we obtain a sequence δ0, . . . , δt−1 meeting conditions (b)-(e)
(assuming a natural choice of αini and αouti). In this path we choose for every α ∈ α[V]
a clique type δα = (Cα,Aα,Bα) such that α ∈ Cα. Observe that if αini = αinj for some
0 ≤ i < j < t such that δi, . . . , δj−1 does not contain any δα then we can remove δi, . . . , δj−1
from the sequence without violating conditions (b)-(e). This observation allows to easily
shorten the sequence to a required length. J

CSL’12

406 Two-Variable Universal Logic with Transitive Closure

Let δ0, . . . , δl−1 be a sequence of clique types guaranteed by Proposition 12. We construct
V′ as an infinite chain of cliques . . . C−2, C−1, C0, C1, C2, . . . such that the clique Ci has type
δi mod l. For every pair α1, α2 ∈ α[V] we choose a 2-type β1→2 |= xR+y∧¬yR+x∧α1(x)∧
α2(y) realized in A. An appropriate β1→2 exists in β[A] by Proposition 11 (iv). If it
is possible we choose β1→2 containing xRy. For all a1 ∈ Ci, a2 ∈ Cj , i < j, such that
tp(a1) = α1, tp(a2) = α2 we set tp(a1, a2) := β1→2. This finishes the construction of V′.
Note that by our choice of atomic 2-types and condition (e) from Proposition 12, we have
that for all i < j there exists an R-path from each element of Ci to each element of Cj .

Connecting a rebuilt zone to the remaining part of the model. Consider an element
a ∈ A \ V . Let α = tpA(a). We distinguish three cases.

Case 1: In A element a is in free position with all elements in V . For any 1-type α′ ∈ α[V′]
we find an element b ∈ V of type α′ (such an element exists as our construction ensures that
α[V′] = α[V]), and for any b′ ∈ V ′ of type α′ we set tpA′(a, b′) = tpA(a, b). Clearly this
ensures that a is in free position with all elements from V ′.

Case 2: In A there is an R-path from a to an element of V . For any 1-type α′ ∈ α[V]:
if there exists a realization b ∈ V of α′ such that A |= aRb then for all b′ ∈ V ′ of type α′
we set tpA′(a, b′) = tpA(a, b).
otherwise find a realization b ∈ A of α′ such that A |= aR+b and for all b′ ∈ V ′ of type α′
we set tpA′(a, b′) = tpA(a, b). Note that in this subcase the existence of an appropriate
b is guaranteed by the properties of relation ≤δ, but sometimes we need to look for it
outside V .

Note that in this case element a has an R-path in A′ to every element from V ′. Indeed, on
a path from a to an element of V there must be an element, say b, which has an R-edge
to a point from V . This element b will be made R+-connected to all elements from V ; in
particular, if V is non-singular it will have R-edges to infinitely many elements of V .

Case 3: In A there is an R-path from an element of V to a. Proceed analogously to Case 2.

Modifying the remaining part of the model. To complete the construction of A′

consider a pair of elements a1, a2 ∈ A \ V . If A |= a1R
+b ∧ b′R+a2 (or symmetrically

A |= a2R
+b ∧ b′R+a1) for some elements b, b′ ∈ V then a1 becomes R+-connected to a2

in A′, even if they are not connected in A. Note that in this case a1 ∈ A and a2 ∈ B.
This means that there is a pair of realizations a′1, a′2 of tp(a1) and tp(a2) in A such that
A |= a′1R

+a′2. We set in this case tpA′(a1, a2) = tpA(a′1, a′2) (and proceed analogously in the
symmetric case). In the opposite case there is no R+-path in A′ between a1 and a2 and we
can safely set tpA′(a1, a2) = tpA(a1, a2).
I Proposition 13. Let A be a model of an ∀2

TC [1] formula ϕ. Then there exists a model
A′ |= ϕ in which all zones are either single cliques or infinite, regular chains of cliques, with
regular connections among zones.

Proof. We simply repeat the described procedure successively to all zones, obtaining finally
a model of a desired shape. J

6.4 Decidability procedure
A structure of a shape as in Proposition 13 can be described in a natural way. Such a
description contains for every zone a sequence of clique types guaranteed by Proposition 12,
patterns of connections among them, and for every pair of zones a pattern of connection
between every clique type from the first zone and every clique type from the second zone.

E. Kieroński and J. Michaliszyn 407

To check if a given formula ϕ in ∀2
TC [1] has a model we guess such a description of a

regular model. Verifying that a guessed description indeed produces a model of ϕ is easy
and can be done in polynomial time with respect to its size. As the number of zones is
bounded doubly exponentially in the size of the signature, and thus also in |ϕ|, the whole
description of a regular structure is also bounded doubly exponentially. Thus we obtain:

I Theorem 14. The satisfiability problem for ∀2
TC [1] is decidable in 2 -NExpTime.

7 NExpTime-upper bound for formulas with three constants

In this section we show that ∀2
TC [1, 3], even though it lacks a finite model property, is still

decidable in NExpTime. For a given structure A we say that a sequence V1, . . . , Vk of zones
is a path of zones if for each i there exist vi ∈ Vi, vi+1 ∈ Vi+1 such that A |= viRvi+1. Note
that in this case, in models guaranteed by Proposition 13 a path from each element of Vi to
each element of Vj exists for i < j.

I Definition 15. Let A be a model with regular zones as in Proposition 13. We say that
A is downward fork-like if it consists of four zones V0, . . . , V3, containing all constants, and
some number of zones forming a path from V1 to V0, a path from V0 to V2, and a path from
V0 to V3. Similarly A is upward fork-like if it consists of four zones V0, . . . , V3, containing
all constants, and some number of zones forming a path from V0 to V1, a path from V2 to
V0, and a path from V3 to V0. A structure is fork-like if it is downward or upward fork-like.
Zone V0 is called a splitting zone of the structure. We start from the following observation.

I Lemma 16. If an ∀2
TC [1, 3] formula ϕ has a fork-like model A then it has a fork-like

model in which the number of zones is bounded exponentially in |ϕ|.

Proof. We show a proof for the case in which A is downward fork-like. The case of an upward
fork-like structure is analogous. Let A′ be the R-saturation of A. Note that R-saturation
does not change the division into cliques and zones. Let V0, . . . , V3 be as in Definition 15.
Let π10 be some shortest path of zones from V1 to V0, π02 a shortest path of zones from V0
to V2 and π03 a shortest paths of zones from V0 to V3. Note that A′′ = A′�π10 ∪ π02 ∪ π03
is still a model of ϕ. By R-saturation of A′ and an argument similar to the one used in the
proof of Lemma 5 the number of zones in A′′ is bounded exponentially in the size of ϕ. J

Our plan is to show that every satisfiable formula ϕ in ∀2
TC [1, 3] has either a finite,

exponentially bounded model, or a fork-like model.

Let A |= ϕ be a regular model guaranteed by Proposition 13. Let c1, c2, c3 be the elements
satisfying K1,K2,K3, resp.
Simple cases.

If two of c1, c2, c3 belong to the same zone, then they belong to the same clique. In this
case we may construct a finite model as in Section 4.
If one of the constants, say c3 is in free position with both the remaining constants, then
we construct a model consisting of the cliques of c1 and c2, a path between them, if such
a path exists, and the clique of c3. The path between c1 and c2 can be then shortened
to an exponential length as in Section 4.
If there exists a path from one of the constants to another, containing the third one then
again we may use the construction from Section 4 to obtain a path of exponential size.

CSL’12

408 Two-Variable Universal Logic with Transitive Closure

V1

W 1
1

W 1
k1

U0

W 2
1

W 2
j

W 2
k2

V2

W 3
1

W 3
i

W 3
k3

V3

V1

W 1
1

W 1
k1

U0

W 2
j

W 2
k2

V2

W 3
1

W 3
i

W 3
k3

V3

W 4
1

(a) (b)

Figure 4 Fork-like structures A0 and A1 from the proof.

As demonstrated, in each of the above cases there exists a finite, exponentially bounded
model of ϕ.
Fork-like case. A more interesting case is when the constants belong to three distinct
zones, two of them, say c1, c2 are in free position, and the third one, c3, can reach both
c1 and c2 by R-paths, or, symmetrically, can be reached from both c1 and c2 by R-paths.
Assume, e.g., that A |= c1R

+c2 ∧ c1R
+c3 ∧¬c2R

+c3 ∧¬c3R
+c2. Let V1, V2, V3 be the zones

of c1, c2, resp. c3. Let π12 be a path of zones V1,W
1
1 , . . ., W 1

k1
, U0,W

2
1 , . . . , W 2

k2
, V2 from

V1 to V2, with U0 being a zone from which a path to V3 exists. Let π03 be a path of zones
U0,W

3
1 ,W

3
2 , . . .W

3
k3
, V3, from U0 to V3. See Fig. 4(a).

Note that A0�π12 ∪ π03 is a downward fork-like structure, splitting at zone U0. Observe
also that in A0 the formula ϕ cannot be violated by a pair of elements, such that one of
them belongs to the fragment V1, . . . , U0 of π12. However, it is not necessarily the case
that A0 |= ϕ, as some elements belonging to zones located below U0 may be required to
be connected by R-paths. Assume e.g. that an element from W 3

i is connected in A to
an element in W 2

j . Let W 3
i ,W

4
1 , . . . ,W

4
k4
,W 2

j be a path of zones. Observe now that the
structure A′ consisting of the path of zones V1,W

1
1 , . . . , W 1

k1
, U0,W

3
1 , . . . , W 3

i−1,W
3
i ,W

4
1 ,

. . . , W 4
k4
,W 2

j ,W
2
j+1, . . . , W 2

k2
, V2, and the path W 3

i+1, . . . ,W
3
k3
, V3 is a downward fork-like

structure splitting at zone W 3
i . Denote U1 = W 3

i , and observe that U1 is located below
U0. See Fig. 4(b). If A1 is still not a model of ϕ we repeat the above step obtaining a
fork-like structure A2, splitting at U2, such that U2 is located below U1, and so on. Thus a
descending sequence of zones U0, U1, . . . is formed, and as the number of zones is finite this
process must eventually end in a structure which is a model of ϕ.

The described construction, together with Lemma 16 allows us to state:

I Theorem 17. The satisfiability problem for ∀2
TC [1, 3] is in NExpTime.

E. Kieroński and J. Michaliszyn 409

8 Related undecidability results

To complete the picture we observe that the decidable fragment we have identified is very
close to the border between decidability and undecidability. Namely, we show that adding
a third variable or the transitive closure of a second binary symbol lead to undecidability.

I Theorem 18. The satisfiability and the finite satisfiability problems for ∀3
TC [1] and ∀2

TC [2]
are undecidable.

The proof for ∀3
TC [1] can be obtained by a slight refinement of the proof of Corollary

9 from [7], which states that ∀4
TC [1] is undecidable. In that proof a snake-like path from

the upper-left corner to the lower-right corner of the grid is enforced. Additional R-edges,
necessary to define vertical adjacency relation, are enforced by a completing squares formula
with four variables. If we allow for additional diagonal R-edges then this formula can be
replaced by a completing triangles formula with three variables. We also remark that this
proof requires only a single constant: to mark the upper-left corner of the grid. We require
this constant to lie on a cycle and accept an incoming edge only from the opposite corner
of the grid.

The proof for ∀2
TC [2] can be obtained by an adaptation of the proof of the undecidability

of FO2 with two transitive relations from [10]. This adaptation uses similar ideas to the
proof of the 2-ExpTime-lower bound for ∀2

TC [1, 4] from Section 5: appropriate neighbors
of elements of the grid, which in the proof from [10] are enforced explicitly by formulas
with existential quantifiers in our case can be enforced by requiring that some elements have
paths to or from some constants, and by appropriate restriction of of 1-types which may be
related by R-edges.

9 Conclusions

We have identified an interesting decidable fragment of two-variable logic with transitive
closure operator, ∀2

TC [1]. This fragment, even though does not allow explicitly for existential
quantifiers, is sufficiently strong to admit infinity axioms and encodings of alternating Turing
machines with exponentially bounded space.

Regarding the influence of the number of constants k on the finite model property and
the complexity of ∀2

TC [1, k] we have drawn the following picture.

0 1 2 3 4 . . . l . . . unbounded

yes no (infinity axioms)

NExpTime-complete between 2-ExpTime and 2-NExpTime

finite model property:

complexity:

of constants:

In fact, our construction of a regular model A′ of ϕ from its arbitrary model A retains
more properties than those expressible in ∀2

TC [1]. In particular A′ realizes only clique
types realized in A. Thus we may add for free to our language existential statements of
the form ∀x(χ1(x) → ∃y(xR+y ∧ χ2(y))) or ∀x(χ1(x) → ∃y(yR+x ∧ χ2(y))), with χ1, χ2
quantifier-free.

Without major difficulties it is possible to extend our construction even to a more ex-
pressive logic, namely to the fragment of FO2 with the transitive closure of relation R,
with the only restriction that existential subformulas are of the form ∃y(xR+y ∧ ψ(x, y)),
∃y(yR+x∧ψ(x, y)) (or formulas obtained by switching the role of x and y). In other words,
existential quantifiers are guarded by atomic predicates built from R+.

An important open question arises:

CSL’12

410 Two-Variable Universal Logic with Transitive Closure

IOpen Question 1. Is the whole two-variable fragment of first-order logic, FO2, decidable
when extended by transitive closure of a fixed binary relation?

In a recent paper [17] it is shown that FO2 is decidable with one transitive relation. We
believe that combining the techniques from that paper with some ideas from our paper may
lead to a positive answer to the given open question.

We also leave two open question regarding ∀2
TC [1]:

IOpen Question 2. What is the exact complexity of the satisfiability problem for ∀2
TC [1]?

I Open Question 3. Is the finite satisfiability problem for ∀2
TC [1] decidable?

References
1 A. K. Chandra, D. Kozen, and L. J. Stockmeyer. Alternation. Journal of the ACM,

28(1):114–133, 1981.
2 W. Charatonik and P. Witkowski. On the complexity of the Bernays-Schönfinkel class with

datalog. In LPAR, volume 6397 of LNCS, pages 187–201, 2010.
3 M. J. Fisher and R. E. Ladner. Propositional dynamic logic of regular programs. Journal

of Computer and System Sciences, 18(2):194–211, 1979.
4 Martin Fürer. The computational complexity of the unconstrained limited domino problem

(with implications for logical decision problems). In Logic and Machines, volume 171 of
LNCS, pages 312–319, 1983.

5 E. Grädel, P. Kolaitis, and M. Vardi. On the decision problem for two-variable first-order
logic. Bulletin of Symbolic Logic, 3(1):53–69, 1997.

6 E. Grädel, M. Otto, and E. Rosen. Undecidability results on two-variable logic. In STACS,
volume 1200 of LNCS, pages 249–260, 1997.

7 N. Immerman, A. Moshe Rabinovich, T. W. Reps, S. Sagiv, and G. Yorsh. The boundary
between decidability and undecidability for transitive-closure logics. In CSL, volume 3210
of LNCS, pages 160–174, 2004.

8 A.S. Kahr, E.F. Moore, and H. Wang. Entscheidungsproblem reduced to the ∀∃∀ case.
1962.

9 E. Kieroński. The two-variable guarded fragment with transitive guards is 2ExpTime-Hard.
In Proc. Foundations of Software Science and Computational Structures, 6th International
Conference, FOSSACS, volume 2620 of LNCS, pages 299–312, 2003.

10 E. Kieroński. Results on the guarded fragment with equivalence or transitive relations. In
CSL, volume 3634 of LNCS, pages 309–324, 2005.

11 E. Kieroński, J. Michaliszyn, I. Pratt-Hartmann, and L. Tendera. Two-variable first-order
logic with equivalence closure. Accepted for LICS, 2012.

12 E. Kieroński and L. Tendera. On finite satisfiability of the guarded fragment with equival-
ence or transitive guards. In LPAR, volume 4790 of LNAI, pages 318–332, 2007.

13 H. R. Lewis. Complexity results for classes of quantificational formulas. Journal of Com-
puter and System Sciences, 21:317–353, 1980.

14 J. Michaliszyn. Decidability of the guarded fragment with the transitive closure. In ICALP
(2), volume 5556 of LNCS, pages 261–272, 2009.

15 M. Mortimer. On languages with two variables. Zeitschr. f. Logik und Grundlagen d. Math.,
21:135–140, 1975.

16 W. Szwast and L. Tendera. On the decision problem for the guarded fragment with trans-
itivity. In LICS, pages 147–156, 2001.

17 W. Szwast and L. Tendera. FO2 with one transitive relation is decidable. Unpublished,
2012.

Connection Matrices and the Definability of
Graph Parameters∗

Tomer Kotek and Johann A. Makowsky

Faculty of Computer Science
Technion–Israel Institute of Technology
Haifa Israel
{tkotek,janos}@cs.technion.ac.il

Abstract
In this paper we extend the Finite Rank Theorem for connection matrices of graph parameters
definable in Monadic Second Order Logic with modular counting CMSOL of B. Godlin, T. Kotek
and J.A. Makowsky, [16, 30], and demonstrate its vast applicability in simplifying known and
new non-definability results of graph properties and finding new non-definability results for graph
parameters. We also prove a Feferman-Vaught Theorem for the logic CFOL, First Order Logic
with the modular counting quantifiers.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases Model theory, finite model theory, graph invariants

Digital Object Identifier 10.4230/LIPIcs.CSL.2012.411

1 Introduction

Difficulties in proving non-definability

Proving that a graph property P is not definable in first order logic FOL can be a challenging
task, especially on graphs with an additional linear order on the vertices. Proving that
a graph property such as 3-colorability, which is definable in monadic second order logic
MSOL, is not definable in fixed point logic on ordered graphs amounts to solving the famous
P 6= NP problem.

In the case of FOL and MSOL properties the basic tools for proving non-definability
are the various Ehrenfeucht-Fraïssé games also called pebble games. However, proving the
existence of winning strategies for these games can be exasperating. Two additional tools can
be used to make the construction of such winning strategies easier and more transparent: the
composition of winning strategies and the use of locality properties such as Hanf locality and
Gaifman locality. These techniques are by now well understood, even if not always simple
to apply, and are described in monographs such as [11, 24]. However these techniques are
not easily applicable for stronger logics, such as CMSOL, monadic second order logic with
modular counting. Furthermore, the pebble game method or the locality method may be
difficult to use when dealing with ordered structures or when proving non-definability for the
case where the definition may use an order relation on the universe in an order-invariant way.

∗ The first author was partially supported by the Fein Foundation and the Graduate School of the
Technion–Israel Institute of Technology. The second author was partially supported by the Israel Science
Foundation for the project “Model Theoretic Interpretations of Counting Functions” (2007-2011) and
the Grant for Promotion of Research by the Technion–Israel Institute of Technology.

© Tomer Kotek and Johann A. Makowsky;
licensed under Creative Commons License NC-ND

Computer Science Logic 2012 (CSL’12).
Editors: Patrick Cégielski, Arnaud Durand; pp. 411–425

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2012.411
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

412 Connection matrices

The notion of definability was extended in [2, 3] to integer valued graph parameters, and
in [9, 27, 29, 22, 23] to real or complex valued graph parameters and graph polynomials. In
[27] and [22] graph polynomials definable in MSOL respectively SOL were introduced. The
techniques of pebble games and locality do not lend themselves easily, or are not useful at
all, for proving non-definability in these cases.

Connection matrices

Connection matrices were introduced in [15, 26] by M. Freedman, L. Lovász and A. Schrijver
where they were used to characterize graph homomorphism functions. Let f be a real or
complex valued graph parameter. A k-connection matrixM(tk, f) is an infinite matrix, where
the rows and columns are indexed by finite k-labeled graphs Gi and the entry M(tk, f)i,j
is given by the value of f(Gi tk Gj). Here tk denotes the k-sum operation on Gi and Gj ,
i.e. the operation of taking the disjoint union of Gi and Gj and identifying vertices with the
corresponding k-many labels.

In [16] connection matrices were used to show that certain graph parameters and polyno-
mials are not MSOL-definable. The main result of [16] is the Finite Rank Theorem, which
states that the connection matrices of CMSOL-definable graph polynomials have finite rank.
Connection matrices and the Finite Rank Theorem were generalized in [30] to matrices
M(2, f) where 2 is a binary operation on labeled graphs subject to a smoothness condition
depending on the logic one wants to deal with. However, very few applications of the Finite
Rank Theorem were given.

Properties not definable in CFOL and CMSOL

The purpose of this paper lies in the demonstration that the Finite Rank Theorem is a
truly manageable tool for proving non-definability which leaves no room for hand-waving
arguments. To make our point we discuss graph properties (not)-definable in CFOL and
CMSOL, i.e., First Order Logic, respectively Monadic Second Order Logic with modular
counting quantifiers Dm,ixφ(x) which say that the number of elements satisfying φ equals i
modulo m. We also discuss the corresponding (non)-definability questions in CMSOL for
graph parameters and graph polynomials. Although one can derive pebble games for these
two logics, see e.g. [21, 32], using them to prove non-definability may be very awkward.

Instead we use a Feferman-Vaught-type Theorem for CFOL for disjoint unions and
Cartesian products, Theorem 3.3, which seems to be new for the case of products. The
corresponding theorem for disjoint unions, Theorem 3.2(i), for CMSOL was proven by B.
Courcelle [7, 8, 27].

The proof of the Finite Rank Theorem for these logics follows from the Feferman-Vaught-
type theorems. The details will be spelled out in Section 3.

With the help of the Finite Rank Theorem we give new and uniform proofs for the
following:
(i) Using connection matrices for various generalizations of the Cartesian product ×Φ we

prove non-definability of the following properties in CFOL with the vocabulary of graphs
〈V,E,<〉 with linear order:

Forests, bipartite graphs, chordal graphs, perfect graphs, interval graphs, block graphs
(every biconnected component, i.e., every block, is a clique), parity graphs (any two
induced paths joining the same pair of vertices have the same parity);
Trees, connected graphs;

T. Kotek and J.A. Makowsky 413

Planar graphs, cactus graphs (graphs in which any two cycles have at most one vertex
in common) and pseudo-forests (graphs in which every connected component has at
most one cycle).

The case of connected graphs was also shown undefinable in CFOL by. J. Nurmonen in
[32] using his version of the pebble games for CFOL.

(ii) Using connection matrices for various generalizations of the disjoint union tΦ we prove
non-definability of the following properties in CMSOL with the vocabulary of graphs
〈V,E,<〉 with linear order:

Hamiltonicity (via cycles or paths), graphs having a perfect matching, cage graphs
(regular graphs with as few vertices as possible for their girth), well-covered graphs
(where every minimal vertex cover has the same size as any other minimal vertex
cover). Here tΦ is the join operation ./.
The class of graphs which have a spanning tree of degree at most 3. Here tΦ is a
modified join operation.

(iii) Using connection matrices for various generalizations of the disjoint union tΦ we
prove non-definability of the following properties in CMSOL with the vocabulary of
hypergraphs 〈V,E;R,<〉 with linear order:

Regular graphs and bi-degree graphs.
Graphs with average degree at most |V |2 .
Aperiodic digraphs (where the greatest common divisor of the lengths of all cycles in
the graph is 1).
Asymmetric (also called rigid) graphs (i.e. graphs which have no non-trivial auto-
morphisms).

Graph parameters and graph polynomials not definable in CMSOL
A graph parameter is CMSOL-definable if it is the evaluation of a CMSOL-definable graph
polynomial. The precise definition of definability of graph polynomials is given in Section
6. Most prominent graph polynomials turned out to be definable in CMSOL, sometimes
using a linear order on the vertices in an order-invariant way, among them the various Tutte
polynomials, interlace polynomials, matching polynomials, and many more, cf. [28]. This led
the second author to express his belief in [28] that all “naturally occurring graph polynomials”
are CMSOL-definable. However, in [16] it was shown, using connection matrices, that the
graph polynomial counting harmonious colorings is not CMSOL-definable. A vertex coloring
is harmonious if each pair of colors appears at most once at the two end points of an edge,
cf. [12, 20]. That this is indeed a graph polynomial was shown in [23]. However, the main
thrust of [16] consists in showing that certain graph parameters are not evaluations of the
standard prominent graph polynomials.

In Section 7, we use connection matrices to show that many “naturally occurring graph
polynomials” are not CMSOL-definable. All these examples count various colorings and are
graph polynomials by [23]. The corresponding notion of coloring is studied extensively in the
literature.

To illustrate this we show that the following graph polynomials are not CMSOL-definable:
χrainbow(G, k) is the number of path-rainbow connected k-colorings, which are functions
c : E(G)→ [k] such that between any two vertices u, v ∈ V (G) there exists a path where
all the edges have different colors.
For every fixed t ∈ N, χmcc(t)(G, k) is the number of vertex k-colorings f : V (G)→ [k]
for which no color induces a subgraph with a connected component of size larger than t.

CSL’12

414 Connection matrices

χconvex(G, k) is the number of convex colorings, which are vertex k-colorings
f : V (G)→ [k] such that every color induces a connected subgraph of G.

Path-rainbow connected colorings were introduced in [6] and their complexity was studied
in [5]. mcc(t)-colorings were studied in [1], [25] and [14]. Note χmcc(1)(G, k) is the chromatic
polynomial. Convex colorings were studied for their complexity e.g. in [31] and [17]. From
[23] we get that χrainbow(G, k), χmcc(t)(G, k), and χconvex(G, k) are graph polynomials with
k as the variable.

In Section 7 more examples of graph polynomials and graph parameters not definable in
CMSOL are given.

Outline of the paper
We assume the reader is familiar with the basics of finite model theory [11, 24] and graph
theory [4, 10].

In Section 2 we illustrate the use of connection matrices in the case of regular languages.
This serves as a “warm-up” exercise. In Section 3 we introduce the general framework for
connection matrices of graph properties, i.e., boolean graph parameters, and of properties of
general τ -structures. In Section 4 we spell out the advantages and limitations of the method
of connection matrices in proving non-definability. In Section 5 we illustrate the use of
connection matrices and the Finite Rank Theorem for proving non-definability of properties.
In Section 6 we recall the framework of definable graph polynomials and τ -polynomials and
the corresponding definable numeric parameters, and in Section 7 we show how to prove
non-definability of these.

2 Connection Matrices for Regular Languages

Our first motivating examples deal with regular languages and the operation of concatenation
◦. By the well-known Büchi-Elgot-Trakhtenbrot Theorem, see [11, 24], a language L ⊆ Σ∗ is
regular if and only if the class SL of ordered structures representing the words of L is definable
in MSOL (or equivalently in CMSOL or ∃MSOL, the existential fragment of MSOL). The
connection matrix M(◦, L) with columns and rows indexed by all words of Σ∗ is defined by
M(◦, L)u,v = 1 iff u ◦ v ∈ L.

The Myhill-Nerode Theorem and the Pumping Lemma for regular languages, see [19, 18],
can be used to derive the following properties of M(◦, L):

I Proposition 2.1. Let L ⊆ Σ∗ be a regular language.
(i) There is a finite partition {U1, . . . , Uk} of Σ∗ such that the sub-matrices obtained from

restricting M(◦, L) to M(◦, L)[Ui,Uj] have constant entries.
(ii) In particular, the infinite matrix M(◦, L) has finite rank over any field F .
(iii) M(◦, L) has an infinite sub-matrix of rank at most 1.

Now we can also look at counting functions and numeric parameters of words, such as the
length `(w) of a word w or the number of words sL(w) in a language L which are (connected)
sub-words of a given word w. The corresponding connection matrices M(◦, `) and M(◦, sL)
defined by M(◦, `)u,v = `(u ◦ v) and M(◦, sL)u,v = sL(u ◦ v) respectively do not satisfy (i)
and (iii) above, but still have finite rank. On the other hand the function mL(w) which gives
the maximal size of a word in L which occurs as a connected sub-word in w gives rise to
connection matrix M(◦, sL) of infinite rank. Here u◦v = u ◦ a ◦ v where a 6∈ Σ and therefore
mL(u◦v) = max{mL(u),mL(v)}.

T. Kotek and J.A. Makowsky 415

We can use these connection matrices to show that L1 = {0n ◦ 1n : n ∈ N} is not regular,
by noting that the sub-matrix M(◦, L1) with columns indexed by 0n and rows indexed by 1n
has 0 everywhere but in the diagonal, hence has infinite rank, contradicting (ii) of Proposition
2.1.

The numeric parameters on words `, sL are MSOL-definable as follows: `(w) =
∑
u<inw

1,
where u <in w means that u is a proper possibly empty initial segment of w. Similarly,
sL(w) =

∑
u<sww

1, where u <sw w denotes the relation u is a connected sub-word of w. We
shall give a general definition of MSOL-definable numeric parameter in Section 6. But we
state here already

I Proposition 2.2. The connection matrices M(◦, f) and M(◦, f) have finite rank, provided
f is MSOL-definable.

I Corollary 2.3. The function mL(w) is not MSOL-definable.

3 Connection Matrices for Properties: The Framework

Let τ be a purely relational finite vocabulary which may include constant symbols and may
include a distinguished binary relation symbol for a linear order. A τ -property is a class
of finite τ -structures closed under τ -isomorphisms. If the context is clear we just speak of
properties and isomorphisms. We denote by SOL(τ) the set of SOL formulas over τ . A
sentence is a formula without free variables.

Let L be a subset of SOL. L is a fragment of SOL if the following conditions hold:
(i) For every finite relational vocabulary τ the set of L(τ) formulas contains all the atomic

τ -formulas and is closed under boolean operations and renaming of relation and constant
symbols.

(ii) L is equipped with a notion of quantifier rank and we denote by Lq(τ) the set of formulas
of quantifier rank at most q. The quantifier rank is sub-additive under substitution of
sub-formulas,

(iii) The set of formulas of Lq(τ) with a fixed set of free variables is, up to logical equivalence,
finite.

(iv) Furthermore, if φ(x) is a formula of Lq(τ) with x a free variable of L, then there is a
formula ψ logically equivalent to ∃xφ(x) in Lq′(τ) with q′ ≥ q + 1.
Typical fragments are FOL and MSOL. CMSOL and the fixed point logics IFPL and

FPL and their corresponding finite variable subsets correspond to fragments of SOL if we
replace the counting or fixed-point operators by their SOL-definitions.

For two τ -structures A and B we define the equivalence relation of Lq(τ)- non-
distinguishability, and we write A ≡Lq B, if they satisfy the same sentences from Lq(τ).

Let s : N → N be a function. A binary operation 2 between τ -structures is called
(s,L)-smooth, if for all q ∈ N whenever A1 ≡Lq+s(q) B1 and A2 ≡Lq+s(q) B2 then

A12A2 ≡Lq B12B2.

If s(q) is identically 0 we omit it.
For two τ -structures A and B, we denote by A tB the disjoint union, which is a τ -

structure; A trich B the rich disjoint union which is the disjoint union augmented with two
unary predicates for the universes A and B respectively; A×B the Cartesian product, which
is a τ -structure; and for graphs G,H by G ./ H the join of two graphs, see [10].

A L-transduction of τ -structures into σ-structures is given by defining a σ-structure inside
a given τ -structure. The universe of the new structure may be a definable subset of an

CSL’12

416 Connection matrices

m-fold Cartesian product of the old structure. If m = 1 we speak of scalar and otherwise of
vectorized transductions. For every k-ary relation symbol R ∈ σ we need a τ -formula in k ·m
free individual variables to define it. We denote by Φ a sequence of τ -formulas which defines
a transduction. We denote by Φ? the map sending τ -structures into σ-structures induced
by Φ. We denote by Φ] the map sending σ-formulas into τ -formulas induced by Φ. For a
σ-formula Φ](θ) is the backward translation of θ into a τ -formula. Φ is quantifier-free if all
its formulas are from FOL0(τ). We skip the details, and refer the reader to [24, 27].

A fragment L is closed under scalar transductions, if for Φ such that all the formulas of
Φ are in L(τ), Φ scalar, and θ ∈ L(σ), the backward substitution Φ](θ) is also in L(τ). A
fragment of SOL is called tame if it is closed under scalar transductions. FOL, MSOL and
CMSOL are all tame fragments. So are their finite variable versions.

FOL and SOL are also closed under vectorized transductions, but the monadic fragments
MSOL and CMSOL are not.

We shall frequently use the following:

I Proposition 3.1. Let Φ define a L-transduction from τ -structures to σ-structures where
each formula is of quantifier rank at most q. Let θ be a L(σ)r-formula. Then

Φ?(A) |= θ iff A |= Φ](θ)

and Φ](θ) is in L(τ)q+r.

I Proposition 3.2 (Smooth operations).
(i) The rich disjoint union trich of τ -structures and therefore also the disjoint union are

FOL-smooth, MSOL-smooth and CMSOL-smooth. They are not SOL-smooth.
(ii) The Cartesian product × of τ -structures is FOL-smooth, but not MSOL-smooth
(iii) Let Φ be a quantifier-free scalar transduction of τ -structures into τ -structures and let 2

be an L-smooth operation. Then the operation 2Φ(A,B) = Φ?(A2B) L-smooth. If Φ
has quantifier rank at most k, it is (k,L)-smooth.

Sketch of proof. (i) is shown for FOL and MSOL using the usual pebble games. For CMSOL
one can use Courcelle’s version of the Feferman-Vaught Theorem for CMSOL, cf. [7, 8, 27].
(ii) is again shown using the pebble game for FOL. (iii) follows from Proposition 3.1. The
negative statements are well-known, but also follow from the developments in the sequel. J

I Theorem 3.3 (Feferman-Vaught Theorem for CFOL).
(i) The rich disjoint union trich of τ -structures, and therefore the disjoint union, too, is

CFOL-smooth.
(ii) The Cartesian product × of τ -structures is CFOL-smooth.

Sketch of proof. The proof does not use pebble games, but Feferman-Vaught-type reduction
sequences. (i) can be proven using the same reduction sequences which are used in [7, 8]. (ii)
is proven using modifications of the reduction sequences as given in detail in [27, Theorem
1.6]. J

To the best of our knowledge, (ii) of Theorem 3.3 has not been stated in the literature before.

I Remark. We call this a Feferman-Vaught Theorem, because our proof actually computes
the reduction sequences explicitly. However, this is not needed here, so we refer the reader
to [27] for the definition of reduction sequences. One might also try to prove the theorem
using the pebble games defined in [32], but at least for the case of the Cartesian product,
the proof would be rather complicated and less transparent.

T. Kotek and J.A. Makowsky 417

I Theorem 3.4 (Finite Rank Theorem for tame L, [16, 30]).
Let L be a tame fragment of SOL. Let 2 be a binary operation between τ -structures which
is L-smooth. Let P be a τ -property which is definable by a L-formula ψ and M(2, ψ) be
the connection matrix defined by

M(2, ψ)A,B = 1 iff A2B |= ψ and 0 otherwise .

Then
(i) There is a finite partition {U1, . . . , Uk} of the (finite) τ -structures such that the sub-

matrices obtained from restricting M(2, ψ) to M(2, ψ)[Ui,Uj] have constant entries.
(ii) In particular, the infinite matrix M(2, ψ) has finite rank over any field F .
(iii) M(2, ψ) has an infinite sub-matrix of rank at most 1.

Sketch of proof. (i) follows from the definition of a tame fragment and of smoothness and
the fact that there are only finitely many formulas (up to logical equivalence) in L(τ)q. (ii)
and (iii) follow from (i). J

4 Merits and Limitations of Connection Matrices

Merits

The advantages of the Finite Rank Theorem for tame L in proving that a property is not
definable in L are the following:
(i) It suffices to prove that certain binary operations on graphs (τ -structures) are L-smooth

operations.
(ii) Once the L-smoothness of a binary operation has been established, proofs of non-

definability become surprisingly simple and transparent. One of the most striking
examples is the fact that asymmetric (rigid) graphs are not definable in CMSOL, cf.
Corollary 5.7.

(iii) Many properties can be proven to be non-definable using the same or similar sub-matrices,
i.e., matrices with the same row and column indices. This is well illustrated in the
examples of Section 5.

Limitations

The classical method of proving non-definability in FOL using pebble games is complete in
the sense that a property is FOL(τ)q-definable iff the class of its models is closed under game
equivalence of length q. Using pebble games one proves easily that the class of structures
without any relations of even cardinality, EVEN, is not FOL-definable. This cannot be
proven using connection matrices in the following sense:

I Proposition 4.1. Let Φ be a quantifier-free transduction between τ -structures and let 2Φ
be the binary operation on τ -structures:

2Φ(A,B) = Φ?(A trich B)

Then the connection matrix M(2Φ,EVEN) satisfies the properties (i)-(iii) of Theorem 3.4.

CSL’12

418 Connection matrices

5 Proving Non-definability of Properties

Non-definability on CFOL
We will prove non-definability in CFOL using Theorem 3.3 for Cartesian products combined
with FOL transductions. It is useful to consider a slight generalization of the Cartesian
product as follows. We add two constant symbols start and end to our graphs. In G1×G2 the
symbol start is interpreted as the pair of vertices (v1

start, v
2
start) from G1 and G2 respectively

such that vistart is the interpretation of starti (i.e. start in Gi) for i = 1, 2.
The transduction Φsym(x, y) = ED(x, y) ∨ ED(y, x) transforms a digraph D = (VD, ED)

into an undirected graph whose edge relation is the symmetric closure of the edge relation of
the digraph.

The following transduction ΦF transforms the Cartesian product of two directed graphs
Gi = (V1, E1, v

i
start, v

i
end) with the two constants starti and endi, i = 1, 2 into a certain

digraph. It is convenient to describe ΦF as a tranduction of the two input graphs G1 and G2:

ΦF ((v1, v2) , (u1, u2)) = (E1(v1, u1) ∧ E2(v2, u2)) ∨
((v1, v2) , (u1, u2)) = ((start1, start2) , (end1, end2))

Consider the transduction obtained from ΦF by applying Φsym when the input graphs
are directed paths P ini

of length ni. The input graphs look like this:

The result of the application of the transduction is given in Figure 1. The result of the

n1 = n2 n1 6= n2

Figure 1 The result of applying ΦF and then Φsym on the two directed paths. There is a cycle
iff the two directed paths are of the same length.

transduction has a cycle iff n1 = n2. The length of this cycle is n1. Hence, the connection
sub-matrix with rows and columns labeled by directed paths of odd (even) length has ones
on the main diagonal and zeros everywhere else, so it has infinite rank. Thus we have shown:

I Theorem 5.1. The graphs without cycles of odd (even) length are not CFOL-definable
even in the presence of a linear order.

I Corollary 5.2. Not definable in CFOL with order are:
(i) Forests, bipartite graphs, chordal graphs, perfect graphs
(ii) interval graphs (cycles are not interval graphs)
(iii) Block graphs (every biconnected component is a clique)

T. Kotek and J.A. Makowsky 419

(iv) Parity graphs (any two induced paths joining the same pair of vertices have the same
parity)
The transduction

ΦT ((v1, v2) , (u1, u2)) = (E1(v1, u1) ∧ E2(v2, u2)) ∨
(v1 = u1 = start1 ∧ E(v2, u2)) ∨
(v1 = u1 = end1 ∧ E(v2, u2)) ,

combined with Φsym transforms the two directed paths into the structures in Figure 2.

n1 > n2 n1 = n2 n1 < n2

Figure 2 The result of applying ΦT and then Φsym on two directed paths. We get a tree iff the
two directed paths are of equal length.

So, the result of the transduction is a tree iff n1 = n2. It is connected iff n1 ≤ n2. Hence,
both the connection matrices with directed paths as row and column labels of the property
of being a tree and of connectivity have infinite rank.
I Theorem 5.3. The properties of being a tree or a connected graph are not CFOL-definable
even in the presence of linear order.

For our next connection matrix we use the 2-sum of the following two 2-graphs:
(i) the 2-graph (G, a, b) obtained from K5 by choosing two vertices a and b and removing

the edge between them
(ii) the symmetric closure of the Cartesian product of the two digraphs P 1

n1
and P 2

n2
:

We denote this transduction by ΦP , see Figure 3.
So, the result of this construction has a clique of size 5 as a minor iff n1 = n2. It can

never have a K3,3 as a minor.
I Theorem 5.4. The class of planar graphs is not CFOL-definable on ordered graphs.

If we modify the above construction by takingK3 instead ofK5 and making (start1, start2)
and (end1, end2) adjacent, we get
I Corollary 5.5. The following classes of graphs are not CFOL-definable on ordered
graphs.
(i) Cactus graphs, i.e. graphs in which any two cycles have at most one vertex in common.
(ii) Pseudo-forests, i.e. graphs in which every connected component has at most one cycle.
The case of connected graphs was also shown non-definable in CFOL by. J. Nurmonen in
[32] using his version of the pebble games for CFOL.

CSL’12

420 Connection matrices

n1 = n2 n1 6= n2

Figure 3 The result of ΦP on two directed paths. The graph obtained here is planar iff the two
directed paths are of equal length.

Non-definability in CMSOL

Considering the connection matrix where the rows and columns are labeled by the graphs on
n vertices but without edges En, the graph Ei 1 Ej = Ki,j is
(i) Hamiltonian iff i = j;
(ii) has a perfect matching iff i = j;
(iii) is a cage graph (a regular graph with as few vertices as possible for its girth) iff i = j;
(iv) is a well-covered graph (every minimal vertex cover has the same size as any other

minimal vertex cover) iff i = j.
All of these connection matrices have infinite rank, so we get

I Corollary 5.6. None of the properties above are CMSOL-definable as graphs even in the
presence of an order.

Using a modification 1̃ of the join operation used in [8, Remark 5.21] one can show the same
for the class of graphs which have a spanning tree of degree at most 3. For any fixed natural
number d > 3, by performing a transduction on G1̃H which attaches d− 3 new vertices as
pendants to each vertex of G1̃H, one can extend the non-definability result to the class of
graphs which have a spanning tree of degree at most d.

For the language of hypergraphs we cannot use the join operation, since it is not smooth.
Note also that Hamiltonian and having a perfect matching are both definable in CMSOL in
the language of hypergraphs. But using the connection sub-matrices of the disjoint union we
still get:
(i) Regular: Ki tKj is regular iff i = j;
(ii) A generalization of regular graphs are bi-degree graphs, i.e., graphs where every vertex

has one of two possible degrees. Ki t (Kj tK1) is a bi-degree graph iff i = j.
(iii) The average degree of Ki tKj is at most |V |2 iff i = j;
(iv) A digraph is aperiodic if the common denominator of the lengths of all cycles in the

graph is 1. We denote by Cdi the directed cycle with i vertices. For prime numbers p, q
the digraphs Cp t Cq is aperiodic iff p 6= q.

(v) A graph is asymmetric (or rigid) if it has no non-trivial automorphisms. It was shown
by P. Erdös and A. Rényi [13] that almost all finite graphs are asymmetric. So there is

T. Kotek and J.A. Makowsky 421

an infinite set I ⊆ N such that for i ∈ I there is an asymmetric graph Ri of cardinality
i. Ri tRj is asymmetric iff i 6= j.

I Corollary 5.7. None of the properties above are CMSOL-definable as hypergraphs even in
the presence of an order.
I Remark. The case of asymmetric graphs illustrates that it is not always necessary to find
explicit infinite families of graphs whose connection matrices are of infinite rank in order to
show that such a family exists.

6 L-Definable Graph Polynomials and Graph Parameters

L(τ)-polynomials
Here we follow closely the exposition from [23]. Let L be a tame fragment of SOL. We
are now ready to introduce the L-definable polynomials. They are defined for τ -structures
and generally are called L(τ) invariants as they map τ -structures into some commutative
semi-ring R, which contains the semi-ring of the integers N, and are invariant under τ -
isomorphisms. If τ is the vocabulary of graphs or hypergraphs, we speak of graph invariants
and graph polynomials.

For our discussion R = N or R = Z suffices, but the definitions generalize. Our
polynomials have a fixed finite set of variables (indeterminates, if we distinguish them from
the variables of L), X.

I Definition 1 (L-monomials). Let M be a τ -structure. We first define the L-definable
M-monomials. inductively.
(i) Elements of N are L-definableM-monomials.
(ii) Elements of X are L-definableM-monomials.
(iii) Finite products of monomials are L-definableM-monomials.
(iv) Let φ(a) be a τ ∪ {a}-formula in L, where a is a constant symbol not in τ . Let t be a

M-monomial. Then
∏
a:〈M,a〉|=φ(a) t is a L-definableM-monomial.

The monomial t may depend on relation or function symbols occurring in φ.

Note the degree of a monomial is polynomially bounded by the cardinality ofM.

I Definition 2 (L-polynomials). The M-polynomials definable in L are defined induct-
ively:
(i) M-monomials are L-definableM-polynomials.
(ii) Let φ(a) be a τ ∪{a}-formula in L where a = (a1, . . . , am) is a finite sequence of constant

symbols not in τ . Let t be a M-polynomial. Then
∑
a:〈M,a〉|=φ(a) t is a L-definable

M-polynomial.
(iii) Let φ(R) be a τ∪{R}-formula in L where R = (R1, . . . , Rm) is a finite sequence of relation

symbols not in τ . Let t be aM-polynomial definable in L. Then
∑
R:〈M,R〉|=φ(R) t is a

L-definableM-polynomial.
The polynomial t may depend on relation or function symbols occurring in φ.

AnM-polynomial pM(X) is an expression with parameterM. The family of polynomials,
which we obtain from this expression by lettingM vary over all τ -structures, is called, by
abuse of terminology, a L(τ)-polynomial.

Among the L-definable polynomials we find most of the known graph polynomials from
the literature, cf. [28, 23]. L-definable numeric graph parameters are evaluations of L-
definable polynomials and take values in R. L-definable properties are special cases of
numeric parameters which have boolean values.

CSL’12

422 Connection matrices

Some simple graph parameters are even FOL-definable, e.g. |V |, the number of vertices
and |E|, the number of edges. However, we leave the discussion of FOL-definable parameters
for the journal version of this paper, and concentrate on tame fragments of SOL which do
have second order variables.

Sum-like operations
For the proof of the The Finite Rank Theorem for L-polynomials which involve second order
variables it is not enough that the binary operation 2 on τ -structures be L-smooth. We
need a way to uniquely decompose the relation over which we perform summation in A2B

into relations in A and B respectively, from which we can reconstruct the relation in A2B.
For our discussion here it suffices to restrict 2 to L-sum-like operations. A2B is L-sum-like
if there is a scalar L-transduction Φ such that

A2B = Φ?(A trich B).

An operation is L-product-like if instead of scalar transductions we also allow vectorized
transductions. Typically, the Cartesian product is FOL-product-like, but not sum-like. The
k-sum and the join operation on graphs are FOL-sum-like (but, in the case of join, not on
hypergraphs).

The Finite Rank Theorem for L-polynomials
Now we can state the Finite Rank Theorem for L-polynomials. The proof uses the same
techniques as in [9, 27].
I Theorem 6.1 (The Finite Rank Theorem for L-polynomials).
Let L be a tame fragment of SOL and 2 be an L-sum-like operation between τ -structures
which is (s,L)-smooth. Let P be an L(τ)-polynomial. Then the connection matrix M(2, P)
has finite rank.
I Remark. In [16] the theorem was only formulated for k-sums, and the join operation and
for the logic CMSOL.

7 Non-definability of L(τ)-invariants

7.1 Numeric L(τ)-parameters
Theorem 6.1 can be used to show that many τ -parameters are not L-definable.

2-maximizing and 2-minimizing parameters
We say a τ -parameter f is 2-maximizing (2-minimizing) if there exist an infinite sequence
of non-isomorphic τ -structures A1,A2,A3, . . . ,Ai, . . . such that for any i 6= j,

f(Ai2Aj) = max{f(Ai), f(Aj)} .

Furthermore, if f is unbounded on A1,A2,A3, . . . then f is unboundedly 2-maximizing.
Analogously we define (unboundedly) 2-minimizing.
I Proposition 7.1. If f is a unboundedly 2-maximizing (2-minimizing) τ -parameter, then
M(f,2) has infinite rank.

Using Proposition 7.1 we show that many τ -parameters are not CMSOL-definable:

T. Kotek and J.A. Makowsky 423

I Proposition 7.2. Let L be tame and t-smooth. The following graph parameters are not
L-definable in the language of hypergraphs. In particular they are not CMSOL-definable.
Spectral radius, chromatic number, acyclic chromatic number, arboricity, star chromatic
number, clique number, Hadwiger number, Hajós number, tree-width, path-width, clique-
width, edge chromatic number, Thue number, maximum valency, circumference, longest
path, maximal connected planar (bipartite) induced subgraph, boxicity, minimal eigenvalue,
spectral gap, girth, degeneracy, and minimum valency.

Proof. All these graph parameters g are unboundedly t-maximizing or t-minimizing. J

Variations of the notions of 2-maximizing or 2-minimizing τ -parameters can also lead to
non-definability results, e.g.:
I Proposition 7.3. Under the same assumption on L as before, the number of connected
components (blocks, simple cycles, induced paths) of maximum (minimum) size is not
L-definable in the language of hypergraphs.

Proof. Consider the connection matrix of graphs i ·Ki which consist of the disjoint union of
i cliques of size i with the operation of disjoint union. We denote the number of connected
components of maximum size in a graph G by #max−cc(G). Then

#max−cc(nKn tmKm) =
{

max{n,m} n 6= m

n+m n = m

So M(#max−cc,t) is of infinite rank. The other cases are proved similarly. J

7.2 τ -polynomials
Here we use the method of connection matrices for showing that (hyper)graph polynomials
are not MSOL-definable. Some of the material here is taken from the first author’s thesis [33].
As examples we consider the polynomials χrainbow(G, k), χmcc(t)(G, k), and χconvex(G, k),
which were defined in the introduction.

To show that none of χrainbow(G, k), χmcc(t)(G, k), or χconvex(G, k) are CMSOL-
polynomials in the language of graphs, and that neither χrainbow(G, k) nor χconvex(G, k)
are CMSOL-polynomials in the language of hypergraphs, we prove the following general
proposition:
I Lemma 7.4. Given a τ -parameter p, a binary operation 2 on τ -structures and an infinite
sequence of non-isomorphic τ -structures Ai, i ∈ N, let f : N→ N be an unbounded function
such that for every λ ∈ N, p(Ai2Aj , λ) = 0 iff i + j > f(λ). Then the connection matrix
M(2, p) has infinite rank.

Proof. Let λ ∈ N and let pλ be the graph parameter given by pλ(G) = p(G,λ). The
restriction of the connection matrix M(pλ,2) to the rows and columns corresponding to Ai,
0 ≤ i ≤ f(λ)− 1, yields a finite triangular matrix with non-zero diagonal. Hence the rank of
M(pλ,2) is at least f(λ)− 1.

Using that f is unbounded, we get that M(p,2) contains infinitely many finite sub-
matrices with ranks which tend to infinity. Hence, the rank of M(p,2) is infinite, J

We now use Lemma 7.4 to compute connection matrices where 2 is the disjoint union t,
the 1-sum t1 or the join ./.
I Proposition 7.5. The following connection matrices have infinite rank:

CSL’12

424 Connection matrices

(i) M(t1, χrainbow(G, k));
(ii) M(t1, χconvex(G, k));
(iii) For every t > 0 the matrix M(./, χmcc(t)(G, k));

Proof.
(i) For χrainbow(G, k), we use that the 1-sum of paths with one end labeled is again a path

with Pi t1 Pj = Pi+j−1 and that χrainbow(Pr, k) = 0 iff r > k + 3.
(ii) For χconvex(G, k), we use edgeless graphs and disjoint union Ei t Ej = Ei+j and that

χconvex(Er, k) = 0 iff r > k.
(iii) For χmcc(t)(G, k) we use the join and cliques, Ki ./ Kj = Ki+j and that χmcc(t)(Kr, k) =

0 iff r > kt.
J

I Corollary 3.
(i) χrainbow(G, k) and χconvex(G, k) are not CMSOL-definable in the language of graphs

and hypergraphs.
(ii) χmcc(t)(G, k) (for any fixed t > 0) is not CMSOL-definable in the language of graphs.

Proof. (i) The 1-sum and the disjoint union are CMSOL-sum-like and CMSOL-smooth for
hypergraphs. (ii) The join is only CMSOL-sum-like and CMSOL-smooth for graphs. J

The same method yields non-definability results for other graph polynomials which arise
by counting other graph colorings from the literature, such as acyclic colorings, non-repetitive
colorings, t-improper colorings, co-colorings, sub-colorings and G-free colorings.

References
1 N. Alon, G. Ding, B. Oporowski, and D. Vertigan. Partitioning into graphs with only small

components. Journal of Combinatorial Theory, Series B, 87(2):231–243, 2003.
2 S. Arnborg, J. Lagergren, and D. Seese. Problems easy for tree-decomposable graphs

(extended abstract). In ICALP, pages 38–51, 1988.
3 S. Arnborg, J. Lagergren, and D. Seese. Easy problems for tree decomposable graphs.

Journal of Algorithms, 12:308–340, 1991.
4 B. Bollobás. Modern Graph Theory. Springer, 1999.
5 S. Chakraborty, E. Fischer, A. Matsliah, and R. Yuster. Hardness and algorithms for

rainbow connection. Journal of Combinatorial Optimization, 21(3):330–347, 2011.
6 G. Chartrand, G.L. Johns, K.A. McKeon, and P. Zhang. Rainbow connection in graphs.

Mathematica Bohemica, 133(1):85–98, 2008.
7 B. Courcelle. Graph rewriting: An algebraic and logic approach. In J. van Leeuwen, editor,

Handbook of Theoretical Computer Science, volume 2, chapter 5, pages 193–242. Elsevier
Science Publishers, 1990.

8 B. Courcelle and J. Engelfriet. Graph Structure and Monadic Second-order Logic, a Lan-
guage Theoretic Approach. Cambridge University Press, 2012.

9 B. Courcelle, J.A. Makowsky, and U. Rotics. On the fixed parameter complexity of graph
enumeration problems definable in monadic second order logic. Discrete Applied Mathem-
atics, 108(1-2):23–52, 2001.

10 R. Diestel. Graph Theory. Graduate Texts in Mathematics. Springer, 3 edition, 2005.
11 H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer Verlag, 1995.
12 K. Edwards. The harmonious chromatic number and the achromatic number. In R. A.

Bailey, editor, Survey in Combinatorics, volume 241 of London Math. Soc. Lecture Note
Ser., pages 13–47. Cambridge Univ. Press, 1997.

T. Kotek and J.A. Makowsky 425

13 P. Erdös and A. Rényi. Asymmetric graphs. Acta Mathematica Hungaric, 14(3):295–315,
1963.

14 A. Farrugia. Vertex-partitioning into fixed additive induced-hereditary properties is NP-
hard. Electric Journal of Combinatorics, 11(1), 2004.

15 M. Freedman, László Lovász, and A. Schrijver. Reflection positivity, rank connectivity, and
homomorphisms of graphs. Journal of AMS, 20:37–51, 2007.

16 B. Godlin, T. Kotek, and J.A. Makowsky. Evaluation of graph polynomials. In 34th
International Workshop on Graph-Theoretic Concepts in Computer Science, WG08, volume
5344 of Lecture Notes in Computer Science, pages 183–194, 2008.

17 A.J. Goodall and S.D. Noble. Counting cocircuits and convex two-colourings is #P-
complete, 2008. http://arxiv.org/abs/0810.2042.

18 M. A. Harrison. Introduction to Formal Language Theory. Addison-Wesley, 1978.
19 J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages and Com-

putation. Addison-Wesley Series in Computer Science. Addison-Wesley, 1980.
20 J.E. Hopcroft and M.S. Krishnamoorthy. On the harmonious coloring of graphs. SIAM J.

Algebraic Discrete Methods, 4:306–311, 1983.
21 Phokion G. Kolaitis and Jouko A. Väänänen. Generalized quantifiers and pebble games on

finite structures. Ann. Pure Appl. Logic, 74(1):23–75, 1995.
22 T. Kotek, J.A. Makowsky, and B. Zilber. On counting generalized colorings. In Computer

Science Logic, CSL’08, volume 5213 of Lecture Notes in Computer Science, page 339–353,
2008.

23 T. Kotek, J.A. Makowsky, and B. Zilber. On counting generalized colorings. In M. Grohe
and J.A. Makowsky, editors, Model Theoretic Methods in Finite Combinatorics, volume
558 of Contemporary Mathematics, pages 207–242. American Mathematical Society, 2011.

24 L. Libkin. Elements of Finite Model Theory. Springer, 2004.
25 N. Linial, J. Matousek, O. Sheffet, and G. Tardos. Graph coloring with no large monochro-

matic components. Combinatorics, Probability, and Computing, 17.4:577–589, 2008.
26 L. Lovász. Connection matrics. In G. Grimmet and C. McDiarmid, editors, Combinatorics,

Complexity and Chance, A Tribute to Dominic Welsh, pages 179–190. Oxford University
Press, 2007.

27 J.A. Makowsky. Algorithmic uses of the Feferman-Vaught theorem. Annals of Pure and
Applied Logic, 126.1-3:159–213, 2004.

28 J.A. Makowsky. From a zoo to a zoology: Towards a general theory of graph polynomials.
Theory of Computing Systems, 43:542–562, 2008.

29 J.A. Makowsky and B. Zilber. Polynomial invariants of graphs and totally categorical
theories. MODNET Preprint No. 21,
http://www.logique.jussieu.fr/
modnet/Publications/Preprint%20 server, 2006.

30 Johann A. Makowsky. Connection matrices for msol-definable structural invariants. In
ICLA, pages 51–64, 2009.

31 S. Moran and S. Snir. Efficient approximation of convex recolorings. Journal of Computer
and System Sciences, 73(7):1078–1089, 2007.

32 Juha Nurmonen. Counting modulo quantifiers on finite structures. Inf. Comput., 160(1-
2):62–87, 2000.

33 T. Kotek. Definability of Combinatorial Functions. PhD thesis, Technion—Israel Institute
of Technology, 2012.

CSL’12

The FO2 alternation hierarchy is decidable
Manfred Kufleitner1 and Pascal Weil2

1 University of Stuttgart, Germany ∗
kufleitner@fmi.uni-stuttgart.de

2 CNRS, LaBRI, UMR5800, F-33400 Talence, France †
Univ. Bordeaux, LaBRI, UMR5800, F-33400 Talence, France
pascal.weil@labri.fr

Abstract
We consider the two-variable fragment FO2[<] of first-order logic over finite words. Numerous
characterizations of this class are known. Thérien and Wilke have shown that it is decidable
whether a given regular language is definable in FO2[<]. From a practical point of view, as
shown by Weis, FO2[<] is interesting since its satisfiability problem is in NP. Restricting the
number of quantifier alternations yields an infinite hierarchy inside the class of FO2[<]-definable
languages. We show that each level of this hierarchy is decidable. For this purpose, we relate
each level of the hierarchy with a decidable variety of finite monoids.

Our result implies that there are many different ways of climbing up the FO2[<]-quantifier
alternation hierarchy: deterministic and co-deterministic products, Mal’cev products with defi-
nite and reverse definite semigroups, iterated block products with J -trivial monoids, and some
inductively defined omega-term identities. A combinatorial tool in the process of ascension is
that of condensed rankers, a refinement of the rankers of Weis and Immerman and the turtle
programs of Schwentick, Thérien, and Vollmer.

1998 ACM Subject Classification F.4.1 Mathematical Logic, F.4.3 Formal Languages.

Keywords and phrases first-order logic, regular language, automata theory, semigroup, ranker

Digital Object Identifier 10.4230/LIPIcs.CSL.2012.426

1 Introduction

The investigation of logical fragments has a long history. McNaughton and Papert [17]
showed that a language over finite words is definable in first-order logic FO[<] if and only
if it is star-free. Combined with Schützenberger’s characterization of star-free languages in
terms of finite aperiodic monoids [23], this leads to an algorithm to decide whether a given
regular language is first-order definable. Many other characterizations of this class have been
given over the past 50 years, see [3] for an overview. Moreover, mainly due to its relation to
linear temporal logic [7], it became relevant to a large number of application fields, such as
verification.

Very often one is interested in fragments of first-order logic. From a practical point of view,
the reason is that smaller fragments often yield more efficient algorithms for computational
problems such as satisfiability. For example, satisfiability for FO[<] is non-elementary [26],
whereas the satisfiability problem for first-order logic with only two variables is in NP, cf. [39].
And on the theoretical side, fragments form the basis of a descriptive complexity theory

∗ The first author was supported by the German Research Foundation (DFG) under grant DI 435/5-1.
† The second author was supported by the grant ANR 2010 BLAN 0202 01 FREC.

© Manfred Kufleitner and Pascal Weil;
licensed under Creative Commons License NC-ND

Computer Science Logic 2012 (CSL’12).
Editors: Patrick Cégielski, Arnaud Durand; pp. 426–439

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2012.426
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

M. Kufleitner and P. Weil 427

inside the regular languages: the simpler a logical formula defining a language, the easier the
language. Moreover, in contrast to classical complexity theory, in some cases one can actually
decide whether a given language has a particular property. From both the practical and the
theoretical point of view, several natural hierarchies have been considered in the literature:
the quantifier alternation hierarchy inside FO[<] which coincides with the Straubing-Thérien
hierarchy [28, 32], the quantifier alternation hierarchy inside FO[<,+1] with a successor
predicate +1 which coincides with the dot-depth hierarchy [2, 36], the until hierarchy of
temporal logic [34], and the until-since hierarchy [35]. Decidability is known for the levels of
the until and the the until-since hierarchies, and only for the very first levels of the alternation
hierarchies, see e.g. [4, 21].

Fragments are usually defined by restricting resources in a formula. Such resources can be
the predicates which are allowed, the quantifier depth, the number of quantifier alternations,
or the number of variables. When the quantifier depth is restricted, only finitely many
languages are definable over a fixed alphabet: decidability of the membership problem is
not an issue in this case. When restricting the number of variables which can be used (and
reused), then first-order logic FO3[<] with three variables already has the full expressive
power of FO[<], see [6, 7]. On the other hand, first-order logic FO2[<] with only two variables
defines a proper subclass. The languages definable in FO2[<] have a huge number of different
characterizations, see e.g. [4, 30, 31]. For example, FO2[<] has the same expressive power
as ∆2[<]; the latter is a fragment of FO[<] with two blocks of quantifiers [33].

Turtle programs are one of these numerous descriptions of FO2[<]-definable languages [24].
They are sequences of instructions of the form “go to the next a-position” and “go to the
previous a-position”. Using the term ranker for this concept and having a stronger focus
on the order of positions defined by such sequences, Weis and Immerman [40] were able to
give a combinatorial characterization of the alternation hierarchy FO2

m[<] inside FO2[<].
Straubing [29] gave an algebraic characterization of FO2

m[<]. But neither result yields the
decidability of FO2

m[<]-definability for m > 2. In some sense, this is the opposite of a
previous result of the authors [15, Thm. 6.1], who give necessary and sufficient conditions
which helped to decide the FO2

m[<]-hierarchy with an error of at most one. In this paper
we give a new algebraic characterization of FO2

m[<], and this characterization immediately
yields decidability.

The algebraic approach to the membership problem of logical fragments has several
advantages. In favorable cases, it opens the road to decidability procedures. Moreover, it
allows a more semantic comparison of fragments; for example, the equality FO2[<] = ∆2[<]
was obtained by showing that both FO2[<] and ∆2[<] correspond to the same variety of
finite monoids, namely DA [22, 33].

Building on previous detailed knowledge of the lattice of band varieties (varieties of
idempotent monoids), Trotter and Weil defined a sub-lattice of the lattice of subvarieties of
DA [37], which we call the Rm-Lm-hierarchy. These varieties have many interesting properties
and in particular, each Rm (resp. Lm) is efficiently decidable (by a combination of results of
Trotter and Weil [37], Kufleitner and Weil [14], and Straubing and Weil [27], see Section 3
for more details). Moreover, one can climb up the Rm-Lm-hierarchy algebraically, using
Mal’cev products, see [14] and Section 2 below; language-theoretically, in terms of alternated
closures under deterministic and co-deterministic products [19, 15]; and combinatorially
using condensed rankers, see [13, 16] and Section 2.

We relate the FO2[<] quantifier alternation hierarchy with the Rm-Lm-hierarchy. More
precisely, the main result of this paper is that a language is definable in FO2

m[<] if and
only if it is recognized by a monoid in Rm+1 ∩ Lm+1, thus establishing the decidability of

CSL’12

428 The FO2 alternation hierarchy is decidable

a1 a2 a3 a4
a5a6

a7

Figure 1 The positions defined by r in u, when r = Xa1 Xa2 Xa3 Xa4 Ya5 Ya6 Xa7 is condensed on u.

each FO2
m[<]. This result was first conjectured in [13], where one inclusion was established.

Our proof combines a technique introduced by Klíma [8] and a substitution idea [10] with
algebraic and combinatorial tools inspired by [15]. The proof is by induction and the base
case is Simon’s Theorem on piecewise testable languages [25].

2 Preliminaries

Let A be a finite alphabet and let A∗ be the set of all finite words over A. The length
|u| of a word u = a1 · · · an, ai ∈ A, is n and its alphabet is alph(u) = {a1, . . . , an} ⊆ A.
A position i of u = a1 · · · an is an a-position if ai = a. A factorization u = u−au+ is the
a-left factorization of u if a 6∈ alph(u−), and it is the a-right factorization if a 6∈ alph(u+),
i.e., we factor at the first or at the last a-position.

2.1 Rankers
A ranker is a nonempty word over the alphabet {Xa,Ya | a ∈ A}. It is interpreted as a
sequence of instructions of the form “go to the next a-position” and “go to the previous
a-position”. More formally, for u = a1 · · · an ∈ A∗ and x ∈ {0, . . . , n+ 1} we let

Xa(u, x) = min {y | y > x and ay = a} , Xa(u) = Xa(u, 0),
Ya(u, x) = max {y | y < x and ay = a} , Ya(u) = Ya(u, n+ 1).

Here, both the minimum and the maximum of the empty set are undefined. The modality
Xa is for “neXt-a” and Ya is for “Yesterday-a”. For r = Z s, Z ∈ {Xa,Ya | a ∈ A}, we set

r(u, x) = s(u,Z(u, x)), r(u) = s(u,Z(u)).

In particular, rankers are executed (as a set of instructions) from left to right. Every
ranker r either defines a unique position in a word u, or it is undefined on u. For example,
Xa Yb Xc(bca) = 2 and Xa Yb Xc(bac) = 3 whereas Xa Yb Xc(cabc) and Xa Yb Xc(bcba) are
undefined. A ranker r is condensed on u if it is defined and, during the execution of r, no
previously visited position is overrun [15]. One can think of condensed rankers as zooming in
on the position they define, see Figure 1. More formally r = Z1 · · ·Zk, Zi ∈ {Xa,Ya | a ∈ A},
is condensed on u if there exists a chain of open intervals

(0; |u|+ 1) = (x0; y0) ⊃ (x1; y1) ⊃ · · · ⊃ (xn−1; yn−1) 3 r(u)

such that for all 1 ≤ ` ≤ n− 1 the following properties are satisfied:
If Z` Z`+1 = Xa Xb, then (x`; y`) = (Xa(u, x`−1); y`−1).
If Z` Z`+1 = Ya Yb, then (x`; y`) = (x`−1; Ya(u, y`−1).
If Z` Z`+1 = Xa Yb, then (x`; y`) = (x`−1; Xa(u, x`−1)).
If Z` Z`+1 = Ya Xb, then (x`; y`) = (Ya(u, y`−1); y`−1).
For example, Xa Yb Xc is condensed on bca but not on bac.
The depth of a ranker is its length as a word. A block of a ranker is a maximal factor of the

form Xa1 · · ·Xak
or of the form Yb1 · · ·Yb`

. A ranker with m blocks changes direction m− 1

M. Kufleitner and P. Weil 429

times. By Rm,n we denote the class of all rankers with depth at most n and with up to m
blocks. We write RX

m,n for the set of all rankers in Rm,n which start with an Xa-modality
and we write RY

m,n for all rankers in Rm,n which start with a Ya-modality.
We define u .m,n v if the same rankers in RX

m,n ∪ RY
m−1,n−1 are condensed on u and v.

Similarly, u /m,n v if the same rankers in RY
m,n ∪RX

m−1,n−1 are condensed on u and v. The
relations .m,n and /m,n are finite index congruences [15, Lem. 3.13].

The order type ord(i, j) is one of {<,=, >}, depending on whether i < j, i = j, or i > j,
respectively. We define u ≡m,n v if

the same rankers in Rm,n are defined on u and v,
for all r ∈ RX

m,n and s ∈ RY
m,n−1: ord(r(u), s(u)) = ord(r(v), s(v)),

for all r ∈ RY
m,n and s ∈ RX

m,n−1: ord(r(u), s(u)) = ord(r(v), s(v)),
for all r ∈ RX

m,n and s ∈ RX
m−1,n−1: ord(r(u), s(u)) = ord(r(v), s(v)),

for all r ∈ RY
m,n and s ∈ RY

m−1,n−1: ord(r(u), s(u)) = ord(r(v), s(v)).

I Remark. For m = 1, each of the families (≡1,n)n, (.1,n)n, and (/1,n)n defines the class
of piecewise testable languages, see e.g. [8, 25]. Recall that a language L ⊆ A∗ is piecewise
testable if it is a Boolean combination of languages of the form A∗a1A

∗ · · · akA∗ (k ≥ 0,
a1, . . . , ak ∈ A).

2.2 First-order Logic
We denote by FO[<] the first-order logic over words interpreted as labeled linear orders.
The atomic formulas are > (for true), ⊥ (for false), the unary predicates a(x) (one for each
a ∈ A), and the binary predicate x < y for variables x and y. Variables range over the
linearly ordered positions of a word and a(x) means that x is an a-position. Apart from the
Boolean connectives, we allow composition of formulas using existential quantification ∃x : ϕ
and universal quantification ∀x : ϕ for ϕ ∈ FO[<]. The semantics is as usual. A sentence
in FO[<] is a formula without free variables. For a sentence ϕ the language defined by ϕ,
denoted by L(ϕ), is the set of all words u ∈ A∗ which model ϕ.

The fragment FO2[<] of first-order logic consists of all formulas which use at most two
different names for the variables. This is a natural restriction, since FO with three variables
already has the full expressive power of FO. A formula ϕ ∈ FO2[<] is in FO2

m[<] if, on every
path of its parse tree, ϕ has at most m blocks of alternating quantifiers.

Note that FO2
1[<]-definable languages are exactly the piecewise testable languages, cf. [29].

For m ≥ 2, we rely on the following important result, due to Weis and Immerman [40,
Thm. 4.5].

I Theorem 1. A language L is definable in FO2
m[<] if and only if there exists an integer

n ≥ 1 such that L is a union of ≡m,n-classes.

I Remark. The definition of ≡m,n above is formally different from the conditions in Weis
and Immerman’s [40, Thm. 4.5]. A careful but elementary examination reveals that they are
actually equivalent.

2.3 Algebra
A monoid M recognizes a language L ⊆ A∗ if there exists a morphism ϕ : A∗ →M such that
L = ϕ−1ϕ(L). If ϕ : A∗ →M is a morphism, then we set u ≡ϕ v if ϕ(u) = ϕ(v). The join
≡1 ∨ ≡2 of two congruences ≡1 and ≡2 is the least congruence containing ≡1 and ≡2. An
element u is idempotent if u2 = u. The set of all idempotents of a monoid M is denoted by

CSL’12

430 The FO2 alternation hierarchy is decidable

•

•
• •

•

•
• •

•

•
• •

...
DA

J1

J = R2 ∩ L2

R = R2 L2 = L

R2 ∨ L2

R3 ∩ L3

R3 L3

R4 L4

R3 ∨ L3

R4 ∩ L4

Figure 2 The Rm-Lm-hierarchy.

E(M). For every finite monoid M there exists an integer ω ≥ 1 such that uω is idempotent
for all u ∈ M . Green’s relations J , R, and L are an important concept to describe the
structural properties of a monoid M : we set u ≤J v (resp. u ≤R v, u ≤L v) if u = pvq (resp.
u = vq, u = pv) for some p, q ∈M . We also define u J v (resp. u R v, u L v) if u ≤J v and
v ≤J u (resp. u ≤R v and v ≤R u, u ≤L v and v ≤L u). The strict version <J of ≤J is
defined by u <J v if u ≤J v but not u J v. The relations <R and <L are defined similarly.
A monoid M is J -trivial (resp. R-trivial, L-trivial) if J (resp. R, L) is the identity relation
on M . We define the relations ∼K, ∼D, and ∼LI on M as follows:

u ∼K v if and only if, for all e ∈ E(M), we have either eu, ev <J e, or eu = ev.
u ∼D v if and only if, for all f ∈ E(M), we have either uf, vf <J f , or uf = vf .
u ∼LI v if and only if, for all e, f ∈ E(M) such that e J f , we have either euf, evf <J e,
or euf = evf .

The relations ∼K, ∼D and ∼LI are congruences [9]. If V is a class of finite monoids, we say
that a monoid M is in K©m V (resp. D©m V, LI©m V) if M/∼K ∈ V (resp. M/∼D ∈ V,
M/∼LI ∈ V). The classes K©m V, D©m V and LI©m V are called Mal’cev products and
they are usually defined in terms of relational morphisms. In the present context however,
the definition above will be sufficient [9], see [5]. We will need the following classes of finite
monoids:

J1 consists of all finite commutative monoids satisfying x2 = x.
J (resp. R, L) consists of all finite J -trivial (resp. R-trivial, L-trivial) monoids.
A consists of all finite monoids satisfying xω+1 = xω. Monoids in A are called aperiodic.
DA consists of all finite monoids satisfying (xy)ωx(xy)ω = (xy)ω.
R1 = L1 = J, Rm+1 = K©m Lm, Lm+1 = D©m Rm.

It is well known that

DA = LI©m J1, R2 = R, L2 = L, R ∩ L = J, and
Rm ∪ Lm ⊆ Rm+1 ∩ Lm+1 (DA (A

see e.g. [20]. The Rm-Lm-hierarchy is depicted in Figure 2.

M. Kufleitner and P. Weil 431

2.4 The variety approach to the decidability of FO2
m[<]

Classes of finite monoids that are closed under taking submonoids, homomorphic images and
finite direct products are called pseudovarieties. The classes of finite monoids J1, J, A, DA,
Rm and Lm introduced above are all pseudovarieties.

If V is a pseudovariety of monoids, then the class V of languages recognized by a monoid
in V is called a variety of languages. Eilenberg’s variety theorem (see e.g. [18, Annex B])
shows that varieties of languages are characterized by natural closure properties, and that
the correspondence V 7→ V is onto. Elementary automata theory shows in addition that a
language L is recognized by a monoid in a pseudovariety V if and only the syntactic monoid
of L is in V. It follows that if V has a decidable membership problem, then so does the
corresponding variety of languages V.

Simon’s Theorem on piecewise testable languages [8, 25] is an important instance of this
Eilenberg correspondence: a language L is recognizable by a monoid in J if and only if L is
piecewise testable (and hence, as we already observed, if and only if L is definable in FO2

1[<]).
Simon’s result implies the decidability of piecewise testability.

It immediately follows from the definition that membership in Rm and Lm is decidable
for all m since membership in J is decidable (see Corollary 8 for a more precise statement).
Many additional properties of the pseudovarieties Rm and Lm, and of the corresponding
varieties of languages were established by the authors [14, 15, 37]. We will use in particular
the following results, respectively [15, Cor. 3.15] and [14, Thms. 2.5 and 3.1].

I Proposition 2. An A-generated monoid M is in Rm (resp. Lm) if and only if there exists
an integer n such that M is a quotient of A∗/.m,n (resp. A∗//m,n).

Let x1, x2, . . . be a sequence of variables. For each word u, we denote by u the mirror
image of u, that is, the word obtained by reading u from right to left. Let G2 = x2x1,
I2 = x2x1x2 and, for m ≥ 2, Gm+1 = xm+1Gm and Im+1 = Gm+1xm+1Im. Finally, let ϕ be
the substitution given by

ϕ(x1) = (xω1 xω2 xω1)ω, ϕ(x2) = xω2 ,

and, for m ≥ 2, ϕ(xm+1) = (xωm+1ϕ(GmGm)ωxωm+1)ω.

I Proposition 3. Rm (resp. Lm) is the class of finite monoids satisfying the identities
(xy)ωx(xy)ω = (xy)ω and ϕ(Gm) = ϕ(Im) (resp. ϕ(Gm) = ϕ(Im)).

Straubing [29] and Kufleitner and Lauser [11, Cor. 1] established, by different means, that
for each m ≥ 1, the class of FO2

m[<]-definable languages forms a variety of languages, and
we denote by FO2

m the corresponding pseudovariety. In particular, FO2
1 = J. Our strategy

for establishing the decidability of FO2
m[<]-definability, is to establish the decidability of

membership in FO2
m.

It is to be noted that neither Straubing’s result, nor Kufleitner and Lauser’s result implies
the decidability of FO2

m. Straubing’s result is the following [29, Thm. 4].

I Theorem 4. For m ≥ 1, FO2
m+1 = FO2

m ∗∗ J, where ∗∗ denotes the two-sided semidirect
product.

We refer the reader to [29] for the definition of the two-sided wreath product, which is
also called the block product in the literature. As discussed by Straubing, this exact algebraic
characterization of FO2

m implies the decidability of FO2
2 but not of the other levels of the

hierarchy. Straubing however conjectured that the following holds [29, Conj. 10].

CSL’12

432 The FO2 alternation hierarchy is decidable

I Conjecture 5 (Straubing). Let u1 = (x1x2)ω, v1 = (x2x1)ω and, for m ≥ 1,

um+1 = (x1 · · ·x2nx2n+1)ωun(x2n+2x1 · · ·x2n)ω

vm+1 = (x1 · · ·x2nx2n+1)ωvn(x2n+2x1 · · ·x2n)ω.

Then a monoid is in FO2
m if and only if it satisfies xω+1 = xω and um = vm.1

If established, this conjecture would prove the decidability of each FO2
m. The authors on

the other hand proved the following [15, Thm. 5.1].

I Theorem 6. If a language L is recognized by a monoid in the join Rm ∨ Lm, then L is
definable in FO2

m[<]; and if L is definable in FO2
m[<], then L is recognized by a monoid in

Rm+1 ∩ Lm+1.

3 The FO2 alternation hierarchy is decidable

We tighten the connection between the alternation hierarchy within FO2[<] and the Rm-
Lm-hierarchy and we prove the following result.

I Theorem 7. A language L ⊆ A∗ is definable in FO2
m[<] if and only if it is recognizable by

a monoid in Rm+1 ∩ Lm+1.

Theorem 7 immediately yields a decidability result.

I Corollary 8. For each m ≥ 1, it is decidable whether a given regular language L is FO2
m[<]-

definable. This decision can be achieved in Logspace on input the multiplication table of
the syntactic monoid of L, and in Pspace on input its minimal automaton.

Moreover, given an FO2[<]-definable language L, one can compute the least integer m
such that L is FO2

m[<]-definable.

Proof. We already observed that the Rm and Lm are decidable, and that each is described
by two omega-term identities (Proposition 3). The decidability statement follows immediately.
The complexity statement is a consequence of Straubing and Weil’s [27, Thm. 2.19]. The
computability statement follows immediately. J

We now turn to the proof of Theorem 7. One implication was established in Theorem 6.
To prove the reverse implication, we prove Proposition 9 below, which establishes that every
language recognized by a monoid M ∈ Rm+1 ∩ Lm+1 is a union of ≡m,n-classes for some
integer n depending on M . Theorem 7 follows, in view of Theorem 1.

I Proposition 9. For every m ≥ 1 and every morphism ϕ : A∗ →M with M ∈ Rm+1∩Lm+1
there exists an integer n such that ≡m,n is contained in ≡ϕ.

Before we embark in the proof of Proposition 9, we record several algebraic and combina-
torial lemmas.

1 While this paper was under revision, Krebs and Straubing announced a proof of Conjecture 5, see
arXiv:1205.4802.

arXiv:1205.4802

M. Kufleitner and P. Weil 433

A∗ M

P(A) M/∼LI

ϕ

πalph

ψ

Figure 3 M ∈ DA = LI©m J1.

3.1 A collection of technical lemmas
I Lemma 10. Let M be a finite monoid. If s R sx and x ∼K y, then sx = sy. If s L xs
and x ∼D y, then xs = ys.

Proof. Let z ∈ M such that sxz = s. We have (xz)ωx J (xz)ω. Now, x ∼K y implies
(xz)ωx = (xz)ωy. Thus sx = s(xz)ωx = s(xz)ωy = sy. The second statement is left-right
symmetric. J

The following lemma illustrates an important structural property of monoids in DA.

I Lemma 11. Let ϕ : A∗ →M be a surjective morphism onto M ∈ DA and let x, y, z ∈ A∗
such that ϕ(x) R ϕ(xy) and alph(z) ⊆ alph(y). Then ϕ(x) R ϕ(xz).

Proof. The map alph : A∗ → P(A) can be seen as a morphism, where the product on the
power set P(A) of A is the union operation. Since M ∈ DA, we have M/∼LI ∈ J1; let
π : M →M/∼LI be the projection morphism. It is easily verified that there exists a morphism
ψ : P(A)→M/∼LI such that ψ ◦ alph = π ◦ ϕ, see Figure 3.

By assumption, ϕ(x) = ϕ(xyt) for some t ∈ A∗, and hence ϕ(x) = ϕ(x)ϕ(yt)ω. Since
alph((yt)ω) = alph((yt)ωz(yt)ω), we have ϕ(yt)ω ∼LI ϕ(yt)ωϕ(z)ϕ(yt)ω. Applying the
definition of ∼LI with e = f = ϕ(yt)ω, it follows that ϕ(yt)ω = ϕ(yt)ωϕ(z)ϕ(yt)ω and we
now have

ϕ(x) = ϕ(x)ϕ(yt)ω = ϕ(x)ϕ(yt)ωϕ(z)ϕ(yt)ω = ϕ(x)ϕ(z)ϕ(yt)ω.

Therefore ϕ(x) R ϕ(xz), which concludes the proof. J

A proof of the following lemma can be found in [15, Prop. 3.6 and Lem. 3.7].

I Lemma 12. Let m ≥ 2, u, v ∈ A∗, a ∈ A.
1. If u .m,n v and u = u−au+ and v = v−av+ are a-left factorizations, then u− .m,n−1 v−

and u+ .m,n−1 v+.
2. If u .m,n v and u = u−au+ and v = v−av+ are a-right factorizations, then u− .m,n−1 v−

and u+ /m−1,n−1 v+.
Dual statements hold for u /m,n v.

I Lemma 13. Let m,n ≥ 2 and let u = u−au+ and v = v−av+ be a-left factorizations. If
u ≡m,n v, then u− ≡m−1,n−1 v− and u+ ≡m,n−1 v+. A dual statement holds for the factors
of the a-right factorizations of u and v.

Proof. We first show u− ≡m−1,n−1 v−. Consider a ranker r ∈ Rm−1,n−1, supposing first that
r ∈ RX

m−1,n−1. Then r is defined on u− if and only if r is defined on u and ord(r′(u),Xa(u))
is < for every nonempty prefix r′ of r. By definition of ≡m,n, this is equivalent to r being

CSL’12

434 The FO2 alternation hierarchy is decidable

defined on v−. If instead r ∈ RY
m−1,n−1, then r is defined on u− if and only if Xa r ∈ Rm,n is

defined on u and ord(Xa r′(u),Xa(u)) is < for every nonempty prefix r′ of r. Again, this is
equivalent to r being defined on v− since u ≡m,n v. Thus, the same rankers in Rm−1,n−1 are
defined on u− and v−.

Now consider rankers r ∈ RX
m−1,n−1 and s ∈ RY

m−1,n−2, which we can assume to be
defined on both u− and v−. Then the order types induced by r and s on u− and v− are
equal, since ord(r(u−), s(u−)) = ord(r(u),Xa s(u)) = ord(r(v),Xa s(v)) = ord(r(v−), s(v−))
and Xa s ∈ RX

m,n−1.
The same reasoning applies if r ∈ RY

m−1,n−1 and s ∈ RX
m−1,n−2 (resp. if r ∈ RX

m−1,n−1 and
s ∈ RX

m−1,n−2, if r ∈ RY
m−1,n−1 and s ∈ RY

m−2,n−2) since in that case, ord(r(u−), s(u−)) =
ord(Xa r(u), s(u)) (resp. ord(r(u), s(u)), ord(Xa r(u),Xa s(u))). Therefore, u− ≡m−1,n−1 v−.

We now verify that u+ ≡m,n−1 v+. The proof is very similar to the first part and
deviates only in technical details. Consider a ranker r ∈ Rm,n−1, say, in RX

m,n−1. Then r
is defined on u+ if and only if Xa r ∈ Rm,n is defined on u and ord(Xa r′(u),Xa(u)) is >
for every nonempty prefix r′ of r. Again, this is equivalent to r being defined on v+ since
u ≡m,n v. If instead r ∈ RY

m,n−1, then r is defined on u+ if and only if r is defined on u
and ord(r′(u),Xa(u)) is > for every nonempty prefix r′ of r, which is equivalent to r being
defined on v+. Thus, the same rankers in Rm,n−1 are defined on u+ and v+.

Now consider rankers r ∈ RX
m,n−1 and s ∈ RY

m,n−2, both defined on u+ and v+. Then
the order types induced by r and s on u+ and v+ are equal, since ord(r(u+), s(u+)) =
ord(Xa r(u), s(u)) and Xa r ∈ RX

m,n.
Again, a similar verification guarantees that the order types induced by r and s on u+

and v+ are equal also if r ∈ RY
m,n−1 and s ∈ RX

m,n−2, or if r ∈ RX
m,n−1 and s ∈ RX

m−1,n−2, or
if r ∈ RY

m,n−1 and s ∈ RY
m−1,n−2. This shows u+ ≡m,n−1 v+ which completes the proof. J

I Lemma 14. Let m,n ≥ 2 and let u = u−au0bu+ and v = v−av0bv+ describe b-left
and a-right factorizations (that is, a 6∈ alph(u0bu+) ∪ alph(v0bv+) and b 6∈ alph(u−au0) ∪
alph(v−av0)). If u ≡m,n v, then u0 ≡m−1,n−1 v0.

Proof. A ranker r ∈ RX
m−1,n−1 is defined on u0 if and only if Ya r ∈ Rm,n is defined on u

and ord(Ya r′(u),Ya(u)) is > and ord(Ya r′(u),Xb(u)) is < for every nonempty prefix r′ of r.
Similarly, a ranker r ∈ RY

m−1,n−1 is defined on u0 if and only if Xb r ∈ Rm,n is defined on u
and ord(Xb r′(u),Ya(u)) is > and ord(Xb r′(u),Xb(u)) is < for every nonempty prefix r′ of r.
Thus, if u ≡m,n v, then the same rankers in Rm−1,n−1 are defined on u0 and v0.

Now consider rankers r ∈ RX
m−1,n−1 and s ∈ RY

m−1,n−2 (resp. r ∈ RY
m−1,n−1 and s ∈

RX
m−1,n−2), defined on both u0 and v0. Then ord(r(u0), s(u0)) = ord(Ya r(u),Xb s(u)) (resp.

ord(Xb r(u),Ya s(u)). Since u ≡m,n v, Ya r ∈ RY
m,n and Xb s ∈ RX

m,n−1 (resp. Xb r ∈ RX
m,n

and Ya s ∈ RY
m,n−1), the order types defined by r and s on u0 and v0 are equal.

If m = 2, we are done proving that u0 ≡m−1,n−1 v0. We now assume that m ≥ 3. Let
r ∈ RX

m−1,n−1 and s ∈ RX
m−2,n−2 (resp. r ∈ RY

m−1,n−1 and s ∈ RY
m−2,n−2) be defined on

both u0 and v0. Then ord(r(u0), s(u0)) = ord(Ya r(u),Ya s(u)) (resp. ord(Xb r(u),Xb s(u))).
By the same reasoning as above, the order type defined by v on u0 and v0 is the same since
Ya r ∈ RY

m,n and Ya s ∈ RY
m−1,n−1 (resp. Xb r ∈ RX

m,n and Xb s ∈ RX
m−1,n−1). This concludes

the proof of the lemma. J

3.2 Proof of Proposition 9
The proof is by induction on m. We already observed that L is FO2

1[<]-definable if and only
if it is piecewise testable, if and only if it is accepted by a monoid in J. Since J = R2 ∩ L2,
Proposition 9 holds for m = 1. We now assume that m ≥ 2.

M. Kufleitner and P. Weil 435

A∗

M

M/∼D M/∼K

A∗/(≡ρ ∨ ≡λ)

A∗/.m,n A∗//m,n

A∗/≡m−1,n

ϕ

ρ λ
πD πK

Figure 4 A commutative diagram.

Let ϕ : A∗ → M be a morphism with M ∈ Rm+1 ∩ Lm+1. We note that it suffices to
prove Proposition 9 for the morphism ϕ′ : A∗ → M × 2A given by ϕ′(u) = (ϕ(u), alph(u)).
Observe that, for u, v ∈ A∗,

ϕ′(u) ∼D ϕ′(v) (resp. ϕ′(u) ∼K ϕ′(v)) implies alph(u) = alph(v). (1)

Indeed we have ϕ′(u)ϕ′(u)ω = ϕ′(u)ω (since M is aperiodic): then ϕ′(u) ∼D ϕ′(v) implies
that ϕ′(v)ϕ′(u)ω = ϕ′(u)ϕ′(u)ω and by definition of ϕ′, alph(v) is contained in alph(u). By
symmetry, u and v have the same alphabetical content and the same holds for ∼K.

To lighten up the notation, we dispense with the consideration of ϕ′ and we assume
that ϕ satisfies Property (1). Moreover, we assume that ϕ is surjective.

Let πD : M →M/∼D and πK : M →M/∼K be the natural morphisms. By definition of
Rm+1 and Lm+1, we have M/∼D ∈ Rm and M/∼K ∈ Lm. Let ρ = πD ◦ ϕ and λ = πK ◦ ϕ,
see Figure 4. The monoid A∗/(≡ρ ∨ ≡λ) is a quotient of both M/∼D and M/∼K, so
A∗/(≡ρ ∨ ≡λ) ∈ Rm ∩ Lm and there exists n ≥ 1 such that

.m,n is contained in ≡ρ and /m,n is contained in ≡λ (by Proposition 2),
≡m−1,n is contained in ≡ρ ∨ ≡λ (by induction).
We show that ≡m,n+2|M | is contained in ≡ϕ. Let u ≡m,n+2|M | v. Consider the R-

factorization of u, i.e., u = s1a1 · · · skaksk+1 with ai ∈ A and si ∈ A∗ such that 1 = ϕ(s1)
and for all 1 ≤ i ≤ k:

ϕ(s1a1 · · · si) >R ϕ(s1a1 · · · siai) R ϕ(s1a1 · · · siaisi+1).

Since the number of R-classes is at most |M |, we have k < |M |. Similarly, let v =
t1b1 · · · tk′bk′tk′+1 with bi ∈ A and ti ∈ A∗ be the L-factorization of v such that ϕ(tk′+1) = 1
and for all 1 ≤ i ≤ k′:

ϕ(tibiti+1 · · · bk′tk′+1) L ϕ(biti+1 · · · bk′tk′+1) <L ϕ(ti+1 · · · bk′tk′+1).

As before, we have k′ < |M |. By Lemma 11 (applied with x = s1 · · · si−1ai−1, y = si and
z = ai), we have ai 6∈ alph(si); and similarly, bi 6∈ alph(ti+1). Therefore, the positions
of the ai’s in u are exactly the positions visited by the ranker r = Xa1 · · ·Xak

, and the
positions of the bi’s in v are exactly the positions visited by the ranker s = Ybk′ · · ·Yb1 . Since
u ≡m,n+2|M | v, each of the rankers r and s is defined on both u and v, and all the positions

CSL’12

436 The FO2 alternation hierarchy is decidable

visited by the rankers r and s occur in the same order in u as in v. We call these positions
special. Let

u = u1c1 · · ·u`c`u`+1

v = v1c1 · · · v`c`v`+1

be obtained by factoring u and v at all the special positions. We have ` ≤ k + k′ < 2 |M |.
We say that a special position is red if it is visited by r, and that it is green if it is visited
by s. Some special positions may be both red and green, which means that more than one of
the cases below may apply.

For u the above factorization is a refinement of the R-factorization; and for v it is a
refinement of the L-factorization. In particular, ϕ(u1) = 1, ϕ(v`+1) = 1 and

ϕ(u1 · · ·ui−1ci−1) R ϕ(u1 · · ·ui−1ci−1ui) for 1 < i ≤ `+ 1, (Eq(R))
ϕ(vicivi+1 · · · c`) L ϕ(civi+1 · · · c`) for 1 ≤ i ≤ `. (Eq(L))

In order to prove u ≡ϕ v, we show that we can gradually substitute ui for vi in the product
v1c1 · · · v`c`v`+1 = v, starting from i = 1, while maintaining ≡ϕ-equivalence. Namely we
show that, for each i, it holds

u1 · · ·ui−1ci−1 ui civi+1 · · · v`+1 ≡ϕ u1 · · ·ui−1ci−1 vi civi+1 · · · v`+1. (Eq(i))

Let h0 be the index of the leftmost red position: then ch0 = a1 and s1 = u1c1 · · ·uh0 .
Since ϕ(s1) = 1 andM is aperiodic, the ϕ-image of every letter in s1 is 1. Applying Lemma 13
to the a1-left factorizations of u and v, we find that u1c1 · · ·uh0−1 ≡m−1,n−1 v1c1 · · · vh0−1
and in particular, these words have the same alphabet. It follows that ϕ(ui) = ϕ(vi) = 1 for
all i ≤ h0, and hence (Eq(i)) holds for all i ≤ h0.

The right-left dual of this reasoning establishes that ϕ(ui) = ϕ(vi) = 1 for all the ui, vi
to the right of the last (rightmost) green position; let j0 be its index. In particular, (Eq(i))
also holds for all i > j0.

We now assume that h0 < i ≤ j0 and we let h− 1 be the index of the first red position
to the left of i and j be the index of the first green position to the right of i: we have
h0 < h ≤ i ≤ j ≤ j0.

Case 1: h = i (i− 1 is red)

We have u .m,n+2|M | v. By Lemma 12 (1), a sequence of at most i − 1 left-factorizations
yields uici · · ·u`+1 .m,n+2|M |−i+1 vici · · · v`+1. If i is red, then by Lemma 12 (1), after
one ci-left-factorization, we see that ui .m,n+2|M |−i vi. If i is not red, then i is green
and by Lemma 12 (2), after at most ` − i right-factorizations, we find that ui and vi are
.m,n+2|M |−i−(`−i)-equivalent. In any case, we have ui .m,n vi and thus ui ≡ρ vi (i.e.,
ϕ(ui) ∼D ϕ(vi)) by the choice of n. In view of (Eq(L)), Lemma 10 now implies

uicivi+1 · · · c`v`+1 ≡ϕ vicivi+1 · · · c`v`+1

and left multiplication by u1c1 · · · ci−1 yields (Eq(i)).

Case 2: j = i (i is green)

As in Case 1, we see that ui ≡λ vi. (Eq(R)) and Lemma 10 then implies

u1c1 · · ·ui−1ci−1ui ≡ϕ u1c1 · · ·ui−1ci−1vi,

and right multiplication by civi+1 · · · v`+1 yields (Eq(i)).

M. Kufleitner and P. Weil 437

Case 3: h < i < j (i− 1 is not red and i is not green)

By Lemma 13, after at most h− 1 left factorizations and `− j + 1 right factorizations, we
obtain uhch · · ·uj ≡m,n+j−h vhch · · · vj (since n+ j − h ≤ n+ 2 |M | − (h− 1)− (`− j + 1)).
Lemma 14, applied with a = ci−1 and b = ci, then yields ui ≡m−1,n vi. Since ≡m−1,n is
contained in ≡λ ∨ ≡ρ, there exist words w1, . . . , wd such that

vi = w1 ≡ρ w2 ≡λ w3 ≡ρ · · · ≡λ wd−2 ≡ρ wd−1 ≡λ wd = ui.

After the discussion at the beginning of this section, we have alph(vi) = alph(w2) = · · · =
alph(wd−1) = alph(ui). Thus, by Lemma 11, we have ϕ(pui) R ϕ(p) if and only if ϕ(pwg) R
ϕ(p), and ϕ(viq) L ϕ(q) if and only if ϕ(wgq) L ϕ(q) for all p, q ∈ A∗. As in Cases 1 and 2,
we conclude that for each 1 ≤ e < d,

if we ≡ρ we+1, then

weci · · · c`v`+1 ≡ϕ we+1ci · · · c`v`+1, and thus
u1c1 · · ·uici−1weci · · · c`v`+1 ≡ϕ u1c1 · · ·uici−1we+1ci · · · c`v`+1;

and if we ≡λ we+1, then

u1c1 · · · ci−1we ≡ϕ u1c1 · · · ci−1we+1, and thus
u1c1 · · · ci−1wecivi+1 · · · c`v`+1 ≡ϕ u1c1 · · · ci−1we+1civi+1 · · · c`v`+1.

It follows by transitivity of ≡ϕ that (Eq(i)) holds.

Concluding the proof

We have now established (Eq(i)) for every 1 ≤ i ≤ `+1. It follows immediately, by transitivity,
that u ≡ϕ v. J

4 Conclusion

We have shown that for each m ≥ 1, it is decidable whether a given regular language is
FO2

m[<]-definable. Previous results in the literature only showed decidability for levels 1
and 2 of this quantifier alternation hierarchy. Our decidability result follows from the
proof that FO2

m (the pseudovariety of finite monoids corresponding to the FO2
m[<]-definable

languages) is equal to the intersection Rm+1 ∩ Lm+1, which was known to be decidable.
This result implies the decidability of the levels of the hierarchy given by V1 = J and

Vm+1 = Vm ∗∗ J, since Straubing showed that Vm = FO2
m [29]. Straubing used general

results of Almeida and Weil on two-sided semidirect products to deduce from this that FO2
2

is decidable, but these results do not extend to FO2
m when m > 2 ([1, 38], see [29, Sec. 5] for

a discussion). In particular, this shows that Conjecture 5 holds for m = 2.
We also showed that the decision procedure whether a regular language L is FO2

m-
definable, is in Logspace on input the multiplication table of the syntactic monoid of L,
and in Pspace on input the minimal automaton of L. The result behind this statement
is the fact that membership in Rm and in Lm is characterized by a small set of (rather
complicated) identities. Another equational description of Rm and Lm was recently given by
Kufleitner and Lauser [12]. Straubing conjectured a different and simpler set of identities for
FO2

m, see Conjecture 5 above. While this paper was under revision, Krebs and Straubing
announced that they succeeded in extending the latter set of identities to all the levels of the
hierarchy, see arXiv:1205.4802.

CSL’12

arXiv:1205.4802

438 The FO2 alternation hierarchy is decidable

References
1 Jorge Almeida and Pascal Weil. Profinite categories and semidirect products. Journal of

Pure and Applied Algebra, 123:1–50, 1998.
2 Rina S. Cohen and Janusz A. Brzozowski. Dot-depth of star-free events. J. Comput. Syst.

Sci., 5(1):1–16, 1971.
3 Volker Diekert and Paul Gastin. First-order definable languages. In Logic and Automata:

History and Perspectives, Texts in Logic and Games, pages 261–306. Amsterdam University
Press, 2008.

4 Volker Diekert, Paul Gastin, and Manfred Kufleitner. A survey on small fragments of first-
order logic over finite words. Int. J. Found. Comput. Sci., 19(3):513–548, 2008. Special
issue DLT’07.

5 Tom E. Hall and Pascal Weil. On radical congruence systems. Semigroup Forum, 59:56–73,
1999.

6 Neil Immerman and Dexter Kozen. Definability with bounded number of bound variables.
Information and Computation, 83(2):121–139, November 1989.

7 Johan Anthony Willem Kamp. Tense Logic and the Theory of Linear Order. PhD thesis,
University of California, 1968.

8 Ondřej Klíma. Piecewise testable languages via combinatorics on words. Discrete Mathe-
matics, 311(20):2124–2127, 2011.

9 Kenneth Krohn, John L. Rhodes, and Bret Tilson. Homomorphisms and semilocal theory.
In Michael A. Arbib, editor, Algebraic Theory of Machines, Languages, and Semigroups,
chapter 8, pages 191–231. Academic Press, New York and London, 1968.

10 Manfred Kufleitner and Alexander Lauser. Languages of dot-depth one over infinite words.
In LICS’11, Proceedings, pages 23–32. IEEE Computer Society, 2011.

11 Manfred Kufleitner and Alexander Lauser. Lattices of logical fragments over words. In
ICALP’12, Proceedings, volume 7392 of LNCS, pages 275–286. Springer, 2012.

12 Manfred Kufleitner and Alexander Lauser. The join levels of the Trotter-Weil hierarchy
are decidable. In MFCS’12, Proceedings, LNCS. Springer, 2012. To appear.

13 Manfred Kufleitner and Pascal Weil. On FO2 quantifier alternation over words. In
MFCS’09, Proceedings, volume 5734 of LNCS, pages 513–524. Springer, 2009.

14 Manfred Kufleitner and Pascal Weil. On the lattice of sub-pseudovarieties of DA. Semi-
group Forum, 81(2):243–254, 2010.

15 Manfred Kufleitner and Pascal Weil. On logical hierarchies within FO2-definable languages.
Log. Methods Comput. Sci., 2012. To appear.

16 Kamal Lodaya, Paritosh K. Pandya, and Simoni S. Shah. Marking the chops: an unam-
biguous temporal logic. In IFIP TCS’08, Proceedings, volume 273 of IFIP, pages 461–476.
Springer, 2008.

17 Robert McNaughton and Seymour Papert. Counter-Free Automata. The MIT Press, 1971.
18 Dominique Perrin and Jean-Éric Pin. Infinite words, volume 141 of Pure and Applied

Mathematics. Elsevier, Amsterdam, 2004.
19 Jean-Éric Pin. Propriétés syntactiques du produit non ambigu. In W. Kuich, editor,

Proc.7th International Colloquium Automata, Languages and Programming (ICALP’80),
volume 85 of Lecture Notes in Computer Science, pages 483–499, Heidelberg, 1980. Springer-
Verlag.

20 Jean-Éric Pin. Varieties of Formal Languages. North Oxford Academic, London, 1986.
21 Jean-Éric Pin. Syntactic semigroups. In Handbook of Formal Languages, volume 1, pages

679–746. Springer-Verlag, Berlin, 1997.
22 Jean-Éric Pin and Pascal Weil. Polynomial closure and unambiguous product. Theory

Comput. Syst., 30(4):383–422, 1997.

M. Kufleitner and P. Weil 439

23 Marcel Paul Schützenberger. On finite monoids having only trivial subgroups. Inf. Control,
8:190–194, 1965.

24 Thomas Schwentick, Denis Thérien, and Heribert Vollmer. Partially-ordered two-way au-
tomata: A new characterization of DA. In DLT’01, Proceedings, volume 2295 of LNCS,
pages 239–250. Springer, 2002.

25 Imre Simon. Piecewise testable events. In H. Barkhage, editor, Automata Theory and
Formal Languages, 2nd GI Conference, Kaiserslautern, May 22–23, 1975, volume 33 of
Lecture Notes in Computer Science, pages 214–222. Springer-Verlag, 1975.

26 Larry Stockmeyer. The complexity of decision problems in automata theory and logic. PhD
thesis, TR 133, M.I.T., Cambridge, 1974.

27 Howard Straubing and Pascal Weil. An introduction to finite automata and their connection
to logic. In D. D’Souza and Priti Shankar, editors, Modern Applications of Automata
Theory, volume 2 of IISc Research Monographs, pages 3–43. World Scientific, 2012.

28 Howard Straubing. A generalization of the Schützenberger product of finite monoids. Theor.
Comput. Sci., 13:137–150, 1981.

29 Howard Straubing. Algebraic characterization of the alternation hierarchy in FO2[<] on
finite words. In Marc Bezem, editor, CSL’11, volume 12 of Leibniz International Proceed-
ings in Informatics (LIPIcs), pages 525–537, Dagstuhl, Germany, 2011. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik.

30 Pascal Tesson and Denis Thérien. Diamonds are forever: The variety DA. In Semigroups,
Algorithms, Automata and Languages 2001, Proceedings, pages 475–500. World Scientific,
2002.

31 Pascal Tesson and Denis Thérien. Logic meets algebra: The case of regular languages. Log.
Methods Comput. Sci., 3(1):1–37, 2007.

32 Denis Thérien. Classification of finite monoids: The language approach. Theor. Comput.
Sci., 14(2):195–208, 1981.

33 Denis Thérien and Thomas Wilke. Over words, two variables are as powerful as one
quantifier alternation. In STOC’98, Proceedings, pages 234–240. ACM Press, 1998.

34 Denis Thérien and Thomas Wilke. Temporal logic and semidirect products: An effective
characterization of the until hierarchy. SIAM J. Comput., 31(3):777–798, 2001.

35 Denis Thérien and Thomas Wilke. Nesting until and since in linear temporal logic. Theory
of Computing Systems, 37(1):111–131, 2004.

36 Wolfgang Thomas. Classifying regular events in symbolic logic. J. Comput. Syst. Sci.,
25:360–376, 1982.

37 Peter Trotter and Pascal Weil. The lattice of pseudovarieties of idempotent semigroups
and a non-regular analogue. Algebra Universalis, 37(4):491–526, 1997.

38 Pascal Weil. Profinite methods in semigroup theory. International Journal of Algebra and
Computation, 12:137–178, 2002.

39 Philipp Weis. Expressiveness and succinctness of first-order logic on finite words. PhD
thesis, University of Massachusetts Amherst, 2011.

40 Philipp Weis and Neil Immerman. Structure theorem and strict alternation hierarchy for
FO2 on words. Log. Methods Comput. Sci., 5(3), 2009.

CSL’12

Axiomatizing proof tree concepts in Bounded
Arithmetic
Satoru Kuroda

Gunma Prefectural Women’s University
1395-1, Kaminote, Tamamura, Gunma, 370-1193, Japan
satoru@gpwu.ac.jp

Abstract
We construct theories of Cook-Nguyen style two-sort bounded arithmetic whose provably total
functions are exactly those in LOGCFL and LOGDCFL. Axiomatizations of both theories are
based on the proof tree size characterizations of these classes. We also show that our theory for
LOGCFL proves a certain formulation of the pumping lemma for context-free languages.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases Bounded Arithmetic, LOGCFL, LOGDCFL, Proof tree

Digital Object Identifier 10.4230/LIPIcs.CSL.2012.440

1 Introduction

The complexity classes LOGCFL and LOGDCFL are subclasses of P which gain a large
popularity in the complexity theory community during the last two decades. The class
LOGCFL consists of predicates logspace reducible to context free languages and LOGDCFL
is defined in the same manner as LOGCFL but with deterministic context free languages.

LOGCFL lies between NL and AC1 and LOGDCFL contains L but we do not know
whether any of these inclusions is proper or not. Furthermore, we do not know the relationship
between NL and LOGDCFL.

One of the main feature of LOGCFL is that it has several natural alternative characteriz-
ations such as NAuxPDA [9], alternating Turing machines [8] and semi-unbounded fan-in
circuits [10]. Also LOGCFL has natural complete problems such as word problems for finite
groupoids and acyclic conjunctive queries [4]. Moreover, it is worth noting that LOGCFL is
closed under many operations including the closure under complementation [2].

On the contrary, much less is known about the class LOGDCFL. In particular, no natural
complete problem is found so far.

In this paper we construct theories of bounded arithmetic for LOGCFL and LOGDCFL
using their proof tree size characterizations. To author’s knowledge, no such theory for
LOGDCFL has been proposed so far. For LOGCFL, the author [6] defined a theory V -QSAC
which axiomatize the concept of SAC1 circuits. However, the theory has an augmented
language which represents generalized quantifier expressing that a SAC1 circuit has an
accepting tree on an input.

Our approach is very similar to the one developed by Cook and Nguyen [3], namely
augmenting the theory V 0 by axioms expressing the concept of a given complexity class.

The concepts we use for constructing theories for LOGCFL and LOGDCFL are somewhat
similar. That is, both concepts are based on circuits having polynomial proof tree size.

For LOGDCFL, McKenzie et.al. [7] proved that the class is identical to the class of
predicates decidable by polynomial size Multiplex-Select circuits with polynomial proof tree

© Satoru Kuroda;
licensed under Creative Commons License NC-ND

Computer Science Logic 2012 (CSL’12).
Editors: Patrick Cégielski, Arnaud Durand; pp. 440–454

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2012.440
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

S. Kuroda 441

size. For LOGCFL, a similar and simpler characterization is known by Venkateswaran [10]
as the class of polynomial size Boolean circuits having polynomial proof tree size.

Although these two characterizations have a similar nature, we encounter with a slightly
different circumstance when axiomatizing them. Since LOGDCFL is a deterministic class,
there exists a unique witness, namely a proof tree for an accepting input to a circuit, whereas,
there may exist more than one polynomial size proof trees for a general circuit which witnesses
LOGCFL predicates. Such a difference causes a difficulty in the witnessing argument of the
corresponding theories. However, we show that a slight modification of the argument of Cook
and Nguyen implies witnessing theorems for both theories.

We also show that our theory Vlcfl for LOGCFL is finitely axiomatizable by formalizing
LOGCFL complete problems.

Cook proposed a research program called Bounded Reverse Mathematics whose aim is
to decide how much computational concepts are needed to prove mathematical theorems.
This is achieved by deciding which theorems of mathematics are provable in a given bounded
arithmetic theory (See [3] for an exposition). For this direction, we show that Vlcfl proves
a form of the pumping lemma for context-free languages.

The essential part of formalizing the standard proof of the pumping lemma in Vlcfl
is to translate parse trees into proof trees of Boolean circuits so that we can argue about
context-free languages in terms of circuits.

By carefully examining the textbook style proof of the pumping lemma, it turns out
that proof also uses combinatorial arguments including the pigeonhole principle and PATH
problem which is NL complete. Moreover, the inductive argument in the proof can be
expressed as a number induction for LOGCFL decidable predicate.

2 Preliminaries

Throughout the paper we deal with two-sort theories and complexity classes. So first we
briefly review their basic notions.

Two-sort logic uses two types of variables; number variables denoted by lower case letters
x, y, z · · · represent natural numbers while string variables denoted by upper case letters
X,Y, Z · · · represent binary strings.

2.1 Two-sort complexity classes

A two-sort function is a function with two sort of arguments x̄ and X̄. A function F (x̄, X̄)
is a string function if its range is in strings. A function f(x̄, X̄) is a number function if its
range is in numbers. As usual, we denote strings functions by uppercase letters and number
functions by lower case letter. Predicates are identified with 0-1 valued number functions.

In the two-sort formalization, number variables play subsidiary roles, so in defining
complexity classes, their measures are with respect to the length of string parameters.

LetR(x1, . . . , xk, X1, . . . , Xn) be a two-sort relation. As in [3], number variables x1, . . . , xk
are presented in unary and string variables X1, . . . , Xn are in binary form.

We define two sort complexity classes LOGCFL and LOGDCFL as follows:

I Definition 1. LOGCFL is the class of predicates which are logspace reducible to some
context-free languages. LOGDCFL is the class of predicates which are logspace reducible to
some deterministic context-free languages.

CSL’12

442 Axiomatizing proof tree concepts in Bounded Arithmetic

2.2 Two-sort theories
The language L2 of two sort theories contains the symbols Z(x), x+ y, x · y, |X|, x = y and
x ∈ Y . We also write x ∈ Y as Y (x). We use two sort of quantifiers; number quantifiers (∀x)
and (∃x) and string quantifiers (∀X) and (∃X). Bounded number quantifiers are of the form
(∀x < t) and (∃x < t). String bounded quantifiers are of the form

(∀X < t)ϕ(X) ≡ (∀X)(|X| < t→ ϕ(X)), and (∃X < t)ϕ(X) ≡ (∃X)(|X| < t ∧ ϕ(X)).

An L2 formula is called bounded if all its quantifiers are either bounded number quantifiers
or bounded string quantifiers. The class ΣB

0 consists of L2 formulae whose quantifiers
are bounded quantifiers only. The class ΣB

1 consists of L2 formulae whose quantifiers are
bounded quantifiers, positive occurrences of existential bounded string quantifiers, and
negative occurrences of universal bounded string quantifiers.

Our base theory is the following theory:

I Definition 2. The L2 theory V 0 consists of the following axioms:
BASIC2 : finite number of defining axioms for symbols in L2,
extensionality axiom : X = Y ↔ (|X| = |Y | ∧ (∀i < |X|)(X(i)↔ Y (i)),
ΣB

0 -COMP : (∃X)(∀y < t)(X(y)↔ ϕ(y)), where ϕ ∈ ΣB
0 does not contain X as a free

variable.

I Definition 3. A function F (x̄, X̄) is ΣB
1 definable in a L2-theory T if there exists a ΣB

1
formula ϕ(x̄, X̄, Y) such that

T ` (∀x̄)(∀X̄)(∃!Y)ϕ(x̄, X̄, Y), and
Y = F (x̄, X̄)↔ ϕ(x̄, X̄, Y) holds in the standard model.

I Theorem 4. A function is ΣB1 definable in V 0 if and only if it is computable in AC0.

The following property is also well-known and useful:

I Theorem 5. Let F be a ΣB1 definable function of V 0 and V 0(F) be the theory V 0 extended
by the function symbol for F together with its defining axioms. Then V 0(F) is an conservative
extension of V 0.

So we can use any ΣB1 definable function in V 0 without increasing its strength. In particular,
the following functions are ΣB1 definable in V 0 which will be used in elsewhere in this paper:

The number pairing function : 〈x, y〉 = (x+y+1)(x+y)
2 .

The number µ-operator :

µz<yϕ(x) =
{

the least x < y with ϕ(x) if exists,
0 otherwise.

The value of X at y : (X)y = µy<aX(〈y, z〉) for |X| < 〈a, b〉.
The row function : Z [x](i)↔ (i < |Z| ∧ Z(x, i)).

The main tool of this paper is the method for constructing theories for subclasses of P
using complete problems which is developed by Cook and Nguyen. Details of this method
can be found in [3], so we briefly overview the argument.

Suppose a function F has a ΣB0 graph as

Y = F (X)↔ (|Y | ≤ t ∧ δF (X < Y))

for some L2 term t and ΣB0 formula δF . Suppose further that V 0 proves the uniqueness of
the value of F . Let C be the class of relations which are AC0 reducible to F . In this case,
we define a theory for C as follows:

S. Kuroda 443

I Definition 6. The L2-theory VC is axiomatized by the axioms of V 0 and the following
axiom:

(∃Y ≤ b)(∀i < b)δF (X [i], Y [i]).

Below we define theories with defining axiom for the function F as above and the equivalence
to the theory VC is ensured by showing that the aggregate function is ΣB1 definable within
the theory.

I Definition 7 (Aggregate Function). Suppose that F (x̄, X̄) is such that for some L2 term t

|F (x̄, X̄)| ≤ t(x̄, X̄).

Then F ∗(b, Z̄, X̄) is a function such that

|F ∗(b, Z̄, X̄)| ≤ 〈b, t(|Z̄|, X̄)〉

and

F ∗(b, Z̄, X̄)(w)↔ (∃i < b)(∃v < t)(w = 〈i, v〉 ∧ F ∗(b, (Z1)i, . . . , (Zk)i, X [i]
1 , . . . , X

[i]
n)(v).

Finally, a direct connection between VC and FC is established:

I Theorem 8 (Cook-Nguyen). A function is ΣB1 definable in VC if and only if it is in FC.

We also use universal conservative extension V̂C of VC which is defined as follows: let
V 0 be the theory V 0 extended by function symbols for all AC0 functions together with their
defining axioms. Let δ′F (X,Y) be the quantifier free defining axiom for F which is equivalent
to δF (X,Y) in V 0 and define the function

Y = F ′(X)↔ (|Y | ≤ t ∧ δ′F (X,Y)). (∗)

I Definition 9. V̂C is the universal theory over language of V 0 plus F ′ whose axioms are
those for V 0 and (∗).

Remark. Our theories defined below are slightly different from VC in that we add axiom
scheme rather than a single axiom. Nevertheless, the witnessing and definability works by
an almost similar argument.

3 A theory for LOGDCFL

We will define the theory Vldcfl by formalizing the concept of polynomial proof tree of
polynomial size multiplex-select circuits.

A multiplex select circuit is a circuit whose only gates are multiplex select gates. Inputs
to a multiplex select gate are grouped into a bundle of k ∈ O(logn) steering bits and 2k
equal size bundles of l ∈ O(logn) data bits. The gate outputs the value of the data input
bundle di if the value of the steering input bundle is the binary expression of i. For detailed
definition, see [7].

A proof tree of a circuit C on input X is a tree PT (C,X) define inductively as follows:
if C consists of a single gate then PT (C,X) consists of its steering input bundle and the
data bundle selected by the steering input on X.
if C consists of more than two gates and g is the output gate of C then PT (C,X) is
defined as the tree rooted at g with subtrees PT (Cs, X) and PT (Cd, X) where Cs is the
subcircuit with output at the steering input of g and Cd is the subcircuit with output at
the data input selected by s on X.

CSL’12

444 Axiomatizing proof tree concepts in Bounded Arithmetic

Note that the computation of multiplex select circuits are deterministic in the sense that
there exists an unique proof tree for each input.

McKenzie et.al. [7] showed that multiplex select circuits characterize the class LOGDCFL.

I Theorem 10 (McKenzie et.al.). A predicate is in LOGDCFL if and only if it is decidable
by AC0-uniform poly-size family of multiplex select circuits with polynomial proof tree size.

We code a multiplex select gate by a triple 〈g, c, k〉 where g is the index of its steering
input, k is the number of data inputs, and c+ j is the index of j-th data input for j ≤ k.

As usual, a circuit is coded by a two-dimensional array but with semantics which differs
from that of Boolean circuits. Recall that a non-input gate in a multiplex-select circuit has
two types of inputs; one steering input and 2l data inputs where l is the length of the steering
input bundle. So we define AC0 functions which specifies these inputs.

Let E be a two-dimensional array with |E| = 〈n, n〉. A gate x < n with no input is
regarded as an input data bundle with the data x. Otherwise, x is a non-input gate and we
define its steering input s(x,E) and the first data input c(x,E) as follows:

s(x,E) = µy < xE(x, y),

c(x,E) =
{
µy < x(E(x, y) ∧ s(x,E)) < y if it exists,
s(x,E) otherwise.

We omit the parameter E if it is clear from the context.
The output of a multiplex select gate is given by the following rule:

for a gate x, if it receives an input j from its steering input s(x) then it outputs the
input from the data input of index min(c(x) + j, x− 1).

We use the notion of degrees of gates in a multiplex-select circuit which is defined as:

I Definition 11. Let E be a circuit such that |E| = 〈n, n〉 and x < n. We define the degree
deg(x,E) recursively as

deg(x,E) =

1 if x is an input gate,
deg(s(x)) + deg(min(c(x) + j, x− 1))

if x is an non-input and s(x) outputs j.

It is not difficult to see that a circuit family has polynomial size proof trees if and only if it
has polynomial degrees.

We define an axiom expressing the concept of multiplex-select circuits with polynomial
degrees. The idea is to code the computation of a given circuit by a string Z such that a

if degree(x) is bounded by a given polynomial p(n) then (Z)x = 〈vx,deg(x)〉 where vx is
the output of x, and
otherwise (Z)x = 〈n, p(n)〉.

Formally, define the L2 formula MSCDeg(n, x,E, Z) as the conjunction of the following
formulae:

x is an input gate: (∀y < x)¬E(x, y)→ (Z)x = 〈x, 1〉,
x is a non-input gate having a degree less than p(n):

(∃y < x)E(x, y)→ (Z)s(x)
1 + (Z)min(c(x)+(Z)s(x)

0 ,x−1)
1 < p(n)− 1∧

(Z)x = 〈(Z)min(c(x)+(Z)s(x)
0 ,x−1)

0 , (Z)s(x)
1 + (Z)min(c(x)+(Z)s(x)

0 ,x−1)
1 〉,

S. Kuroda 445

x is an non-input gate having a degree greater than p(n)− 1:

(∃y < x)E(x, y)→ (Z)s(x)
1 + (Z)min(c(x)+(Z)s(x)

0 ,x−1)
1 ≥ p(n) ∧ (Z)x = 〈n, p(n)〉.

For a L2-term p(n) we define the formula

MSCDeg-COMPp : (∀n)(∀E < 〈n, n〉)(∃Z〈n, 〈n, p(n)〉〉)(∀x < n)MSCDeg(n, x,E, Z).

I Definition 12. The L2-theory Vldcfl is V 0 extended by MSCDeg-COMPp for each
p ∈ L2}.

Remark. We have made several simplifications in the formalization of multiplex-select
circuits which is still general enough to capture the original ones in the sense that we can
effectively compute a code E(C,X) from the original circuit code C and an input X. Firstly,
we can convert an O(log |X|) input bit bundle into a number representing a gate index using
AC0 function. The original definition allows each bundle to be extended by constant bits
which also can be computed in AC0.

Finally, the restriction of date inputs bit to consecutive ones as c(x), . . . c(x) + j can
express the original circuit as follows. Let d be the i-th data input to x. We introduce a
"copy" gate Cd of d having a single bit steering input and a single data input from d. Then
we let the gate position of Cd to be c(x) + i.

I Theorem 13. A function is ΣB
1 definable in Vldcfl if and only if it is LOGDCFL-

computable.

To prove Theorem 13, we use the formalization as in Cook-Nguyen’s Book [3]. First we
show the uniqueness of proof trees.

I Lemma 14. Vldcfl proves the following:

(∀Z0, Z1 < n)[((∀x < n)MSCDegp(n, x,E, Z0) ∧ (∀x < n)MSCDegp(n, x,E, Z1))
→ Z0 = Z1].

(Proof). Since MSCDegp is a ΣB0 formula, this follows from an ΣB0 -IND instance which is
available in V 0. The most essential part is to show that the aggregate function forMSCDegp
is ΣB1 -definable in Vldcfl.

I Lemma 15. The aggregate function for MSCDeg-COMPp defined by the formula

(∀n)(∀E < 〈〈n, n〉, b〉)(∃Y)(∀i < b)(∀x < n)MSCDegp(n, x,E[i], Y [i])

is ΣB1 -definable in Vldcfl.

The proof is more or less identical to that for V P (Lemma VIII 1.10 in [3]).
Now, Theorem 13 follows from the following:

I Lemma 16. The FAC0 closure of functions Fp with defining axiom

Y = Fp(n,E)⇔ |Y | ≤ tp ∧ (∀x < n)MSCDegp(n, x,E, Y)

for p ∈ L2, denoted by FAC0(DegP), is identical to Flogdcfl.

CSL’12

446 Axiomatizing proof tree concepts in Bounded Arithmetic

(Proof). To show that FAC0(DegP) ⊆ Flogdcfl we remark that Fp ∈ Flogdcfl for all
p ∈ L2.

For the converse inclusion, it suffices to show that any bit in F ∈ Flogdcfl can be
computed using some Fp together with AC0 operations.

Using the technique developed by Cook and Nguyen [3], we can prove Theorem 13 from
Lemmata 14, 15 and 16.

Since LOGDCFL contains L, we expect that the same inclusion holds for corresponding
theories. The theory VL is axiomatized by V 0 together with the following axiom:

PATH ≡ Unique(a,E)→ (∃P ≤ 〈a, a〉)δPATH(a,E, P),

where

Unique(a,E) ≡ (∀x < a)(∃!y < a)E(x, y),
δPATH(a,E, P) ≡ (P)0 = 0 ∧ (∀v < a)(E((P)v, (P)v+1) ∧ (P)v+1 < a).

I Theorem 17. Vldcfl contains VL.

(Proof). It suffices to show that Vldcfl proves PATH. Let E satisfy Unique(a,E). For
each x < a, we denote the unique y such that E(x, y) by d(x). We first design a multiplex
select gate such that if the steering input is x then it outputs d(x). This gate is easily
constructed by setting its data inputs as d(0), . . . , d(a− 1). Then we connect copies of this
gate in a sequential manner, that is the first gate receives its steering input from x, the
second gate from the first gate, and so on. Furthermore, all gates receive data inputs from
d(0), . . . , d(a− 1).

Suppose a node b < n is reachable from a by a path of length k ≤ n. Then it is easy to
see that there exists a gate in this circuit with label 〈b, 2k + 1〉.

The above argument can be formalized in Vldcfl, that is, for p(n) ≤ 2n+ 1, we have

(∃Z)(∀x < n)MSCDegp(n, x,E′, Z)

where E′ is the code for the above circuit. Furthermore, the witness P in PATH can be
constructed from Z using ΣB0 -COMP.

4 A theory for LOGCFL

We now turn to show that the axiomatization of proof tree size concept also captures the
class LOGCFL. First we recall the following circuit characterization of the class:

I Theorem 18 (Venkateswaran [10]). LOGCFL is the class of predicates which are computable
by polynomial size circuits with polynomial proof trees. This equivalence is true even if we
restrict circuits to semi-unbounded fan-in.

(Proof). The former statement is due to [10]. So we prove the latter part.
It is readily seen that a circuit can be transformed to an equivalent semi-unbounded

fan-in circuit with polynomial increase in size by the transformation of unbounded fan-in
AND gates by a fan-in two subcircuits of O(logn) depth. It remains to show that the degree
of the resulting circuit also has polynomial increase. For this, it suffices to show that the
replacement of unbounded fan-in AND-gates by subcircuits yields polynomial increase in the
degree,that is the number of nodes in a proof tree.

Let g be an AND-gate in the original circuit having inputs from h0, . . . , hk−1 and g′ be
the gate on the top of the subcircuit which is a substitute for g. It is not difficult to see that
deg(g′) = deg(g) + k. More strictly, this is proved by induction on the depth of gates.

S. Kuroda 447

The advantage of the semi-unbounded fan-in restriction is that we do not need vector
summation to compute degrees. Thus we can axiomatize our theory based on V 0 rather than
VTC0.

Now we define an axiom expressing polynomial degrees in a similar manner as VP of
Cook-Nguyen [3]. First we will give an intuitive idea: Let E be a two-dimensional array
coding a circuit. The input-output relation of E differs from that for multiplex select circuits.

Let G(x) be an unary predicate determining the type of a gate x so that x is an AND
gate if G(x) and an OR gate otherwise. If G(x) holds then x receives inputs from two gates
defined by

c0(x) = µy < xE(x, y),
c1(x) = µy < x(E(x, y) ∧ c0(x) < y).

If ¬G(x) then x receives inputs from all y < x such that E(x, y).
The computation of a circuit given by E and G as above is coded by a string Z such that

(Z)0 = p(n), (Z)1 = 1,

(Z)x =
{

deg(x) if x outputs 1 and deg(x) < p(n),
p(n) otherwise

for x ≥ 2.
Putting these altogether, we formally define

MCVDegp(n,E,G,Z)⇔
(Z)0 = p(n) ∧ (Z)1 = 1∧
(∀x < n)(x ≥ 2→
(G(x) ∧ (((Z)c0(x) + (Z)c1(x) < p(n)− 1 ∧ (Z)x = (Z)c0(x) + (Z)c1(x) + 1)∨
((Z)c0(x) + (Z)c1(x) ≥ p(n)− 1 ∧ (Z)x = p(n)))∨
(¬G(x) ∧ ((∃y < x)((Z)y < p(n)− 1 ∧ E(x, y) ∧ (Z)x = (Z)y + 1)∨
((∀y < x)(E(x, y)→ (Z)y ≥ p(n)− 1 ∧ (Z)x = p(n)))).

where p ∈ L2.

I Definition 19. We define the L2-theory Vlcfl as

V 0 + {(∀n)(∀E < 〈n, n〉)(∀G < n)(∃Z < 〈n, p(n)〉MCVDegp(n,E,G,Z) : p ∈ L2}.

It is possible to define our theory using SAC1 circuits which can be formalized by a
single axiom. Nevertheless, we choose the above axiomatization as it is easier to formalize
other computational concepts within the theory. First we show that our theories preserve
the inclusion relation of corresponding complexity classes:

I Theorem 20. Vlcfl proves CONN , thus it contains VNL.

(Proof). We argue in Vlcfl. Let E < 〈n, n〉 be given. We need to show that

(∃Y < 〈a, a〉)(δCONN (a,E, Y) ∧ Y (a, 1)).

To this end, we construct a graph C < 〈〈a, a〉, 〈a, a〉〉 such that

C(0, x, 1, y)↔ x = 0 ∧ E(0, y)

and
C(n, x,m, y)↔ m = n+ 1 ∧ E(x, y)

CSL’12

448 Axiomatizing proof tree concepts in Bounded Arithmetic

hold. That is, C has layers such that each column contains copies of all nodes in E. The
edge relation of C is given so that the node x in i-th layer has an edge to the node y in
(i+ 1)-st layer if E(x, y) holds for i > 0. Furthermore, on 0-th layer, only the node 0 has an
edge to the node y in the first layer if E(0, y).

Now we show that a small modification of C yields a circuit deciding the axiom CONN
for VNL. In the new circuit C ′, we have the first column containing 0 and 1, say 〈0, 0〉 and
〈1, 0〉, and the number of columns of C are incremented by 1 in C ′. Thus the gate 〈i, j〉 in C
corresponds to 〈i, j + 1〉 in C ′. Thus we define

C ′(n, x,m, y)↔ (n = 0 ∧ x = 1 ∧m = 1 ∧ y = 0) ∨ (C(n− 1, x,m− 1, y) ∧ n > 0 ∧m > 0).

Furthermore, we let G be such that (∀n)(∀x)G(n, x), that is, all gates in C ′ are AND gates.
Now let p(n) = n. Then we have (∃Z)MCVDegp(n,C ′, G, Z) and we have an AC0

function F such that

MCVDegp(n,C ′, G, Z)→ δCONN (n,E, F (Z)).

Also note that a proof tree of a gate 〈i, x〉 is a path from 〈0, 1〉 to 〈i, x〉. Thus we are done.

I Theorem 21. Vlcfl contains Vldcfl.

(Proof). It suffices to show that Vlcfl proves MSCDeg-COMPp for any p ∈ L2. This is
achieved by giving circuits simulating multiplex-select circuits which have polynomial size
and polynomial proof size. Let g be an MS-gate with the steering input s and data inputs
d0, . . . , dl. The Boolean circuit Cg simulating g can be obtained by building the following
subcircuits:

Cisel outputs 1 if the steering input s selects the data input di, and
Cjout outputs the bits of the j-th output bit of g.

Then Cg is defined as ∨
1≤i≤l

(Cisel ∧ Ciout).

The subcircuit Cisel is defined as
∧

1≤j≤l lj where

li =
{
sj if the j-th bit of i is 1
¬sj otherwise.

Then Cjout is computed by the circuit ∨
1≤i≤l

(Cisel ∧ d
j
i).

It is not difficult to see that the above construction can be described by ΣB0 relation. So
we have the ΣB

0 description of the translation of the whole MS-circuit C by an equivalent
Boolean circuit.

Although the above construction does not yields semi-unbounded fan-in circuits, it can
be converted into an equivalent SAC1 circuit.

It is also true that Vlcfl is contained in the theory for AC1 which is axiomatized by
V 0 and the axiom

(∃Y ≤ 〈|n|+ 1, n〉δLMCV (n, |n|, E,G, I, Y)
where

δLMCV (n, d,E,G, I, Y) ≡ (∀x < n)(∀z < d)((Y (0, x)↔ I(x))∧
(Y (z + 1, x)↔ (G(z + 1, x) ∧ (∀u < n)(E(z, u, x)→ Y (z, u)))∨

(¬G(z + 1, x) ∧ (∃u < n)(E(z, u, x) ∧ Y (z, u)))).

S. Kuroda 449

I Theorem 22. Vlcfl is contained in VAC1.

Actually, we prove a stronger theorem stating that any polynomial size circuit family
with polynomial proof tree size has an equivalent SAC1 circuits.

I Theorem 23. Let p, q ∈ L2. VTC0 proves that for any circuit C with size p and proof
tree size q there exists a semi-unbounded circuit C ′ such that for any input X,

C accepts Xin proof tree size q ⇔ C ′ accepts X.

(Proof). We use the idea similar to realizable pairs of Ruzzo [8]. Let g be a gate of C and Γ
be a set of nodes in C. W define Cg,Γ to be a directed acyclic subgraph of C whose root
is g and sinks are Γ. We say that Cg,Γ is realizable within size p and proof tree size q if
size(Cg,Γ) ≤ p and g has proof tree size ≤ q provided that all nonleaves of Γ are assigned
the value 1.

It suffices to construct a semi-unbounded fan-in circuit deciding whether Cg,Γ is realizable
with size p and proof tree size q since C = Cg0,∅ is realizable if and only if C accepts the
input where g0 is the output gate of C. So we construct a recursive procedure realize(C, p, q)
which works as follows:

In each recursive step, realize(C, p, q) splits C into two parts C0 and C1 each hav-
ing approximately half size of C and recursively check whether realize(C0, p/2, i) and
realize(C1, p/2, j) where i+ j = q. This procedure is given as follows:

procedure realize(C,p,q);
begin
if C consists of a single gate g then if g has the value 1 and p, q ≥ 1
then ACCEPT else REJECT
else
guess i with 0 < i < q and a gate s in C;
C0 := subcircuit of C rooted at s; C1 := C \ C0 with s replaced by 1;
check in parallel
realize(C0, p/2, i) AND realize(C1, p/2, q − i)
end

We will show that this algorithm can be converted into logarithmic depth semi-unbounded
fan-in circuits.

First we remark that checking whether size(C) < p can be done by an NC1 circuit using
threshold circuits.

Since the number of the nestings of recursive calls is logarithmic in p, the total number
of subcircuits C0s and C1s created along the execution of the procedure is bounded by
polynomial. Thus the number of gates used in checking circuit sizes is polynomially bounded.

Now each recursive steps can be expressed by an AND of size(C) < p and the OR of the
following subroutines:

the base case with a single node g,
realize(C0, q/2, i) AND realize(C1, p/2, q − i) for 0 < i < q and all nodes in C.

The fan-in of this OR gate is O(p · q) which is polynomial. Furthermore, all AND gates
required is bounded fan-in.

By recalling that the number of the nestings of recursive calls is log p = O(logn), we
conclude that the procedure realize can be transformed into an SAC1 circuit family.

CSL’12

450 Axiomatizing proof tree concepts in Bounded Arithmetic

It is not hard, though tedious, to show that the above construction can be demonstrated
by ΣB0 relation. To check the correctness of the construction, we need counting argument for
the evaluation of circuit sizes. So the whole argument can be formalized in VTC0.

I Corollary 24. Vlcfl and V -QSAC proves the same L2 sentences.

Now we show that Vlcfl corresponds to LOGCFL.

I Theorem 25. A function is ΣB1 definable in Vlcfl if and only if it is in Flogcfl.

Note that the witness Z for MCVDegp axiom is not always optimal in a sense that the
degree of the output of Z is larger than p(n) while there is another witness Z ′ whose output
degree is less than or equal to p(n). Nevertheless, we can avoid such undesirable cases by
considering SAC1 circuits.

I Theorem 26 (Definability for Vlcfl). If a function of polynomial growth is bitwise
computable in LOGCFL then it is ΣB1 definable in Vlcfl.

(Proof Sketch). In [6], it is shown that V -QSAC proves that SAC1 is closed under comple-
mentation. By Corollary 24, this is also provable in Vlcfl.

Moreover, any SAC1 circuit C is a polynomial size circuit having polynomial proof tree
size such that for any input X and any Z witnessing MCV P axiom for C, C outputs true if
and only if the degree of the output gate is less than p(|X|) for a given proof tree bound p.

Let F (X) be a LOGCFL function with polynomial growth. To show that Vlcfl ΣB
1

defines F , it suffices to show that circuits can be combined into a multi output circuit. This
can be done using circuits and their complementary circuits which is also an SAC1 circuit
provably in Vlcfl.

For witnessing we use the argument using the conservative universal extension V̂lcfl of
Vlcfl.

I Theorem 27 (Witnessing for Vlcfl). If a function is ΣB1 definable in Vlcfl then it is of
polynomial growth and bitwise computable in LOGCFL.

(Proof). We define the universal conservative extension V̂lcfl by introducing for each p ∈ L2
a function symbol Fp such that

Fp(n,E,G) = Z ↔MCVDegp(n,E,G,Z).

Using Herbrand-style argument, we can show that provably total functions of V̂lcfl are
in the AC0 closure of {Fp : p ∈ L2}. As LOGCFL is closed under AC0 operations, it suffices
to show that Fp is witnessed by a LOGCFL algorithm. In order to compute Fp we modify
NAuxPDA machine simulating polynomial size circuits with polynomial proof trees as in [7].
The machine makes an depth-first search through a circuit and at each step, it computes the
degree of the currently visiting gate using the work tape. This can be done in logarithmic
space by expressing degrees in binary. Therefore, this gives an NAuxPDA computing Fp.

5 Finite axiomatizability

In this section we show that the theory Vlcfl is finitely axiomatizable. The idea is to
formalize LOGCFL complete problems such as acyclic conjunctive query problem (Gottlob
et.al. [4]) or word problem for finite groupoids (Bedard et.al. [1]).

S. Kuroda 451

First we modify the theory Vlcfl so that it can argue about circuit families which have
ΣB0 direct connection languages. For an L2-formula ϕ(x, y) we define the string

Eϕ(n)(x, y)⇔ x < n ∧ y < n ∧ ϕ(x, y).

Similarly for an L2-formula ψ(x) we define the string

Gψ(n)(x)⇔ x < n ∧ ψ(x).

Then we define the theory

Vlcfl′ ≡ V 0 + {(∀n)(∃Z < 〈n, p(n)〉MCVDegp(n,Eϕ(n), Gψ(n), Z) : ϕ,ψ ∈ ΣB0 , p ∈ L2}.

It is not difficult to see that

I Lemma 28. Vlcfl′ = Vlcfl.

Using Vlcfl′ we have

I Theorem 29. Vlcfl′ and hence Vlcfl is finitely axiomatizable.

(Proof Sketch). We can formalize the acyclic conjunctive query problem in L2 and define the
direct connection language ϕ and ψ of the polynomial size circuit family deciding it in proof
tree size p(n). Then in Vlcfl′ we can show that any circuit family with polynomial proof
tree size can be reduced to it. Thus Vlcfl′ is finitely axiomatizable.
Remark. Although it is likely that the same argument holds for Vldcfl, we do not know
whether there exists a complete problem for LOGDCFL.

6 Provability of the pumping lemma for CFLs

We now turn to the problem of the provability of the pumping lemma. Intuitively, the
pumping lemma states that a sufficiently long word in a context-free language can be iterately
“pumped up” to another word in the language. More precisely,

I Theorem 30 (The pumping lemma for CFLs). Let G = (N,T, P, S) be a context-free
grammar in Chomsky normal form. Suppose W ∈ L(G) is such that |W | ≥ 2m−1 + 1
where m = |N |. Then there exist W1, . . . ,W5 such that W = W1 · · ·W5, |W2W4| ≥ 1,
|W2W3W4| ≤ 2m and W1W

i
2W3W

i
4W5 ∈ L(G) for all i ∈ ω.

In order to formalize Theorem 32, we need expressions which refer to the exponentiation
like y ≥ 2x. Recall that the relation y = 2x is ∆0 definable in I∆0 although the function is
not total in the theory. Likewise, in L2 we can define the exponentiation relation using a ΣB0
formula. In particular, the assumption |W | ≥ 2s−1 + 1 in Definition 31 below is expressible
in the language of Vlcfl.

Next we show how to code context-free grammars. Let G = (N,T, P, S) be a CFG in
Chomsky normal form. Since N and T are finite sets, We code it as T = {0, . . . n − 1},
N = {n, . . . , n+ s}, S = n. Recall that rules of context-free grammars in Chomsky normal
form are either of the form a→ bc or a→ l for a, b, c ∈ N and l ∈ T . We let P ⊆ N×(T∪N2)
so that

P (a, x)⇔ a→ x is a rule in P.

We also write a→P x instead of P (a, x).
A parse tree T of height l is a layered binary tree such that each row T [i] is obtained from

T [i−1] by applying rules in P to nonterminal symbols simultaneously. Each symbol T [i][k]

CSL’12

452 Axiomatizing proof tree concepts in Bounded Arithmetic

is of the form 〈n, k′〉 denoting that u ≤ n+ s is a symbol assigned to the slot and k′ is the
index of its parent in T [i−1], where X[y] is the value of X at y (denoted by (X)y in [3]).

More precisely, T is a parse tree if the following conditions hold:
T [0] consists of a single nonterminal symbol a with n ≤ a ≤ n+ s and for all i > 0 and k,
T [i][k] = 〈u, k′〉 for some u ≤ n+ s and k′.
If T [i][k] = 〈u, k′〉 with u ≥ n then T [i][k + j] = 〈v, k′〉 for v ≥ n and exactly one
j ∈ {−1, 1} such that w →P uv for w = (T [i−1][k′])0. Moreover, either one of the
following holds:

there exists a unique k′′ such that T [i+1][k′′] = 〈v, k〉, v < n and u→P v,
there exists a unique k′′ such that T [i+1][k′′] = 〈v, k〉, T [i+1][k′′ + 1] = 〈v′, k〉, n ≥
v, v′ ≥ n+ s and u→P vv

′.
If T [i][k] = 〈u, k′〉 with u < n then there exists a unique k′′ such that T [i+1][k′′] = 〈v, k〉
whenever i ≤ l where l is the number of rows in T . In addition, one of (T [i−1][k′])0 = u

or (T [i−1][k′])0 → u holds.
For any i and k < k′ if T [i+1][c] and T [i+1][c] are children of T [i][k] and T [i][k′] then
c < c′.
(T [l][k]))0 < n for all k.

Based on the above codings, it is easy, though tedious, to see that there exists a ΣB
0

formula
Parse(a, l, n, s.P, T,X) ≡
T is a parse tree of length l starting from a which generates X.

I Definition 31. We define PL(n, s, P) to be the following formula:

(∀X)(∃T)Parse(s, l, n, n, T, P,X) ∧ |X| ≥ 2s−1 + 1
→ (∃X1, X2, X3, X4, X5)(X = X1X2X3X4X5 ∧ |X2X4| ≥ 1 ∧ |X2X3X4| ≤ 2s∧
(∀i)(∃l′)(∃T ′)Parse(a, l′, n, n, P, T ′, X1X

i
2X3X

i
4X5)).

As previously stated, this is provable in Vlcfl, namely,

I Theorem 32. Vlcfl proves (∀n)(∀s)(∀P)PL(n, s, P).

The main idea of the proof is to simulate CFGs by circuits so that the transformation of
parse trees as in the standard proof of the pumping lemma as in [5] can be interpreted in
terms of proof tree. Let (E,G) be a code of a circuit as in the axiom MSCDegp but with n
input gates whose values are unspecified and X be a string with |X| = n. Then we define
(E,G) with input X by (EX , GX). Our main tool is the following:

I Lemma 33. There exists an AC0 function F (m,n, s, P) = (a,E,G) which is ΣB1 definable
in V 0 and an L2-term r(n, s, P,X) such that (E,G) is a code of a semi-unbounded fan-in
circuit with m unspecified input gates and Vlcfl proves

(∀X)[(∃T)Parse(s, l, n, n, P, T,X)
↔ (∃Z)(MCV Pr(a,EX , GX , Z) ∧ Z[a] < r(|X|, n, s, P))].

Moreover, there exists an AC0 function T (Z) such that V 0 proves the following:

(∀X)[(MCV Pr(a,EX , GX , Z) ∧ Z[a] < r(|X|, n, s, P))→ Parse(s, l, n, n, T (Z), P,X)].

(Proof Sketch). As in Example 1 in page 220 of Ruzzo [8], we construct a circuit checking
whether an input string belongs to a given context-free language.

S. Kuroda 453

We construct a circuit which simulates a given CFG G = (n, s, P) on input X. The idea
is to introduce a gate which checks whether a⇒∗ xi · · ·xj for each nonterminal symbol a
and a substring xi · · ·xj of X.

In particular, the output gate is an OR gate checking whether n ⇒∗ x1 · · ·xn (Recall
that the start symbol is coded by n). This is done by introducing an AND gate for each rule
n→ ab and a partition x1 · · ·xi/xi+1 · · ·xn. This AND gate gives an output to the output
OR gate and receives inputs from gates checking a⇒∗ x1 · · ·xi and b⇒∗ xi+1 · · ·xn.

Gates which check whether a ⇒∗ xi · · ·xj are defined similarly. Furthermore, at the
input level, we connect subcircuits deciding that a given binary string is a code of a terminal
symbol.

It is easy to see that the edge relation of this circuit is AC0 computable. Also it can be
seen that it has polynomial size and polynomial proof size and semi-unbounded fan-in.

We also remark that the above construction of the circuit ensures that its proof tree
corresponds to a parse tree of n⇒∗ X, so it is easy to construct an AC0 function transforming
a proof tree into a parse tree.

(Proof of Theorem 32) It suffices to show that the transformation of parse trees in the
standard proof of the pumping lemma can be paraphrased in terms of proof trees in the
circuit F (n, s, P,X) of Lemma 33.

First we note that by Lemma 33, it follows that the predicate (∃T)Parse(s, l, n, n, T, P,X)
is equivalent to an open formula in the universal conservative extension V̂lcfl. So in the
following we argue in V̂lcfl.

Let X ∈ L(G) be such that |X| ≥ 2s−1 + 1. First we claim that there exists a partition
X1, . . . , X5 of X as in the proof of the pumping lemma.

By assumption, (∃T)Parse(s, l, n, n, P, T,X) holds for some l. So by Lemma 33 we have

(∃Z)(MCV Pr(a,Ex, Gx, Z) ∧ Z[a] < r(m,n, s, P).

Since the circuit (EX , GX) is semi-unbounded fan-in, we can extract a proof tree from X

which is binary branching.
Claim. There exists a path R from the output to some input in R which is longer than s.

(Proof of Claim). The construction of the circuit (EX , GX) ensures that any proof tree
contains all bits of X. So by a combinatorial argument formalized in Vlcfl we have the
claim.

From the above claim and the pigeonhole principle for l(R)→ s where l(R) is the length
of the path R, we can choose two occurrences of some nonterminal symbol c.

In order to choose the position of such occurrences, we slightly modify the construction
of the circuit in Lemma 33 so that the OR gate checking a⇒∗ xi · · ·xj is assigned a label a.
Note that this modification is also AC0 computable.

Let X ′ and X ′′ be substrings of X generated by the first and the second occurrences of c
respectively. We can execute these substrings using the PATH axiom. Moreover, the subtree
starting from a given node is also computable by PATH.

Let X1, X2, X3, X4, X5 be such that X = X1X
′X5, X ′ = X2X

′′X4 and X3 = X ′′. Define

pump(X, i) = pump(X1, X2, X3, X4, X5, i) = X1X
i
2X3X

i
4X5.

It is easy to see that pump is ΣB1 definable in V 0.
Now we show that V̂lcfl proves the following which we denote by (∀i)PT (i,X):

(∀i < |X|m)(∃Z)(MCV Pp(apump(X,i), Epump(X,i), Gpump(X,i), Z)
∧Z[r(n, |s|, P, pump(i,X))] < p(|pump(i,X)|)).

CSL’12

454 Axiomatizing proof tree concepts in Bounded Arithmetic

Let T ′ and T ′′ be the parse tree of X ′ and X ′′ respectively. From a parse tree Ti of pump(X, i)
we can construct a parse tree Ti+1 of pump(X, i+ 1) by replacing the parse tree of T ′′ by T ′.
Again we note that this operation is AC0 computable. So we have

(∀i)(PT (i,X)→ PT (i+ 1, X)).

It is easy to see that PT (0, X). Recall that PT (i,X) is equivalent to a ΣB0 formula ϕ(i,X) in
the extended language and V̂lcfl proves ΣB0 induction. So we conclude that (∀i)PT (i,X).
Thus again by Lemma 33 we have

(∀i < |X|m)(∃T)Parse(|s|, l, n, |s|, P, T,X).

which proves the theorem.

7 Concluding Remarks

It is an interesting problem to determine the lower bound on the provability of the pumping
lemma for context-free languages. For our theories one might conjecture that Vldcfl does
not prove the theorem (∀n)(∀s)(∀P)PL(n, s, P).

As we have pointed out in the proof of Theorem 32, we need several combinatorial tools
which lie within the theory for NL in order to execute the proof of the pumping lemma. Also
it is essential in the proof that context free languages are definable in the theory.

Based on these observations, we come to the problem of whether Vldcfl+PATH proves
(∀n)(∀s)(∀P)PL(n, s, P). Note that if it is not the case then Vldcfl+PATH cannot define
(nondeterministic) context-free languages which gives a strong evidence implying that both
NL and LOGDCFL is strictly contained in LOGCFL.

References
1 F. Bédard, F. Lemieux and P. McKenzie, Extensions to Barrington’s M-program model.

Theoretical Computer Science, 107(1), 1993, pp.31–61.
2 A.Borodin, S.A.Cook, P.W.Dymond, W.L. Ruzzo, and M.Tompa, Two Applications of

Inductive Counting for Complementation Problems. SIAM J. Comput. 18, 1989, pp. 559-
578

3 S.A.Cook and P.Nguyen, Logical Foundations of Proof Complexity. Cambridge University
Press 2010.

4 G. Gottlob, N. Leone and F. Scarcello, The complexity of acyclic conjunctive queries.
Journal of the ACM 48(3) 2001, pp. 431–498.

5 J. E. Hopcroft and J. D. Ullman, Introduction to automata theory, languages and compu-
tation. Addison-Wesley, 1979.

6 S. Kuroda, Generalized Quantifier and a Bounded Arithmetic theory for LOGCFL. Archive
for Mathematical Logic, 46(5-6), 2007, pp489-516.

7 P. McKenzie, K. Reinhardt and V. Vinay, Circuits and Context-Free languages. Computing
and Combinatorics. Lecture Notes in Computer Science, 1627, 1999, pp.194-203

8 W.L. Ruzzo, Tree-size bounded alternation. Journal of Computer and System Sciences,
21(2), 1980 pp.139–154.

9 I. Sudborough, On the tape complexity of deterministic context-free language, Journal of
ACM, 25(3), 1978, pp.405–414.

10 H. Venkateswaran, Properties that characterize LOGCFL. Journal of Computer and System
Sciences, 43(2), 1991, pp.380–404.

Isomorphisms of scattered automatic linear orders
Dietrich Kuske

Institut für Theoretische Informatik, Technische Universität Ilmenau, Germany

Abstract
We prove the undecidability of the existence of an isomorphism between scattered tree-automatic
linear orders as well as the existence of automorphisms of scattered word automatic linear orders.
For the existence of automatic automorphisms of word automatic linear orders, we determine the
exact level of undecidability in the arithmetical hierarchy.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases Automatic structures, isomorphism, automorphism

Digital Object Identifier 10.4230/LIPIcs.CSL.2012.455

1 Introduction

Automatic structures form a class of computable structures for which a number of interesting
problems is decidable: while, due to Rice’s theorem, nothing is decidable about a computable
structure (given as a tuple of Turing machines), validity of first-order sentences is decidable
in automatic structures (given as a tuple of finite automata). This property of automatic
structures was first observed and exploited in concrete settings by Büchi, by Elgot [12], and
by Epstein et al. [13]. Hodgson [16] attempted a uniform treatment, but the systematic
study really started with the work by Khoussainov and Nerode [19] and by Blumensath and
Grädel [3, 4]. Over the last decade, a fair amount of results have been obtained, see e.g. the
surveys [29, 1] as well as the list of open questions [20], for very recent results not covered
by the mentioned articles, see e.g. [5, 11, 18, 17].

A rather basic question about two automatic structures is whether they are isomorphic.
For ordinals and Boolean algebras, this problem was shown to be decidable together with
a characterisation of the word-automatic members of these classes of structures. On the
other hand, already Blumensath and Grädel [4] observed that this problem is undecidable
in general. In [21], it is shown that the isomorphism problem is Σ1

1-complete; a direct inter-
pretation yields the same result for successor trees, for undirected graphs, for commutative
monoids, for partial orders (of height 2), and for lattices (of height 4) [27]. Rubin [28]
shows that the isomorphism problem for locally finite graphs is complete for Π0

3. In [24], we
show in particular that also the isomorphism problems of order trees and of linear orders
are Σ1

1-complete. For the handling of linear orders, our arguments rely heavily on “shuffle
sums”. Consequently, we construct linear orders that contain a copy of the rational line (a
linear order not containing the rational line is called scattered, i.e., our result is shown for
non-scattered linear orders). This is unavoidable since we also show that the isomorphism
problem for scattered and word-automatic linear orders is reducible to true arithmetic (i.e.,
the first-order theory of (N,+, ·)) and therefore much “simpler” than the isomorphism prob-
lem for arbitrary linear orders. But it is still conceivable that the isomorphism problem for
scattered linear orders is decidable.

In this paper, we deal with automatic scattered linear orders. In particular, we prove
the following three results:

© Dietrich Kuske;
licensed under Creative Commons License NC-ND

Computer Science Logic 2012 (CSL’12).
Editors: Patrick Cégielski, Arnaud Durand; pp. 455–469

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2012.455
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

456 Isomorphisms of scattered automatic linear orders

(1) There is a scattered linear order whose set of tree-automatic presentations is Π0
1-hard

(i.e. one can reduce the complement of the halting problem to this problem). This holds
even if we fix the order relation on the set of all trees (Theorem 13). Hence also the iso-
morphism problem for tree-automatic scattered linear orders is Π0

1-hard (Corollary 14).
(2) The existence of a non-trivial automorphism of a word-automatic scattered linear order

is Σ0
1-hard (i.e. the halting problem reduces to this problem, Corollary 6). Again, this

holds even if we fix the linear order on the set of all words (Theorem 5). The existence
of an automatic non-trivial automorphism is Σ0

1-complete.
For regular languages ordered lexicographically, the existence of a non-trivial auto-
morphism is decidable (Corollary 2), but it becomes undecidable for deterministic context-
free languages (Theorem 8).

(3) The existence of a non-trivial automorphism of a tree-automatic scattered linear order
is Σ0

2-hard (i.e., one can reduce the set of Turing machines that accept a finite language
to this problem, Theorem 17).

The proof of (2) uses an encoding of polynomials similarly to [24] but avoids the use of
shuffle sums. The technique for proving (1) and (3) is genuinely new: One can understand a
weighted automaton over the semiring (N∪ {−∞}; max,+) as a classical automaton with a
partition of the set of transitions into two sets T0 and T1. The behavior of such a weighted
automaton assigns numbers to words w, namely the maximal number of transitions from T1
in an accepting run on the word w. Krob [23] showed that the equivalence problem for such
weighted automata is Π0

1-complete. The hardness results from (1) are based on a sharpening
of Krob’s result that can be found at [10]: there is a fixed weighted automaton such that
the set of equivalent weighted automata is Π0

1-hard (and therefore undecidable). A closer
analysis of this proof, together with the techniques for proving (1) and (2), finally yields (3).

These results show that the existence of isomorphisms and of automorphisms is nontrivial
for scattered linear orders that are described by word and tree automata, resp.

A complete version of this extended abstract can be found as arXiv:1204.5653.

2 Preliminaries

2.1 Tree and word automatic structures
Let Σ be some alphabet. A Σ-tree or just a tree is a finite partial mapping t : {0, 1}∗ → Σ
such that u0 ∈ dom(t) implies u ∈ dom(t), and u1 ∈ dom(t) implies u0 ∈ dom(t) (note
that we allow the empty tree ∅ with dom(∅) = ∅). A (bottom up) tree automaton is a tuple
A = (Q, ι,∆, F) where Q is a finite set of states, ι is the initial state, ∆ ⊆ Q × Σ × Q2 is
the transition relation, and F ⊆ Q is the set of final states. A run of the tree automaton A
on the tree t is a mapping ρ : dom(t)→ Q such that

(ρ(u), t(u), ρ′(u0), ρ′(u1)) ∈ ∆ with ρ′(v) =
{
ρ(v) for v ∈ dom(t)
ι otherwise

holds for all u ∈ dom(t). The run ρ is accepting if ρ′(ε) ∈ F . The language of the tree
automaton A is the set L(A) of all trees t that admit an accepting run of A on t. A set L
of trees is regular if there exists a tree automaton A with L(A) = L.

It is convenient to understand a word as a tree t with dom(t) ⊆ 0∗ (then t(ε) is the
first letter of the word). Nevertheless, we will use standard notation for words like uv
for the concatenation or ε for the empty word. A word automaton is a tree automaton

http://arxiv.org/abs/1204.5653v1

D. Kuske 457

A = (Q, ι,∆, F) with

(q, a, p0, p1) ∈ ∆ =⇒ p1 = ι and q 6= ι .

This condition ensures that word automata accept words, only.
Let t1, . . . , tn be trees and let # /∈ Σ. Then Σ# = Σ ∪ {#} and the convolution

⊗(t1, t2, . . . , tn) or t1 ⊗ t2 ⊗ · · · ⊗ tn is the Σn#-tree t with dom(t) =
⋃

1≤i≤n dom(t) and

t(u) = (t′1(u), t′2(u), . . . , t′n(u)) with t′i(u) =
{
ti(u) if u ∈ dom(ti)
otherwise.

Note that the convolution of a tuple of words is a word, again. For an n-ary relation R on the
set of all trees, we write R⊗ for the set of convolutions ⊗(t1, . . . , tn) with (t1, . . . , tn) ∈ R.
A relation R on the set of all trees is automatic if R⊗ is a regular tree language.

Let S = (L;R1, . . . , Rk) be a relational structure such that L is a set of trees. Then S is
tree-automatic if the tree languages L and R⊗i for 1 ≤ i ≤ k are regular. The structure S is
word-automatic if, in addition, L is a word language. A tuple of tree automata accepting L
and R⊗i for 1 ≤ i ≤ k is called a tree- or word-automatic presentation of the structure S.

2.2 Linear orders
For words u and v, we write u ≤pref v if u is a prefix of v. Let Σ be some set linearly
ordered by ≤. Then ≤lex denotes the lexicographic order on the set of words Σ∗: u ≤lex v

if u ≤pref v or there are x ∈ Σ∗, a, b ∈ Σ with xa ≤pref u, xb ≤pref v, and a < b. From
the lexicographic order on Σ∗, we derive a linear order (denoted ≤2

lex) on the set Σ∗⊗Σ∗ of
convolutions of words by

u⊗ v ≤2
lex u

′ ⊗ v′ :⇐⇒ u <lex u
′ or u = u′, v ≤lex v

′ .

By ≤llex, we denote the length-lexicographic order defined by u ≤llex v if |u| < |v|
or |u| = |v| and u ≤lex v. We extend this linear order ≤llex to trees. Let t be a tree.
Then t�0∗ (more precisely, t�(0∗∩dom(t))) is a word that can be understood as the “main
branch” of the tree t. For u ∈ {0, 1}∗, let t�u denote the subtree of t rooted at u (i.e.,
dom(t�u) = {v | uv ∈ dom(t)} and t�u(v) = t(uv) for u ∈ {0, 1}∗ as well as t�u = ∅ for
u /∈ dom(t)). Furthermore, τ(t) is the tuple of “side trees” of t, namely

τ(t) = (t�0i1)0i∈dom(t) .

We now define the extension ≤trees of ≤llex to trees setting s <trees t if and only if
s�0∗ <llex t�0∗ or
s�0∗ = t�0∗ and there exists i (with 0i ∈ dom(s)) such that s�0j1 = t�0j1 for all 0 ≤ j < i

and s�0i1 <trees t�0i1.
In other words, we first compare the main branches of the trees s and t length-lexicograph-
ically and, if they are equal, compare the tuples τ(s) and τ(t) (length-)lexicographically
(based on the extension ≤trees of the length-lexicographic order to trees). Since the “side
trees” t�0j1 of any tree t are properly smaller than the tree itself, the relation ≤trees is well-
defined. Note that all the order relations ≤pref , ≤lex, ≤2

lex, ≤llex, and ≤trees are automatic.

A linear order L is scattered if there is no embedding of the rational line (Q;≤) into L.
Examples of scattered linear orders are the linear order of the non-negative integers ω, of

CSL’12

458 Isomorphisms of scattered automatic linear orders

the non-positive integers ω∗, or the linear order of size n ∈ N that we denote n. If Σ is an
alphabet with at least 2 letters, then (Σ∗;≤llex) ∼= ω is scattered, too. On the other hand, if
a, b ∈ Σ are distinct letters, then ({aa, bb}∗ab;≤lex) is countably infinite, dense, and without
endpoints, i.e., it is isomorphic to (Q;≤) [6]. Hence (Σ∗;≤lex) is not scattered. From [22,
Prop. 4.10], we know that the set of word-automatic presentations of scattered linear orders
is decidable.

A linear order L = (L;≤) is rigid if it does not admit any non-trivial automorphism,
i.e., if the identity mapping f : L → L : x 7→ x is the only automorphism of L. The linear
orders ω, ω∗, and n for n ∈ N are all rigid. On the other hand, (Q;≤) as well as (Z;≤) are
not rigid.

Note that automorphisms of tree-automatic linear orders are binary relations on the set
of all trees. Hence it makes sense to speak of an automatic automorphism. A tree-automatic
structure is automatically rigid if it does not have any non-trivial automatic automorphisms.

Let I = (I;≤) be a linear order and, for i ∈ I, let Li = (Li;≤i) be a linear order. Then
the I-sum1 of these linear orders is defined by

∑

i∈(I;≤)

Li =

⊎

i∈I
Li;
⋃

i∈I
≤i ∪

⋃

i,j∈I
i<j

(Li × Lj)

 .

Intuitively, this I-sum is obtained from the linear order I by replacing every element i ∈ I
by the linear order (Li;≤i).

For
∑
i∈2 Li, we simply write L1 + L2. If, for all i ∈ I, Li = L, then we write L · I

for
∑
i∈(I;≤) Li. As an example, consider the linear order δ = ω · ω∗. This linear order is

a descending chain of ascending chains. It will be used as “delimiter” in our constructions.
Note that

δ ∼= (10+1+0;≤lex)

where we assume 0 < 1. Also for later use, we next define a regular set D = {ti,j | i, j ≥ 0}
of trees such that δ ∼= (D;≤trees). The alphabet of these trees will be the singleton {$} so
that a tree is completely given by its domain. Then set inductively

dom(t0,j) = {ε, 0, 00} ∪ 1{0k | 0 ≤ k ≤ j} and dom(ti+1,j) = {ε, 0, 00} ∪ 01 dom(ti,j)

The trees t0,4 and t2,2 are depicted in Figure 1 (left-arrows denote 0-sons, right-arrows
denote 1-sons).

3 Automorphisms of linear orders on word languages

In this section, we consider linear orders on sets of words. The universe will be regular or
context-free and the order will mainly be the lexicographic order ≤lex and its relative ≤2

lex.

3.1 Regular universe and ≤lex

In this section, we will show that the rigidity of a linear order (L;≤lex) with L regular is
decidable. Even more, we show this decidability for regular words, i.e., word-automatic

1 Shuffle sums mentioned in the introduction are special cases of this construction where I = (Q;≤) is
the rational line and, for every q ∈ Q, the set {r ∈ Q | Lq

∼= Lr} is dense.

D. Kuske 459Dietrich Kuske 5

Figure 1 Two trees from D

structures of the form (L;≤lex, (Pa)a∈A) with L and Pa ⊆ L regular languages of words
for all a ∈ A. The study of these regular words was initiated by Courcelle [8] who was
interested in the frontier of regular trees. Thomas proved that their isomorphism problem
is decidable [30] (an alternative proof was given by Bloom and Ésik [2]) and the complexity
of this problem was determined by Lohrey and Mathissen [25].

The outline of our proof is as follows (missing definitions are given below): Let ν be
some regular word given by a tuple of word automata. The basic observation is that ν is
rigid if and only if all its ∼-equivalence classes as well as the quotient ν/∼ are rigid. This
allows to do induction since, after finitely many divisions of ν by ∼, we end up with a
single ∼-equivalence class. The central problem therefore is to determine the ∼-equivalence
classes (up to isomorphism, there are only finitely many) as well as the quotient ν/∼ and to
decide whether a single ∼-equivalence class is rigid. For these calculations, we first represent
the regular word ν by a “term” (Heilbrunner [15]) and then transform such terms using a
technique by Bloom and Ésik [2].

An extended word is a labeled linear order with a finite set of labels. A regular word over
the alphabet A is an extended word (L;≤,λ) with λ : L→ A such that

L and λ−1(a) for a ∈ A are regular word languages over some alphabet Σ and
≤ is the lexicographic linear order ≤lex.

A term over A uses constants a ∈ A (standing for the extended word on 1 whose only
element is labeled a) and the following operations:

concatenation of words (denoted µ + ν)
ω-power (denoted µ · ω)
ω∗-power (denoted µ · ω∗)
shuffle (denoted [ν1, ν2, . . . , νk]η) for arbitrary k ≥ 1.

The semantics of the concatenation, ω-power and ω∗-power generalize the corresponding
operations for linear orders in the obvious way. To define the extended word [ν1, . . . , νk]η,
let λ : Q → {1, 2, . . . , k} be a mapping such that λ−1(i) is dense for all 1 ≤ i ≤ k. Then set
ν(q) = νλ(q) for q ∈ Q and define

[ν1, . . . , νk]η =
∑

q∈(Q;≤)

ν(q)

as we did for linear orders. This operation is the extension of the shuffle sum from linear
orders to extended words. It is well-defined in as far as the choice of the function λ does

Figure 1 Two trees from D.

structures of the form (L;≤lex, (Pa)a∈A) with L and Pa ⊆ L regular languages of words
for all a ∈ A. The study of these regular words was initiated by Courcelle [8] who was
interested in the frontier of regular trees. Thomas proved that their isomorphism problem
is decidable [30] (an alternative proof was given by Bloom and Ésik [2]) and the complexity
of this problem was determined by Lohrey and Mathissen [25].

The outline of our proof is as follows (missing definitions are given below): Let ν be
some regular word given by a tuple of word automata. The basic observation is that ν is
rigid if and only if all its ∼-equivalence classes as well as the quotient ν/∼ are rigid. This
allows to do induction since, after finitely many divisions of ν by ∼, we end up with a
single ∼-equivalence class. The central problem therefore is to determine the ∼-equivalence
classes (up to isomorphism, there are only finitely many) as well as the quotient ν/∼ and to
decide whether a single ∼-equivalence class is rigid. For these calculations, we first represent
the regular word ν by a “term” (Heilbrunner [15]) and then transform such terms using a
technique by Bloom and Ésik [2].

An extended word is a labeled linear order with a finite set of labels. A regular word over
the alphabet A is an extended word (L;≤, λ) with λ : L→ A such that

L and λ−1(a) for a ∈ A are regular word languages over some alphabet Σ and
≤ is the lexicographic linear order ≤lex.

A term over A uses constants a ∈ A (standing for the extended word on 1 whose only
element is labeled a) and the following operations:

concatenation of words (denoted µ+ ν)
ω-power (denoted µ · ω)
ω∗-power (denoted µ · ω∗)
shuffle (denoted [ν1, ν2, . . . , νk]η) for arbitrary k ≥ 1.

The semantics of the concatenation, ω-power and ω∗-power generalize the corresponding
operations for linear orders in the obvious way. To define the extended word [ν1, . . . , νk]η,
let λ : Q→ {1, 2, . . . , k} be a mapping such that λ−1(i) is dense for all 1 ≤ i ≤ k. Then set
ν(q) = νλ(q) for q ∈ Q and define

[ν1, . . . , νk]η =
∑

q∈(Q;≤)

ν(q)

as we did for linear orders. This operation is the extension of the shuffle sum from linear
orders to extended words. It is well-defined in as far as the choice of the function λ does
not influence the isomorphism type of the result. For a term t, let |t| denote the extended
word it describes.

CSL’12

460 Isomorphisms of scattered automatic linear orders

Let ν = (L;≤, λ) be an extended word. On the set L, we define an equivalence relation ∼
by x ∼ y if (where we assume x ≤ y)

the interval [x, y] is finite or
for any x′, y′, z ∈ [x, y] with x′ < y′, there exists z′ ∈ (x′, y′) with λ(z) = λ(z′).

As explained above, regular words with a single ∼-equivalence class are of particular
importance in our proof. These regular words can be described by “primitive terms in
normal form” (consult [2, Definitions 57] for their formal definition). Here, we list only the
main properties of the set D(A) of all these primitive terms in normal form:

The set D(A) is decidable (clear by its definition).
If ν is a regular word with a single ∼-equivalence class, then there exists a term t ∈ D(A)
with ν ∼= |t| [2, Lemma 58].
If t ∈ D(A), then |t| has a single ∼-equivalence class (clear by the definition of D(A)).
If s, t ∈ D(A) with |s| ∼= |t|, then s = t [2, Proposition 62].

Let ν = (L;≤lex, λ) be a regular word. The equivalence classes with respect to ∼ are
convex sets (or segments). Hence they can be ordered by

[x]∼ <′ [y]∼ :⇐⇒ x < y and x 6∼ y

such that (L/∼;≤′) is a linear order. For X ∈ L/∼, the restriction of ν to the equivalence
class X is a regular word with a single ∼-equivalence class. Hence there exists a unique
term tX ∈ D(A) with |t| ∼= ν�X. Define λ′ : L/∼ → D(A) by X 7→ tX . Then

c(ν) = (L/∼;≤′, λ′)

is an extended word with possibly infinite alphabet.

I Theorem 1. The set of rigid regular words ν (given as tuple of finite automata) is decid-
able.

Proof. Let ν = (L;≤lex, λ) be a regular word given by finite automata that accept L and
λ−1(a) for a ∈ A (without loss of generality, we can assume ε /∈ L). In a first step, we
compute a term t with |t| ∼= ν which is possible by Heilbrunner [15].

Using [2, Theorem 64], we construct a term c(t) over D(A) with |c(t)| ∼= c(|t|), in
particular, c(|t|) has a finite alphabet. From this term c(t), we can extract the alphabet
D ⊆ D(A) of all symbols from D(A) that appear in c(t). Then we observe that |t| has a
nontrivial automorphism if and only if

c(|t|) = |c(t)| has a nontrivial automorphism or
there exists a ∼-equivalence class X such that |t|�X has a non-trivial automorphism.

Note that s ∈ D if and only if there exists a∼-equivalence classX with |t|�X ∼= |s|. Hence the
second item holds if and only if there exists s ∈ D such that |s| has a nontrivial automorphism
– but this is the case if and only if s is of the form u · ω∗ + u · ω or [u1, . . . , uk]η. To decide
whether |c(t)| has a nontrivial automorphism, we call this process recursively. From [22],
we observe that cn(|t|) is a singleton for some n ∈ N, hence this recursive procedure stops
eventually with |t| a singleton. J

I Corollary 2. The set of regular languages L such that (L;≤lex) is rigid, is decidable.

D. Kuske 461

3.2 Regular universe and ≤2
lex

The situation changes completely when we move from the lexicographic order ≤lex to the
linear order ≤2

lex since, as we will see, rigidity of (L;≤2
lex) is undecidable for regular lan-

guages L.
Let p, q ∈ N[x̄] be two polynomials with coefficients in N and variables among x̄ =

(x1, . . . , xk). Then define the scattered linear order

Lp,q =
∑

x̄∈(Nk;≤lex)

(
(p(x̄) + δ) · ω∗ + (q(x̄) + δ) · ω)

)
.

This linear order Lp,q forms an ω-sequence of “blocks” of the form

B(m,n) = (m+ δ) · ω∗ + (n+ δ) · ω
with m,n ∈ N. Therefore, every automorphism of Lp,q has to map every block onto itself.
In other words, Lp,q is rigid if and only if all these blocks are rigid. But B(m,n) is rigid if
and only if m 6= n. Hence we showed

Lp,q is rigid ⇐⇒ ∀x̄ ∈ Nk : p(x̄) 6= q(x̄) .

We now prove that Lp,q is word-automatic or, more specifically, we will construct a
regular set L ⊆ {0, 1}+ ⊗ {0, 1}+ such that Lp,q ∼= (L;≤2

lex) (see Lemma 4 below).
Let A = (Q, ι,∆, F) be a word automaton over the alphabet Σ and let w ∈ Σ+ be a

word. Then Run(A, w) is the set of all words over ∆ of the form

(q0, a1, q1, ι)(q1, a2, q2, ι) . . . (qk−1, ak, ι, ι)

with w = a1a2 . . . ak and q0 ∈ F . These words encode the accepting runs of the word
automatonA (recall that word automata are special bottom up tree automata which explains
the unusual position of the initial and final states in the run). Furthermore, let Run(A) =⋃
w∈Σ+ Run(A, w).

I Lemma 3. From polynomials p, q ∈ N[x1, . . . , xk], one can construct an alphabet Σ and a
regular language K ⊆ Σ+ ⊗ Σ+ such that (K;≤2

lex) ∼= Lp,q.
If Lp,q has a non-trivial automorphism, then (K;≤2

lex) has a non-trivial automatic auto-
morphism.

Proof. Let p and q be polynomials from N[x1, . . . , xk]. For x̄ = (x1, . . . , xk) ∈ Nk, set

ax̄ = ax1¢ax2¢ · · · ¢axk¢ ∈ (a∗¢)k .

Then, as in the proof of [24, Lemma 7], one can construct nondeterministic finite auto-
mata Ap = (Qp, ιp,∆p, Fp) and Aq = (Qq, ιq,∆q, Fq) with L(Ap), L(Aq) ⊆ (a∗¢)k, such
that, for x̄ ∈ Nk, the NFA Ap has precisely p(x̄) many accepting runs on the word ax̄, i.e.,
|Run(Ap, ax̄)| = p(x̄), and similarly |Run(Aq, ax̄)| = q(x̄). We will assume ∆p ∩∆q = ∅.

Let Σ = {a, ¢, 0, 1, 2, 3} ∪∆p ∪∆q and let K ⊆ Σ+ ⊗ Σ+ be the union (for x̄ ∈ Nk) of
the languages
(
ax̄0+1⊗ (Run(Ap, ax̄) ∪ 32+3+2)

)
∪
(
ax̄1+0⊗ (Run(Aq, ax̄) ∪ 32+3+2)

)
.

We have to show that the language K is effectively regular. Here, the crucial point is
the regularity of

⋃

x̄∈Nk

ax̄0+1⊗ Run(Ap, ax̄) =

 ⋃

x̄∈Nk

ax̄ ⊗ Run(Ap, ax̄)

 ·
(
0+1⊗ {ε}

)

CSL’12

462 Isomorphisms of scattered automatic linear orders

(this equality holds since |w| = |W | for any w ∈ (a∗¢)k and W ∈ Run(Ap, w)). But a word
belongs to the language in square brackets if and only if it is the convolution of a word w
from the regular language (a∗¢)k and a run of the automaton Ap on this word w, a property
that a finite automaton can check easily.

On the alphabet Σ, we fix a linear order ≤ such that ∆p ∪∆q < 0 < 1 < 2 < 3 < ¢ < a.
Then (K;≤2

lex) ∼= Lp,q.
Now suppose that Lp,q has a non-trivial automorphism. Then, as we saw above, there

is ȳ ∈ Nk such that p(ȳ) = q(ȳ). Then Lp,q contains an interval isomorphic to a Z-sequence
of copies of p(ȳ) + δ ∼= q(ȳ) + δ. Moving these blocks in (K;≤2

lex) upwards by 1 and fixing
everything else in K gives a non-trivial automatic automorphism. J

I Lemma 4. From polynomials p, q ∈ N[x1, . . . , xk], one can construct a regular language
L ⊆ {0, 1}+ ⊗ {0, 1}+ such that (L;≤2

lex) ∼= Lp,q.
If Lp,q has a non-trivial automorphism, then (L;≤2

lex) has a non-trivial automatic auto-
morphism.

Proof. Let p, q ∈ N[x1, . . . , xk] be polynomials, let Σ be the alphabet and K the language
from Lemma 3, and let (Σ;≤) be the sequence σ1 < σ2 < · · · < σ`. Furthermore, let g denote
the monoid homomorphism from Σ∗ to {0, 1}∗ defined by g(σi) = 1i0`−i for 1 ≤ i ≤ `. Now
set L = {g(u) ⊗ g(v) | u ⊗ v ∈ K}. Then u ⊗ v 7→ g(u) ⊗ g(v) is an isomorphism from
(K;≤2

lex) onto (L;≤2
lex). Since all the words g(σi) have the same length, the language L is

also regular. J

The set of pairs of polynomials p, q ∈ N[x̄] with p(ȳ) 6= q(ȳ) for all ȳ ∈ Nk is Π0
1-

complete [26]. This allows to prove the following result:

I Theorem 5. (i) The set of regular languages L ⊆ {0, 1}+ ⊗ {0, 1}+ such that (L;≤2
lex)

is rigid (is rigid and scattered, resp.), is Π0
1-hard.

(ii) The set of regular languages L ⊆ {0, 1}+⊗{0, 1}+ such that (L;≤2
lex) is automatically

rigid (automatically rigid and scattered, resp.) is Π0
1-hard.

I Corollary 6. (i) The set of word-automatic presentations of rigid (rigid and scattered,
resp.) linear orders is Π0

1-hard.
(ii) The set of word-automatic presentations of automatically rigid (automatically rigid

and scattered, resp.) linear orders is Π0
1-complete.

3.3 Context-free universe and ≤lex

Ésik initiated the investigation of linear orders of the form (L;≤lex) where L is context-
free. Density of such a linear order is undecidable [14], the isomorphism problem is Σ1

1-
complete [24] and their rank is bounded by ωω [7].

We will show that rigidity of (L;≤lex) is undecidable for deterministic context-free lan-
guages L. The proof uses the linear order Lp,q and constructs a deterministic context-free
language L′ such that (L′;≤lex) ∼= Lp,q. This construction is a variant of the construction
in the proof of Lemma 3.

I Lemma 7. From polynomials p, q ∈ N[x1, . . . , xk], one can construct a deterministic
context-free language L′ ⊆ {0, 1}+ such that (L′;≤lex) ∼= Lp,q.
Proof. Let p, q ∈ N[x1, . . . , xk] be polynomials, let Σ be the alphabet and let K be the
language from Lemma 3. Then set

K ′ = {u$vrev | u⊗ v ∈ K}

D. Kuske 463

where vrev is the reversal of the word v. Then, from a deterministic finite automaton A
acceptingKrev, one can construct a deterministic pushdown automaton acceptingK ′. Recall
that there is a word u such that u ⊗ 3232 <2

lex u ⊗ 32232 both belong to K. But we have
u$2323 >lex u$23223 (the same phenomenon can be observed with words u ⊗ ρ where
ρ is a run of one of the two weighted automata). In other words, the obvious mapping
u⊗ v 7→ u$vrev is no isomorphism from (K;≤2

lex) onto (K ′;≤lex).
Note that the alphabet of K ′ is Σ′ = {$} ∪ Σ = {$, a, ¢, 0, 1, 2, 3} ∪∆p ∪∆q. We order

Σ′ in such a way that ∆p ∪∆q <
′ 0 <′ 1 <′ 3 <′ 2 <′ ¢ <′ a <′ $. Compared to the proof

of Lemma 3, the order of 2 and 3 is inverted and $ is made the new maximal element. The
reason for this invertion is that now, we have (32+3+2rev;≤′lex) ∼= (32+3+2;≤lex) ∼= δ. Given
this definition and observation, one can show (K ′;≤′lex) ∼= (K;≤2

lex) which was isomorphic
to Lp,q. The construction of L′ ⊆ {0, 1}+ then follows the proof of Lemma 4. J

Now we obtain, in the same way that we proved Theorem 5, the following result.

I Theorem 8. The set of context-free languages L ⊆ {0, 1}+ such that (L;≤lex) is rigid (is
rigid and scattered, resp.), is Π0

1-hard.

4 Isomorphisms and automorphisms of linear orders on tree
languages

In this section, we will show that the isomorphism of scattered and tree-automatic linear
orders is undecidable. Furthermore, we will prove that the existence of a non-trivial auto-
morphism in this case is Σ0

2-hard. Both these results use (an improved version of) a theorem
by Krob [23] from [10] that we discuss first.

4.1 Weighted automata and Minsky machines

A weighted automaton is a tuple A = (Q,Σ, ι, µ, F) where Q is the finite set of states,
Σ is the alphabet, ι ∈ Q is the initial state, F ⊆ Q is the set of accepting states, and
µ : Q× Σ×Q→ {−∞, 0, 1} is the weight function.

A run of A is a sequence ρ = (q0, a1, q1) . . . (qk−1, ak, qk) ∈ ∆+ such that q0 = ι,
µ(qi−1, ai, qi) ∈ {0, 1} for all 1 ≤ i ≤ k, and qk ∈ F . Its label is the word a1 . . . ak ∈ Σ+

and its weight wt(ρ) is the number of indices i ∈ {1, 2, . . . , k} with µ(qi−1, ai, qi) = 1. By
Run(A, w) we denote the set of runs labeled w and Run(A) denotes the set of all runs of A.
The behaviour ||A|| of A is the function from Σ+ to N∪{−∞} that maps the word w to the
maximal weight of a run with label w.

I Theorem 9 (cf. proof of [10, Theorem 8.6]). From a Minsky machine (or two-counter
automaton)M, one can construct a weighted automaton A and a regular language CTreg ⊆
(Σ ·2)+ such that, for any m ∈ N, the following are equivalent:

1. m is not accepted byM.
2. ||A||(u) > 1

2 |u| for all u ∈ CTreg with m = max{n | $2(a2)n ≤pref u}.

Furthermore, ||A||(u) ∈ N for all u ∈ CTreg.

CSL’12

464 Isomorphisms of scattered automatic linear orders

From the weighted automaton A, one can then construct (cf. [9, 10]) weighted auto-
mata AM on the alphabet Σ and BM on the alphabet Σ2

such that

||AM||(u) = max(b |u|2 c+ 1, ||A||(u)) and

||BM||(x) =

||A||(u) if x = u⊗ $2(a2)m, u ∈ CTreg,

and m = max{n | $2(a2)n ≤pref u}
||AM||(u) if x = u⊗ $2(a2)m and

(u /∈ CTreg or m 6= max{n | $2(a2)n ≤pref u})
0 otherwise

for all u ∈ Σ+ and x ∈ (Σ2
#)+.

For m ∈ N, we define the function rM,m : Σ+ → N by rM,m(u) = ||BM||(u⊗ $2(a2)m.
This is well-defined since, for any u ∈ Σ+ and m ∈ N, we have ||A||(u) ∈ N and therefore
also ||BM||(u⊗ $2(a2)m) ∈ N. In other words, we have

rM,m(u) =
{
||A||(u) if u ∈ CTreg and m = max{n | $2(a2)n ≤pref u}
||AM||(u) otherwise .

The following is the central property from this section that we will use in our handling
of tree-automatic linear orders.
I Proposition 10. For all m ∈ N, the following are equivalent:

1. m is not accepted by the Minsky machineM.
2. ||AM||(u) = rM,m(u) holds for all u ∈ Σ∗.

I Remark. Fix some Minsky machinesM that accepts an undecidable set of natural num-
bers. From m ∈ N, one can then construct a weighted automaton B with ||B|| = rM,m.
Hence the set of weighted automata B with ||B|| = ||AM|| is Π0

1-hard and therefore un-
decidable. This strengthens Krob’s result stating that the set of pairs (A,B) of weighted
automata with ||A|| = ||B|| is Π0

1-hard.

4.2 Isomorphism
Note that Krob’s result talks about functions Σ+ → N while we are interested in linear
orders. Therefore, we set

Lr =
∑

w∈(Σ+;≤llex)

(ωr(w)+1 + δ)

for a function r : Σ+ → N. Since (Σ+;≤llex) ∼= ω, this linear order is an ω-sequence of
ordinals of the form ωn with n ≥ 1, separated by our delimiter δ. Hence it is scattered.
Furthermore, for all functions r, r′ : Σ+ → N, we obtain

Lr ∼= Lr′ ⇐⇒ r = r′ . (1)

The following lemma states in particular that Lr is tree automatic whenever r = ||A||
for some weighted automaton A.

I Lemma 11. From a weighted automaton A, one can compute a regular set of trees LA
such that (LA;≤trees) ∼= L||A||.

D. Kuske 465

Before we prove this lemma, we show how we can use it to prove that the isomorphism
problem of scattered tree-automatic linear orders is undecidable (the proof of Lemma 11 can
be found following the proof of Corollary 14).

I Lemma 12. From a Minsky machine M and m ∈ N, one can compute a regular set of
trees L such that (L;≤trees) ∼= LrM,m

.

Proof. Let M be a Minsky machine and let m ∈ N. Let BM be the weighted automaton
constructed following Theorem 9. Then, from m ∈ N, we can compute a weighted auto-
maton BM,m with alphabet Σ such that

||BM,m||(u) = ||BM||(u⊗ $2(a2)m) for all u ∈ Σ+ .

But then ||BM,m|| = rM,m. By Lemma 11, we can compute, from m ∈ N, a regular language
of trees L such that (L;≤trees) ∼= L||BM,m|| = LrM,m

. J

I Theorem 13. There is a scattered linear order L such that the set of regular tree lan-
guages L with (L;≤trees) ∼= L is Π0

1-hard.

Proof. Let P ⊆ N be some Π0
1-complete set. Then there exists a Minsky machineM that

accepts the set N \ P . Let AM and BM be the weighted automata constructed following
Theorem 9. Then we get

m ∈ P ⇐⇒ m is not accepted byM
Prop. 10⇐⇒ ||AM||(u) = rM,m(u) for all u ∈ Σ+

⇐⇒ L||AM|| ∼= LrM,m

where the last equivalence follows from (1). Hence, by Lemma 12, we can reduce the Π0
1-

complete set P to the set of regular tree languages L with (L;≤trees) ∼= L||AM||. The theorem
therefore holds with L = L||AM||. J

Since the linear order ≤trees is tree-automatic, we immediately obtain

I Corollary 14. There is a scattered linear order L whose set of tree-automatic presentations
is Π0

1-hard.

One immediately gets that the isomorphism problem for tree-automatic scattered linear
orders is Π0

1-hard. We do not know whether the set of tree-automatic presentations of
scattered linear orders is decidable. Therefore, the following immediate consequence of
Corollary 14 is a bit stronger:

I Corollary 15. Let X be a set of pairs of tree-automatic presentations such that, for all
tree-automatic presentations P1 and P2 of scattered linear orders L1 and L2, one has

(P1, P2) ∈ X ⇐⇒ L1 ∼= L2 .

Then X is Π0
1-hard.

The rest of this section is devoted to the proof of Lemma 11.

Proof of Lemma 11. Let A = (Q,Σ, ι, µ, F) be a weighted automaton. We will construct
a tree-automatic presentation of the linear order L||A||.

A run tree of A is a tree t over the alphabet Σ] {$} such that there exist states ι =
q0, q1, . . . , qk−1 ∈ Q and qk ∈ F (with k = max{i | 0i+1 ∈ dom(t)}) with the following
properties (see the tree on the next page with k = 5 where we omitted the label $):

CSL’12

466 Isomorphisms of scattered automatic linear orders

(T1) 11 ∈ dom(t) ⊆ 0∗ ∪ 0∗10∗ ∪ 110∗ and 100 /∈ dom(t)
(T2) t(0i) ∈ Σ and µ(qi−1, t(0i), qi) 6= −∞ for all 1 ≤ i ≤ k
(T3) 0i1 ∈ dom(t) implies 1 ≤ i ≤ k and µ(qi−1, ai, qi) = 1 or i = 0
(T4) t−1($) = dom(t) \ {0i | 1 ≤ i ≤ k}
Note that every run tree t defines a word over Σ, namely

word(t) = t(0) t(00) . . . t(0k) .

Since 11 ∈ dom(t), also 10 and therefore 1 belong to dom(t). Since, consequently, 0 ∈ dom(t),
we have word(t) 6= ε.

12 Isomorphisms of scattered automatic linear orders

(T1) 11 ∈ dom(t) ⊆ 0∗ ∪ 0∗10∗ ∪ 110∗ and 100 /∈ dom(t)
(T2) t(0i) ∈ Σ and µ(qi−1, t(0i), qi) $= −∞ for all 1 ≤ i ≤ k

(T3) 0i1 ∈ dom(t) implies 1 ≤ i ≤ k and µ(qi−1, ai, qi) = 1 or i = 0
(T4) t−1($) = dom(t) \ {0i | 1 ≤ i ≤ k}
Note that every run tree t defines a word over Σ, namely

word(t) = t(0) t(00) . . . t(0k) .

Since 11 ∈ dom(t), also 10 and therefore 1 belong to dom(t). Since, consequently, 0 ∈ dom(t),
we have word(t) $= ε.

a

b

a

a

b

The figure on the right shows a run tree t with
word(t) = abaab. The idea is that the “main branch”
{0, 00, . . . , 0k} carries a run ρ of the weighted auto-
maton A. The number of “side branches” starting in
some node 0i1 with i > 0 is at most the weight wt(ρ) of
the encoded run. Since these side branches have arbit-
rary length, the whole run tree stands for an element of
ωwt(ρ). The “side branch” starting in 11 plays a special
role, its length |dom(t)∩ 110+| is denoted n(t) (the run
tree t on the right satisfies n(t) = 2).

We next define, for two trees s and t, the tree s + t by adding a new $-labeled root and
considering s as left subtree of s+ t and t as right subtree. In particular, we will need trees
of the form w + t with w a word. These trees carry the sequences $w on dom(w + t) ∩ 0∗
and satisfy (w + t) !1∼= t.

We consider the language LA = {t | t is a run tree}∪ {w$ + t | w ∈ Σ+, t ∈ D} where D
is the set of trees from page 4 that satisfies (D;≤trees) ∼= δ. This language LA is regular.

Note that trees from LA use the alphabet Σ∪{$} that we order arbitrarily. We will now
prove (LA;≤trees) ∼= L||A||.

First let w ∈ Σ+ and n ∈ N. Then let I1
w,n denote the restriction of (LA;≤trees) to all

run trees t with

word(t) = w and n(t) = n . (2)

Note that for any two run trees s and t satisfying (2), we have s!0∗ = t!0∗ and s!1 = t!1.
Hence s ≤trees t if and only if there exists i ≥ 1 with t!0j1 = s!0j1 for all 1 ≤ j < i and
s!0i1 <trees t!0i1. By (T3), dom(t) ∩ 0+1 contains at most |w| elements. Furthermore note
that the trees t!0i1 can be identified with natural numbers (namely with |dom(t) ∩ 0i10∗|).
This shows that I1

w,n can be embedded into (N|w|;≤lex) and is therefore well-ordered and
at most ω|w|.

Now let ρ = (q0, a1, q1)(q1, a2, q2) . . . (qk−1, ak, qk) ∈ Run(A, w) be a run of the weighted
automaton A on the word w = a1 . . . ak. Consider a tuple (m1, . . . ,mk) ∈ Nk such that
mi > 0 implies µ(qi−1, ai, qi) = 1. Then there exists a unique run tree t satisfying (2)
and |dom(t) ∩ 0i10∗| = mi for all 1 ≤ i ≤ k. This gives an order-preserving embedding
fρ : ωwt(ρ) → I1

w,n, i.e., we showed ωwt(ρ) ≤ I1
w,n. Since this holds for abitrary runs ρ ∈

Run(A, w) and since ||A||(w) = max{wt(ρ) | ρ ∈ Run(A, w)}, we get ω||A||(w) ≤ I1
w,n and

therefore ω||A||(w)+1 ≤ I1
w,n · ω.

By (T2), for every run tree t satisfying (2), there exists at least one run ρ ∈ Run(A, w)
such that t is in the image of the embedding fρ. Hence I1

w,n ≤
⊕

ρ∈Run(A,w) ω
wt(ρ) where

The figure on the right shows a run tree t with
word(t) = abaab. The idea is that the “main branch”
{0, 00, . . . , 0k} carries a run ρ of the weighted auto-
maton A. The number of “side branches” starting in
some node 0i1 with i > 0 is at most the weight wt(ρ) of
the encoded run. Since these side branches have arbit-
rary length, the whole run tree stands for an element of
ωwt(ρ). The “side branch” starting in 11 plays a special
role, its length |dom(t)∩110+| is denoted n(t) (the run
tree t on the right satisfies n(t) = 2).

We next define, for two trees s and t, the tree s+ t

by adding a new $-labeled root and considering s as left subtree of s + t and t as right
subtree. In particular, we will need trees of the form w+ t with w a word. These trees carry
the sequences $w on dom(w + t) ∩ 0∗ and satisfy (w + t) �1∼= t.

We consider the language LA = {t | t is a run tree} ∪ {w$ + t | w ∈ Σ+, t ∈ D} where D
is the set of trees from page 458 that satisfies (D;≤trees) ∼= δ. This language LA is regular.

Note that trees from LA use the alphabet Σ∪{$} that we order arbitrarily. We will now
prove (LA;≤trees) ∼= L||A||.

First let w ∈ Σ+ and n ∈ N. Then let I1
w,n denote the restriction of (LA;≤trees) to all

run trees t with

word(t) = w and n(t) = n . (2)

Note that for any two run trees s and t satisfying (2), we have s�0∗ = t�0∗ and s�1 = t�1.
Hence s ≤trees t if and only if there exists i ≥ 1 with t�0j1 = s�0j1 for all 1 ≤ j < i and
s�0i1 <trees t�0i1. By (T3), dom(t) ∩ 0+1 contains at most |w| elements. Furthermore note
that the trees t�0i1 can be identified with natural numbers (namely with |dom(t) ∩ 0i10∗|).
This shows that I1

w,n can be embedded into (N|w|;≤lex) and is therefore well-ordered and
at most ω|w|.

Now let ρ = (q0, a1, q1)(q1, a2, q2) . . . (qk−1, ak, qk) ∈ Run(A, w) be a run of the weighted
automaton A on the word w = a1 . . . ak. Consider a tuple (m1, . . . ,mk) ∈ Nk such that
mi > 0 implies µ(qi−1, ai, qi) = 1. Then there exists a unique run tree t satisfying (2)
and |dom(t) ∩ 0i10∗| = mi for all 1 ≤ i ≤ k. This gives an order-preserving embedding
fρ : ωwt(ρ) → I1

w,n, i.e., we showed ωwt(ρ) ≤ I1
w,n. Since this holds for abitrary runs ρ ∈

Run(A, w) and since ||A||(w) = max{wt(ρ) | ρ ∈ Run(A, w)}, we get ω||A||(w) ≤ I1
w,n and

therefore ω||A||(w)+1 ≤ I1
w,n · ω.

By (T2), for every run tree t satisfying (2), there exists at least one run ρ ∈ Run(A, w)
such that t is in the image of the embedding fρ. Hence I1

w,n ≤
⊕

ρ∈Run(A,w) ω
wt(ρ) where

D. Kuske 467

⊕
denotes the natural sum of ordinals. We can conclude

ω||A||(w)+1 ≤ I1
w,n · ω ≤

 ⊕

ρ∈Run(A,w)

ωwt(ρ)

 · ω

= ωmax{wt(ρ)|ρ∈Run(A,w)}+1

= ω||A||(w)+1

and therefore I1
w,n · ω = ω||A||(w)+1.

Next consider the restriction I1
w of (LA;≤trees) to the set of run trees t with word(t) = w.

Then n(s) < n(t) implies s <trees t. Furthermore, the restriction of I1
w to the set of run

trees t with n(t) = n equals I1
w,n. Hence I1

w =
∑
n∈(N;≤) I1

w,n = I1
w,0 · ω = ω||A||(w)+1 since

I1
w,0
∼= I1

w,n for all n ≥ 0.
Next consider the restriction I2

w of (LA;≤2
trees) to the set of trees w$ +D. Then I2

w
∼= δ

by what we saw on page 458. Let s be a run tree with word(s) = w and let t ∈ w$ + D.
Then s and t coincide on 0∗ (where they both carry the sequence w). Consider s�10∗

and t�10∗ . Since s is a run tree, we have dom(s) ∩ 10∗ = {1, 10} while t�1 ∈ D implies
dom(t) ∩ 10∗ = {1, 10, 100}. Hence s�1 <trees t�1 and therefore s <trees t. Hence, the
restriction Iw of (LA;≤trees) to the set of run trees t with word(t) = w and the set of trees
w$ +D satisfies Iw = I1

w + I2
w
∼= ω||A||(w)+1 + δ.

Finally, let u, v ∈ Σ+. Then u ≤llex v if and only if u ≤trees v. This implies

(LA;≤trees) =
∑

w∈(Σ+;≤llex)

Iw ∼=
∑

w∈(Σ+;≤llex)

ω||A||(w)+1 + δ = LA .

J

4.3 Automorphisms
From Theorem 5, we already know that the existence of a non-trivial automorphism of a
word-automatic and scattered linear order is Σ0

1-hard. Here, we push this lower bound one
level higher for tree-automatic scattered linear orders. The order theoretic construction
resembles that from Section 3.2, but also uses ideas from the previous section.

LetM be a Minsky machine, let AM and BM be the weighted automata and, for m ∈ N,
let rM,m be the function defined following Theorem 9. Then we define the linear order

LM =
∑

m∈(N;≤)

(
L||AM|| · ω∗ + LrM,m

· ω
)
.

Note that this linear order is rigid if and only if L||AM|| 6∼= LrM,m
for all m ∈ N. But this is

the case if and only ifM accepts all natural numbers m, a Π0
2-complete problem.

I Lemma 16. From a Minsky machineM, one can construct a tree-automatic presentation
of the linear order LM.

Proof. Let M be a Minsky machine, let AM and BM be the weighted automata and let
rM,m : Σ+ → N be the function defined following Theorem 9. Recall that the alphabet of
AM is Σ and that of BM is Σ2

#. Recall the notion of a run tree from the proof of Lemma 11
that is based on a weighted automaton. In this proof, we will consider run trees with respect
to the weighted automaton AM and with respect to the weighted automaton BM. Now recall
the definition of the language LAM and LBM :

LAM = {t | t is a run tree wrt. AM} ∪ {w$ + t | w ∈ Σ+, t ∈ D}
LBM = {t | t is a run tree wrt. BM} ∪ {w$ + t | w ∈ (Σ2

#)+, t ∈ D}

CSL’12

468 Isomorphisms of scattered automatic linear orders

Note that these two tree languages are disjoint since the alphabets Σ and Σ2
are disjoint.

Now define the language

LM = (LAM ⊗ $∗ ⊗ $2(a2)∗)
∪{t⊗ $k ⊗ $2(a2)m | k,m ∈ N, t ∈ LBM , and

(t is a run tree ⇒ word(t) ∈ Σ+ ⊗ $2(a2)m)} .
The crucial point regarding the regularity of this set is the verification that a tree t ⊗
$k ⊗ $2(a2)m with t a run tree of BM belongs to the second set. But this is the case if
t�0∗ = $$2(a2)m$, a property that a tree automaton can check easily.

On this set, we define the following linear order�: (s⊗$k⊗$2(a2)m) � (t⊗$`⊗$2(a2)n)
if and only if one of the following hold

(O1) m < n or
(O2) m = n, s ∈ LAM , and t ∈ LBM , or
(O3) m = n, s, t ∈ LAM , and k > `, or
(O4) m = n, s, t ∈ LAM , k = `, and s ≤trees t, or
(O5) m = n, s, t ∈ LBM , and k < `, or
(O6) m = n, s, t ∈ LBM , k = `, and s ≤trees t.
It is clear that this relation is automatic and one can show (LM;�) ∼= LM. J

I Theorem 17. (i) The set of tree-automatic presentations of rigid (rigid and scattered,
resp.) linear orders is Π0

2-hard.
(ii) The set of tree-automatic presentations of automatically rigid linear orders is Π0

1-
complete.

5 Open questions

The isomorphism and rigidity problems for word-automatic scattered linear orders both
belong to ∆0

ω (cf. [24]), our lower bound Π0
1 for the rigidity problem leaves quite some

room for improvements. Since the rank of a tree-automatic linear order is properly below
ωω [18, 17], the proof of [24] can be adapted to show that the isomorphism and the rigidity
problems for tree-automatic scattered linear orders both belong to Σ0

ωω . But we only have
the lower bounds Π0

1 and Π0
2, resp. Finally, the rigidity problem for arbitrary word or tree-

automatic linear orders is in Π1
1, but also here, we only have the arithmetic lower bound Π0

1
and Π0

2, resp.
But the most pressing open question is the isomorphism problem of scattered and word-

automatic linear orders.

References
1 V. Bárány, E. Grädel, and S. Rubin. Automata-based presentations of infinite structures.

In Finite and Algorithmic Model Theory, pages 1–76. Cambridge University Press, 2011.
2 S.L. Bloom and Z. Ésik. The equational theory of regular words. Information and Com-

putation, 197:55–89, 2005.
3 A. Blumensath and E. Grädel. Automatic Structures. In LICS’00, pages 51–62. IEEE

Computer Society Press, 2000.
4 A. Blumensath and E. Grädel. Finite presentations of infinite structures: Automata and

interpretations. Theory of Computing Systems, 37(6):641–674, 2004.
5 G. Braun and L. Strüngmann. Breaking up finite automata presentable torsion-free abelian

groups. International Journal of Algebra and Computation, 21(8):1463–1472, 2011.

D. Kuske 469

6 G. Cantor. Beiträge zur Begründung der transfiniten Mengenlehre, I. Math. Annalen,
46:481–512, 1895.

7 A. Carayol and Z. Ésik. The FC-rank of a context-free language. arXiv:1202.6275, February
2012.

8 B. Courcelle. Frontiers of infinite trees. RAIRO - Theoretical Informatics, 12(4):319–337,
1978.

9 M. Droste, W. Kuich, and H. Vogler, editors. Handbook of Weighted Automata. EATCS
Monographs in Theoretical Computer Science. Springer, 2009.

10 M. Droste and D. Kuske. Weighted automata. To appear in the forthcoming handbook
AutoMathA, 2012.

11 A. Durand-Gasselin and P. Habermehl. Ehrenfeucht-Fraïssé goes elementarily automatic
for structures of bounded degree. In STACS’12, pages 242–253. Dagstuhl Publishing, 2012.

12 C.C. Elgot. Decision problems of finite automata design and related arithmetics. Trans.
Am. Math. Soc., 98:21–51, 1961.

13 D.B.A. Epstein, J.W. Cannon, D.F. Holt, S.V.F. Levy, M.S. Paterson, and W.P. Thurston.
Word Processing In Groups. Jones and Bartlett Publishers, Boston, 1992.

14 Z. Ésik. An undecidable property of context-free linear orders. Inform. Processing Letters,
111(3):107–109, 2011.

15 St. Heilbrunner. An algorithm for the solution of fixed-point equations for infinite words.
RAIRO – Theoretical Informatics, 14(2):131–141, 1980.

16 B.R. Hodgson. On direct products of automaton decidable theories. Theoretical Computer
Science, 19:331–335, 1982.

17 M. Huschenbett. The rank of tree-automatic linear orderings. arXiv:1204.3048, 2012.
18 S. Jain, B. Khoussainov, Ph. Schlicht, and F. Stephan. Tree-automatic scattered linear

orders. Manuscript, 2012.
19 B. Khoussainov and A. Nerode. Automatic presentations of structures. In Logic and Com-

putational Complexity, Lecture Notes in Comp. Science vol. 960, pages 367–392. Springer,
1995.

20 B. Khoussainov and A. Nerode. Open questions in the theory of automatic structures.
Bulletin of the EATCS, 94:181–204, 2008.

21 B. Khoussainov, A. Nies, S. Rubin, and F. Stephan. Automatic structures: richness and
limitations. Log. Methods in Comput. Sci., 3(2), 2007.

22 B. Khoussainov, S. Rubin, and F. Stephan. Automatic linear orders and trees. ACM
Transactions on Computational Logic, 6(4):675–700, 2005.

23 D. Krob. The equality problem for rational series with multiplicities in the tropical semiring
is undecidable. International Journal of Algebra and Computation, 4(3):405–425, 1994.

24 D. Kuske, J. Liu, and M. Lohrey. The isomorphism problem on classes of automatic
structures with transitive relations. Transactions of the AMS, 2011. Accepted.

25 M. Lohrey and Ch. Mathissen. Isomorphism of regular trees and words. In ICALP’11,
Lecture Notes in Comp. Science vol. 6756, pages 210–221. Springer, 2011.

26 Y. Matijasevich. Hilbert’s Tenth Problem. Foundations of Computing Series. MIT Press,
1993.

27 A. Nies. Describing groups. Bulletin of Symbolic Logic, 13(3):305–339, 2007.
28 S. Rubin. Automatic Structures. PhD thesis, University of Auckland, 2004.
29 S. Rubin. Automata presenting structures: A survey of the finite string case. Bulletin of

Symbolic Logic, 14:169–209, 2008.
30 W. Thomas. On frontiers of regular trees. RAIRO – Theoretical Informatics, 20(4):371–381,

1986.

CSL’12

Undecidable First-Order Theories of Affine
Geometries∗

Antti Kuusisto1, Jeremy Meyers2, and Jonni Virtema1

1 University of Tampere
{antti.j.kuusisto, jonni.virtema}@uta.fi

2 Stanford University
jjmeyers@stanford.edu

Abstract
Tarski initiated a logic-based approach to formal geometry that studies first-order structures
with a ternary betweenness relation (β) and a quaternary equidistance relation (≡). Tarski
established, inter alia, that the first-order (FO) theory of (R2, β,≡) is decidable. Aiello and van
Benthem (2002) conjectured that the FO-theory of expansions of (R2, β) with unary predicates
is decidable. We refute this conjecture by showing that for all n ≥ 2, the FO-theory of monadic
expansions of (Rn, β) is Π1

1-hard and therefore not even arithmetical. We also define a natural
and comprehensive class C of geometric structures (T, β), where T ⊆ Rn, and show that for each
structure (T, β) ∈ C, the FO-theory of the class of monadic expansions of (T, β) is undecidable.
We then consider classes of expansions of structures (T, β) with restricted unary predicates, for
example finite predicates, and establish a variety of related undecidability results. In addition
to decidability questions, we briefly study the expressivity of universal MSO and weak universal
MSO over expansions of (Rn, β). While the logics are incomparable in general, over expansions
of (Rn, β), formulae of weak universal MSO translate into equivalent formulae of universal MSO.

An extended version of this article can be found on the ArXiv (arXiv:1208.4930v1).

1998 ACM Subject Classification F.4.1 Model theory, Computability theory

Keywords and phrases Tarski’s geometry, undecidability, spatial logic, classical logic

Digital Object Identifier 10.4230/LIPIcs.CSL.2012.470

1 Introduction

Decidability of theories of (classes of) structures is a central topic in various different fields
of computer science and mathematics, with different motivations and objectives depending
on the field in question. In this article we investigate formal theories of geometry in the
framework introduced by Tarski [21, 22]. The logic-based framework was originally presented
in a series of lectures given in Warsaw in the 1920’s. The system is based on first-order
structures with two predicates: a ternary betweenness relation β and a quaternary equidistance
relation ≡. Within this system, β(u, v, w) is interpreted to mean that the point v is between
the points u and w, while xy ≡ uv means that the distance from x to y is equal to the
distance from u to v. The betweenness relation β can be considered to simulate the action
of a ruler, while the equidistance relation ≡ simulates the action of a compass. See [22] for
information about the history and development of Tarski’s geometry.

Tarski established in [21] that the first-order theory of (R2, β,≡) is decidable. In [1],
Aiello and van Benthem pose the question: “What is the complete monadic Π1

1 theory of

∗ This work was partially supported by grant 129761 of the Academy of Finland.

© Antti Kuusisto, Jeremy Meyers, and Jonni Virtema;
licensed under Creative Commons License NC-ND

Computer Science Logic 2012 (CSL’12).
Editors: Patrick Cégielski, Arnaud Durand; pp. 470–484

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://arxiv.org/abs/1208.4930v1
http://dx.doi.org/10.4230/LIPIcs.CSL.2012.470
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

A. Kuusisto, J. Meyers, and J. Virtema 471

the affine real plane?” By affine real plane, the authors refer to the structure (R2, β). The
monadic Π1

1-theory of (R2, β) is of course essentially the same as the first-order theory of the
class of expansions (R2, β, (Pi)i∈N) of the the affine real plane (R2, β) by unary predicates
Pi ⊆ R2. Aiello and van Benthem conjecture that the theory is decidable. Expansions of
(R2, β) with unary predicates are especially relevant in investigations related to the geometric
structure (R2, β), since in this context unary predicates correspond to regions of the plane
R2.

In this article we study structures of the type of (T, β), where T ⊆ Rn and β is the canonical
Euclidean betweenness predicate restricted to T , see Section 2.3 for the formal definition. Let
E
(
(T, β)

)
denote the class of expansions (T, β, (Pi)i∈N) of (T, β) with unary predicates. We

identify a significant collection of canonical structures (T, β) with an undecidable first-order
theory of E

(
(T, β)

)
. Informally, if there exists a flat two-dimensional region R ⊆ Rn, no

matter how small, such that T ∩ R is in a certain sense sufficiently dense with respect to
R, then the first-order theory of the class E

(
(T, β)

)
is undecidable. If the related density

conditions are satisfied, we say that T extends linearly in 2D, see Section 2.3 for the formal
definition. We prove that for any T ⊆ Rn, if T extends linearly in 2D, then the FO-theory
of E

(
(T, β)

)
is Σ0

1-hard. In addition, we establish that for all n ≥ 2, the first-order theory of
E
(
(Rn, β)

)
is Π1

1-hard, and therefore not even arithmetical. We thereby refute the conjecture
of Aiello and van Benthem from [1]. The results are ultimately based on tiling arguments.
The result establishing Π1

1-hardness relies on the recurrent tiling problem of Harel [14]—once
again demonstrating the usefulness of Harel’s methods.

Our results establish undecidability for a wide range of monadic expansion classes of
natural geometric structures (T, β). In addition to (R2, β), such structures include for
example the rational plane (Q2, β), the real unit cube ([0, 1]3, β), and the plane of algebraic
reals (A2, β) — to name a few.

In addition to investigating monadic expansion classes of the type E
(
(T, β)

)
, we also

study classes of expansions with restricted unary predicates. Let n be a positive integer and
let T ⊆ Rn. Let F

(
(T, β)

)
denote the class of structures (T, β, (Pi)i∈N), where the sets Pi

are finite subsets of T . We establish that if T extends linearly in 2D, then the first-order
theory of F

(
(T, β)

)
is undecidable. An alternative reading of this result is that the weak

universal monadic second-order theory of (T, β) is undecidable. We obtain a Π0
1-hardness

result by an argument based on the periodic torus tiling problem of Gurevich and Koryakov
[12]. The torus tiling argument can easily be adapted to deal with various different kinds of
natural classes of expansions of geometric structures (T, β) with restricted unary predicates.
These include the classes with unary predicates denoting—for example—polygons, finite
unions of closed rectangles, and real algebraic sets (see [8] for the definition).

Our results could turn out useful in investigations concerning logical aspects of spatial
databases. It turns out that there is a canonical correspondence between (R2, β) and
(R, 0, 1, ·,+, <), see [13]. See the survey [17] for further details on logical aspects of spatial
databases.

The betweenness predicate is also studied in spatial logic [3]. The recent years have
witnessed a significant increase in the research on spatially motivated logics. Several interest-
ing systems with varying motivations have been investigated, see for example the articles
[1, 4, 5, 15, 16, 18, 20, 23, 24]. See also the surveys [2] and [6] in the Handbook of Spatial
Logics [3], and the Ph.D. thesis [11]. Several of the above articles investigate fragments of
first-order theories by way of modal logics for affine, projective, and metric geometries. Our
results contribute to the understanding of spatially motivated first-order languages, and
hence they can be useful in the search for decidable (modal) spatial logics.

CSL’12

472 Undecidable First-Order Theories of Affine Geometries

In addition to studying issues of decidability, we briefly compare the expressivities of
universal monadic second-order logic ∀MSO and weak universal monadic second-order logic
∀WMSO. It is straightforward to observe that in general, the expressivities of ∀MSO and
∀WMSO are incomparable in a rather strong sense: ∀MSO 6≤WMSO and ∀WMSO 6≤ MSO.
Here MSO and WMSO denote monadic second-order logic and weak monadic second-order
logic, respectively. The result ∀WMSO 6≤ MSO follows from already existing results (see [10]
for example), and the result ∀MSO 6≤WMSO is more or less trivial to prove. While ∀MSO
and ∀WMSO are incomparable in general, the situation changes when we consider expansions
(Rn, β, (Ri)i∈I) of the stucture (Rn, β), i.e., structures embedded in the geometric structure
(Rn, β). Here (Ri)i∈I is an arbitrary vocabulary and I an arbitrary related index set. We
show that over such structures, sentences of ∀WMSO translate into equivalent sentences of
∀MSO. The proof is based on the Heine-Borel theorem.

The structure of the current article is as follows. In Section 2 we define the central
notions needed in the later sections. In Section 3 we compare the expressivities of ∀MSO
and ∀WMSO. In Section 4 we show undecidability of the first-order theory of the class of
monadic expansions of any geometric structure (T, β) such that T exends linearly in 2D. In
addition, we show that for n ≥ 2, the first-order theory of monadic expansions of (Rn, β)
is not on any level of the arithmetical hierarchy. In Section 5 we modify the approach in
Section 4 and show undecidability of the FO-theory of the class of expansions by finite unary
predicates of any geometric structure (T, β) such that T extends linearly in 2D.

2 Preliminaries

2.1 Interpretations
Let σ and τ be relational vocabularies. Let A be a nonempty class of σ-structures and C a
nonempty class of τ -structures. Assume that there exists a surjective map F from C onto
A and a first-order τ -formula ϕDom(x) in one free variable, x, such that for each structure
B ∈ C, there is a bijection f from the domain of F (B) to the set

{ b ∈ Dom(B) | B |= ϕDom(b) }.

Assume, furthermore, that for each relation symbol R ∈ σ, there is a first-order τ -formula
ϕR(x1, ..., xAr(R)) such that we have

RF (B)(a1, ..., aAr(R)) ⇔ B |= ϕR

(
f(a1), ..., f(aAr(R))

)
for every tuple (a1, ..., aAr(R)) ∈ (Dom(F (B)))Ar(R). Here Ar(R) is the arity of R. We then
say that the class A is uniformly first-order interpretable in C. If A is a singleton class {A},
we say that A is uniformly first-order interpretable in C.

Assume that a class of σ-structures A is uniformly first-order interpretable in a class C of
τ -structures. Let P be a set of unary relation symbols such that P ∩ (σ ∪ τ) = ∅. Define a
map I from the set of first-order (σ ∪ P)-formulae to the set of first-order (τ ∪ P)-formulae
as follows.

1. If P ∈ P, then I(Px) := Px.
2. If k ∈ N≥1 and R ∈ σ is a k-ary relation symbol, then I(R(x1, ..., xk)) := ϕR(x1, ..., xk),

where ϕR(x1, ..., xk) is the first-order formula for R witnessing the fact that A is uniformly
first-order interpretable in C.

3. I(x = y) := x = y.

A. Kuusisto, J. Meyers, and J. Virtema 473

4. I(¬ϕ) := ¬I(ϕ).
5. I(ϕ ∧ ψ) := I(ϕ) ∧ I(ψ).
6. I

(
∃xψ(x)

)
:= ∃x

(
ϕDom(x) ∧ I(ψ(x))

)
.

We call the map I the P-expansion of a uniform interpretation of A in C. When A and
C are known from the context, we may call I simply a P-interpretation. In the case where P
is empty, the map I is a uniform interpretation of A in C.

I Lemma 1. Let σ and τ be finite relational vocabularies. Let A be a class of σ-structures
and C a class of τ -structures. Assume that A is uniformly first-order interpretable in C.
Let P be a set of unary relation symbols such that P ∩ (σ ∪ τ) = ∅. Let I denote a related
P-interpretation. Let ϕ be a first-order (σ ∪ P)-sentence. The following conditions are
equivalent.
1. There exists an expansion A∗ of a structure A ∈ A to the vocabulary σ ∪ P such that

A∗ |= ϕ.
2. There exists an expansion B∗ of a structure B ∈ C to the vocabulary τ ∪ P such that

B∗ |= I(ϕ).

Proof. Straightforward. J

2.2 Logics and structures

Monadic second order logic, MSO, extends first-order logic with quantification of relation
symbols ranging over subsets of the domain of a model. In universal (existential) monadic
second order logic, ∀MSO (∃MSO), the quantification of monadic relations is restricted to
universal (existential) prenex quantification in the beginning of formulae. The logics ∀MSO
and ∃MSO are also known as monadic Π1

1 and monadic Σ1
1. Weak monadic second-order

logic, WMSO, is a semantic variant of monadic second-order logic in which the quantified
relation symbols range over finite subsets of the domain of a model. The weak variants
∀WMSO and ∃WMSO of ∀MSO and ∃MSO are defined in the obvious way.

Let L be any fragment of second-order logic. The L-theory of a structure M of a
vocabulary τ is the set of τ -sentences ϕ of L such that M |= ϕ.

Define two binary relations H,V ⊆ N2 × N2 as follows.
H = {

(
(i, j), (i+ 1, j)

)
| i, j ∈ N }.

V = {
(
(i, j), (i, j + 1)

)
| i, j ∈ N }.

We let G denote the structure (N2, H, V), and call it the grid. The relations H and V are
called the horizontal and vertical successor relations of G, respectively. A supergrid is a
structure of the vobabulary {H,V } that has G as a substructure. We denote the class of
supergrids by G.

Let (G, R) be the expansion of G, where R = {
(
(0, i), (0, j)

)
∈ N2 × N2 | i < j }. We

denote the structure (G, R) by R, and call it the recurrence grid.
Let m and n be positive integers. Define two binary relations Hm,n, Vm,n ⊆ (m× n)2 as

follows. (Note that we define m = {0, ...,m− 1}, and analogously for n.)
Hm,n = H � (m× n)2 ∪ {((m− 1, i), (0, i)) | i < n}.
Vm,n = V � (m× n)2 ∪ {((i, n− 1), (i, 0)) | i < m}.

We call the structure (m× n,Hm,n, Vm,n) the m× n torus and denote it by Tm,n. A torus
is essentially a finite grid whose east border wraps back to the west border and north border
back to the south border.

CSL’12

474 Undecidable First-Order Theories of Affine Geometries

2.3 Geometric affine betweenness structures
Let (Rn, d) be the n-dimensional Euclidean space with the canonical metric d. We always
assume n ≥ 1. We define the ternary Euclidean betweenness relation β such that β(s, t, u) iff
d(s, u) = d(s, t) + d(t, u). By β∗ we denote the strict betweenness relation, i.e., β∗(s, t, u) iff
β(s, t, u) and s 6= t 6= u. We say that the points s, t, u ∈ Rn are collinear if the disjunction
β(s, t, u) ∨ β(s, u, t) ∨ β(t, s, u) holds in (Rn, β). We define the first-order {β}-formula
collinear(x, y, z) := β(x, y, z) ∨ β(x, z, y) ∨ β(y, x, z).

Below we study geometric betweenness structures of the type (T, βT) where T ⊆ Rn and
βT = β � T . Here β � T is the restriction of the betweenness predicate β of Rn to the set T .
To simplify notation, we usually refer to these structures by (T, β).

Let T ⊆ Rn and let β be the corresponding betweenness relation. We say that L ⊆ T is
a line in T if the following conditions hold.
1. There exist points s, t ∈ L such that s 6= t.
2. For all s, t, u ∈ L, the points s, t, u are collinear.
3. Let s, t ∈ L be points such that s 6= t. For all u ∈ T , if β(s, u, t) or β(s, t, u), then u ∈ L.

Let T ⊆ Rn and let L1 and L2 be lines in T . We say that L1 and L2 intersect if L1 6= L2
and L1∩L2 6= ∅. We say that the lines L1 and L2 intersect in Rn if L1 6= L2 and L′1∩L′2 6= ∅,
where L′1, L′2 are the lines in Rn such that L1 ⊆ L′1 and L2 ⊆ L′2.

A subset S ⊆ Rn is an m-dimensional flat of Rn, where 0 ≤ m ≤ n, if there exists
a set of m linearly independent vectors v1, . . . , vm ∈ Rn and a vector h ∈ Rn such that
S is the h-translated span of the vectors v1, . . . , vm, in other words S = {u ∈ Rn | u =
h+r1v1 + · · ·+rmvm, r1, . . . , rm ∈ R}. None of the vectors vi is allowed to be the zero-vector.

A set U ⊆ Rn is a linearly regular m-dimensional flat, where 0 ≤ m ≤ n, if the following
conditions hold.
1. There exists an m-dimensional flat S such that U ⊆ S.
2. There does not exist any (m− 1)-dimensional flat S such that U ⊆ S.
3. U is linearly complete, i.e., if L is a line in U and L′ ⊇ L the corresponding line in Rn,

and if r ∈ L′ is a point in L′ and ε ∈ R+ a positive real number, then there exists a point
s ∈ L such that d(s, r) < ε. Here d is the canonical metric of Rn.

4. U is linearly closed, i.e., if L1 and L2 are lines in U and L1 and L2 intersect in Rn,
then the lines L1 and L2 intersect. In other words, there exists a point s ∈ U such that
s ∈ L1 ∩ L2.

A set T ⊆ Rn extends linearly in mD, where m ≤ n, if there exists a linearly regular
m-dimensional flat S, a positive real number ε ∈ R+ and a point x ∈ S ∩ T such that
{ u ∈ S | d(x, u) < ε } ⊆ T. It is easy show that for example Q2 extends linearly in 2D.

2.4 Tilings
A function t : 4 −→ N is called a tile type. Define the set TILES := { Pt | t is a tile type }
of unary relation symbols. The unary relation symbols in the set TILES are called tiles. The
numbers t(i) of a tile Pt are the colours of Pt. The number t(0) is the top colour, t(1) the
right colour, t(2) the bottom colour, and t(3) the left colour of Pt.

Let T be a finite nonempty set of tiles. We say that a structure A = (A, V,H), where
V,H ⊆ A2, is T -tilable, if there exists an expansion of A to the vocabulary {H,V }∪{ Pt | Pt ∈
T } such that the following conditions hold.
1. Each point of A belongs to the extension of exactly one symbol Pt in T .

A. Kuusisto, J. Meyers, and J. Virtema 475

2. If uHv for some points u, v ∈ A, then the right colour of the tile Pt s.t. Pt(u) is the same
as the left colour of the tile Pt′ such that Pt′(v).

3. If uV v for some points u, v ∈ A, then the top colour of the tile Pt s.t. Pt(u) is the same
as the bottom colour of the tile Pt′ such that Pt′(v).

Let t ∈ T . We say that the grid G is t-recurrently T -tilable if there exists an expansion of G
to the vocabulary {H,V } ∪ { Pt | t ∈ T } such that the above conditions 1 − 3 hold, and
additionally, there exist infinitely many points (0, i) ∈ N2 such that Pt

(
(0, i)

)
. Intuitively this

means that the tile Pt occurs infinitely many times in the leftmost column of the grid G. Let
F be the set of finite, nonempty sets T ⊆ TILES, and let H := { (t, T) | T ∈ F , t ∈ T }.
Define the following languages

T := { T ∈ F | G is T -tilable },
R := { (t, T) ∈ H | G is t-recurrently T -tilable },
S := { T ∈ F | there is a torus D which is T -tilable }.

The tiling problem is the membership problem of the set T with the input set F . The
recurrent tiling problem is the membership problem of the set R with the input set H. The
periodic tiling problem is the membership problem of S with the input set F .

I Theorem 2. [7] The tiling problem is Π0
1-complete.

I Theorem 3. [14] The recurrent tiling problem is Σ1
1-complete.

I Theorem 4. [12] The periodic tiling problem is Σ0
1-complete.

I Lemma 5. There is a computable function associating each input T to the (periodic)
tiling problem with a first-order sentence ϕT of the vocabulary τ := {H,V } ∪ T such that
for all structures A of the vocabulary {H,V }, the structure A is T -tilable iff there exists an
expansion A∗ of A to the vocabulary τ such that A∗ |= ϕT .

Proof. Straightforward. J

I Lemma 6. There is a computable function associating each input (t, T) of the recurrent
tiling problem with a first-order sentence ϕ(t,T) of the vocabulary τ := {H,V,R} ∪ T such
that the grid G is t-recurrently T -tilable iff there exists an expansion R∗ of the recurrence
grid R to the vocabulary τ such that R∗ |= ϕ(t,T).

Proof. Straightforward. J

It is easy to see that the grid G is T -tilable iff there exists a supergrid G′ that is T -tilable.

3 Expressivity of universal MSO and weak universal MSO over affine
real structures (Rn, β)

In this section we investigate the expressive powers of ∀WMSO and ∀MSO. While it is
rather easy to conclude that the two logics are incomparable in a rather strong sense (see
Proposition 7), when attention is limited to structures (Rn, β, (Ri)i∈I) that expand the affine
real structure (Rn, β), sentences of ∀WMSO translate into equivalent sentences of ∀MSO.

Let L and L′ be fragments of second-order logic. We write L ≤ L′, if for every vocabulary
σ, any class of σ-structures definable by a σ-sentence of L is also definable by a σ-sentence
of L′. Let τ be a vocabulary such that β 6∈ τ . The class of all expansions of (Rn, β) to the
vocabulary {β} ∪ τ is called the class of affine real τ -structures. Such structures can be

CSL’12

476 Undecidable First-Order Theories of Affine Geometries

regarded as τ -structures embedded in the geometric structure (Rn, β). We say that L ≤ L′
over (Rn, β), if for every vocabulary τ s.t. β 6∈ τ , any subclass definable w.r.t. the class C of
all affine real τ -structures by a sentence of L is also definable w.r.t. C by a sentence of L′.

I Proposition 7. ∀WMSO 6≤ MSO and ∀MSO 6≤WMSO.

Proof. Finiteness is definable in ∃WMSO, and hence infinity is expressible in ∀WMSO.
Infinity is not expressible in MSO. It is easy to show that ∀MSO can separate the structures
(R, <) and (Q, <), while WMSO cannot. J

We then show that ∀WMSO ≤ ∀MSO and WMSO ≤ MSO over (Rn, β) for any n ≥ 1.

I Theorem 8 (Heine-Borel). A set S ⊆ Rn is closed and bounded iff every open cover of S
has a finite subcover.

I Theorem 9. Let C be the class of expansions (Rn, β, P) of (Rn, β) with a unary predicate
P , and let F ⊆ C be the subclass of C where P is finite. The class F is first-order definable
with respect to C.

Proof. We shall first establish that a set T ⊆ Rn is finite iff it is closed, bounded and consists
of isolated points of T . Recall that an isolated point u of a set U ⊆ Rn is a point such that
there exists some open ball B such that B ∩ U = {u}.

Assume T ⊆ Rn is finite. Since T is finite, we can find a minimum distance between
points in the set T . Therefore it is clear that each point t in T belongs to some open ball B
such that B ∩ T = {t}, and hence T consists of isolated points. Similarly, since T is finite,
each point b in the complement of T has some minimum distance to the points of T , and
therefore b belongs to some open ball B ⊆ Rn \ T . Hence the set T is the complement of the
union of open balls B such that B ⊆ Rn \ T , and therefore T is closed. Finally, since T is
finite, we can find a maximum distance between the points in T , and therefore T is bounded.

Assume then that T ⊆ Rn is closed, bounded and consists of isolated points of T . Since
T consists of isolated points, it has an open cover C ⊆ Pow(Rn) such that each set in C
contains exactly one point t ∈ T . The set C is an open cover of T , and by the Heine-Borel
theorem, there exists a finite subcover D ⊆ C of the set T . Since D is finite and each set in
D contains exactly one point of T , the set T must also be finite.

We then conclude the proof by establishing that there exists a first-order formula ϕ(P)
stating that the unary predicate P is closed, bounded and consists of isolated points. We
will first define a formula parallel(x, y, t, k) stating that the lines defined by x, y and t, k are
parallel in (Rn, β). We define

parallel(x, y, t, k) := x 6= y ∧ t 6= k ∧
(

(collinear(x, y, t) ∧ collinear(x, y, k))

∨
(
¬∃z(collinear(x, y, z) ∧ collinear(t, k, z))

∧ ∃z1z2(x 6= z1 ∧ collinear(x, y, z1) ∧ collinear(x, t, z2) ∧ collinear(z1, z2, k))
))
.

We will then define first-order {β}-formulae basisk(x0, . . . , xk) and flatk(x0, . . . , xk, z) using
simultaneous recursion. The first formula states that the vectors corresponding to the pairs
(x0, xi), 1 ≤ i ≤ k, form a basis of a k-dimensional flat. The second formula states the points
z are exactly the points in the span of the basis defined by the vectors (x0, xi), the origin
being x0. First define basis0(x0) := x0 = x0 and flat0(x0, z) := x0 = z. Then define flatk

A. Kuusisto, J. Meyers, and J. Virtema 477

and basisk recursively in the following way.

basisk(x0, . . . , xk) := basisk−1(x0, . . . , xk−1) ∧ ¬flatk−1(x0, . . . , xk−1, xk),
flatk(x0, . . . , xk, z) := basisk(x0, . . . , xk)

∧ ∃y0, . . . , yk

(
y0 = x0 ∧ yk = z ∧

∧
i≤ k−1

(
yi = yi+1 ∨ parallel(x0, xi+1, yi, yi+1)

))
.

We then define a first-order {β, P}-formula sepr(x, P) asserting that x belongs to an open
ball B such that each point in B \ {x} belongs to the complement of P . The idea is to
state that there exist n+ 1 points x0, . . . , xn that form an n-dimensional triangle around x,
and every point contained in the triangle (with x being a possible exception) belongs to the
complement of P . Every open ball in Rn is contained in some n-dimensional triangle in Rn

and vice versa. We will recursively define first-order formulae opentrianglek(x0, . . . , xk, z)
stating that z is properly inside a k-dimensional triangle defined by x0, . . . , xk. First define
opentriangle1(x0, x1, z) := β∗(x0, z, x1), and then define

opentrianglek(x0, . . . , xk, z) := basisk(x0, . . . , xk)
∧ ∃y

(
opentrianglek−1(x0, . . . , xk−1, y) ∧ β∗(y, z, xk)

)
.

We are now ready to define sepr(x, P). Let

sepr(x, P) := ∃x0, . . . , xn

(
opentrianglen(x0, . . . , xn, x)

∧ ∀y
(
(opentrianglen(x0, . . . , xn, y) ∧ y 6= x) → ¬Py

))
.

Now, the sentence ϕ1 := ∀x
(
¬Px → sepr(x, P)

)
states that each point in the complement

of P is contained in an open ball B ⊆ Rn \ P . The sentence therefore states that the
complement of P is a union of open balls. Since the set of unions of open balls is exactly the
same as the set of open sets, the sentence states that P is closed.

The sentence ϕ2 := ∀x
(
Px → sepr(x, P)

)
clearly states that P consists of isolated

points.
Finally, in order to state that P is bounded, we define a formula asserting that there

exist points x0, . . . , xn that form an n-dimensional triangle around P .

ϕ3 := ∃x0, . . . , xn

(
basisn(x0, . . . , xn) ∧ ∀y

(
Py → opentrianglen(x0, . . . , xn, y)

))
The conjunction ϕ1 ∧ ϕ2 ∧ ϕ3 states that P is finite. J

I Corollary 10. Limit attention to expansions of (Rn, β). Sentences of ∀WMSO translate
into equivalent sentences of ∀MSO, and sentences of WMSO into equivalent sentences of
MSO.

4 Undecidable theories of geometric structures with an affine
betweenness relation

In this section we prove that the universal monadic second-order theory of any geometric
structure (T, β) that extends linearly in 2D is undecidable. In addition we show that
the universal monadic second-order theories of structures (Rn, β) with n ≥ 2 are highly
undecidable. In fact, we show that the theories of structures extending linearly in 2D are
Σ0

1-hard, while the theories of structures (Rn, β) with n ≥ 2 are Π1
1-hard—and therefore

CSL’12

478 Undecidable First-Order Theories of Affine Geometries

not even arithmetical. We establish the results by a reduction from the (recurrent) tiling
problem to the problem of deciding whether a particular {β}-sentence of monadic Σ1

1 is
satisfied by (T, β) (respectively, (Rn, β)). The argument is based on interpreting supergrids
in corresponding {β}-structures.

4.1 Lines and sequences
Let T ⊆ Rn. Let L be a line in T . Any nonempty subset Q of L is called a sequence in
T . Let E ⊆ T and s, t ∈ T . If s 6= t and if u ∈ E for all points u ∈ T such that β∗(s, u, t),
we say that the points s and t are linearly E-connected (in (T, β)). If there exists a point
v ∈ T \ E such that β∗(s, v, t), we say that s and t are linearly disconnected with respect to
E (in (T, β)).

I Definition 11. Let Q be a sequence in T ⊆ Rn. Suppose that for each s, t ∈ Q such that
s 6= t, there exists a point u ∈ T \ {s} such that
1. β(s, u, t) and
2. ∀r ∈ T

(
β∗(s, r, u)→ r 6∈ Q

)
, i.e., the points s and u are linearly (T \Q)-connected.

Then we call Q a discretely spaced sequence in T.

I Definition 12. Let Q be a discretely spaced sequence in T ⊆ Rn. Assume that there exists
a point s ∈ Q such that for each point u ∈ Q, there exists a point v ∈ Q \ {u} such that
β(s, u, v). Then we call the sequence Q a discretely infinite sequence in T . The point s is
called a base point of Q.

I Definition 13. Let Q be a sequence in T ⊆ Rn. Let s ∈ Q be a point such that there do
not exist points u, v ∈ Q \ {s} such that β(u, s, v). Then we call Q a sequence in T with a
zero. The point s is a zero-point of Q. Notice that Q may have up to two zero-points.

It is easy to see that a discretely infinite sequence has at most one zero point.

I Definition 14. Let Q be a discretely infinite sequence in T ⊆ Rn with a zero. Assume
that for each r ∈ T such that there exist points s, u ∈ Q \ {r} with β(s, r, u), there also exist
points s′, u′ ∈ Q \ {r} such that
1. β(s′, r, u′) and
2. ∀v ∈ T \ {r}

(
β∗(s′, v, u′)→ v 6∈ Q

)
.

Then we call Q an ω-like sequence in T (cf. Lemma 17).

I Lemma 15. Let P be a unary relation symbol. There is a first-order sentence ϕω(P) of
the vocabulary {β, P} such that for every T ⊆ Rn and for every expansion (T, β, P) of (T, β),
we have (T, β, P) |= ϕω(P) if and only if the interpretation of P is an ω-like sequence in T .

Proof. Straightforward. J

I Definition 16. Let P be a sequence in T ⊆ Rn and s, t ∈ P . The points s, t are called
adjacent with respect to P , if the points are linearly (T \ P)-connected. Let E ⊆ P × P be
the set of pairs (u, v) such that
1. u and v are adjacent with respect to P , and
2. β(z, u, v) for some zero point z of P .
We call E the successor relation of P .

We let succ denote the successor relation of N, i.e., succ := { (i, j) ∈ N× N | i+ 1 = j }.

A. Kuusisto, J. Meyers, and J. Virtema 479

I Lemma 17. Let P be an ω-like sequence in T ⊆ Rn and E the successor relation of P .
There is an embedding from (N, succ) into (P,E) such that 0 ∈ N maps to the zero point of
P . If T = Rn, then (N, succ) is isomorphic to (P,E).

Proof. We denote by i0 the unique zero point of P . Since P is a discretely infinite sequence,
it has a base point. Clearly i0 has to be the only base point of P . It is straightforward to
establish that since P is an ω-like sequence with the base point i0, there exists a sequence
(ai)i∈N of points ai ∈ P such that i0 = a0 and ai+1 is the unique E-successor of ai for all
i ∈ N. Define the function h : N→ P such that h(i) = ai for all i ∈ N. It is easy to see that
h is an embedding of (N, succ) into (P,E).

Assume then that T = Rn. We shall show that the function h : N −→ P is a surjection. Let
d denote the canonical metric of R, and let dR be the restriction of the canonical metric of Rn to
the line R in Rn such that P ⊆ R. Let g : R −→ R be the isometry from (R, d) to (R, dR) such
that g(0) = i0 = h(0) and such that for all r ∈ ran(h), we have β

(
i0, g(1), r

)
or β

(
i0, r, g(1)

)
.

Let (R,≤R) be the structure, where ≤R = { (u, v) ∈ R×R | g−1(u) ≤R g−1(v) }. If ran(h)
is not bounded from above w.r.t. ≤R, then h must be a surjection. Therefore assume that
ran(h) is bounded above. By the Dedekind completeness of the reals, there exists a least
upper bound s ∈ R of ran(h) w.r.t. ≤R. Notice that since h is an embedding of (N, succ)
into (P,E), we have s 6∈ ran(h). Due to the definition of E, it is sufficient to show that
{ t ∈ P | s ≤R t } = ∅ in order to conclude that h maps onto P .

Assume that the least upper bound s belongs to the set P . Since P is a discretely spaced
sequence, there is a point u ∈ Rn \{s} such that β(s, u, i0) and ∀r ∈ Rn

(
β∗(s, r, u)→ r 6∈ P

)
.

Now u <R s and the points u and s are linearly (Rn \ P)-connected, implying that s cannot
be the least upper bound of ran(h). This is a contradiction. Therefore s 6∈ P .

Assume, ad absurdum, that there exists a point t ∈ P such that β(i0, s, t). Now,
since P is an ω-like sequence, there exists points u′, v′ ∈ P \ {s} such that β(u′, s, v′) and
∀r ∈ Rn

(
β∗(u′, r, v′) → r 6∈ P

)
. We have β(s, u′, i0) or β(s, v′, i0). Assume, by symmetry,

that β(s, u′, i0). Now u′ <R s, and the points u′ and s are linearly (Rn \ P)-connected.
Hence, since s 6∈ ran(h), we conclude that s is not the least upper bound of ran(h). This is a
contradiction. J

4.2 Geometric structures (T, β) with an undecidable monadic Π1
1-theory

b b b

b
b
b

Figure 1 Illustration of how the
grid is interpreted in a Cartesian
frame.

Let Q be an ω-like sequence in T ⊆ Rn and let q0 be
the unique zero point of Q. Assume there exists a point
qe ∈ T \Q such that β(q0, q, qe) holds for all q ∈ Q. We
call Q ∪ {qe} an ω-like sequence with an endpoint in T .
The point qe is the endpoint of Q ∪ {qe}. Notice that the
endpoint qe is the only point x in Q ∪ {qe} such that the
following conditions hold.
1. There does not exist points s, t ∈ Q ∪ {qe} such that

β∗(s, x, t).
2. ∀yz ∈ Q ∪ {qe}

(
β∗(x, y, z) → ∃v ∈ Q ∪

{qe}
(
β∗(x, v, y)

)
.

I Definition 18. Let P and Q be ω-like sequences with
an endpoint in T ⊆ Rn. Let pe and qe be the endpoints
of P and Q, respectively. Assume that the following
conditions hold.

CSL’12

480 Undecidable First-Order Theories of Affine Geometries

1. There exists a point z ∈ P ∩Q such that z is the zero-point of both P \ {pe} and Q \ {qe}.
2. There exists lines LP and LQ in T such that LP 6= LQ, P ⊆ LP and Q ⊆ LQ.
3. For each point p ∈ P \ {pe} and q ∈ Q \ {qe}, the unique lines Lp and Lq in T such that

p, qe ∈ Lp and q, pe ∈ Lq intersect.
We call the structure (T, β, P,Q) a Cartesian frame.

I Lemma 19. Let T ⊆ Rn, n ≥ 2, and let C be the class of all expansions (T, β, P,Q) of
(T, β) by unary relations P and Q. The class of Cartesian frames with the domain T is
definable with respect to C by a first-order sentence.

Proof. Straightforward by virtue of Lemma 15. J

I Lemma 20. Let T ⊆ Rn, n ≥ 2. Let C be the class of Cartesian frames with the domain
T , and assume that C is nonempty. Let G be the class of supergrids and G the grid. There
is a class A ⊆ G that is uniformly first-order interpretable in the class C, and furthermore,
G ∈ A.

Proof. Let C = (T, β, P,Q) be a Cartesian frame. Let pe ∈ P and qe ∈ Q be the endpoints
of P an Q, respectively. We shall interpret a supergrid GC in the Cartesian frame C. The
domain of the interpretation of GC in C will be the set of points where the lines that connect
the points of P \ {pe} to qe and the lines that connect the points of Q \ {qe} to pe intersect.

First let us define the following formula which states in C that x is the endpoint of P .

endP (P,Q, x) := Px ∧ ¬Qx ∧ ¬∃y∃z
(
Py ∧ Pz ∧ β∗(y, x, z)

)
In the following, we let atomic expressions of the type x 6= pe and β∗(x, y, qe) abbreviate cor-
responding first-order formulae ∃z

(
endP (P,Q, z)∧x 6= z

)
and ∃z

(
endQ(Q,P, z)∧β∗(x, y, z)

)
of the vocabulary {β, P,Q} of C. We define

ϕDom(u) := u 6= pe ∧ u 6= qe

∧
(
Pu ∨Qu ∨ ∃xy

(
Px ∧ x 6= pe ∧Qy ∧ y 6= qe ∧ β(x, u, qe) ∧ β(y, u, pe)

))
,

ϕH(u, v) := ∃x
(
Qx ∧ β(x, u, v) ∧ β∗(u, v, pe)

)
∧ ∀r

(
β∗(u, r, v) → ¬ϕDom(r)

)
,

ϕV (u, v) := ∃x
(
Px ∧ β(x, u, v) ∧ β∗(u, v, qe)

)
∧ ∀r

(
β∗(u, r, v) → ¬ϕDom(r)

)
.

Call DC := { r ∈ T | C |= ϕDom(r) } and define the structure DC = (DC, H
DC , V DC), where

HDC := { (s, t) ∈ DC ×DC | C |= ϕH(s, t) },

and analogously for V DC . By Lemma 17, it is easy to see that there exists an injection f
from the domain of the grid G = (G,H, V) to DC such that the following three conditions
hold for all u, v ∈ G.
1. (u, v) ∈ H ⇔ ϕH

(
f(u), f(v)

)
,

2. (u, v) ∈ V ⇔ ϕV

(
f(u), f(v)

)
.

Hence there is a supergrid GC = (GC, H, V) such that there exists an isomorphism f from
GC to DG such that the above two conditions hold.

Let A := { GC ∈ G | C is a Cartesian frame with the domain T }. Clearly G ∈ A, and
furthermore, A is uniformly first-order interpretable in the class of Cartesian frames with
the domain T . J

I Lemma 21. Let n ≥ 2 be an integer. The recurrence grid R is uniformly first-order
interpretable in the class of Cartesian frames with the domain Rn.

A. Kuusisto, J. Meyers, and J. Virtema 481

Proof. Straightforward by Lemma 17 and the proof of Lemma 20. J

I Theorem 22. Let T ⊆ Rn be a set and let β be the corresponding betweenness relation.
Assume that T extends linearly in 2D. The monadic Π1

1-theory of (T, β) is Σ0
1-hard.

Proof. Since T extends linearly in 2D, we have n ≥ 2. Let σ = {H,V } be the vocabulary
of supergrids, and let τ = {β,X, Y } be the vocabulary of Cartesian frames. By Lemma
19, there exists a first-order τ -sentence that defines the class of Cartesian frames with the
domain T with respect to the class of all expansions of (T, β) to the vocabulary τ . Let ϕCf
denote such a sentence.

By Lemma 5, there is a computable function that associates each input S to the tiling
problem with a first-order σ ∪ S-sentence ϕS such that a structure A of the vocabulary σ is
S-tilable if and only if there is an expansion A∗ of the structure A to the vocabulary σ ∪ S
such that A∗ |= ϕS .

Since T extends linearly in 2D, the class of Cartesian frames with the domain T is
nonempty. By Lemma 20 there is a class of supergrids A such that G ∈ A and A is uniformly
first-order interpretable in the class of Cartesian frames with the domain T . Therefore there
exists a uniform interpretation I ′ of A in the class of Cartesian frames with the domain T .
Let S be a finite nonempty set of tiles. Note that S is by definition a set of proposition
symbols Pt, where t is a tile type. Let I be the S-expansion of the uniform interpretation I ′
of A in the class of Cartesian frames with the domain T .

Define ψS := ∃X ∃Y (∃Pt)Pt ∈S

(
ϕCf ∧ I(ϕS)

)
. We will prove that for each input S to

the tiling problem, we have (T, β) |= ψS if and only if the grid G is S-tilable. Thereby we
establish that there exists a computable reduction from the complement problem of the tiling
problem to the membership problem of the monadic Π1

1-theory of (T, β). Since the tiling
problem is Π0

1-complete, its complement problem is Σ0
1-complete.1

Let S be an input to the tiling problem. Assume first that there exists an S-tiling of the
grid G. Therefore there exists an expansion G∗ of the grid G to the vocabulary {H,V } ∪ S
such that G∗ |= ϕS . Hence, by Lemma 1 and since G ∈ A, there exists a Cartesian frame C

with the domain T such that for some expansion C∗ of C to the vocabulary {β,X, Y } ∪ S,
we have C∗ |= I(ϕS). On the other hand, since C is a Cartesian frame, we have C∗ |= ϕCf .
Therefore C∗ |= ϕCf ∧ I(ϕS), and hence (T, β) |= ψS .

For the converse, assume that (T, β) |= ψS . Therefore there exists an expansion B∗

of (T, β) to the vocabulary {β,X, Y } ∪ S such that we have B∗ |= ϕCf ∧ I(ϕS). Since
B∗ |= ϕCf , the {β,X, Y }-reduct of B∗ is a Cartesian frame with the domain T . Therefore,
we conclude by Lemma 1 that A∗ |= ϕS for some expansion A∗ of some supergrid A ∈ A to
the vocabulary {H,V } ∪ S. Thus there exists a supergrid that S-tilable. Hence the grid G

is S-tilable. J

I Corollary 23. Let T ⊆ Rn be such that T extends linearly in 2D. Let C be the class of
expansions (T, β, (Pi)i∈N) of (T, β) with arbitrary unary predicates. The first-order theory of
C is undecidable.

We note that T extending linearly in 1D is not a sufficient condition for undecidability of
the monadic Π1

1-theory of (T, β). The monadic Π1
1-theory of (R, β) is decidable; this follows

trivially from the known result that the monadic Π1
1-theory (R,≤) is decidable, see [9]. Also

1 It is of course a well-known triviality that the complement A of a problem A is Σ0
1-hard if A is Π0

1-hard.
Choose an arbitrary problem B ∈ Σ0

1. By definition B ∈ Π0
1. By the hardness of A, there is a computable

reduction f such that x ∈ B ⇔ f(x) ∈ A, whence x ∈ B ⇔ f(x) ∈ A.

CSL’12

482 Undecidable First-Order Theories of Affine Geometries

the monadic Π1
1-theory of (Q, β) is decidable since the MSO theory of (Q,≤) is decidable

[19].

I Theorem 24. Let n ≥ 2 be an integer. The monadic Π1
1-theory of the structure (Rn, β) is

Π1
1-hard.

Proof. The proof is essentially the same as the proof of Theorem 22. The main difference is
that we use Lemma 21 and interpret the recurrence grid R instead of a class of supergrids
and hence obtain a reduction from the recurring tiling problem instead of the ordinary tiling
problem. Thereby we establish Π1

1-hardness instead of Σ0
1-hardness. Due to the recurrence

condition of the recurrent tiling problem, the result of Lemma 17 that there is an isomorphism
from (N, succ) to (P,E)—rather than an embedding—is essential. J

I Corollary 25. Let n ≥ 2 be an integer. Let C be the class of expansions (Rn, β, (Pi)i∈N) of
(Rn, β) with arbitrary unary predicates. The first-order theory of C is not on any level of the
arithmetical hierarchy.

5 Geometric structures (T, β) with an undecidable weak monadic
Π1

1-theory

In this section we prove that the weak universal monadic second-order theory of any structure
(T, β) such that T extends linearly in 2D is undecidable. In fact, we show that any such
theory is Π0

1-hard. We establish this by a reduction from the periodic tiling problem to the
problem of deciding truth of {β}-sentences of weak monadic Σ1

1 in (T, β). The argument is
based on interpreting tori in (T, β). Most notions used in this section are inherited either
directly or with minor modification from Section 4.

Let Q be a subset of T ⊆ Rn. We say that Q is a finite sequence in T if Q is a finite
nonempty set and the points in Q are all collinear.

I Definition 26. Let T ⊆ Rn and let β be the corresponding betweenness relation. Let P
and Q be finite sequences in T such that the following conditions hold.
1. P ∩Q = {a0}, where a0 is a zero point of both P and Q.
2. P and Q are non-singleton sequences.
3. There exists lines LP , LQ in T such that LP 6= LQ, P ⊆ LP and Q ⊆ LQ.
We call the structure (T, β, P,Q) a finite Cartesian frame with the domain T .

I Lemma 27. Let T ⊆ Rn, n ≥ 2. Let C be the class of all expansions (T, β, P,Q) of (T, β)
by finite unary relations P and Q. The class of finite Cartesian frames with the domain T is
definable with respect to C by a first-order sentence.

Proof. Straightforward. J

I Lemma 28. Let T ⊆ Rn, n ≥ 2. Assume that T extends linearly in 2D. The class of tori
is uniformly first-order interpretable in the class of finite Cartesian frames with the domain
T .

Proof. The proof is similar to that of Lemma 20. J

I Theorem 29. Let T ⊆ Rn and let β be the corresponding betweenness relation. Assume
that T extends linearly in 2D. The weak monadic Π1

1-theory of (T, β) is Π0
1-hard.

Proof. The proof is based on the above two lemmas and is analogous to the proof of Theorem
22. J

A. Kuusisto, J. Meyers, and J. Virtema 483

I Corollary 30. Let T ⊆ Rn be a set such that T extends linearly in 2D. Let C be the class
of expansions (T, β, (Pi)i∈N) of (T, β) with finite unary predicates. The first-order theory of
C is undecidable.

6 Conclusions

We have studied first-order theories of geometric structures (T, β), T ⊆ Rn, expanded with
(finite) unary predicates. We have established that for n ≥ 2, the first-order theory of
the class of all expansions of (Rn, β) with arbitrary unary predicates is highly undecidable
(Π1

1-hard). This refutes a conjecture from the article [1] of Aiello and van Benthem. In
addition, we have established the following for any geometric structure (T, β) that extends
linearly in 2D.
1. The first-order theory of the class of expansions of (T, β) with arbitary unary predicates

is Σ0
1-hard.

2. The first-order theory of the class of expansions of (T, β) with finite unary predicates is
Π0

1-hard.
Geometric structures that extend linearly in 2D include, for example, the rational plane
(Q2, β) and the real unit rectangle ([0, 1]2, β), to name a few.

The techniques used in the proofs can be easily modified to yield undecidability of
first-order theories of a significant variety of natural restricted expansion classes of the affine
real plane (R2, β), such as those with unary predicates denoting polygons, finite unions of
closed rectangles, and real algebraic sets, for example. Such classes could be interesting from
the point of view of applications.

In addition to studying issues of decidability, we briefly compared the expressivities of
universal monadic second-order logic and weak universal monadic second-order logic. While
the two are incomparable in general, we established that over any class of expansions of
(Rn, β), it is no longer the case. We showed that finiteness of a unary predicate is definable
by a first-order sentence, and hence obtained translations from ∀WMSO into ∀MSO and
from WMSO into MSO.

Our original objective to study weak monadic second order logic over (Rn, β) was to identify
decidable logics of space with distinguished regions. Due to the ubiquitous applicability of the
tiling methods, this pursuit gave way to identifying several undecidable theories of geometry.
Hence we shall look elsewhere in order to identify well behaved natural decidable logics of
space. Possible interesting directions include considering natural fragments of first-order
logic over expansions of (Rn, β), and also other geometries. Related results could provide
insight, for example, in the background theory of modal spatial logics.

References
1 M. Aiello and J. van Benthem. A Modal Walk through Space. Journal of Applied Non-

Classical Logics 12(3-4):319-363, Hermes, 2002.
2 M. Aiello, I. Pratt-Hartmann, and J. van Benthem. What is Spatial Logic. In Marco Aiello,

Ian Pratt-Hartmann and Johan van Benthem, Handbook of Spatial Logics, Springer, 2007.
3 M. Aiello, I. Pratt-Hartmann and J. van Benthem. Handbook of Spatial Logics. Springer,

2007.
4 P. Balbiani, L. Farinas del Cerro, T. Tinchev, and D. Vakarelov. Modal Logics for Incidence

Geometries, Journal of Logic and Computation, 7(1), 59-78, 1997.
5 P. Balbiani and V. Goranko. Modal logics for parallelism, orthogonality, and affine geomet-

ries, Journal of Applied Non-Classical Logics, 12,365-397, 2002.

CSL’12

484 Undecidable First-Order Theories of Affine Geometries

6 P. Balbiani, V. Goranko, R. Kellerman and D. Vakarelov. Logical Theories for Fragments
of Elementary Geometry. In Handbook of Spatial Logics. Springer. 343-428, 2007.

7 R. Berger. The undecidability of the domino problem. Mem. Amer. Math. Soc., 66, 1966.
8 J. Bochnak, M. Coste and M. Roy. Real Algebraic Geometry, Springer, 1998.
9 J. P. Burgess and Y. Gurevich. The Decision Problem for Linear Temporal Logic. Notre

Dame Journal of Formal Logic, vol. 26, no. 2, 1985.
10 B. ten Cate and A. Facchini. Characterizing EF over Infnite Trees and Modal Logic on

Transitive Graphs. Proceedings of the MFCS, 2011.
11 A. Griffiths. Computational Properties of Spatial Logics in the Real Plane. PhD thesis,

University of Manchester, 2008.
12 Y. Gurevich and I. O. Koryakov. Remarks on Berger’s paper on the domino problem.

Siberian Mathematical Journal 13, 319-321, 1972.
13 M. Gyssens, J. Van den Bussche and D. Van Gucht. Complete Geometric Query Languages.

Journal of Computer and System Sciences 58, 483-511, 1999.
14 D. Harel. Recurring Dominoes: Making the Highly Undecidable Highly Understandable.

Annals of Discrete Mathematics 24, 51-72, 1985.
15 I. Hodkinson and A. Hussain. The modal logic of affine planes is not finitely axiomatisable.

Journal of Symbolic Logic 73(3), 940-952, 2008.
16 R. Kontchakov, I. Pratt-Hartmann, F. Wolter and M. Zakharyaschev. Spatial logics with

connectedness predicates. Logical Methods in Computer Science, 6(3), 2010.
17 B. Kujpers and J. Van den Bussche. Logical aspects of spatial database theory. In Finite

and Algorithmic Model Theory, London Mathematical Society Lecture Notes Series 379,
Cambridge University Press, 2011.

18 Y. Nenov and I. Pratt-Hartmann. On the Computability of Region-Based Euclidean Logics.
In Proceedings of 19th EACSL Annual Conferences on Computer Science Logic, 2010.

19 M. O. Rabin. Decidability of second-order theories and automata on infinite trees. Trans.
of the Amer. Math. Soc. 141, 1-35, 1969.

20 M. Sheremet, F. Wolter and M. Zakharyaschev. A modal logic framework for reasoning
about comparative distances and topology. Ann. Pure Appl. Logic, 161(4):534-559, 2010.

21 A. Tarski. A decision method for elementary algebra and geometry. RAND Corporation,
Santa Monica, 1948.

22 A. Tarski and S. Givant. Tarski’s System of Geometry. Bull. Symbolic Logic 5(2), 1999.
23 T. Tinchev and D. Vakarelov. Logics of Space with Connectedness Predicates: Complete

Axiomatizations. In Proceedings of Advances in Modal Logic 8 (AiML), 434-453, 2010.
24 Y. Venema. Points, Lines and Diamonds: a Two-sorted Modal Logic for Projective Planes.

Journal of Logic and Computation, 9(5) 601-621, 1999.

Towards CERes in intuitionistic logic
Alexander Leitsch, Giselle Reis, and Bruno Woltzenlogel Paleo

Theory and Logic Group, Institut für Computersprachen
Technische Universität Wien, Vienna, Austria
{leitsch, giselle, bruno}@logic.at

Abstract
Cut-elimination, introduced by Gentzen, plays an important role in automating the analysis
of mathematical proofs. The removal of cuts corresponds to the elimination of intermediate
statements (lemmas), resulting in an analytic proof. CERes is a method of cut-elimination by
resolution that relies on global proof transformations, in contrast to reductive methods, which use
local proof-rewriting transformations. By avoiding redundant operations, it obtains a speed-up
over Gentzen’s traditional method (and its variations). CERes has been successfully imple-
mented and applied to mathematical proofs, and it is fully developed for classical logic (first
and higher order), multi-valued logics and Gödel logic. But when it comes to mathematical
proofs, intuitionistic logic also plays an important role due to its constructive characteristics and
computational interpretation.

This paper presents current developments on adapting the CERes method to intuitionistic
sequent calculus LJ. First of all, we briefly describe the CERes method for classical logic and
the problems that arise when extending the method to intuitionistic logic. Then, we present the
solutions found for the mentioned problems for the subclass LJ− (the class of intuitionistic proofs
of an end-sequent containing no strong quantifiers and no formula on the right). In addition, we
explain, with an example, some ideas for improving the method and covering a bigger fragment
of LJ proofs. Finally, we summarize the results and point the direction for future research.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases cut-elimination, resolution, LJ

Digital Object Identifier 10.4230/LIPIcs.CSL.2012.485

1 Introduction

Proof analysis is an essential part of mathematical activity, since it leads often to better
proofs and occasionally to the discovery of important new mathematical concepts that allow
the structuring of existing arguments [15]. Abstract notions such as groups and probability,
for instance, are clear examples of concepts that are undoubtfully useful for organizing
common patterns of mathematical reasoning.

The elimination of unnecessary lemmas from a proof is a prominent example of a
technique for obtaining potentially simpler (or at least different) proofs. When a constructive
mathematical proof is formalized in the sequent calculus LJ, lemmas correspond to cuts.

Γ ` A Γ′, A ` C
Γ,Γ′ ` C cut

A proof without cuts has the subformula property: all formulas on the proof are (instances
of) subformulas of end-sequent formulas. Consequently, cut-free proofs of a theorem will use
only the theorem’s theory itself. The main result on cut-elimination - the Hauptsatz - was
proven by Gentzen [8, 9] in 1935. It states that the cut rule is admissible for the sequent

© Alexander Leitsch, Giselle Reis, and Bruno Woltzenlogel Paleo;
licensed under Creative Commons License NC-ND

Computer Science Logic 2012 (CSL’12).
Editors: Patrick Cégielski, Arnaud Durand; pp. 485–499

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2012.485
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

486 Towards CERes in intuitionistic logic

calculi LK and LJ, for classical and intuitionistic logics respectively. Gentzen’s proof of the
Hauptsatz actually contains an algorithm for removing the cuts from a proof. Therefore,
cut-elimination, seen as a method to remove lemmas from formalized proofs, is one of the
most important techniques for automating proof analysis. Gentzen’s method and some of its
variants are often referred to as reductive cut-elimination, because they are based on local
proof-rewriting rules that gradually reduce the grade and rank of cuts.

The method CERes [5] (cut elimination by resolution) is an alternative to reductive
cut-elimination, and it is proven to display a non-elementary speed up over the latter. CERes
was first developed for first order classical logic, and then extended to second and higher
order logic [12, 11]. It has also been adapted to multi-valued logics [6] and Gödel logic [1].
The method has been implemented1 and applied successfully to proofs of moderate size, such
as the tape proof [2] and the lattice proof [13], in fully automatic mode. Also, Fürstenberg’s
proof of the infinitude of primes was successfully transformed, semi-automatically, into
Euclid’s argument of prime construction using CERes [3].

Intuitionistic logic, in contrast to classical logic, is based on a natural proof semantics [10]
which is reflected in the rules of natural deduction. Consequently, from an intuitionistic proof
of A ∨B, one can actually obtain a proof of one of the disjuncts, and from an intuitionistic
proof of ∃x.P (x), one can obtain a witness a such that P (a) is true. This is not always
the case in classical proofs. For this reason, intuitionistic logic is often referred to as a
constructive logic. This is particularly useful in mathematics when one wants not only to
guarantee the existence of a solution but to actually find it. This constructivism also makes
intuitionistic logic more suitable for modeling computations, since constructive proofs can be
directly related to algorithms.

The importance of intuitionistic logic for mathematics and computer science is the main
motivation for extending the CERes method to LJ. This paper presents the results obtained
so far, while pursuing this goal. More specifically, we present the CERes method for a
subclass of LJ proofs, namely, proofs with end sequents having no strong quantifiers and
no formula on the right side. This class represents proofs by contradiction in LJ. Observe
that a proof of the end sequent Γ ` F can be transformed into a proof by contradiction by
applying the ¬l rule and obtaining Γ,¬F ` as an end-sequent.

The paper is organized as follows: Section 2 briefly describes the CERes method for
classical logic and the problems that arise when extending the method to intuitionistic logic;
Section 3 presents the solutions found for the mentioned problems and shows the new revised
method applied to an example; Section 4 explains some ideas for improving the method and
covering a bigger fragment of LJ proofs; and finally, Section 5 summarizes the results and
points the direction for future research.

2 CERes in LK

The CERes method for classical logic is based on the computation of three structures from
an LK proof ϕ: a characteristic clause set CL(ϕ), a resolution refutation of this set and
proof projections of ϕ w.r.t the elements in CL(ϕ). By merging instances of the projections
and the resolution refutation properly, one obtains a proof with only atomic cuts (ACNF -
atomic cut normal form) of the same end sequent of ϕ. These three structures are informally
explained in the subsections below. A more detailed and precise definition of CERes for
LK is available in [7].

1 http://code.google.com/p/gapt/

A. Leitsch, G. Reis, and B. Woltzenlogel Paleo 487

The remaining atomic cuts on the final proof are inessential [16], and, since we use
standard axioms (A ` A, where A is atomic), these can be eliminated using reductive
cut-elimination.

2.1 Characteristic clause set
The characteristic clause set is computed by removing from ϕ all the rules that operate on
end-sequent ancestors and the end-sequent ancestors themselves (including the end-sequent).
After that, what is left is a derivation of the empty sequent from a set of axioms. These
axioms contain only cut-ancestors and they compose the characteristic clause set. It is
important to note that some branches of ϕ might be merged during this procedure, if they
resulted from the application of a binary rule on an end-sequent ancestor. Consider the
sub-derivation of a proof below, in which cut ancestors are marked with ?:

P (a)? ` P (a) I
Q(a) ` Q(a)? I

P (a)?, P (a)→ Q(a) ` Q(a)?
→l

P (a)→ Q(a) ` (P (a)→ Q(a))?
→r

P (a)→ Q(a) ` ∃x.(P (x)→ Q(x))? ∃r

P (b)? ` P (b) I
Q(b) ` Q(b)? I

P (b)?, P (b)→ Q(b) ` Q(b)?
→l

P (b)→ Q(b) ` (P (b)→ Q(b))?
→r

P (b)→ Q(b) ` ∃x.(P (x)→ Q(x))? ∃r

(P (a)→ Q(a)) ∨ (P (b)→ Q(b)) ` ∃x.(P (x)→ Q(x))?
∨l

By removing all inferences on end-sequent ancestors, we obtain the following derivation:

P (a)?, P (b)? ` Q(a)?, Q(b)? I

P (a)? ` Q(a)?, (P (b)→ Q(b))?
→r

` (P (a)→ Q(a))?, (P (b)→ Q(b))?
→r

` (P (a)→ Q(a))?, ∃x.(P (x)→ Q(x))? ∃r

` ∃x.(P (x)→ Q(x))?,∃x.(P (x)→ Q(x))? ∃r

In this case, the sequent P (a), P (b) ` Q(a), Q(b) would be in the characteristic clause set.
I Remark. Observe that, in classical logic, this is not a problem, but in intuitionistic logic
(LJ - Figure 1) this is not a well-formed sequent since it has more than one formula on
the right side. Note also that the original derivation could easily be part of an LJ proof,
but the transformed derivation contains non-intuitionistic sequents. Thus, sequents of the
characteristic clause set might be classical, even if we start with an intuitionistic proof. As
they will be part of the final proof, it is not desirable that they are classical, because we
expect to obtain a cut-free proof in LJ.

2.2 Resolution refutation
By the transformation exemplified above, there exists an LK derivation of the empty sequent
from the clauses of CL(ϕ). Since LK is sound, the set CL(ϕ) is unsatisfiable. And since the
resolution calculus is complete, there exists a resolution refutation of CL(ϕ).

The resolution refutation, which can be obtained with a resolution theorem prover, is
used as a basis for the final proof, and can be seen as its skeleton. The resolution steps will
correspond to the atomic cuts.

2.3 Projections
The projections are derivations of a sequent from CL(ϕ) merged with the end-sequent. Dually
to what was done for the characteristic clause set, they are constructed by removing the rules

CSL’12

488 Towards CERes in intuitionistic logic

A ` A [I]
Γ1 ` P Γ2, P ` C

Γ1,Γ2 ` C
[Cut]

Γ ` P
Γ,¬P ` [¬l]

Γ, P `
Γ ` ¬P [¬r]

Pi,Γ ` C
P1 ∧ P2,Γ ` C

[∧li]
Γ ` P Γ ` Q

Γ ` P ∧Q [∧r]

P,Γ ` C Q,Γ ` C
P ∨Q,Γ ` C [∨l]

Γ ` Pi

Γ ` P1 ∨ P2
[∨ri]

Γ1 ` P Q,Γ2 ` C
P → Q,Γ1,Γ2 ` C

[→l]
Γ, P ` Q

Γ ` P → Q
[→r]

P{x← α},Γ ` C
∃x.P,Γ ` C [∃l]

Γ ` P{x← t}
Γ ` ∃x.P [∃r]

P{x← t},Γ ` C
∀x.P,Γ ` C [∀l]

Γ ` P{x← α}
Γ ` ∀x.P [∀r]

P, P,Γ ` C
P,Γ ` C [Cl] Γ ` C

P,Γ ` C [Wl] Γ `
Γ ` P [Wr]

Figure 1 LJ: Sequent calculus for intuitionistic logic. It is assumed that α is a variable not
contained in P , Γ or C and t does not contain variables bound in P .

applied to cut-ancestors. Each sequent (clause) in CL(ϕ) will generate a projection, possibly
with variables that can later be instantiated to form the final proof. Using the same example
as before, the projection corresponding to the clause P (a), P (b) ` Q(a), Q(b) is the following:

P (a)? ` P (a) I
Q(a) ` Q(a)? I

P (a)?, P (a)→ Q(a) ` Q(a)?
→l

P (b)? ` P (b) I
Q(b) ` Q(b)? I

P (b)?, P (b)→ Q(b) ` Q(b)?
→l

P (a)?, P (b)?, (P (a)→ Q(a)) ∨ (P (b)→ Q(b)) ` Q(a)?, Q(b)?
∨l

I Remark. Note that, once again, the resulting derivation is classical. Since these will be
directly used on the final proof, it is also a problem that should be solved if we expect the
output of CERes to be intuitionistic when applied to LJ proofs.

Even if the resulting projections were intuitionistic, they are merged with the resolution
refutation of CL(ϕ), and if two sequents with one formula on the right side are merged, the
resulting sequent will have two formulas on the right side and will then be classical.

3 CERes in LJ

The problems described in Section 2 were addressed and solved for a subclass of LJ, namely
LJ− (Definition 2). The resulting iCERes method is presented in this section.

I Definition 1 (Strong and weak quantifiers). Let F be a formula. If ∀x occurs positively
(negatively) in F , then ∀x is called a strong (weak) quantifier. If ∃x occurs positively
(negatively) in F , then ∃x is called a weak (strong) quantifier. Let A1, ..., An ` B1, ..., Bm be

A. Leitsch, G. Reis, and B. Woltzenlogel Paleo 489

a sequent. A quantifier is called strong (weak) on this sequent if it is strong (weak) on the
corresponding formula A1 ∧ ... ∧An → B1 ∨ ... ∨Bm.

I Definition 2 (LJ−). LJ− is the set of LJ proofs of end-sequents with no formula on the
right side and no strong quantifiers.

Note that, in principle, the condition of absence of formulas on the right side of the
end-sequent, can be satisfied by simply applying the ¬l inference rule at the bottom of the
proof, in order to negate and shift to the left the formula that occurred in the right side.
The other requirement, the absence of strong quantifiers, can be achieved by using methods
of skolemization of LJ proofs [4]. A more detailed discussion of the implications of using
these transformations is postponed to Section 4.

This class contains proofs by contradiction in LJ, which are exactly those proofs of
Γ ` F transformed into a proof of Γ,¬F ` with the application of a ¬l rule. It is also
worth mentioning that LJ− is a “nontrivial” class of proofs, in the sense that there exist
sequents of the form Γ ` which are provable classically but not intuitionistically (e.g.
¬∃x.∀y.(P (x)→ P (y)) `).

Although the problem was solved only for a subclass of LJ proofs, all definitions and
proofs on this section are valid for full LJ, with the exception of Theorem 16.

I Definition 3 (Intuitionistic Clause). An intuitionistic clause is a sequent composed only of
atoms or negated atoms and with the right hand side containing at most one formula.

I Definition 4 (Intuitionistic Clause Set with Negations). The intuitionistic characteristic
clause set is built analogously to the usual characteristic clause set, except that all the
formulas on the right hand side are negated and added to the left hand side:

If ν is an axiom, then CLI(ν) is the set containing the sub-sequent composed only of
the formulas that are cut-ancestors, such that all the formulas that would appear on the
right-hand side are negated and added to the left-hand side.
If ν is the result of the application of a unary rule on µ, then CLI(ν) = CLI(µ)
If ν is the result of the application of a binary rule on µ1 and µ2, we have to distinguish
two cases:

If the rule is applied to ancestors of a cut formula, then CLI(ν) = CLI(µ1) ∪CLI(µ2).
If the rule is applied to ancestors of the end-sequent, then CLI(ν) = CLI(µ1)×CLI(µ2).

Where2:
CLI(µ1)× CLI(µ2) = {C ◦D|C ∈ CLI(µ1), D ∈ CLI(µ2)}

Note that since the formulas on the right hand side are moved to the left hand side
already on the axioms, the clauses always have the right side empty. This guarantees that
we always have intuitionistic sequents and no conflicts arise while merging.

I Theorem 5 (Refutability of the Intuitionistic Clause Set). The intuitionistic clause set is
LJ-refutable.

Proof. Let ϕ be an LJ proof and CLI(ϕ) be its intuitionistic clause set built according to
Definition 4 and CL(ϕ) be its classical clause set obtained by the classical version of CERes.
For each clause Ci = Ai1, ..., A

i
ni
` Bi1, ..., Bimi

of the classical clause set, we build the closed
formula Fi = ∀x.¬(Ai1 ∧ ... ∧Aini

∧ ¬Bi1 ∧ ... ∧ ¬Bimi
).

2 The operation ◦ represents the merging of sequents, i.e., (Γ ` ∆) ◦ (Γ′ ` ∆′) = Γ,Γ′ ` ∆,∆′.

CSL’12

490 Towards CERes in intuitionistic logic

By previous results, summarized in Section 2, we know that there is an LK refutation ψ
of CL(ϕ):

C1
... ...

Ck
...

`

By merging each formula Fi to its corresponding clause Ci and propagating it down the
refutation, we obtain an LK proof ψ1 from the formulas Fi, Ai1, ..., Aini

` Bi1, ..., Bimi
of the

end-sequent F1, ..., Fk `:

ϕ1
F1 ◦ C1

... ...

ϕk
Fk ◦ Ck

...
F1, ..., Fk `

where each ϕi is a derivation of Fi ◦ Ci from tautological axioms. We can transform the
proof ψ1 into a proof ψ2 of ` ¬(F1 ∧ ... ∧ Fk):

ψ1
F1, ..., Fk `

F1 ∧ ... ∧ Fk `
∧l × (k − 1)

` ¬(F1 ∧ ... ∧ Fk)
¬r

Since the axioms of this proof are tautological, we can transform this into an LJ proof
ψ3 via the following negative translation [14]:

A → ¬¬A∗
A∗ → A (if A is an atom)

(¬A)∗ → ¬A∗ (if A is an atom)
(A�B)∗ → (A∗�B∗),� ∈ {∧,∨,⇒}
(∃x.A)∗ → ∃x.A∗
(∀x.A)∗ → ∀x.¬¬A∗

The end-sequent of ψ3 is ` ¬(F̃1 ∧ ... ∧ F̃k), where each F̃i is the negative translation of
Fi. Note that ` ¬¬¬A is LJ-equivalent to ` ¬A, so there is still only one negation on this
end-sequent.

From the proof ψ3, we can construct the proof ψ4:

ψ3

` ¬(F̃1 ∧ ... ∧ F̃k)

Ξ1
` F̃1 ...

Ξn
` F̃k

` F̃1 ∧ ... ∧ F̃k
∧r × k

¬(F̃1 ∧ ... ∧ F̃k) `
¬l

` cut

Note that the end-sequent of each derivation Ξi is of the form:

` ¬¬∀x1....¬¬∀xr.¬¬¬(Ai1 ∧ ... ∧Aini
∧ ¬Bi1 ∧ ... ∧ ¬Bimi

)

And each Ξi is:

A. Leitsch, G. Reis, and B. Woltzenlogel Paleo 491

Ai1, ..., A
i
ni
,¬Bi1, ...,¬Bimi

`

Ai1 ∧ ... ∧Aini
∧ ¬Bi1 ∧ ... ∧ ¬Bimi

`
∧l × (ni +mi − 1)

` ¬¬¬(Ai1 ∧ ... ∧Aini
∧ ¬Bi1 ∧ ... ∧ ¬Bimi

)
¬r,¬l,¬r

...
` ¬¬∀x2....¬¬∀xr.¬¬¬(Ai1 ∧ ... ∧Aini

∧ ¬Bi1 ∧ ... ∧ ¬Bimi
)
∀r,¬l,¬r

` ¬¬∀x1....¬¬∀xr.¬¬¬(Ai1 ∧ ... ∧Aini
∧ ¬Bi1 ∧ ... ∧ ¬Bimi

)
∀r,¬l,¬r

So, we obtain an LJ-refutation of the clauses Ai1, ..., Aini
,¬Bi1, ...,¬Bimi

` for every i,
which are exactly the elements of CLI(ϕ).

J

I Definition 6 (R¬). The R¬ calculus is a resolution calculus with the following rules:

Γ ` A Γ′, A′ ` ∆
Γσ,Γ′σ ` ∆σ R

Γ ` ¬A Γ′,¬A′ ` ∆
Γσ,Γ′σ ` ∆σ R¬

A,A′ ` ∆
Aσ ` ∆σ C

¬A,¬A′ ` ∆
¬Aσ ` ∆σ C¬

Γ, A `
Γ ` ¬A

¬r Γ ` A
Γ,¬A `

¬l

Where ∆ is a multi-set with at most one formula3 and σ is the most general unifier of A and
A′.

The choice of a modified resolution calculus is justified by the fact that a proof in this
calculus will be used as a part of the final LJ proof. In fact, any calculus for intuitionistic
logic could be used for the proof search itself, but then we would need a translation of the
corresponding proof object into an LJ-proof to use in this method.

I Lemma 7. If ϕ is an LJ-refutation of a set of intuitionistic clauses (Definition 3) S and
ϕ′ is a normal form of ϕ with respect to reductive cut-elimination, then any cut-formula in
ϕ′ is either an atom or a negated atom.

Proof. Assume, for the sake of contradiction, that ϕ′ contains a cut whose cut-formula
F is neither an atom nor a negated atom. Since the axioms of ϕ′ contain only atoms or
negated atoms, it must be the case that the left and right occurrences of F in this cut are
introduced, respectively, by inferences ρl and ρr occurring somewhere in ϕ′. Two cases can
be distinguished:

1. Both ρl and ρr occur immediately above the cut: in this case, either a grade reduction
rule can be applied, if both ρl and ρr are logical inferences, or a reduction over weakening,
if at least one of them is a weakening.

2. At least one of ρl and ρr does not occur immediately above the cut: in this case, a rank
reduction rule can be applied.

In both cases, the assumption contradicts the fact that ϕ′ is in normal form. Therefore,
it must be the case that all cut-formulas in ϕ′ are either atoms or negated atoms. J

3 Throughout the paper, ∆ stands as a multi-set with at most one formula.

CSL’12

492 Towards CERes in intuitionistic logic

I Lemma 8. If ϕ is an LJ-refutation of a set of intuitionistic clauses S and ϕ′ is a normal
form of ϕ with respect to reductive cut-elimination, then the only inference rules used in ϕ′
are ¬l, ¬r, cut and left contraction.

Proof. Assume, for the sake of contradiction, that there is an inference ρ in ϕ′ that is neither
a ¬l, nor a ¬r, nor a cut inference, nor a left contraction, and let F be its main formula.
Since ϕ′ is an LJ-refutation, its end-sequent is empty. Hence, F must be the ancestor of a
cut-formula, and since F is neither an atom nor a negated atom, its descendant cut-formula
is also neither an atom nor a negated atom. However, this contradicts Lemma 7, according to
which any cut-formula in ϕ′ must be either an atom or a negated atom. Therefore, inferences
that are neither ¬l, nor ¬r, nor cut, nor left contraction cannot occur in ϕ′. J

I Remark. All logical inferences that are neither ¬l nor ¬r disappear when ϕ is rewritten to
ϕ′ due to grade reduction rules. This is exemplified below for the conjunction case:

ϕ1
Γ1 ` A

ϕ2
Γ2 ` B

Γ1,Γ2 ` A ∧B
∧r

ϕ3
Γ3, A,B ` ∆

Γ3, A ∧B ` ∆
∧l

Γ1,Γ2,Γ3 ` ∆ cut ⇒

ϕ1
Γ1 ` A

ϕ2
Γ2 ` B

ϕ3
Γ3, A,B ` ∆

Γ2,Γ3, A ` ∆ cut

Γ1,Γ2,Γ3 ` ∆ cut

The same cannot be done with negation inferences. Observe that, as usual, the grade
reduction for negation requires the cut-formulas to be introduced by ¬l and ¬r:

ϕ1
Γ1, A `
Γ1 ` ¬A

¬r

ϕ2
Γ2 ` A

Γ2,¬A `
¬l

Γ1,Γ2 `
cut ⇒

ϕ1
Γ1, A `

ϕ2
Γ2 ` A

Γ1,Γ2 `
cut

However, since the intuitionistic clause can have negated atoms, it may be the case that,
(at least) one of the cut-formulas was directly introduced by an axiom, as shown in the
example proof below:

ϕ1
Γ1, A `
Γ1 ` ¬A

¬r Γ2,¬A `
Γ1,Γ2 `

cut

In such cases, the grade reduction rule for negation cannot be applied, and hence the
negation inference and the cut with a negated atomic formula remain.

I Lemma 9. If ϕ is an LJ-refutation of an unsatisfiable set of intuitionistic clauses S and
ϕ′ is a normal form of ϕ with respect to reductive cut-elimination, then the axioms of ϕ′ are
instances of the clauses of S.

Proof. On applying the rewriting rules for cut-elimination, the initial sequents are not
altered, except for the quantifier grade reduction rules, shown below:

ϕ1
Γ1 ` F (α)

Γ1 ` ∀x.F (x) ∀r

ϕ2
Γ2, F (t) ` ∆

Γ2,∀x.F (x) ` ∆ ∀l

Γ1,Γ2 ` ∆ cut ⇒

ϕ1{α← t}
Γ1 ` F (t)

ϕ2
Γ2, F (t) ` ∆

Γ1,Γ2 ` ∆ cut

A. Leitsch, G. Reis, and B. Woltzenlogel Paleo 493

ϕ1
Γ1 ` F (t)

Γ1 ` ∃x.F (x) ∃r

ϕ2
Γ2, F (α) ` ∆

Γ2,∃x.F (x) ` ∆ ∃l

Γ1,Γ2 ` ∆ cut ⇒

ϕ1
Γ1 ` F (t)

ϕ2{α← t}
Γ2, F (t) ` ∆

Γ1,Γ2 ` ∆ cut

In order to eliminate the quantifier of the cut formula, the instantiated version of the
formulas must be used. But this imposes no problem, since we can apply the substitution
σ = {α← t} on the proof.

If X is an axiom clause in ϕ2, X{α← t} will be an axiom clause in ϕ2{α← t}. Finally,
ϕ′ will have axioms that are, in fact, instances of the clauses in S.

J

Next, we prove the completeness of the R¬ resolution calculus. In order to do that, we
need the lifting lemma for this calculus. Intuitively, this lemma guarantees that if there is a
resolution of instantiated terms, it is possible to transform (“lift”) this into a resolution of
the same terms with variables and a substitution.

I Definition 10. Let X and Y be clauses, then X ≤s Y iff there exists a substitution Θ
with XΘ = Y .

I Lemma 11 (Lifting). Let C and D be clauses with C ≤s C ′ and D ≤s D′. Assume that
C ′ and D′ have a R¬-resolvent E′. Then, there exists a R¬-resolvent E of C and D such
that E ≤s E′.

The proof of Lemma 11 is analogous to the one for the ordinary resolution calculus and
will not be described here.

I Theorem 12 (Completeness of R¬). Let S be an LJ-refutable set of intuitionistic clauses.
Then S is R¬-refutable.

Proof. Let ϕ be an LJ-refutation of S. By applying Gentzen’s proof-rewriting rules for cut-
elimination exhaustively, ϕ is rewritten to a normal form ϕ′, whose existence is guaranteed
by the fact that Gentzen’s proof-rewriting system is terminating (see Gentzen’s Hauptsatz
[8, 9]). By Lemmas 7 and 8, ϕ′ has only ¬l, ¬r, cut and left contraction inferences. As these
inference rules correspond, respectively, to the rules ¬l, ¬r, {R,R¬} and {C,C¬} (without
unification) of the R¬ calculus, ϕ′ can be immediately converted to a ground R¬-refutation
δ. By Lemma 9, the axioms of ϕ′ and hence also of δ are instances of the clauses in S.
Therefore, by the lifting lemma (Lemma 11), δ can be lifted into an R¬-refutation δ∗ of
S. J

Due to the way the intuitionistic clause set is constructed, all the clauses have no formula
on the right hand side. This means that the rule ¬l can be dropped from R¬ and the clause
sets used in our scenario will still be refutable. Also, the resolution rule on non-negated
atoms could also be eliminated in our case, since we could always replace any (non-negated)
resolution by negation inferences and negated resolution.

I Definition 13 (Intuitionistic Projection). An intuitionistic projection is built analogously
to a usual projection, except that all the formulas on the right side are negated and added
to the left side.

Let ϕ be a proof in LJ and C ∈ CLI(ϕ). Then the LJ-proof ϕ(C) is called an intuitionistic
projection and it is build inductively on the number of inferences of ϕ. Let ν be a node in ϕ
and ϕν(C) the projection for clause C until node ν:

CSL’12

494 Towards CERes in intuitionistic logic

1. ν is a leaf: then ϕν(C) is the derivation consisting of applying a negation rule (¬l) to the
atoms which are cut-ancestors in order to shift them from the right to the left side (if
there is a cut-ancestor on the right).

2. ν is the result of a unary rule ξ applied to µ:
2.a. ξ operates on a cut ancestor: ϕν(C) = ϕµ(C)
2.b. ξ operates on an end sequent ancestor: ϕν(C) is ϕµ(C) plus the application of ξ to its

end-sequent
3. ν is the result of a binary rule ξ applied to µ1 and µ2:
3.a. ξ operates on a cut ancestor: ϕν(C) is ϕµi

(C) (i depends on which branch C is coming
from) plus some weakenings to obtain formulas that were used in the other branch.

3.b. ξ operates on an end sequent ancestor: ϕν(C) is the result of applying ξ to the
end-sequents of ϕµ1(C) and ϕµ2(C).

I Definition 14 (NACNF). A proof is said to be in negated atomic cut normal form (NACNF)
when all the cuts are on atoms or negated atoms.

I Definition 15 (iCERes). Let ϕ be a proof in LJ of a sequent S, CLI(ϕ) its intuitionistic
clause set (Definition 4) and π1, ..., πn the intuitionistic projections (Definition 13) of the
clauses of CLI(ϕ). By Theorems 5 and 12, there exists a grounded refutation ϕ∗ of CLI(ϕ).
We define iCERes as the procedure of computing the elements CLI(ϕ), π1, ..., πn, and ϕ∗
from ϕ and then merging (instances of) π1, ..., πn with ϕ∗ in the following way:

Let Ci be the clause of a leaf in ϕ∗. Then, Ci is replaced by the projection πi (with the
proper substitution of variables), which is actually a derivation of Ci ◦ S. Moreover, the
formulas of S are propagated down the refutation.

I Theorem 16. Let ϕ be an proof in LJ− (Definition 2). Then iCERes, applied to ϕ,
produces an intuitionistic negated atomic cut normal form.

Proof. From Definition 15, we can observe that the result of applying iCERes to an LJ-proof
consists of the resolution refutation in R¬ merged with the projections. These last elements
have no cuts and are derivations in LJ by definition. The refutation has resolution rules on
atoms and negated atoms, which will be the cuts on the final proof. Since the projections
have no formula on the right side of their end sequents, and the resolution sequents have no
more than one formula on the right side of each sequent, the final proof is an LJ-proof of an
end-sequent equal to the one of ϕ up to some contractions on the left. J

3.1 Example
In order to illustrate the iCERes method, we will apply it to the following LJ− proof:

Pα? ` Pα
I

Pfα ` Pfα I
Pf2α ` Pf2α?

I

Pfα, Pfα→ Pf2α ` Pf2α?
→l

Pα?, Pα→ Pfα, Pfα→ Pf2α ` Pf2α?
→l

Pα?, ∀x.(Px→ Pfx), ∀x.(Px→ Pfx) ` Pf2α?
∀l

∀x.(Px→ Pfx), ∀x.(Px→ Pfx) ` (Pα→ Pf2α)?
→r

∀x.(Px→ Pfx) ` (Pα→ Pf2α)?
cl

∀x.(Px→ Pfx) ` ∀x.(Px→ Pf2x)?
∀r

Pa ` Pa? I
Pf2a? ` Pf2a?

I
Pf4a? ` Pf4a

I

Pf2a?, (Pf2a→ Pf4a)? ` Pf4a
→l

Pa, (Pa→ Pf2a)?, (Pf2a→ Pf4a)? ` Pf4a
→l

Pa, ∀x.(Px→ Pf2x)?, ∀x.(Px→ Pf2x)? ` Pf4a
∀l

Pa, ∀x.(Px→ Pf2x)? ` Pf4a
cl

Pa, ∀x.(Px→ Pf2x)? ` ∃z.Pf4z
∃r

Pa, ∀x.(Px→ Pfx) ` ∃z.Pf4z
cut

Pa, ∀x.(Px→ Pfx),¬∃z.Pf4z `
¬l

A. Leitsch, G. Reis, and B. Woltzenlogel Paleo 495

Note that the cut formulas and cut ancestors are superscribed with ?. By removing
the rules applied on end-sequent ancestors and merging the branches as was described on
Definition 4, the intuitionistic clause set obtained is:

CLI(ϕ) = {Pα,¬Pf2α ` ; ¬Pa ` ; Pf4a `}

As was proved previously, there is a resolution refutation of this clause set on R¬:

Pα,¬Pf2α `
¬Pf2α ` ¬Pα

¬r
¬Pa `

¬Pf2a `
R¬{α← a}

Pf4a `
` ¬Pf4a

¬r
Pα,¬Pf2α `

Pf2a `
R¬{α← f2a}

` ¬Pf2a
¬r

` R¬

The projections of the three clauses of CLI are:

π1[α] :

Pα ` Pα I
Pfα ` Pfα I

Pf2α ` Pf2α
I

¬Pf2α, Pf2α `
¬l

Pfα,¬Pf2α, Pfα→ Pf2α `
→l

Pα,¬Pf2α, Pα→ Pfα, Pfα→ Pf2α `
→l

Pα,¬Pf2α,∀x.(Px→ Pfx),∀x.(Px→ Pfx) `
∀l × 2

Pα,¬Pf2α,∀x.(Px→ Pfx) `
cl

Pα,¬Pf2α, Pa,∀x.(Px→ Pfx) ` ∃z.Pf4z
w × 2

Pα,¬Pf2α, Pa,∀x.(Px→ Pfx),¬∃z.Pf4z `
¬l

π2 :

Pa ` Pa I

¬Pa, Pa `
¬l

¬Pa, Pa,∀x.(Px→ Pfx) ` ∃z.Pf4z
w × 2

¬Pa, Pa,∀x.(Px→ Pfx),¬∃z.Pf4z `
¬l

π3 :

Pf4a ` Pf4a
I

Pf4a ` ∃z.Pf4z
∃r

Pf4a, Pa,∀x.(Px→ Pfx) ` ∃z.Pf4z
w × 2

Pf4a, Pa, ∀x.(Px→ Pfx),¬∃z.Pf4z `
¬l

By merging the appropriate instances of the projections on the resolution refutation, we
obtain the final proof, depicted in Figure 3. The projections are colored accordingly. The
projection π1 used on the left side had α replaced with a and the one used on the right side
had α replaced with f2a. Note that this proof is in NACNF, containing only cuts on atoms
or negated atoms, and it is still a proof in LJ.

4 On the possibility of extending iCERes to a larger class of proofs

On the example of Section 3.1, the last application of the rule ¬l was used in order to make
the end-sequent fulfill the condition of not having formulas on the right. This is a simple
operation, but, as we mentioned before, it is not trivial how to transform the final proof
into a proof of the sequent where the shifted formula is on the right side. In this section we
analyse a possible solution to deal with end-sequents without this restriction.

CSL’12

496 Towards CERes in intuitionistic logic

Applying iCERes to a proof in LJ where the end-sequent has a formula on the right will
yield intuitionistic projections and a refutation in the R¬ calculus. But when these elements
are put together, it might be the case that some classical sequents appear (in the sense of
having more than one formula on the right). Nevertheless, it seems to be often the case that
applying reductive cut-elimination on this final LK proof and removing the cuts on atoms
and negated atoms will again result in an LJ proof. We present here an example to illustrate
this.

The proof used is the same as the one on Section 3.1, except for the last application of ¬l.

Pα? ` Pα
I

Pfα ` Pfα I
Pf2α ` Pf2α?

I

Pfα, Pfα→ Pf2α ` Pf2α?
→l

Pα?, Pα→ Pfα, Pfα→ Pf2α ` Pf2α?
→l

Pα?, ∀x.(Px→ Pfx), ∀x.(Px→ Pfx) ` Pf2α?
∀l

∀x.(Px→ Pfx), ∀x.(Px→ Pfx) ` (Pα→ Pf2α)?
→r

∀x.(Px→ Pfx) ` (Pα→ Pf2α)?
cl

∀x.(Px→ Pfx) ` ∀x.(Px→ Pf2x)?
∀r

Pa ` Pa? I
Pf2a? ` Pf2a?

I
Pf4a? ` Pf4a

I

Pf2a?, (Pf2a→ Pf4a)? ` Pf4a
→l

Pa, (Pa→ Pf2a)?, (Pf2a→ Pf4a)? ` Pf4a
→l

Pa, ∀x.(Px→ Pf2x)?, ∀x.(Px→ Pf2x)? ` Pf4a
∀l

Pa, ∀x.(Px→ Pf2x)? ` Pf4a
cl

Pa, ∀x.(Px→ Pf2x)? ` ∃z.Pf4z
∃r

Pa, ∀x.(Px→ Pfx) ` ∃z.Pf4z
cut

The intuitionistic characteristic clause set is (the same as before):

CLI = {Pα,¬Pf2α ` ; ¬Pa ` ; Pf4a `}

The projections for each element of CLI are:

π1[α] :

Pα ` Pα I
Pfα ` Pfα I

Pf2α ` Pf2α
I

¬Pf2α, Pf2α `
¬l

Pfα,¬Pf2α, Pfα→ Pf2α `
→l

Pα,¬Pf2α, Pα→ Pfα, Pfα→ Pf2α `
→l

Pα,¬Pf2α,∀x.(Px→ Pfx),∀x.(Px→ Pfx) `
∀l × 2

Pα,¬Pf2α,∀x.(Px→ Pfx) `
cl

Pα,¬Pf2α, Pa,∀x.(Px→ Pfx) ` ∃z.Pf4z
w × 2

π2 :

Pa ` Pa I

¬Pa, Pa `
¬l

¬Pa, Pa,∀x.(Px→ Pfx) ` ∃z.Pf4z
w × 2

π3 :

Pf4a ` Pf4a
I

Pf4a ` ∃z.Pf4z
∃r

Pf4a, Pa, ∀x.(Px→ Pfx) ` ∃z.Pf4z
w × 2

The resolution refutation is (the same as before):

Pα,¬Pf2α `
¬Pf2α ` ¬Pα

¬r
¬Pa `

¬Pf2a `
R¬{α← a}

Pf4a `
` ¬Pf4a

¬r
Pα,¬Pf2α `

Pf2a `
R¬{α← f2a}

` ¬Pf2a
¬r

` R¬

A. Leitsch, G. Reis, and B. Woltzenlogel Paleo 497

Pa ` Pa I
Pfa ` Pfa I

Pf2a ` Pf2a
I

Pf3a ` Pf3a
I

Pf4a ` Pf4a
I

Pf4a ` ∃z.Pf4z
∃r

Pa, Pf3a, Pf3a→ Pf4a ` ∃z.Pf4z
→l

Pf2a, Pa, Pf2a→ Pf3a, Pf3a→ Pf4a ` ∃z.Pf4z
→l

Pf2a, Pa, ∀x.(Px→ Pfx),∀x.(Px→ Pfx) ` ∃z.Pf4z
∀l × 2

Pf2a, Pa,∀x.(Px→ Pfx) ` ∃z.Pf4z
cl

Pa, Pfa, Pfa→ Pf2a,∀x.(Px→ Pfx) ` ∃z.Pf4z
→l

Pa, Pa, Pa→ Pfa, Pfa→ Pf2a,∀x.(Px→ Pfx) ` ∃z.Pf4z
→l

Pa, Pa,∀x.(Px→ Pfx),∀x.(Px→ Pfx), ∀x.(Px→ Pfx) ` ∃z.Pf4z
∀l × 2

Pa,∀x.(Px→ Pfx) ` ∃z.Pf4z
cl × 3

Figure 2 Proof obtained after eliminating the atomic cuts.

Given the projections and grounded resolution, the final proof is depicted in Figure 4.
Note that, since the end-sequent had a formula on the right side, the final proof is not in LJ,
but in LK. Even though the refutation and projections were intuitionistic, when they are
put together some sequents end up having more than one formula on the right.

But if reductive cut-elimination is applied to the proof in Figure 4 and all useless
weakenings and contractions are removed, the result is again a proof in LJ, depicted in
Figure 2.

The second condition, the absence of strong quantifiers in the end-sequent, can be satisfied
by removing strong quantifiers with methods of skolemization of LJ-proofs [4]. It is important
to note, however, that the end-sequent of a final proof ϕ obtained by applying iCERes to
an LJ-proof that has been skolemized will also contain skolem terms. Depending on the
application, it might be desirable to transform ϕ into a proof of the original non-skolemized
end-sequent. Unfortunately, it is not yet clear how to perform such a deskolemization.

5 Conclusions and future work

This paper presents a method of cut-elimination by resolution for a fragment of LJ. In order
to develop this method, it was necessary to define intuitionistic clause sets, intuitionistic
projections and a new resolution calculus. It was proved that this calculus is complete
with respect to LJ on clause logic. Applying the CERes method (previously developed for
classical logic) with these new definitions on an LJ proof, such that its end-sequent does
not contain a formula on the right side, will yield an intuitionistic proof with only atomic or
negated atomic cuts.

It is important to observe that, for any LJ-proof, the projections and refutation of the
clause set, as defined in this paper, are both intuitionistic. But when these elements are
assembled together to compose the final proof, a classical sequent might occur. This is why
the current method has to be restricted to a fragment of LJ for which this undesirable effect
cannot occur. Interestingly, this fragment corresponds to the class of intuitionistic proofs by
contradiction.

Immediate future work will consist of extending iCERes to larger classes of (and hopefully
all) LJ-proofs. It seems likely that this will require more sophisticated ways of assembling
projections and refutations.

In addition to extending iCERes to larger classes of proofs, we also intend to eventually
apply it to a real mathematical proof, as we have done with the classical CERes for
Fürstenberg’s proof of the infinitude of primes.

CSL’12

498 Towards CERes in intuitionistic logic

P
a
`

P
a

I
P

f
a
`

P
f

a
I

P
f

2
a
`

P
f

2
a

I

¬
P

f
2

a
,

P
f

2
a
`
¬

l

P
f

a
,
¬

P
f

2
a

,
P

f
a
→

P
f

2
a
`

→
l

P
a

,
¬

P
f

2
a

,
P

a
→

P
f

a
,

P
f

a
→

P
f

2
a
`

→
l

P
a

,
¬

P
f

2
a

,
∀

x
.(

P
x
→

P
f

x
),
∀

x
.(

P
x
→

P
f

x
)
`
∀

l
×

2

P
a

,
¬

P
f

2
a

,
∀

x
.(

P
x
→

P
f

x
)
`

c
l

P
a

,
¬

P
f

2
a

,
P

a
,
∀

x
.(

P
x
→

P
f

x
)
`
∃

z
.P

f
4

z
w
×

2

P
a

,
¬

P
f

2
a

,
P

a
,
∀

x
.(

P
x
→

P
f

x
),
¬
∃

z
.P

f
4

z
`
¬

l

¬
P

f
2

a
,

P
a

,
∀

x
.(

P
x
→

P
f

x
),
¬
∃

z
.P

f
4

z
`
¬

P
a
¬

r

P
a
`

P
a

I

¬
P

a
,

P
a
`
¬

l

¬
P

a
,

P
a

,
∀

x
.(

P
x
→

P
f

x
)
`
∃

z
.P

f
4

z
w
×

2

¬
P

a
,

P
a

,
∀

x
.(

P
x
→

P
f

x
),
¬
∃

z
.P

f
4

z
`
¬

l

¬
P

f
2

a
,

P
a

,
P

a
,
∀

x
.(

P
x
→

P
f

x
),
∀

x
.(

P
x
→

P
f

x
),
¬
∃

z
.P

f
4

z
,
¬
∃

z
.P

f
4

z
`

c
u

t

P
f

4
a
`

P
f

4
a

I

P
f

4
a
`
∃

z
.P

f
4

z
∃

r

P
f

4
a

,
P

a
,
∀

x
.(

P
x
→

P
f

x
)
`
∃

z
.P

f
4

z
w
×

2

P
f

4
a

,
P

a
,
∀

x
.(

P
x
→

P
f

x
),
¬
∃

z
.P

f
4

z
`
¬

l

P
a

,
∀

x
.(

P
x
→

P
f

x
),
¬
∃

z
.P

f
4

z
`
¬

P
f

4
a
¬

r

P
f

2
a
`

P
f

2
a

I
P

f
3

a
`

P
f

3
a

I
P

f
4

a
`

P
f

4
a

I

¬
P

f
4

a
,

P
f

4
a
`
¬

l

P
f

3
a

,
¬

P
f

4
a

,
P

f
3

a
→

P
f

4
a
`

→
l

P
f

2
a

,
¬

P
f

4
a

,
P

f
2

a
→

P
f

3
a

,
P

f
3

a
→

P
f

4
a
`

→
l

P
f

2
a

,
¬

P
f

4
a

,
∀

x
.(

P
x
→

P
f

x
),
∀

x
.(

P
x
→

P
f

x
)
`
∀

l
×

2

P
f

2
a

,
¬

P
f

4
a

,
∀

x
.(

P
x
→

P
f

x
)
`

c
l

P
f

2
a

,
¬

P
f

4
a

,
P

a
,
∀

x
.(

P
x
→

P
f

x
)
`
∃

z
.P

f
4

z
w
×

2

P
f

2
a

,
¬

P
f

4
a

,
P

a
,
∀

x
.(

P
x
→

P
f

x
),
¬
∃

z
.P

f
4

z
`
¬

l

P
f

2
a

,
P

a
,

P
a

,
∀

x
.(

P
x
→

P
f

x
),
∀

x
.(

P
x
→

P
f

x
),
¬
∃

z
.P

f
4

z
,
¬
∃

z
.P

f
4

z
`

c
u

t

P
a

,
P

a
,
∀

x
.(

P
x
→

P
f

x
),
∀

x
.(

P
x
→

P
f

x
),
¬
∃

z
.P

f
4

z
,
¬
∃

z
.P

f
4

z
`
¬

P
f

2
a
¬

r

P
a

,
P

a
,

P
a

,
P

a
,
∀

x
.(

P
x
→

P
f

x
),
∀

x
.(

P
x
→

P
f

x
),
∀

x
.(

P
x
→

P
f

x
),
∀

x
.(

P
x
→

P
f

x
),
¬
∃

z
.P

f
4

z
,
¬
∃

z
.P

f
4

z
,
¬
∃

z
.P

f
4

z
,
¬
∃

z
.P

f
4

z
`

c
u

t

P
a

,
∀

x
.(

P
x
→

P
f

x
),
¬
∃

z
.P

f
4

z
`

c
×

9

Fi
gu

re
3

Fi
na

lp
ro

of
af

te
r

ap
pl

yi
ng

th
e

m
et

ho
d

to
an

LJ
-p

ro
of

of
an

en
d-

se
qu

en
t

w
ith

no
fo

rm
ul

a
on

th
e

rig
ht

.

P
a
`

P
a

I
P

f
a
`

P
f

a
I

P
f

2
a
`

P
f

2
a

I

¬
P

f
2

a
,

P
f

2
a
`
¬

l

P
f

a
,
¬

P
f

2
a

,
P

f
a
→

P
f

2
a
`

→
l

P
a

,
¬

P
f

2
a

,
P

a
→

P
f

a
,

P
f

a
→

P
f

2
a
`

→
l

P
a

,
¬

P
f

2
a

,
∀

x
.(

P
x
→

P
f

x
),
∀

x
.(

P
x
→

P
f

x
)
`
∀

l
×

2

P
a

,
¬

P
f

2
a

,
∀

x
.(

P
x
→

P
f

x
)
`

c
l

P
a

,
¬

P
f

2
a

,
P

a
,
∀

x
.(

P
x
→

P
f

x
)
`
∃

z
.P

f
4

z
w
×

2

¬
P

f
2

a
,

P
a

,
∀

x
.(

P
x
→

P
f

x
)
`
∃

z
.P

f
4

z
,
¬

P
a
¬

r

P
a
`

P
a

I

¬
P

a
,

P
a
`
¬

l

¬
P

a
,

P
a

,
∀

x
.(

P
x
→

P
f

x
)
`
∃

z
.P

f
4

z
w
×

2

¬
P

f
2

a
,

P
a

,
P

a
,
∀

x
.(

P
x
→

P
f

x
),
∀

x
.(

P
x
→

P
f

x
)
`
∃

z
.P

f
4

z
,
∃

z
.P

f
4

z
c

u
t

P
f

4
a
`

P
f

4
a

I

P
f

4
a
`
∃

z
.P

f
4

z
∃

r

P
f

4
a

,
P

a
,
∀

x
.(

P
x
→

P
f

x
)
`
∃

z
.P

f
4

z
w
×

2

P
a

,
∀

x
.(

P
x
→

P
f

x
)
`
∃

z
.P

f
4

z
,
¬

P
f

4
a
¬

r

P
f

2
a
`

P
f

2
a

I
P

f
3

a
`

P
f

3
a

I
P

f
4

a
`

P
f

4
a

I

¬
P

f
4

a
,

P
f

4
a
`
¬

l

P
f

3
a

,
¬

P
f

4
a

,
P

f
3

a
→

P
f

4
a
`

→
l

P
f

2
a

,
¬

P
f

4
a

,
P

f
2

a
→

P
f

3
a

,
P

f
3

a
→

P
f

4
a
`

→
l

P
f

2
a

,
¬

P
f

4
a

,
∀

x
.(

P
x
→

P
f

x
),
∀

x
.(

P
x
→

P
f

x
)
`
∀

l
×

2

P
f

2
a

,
¬

P
f

4
a

,
∀

x
.(

P
x
→

P
f

x
)
`

c
l

P
f

2
a

,
¬

P
f

4
a

,
P

a
,
∀

x
.(

P
x
→

P
f

x
)
`
∃

z
.P

f
4

z
w
×

2

P
f

2
a

,
P

a
,

P
a

,
∀

x
.(

P
x
→

P
f

x
),
∀

x
.(

P
x
→

P
f

x
)
`
∃

z
.P

f
4

z
,
∃

z
.P

f
4

z
c

u
t

P
a

,
P

a
,
∀

x
.(

P
x
→

P
f

x
),
∀

x
.(

P
x
→

P
f

x
)
`
∃

z
.P

f
4

z
,
∃

z
.P

f
4

z
,
¬

P
f

2
a
¬

r

P
a

,
P

a
,

P
a

,
P

a
,
∀

x
.(

P
x
→

P
f

x
),
∀

x
.(

P
x
→

P
f

x
),
∀

x
.(

P
x
→

P
f

x
),
∀

x
.(

P
x
→

P
f

x
)
`
∃

z
.P

f
4

z
,
∃

z
.P

f
4

z
,
∃

z
.P

f
4

z
,
∃

z
.P

f
4

z
c

u
t

P
a

,
∀

x
.(

P
x
→

P
f

x
)
`
∃

z
.P

f
4

z
c
×

9

Fi
gu

re
4

Fi
na

lp
ro

of
af

te
r

ap
pl

yi
ng

th
e

m
et

ho
d

to
an

LJ
-p

ro
of

of
an

en
d-

se
qu

en
t

w
ith

a
fo

rm
ul

a
on

th
e

rig
ht

.

A. Leitsch, G. Reis, and B. Woltzenlogel Paleo 499

References
1 Matthias Baaz, Agata Ciabattoni, and Christian G. Fermüller. Cut elimination for first

order Gödel logic by hyperclause resolution. In LPAR 2008, volume 5330 of LNCS, pages
451–466, 2008.

2 Matthias Baaz, Stefan Hetzl, Alexander Leitsch, Clemens Richter, and Hendrik Spohr.
Cut-elimination: Experiments with ceres. In Franz Baader and Andrei Voronkov, editors,
Logic for Programming, Artificial Intelligence, and Reasoning (LPAR) 2004, volume 3452
of Lecture Notes in Computer Science, pages 481–495. Springer, 2005.

3 Matthias Baaz, Stefan Hetzl, Alexander Leitsch, Clemens Richter, and Hendrik Spohr.
Ceres: An analysis of Fürstenberg’s proof of the infinity of primes. Theoretical Computer
Science, 403:160–175, 2008.

4 Matthias Baaz and Rosalie Iemhoff. On skolemization in constructive theories. Journal of
Symbolic Logic, 73(3):969–998, 2008.

5 Matthias Baaz and Alexander Leitsch. Cut-elimination and redundancy-elimination by
resolution. Journal of Symbolic Computation, 29(2):149–176, 2000.

6 Matthias Baaz and Alexander Leitsch. CERES in many-valued logics. In Proceedings of
LPAR 2004, volume 3452 of Lecture Notes in Artificial Intelligence, pages 1–20. Springer,
2005.

7 Matthias Baaz and Alexander Leitsch. Methods of Cut-Elimination, volume 34 of Trends
in Logic. Springer, 2011.

8 Gerhard Gentzen. Untersuchungen über das logische Schließen I. Mathematische Zeitschrift,
39(1):176–210, dec 1935.

9 Gerhard Gentzen. Untersuchungen über das logische Schließen II. Mathematische Zeits-
chrift, 39(1):405–431, dec 1935.

10 J.Y. Girard, Y. Lafont, and P. Taylor. Proofs and types. Cambridge University Press New
York, 1989.

11 Stefan Hetzl, Alexander Leitsch, and Daniel Weller. Ceres in higher-order logic. Annals of
Pure and Applied Logic, 162(12):1001–1034, 2011.

12 Stefan Hetzl, Alexander Leitsch, Daniel Weller, and Bruno Woltzenlogel Paleo. CERES in
second-order logic. Technical report, Vienna University of Technology, 2008.

13 Stefan Hetzl, Alexander Leitsch, Daniel Weller, and Bruno Woltzenlogel Paleo. Herbrand
sequent extraction. In Serge Autexier, John Campbell, Julio Rubio, Volker Sorge, Masakazu
Suzuki, and Freek Wiedijk, editors, Intelligent Computer Mathematics, volume 5144 of
Lecture Notes in Computer Science, pages 462–477. Springer Berlin, 2008.

14 Ulrich Kohlenbach. Applied Proof Theory: Proof Interpretations and their Use in Mathem-
atics. Springer Monographs in Mathematics. Springer Verlag, 2008.

15 G. Polya. Mathematics and plausible reasoning, 2 vols. Princeton, 2 edition, 1968. vol 1.
Induction and analogy in mathematics; vol 2. Patterns of plausible inference.

16 Gaisi Takeuti. Proof Theory. North-Holland/American Elsevier, 1975.

CSL’12

Variants of Collapsible Pushdown Systems
Paweł Parys∗

University of Warsaw, ul. Banacha 2, 02-097 Warszawa, Poland
parys@mimuw.edu.pl

Abstract
We analyze the relationship between three ways of generating trees using collapsible pushdown
systems (CPS’s): using deterministic CPS’s, nondeterministic CPS’s, and deterministic word-
accepting CPS’s. We prove that (for each level of the CPS and each input alphabet) the three
classes of trees are equal. The nontrivial translations increase n− 1 times exponentially the size
of the level-n CPS. The same results stay true if we restrict ourselves to higher-order pushdown
systems without collapse. As a second contribution we prove that the hierarchy of word languages
recognized by nondeterministic CPS’s is infinite. This is a consequence of a lemma which bounds
the length of the shortest accepting run. It also implies that the hierarchy of ε-closures of
configuration graphs is infinite (which was already known). As a side effect we obtain a new
algorithm for the reachability problem for CPS’s; it has the same complexity as previously known
algorithms.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases collapsible pushdown systems, determinization, infinite hierarchy, shrink-
ing lemma, reachability

Digital Object Identifier 10.4230/LIPIcs.CSL.2012.500

1 Introduction

Already in the 70’s, Maslov ([14, 15]) generalized the concept of pushdown automata to
higher-order pushdown automata and studied such devices as acceptors of string languages.
In the last decade, renewed interest in these automata has arisen. They are now studied also
as generators of graphs and trees. Knapik et al. [12] showed that the class of trees generated
by deterministic level-n pushdown systems coincides with the class of trees generated by
safe level-n recursion schemes,1 and Caucal [8] gave another characterization: trees on level
n + 1 are obtained from trees on level n by an MSO-interpretation of a graph, followed
by application of unfolding. Carayol and Wöhrle [7] studied the ε-closures of configuration
graphs of level-n pushdown systems and proved that these graphs are exactly the graphs
in the n-th level of the Caucal hierarchy. Driven by the question whether safety implies
a semantical restriction to recursion schemes (which was recently proven [17]), Hague et
al. [10] extended the model of level-n pushdown systems to level-n collapsible pushdown
systems (n-CPS’s) by introducing a new stack operation called collapse. They showed that
the trees generated by such systems coincide exactly with the class of trees generated by all
higher-order recursion schemes and this correspondence is level-by-level.

We compare three ways of generating trees using CPS’s of some level n. We consider here
edge-labelled, unranked, and unordered trees. In the classical definition of a tree-generating
CPS we take a deterministic CPS. Moreover it is typically assumed that every nonempty

∗ The author is partially supported by the Polish Ministry of Science grant nr N N206 567840.
1 Safety is a syntactic restriction on the recursion scheme.

© Paweł Parys;
licensed under Creative Commons License NC-ND

Computer Science Logic 2012 (CSL’12).
Editors: Patrick Cégielski, Arnaud Durand; pp. 500–515

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2012.500
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

P. Parys 501

run (from some reachable configuration) using only ε-transitions can be extended into a run
reading also some letter.2 We call such CPS strongly deterministic (see Definition 2.11). To
generate a tree, we unfold the configuration graph of the strongly deterministic CPS S into
a tree, and we contract all ε-labelled edges. We can also say that we take the ε-closure of
the configuration graph, and then we unfold it into a tree. Denote this tree T (S), and the
class of all such trees as TreesnD. Notice that in such a tree each node has, for each letter,
at most one outgoing edge labelled by that letter. Trees having this property will be called
deterministic.

But we can do the same (i.e. take the ε-closure of the configuration graph, and then
unfold it into a tree) for nondeterministic CPS’s. In general such trees can be very strange,
e.g. can contain a node which has infinitely many successors. We restrict ourselves only to
CPS’s generating deterministic trees. This class of trees will be called TreesnN . Notice that
whether a tree is deterministic is only a property of the tree, not the system generating it;
of course nondeterministic systems can also generate deterministic trees (the configuration
graphs can contain big parts consisting of only ε-transitions, containing many loops and
nondeterministic choices, but they are whole contracted to one node in the ε-closure). Nev-
ertheless, we prove that every such tree can be also generated by a strongly deterministic
system of the same level. In other words, there is an easy syntactic condition saying whether
a tree generated by a CPS can be also generated by a strongly deterministic CPS.

I Theorem 1.1. Let S be an n-CPS, such that T (S) is deterministic. Then there exists a
strongly deterministic n-CPS S ′ such that T (S) = T (S ′). System S ′ has size n − 1 times
exponential in the size of S, and can be computed in such time.

Determinization results are always important, because deterministic automata are, col-
loquially speaking, simpler and have better properties. For example a strongly deterministic
system can be easily simulated: having a configuration one can just run the system to see
which letters can be read next. For general (nondeterministic) systems this is much more
difficult, as by principle there can be arbitrarily long runs reading just one letter, so we do
not know when to stop. Other reason is that it is easier to prove that a tree is not generated
by a deterministic system, than that a graph is not generated by any (nondeterministic)
system. To be more precise, consider our result [11] showing that the hierarchy of graphs
generated by CPS’s is strict, i.e. that for each n there is a graph generated by an (n+1)-CPS
(i.e. which is the ε-closure of its configuration graph) which is not generated by any n-CPS.
We perform there a pumping construction which says that in a long enough run there is a
fragment which (in some sense) can be repeated arbitrarily many times, and this leads to a
contradiction. The problem is when this fragment does not read any letter; then repeating
it does not change the path in the ε-closure. To avoid such situation a very sophisticated
analysis is performed, which causes a technical complication of the proof. However using
the result of this paper we could just show that the unfolding of this graph is not gener-
ated by a deterministic system of level n, which would significantly simplify the proof. For
deterministic systems it is enough to perform the pumping in a simple form: repeating ar-
bitrarily many times a fragment not reading a letter is impossible in a deterministic system,
so automatically by repeating some fragment of a run we obtain longer and longer paths in
the ε-closure.

2 Sometimes this assumption is dropped (and then in the generated tree all branches of ε-labelled edges
which do not lead to a non-ε edge are replaced by a ⊥-labelled edge). Because our definition is more
restrictive, our results become stronger.

CSL’12

502 Variants of Collapsible Pushdown Systems

We also consider CPS’s as word acceptors (such CPS’s are given together with a set of
final states). Let us recall that no determinization is possible for word languages: it is known
that nondeterministic systems recognize more languages than deterministic ones (even if we
are allowed to increase the level). However we show that every deterministic system can
be converted into a strongly deterministic one, in which additionally from each reachable
configuration there exists an accepting run.

I Theorem 1.2. Let S be a deterministic n-CPS with final states F , used as word acceptor.
Then there exists a strongly deterministic n-CPS S ′ with final states F ′ such that it recog-
nizes the same language as (S, F), and from every reachable configuration of S ′ there is an
accepting run (unless the language is empty). System S ′ has size n− 1 times exponential in
the size of S, and can be computed in such time.

This can be equivalently stated for trees. Let Pref(S, F) be the tree whose nodes are all
prefixes of words accepted by the CPS S with final states F , and let TreesnL be the class of
all such trees. If from every reachable configuration of S there is an accepting run, we have
Pref(S, F) = T (S). Thus thanks to the above theorem we have TreesnL ⊆ TreesnD. For
the opposite implication it is enough to assume that every state is final (then every path of
T (S) is accepted). Thus we obtain equality of the three classes of trees.

I Corollary 1.3. For each n ∈ N we have TreesnD = TreesnN = TreesnL.

All our results still hold if we restrict ourselves to systems without collapse (i.e. then
the resulting systems also do not use collapse). Let us notice that Theorem 1.2 can be also
easily deduced (but probably without the bound on the size of the new automaton) from
a theorem [4] saying that collapsible pushdown systems are closed under logical reflection.
We however believe that our proof is simpler (and it gives also Theorem 1.1 which cannot
be obtained using logical reflection).

As a second contribution we prove that the hierarchy of word languages recognized by
(nondeterministic) CPS’s is infinite.

I Theorem 1.4. For each n ∈ N there is a language recognized by a pushdown system
(without collapse) of level 2n+ 1 which is not recognized by any n-CPS.

Our example language from Theorem 1.4 can be also used to show that the hierarchies of
graphs (i.e. ε-closures of configuration graphs) and of trees are infinite. However we already
know [11] that these two hierarchies are not only infinite but in fact strict, i.e. that for
each n there is a tree generated by a level-(n+ 1) pushdown system without collapse which
is not generated by any n-CPS, and similarly for ε-closures of configuration graphs. The
strictness of the hierarchy of word languages recognized by higher-order pushdown systems
without collapse follows from the Damm’s paper [9]. Similar results for the hierarchy of
word languages recognized by CPS’s were missing so far (this is stated as an open problem
in [5]).

The strictness results for tree and graph hierarchies are obtained using a pumping lemma.
This lemma essentially says that if an automaton has a very long run, then it also has
arbitrarily long runs. Such arbitrarily long runs can be then transformed into arbitrarily
long paths in the trees or graphs. However for the word languages hierarchy such lemma is
useless: the problem is that in a nondeterministic system such longer and longer runs can
all read the same word. We instead need a shrinking lemma, which would allow to shorten
a run. We prove the following lemma, which is good for this purpose.

P. Parys 503

I Theorem 1.5. Let S be an n-CPS with set of states Q and stack alphabet Γ, given
together with a set of accepting states. Assume that there exists an accepting run of S.
Set exp0(i) = i and expk+1(i) = 2expk(i). Then there exists an accepting run of S of length
at most exp2n−1(8|Q|2|Γ|).

As a third contribution we obtain two new algorithms which check whether the language
recognized by a CPS is nonempty (one can equivalently talk about reachability of a config-
uration having the state in a given set). One algorithm is extremely simple: it is enough
to check if there exists a run from the initial configuration to a configuration with accept-
ing state, whose length is bounded by the threshold from Theorem 1.5. Its complexity is
however (2n− 1)-NEXPTIME. In Section 4 we present another algorithm for the emptiness
problem, whose complexity is (n− 1)-EXPTIME.

The author is unaware of any result dealing with the emptiness problem directly. Of
course the emptiness problem is a special case of the µ-calculus model-checking problem. A
direct solution of this problem uses parity games over configuration graphs of the systems
[10]. For such games one can (in a nontrivial way) reduce the level of the system by one,
increasing its size exponentially. This approach gives n-EXPTIME complexity for µ-calculus
model checking (and in fact the problem is n-EXPTIME complete); however it is not difficult
to see that if we just consider emptiness, the complexity can be lowered to (n−1)-EXPTIME
(as the first reduction of level gives then only a polynomial blowup). There are several other
approaches to µ-calculus model checking [16, 13, 18], which use equivalent characterizations
of collapsible pushdown systems by recursion schemes or Krivine machines. In contrast, our
algorithm analyzes directly possible behaviors of the system, works only for the emptiness
problem, and is simple.

Let us remark that an algorithm for the emptiness problem allows us also to check
whether a given word is accepted by a system, also in (n − 1)-EXPTIME: it is enough to
take the product of the given system with a finite automaton accepting only the one given
word.

Organization The strategy for proving our results is as follows. In Section 2 we give all
necessary definitions. We begin the proof by Section 3, where we show how Theorem 1.4
follows from Theorem 1.5. Then in Section 4 we define so-called types of stacks, which talk
about possible kinds of runs starting in a given configuration. We also present there (in
Subsection 4.1) the algorithm for the emptiness problem. Next, in Section 5 we say that the
pushdown systems can itself calculate the type of its current configuration. This already
gives us Theorem 1.2. Finally in Section 6 we say that the systems can not only calculate
the types, but also use them to choose some unique run (from some class of runs). This
gives us the determinization described by Theorem 1.1. As a side effect, in Subsection 6.1,
we obtain a bound on the length of runs described by types, which gives us Theorem 1.5.

2 Preliminaries

Collapsible pushdown systems of level n (in the following n is always assumed to be a fixed
natural number) are an extension of pushdown systems where we replace the stack by an
n-fold nested stack structure. For the manipulation of the higher-order stack, we have a
push and a pop operation for each stack level 1 ≤ i ≤ n and a collapse operation. When
a new symbol is pushed onto the stack, we attach a copy of the stack to this symbol and
the collapse operation may replace the current stack with the stack attached to the topmost

CSL’12

504 Variants of Collapsible Pushdown Systems

symbol again, i.e. in some sense the collapse operation allows to jump back to the stack
where the current topmost symbol was created for the first time.

I Definition 2.1. Given a number n (the level of the system) and stack alphabet Γ, we
define the set of stacks as the smallest set satisfying the following.

If s1, s2, . . . , sm are (k− 1)-stacks, where 1 ≤ k ≤ n, then the sequence [s1, s2, . . . , sm] is
a k-stack. This includes the empty sequence (m = 0).
If sk is a k-stack, where 1 ≤ k ≤ n, and α ∈ Γ, then (α, k, sk) is a 0-stack.

For a k-stack sk and a (k−1)-stack sk−1 we write sk : sk−1 to denote the k-stack obtained
by appending sk−1 on the end of sk. We write s2 : s1 : s0 for s2 : (s1 : s0).

Let us remark that in the classical definition the stacks are defined differently: they
are not nested, the 0-stack does not store the linked k-stack, just stores a natural number.
While performing the collapse operation, this number is used to find the stack pointed by
the link. Note that this is only a syntactical difference. Let us emphasize however that this
modification is essential to obtain a correct definition of “types” below: Our k-stack already
contains all stacks in the links, so looking at a k-stack we have the complete information
about it, and we can summarize it using a type from a finite set. On the other hand the
original k-stack has arbitrarily many numbers pointing to some stacks “outside”, and for
each of this numbers it is important how the target of the pointer looks like; thus already
the interface with the external world is arbitrarily big.

I Definition 2.2. We define stack operations as follows. We decompose a stack s of level
n into its topmost stacks sn : sn−1 : · · · : s0. We have popi(s) := sn : · · · : si+1 : si, where
1 ≤ i ≤ n; the result is undefined if si is empty. For 2 ≤ i ≤ n we have pushi(s) := sn : · · · :
si+1 : (si : · · · : s0) : si−1 : · · · : s0. The level-1 push is push1

α,k for α ∈ Γ, 1 ≤ k ≤ n which
is defined by push1

α,k(s) := sn : · · · : s2 : (s1 : s0) : (α, k, sk). The collapse operation coli

(where 1 ≤ i ≤ n) is defined if the topmost 0-stack is (a, i, ti), and ti is not empty. Then it
is coli(s) := sn : · · · : si+1 : ti. Otherwise the collapse operation is undefined.

Pushdown systems only use n-stacks that can be created from the initial n-stack using
the stack operations. We call those n-stacks pushdown stores (pds).

I Definition 2.3. The initial n-stack ⊥n is the n-stack which contains only one 0-stack,
which is (⊥, 1, s1), where ⊥ ∈ Γ is a special symbol, and s1 is the empty 1-stack.3 Some
n-stack s is a pushdown store (or pds), if there is a finite sequence of stack operations that
creates s from ⊥n.

I Definition 2.4. A collapsible pushdown system of level n (an n-CPS) is a tuple S =
(Γ, A,Q, qI ,⊥,∆), where Γ is a finite stack alphabet containing the initial stack symbol
⊥, A is a finite input alphabet, Q is a finite set of states, qI ∈ Q is an initial state, and
∆ ⊆ Q × Γ × (A ∪ {ε}) × Q × OPnΓ is a transition relation where OPnΓ denotes the set of
stack operations. When saying that a transition goes from (q, α) ∈ Q × Γ we mean that it
has q and α on the first two coordinates. A configuration is a pair (q, s) for a state q and
an pds s. The initial configuration is (qI ,⊥n).

Below our convention is that, whenever we have a system S, we assume that Q is its
set of states, A its input alphabet, and Γ its stack alphabet. The size of an n-CPS is the
number of its transitions. Let us emphasize that, according to our definition, a configuration
of a pushdown system contains a pds, not an arbitrary n-stack.

3 The choice of 1 is arbitrary, it can be any number from 1 to n.

P. Parys 505

I Definition 2.5. A run R of lengthm, from c0 to cm, is a sequence c0 `a1 c1 `a2 · · · `am cm
where ci = (qi, si) are configurations and ai ∈ A ∪ {ε} are such that, for 1 ≤ i ≤ m, there
exists a transition (qi−1, αi−1, ai, qi, op) such that the topmost stack symbol of si−1 is αi−1
and si = op(si−1).

I Definition 2.6. A labelled transition system (LTS) over alphabet A is an edge-labelled
directed graph with a distinguished initial node. More formally, it is (G, init, (Ea)a∈A),
where G is a set of nodes, init ∈ G, and Ea ⊆ G×G for each a ∈ A. A configuration graph
of a CPS S is an LTS over alphabet A ∪ {ε}, which contains all reachable configurations of
S as nodes, and where (c, d) ∈ Ea when there is a run c `a d of length 1.

By a tree we always mean an LTS which is a tree, i.e. in which every node is reachable
from the initial node by exactly one path.

I Definition 2.7. The ε-closure of an LTS G = (G, init, (Ea)a∈A∪{ε}) over alphabet A∪{ε}
is the LTS (G′, init, (E′a)a∈A) where

G′ := {init} ∪ {d ∈ G : ∃c ∈ G (c, d) ∈ Ea for some a ∈ A}

and two nodes c, d are connected by E′a if there is a path in G from c to d whose last
edge is labelled by a, and all earlier edges are labelled by ε. The unfolding of an LTS
G = (G, init, (Ea)a∈A) is a tree (G′, init, (E′a)a∈A) where G′ contains all paths of G starting
in its initial node, and paths p1 = c1c2 . . . ck and p2 = c1c2 . . . ckck+1 for (ck, ck+1) ∈ Ea are
connected by E′a.

We denote the unfolding of the ε-closure of the configuration graph of an CPS S by
T (S).

I Definition 2.8. The word read by a run c0 `a1 c1 `a2 · · · `am cm is obtained from
a1a2 . . . am by dropping all appearances of ε. We say that a word w is accepted by a CPS
S given together with a set of final states F ⊆ Q, if there exists a run of S reading w from
the initial configuration to a configuration whose state is final. The language recognized
by (S, F), denoted L(S, F), is the set of all words accepted by (S, F). The prefix tree of
L(S, F), denoted Pref(S, F), is (G, ε, (Ea)a∈A) where G contains all prefixes of words from
L(S, F), and words w and wa (for a ∈ A) are connected by Ea.

I Definition 2.9. A system S = (Γ, A,Q, qI ,⊥,∆) is called deterministic if ∆ is a partial
function ∆: Q× Γ× (A ∪ {ε}) → Q× OPnΓ , and additionally from each (q, α) ∈ Q× Γ we
either have only an ε-transition, or only letter-labelled transitions.

I Definition 2.10. Let (G, init, (Ea)a∈A) be an LTS. We say that it is deterministic if for
each node c and each a ∈ A there is at most one d such that (c, d) ∈ Ea.

Notice that if a system S is deterministic, then also the tree T (S) is deterministic;
however the opposite implication does not hold.

I Definition 2.11. We say that a deterministic CPS S is strongly deterministic if for some
set of dead states Qdie ⊆ Q it holds

in each reachable configuration with state q and topmost stack symbol α each transition
from (q, α) can be applied (i.e. we do not try to perform pop or col when it is impossible),
and
there are no transitions from (q, α) for q ∈ Qdie and any α, and

CSL’12

506 Variants of Collapsible Pushdown Systems

if c is a reachable configuration whose state is not a dead state, there is a run from c

having some non-ε-transitions.4

3 The hierarchy is infinite

In this section we prove that the hierarchy of word languages is infinite (Theorem 1.4) basing
on Theorem 1.5. We keep the notation expk from the statement of Theorem 1.5. For each
n ∈ N consider the language

Ln = {1k0expn(k) : k ∈ N}.

It is known that Ln can be recognized by a level-(n+1) pushdown system (without collapse);
see e.g. [2], example on pages 6-7, where a very similar pushdown system is constructed.
Thus L2n can be recognized by a level-(2n+ 1) pushdown system.

Assume now that there exists an n-CPS S, which recognizes L2n. Let Q be its set of
states, and Γ its stack alphabet. Choose k such that exp2n(k) > exp2n−1(8(k + 1)2|Q|2|Γ|).
We construct a system R which accepts only one word w = 1k0exp2n(k), i.e. the only word
from L2n which has k letters 1. Such system can have the same stack alphabet as S, and
(k + 1)|Q| states. Indeed, we make k + 1 copies of the set of states of S. System R works
like S, but whenever it reads the 1 letter, it passes to the next copy of the set of states. If
it is in the last copy, no more 1 letters can be read. And only the states from the last copy
(those which were accepting in S) are accepting. This way R accepts all words from the
language of S which contain k letters 1, which is what we want.

By Theorem 1.5 R has an accepting run of length at most exp2n−1(8(k + 1)2|Q|2|Γ|).
However this run reads |w| letters, so it has length at least |w| ≥ exp2n(k). This is a
contradiction, as exp2n(k) > exp2n−1(8(k + 1)2|Q|2|Γ|). This finishes the proof of Theorem
1.4.

As a side remark we observe that the same proof works for the hierarchy of ε-closures of
configuration graphs. Let Gn be the graph whose nodes are

{1k0m : m ≤ expn(k), k ∈ N} ∪ {1k0expn(k)] : k ∈ N},

and a node w is connected with node wa by an edge labelled a (where a ∈ {0, 1,]}). We
know that graph G2n is the ε-closure of the configuration graph of a level-(2n+1) pushdown
system (similar to the one recognizing L2n). On the other hand, G2n cannot be the ε-closure
of the configuration graph of a level-n pushdown system. If such system exists, it can be
easily transformed into a word-accepting n-CPS recognizing L2n; it is enough to stop in an
accepting state instead of reading]. The same can be done for trees.

4 Types of stacks

For the rest of this section we fix some n-CPS S. The aim of this section is to assign to any
k-stack sk a type type(sk) that determines existence of some runs starting in a stack with
the topmost k-stack sk. In order to obtain Theorem 1.1 we are interested in runs in which
every transition except the last is labelled by ε, and the last is labelled by a letter from A.
Additionally we want to know whether it can be further extended to read some next letter

4 Thus there are no infinite runs reading no letters, and only configurations just after reading a letter
can have no successors; whether this is the case is determined by the state.

P. Parys 507

(as otherwise we have to hold the system immediately to ensure strong determinism). For
this reason we fix a morphism ϕ : (A∪{ε})∗ →M into a finite monoidM , which5 applied to
a word w tells us for each a ∈ A whether w ∈ ε∗a and whether w ∈ ε∗aε∗A. The morphism
ϕ will be applied to the word created from labels of a run, i.e. to the word read by a run,
but including all epsilons; for simplicity of notation we just say that we apply ϕ to a run.

The idea of defining types is present also in [11] (and in [17] for automata without col-
lapse). The novelty is that we bound here (see Subsection 6.1) the length of runs implied by
the type (the previous proof instead of giving such bound was using a nontrivial induction).
Moreover we define the types more carefully than in [11], so that their number is exponen-
tially smaller (and hence our algorithm for the emptiness problem is (n − 1)-EXPTIME,
not n-EXPTIME). On the other hand the types in [11] are much more general, as we char-
acterize here only accepting runs, while there much more sophisticated kinds of runs were
characterized; however the new proof can be easily generalized to those other kinds of runs.

The type of sk will be a set of run descriptors which come from a set T k that will be
defined inductively from k = n to k = 0. A typical element of T k has the form

σ = (q,Ψn,Ψn−1, . . . ,Ψk+1,m, q′)

where q, q′ ∈ Q are states of S, Ψi are some types of i-stacks, and m ∈ M . Let us explain
the intended meaning of such a tuple. We want to have σ ∈ type(sk) if and only if for all
stacks tn, tn−1, . . . , tk+1 where Ψi ⊆ type(ti) there is a run evaluating to m under ϕ, from
configuration (q, tn : tn−1 : · · · : tk+1 : sk) to a configuration with state q′. In other words,
if we put σ into type(sk) we make the following claim. If for each k + 1 ≤ i ≤ n we take an
i-stack ti that satisfies the claims made by Ψi, then we will find a run evaluating to m that
starts in state q and the stack obtained by putting sk on top of the sequence of tn : · · · : tk+1,
and ends in state q′. Let us mention that in order to obtain Theorem 1.1 we need not to
keep the state q′.

We first introduce the set T k of possible run descriptors of level k (the possible types of
k-stacks are elements of P(T k)). We write P(X) for the power set of X, and P≤1(X) for
{Y ∈ P(X) : |Y | ≤ 1}.

I Definition 4.1. We define T n = Q×M ×Q, and inductively for 0 ≤ k ≤ n− 1:

T k = Q× P≤1(T n)×
(
P(T n−1)× P(T n−2)× · · · × P(T k+1)

)
×M ×Q.

Notice that the n-th level is treated differently: we take P≤1(T n) instead of P(T n). This
is possible because an n-stack can be used only once (cannot be copied), so we need just
one run descriptor. The purpose for restricting to P≤1(T n) is to decrease exponentially the
number of all run descriptors; for all other reasons a definition with P(T n) would be also
good.

Next, we state the intended meaning of run descriptors and types.

I Lemma 4.2. Let 0 ≤ l ≤ n, and let c = (q, sn : sn−1 : · · · : sl) be a configuration. The
following two conditions are equivalent:
1. there exists a run from c which evaluates to m under ϕ and ends in state q′,
2. type(sl) contains a run descriptor (q,Ψn,Ψn−1, . . . ,Ψl+1,m, q′) such that Ψi ⊆ type(si)

for l + 1 ≤ i ≤ n.

5 The results about types hold for any morphism; this morphism is just what we need for Theorem 1.1.

CSL’12

508 Variants of Collapsible Pushdown Systems

Let us remark that in Section 6 we strengthen the “2⇒1” implication of the above lemma:
we not only say that the run exists, but we present a deterministic CPS which reconstructs
such run (arbitrarily choosing one of them), and we also bound the length of this run.

Now we come to the definition of types. We first define how types can be composed.
The intention of the next definition is that when Ψk is the type of a k-stack sk, and Ψk−1

is the type of a (k − 1)-stack sk−1, then Ψk : Ψk−1 is the type of sk : sk−1.

I Definition 4.3. Let 1 ≤ k ≤ n, let Ψk be a subset of T k, and Ψk−1 a subset of
T k−1. Their composition, Ψk : Ψk−1, is a subset of T k containing all run descriptors
(q,Σn,Σn−1, . . . ,Σk+1,m, q′) such that in Ψk−1 there is a run descriptor (q,Σn,Σn−1, . . . ,

Σk+1,Σk,m, q′) for which Σk ⊆ Ψk.

Like for stacks, we write Ψ2 : Ψ1 : Ψ0 for Ψ2 : (Ψ1 : Ψ0). Notice that the composition of
types is monotone: if Ψk ⊆ Φk and Ψk−1 ⊆ Φk−1, then also Ψk : Ψk−1 ⊆ Φk : Φk−1.

Next, we are going to define a function cons. In fact, cons is defined as a fixpoint of a
sequence (consz)z∈N. For each z ∈ N, each stack symbol α ∈ Γ, each number 1 ≤ K ≤ n,
and each ΣK ⊆ T K we define a set consz(α,K,ΣK) ⊆ T 0. The intention is that if a run
descriptor (q,Ψn,Ψn−1, . . . ,Ψ1,m, q′) is in the set consz(α,K,ΣK), then there exists a run
evaluating to m, ending in state q, and starting in a configuration (q, sn : sn−1 : · · · : s0)
such that Ψi is contained in the type of si and s0 has symbol α and carries a link of level
K to a stack of type ΣK . When we enter the fixpoint cons(a,K,ΣK) we will be able to
replace the “if-then” by an “if and only if”. For the “and only if” part, we need to know the
complete type; when we reach the fixpoint cons of the functions consz, it will compute the
complete type.

I Definition 4.4. Let z ∈ N, let α ∈ Γ, let 1 ≤ K ≤ n, and let ΣK ⊆ T K . For z = 0 we
define consz(α,K,ΣK) = ∅. For z > 0 assume that consz−1 is already defined. We define
consz(α,K,ΣK) as the set containing all run descriptors (q0,Ψn,Ψn−1, . . . ,Ψ1,m′, q′) such
that
1. q′ = q0 and m′ = 1M is the identity element of M , or
2. S has a transition (q0, α, a, q1, popk), m′ = ϕ(a)m, and in Ψk there is a run descriptor

(q1,Φn,Φn−1, . . . ,Φk+1,m, q′) such that Φi ⊆ Ψi for k + 1 ≤ i ≤ n, or
3. S has a transition (q0, α, a, q1, colK), m′ = ϕ(a)m, and in ΣK there is a run descriptor

(q1,Φn,Φn−1, . . . ,ΦK+1,m, q′) such that Φi ⊆ Ψi for K + 1 ≤ i ≤ n, or
4. S has a transition (q0, α, a, q1, push1

β,k), m′ = ϕ(a)m, and in consz−1(β, k,Ψk) there is
a run descriptor (q1,Φn,Φn−1, . . . ,Φ1,m, q′) such that Φi ⊆ Ψi for 2 ≤ i ≤ n, and
Φ1 ⊆ Ψ1 : consz−1(α,K,ΣK), or

5. S has a transition (q0, α, a, q1, pushk) where k ≥ 2,m′ = ϕ(a)m, and in consz−1(α,K,ΣK)
there is a run descriptor (q1,Φn,Φn−1, . . . ,Φ1,m, q′) such that Φi ⊆ Ψi for 1 ≤ i ≤ k−1
and for k + 1 ≤ i ≤ n, and Φk ⊆ Ψk : Ψk−1 : · · · : Ψ1 : consz−1(α,K,ΣK).

Notice that the sequence consz is monotone with respect to both z and ΣK : for ΣK ⊆ Σ′K
and each z ∈ N we have consz(α,K,ΣK) ⊆ consz+1(α,K,Σ′K). Independent of z ∈ N, the
domain and range of consz are fixed finite sets whence there is some z∞ ∈ N such that
consz∞ = consz∞−1. This fixpoint is denoted as cons. Next, we define types of stacks of
arbitrary level.

I Definition 4.5. We define type(sk) for each k-stack sk (for 0 ≤ k ≤ n) by induction on
the structure of sk. Assume that k = 0 and sk = (α,K, tK) where α ∈ Γ, 1 ≤ K ≤ n,
and tK is a K-stack such that type(tK) is already defined. In this case we set type(sk) =
cons

(
α,K, type(tK)

)
. Otherwise k ≥ 1; if sk is empty, we set type(sk) = ∅. Finally, assume

P. Parys 509

that k ≥ 1 and sk = tk : tk−1 such that type(tk) and type(tk−1) are already defined. In this
case we set type(sk) = type(tk) : type(tk−1).

Observe that type(sk : sk−1 : · · · : sl) = type(sk) : type(sk−1) : · · · : type(sl). From
Definition 4.3 it follows that we have (q,Σn,Σn−1, . . . ,Σk+1,m, q′) ∈ Ψk : Ψk−1 : · · · : Ψl if
and only if in Ψl there is a run descriptor (q,Σn,Σn−1, . . . ,Σl+1,m, q′) such that Σi ⊆ Ψi

for l + 1 ≤ i ≤ k. It follows that the second condition of Lemma 4.2 for one value of l
immediately implies this condition for all other values of l.

The proof of the “1⇒2” implication of Lemma 4.2 is almost a straightforward induction
on the length of the run (we prove it for l = 0); the proof is in fact slightly complicated
because we are using P≤1(T n) instead of P(T n) in the definition of type, but these are
just technical complications. The opposite implication follows from [11], and also follows
from the facts proved later in this paper: we not only prove that the run (from item 1 of
the lemma) exists, but we construct a deterministic CPS which simulates some (arbitrarily
chosen) such run.

Next, let us calculate the number of run descriptors.
I Proposition 4.6.

n∑
k=1
|T n| ≤ |T 0| ≤ 1

2 expn−1(4|Q|2).

4.1 The algorithm
Let us now describe the algorithm for the emptiness problem. By Lemma 4.2 there is an
accepting run from the initial configuration if and only if (qI , ∅, ∅, . . . , ∅,m, q′) ∈ cons(⊥, 1, ∅)
for any m and any accepting state q′, where qI is the initial state and ⊥ the initial stack
symbol (recall that the type of an empty stack is empty). Thus it is enough to calculate
the sets cons(α,K,ΣK) for all values of α,K,ΣK . We do that directly from Definition 4.4.
Notice that it can be done in time polynomial in the size of T 0 and in the number of triples
(α,K,ΣK), which by Proposition 4.6 are n − 1 times exponential in the number of states,
and polynomial in the size of the stack alphabet.

Let us remark that in the same way we can check whether from any configuration (q, s)
there is an accepting run: it is enough to calculate type(s) (the algorithm is n − 1 times
exponential in the number of states, and polynomial in the size of the stack alphabet and
in the size of s).

5 Computing the types

In this section we show that a CPS can at each moment maintain the type of its current stack.
In fact the same can be done for any homomorphism, defined as follows. A stack algebra of
level n A = (A0, A1, . . . , An) over a stack alphabet Γ is an algebra which has n+ 1 sorts (of
level 0, 1, . . . , n) and for each 1 ≤ k ≤ n operations emptyk : Ak, compk : Ak × Ak−1 → Ak

(which we denote using the colon symbol), and cons(α, k, ·) : Ak → A0 for each α ∈ Γ. A
typical stack algebra of level n is the algebra of all stacks: in the sort of level k we have
stacks of level k; emptyk returns an empty stack of level k, compk(sk, sk−1) = sk : sk−1 puts
stack sk−1 on top of stack sk, and cons(α, k, sk) constructs the 0-stack with label α and a
link to sk. Notice that it is in fact the free algebra (without generators). But the set of all
run descriptors is also a stack algebra of level n: P(T k) is the sort of level k, and the emptyk
operation returns the empty set. Moreover type is the unique homomorphism between these
two algebras.

CSL’12

510 Variants of Collapsible Pushdown Systems

Let A = (A0, A1, . . . , An) be a finite stack algebra of level n (letter A is also used to
denote the input alphabet), and f the unique homomorphism from the algebra of stacks
to A. We define f -driven n-CPS’s as an extension of n-CPS’s which work as follows. The
transitions of an f -driven n-CPS are elements of

Q×An ×An−1 × · · · ×A1 × Γ×
(n⋃
k=1
{k} ×Ak

)
×A×Q×OPnΓ .

From a configuration (q, sn : sn−1 : · · · : s1 : (α, k, tk)) we can perform a transition

(q, f(sn), f(sn−1), . . . , f(s1), α, k, f(tk), a, q′, op),

which reads letter a, changes state to q′, and performs operation op on the stack. In other
words, the set of transitions which can be applied to a configuration depend not only on
the state and the topmost stack symbol, but also on the values of f on all stacks si (the
topmost i-stack with removed its topmost (i − 1)-stack) and on the stack tk (the stack to
which we have a link in the topmost 0-stack). The size of an f -driven n-CPS is the number
of its transitions.

We have the following lemma (which is very similar to Theorem 3 in [4]). It says that a
CPS can maintain the values of f applied to its current stack, so its transitions may depend
on these values (like it is for an f -driven CPS). The proof is not difficult: we just have to
keep in the topmost symbol of each substack (of any level) the value of f applied to this
substack.

I Lemma 5.1. Let S be a strongly deterministic f -driven n-CPS. Then there exists a strongly
deterministic n-CPS S ′ such that T (S) = T (S ′). For every F ⊆ Q we have L(S, F) =
L(S, F) (in particular S ′ contains the states of S); if from every reachable configuration of
(S, F) there is an accepting run, the same holds for (S ′, F). The size of S ′ is linear in the
size of S, and S ′ can be computed in such time.

The proof of Theorem 1.2 becomes now straightforward. Notice that, for an n-stack
s = sn : sn−1 : · · · : s1 : (α, k, tk), it is enough to know α and k and type(tk) and type(si)
for all 1 ≤ i ≤ n in order to determine type(op(s)) for any stack operation op (for example
type(popj(s)) = type(sn) : type(sn−1) : · · · : type(sj), etc.). Moreover type(op(s)) determines
if there is an accepting run from configuration (q, op(s)) (by Lemma 4.2 taken for l = n such
run exists if and only if (q,m, q′) ∈ type(op(s)) for some m and some q′ ∈ F).6 Denote by
good(q, op) the set of those tuples

(type(sn), type(sn−1), . . . , type(s1), α, k, type(tk))

for which there is an accepting run from configuration (q, op(s)). Then from (S, F) we
construct a type-driven n-CPS (S ′, F), in which from every reachable configuration there
is an accepting run, as follows. For each transition (q, α, a, q′, op) of S, to S ′ we add those
transitions

(q,Ψn,Ψn−1, . . . ,Ψ1, α, k,Σk, a, q′, op)

for which (Ψn,Ψn−1, . . . ,Ψ1, α, k,Σk) ∈ good(q′, op). So in S ′ a transition will be performed
only if it leads to a configuration from which there is an accepting run. Moreover (S ′, F)

6 This is particular means that op can be applied to s: if op = popk (or colk) would result in an empty
k-stack, type(op(s)) would be empty.

P. Parys 511

accepts the same words as (S, F) since we do not remove transitions of accepting runs.
By applying Lemma 5.1 we obtain from (S ′, F) a deterministic n-CPS having the same
property.7 Let us calculate the size (the number of transitions) of S ′ (hence of the resulting n-
CPS). Notice that |T n| and |T n−1| are polynomial in the size of S, and |T i| = |T i+1| ·2|T i+1|

for i < n− 1 is n− 1− i times exponential in the size of S. In particular |T 1| is the greatest
and is n− 2 times exponential in the size of S. The transitions of S ′ are defined for subsets
of T i, hence their number is at most n− 1 times exponential in the size of S.

6 Reconstructing a run

In this section we sketch how Theorem 1.1 can be proved. Fix some n-CPS S (with states
Q), for which T (S) is deterministic. As a first step we would like to construct a deterministic
type-driven n-CPS R which would uniquely choose some run of S in the following sense.
System R has the same stack alphabet as S, and for each state q ∈ Q of S, system R also
has the state q, as well a state startq,a for each a ∈ A. Assume that S has a run whose labels
form a word from ε∗a (for some a ∈ A), starting in a reachable configuration c = (q, s), and
ending in a configuration d = (q′, s′) (by determinism of T (S), there is at most one such d
for given a and c). Then in R there is a run from (startq,a, s) to d using only ε-transitions,
and not using states from Q (except its last configuration, which is d).

Assume we have such R.8 Then we can construct a strongly deterministic type-driven
n-CPS S ′ such that T (S) = T (S ′) as follows. Let G be the ε-closure of the configuration
graph of S, and G its set of nodes; in other words G contains the initial configuration and all
configurations reachable by a run which ends by a non-ε-transition. Let also H ⊆ G be its
subsets containing only those of them, from which there exists a run containing some non-ε-
transition (i.e. a run to another configuration from G). The set of configurations of S ′ which
have state from Q are exactly those from H. In particular the initial configuration of S and
S ′ is the same. All non-ε-transitions will be going from elements of H (i.e. configurations
with state from Q). For each such configuration c = (q, s), type determines the labels of
edges outgoing from c in G. Indeed, there is an edge from c to some d ∈ G labelled by some
a ∈ A if and only if there is a run from c whose labels form a word from ε∗a; thus if and
only if (q,m, q′) ∈ type(s) for any element m which is the image of a word from ε∗a and for
any q′. Notice also that configuration d is unique for given c and a, by determinism of T (S).
Moreover, type determines whether d ∈ H: this is the case when there is a run from c whose
labels form a word from ε∗aε∗A; thus when (q,m, q′) ∈ type(s) for any element m which
the image of a word from ε∗aε∗A and for any q′. In such situation we add an a-labelled
transition to the state startq,a which does not change the stack (e.g. we make a push and
then a pop). Then the system will simulate deterministically some run to d, making only
ε-transitions (this is already realized by R). Otherwise (for d ∈ G \ H), we just make an
a-labelled transition to a dead state qdie, from which there are no more transitions. This
way T (S) = T (S ′), and S ′ is strongly deterministic.

It remains to construct R. Let c = (q, sn : sn−1 : · · · : s0) be a configuration such that in
type(s0) we have a run descriptor σ = (q,Ψn,Ψn−1, . . . ,Ψ1,m, q′) such that Ψi ⊆ type(si)
for 1 ≤ i ≤ n. Lemma 4.2 says that then there exists a run from c which evaluates to m
under ϕ and ends in state q′. But how to simulate it using a type-driven CPS? It is easy to

7 In order to obtain strong determinism, an additional step has to be performed.
8 In the actual construction R is slightly more complicated (we keep some additional information on the
stack).

CSL’12

512 Variants of Collapsible Pushdown Systems

perform some first step of such run; we just need to follow a transition used in Definition
4.4 to add σ to type(s0). Moreover this leads to a configuration which again satisfies the
same condition, so we can repeat the same. When we reach a configuration in which the
first point of Definition 4.4 is used, we are done: we have finished the run.

The problem is that by such construction we can obtain an infinite run (e.g. a loop). The
reason why the “2⇒1” implication of Lemma 4.2 holds is that cons is defined as the smallest
fixpoint, not any fixpoint. According to the definition of consz, after a push operation it is
enough to use consz−1 both for the 0-stack which was topmost till now, and for the new
topmost 0-stack. Thus we should keep the maximal allowed value of z with each 0-stack,
and decrease this value for each push operation. Then for calculating the type of a bigger
stack we should only use this consz−1, not whole cons.

There is also a technical difficulty that the values of z stored with each symbol have to
be reset everywhere to z∞ (recall that z∞ is a number for which cons = consz∞) when we
finally reach a configuration from G, and we want to run the simulation again. Of course
we cannot do this explicitly, but we can just put some marker on the stack, which denotes
that the value of z is z∞ everywhere below. Then above the marker we work as previously,
and we assume that bellow the marker all symbols have z∞ on its second coordinate. More
precisely, we need a separate kind of marker for each level: in each k-stack we will mark
the bottommost (k − 1)-stack in which the z values are actual; we also need another kind
of marker to denote the 0-stacks in which the z values in the link are not actual.

I Example 6.1. Consider the 1-CPS having the following transitions.

(⊥, q1, a, q2, push1
x,1) (x, q3, ε, q1, push1

x,1) (x, q1, ε, q1, pop1)
(x, q2, ε, q3, push1

x,1) (x, q3, ε, q2, pop1)

Then the types contain the following run descriptors (not all are shown).

(q1, ∅, ε∗a, q2) ∈ cons(⊥, 1, ∅) (q2, {τ}, ε∗a, q2) ∈ cons3(x, 1, ∅)
τ = (q1, ε

∗a, q2) ∈ type([⊥]) σ = (q2, ε
∗a, q2) ∈ type([⊥x])

(q1, {τ}, ε∗a, q2) ∈ cons1(x, 1, ∅) (q3, {τ, σ}, ε∗a, q2) ∈ cons1(x, 1, ∅)
(q3, {τ}, ε∗a, q2) ∈ cons2(x, 1, ∅)

The key decision to take is in configuration (q3, [⊥xx]). By just choosing the run descriptor
(q3, {τ, σ}, ε∗a, q2) from consz for the smallest z (z = 1) we make pop1 leading to (q2, [⊥x]).
Now the only possibility is to use (q2, {τ}, ε∗a, q2) ∈ cons3(x, 1, ∅), and to perform push1

x,1.
If we just went to (q3, [⊥xx]), we would fall into a loop. Also restricting z used in this
configuration (for the new topmost x) does not help. We should instead go to a configu-
ration (q3, [⊥x′x′]), where x′ is a version of x which implies that only z ≤ 2 can be used.
Then σ 6∈ type([⊥x′]), so we cannot perform the pop1 transition again. We have to use
(q3, {τ}, ε∗a, q2) ∈ cons2(x, 1, ∅), thus we perform push1

x,1 and we leave the loop.

6.1 Bound on the run length
Next we notice that the method described above not only guarantees that the obtained run
is finite, but also gives a concrete bound on its length. Let us repeat that in the system R,
which deterministically simulates one run of S, we keep with each stack symbol a natural
number z (which is between 0 and z∞). Whenever we perform some pushk operation, this
value is decreased in the topmost 0-stack, both in the original (k− 1)-stack and in its copy.
We want to argue that every run working like that will terminate. In order to obtain that
we define potential of a stack.

P. Parys 513

I Definition 6.2. Let 0 ≤ k ≤ n, and let sk be a k-stack over alphabet Γ× {0, 1, . . . , z∞}.
We define a natural number pt(sk) (the potential of sk) by induction on the structure of sk.

When k = 0 and sk = ((α, z),K, tK), we take pt(sk) = 2z.
When k ≥ 1 and sk is empty, we take pt(sk) = 0.
When k ≥ 1 and sk = tk : tk−1, we take

pt(sk) = pt(tk) + 2pt(tk−1).

It is not difficult to see that the potential is decreased by each operation (assuming that
the push operations behave as described above). Thus the length of the run reconstructed
by R is bounded by the potential of the starting configuration. If we forget about the system
R, we obtain the following strengthened version of the ‘2⇒1” implication of Lemma 4.2 (for
l = n).

I Lemma 6.3. Let c = (q, s) be a configuration of S, and let s̃ be the stack over alphabet
Γ × {0, 1, . . . , z∞} obtained from s by appending z∞ to each stack symbol. Assume that
(q,m, q′) ∈ type(s). Then there exists a run from c which evaluates to m under ϕ, ends in
state q′, and has length at most pt(s̃).

Let us conclude by a proof of Theorem 1.5. By assumption some accepting run exists
from the initial configuration (qI , sI). By Lemma 4.2 this means that (qI ,m, q′) ∈ type(sI)
for some m ∈ M and some accepting state q′. Using the above lemma we obtain back an
accepting run, but now its length is bounded by the potential of the initial configuration.
Notice that the potential is n times exponential in z∞. Moreover z∞ is n−1 times exponential
in the number of states of the system, which follows from Proposition 4.6. Thus we obtain
an accepting run of length 2n − 1 times exponential in the size of the system; a precise
calculation gives the value written in Theorem 1.5.

7 Conclusions

Let us mention that the methods presented in this paper can be used in a much more general
context. In [11] we define types of stacks which characterize a lot of interesting kinds of runs,
called topk-non-erasing runs, pumping runs, k-returns, k-colreturns; additionally a general
definition is given, which allows to consider also other classes of runs having some properties.
To be concrete: we can consider for example a class of runs such that the topmost k-stack
at the end is equal to the topmost k-stack at the beginning, and is indeed obtained as its
copy. It is almost immediate to generalize the results of this paper to all these classes of
runs:

The number of run descriptors for these more general types is n− 1 times exponential.
The type function is still a homomorphism of stack algebras, so it can be computed by
the CPS, as in Section 5.
We can deterministically reconstruct runs of that kind, like in Section 6.
The length of such runs can be bounded like in Lemma 6.3.

Observe that most of these classes of runs cannot (at least in any natural way) be defined
using µ-calculus in the configuration graph.

Techniques similar to ours were used independently in a recent paper [3]. Moreover some
of our results can be deduced from another independent work [6].

CSL’12

514 Variants of Collapsible Pushdown Systems

Future work. One open question is whether the hierarchy of word languages recognized by
collapsible pushdown systems is strict (if every two its levels are different). Notice that we
only show that the hierarchy is infinite (that there are infinitely many different levels). One
possible way to obtain the strictness would be to show that if two levels coincide, then all
higher levels have to coincide (however we do not see any easy reason for that). A second
way would be to improve the bounds given in our proof.

It is also an open problem whether these languages are context-sensitive.
A second direction would be to extend our approach of testing emptiness to the µ-

calculus model checking problem (and obtain a simple algorithm for that problem, which
uses collapsible pushdown systems directly).

Another interesting question is about the relation between the classes of word languages
recognized by collapsible and non-collapsible pushdown systems. It is known that on level
2 these classes coincide [1] (unlike for trees and graphs); nevertheless the conjecture is that
for higher levels these classes are different.

References
1 K. Aehlig, J. G. de Miranda, and C.-H. L. Ong. Safety is not a restriction at level 2

for string languages. In V. Sassone, editor, FoSSaCS, volume 3441 of Lecture Notes in
Computer Science, pages 490–504. Springer, 2005.

2 A. Blumensath. On the structure of graphs in the Caucal hierarchy. Theor. Comput. Sci.,
400(1-3):19–45, 2008.

3 C. Broadbent, A. Carayol, M. Hague, and O. Serre. A saturation method for collapsible
pushdown systems. To appear in ICALP, 2012.

4 C. H. Broadbent, A. Carayol, C.-H. L. Ong, and O. Serre. Recursion schemes and logical
reflection. In LICS, pages 120–129. IEEE Computer Society, 2010.

5 C. H. Broadbent and C.-H. L. Ong. On global model checking trees generated by higher-
order recursion schemes. In L. de Alfaro, editor, FOSSACS, volume 5504 of Lecture Notes
in Computer Science, pages 107–121. Springer, 2009.

6 A. Carayol and O. Serre. Collapsible pushdown automata and labeled recursion schemes.
Equivalence, safety and effective selection. To appear in LICS, 2012.

7 A. Carayol and S. Wöhrle. The Caucal hierarchy of infinite graphs in terms of logic
and higher-order pushdown automata. In P. K. Pandya and J. Radhakrishnan, editors,
FSTTCS, volume 2914 of Lecture Notes in Computer Science, pages 112–123. Springer,
2003.

8 D. Caucal. On infinite terms having a decidable monadic theory. In K. Diks and W. Ryt-
ter, editors, MFCS, volume 2420 of Lecture Notes in Computer Science, pages 165–176.
Springer, 2002.

9 W. Damm. The IO- and OI-hierarchies. Theor. Comput. Sci., 20:95–207, 1982.
10 M. Hague, A. S. Murawski, C.-H. L. Ong, and O. Serre. Collapsible pushdown automata

and recursion schemes. In LICS, pages 452–461. IEEE Computer Society, 2008.
11 A. Kartzow and P. Parys. Strictness of the collapsible pushdown hierarchy. CoRR,

abs/1201.3250, 2012.
12 T. Knapik, D. Niwinski, and P. Urzyczyn. Higher-order pushdown trees are easy. In

M. Nielsen and U. Engberg, editors, FoSSaCS, volume 2303 of Lecture Notes in Computer
Science, pages 205–222. Springer, 2002.

13 N. Kobayashi and C.-H. L. Ong. Complexity of model checking recursion schemes for
fragments of the modal mu-calculus. In S. Albers, A. Marchetti-Spaccamela, Y. Matias,
S. E. Nikoletseas, and W. Thomas, editors, ICALP (2), volume 5556 of Lecture Notes in
Computer Science, pages 223–234. Springer, 2009.

P. Parys 515

14 A. N. Maslov. The hierarchy of indexed languages of an arbitrary level. Soviet Math. Dokl.,
15:1170–1174, 1974.

15 A. N. Maslov. Multilevel stack automata. Problems of Information Transmission, 12:38–43,
1976.

16 C.-H. L. Ong. On model-checking trees generated by higher-order recursion schemes. In
LICS, pages 81–90. IEEE Computer Society, 2006.

17 P. Parys. On the significance of the collapse operation. Accepted to LICS 2012, 2012.
18 S. Salvati and I. Walukiewicz. Krivine machines and higher-order schemes. In L. Aceto,

M. Henzinger, and J. Sgall, editors, ICALP (2), volume 6756 of Lecture Notes in Computer
Science, pages 162–173. Springer, 2011.

CSL’12

A Proof of Kamp’s theorem
Alexander Rabinovich

The Blavatnik School of Computer Science, Tel Aviv University
rabinoa@post.tau.ac.il

Abstract
We provide a simple proof of Kamp’s theorem.

1998 ACM Subject Classification F.4.1 Temporal Logic

Keywords and phrases Temporal Logic, Monadic Logic, Expressive Completeness

Digital Object Identifier 10.4230/LIPIcs.CSL.2012.516

1 Introduction

Temporal Logic (TL) introduced to Computer Science by Pnueli in [8] is a convenient frame-
work for reasoning about “reactive” systems. This has made temporal logics a popular sub-
ject in the Computer Science community, enjoying extensive research in the past 30 years.
In TL we describe basic system properties by atomic propositions that hold at some points
in time, but not at others. More complex properties are expressed by formulas built from the
atoms using Boolean connectives and Modalities (temporal connectives): A k-place modal-
ity M transforms statements ϕ1, . . . , ϕk possibly on ‘past’ or ‘future’ points to a statement
M(ϕ1, . . . , ϕk) on the ‘present’ point t0. The rule to determine the truth of a statement
M(ϕ1, . . . , ϕk) at t0 is called a truth table ofM . The choice of particular modalities with their
truth tables yields different temporal logics. A temporal logic with modalities M1, . . . ,Mk

is denoted by TL(M1, . . . ,Mk).
The simplest example is the one place modality ♦X saying: “X holds some time in the

future.” Its truth table is formalized by ϕ♦(t0, X) := (∃t > t0)X(t). This is a formula of the
First-Order Monadic Logic of Order (FOMLO) - a fundamental formalism in Mathematical
Logic where formulas are built using atomic propositions P (t), atomic relations between
elements t1 = t2, t1 < t2, Boolean connectives and first-order quantifiers ∃t and ∀t. Two
more natural modalities are the modalities Until (“Until”) and Since (“Since”). XUntilY
means that X will hold from now until a time in the future when Y will hold. XSinceY
means that Y was true at some point of time in the past and since that point X was true
until (not necessarily including) now. Both modalities have truth tables in FOMLO. Most
modalities used in the literature are defined by such FOMLO truth tables, and as a result,
every temporal formula translates directly into an equivalent FOMLO formula. Thus, the
different temporal logics may be considered as a convenient way to use fragments of FOMLO.
FOMLO can also serve as a yardstick by which one is able to check the strength of temporal
logics: A temporal logic is expressively complete for a fragment L of FOMLO if every formula
of L with a single free variable t0 is equivalent to a temporal formula.

Actually, the notion of expressive completeness refers to a temporal logic and to a model
(or a class of models), since the question whether two formulas are equivalent depends on the
domain over which they are evaluated. Any (partially) ordered set with monadic predicates
is a model for TL and FOMLO, but the main, canonical, linear time intended models are
the non-negative integers 〈N, <〉 for discrete time and the reals 〈R, <〉 for continuous time.

© Alexander Rabinovich;
licensed under Creative Commons License ND

Computer Science Logic 2012 (CSL’12).
Editors: Patrick Cégielski, Arnaud Durand; pp. 516–527

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2012.516
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

A. Rabinovich 517

Kamp’s theorem [7] states that the temporal logic with modalities Until and Since is
expressively complete for FOMLO over the above two linear time canonical1 models.

This seminal theorem initiated the whole study of expressive completeness, and it
remains one of the most interesting and distinctive results in temporal logic; very
few, if any, similar ‘modal’ results exist. Several alternative proofs of it and stronger
results have appeared; none of them are trivial (at least to most people) [6].

The objective of this paper is to provide a simple proof of Kamp’s theorem.
The rest of the paper is organized as follows: In Section 2 we recall the definitions of the

monadic logic, the temporal logics and state Kamp’s theorem. Section 3 introduces formulas
in a normal form and states their simple properties. In Section 4 we prove Kamp’s theorem.
The proof of one proposition is postponed to Section 5. Section 6 comments on the previous
proofs of Kamp’s theorem.

2 Preliminaries

In this section we recall the definitions of the first-order monadic logic of order, the temporal
logics and state Kamp’s theorem.

Fix a set Σ of atoms. We use P,Q,R, S . . . to denote members of Σ. The syntax and
semantics of both logics are defined below with respect to such Σ.

2.1 First-Order Monadic Logic of Order
Syntax. In the context of FOMLO, the atoms of Σ are referred to (and used) as unary
predicate symbols. Formulas are built using these symbols, plus two binary relation symbols:
< and =, and a set of first-order variables (denoted: x, y, z, . . .). Formulas are defined by
the grammar:

atomic ::= x < y | x = y | P (x) (where P ∈ Σ)

ϕ ::= atomic | ¬ϕ1 | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ∃xϕ1 | ∀xϕ1

We will also use the standard abbreviated notation for bounded quantifiers, e.g., (∃x)>z(...)
denotes ∃x((x > z) ∧ (...)), and (∀x)<z(...) denotes ∀x((x < z) → (...)), and (∀x)<z2

>z1(...)
denotes ∀x((z1 < x < z2)→ (...)), etc.
Semantics. Formulas are interpreted over labeled linear orders which are called chains. A
Σ-chain is a triplet M = (T,<, I) where T is a set - the domain of the chain, < is a
linear order relation on T , and I : Σ → P(T) is the interpretation of Σ (where P is the
powerset notation). We use the standard notation M, t1, t2, . . . tn |= ϕ(x1, x2, . . . xn) to
indicate that the formula ϕ with free variables among x1, . . . , xn is satisfiable in M when
xi are interpreted as elements ti ofM. For atomic P (x) this is defined by: M, t |= P (x) iff
t ∈ I(P); the semantics of <,=,¬,∧,∨,∃ and ∀ is defined in a standard way.

2.2 TL(Until, Since) Temporal Logic
In this section we recall the syntax and semantics of a temporal logic with strict-Until and
strict-Since modalities, denoted by TL(Until,Since).

1 the technical notion which unifies 〈N, <〉 and 〈R, <〉 is Dedekind completeness.

CSL’12

518 A Proof of Kamp’s theorem

In the context of temporal logics, the atoms of Σ are used as atomic propositions
(also called propositional atoms). Formulas of TL(Until,Since) are built using these atoms,
Boolean connectives and strict-Until and strict-Since binary modalities. The formulas are
defined by the grammar:

F ::= True | P | ¬F1 | F1 ∨ F2 | F1 ∧ F2 | F1UntilF2 | F1SinceF2,

where P ∈ Σ.
Semantics. Formulas are interpreted at time-points (or moments) in chains (elements of the
domain). The semantics of TL(Until,Since) formulas is defined inductively: Given a chain
M = (T,<, I) and t ∈ T , define when a formula F holds inM at t - denotedM, t |= F :
M, t |= P iff t ∈ I(P), for any propositional atom P .
M, t |= F ∨G iffM, t |= F orM, t |= G; similarly for ∧ and ¬.
M, t |= F1UntilF2 iff there is t′ > t such that M, t′ |= F2 and M, t1 |= F1 for all
t1 ∈ (t, t′).
M, t |= F1SinceF2 iff there is t′ < t such that M, t′ |= F2 and M, t1 |= F1 for all
t1 ∈ (t′, t).

We will use standard abbreviations. As usual �F (respectively, ←−�F) is an abbreviation for
¬(TrueUntil(¬F)) (respectively, ¬(TrueSince(¬F))), and K+(F) (respectively, K−(F)) is an
abbreviation for ¬((¬F)UntilTrue) (respectively, ¬((¬F)SinceTrue)).
1. �F (respectively, ←−�F) holds at t iff F holds everywhere after (respectively, before) t.
2. K−(F) holds at a moment t iff t = sup({t′ | t′ < t and F holds at t′}).
3. K+(F) holds at a moment t iff t = inf({t′ | t′ > t and F holds at t′}).
Note that K+(True) (respectively, K−(True)) holds at t inM if t is a right limit (respectively,
a left limit) point of the underlining order. In particular, both K+(True) and K−(True) are
equivalent to False in the chains over (N, <),

2.3 Kamp’s Theorem
Equivalence between temporal and monadic formulas is naturally defined: F is equivalent
to ϕ(x) over a class C of structures iff for anyM∈ C and t ∈M: M, t |= F ⇔M, t |= ϕ(x).
If C is the class of all chains, we will say that F is equivalent to ϕ.

A linear order (T,<) is Dedekind complete if for every non-empty subset S of T , if S
has a lower bound in T then it has a greatest lower bound, written inf(S), and if S has an
upper bound in T then it has a least upper bound, written sup(S). The canonical linear
time models (N, <) and (R, <) are Dedekind complete, while the order of the rationals is not
Dedekind complete. A chain is Dedekind complete if its underlying linear order is Dedekind
complete.

The fundamental theorem of Kamp’s states that TL(Until,Since) is expressively equival-
ent to FOMLO over Dedekind complete chains.

I Theorem 2.1 (Kamp [7]). 1. Given any TL(Until,Since) formula A there is a FOMLO for-
mula ϕA(x) which is equivalent to A over all chains.

2. Given any FOMLO formula ϕ(x) with one free variable, there is a TL(Until,Since) for-
mula which is equivalent to ϕ over Dedekind complete chains.

The meaning preserving translation from TL(Until,Since) to FOMLO is easily obtained by
structural induction. The contribution of our paper is a proof of Theorem 2.1 (2). The
proof is constructive. An algorithm which for every FOMLO formula ϕ(x) constructs a
TL(Until,Since) formula which is equivalent to ϕ over Dedekind complete chains is easily
extracted from our proof. However, this algorithms is not efficient in the sense of complexity

A. Rabinovich 519

theory. This is unavoidable because there is a non-elementary succinctness gap between
FOMLO and TL(Until,Since) even over the class of finite chains, i.e., for everym,n ∈ N there
is a FOMLO formula ϕ(x0) of size |ϕ| > n which is not equivalent (even over finite chains) to
any TL(Until,Since) formula of size ≤ exp(m, |ϕ|), where them-iterated exponential function
exp(m,n) is defined by induction onm so that exp(1, n) = 2n, and exp(m+1, n) = 2exp(m,n).

3 ~∃∀ formulas

First, we introduce
−→
∃ ∀ formulas which are instances of the Decomposition formulas of [3].

I Definition 3.1 (
−→
∃ ∀-formulas). Let Σ be a set of monadic predicate names. An

−→
∃ ∀-formula

over Σ is a formula of the form:

ψ(z0, . . . , zm) := ∃xn . . . ∃x1∃x0(
m∧
k=0

zk = xik

)
∧ (xn > xn−1 > · · · > x1 > x0) “ordering of xi and zj”

∧
n∧
j=0

αj(xj) “Each αj holds at xj”

∧
n∧
j=1

[(∀y)<xj

>xj−1βj(y)] “Each βj holds along (xj−1, xj)”

∧ (∀y)>xn
βn+1(y) “βn+1 holds everywhere after xn”

∧ (∀y)<x0β0(y) “β0 holds everywhere before x0”

with a prefix of n+ 1 existential quantifiers and with all αj , βj quantifier free formulas with
one variable over Σ. (ψ has m + 1 free variables z0, . . . , zm and m + 1 ≤ n + 1 existential
quantifiers are dummy and are introduced just in order to simplify notations.)

It is clear that

I Lemma 3.2. 1. Conjunction of
−→
∃ ∀-formulas is equivalent to a disjunction of

−→
∃ ∀-formulas.

2. Every
−→
∃ ∀-formula is equivalent to a conjunction of

−→
∃ ∀-formulas with at most two free

variables.
3. For every

−→
∃ ∀-formula ϕ the formula ∃xϕ is equivalent to a

−→
∃ ∀-formula.

I Definition 3.3 (∨
−→
∃ ∀-formulas). A formula is a ∨

−→
∃ ∀ formula if it is equivalent to a dis-

junction of
−→
∃ ∀-formulas.

I Lemma 3.4 (closure properties). The set of ∨
−→
∃ ∀ formulas is closed under disjunction,

conjunction, and existential quantification.

Proof. By (1) and (3) of Lemma 3.2, and distributivity of ∃ over ∨. J

The set of ∨
−→
∃ ∀ formulas is not closed under negation2. However, we show later (see Pro-

position 4.3) that the negation of a ∨
−→
∃ ∀ formula is equivalent to a ∨

−→
∃ ∀ formula in the

expansion of the chains by all TL(Until,Since) definable predicates.
The ∨

−→
∃ ∀ formulas with one free variable can be easily translated to TL(Until,Since).

2 The truth table of PUntilQ is an
−→
∃ ∀ formula (∃x′)>x(Q(x′)∧ (∀y)<x′

>x P (y)), yet we can prove that its
negation is not equivalent to any ∨

−→
∃ ∀ formula.

CSL’12

520 A Proof of Kamp’s theorem

I Proposition 3.5 (From ∨
−→
∃ ∀-formulas to TL(Until,Since) formulas). Every ∨

−→
∃ ∀-formula

with one free variable is equivalent to a TL(Until,Since) formula.

Proof. By a simple formalization we show that every
−→
∃ ∀-formula with one free variable is

equivalent to a TL(Until,Since) formula. This immediately implies the proposition.
Let ψ(z0) be an

−→
∃ ∀-formula

∃xn . . . ∃x1∃x0z0 = xk ∧ (xn > xn−1 > · · · > x1 > x0) ∧
n∧
j=0

αj(xj)

∧
n∧
j=1

(∀y)<xj

>xj−1βj(y) ∧ (∀y)<x0β0(y) ∧ (∀y)>xnβn+1(y)

Let Ai and Bi be temporal formulas equivalent to αi and βi (Ai and Bi do not even use
Until and Since modalities). It is easy to see that ψ is equivalent to the conjunction of

Ak ∧ (Bk+1Until(Ak+1 ∧ (Bk+2Until · · · (An−1 ∧ (BnUntil(An ∧�Bn+1)) · · ·))

and

Ak ∧ (Bk−1Since(Ak−1 ∧ (Bk−2Since(· · ·A1 ∧ (B1Since(A0 ∧
←−
�B0)) · · ·)) J

4 Proof of Kamp’s theorem

The next definition plays a major role in the proof of both Kamp’s and Stavi’s theorems [3].

I Definition 4.1. Let M be a Σ chain. We denote by E [Σ] the set of unary predicate
names Σ ∪ {A | A is an TL(Until,Since)-formula over Σ }. The canonical TL(Until,Since)-
expansion ofM is an expansion ofM to an E [Σ]-chain, where each predicate name A ∈ E [Σ]
is interpreted as {a ∈ M | M, a |= A}3. We say that first-order formulas in the signature
E [Σ] ∪ {<} are equivalent over M (respectively, over a class of Σ-chains C) if they are
equivalent in the canonical expansion ofM (in the canonical expansion of everyM∈ C).

Note that if A is a TL(Until,Since) formula over E [Σ] predicates, then it is equivalent
to a TL(Until,Since) formula over Σ, and hence to an atomic formula in the canonical
TL(Until,Since)-expansions.

From now on we say that “formulas are equivalent in a chainM” instead of “formulas are
equivalent in the canonical TL(Until,Since)-expansion ofM.” The

−→
∃ ∀ and ∨

−→
∃ ∀ formulas are

defined as previously, but now they can use as atoms TL(Until,Since) definable predicates.
It is clear that all the results stated above hold for this modified notion of ∨

−→
∃ ∀ formulas.

In particular, every ∨
−→
∃ ∀ formula with one free variable is equivalent to an TL(Until,Since)

formula, and the set of ∨
−→
∃ ∀ formulas is closed under conjunction, disjunction and existential

quantification. However, now the set of ∨
−→
∃ ∀ formulas is also closed under negation, due to

the next proposition whose proof is postponed to Sect. 5.

I Proposition 4.2. (Closure under negation) The negation of
−→
∃ ∀-formulas with at most two

free variables is equivalent over Dedekind complete chains to a disjunction of
−→
∃ ∀-formulas.

As a consequence we obtain

3 We often use “a ∈M” instead of “a is an element of the domain ofM”

A. Rabinovich 521

I Proposition 4.3. Every first-order formula is equivalent over Dedekind complete chains to
a disjunction of

−→
∃ ∀-formulas.

Proof. We proceed by structural induction.
Atomic It is clear that every atomic formula is equivalent to a disjunction of (even quantifier

free)
−→
∃ ∀-formulas.

Disjunction - immediate.
Negation If ϕ is an

−→
∃ ∀-formula, then by Lemma 3.2(2) it is equivalent to a conjunction of

−→
∃ ∀ formulas with at most two free variables. Hence, ¬ϕ is equivalent to a disjunction of
¬ψi where ψi are

−→
∃ ∀-formulas with at most two free variables. By Proposition 4.2, ¬ψi

is equivalent to a disjunction of
−→
∃ ∀ formulas γji . Hence, ¬ϕ is equivalent to a disjunction

∨i ∨j γji of
−→
∃ ∀ formulas.

If ϕ is a disjunction of
−→
∃ ∀ formulas ϕi, then ¬ϕ is equivalent to the conjunction of ¬ϕi.

By the above, ¬ϕi is equivalent to a ∨
−→
∃ ∀ formula. Since, ∨

−→
∃ ∀ formulas are closed

under conjunction (Lemma 3.4), we obtain that ¬ϕ is equivalent to a disjunction of
−→
∃ ∀

formulas.
∃-quantifier For ∃-quantifier, the claim follows from Lemma 3.4. J

Now, we are ready to prove Kamp’s Theorem:
I Theorem 4.4. For every FOMLO formula ϕ(x) with one free variable, there is a TL(Until,
Since) formula which is equivalent to ϕ over Dedekind complete chains.

Proof. By Proposition 4.3, ϕ(x) is equivalent over Dedekind complete chains to a disjunction
of
−→
∃ ∀ formulas ϕi(x). By Proposition 3.5, ϕi(x) is equivalent to a TL(Until,Since) formula.

Hence, ϕ(x) is equivalent over Dedekind complete chains to a TL(Until,Since) formula. J

This completes our proof of Kamp’s theorem except Proposition 4.2 which is proved in the
next section.

5 Proof of Proposition 4.2

Let ψ(z0, z1) be an
−→
∃ ∀-formula

∃xn . . . ∃x1∃x0[z0 = xm ∧ z1 = xk ∧ (x0 < x1 < · · · < xn−1 < xn) ∧
n∧
j=0

αj(xj)

∧
n∧
j=1

(∀y)<xj

>xj−1βj(y) ∧ (∀y)<x0β0(y) ∧ (∀y)>xn
βn+1(y)]

We consider two cases. In the first case k = m, i.e., z0 = z1 and in the second k 6= m.
If k = m, then ψ is equivalent to z0 = z1 ∧ ψ′(z0), where ψ′ is an

−→
∃ ∀-formula. By

Proposition 3.5, ψ′ is equivalent to an TL(Until,Since) formula A′. Therefore, ψ is equivalent
to an

−→
∃ ∀-formula ∃x0[z0 = x0 ∧ z1 = x0 ∧A′(x0)].

If k 6= m, w.l.o.g. we assume that m < k. Hence, ψ is equivalent to a conjunction of

1. ψ0(z0) defined as:
∃x0 . . . ∃xm−1∃xm[z0 = xm ∧ (x0 < x1 < · · · < xm) ∧

∧m
j=0 αj(xj)

∧
m∧
j=1

(∀y)<xj

>xj−1βj(y) ∧ (∀y)<x0β0(y)

CSL’12

522 A Proof of Kamp’s theorem

2. ψ1(z1) defined as:
∃xk . . . ∃xk+1∃xn[z1 = xk ∧ (xk < xk+1 < · · · < xn) ∧

∧n
j=k αj(xj)

∧
n∧

j=k+1
(∀y)<xj

>xj−1βj(y) ∧ (∀y)>xnβn+1(y)]

3. ϕ(z0, z1) defined as:
∃xm . . . ∃xk[(z0 = xm < xm+1 < · · · < xk = z1) ∧

∧k
j=m αj(xj)

∧
k∧

j=m+1
(∀y)<xj

>xj−1βj(y)

The first two formulas are
−→
∃ ∀-formulas with one free variable. Therefore, (by Proposition

3.5) they are equivalent to a TL(Until,Since) formulas (in the signature E [Σ]). Hence,
their negations are equivalent (over the canonical expansions) to atomic (and hence to

−→
∃ ∀)

formulas.
Therefore, it is sufficient to show that the negation of the third formula is equivalent over

Dedekind complete chains to a disjunction of
−→
∃ ∀-formulas. This is stated in the following

lemma:

I Lemma 5.1. The negation of any formula of the form

∃x0 . . . ∃xn[(z0 = x0 < · · · < xn = z1) ∧
n∧
j=0

αj(xj) ∧
n∧
j=1

(∀y)<xj

>xj−1βj(y)] (1)

where αi, βi are quantifier free, is equivalent (over Dedekind complete chains) to a disjunction
of
−→
∃ ∀-formulas.

In the rest of this section we prove Lemma 5.1. Our proof is organized as follows. In Lemma
5.3 we prove an instance of Lemma 5.1 where α0, αn and all βi are equivalent to True. Then
we derive a more general instance (Corollary 5.4) where βn is equivalent to true. Finally we
prove the full version of Lemma 5.1.

First, we introduce some helpful notations.

I Notations 5.2. We use the abbreviated notation [α0, β1 . . . , αn−1, βnαn](z0, z1) for the
−→
∃ ∀-formula as in (1).

In this notation Lemma 5.1 can be rephrased as ¬[α0, β1 . . . , αn−1, βnαn](z0, z1) is equivalent
(over Dedekind complete chains) to a ∨

−→
∃ ∀ formula.

We start with the instance of Lemma 5.1 where all βi are True.

I Lemma 5.3. ¬∃x1 . . . ∃xn (z0 < x1 < · · · < xn < z1)∧
∧n
i=1 Pi(xi) is equivalent over Dede-

kind complete chains to a ∨
−→
∃ ∀ formula On(P1, . . . , Pn, z0, z1).

Proof. We proceed by induction.
Basis: ¬(∃x1)<z1

>z0P1(x1) is equivalent to (∀y)<z1
>z0¬P1(y).

Inductive step: n 7→ n+1. We assume that a ∨
−→
∃ ∀ formula On was defined and construct

a ∨
−→
∃ ∀ formula On+1.
Observe that if the interval (z0, z1) is non-empty, then one of the following cases holds:

Case 1 There is no occurrence of P1 in (z0, z1), i.e. (∀y)<z1
>z0¬P1(y).

In this case On+1(P1, . . . , Pn+1, z0, z1) should be equivalent to True.

A. Rabinovich 523

Case 2 If case 1 does not hold then let r0 = inf{z ∈ (z0, z1) | P1(z)} (such r0 exists by
Dedekind completeness. Note that r0 = z0 iff K+(P1)(z0). If r0 > z0 then r0 ∈ (z0, z1)
and r0 is definable by the following ∨

−→
∃ ∀ formula:

INF(z0, r0, z1, P1) :=z0 < r0 < z1 ∧ (∀y)<r0
>z0¬P1(y)∧

∧ (P1(r0) ∨K+(P1)(r0)) (2)

Subcase r0 = z0
In this subcase On(P2, . . . , Pn, z0, z1) and On+1(P1, . . . , Pn+1, z0, z1) should be equivalent.

Subcase r0 ∈ (z0, z1)
In this subcase On(P2, . . . , Pn, r0, z1) and On+1(P1, . . . , Pn+1, z0, z1) should be equivalent.

Hence, On+1(P1, . . . , Pn+1, z0, z1) can be defined as the disjunction of “(z0, z1) is empty”
and the following formulas:
1. (∀y)<z1

>z0¬P1((y)
2. K+(P1)(z0) ∧On(P2, . . . , Pn, z0, z1)
3. (∃r0)<z1

>z0

(
INF(z0, r0, z1, P1) ∧On(P2, . . . , Pn, r0, z1)

)
The first formula is a ∨

−→
∃ ∀ formula. By the inductive assumptions On is a ∨

−→
∃ ∀ for-

mula. K+(P1)(z0) is an atomic (and hence a ∨
−→
∃ ∀) formula in the canonical expansion, and

INF(z0, r0, z1, P1) is a ∨
−→
∃ ∀ formula. Since ∨

−→
∃ ∀ formulas are closed under conjunction,

disjunction and the existential quantification, we conclude that On+1 is a ∨
−→
∃ ∀ formula. J

As a consequence we obtain
I Corollary 5.4. 1. ¬(∃z)<z1

>z0 [α0, β1, α1, β2, . . . , αn−1, βn, αn](z0, z) is equivalent over Dede-
kind complete chains to a ∨

−→
∃ ∀ formula.

2. ¬(∃z)<z1
>z0 [α0, β1, α1, β2, . . . , αn−1, βn, αn](z, z1) is equivalent over Dedekind complete chains

to a ∨
−→
∃ ∀ formula.

Proof. (1) Define

Fn := αn

Fi−1 := αi−1 ∧ βiUntilFi for i = 1, . . . , n

Observe that there is z ∈ (z0, z1) such that [α0, β1, α1, β2, . . . , αn−1, βn, αn](z0, z) iff F0(z0)
and there is an increasing sequence x1 < · · · < xn in an open interval (z0, z1) such that
Fi(xi) for i = 1, . . . , n. Indeed, the direction ⇒ is trivial. The direction ⇐ is easily proved
by induction.

The basis is trivial.
Inductive step: n 7→ n+ 1. Assume F0(z0) holds and that (z0, z1) contains an increasing

sequence x1 < · · · < xn+1 such that Fi(xi) for i = 1, . . . , n+1. By the inductive assumption
there is y1 ∈ (z0, xn+1) such that

[α0, β1, α1, β2, . . . , βn−1αn−1, βn, (αn ∧ βn+1Untilαn+1)](z0, y1).

In particular, y1 satisfies (αn ∧ βn+1Untilαn+1). Hence, there is y2 > y1 such that y2
satisfies αn+1 and βn+1 holds along (y1, y2).

If y2 ≤ xn+1 then the required z ∈ (z0, z1) equals to y2, and we are done. Otherwise,
xn+1 < y2. Therefore, xn+1 ∈ (y1, y2) and βn+1 holds along (y1, xn+1). Hence, the required
z equals to xn+1.

CSL’12

524 A Proof of Kamp’s theorem

From the above observation and Lemma 5.3, it follows that ¬F0(z0)∨On(F1, . . . , Fn, z0, z1)
is a ∨

−→
∃ ∀ formula that is equivalent to ¬(∃z)<z1

>z0 [α0, β1, α1, β2, . . . , αn−1, βn, αn](z0, z).
(2) is the mirror image of (1) and is proved similarly. J

Now we are ready to prove Lemma 5.1, i.e.,

¬[α0, β1 . . . , βn−1, αn−1, βn, αn](z0, z1) is equivalent
over Dedekind complete chains to a ∨

−→
∃ ∀ formula.

If the interval (z0, z1) is empty then the assertion is immediate. We assume that (z0, z1) is
non-empty. Hence, at least one of the following cases holds:
Case 1 ¬α0(z0) or ¬αn(z1) or ¬(β1Untilα1)(z0) or ¬(βnSinceαn−1)(z1).
Case 2 α0(z0), and β1 holds along (z0, z1).
Case 3

1. α0(z0) ∧ (β1Untilα1)(z0), and
2. there is x ∈ (z0, z1) such that ¬β1(x).

For each of these cases we construct a ∨
−→
∃ ∀ formula Condi which describes it (i.e., Case i holds

iff Condi holds) and show that if Condi holds, then ¬[α0, β1 . . . , βn−1, αn−1, βn, αn](z0, z1)
is equivalent to a ∨

−→
∃ ∀ formula Formi. Hence, ¬[α0, β1 . . . , βn−1, αn−1, βn, αn](z0, z1) is

equivalent to ∨i[Condi ∧ Formi] which is a ∨
−→
∃ ∀ formula.

Case 1 This case is already explicitly described by the ∨
−→
∃ ∀ formula (in the canonical

expansion). In this case ¬[α0, β1 . . . , βn−1, αn−1, βn, αn](z0, z1) is equivalent to True.
Case 2 This case is described by a ∨

−→
∃ ∀ formula α0(z0) ∧ (∀z)<z1

>z0β1. In this case
¬[α0, β1 . . . , βn−1, αn−1, βn, αn](z0, z1) is equivalent to “there is no z ∈ (z0, z1) such that
[α1, β2 . . . , βn, αn](z, z1).” By Corollary 5.4 this is expressible by a ∨

−→
∃ ∀ formula.

Case 3 The first condition of Case 3 is already explicitly described by a ∨
−→
∃ ∀ formula.

When the first condition holds, then the second condition is equivalent to “there is (a
unique) r0 ∈ (z0, z1) such that r0 = inf{z ∈ (z0, z1) | ¬β1(z)}” (If β1Untilα1 holds at z0 and
there is x ∈ (z0, z1) such that ¬β1(x), then such r0 exists because we deal with Dedekind
complete chains.) This r0 is definable by the following ∨

−→
∃ ∀ formula, i.e., it is a unique z

which satisfies it4:

INF¬β1(z0, z, z1) := z0 < z < z1 ∧ (∀y)<z>z0
β1(y) ∧ (¬β1(z) ∨K+(¬β1)(z)) (3)

Hence, Case 3 is described by α0(z0)∧ (β1Untilα1)(z0)∧ (∃z)<z1
>z0INF¬β1(z0, z, z1). Since the

set of ∨
−→
∃ ∀ formulas is closed under conjunction, disjunction and ∃, this case is described

by a ∨
−→
∃ ∀ formula.

It is sufficient to show that (∃z)<z1
>z0INF¬β1(z) ∧ ¬[α0, β1, α1, . . . , βn+1, αn+1](z0, z1) is

equivalent to a ∨
−→
∃ ∀ formula.

We prove this by induction on n.
The basis is trivial.
Inductive step n 7→ n+ 1.

4 We will use only existence and will not use uniqueness.

A. Rabinovich 525

α0 α1 α2 α3z

z0 z1

β1 β2 β3

Figure 1 B2(z0, z, z1) := [α0, β1, α1, β2, β2](z0, z) ∧ [β2, β2, α2, β3, α3](z, z1).

Define:

A−i (z0, z) :=[α0, β1, . . . , βi, αi](z0, z) i = 1, . . . , n
A+
i (z, z1) :=[αi, βi+1, . . . βn+1αn+1](z, z1) i = 1, . . . , n

Ai(z0, z, z1) :=A−i (z0, z) ∧A+
i (z, z1) i = 1, . . . , n

B−i (z0, z) :=[α0β1, . . . , βi−1, αi−1, βi, βi](z0, z) i = 1, . . . , n+ 1
B+
i (z, z1) :=[βi, βi, αiβi+1αi+1, . . . , βn+1, αn+1](z, z1) i = 1, . . . , n+ 1

Bi(z0, z, z1) :=B−i (z0, z) ∧B+
i (z, z1) i = 1, . . . , n+ 1

If the interval (z0, z1) is non-empty, these definitions imply

[α0, β1, α1, . . . , βn+1, αn+1](z0, z1)⇔ (∀z)<z1
>z0

(n∨
i=1

Ai ∨
n+1∨
i=1

Bi
)

[α0, β1, α1, . . . , βn+1, αn+1](z0, z1)⇔ (∃z)<z1
>z0

(n∨
i=1

Ai ∨
n+1∨
i=1

Bi
)

Hence, for every ϕ

(∃z)<z1
>z0ϕ(z) ∧ ¬[α0, β1, α1, . . . , βn+1, αn+1](z0, z1)

is equivalent to

(∃z)<z1
>z0

(
ϕ(z) ∧

n∧
i=1
¬Ai ∧

n+1∧
i=1
¬Bi

)
In particular,

(∃z)<z1
>z0INF¬β1(z) ∧ ¬[α0, β1, α1, . . . , βn+1, αn+1](z0, z1)

is equivalent to

(∃z)<z1
>z0

(
INF¬β1(z) ∧

n∧
i=1
¬Ai ∧

n+1∧
i=1
¬Bi

)
,

where INF¬β1(z) was defined in equation (3).
By the inductive assumption

CSL’12

526 A Proof of Kamp’s theorem

(a) ¬Ai is equivalent to a ∨
−→
∃ ∀ formula for i = 1, . . . , n.

(b) ¬Bi is equivalent to a ∨
−→
∃ ∀ formula for i = 2, . . . , n.

Recall B1 := B−1 ∧B
+
1 and Bn+1 := B−n+1 ∧B

+
n+1.

(c) ¬B−1 and ¬B+
n+1 are equivalent to ∨

−→
∃ ∀ formulas, by the induction basis.

(d) INF¬β1(z) ∧ ¬B+
1 (z, z1) is equivalent to INF¬β1(z), because if INF¬β1(z), then for no

x > z, β1 holds along [z, x).
(e) INF¬β1(z) ∧ ¬B−n+1(z0, z) is equivalent to INF¬β1(z) ∧ (“β1 holds on (z0, z)” ∧
¬B−n+1(z0, z)). Since, by case 2, “β1 holds on (z0, z)” ∧ ¬B−n+1(z0, z) is equivalent to
a ∨
−→
∃ ∀ formula, and INF¬β1(z) is a ∨

−→
∃ ∀ formula, we conclude that INF¬β1(z) ∧

¬B−n+1(z0, z) is equivalent to a ∨
−→
∃ ∀ formula.

Since the set of ∨
−→
∃ ∀ formulas is closed under conjunction, disjunction and ∃, by (a)-(e) we

obtain that (∃z)<z1
>z0

(
INF¬β1(z) ∧

∧n
i=1 ¬Ai ∧

∧n+1
i=1 ¬Bi

)
is equivalent to a ∨

−→
∃ ∀ formula.

Therefore, (∃z)<z1
>z0INF¬β1(z) ∧ ¬[α0, β1, α1, . . . , βn+1, αn+1](z0, z1) is also a ∨

−→
∃ ∀ formula.

This completes our proof of Lemma 5.1 and of Proposition 4.2.

6 Related Works

Kamp’s theorem was proved in
1. Kamp’s thesis [7] (proof > 100pages).
2. Outlined by Gabbay, Pnueli, Stavi and Shelah [3] (Sect. 2) for N and stated that it can

be extended to Dedekind complete orders using game arguments.
3. Was proved by Gabbay [1] by separation arguments for N, and extended to Dedekind

complete order in [2].
4. Was proved by Hodkinson [4] by game arguments and simplified in [5] (unpublished).
A temporal logic has the separation property if its formulas can be equivalently rewritten
as a boolean combination of formulas, each of which depends only on the past, present or
future. The separation property was introduced by Gabbay [1], and surprisingly, a temporal
logic which can express � and ←−� has the separation property (over a class C of structures)
iff it is expressively complete for FOMLO over C.

The separation proof for TL(Until,Since) over N is manageable; however, over the real
(and over Dedekind complete) chains it contains many rules and transformations and is not
easy to follow. Hodkinson and Reynolds [6] write:

The proofs of theorems 18 and 19 [Kamp’s theorem over naturals and over reals,
respectively] are direct, showing that each formula can be separated. They are tough
and tougher, respectively. Nonetheless, they are effective, and so, whilst not quite
providing an algorithm to determine if a set of connectives is expressively complete,
they do suggest a potential way of telling in practice whether a given set of connectives
is expressively complete – in Gabbay’s words, try to separate and see where you get
stuck!

The game arguments are easier to grasp, but they use complicated inductive assertions. The
proof in [5] proceeds roughly as follows. Let Lr be the set of TL(Until,Since) formulas of
nesting depth at most r. A formula of the form: ∃x̄∀yχ(x̄, y, z̄) where x̄ is an n-tuple of
variables and χ is a quantifier free formula over {<,=} and Lr-definable monadic predicates
is called 〈n, r〉-decomposition formula. The main inductive assertion is proved by “unusual
back-and-forth games” and can be rephrased in logical terms as there is a function f :

A. Rabinovich 527

N → N such that for every n, r ∈ N, the negation of positive Boolean combinations 〈n, r〉-
decomposition formula is equivalent to a positive Boolean combination of 〈f(n), (n + r)〉-
decomposition formulas.

Our proof is inspired by [3] and [5]; however, it avoids games, and it separates general
logical equivalences and temporal arguments.

Many temporal formalisms studied in computer science concern only future formulas -
whose truth value at any moment is determined by what happens from that moment on.
A formula (temporal, or monadic with a single free first-order variable) F is (semantically)
future if for every chainM and moment t0 ∈M:

M, t0 |= F iffM|≥t0 , t0 |= F,

where M|≥t0 is the subchain of M over the interval [t0,∞). For example, PUntilQ and
K+(P) are future formulas, while PSinceQ and K−(P) are not future ones.

It was shown in [3] that over the discrete chains Kamp’s theorem holds also for future
formulas of FOMLO:
I Theorem 6.1. Every future FOMLO formula is equivalent over discrete orders (Natural,
Integer, finite) to a TL(Until) formula.

Theorems 6.1 can be easily obtained from our proof of Kamp’s theorem.
The temporal logic with the modalities Until and Since is not expressively complete for

FOMLO over the rationals. Stavi introduced two additional modalities Untils and Sinces

and proved that TL(Until,Since,Untils,Sinces) is expressively complete for FOMLO over all
linear orders [2]. In the full version of this paper we prove Stavi’s theorem. The proof is
similar to our proof of Kamp’s theorem; however, it treats some additional cases related to
gaps in orders, and replaces

−→
∃ ∀-formulas by slightly more general formulas.

Acknowledgments I am very grateful to Yoram Hirshfeld for numerous insightful discussions,
and to the anonymous referees for their helpful suggestions.

References
1 D. Gabbay. Expressive functional completeness in tense logic (preliminary report). In U.

Monnich, editor, Aspects of Philosophical Logic, pages 91-117. Reidel, Dordrecht, 1981.
2 D. Gabbay, I. Hodkinson, and M. Reynolds. Temporal logic: Mathematical Foundations

and Computational Aspects. Oxford University Press, 1994.
3 D. Gabbay, A. Pnueli, S. Shelah and J. Stavi. On the Temporal Analysis of Fairness. In

POPL 1980, pp. 163-173, 1980. Information and Computation, 187(2003), 196-208.
4 I. Hodkinson. Expressive completeness of Until and Since over dedekind complete linear

time. Modal logic and process algebra, ed. A. Ponse, M. de Rijke, Y. Venema, CSLI Lecture
Notes 53, 1995.

5 I. Hodkinson. Notes on games in temporal logic. Lecture notes for LUATCS meting,
Johannesburg, Dec 1999. http://www.doc.ic.ac.uk/∼imh/index.html

6 I. Hodkinson and M. Reynolds. Temporal Logic Chapter 11 (pp. 655-720) in Handbook
of Modal Logic, Patrick Blackburn, Johan van Benthem, and Frank Wolter, eds., Elsevier
Science, 2006.

7 H. W. Kamp. Tense logic and the theory of linear order. Phd thesis, University of Califor-
nia, Los Angeles, 1968.

8 A. Pnueli (1977). The temporal logic of programs. In Proc. IEEE 18th Annu. Symp. on
Found. Comput. Sci., pages 46–57, New York, 1977.

CSL’12

Commutative Data Automata∗

Zhilin Wu

State Key Laboratory of Computer Science, Institute of Software, Chinese
Academy of Sciences,
P.O. Box 8718, # 4 Zhongguancun South 4th Street, Beijing, 100190, China
wuzl@ios.ac.cn

Abstract
Formalisms over infinite alphabets have recently received much focus in the community of theoret-
ical computer science. Data automaton is a formal model for words over an infinite alphabet, that
is, the product of a finite set of labels and an infinite set of data values, proposed by Bojanczyk,
Muscholl, Schwentick et. al. in 2006. A data automaton consists of two parts, a nondeterministic
letter-to-letter transducer, and a class condition specified by a finite automaton, which acts as a
condition on each subword of the outputs of the transducer in corresponding to a maximal set of
positions with the same data value. It is open whether the nonemptiness of data automata can be
decided with elementary complexity, since this problem is equivalent to the reachability of Petri
nets. Very recently, a restriction of data automata with elementary complexity, called weak data
automata, was proposed by Kara, Schwentick and Tan and its nonemptiness problem was shown
to be in 2-NEXPTIME. In weak data automata, the class conditions are specified by some simple
constraints on the number of occurrences of labels occurring in every class. The aim of this paper
is to demonstrate that the commutativity of class conditions is the genuine reason accounting
for the elementary complexity of weak data automata. For this purpose, we define and invest-
igate commutative data automata, which are data automata with class conditions restricted to
commutative regular languages. We show that while the expressive power of commutative data
automata is strictly stronger than that of weak data automata, the nonemptiness problem of
this model can still be decided with elementary complexity, more precisely, in 3-NEXPTIME. In
addition, we extend the results to data ω-words and prove that the nonemptiness of commutative
Büchi data automata can be decided in 4-NEXPTIME. We also provide logical characterizations
for commutative (Büchi) data automata, similar to those for weak (Büchi) data automata.

1998 ACM Subject Classification F.1.1, F4

Keywords and phrases Data Automata, Commutative regular languages, Presburger arithmetic,
Existential Monadic Second-order logic, Büchi automata

Digital Object Identifier 10.4230/LIPIcs.CSL.2012.528

1 Introduction
With the momentums from the XML document processing and the verification of computer
programs, formalisms over infinite alphabets have been intensively investigated in recent
years. In the database community, XML documents are usually represented by trees, where
the nodes can have tags together with several attributes e.g. identifiers. While the tags
are from a finite set, the attributes may take values from some infinite domains. On the
other hand, in the verification community, take concurrent systems as an example, if there is
an unbounded number of processes in the system, then the behavior of the global system
consists of the sequences of observed events attached with the process identifiers.

∗ Supported by the National Natural Science Foundation of China under Grant No. 61100062.

© Zhilin Wu;
licensed under Creative Commons License NC-ND

Computer Science Logic 2012 (CSL’12).
Editors: Patrick Cégielski, Arnaud Durand; pp. 528–542

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2012.528
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Z. Wu 529

With these motivations, researchers in the two communities have investigated various
formalisms over infinite alphabets, to name a few, register automata ([11]), pebble automata
([14]), data automata ([1]), XPath with data values ([9, 8]), LTL with freeze quantifiers ([6]),
as well as two-variable logic interpreted on words or trees over infinite alphabets ([1, 3]). A
survey on this topic can be found in [16].

By infinite alphabet, we mean Σ×D, with Σ a finite set of tags (labels) and D an infinite
data domain. Words and trees over the alphabet Σ×D are called data words and data trees.

The model of data automata was introduced by Bojanczyk, Muscholl, Schwentick, et. al.
in [1] to prove the decidability of two-variable logic over data words. A data automaton D

over data words consists of two parts, a nondeterministic letter-to-letter transducer A , and a
class condition specified by a finite automaton B over the output alphabet of A , which acts
as a condition on the subsequence of the outputs of A in every class, namely, every maximal
set of positions with the same data value. By a reduction to the reachability problem of Petri
nets (also called multicounter machines), the nonemptiness of data automata was shown to
be decidable. On the other hand, data automata are also powerful enough to simulate Petri
nets easily. Since it is a well-known open problem whether the complexity of the reachability
problem for Petri nets is elementary, it is also not known whether the complexity of the
nonemptiness of data automata is elementary.

Aiming at lowering the complexity of data automata, a restriction of data automata,
called weak data automata, was introduced very recently by Kara, Schwentick, and Tan
([12]). In weak data automata, the class conditions are replaced by some simple constraints
on the number of occurrences of labels occurring in every class. The nonemptiness of weak
data automata can be decided with elementary complexity, more precisely, in 2-NEXPTIME.

By comparing data automata with weak data automata, we notice that to simulate Petri
nets in data automata, the ability to express the property La<b, “for every occurrence of
a, there is an occurrence of b on the right with the same data value”, is crucial; on the
other hand, as shown in [12], La<b is not expressible in weak data automata. It is a simple
observation that La<b is a non-commutative language while the class conditions of weak data
automata are commutative. This suggests that the commutativity of class conditions might
be the genuine reason accounting for the elementary complexity of weak data automata. With
this observation, we are motivated to define and investigate commutative data automata,
which are data automata with class conditions restricted to commutative regular languages.
We would like to see that the nonemptiness of commutative data automata can still be
decided with elementary complexity, even though they have stronger class conditions than
weak data automata. This is indeed the case, as we will show in this paper.

More specifically, the contributions of this paper consist of the following three aspects.
1. At first, we investigate the expressibility of commutative data automata. We show

that the expressive power of commutative data automata lies strictly between data
automata and weak data automata. In addition, commutative data automata are closed
under intersection and union, but not under complementation. We also present a logical
characterization of commutative data automata, similar to that for weak data automata.

2. The nonemptiness of commutative data automata can be decided in 3-NEXPTIME, which
is the main result of this paper.

3. At last, we extend the results to data ω-words. We define commutative Büchi data
automata and prove that the nonemptiness of commutative Büchi data automata can be
decided in 4-NEXPTIME.

The main ideas of most of the proofs in this paper come from those for weak data
automata ([12, 5]). Nevertheless, some proof steps become much more involved as a result of
the stronger class conditions in commutative data automata.

CSL’12

530 Commutative Data Automata

Related work.
Several variants of data automata have been investigated. Bojanczyk and Lasota
proposed an (undecidable) extension of data automata, called class automata, to
capture the full XPath with data values over data trees; in addition, they established
the correspondences of various class conditions of class automata over data words
with the various models of counter machines ([2]). We continued this line of research
by introducing another decidable extension of data automata over data words and
establishing the correspondence with priority multicounter machines ([19]). There is
another model, called class counting automata, relevant to this paper. Class counting
automata over data words was proposed by Manuel and Ramanujan in [13]. In class
counting automata, each data value is assigned a counter; and in each transition
step, if the value of the counter corresponding to the current data value satisfies
some constraint, then the value of the counter is updated according to a prescribed
instruction; a run is accepting if a final state is reached in the end. The nonemptiness
of class counting automata was shown to be EXPSPACE-complete. Nevertheless,
the expressive power of class counting automata is relatively weak, for instance, the
property “Each data value occurs exactly twice” cannot be expressed by class counting
automata, while this property can be easily expressed by commutative data automata.
Commutative regular languages have been investigated by many researchers. Pin
presented a counting characterization of the expressibility of commutative regular
languages ([15]). Gomez and Alvarez investigated how commutative regular languages
can be learned from positive and negative examples ([10]). Chrobak and To proposed
polynomial time algorithms to obtain regular expressions from nondeterministic finite
automata over unary alphabets ([4, 18]).

The rest of this paper is organized as follows. Definitions are given in the next sec-
tion. Then in Section 3, the expressibility of commutative data automata is investig-
ated. Section 4 includes the main result of this paper, a 3-NEXPTIME algorithm for the
nonemptiness of commutative data automata. Finally the results are extended to data
ω-words in Section 5. The missing proofs can be found in the full version of this paper
(http://lcs.ios.ac.cn/∼wuzl/pub/cda-wu-12.pdf).

2 Preliminaries
Let Σ be a finite alphabet. A finite word over Σ is an element of Σ∗ and an ω-word over Σ is
an element of Σω.

2.1 Presburger formulas and Commutative regular languages
Existential Presburger formulas (EP formulas) over a variable set X are formulas of the
form ∃x̄ϕ, where ϕ is a quantifier-free Presburger formula, i.e. a Boolean combination of
atomic formulas of the form t ≥ c, or t ≤ c, or t = c, or t ≡ r mod p, where c, r, p ∈ N,
p ≥ 2, 0 ≤ r < p and t is a term defined by t := c | cx | t1 + t2 | t1 − t2, where c ∈ N, x ∈ X.

Suppose Σ = {σ1, . . . , σk} and v ∈ Σ∗. The Parikh image of v, denoted by Parikh(v),
is a k-tuple (#σ1(v), . . . ,#σk(v)), where for each i : 1 ≤ i ≤ k, #σi(v) is the number of
occurrences of σi in v. Let VΣ = {xσ1 , . . . , xσk} and ϕ be an EP formula with free variables
from VΣ. The word v is said to satisfy ϕ, denoted by v |= ϕ, iff ϕ[Parikh(v)] holds. The
language defined by ϕ, denoted by L(ϕ), is the set of words v ∈ Σ∗ such that v |= ϕ.

A Presburger automaton over the alphabet Σ is a binary tuple (A , ϕ), where A is a
finite automaton over the alphabet Σ and ϕ is an EP formula with free variables from VΣ. A

Z. Wu 531

word v ∈ Σ∗ is accepted by a Presburger automaton (A , ϕ) iff v is accepted by A and at
the same time v |= ϕ. The language accepted by a Presburger automaton (A , ϕ), denoted
by L((A , ϕ)), is the set of words accepted by (A , ϕ).
I Theorem 1 ([17]). The nonemptiness of Presburger automata can be decided in NP.

Let L be a language over the alphabet Σ. Then L is commutative iff for any σ1, σ2 ∈ Σ and
u, v ∈ Σ∗, uσ1σ2v ∈ L iff uσ2σ1v ∈ L. Commutative regular languages have a characterization
in quantifier-free simple Presburger formulas defined in the following.

Quantifier-free simple Presburger formulas (QFSP formulas) over a variable set X are
Boolean combinations of atomic formulas of the form x1 + · · ·+ xn ≤ c, or x1 + · · ·+ xn ≥ c,
or x1 + · · ·+ xn = c, or x1 + · · ·+ xn ≡ r mod p, where x1, . . . , xn ∈ X, c, r, p ∈ N, p ≥ 2,
and 0 ≤ r < p.

Let VΣ = {xσ1 , . . . , xσk} and ϕ be a QFSP formula over the variable set VΣ. Similar to
EP formulas, we can define L(ϕ), the language defined by ϕ.

For a set of variables {x1, . . . , xk}, we use the notation ϕ(x1, . . . , xk) to denote an EP or
QFSP formula ϕ with the free variables from {x1, . . . , xk}.
I Proposition 2 ([15]). Let L be a language over the alphabet Σ = {σ1, . . . , σk}. Then L is a
commutative regular language iff L is defined by a QFSP formula ϕ(xσ1 , . . . , xσk).

The size of an EP or QFSP formula ϕ, denoted by |ϕ|, is defined as the length of a binary
encoding of ϕ (where the constants c, r and p are encoded in binary).
I Proposition 3. Let ϕ(x1, . . . , xk) be a QFSP formula. Then there exists an exponential-time
algorithm to transform ϕ into a QFSP formula

∨
i:1≤i≤m

ϕi of size 2O(k|ϕ|) such that there is

p0 : 2 ≤ p0 ≤ 2|ϕ| satisfying that
each ϕi is of the form

∧
1≤j≤k

ϕi,j;

for each j : 1 ≤ j ≤ k, ϕi,j is equal to xj = ci,j or xj ≥ p0 ∧ xj ≡ ri,j mod p0 for
ci,j , rij : 0 ≤ ci,j , ri,j < p0;
in addition, those ϕi’s are mutually exclusive.
For a QFSP formula ϕ(x1, . . . , xk), the number p0 and the QFSP formula

∨
i:1≤i≤m

ϕi in

Proposition 3 are called respectively the normalization number and the normal form of ϕ.
I Remark. A weaker form of Proposition 3 was proved by Ehrenfeucht and Rozenberg in [7].
But they did not give the complexity bound.

2.2 Data words, two-variable logic and data automata
Let Σ be a finite alphabet and D be an infinite set of data values. A data word over Σ is an
element of (Σ×D)∗ and a data ω-word is an element of (Σ×D)ω. Let σ ∈ Σ, a position in a
data word or a data ω-word is called a σ-position if the position is labelled by σ.

Given a data (finite or ω) word w =
(
σ1
d1

)(
σ2
d2

)
. . ., the projection of w to the finite

alphabet Σ, denoted by Proj(w), is the (finite or ω) word σ1σ2 Let X be a set of
positions in a word w, we use w|X to denote the restriction of w to the positions in X.
Similarly, w|X can be defined for ω-words, data words and data ω-words.

Let FO(+1,∼,Σ) denote the first-order logic with the following atomic formulas, σ(x)
(where σ ∈ Σ), x = y, x + 1 = y, and x ∼ y. Two positions x, y satisfy x + 1 = y if y is
the successor of the position x, and two positions satisfy x ∼ y if they have the same data
value. Let FO2(+1,∼,Σ) denote the two-variable fragment of FO(+1,∼,Σ). In addition,
let EMSO2(+1,∼,Σ) denote the extension of FO2(+1,∼,Σ) by existential monadic second-
order quantifiers in front of the FO2(+1,∼,Σ) formulas. The data language defined by an
EMSO2(+1,∼,Σ) sentence ϕ, denoted by L(ϕ), is the set of data words satisfying ϕ.

CSL’12

532 Commutative Data Automata

A class of a data (finite or ω) word w is a maximal nonempty set of positions in w with
the same data value. Given a class X of a data word w, the class string of w corresponding
to X is Proj(w|X), the projection of w|X .

Let w =
(
σ1
d1

)(
σ2
d2

)
. . .
(
σn
dn

)
be a data word and ϕ be a QFSP formula over the variable

set VΣ. Then w is said to satisfy the class condition ϕ, denoted by w |=c ϕ, if for each class
X of w, Proj(w|X) |= ϕ.

Given a data (finite or ω) word w =
(
σ1
d1

)(
σ2
d2

)
. . ., the profile word of w, denoted by

Profile(w), is a word (σ1, s1)(σ2, s2) . . . over the alphabet Σ × {⊥,>} such that for every
i ≥ 1, we have si = > (resp. si = ⊥) iff di = di+1 (resp. di 6= di+1), moreover, if w is finite
and of length n, then sn = ⊥. A data (finite or ω) word w =

(
σ1
d1

)(
σ2
d2

)
. . . is called locally

different if for every i ≥ 1, it holds di 6= di+1.
I Definition 4. A data automaton (DA) D is a tuple (A ,B), where A = (Q1,Σ ×
{⊥,>},Γ, δ1, q0,1, F1) is a nondeterministic letter-to-letter transducer with the input alphabet
Σ× {⊥,>} and the output alphabet Γ, and B = (Q2,Γ, δ2, q0,2, F2) is a finite automaton
over the alphabet Γ.

A data word w =
(
σ1
d1

)(
σ2
d2

)
. . .
(
σn
dn

)
is accepted by a data automaton D = (A ,B) iff

there is an accepting run of A over Profile(w) which produces a word γ1 . . . γn such that for
each class X of w′ =

(
γ1
d1

)(
γ2
d2

)
. . .
(
γn
dn

)
, the class string Proj(w′|X) is accepted by B.

The data language defined by a data automaton D , denoted by L(D), is the set of data
words accepted by D .
I Definition 5 ([12]). A weak data automaton (WDA) is a tuple (A ,C) such that A =
(Q,Σ×{⊥,>},Γ, δ, q0, F) is a letter-to-letter transducer and the class condition C is specified
by a collection of

key constraints of the form Key(γ) (where γ ∈ Γ), interpreted as “every two γ-positions
have different data values”,
inclusion constraints of the form D(γ) ⊆

⋃
γ′∈RD(γ′) (where γ ∈ Γ, R ⊆ Γ), interpreted

as “for every data value occurring in a γ-position, there is γ′ ∈ R such that the data
value also occurs in a γ′-position”,
and denial constraints of the form D(γ)∩D(γ′) = ∅ (where γ, γ′ ∈ Γ), interpreted as “no
data value occurs in both a γ-position and a γ′-position”.
A data word w =

(
σ1
d1

)(
σ2
d2

)
. . .
(
σn
dn

)
is accepted by a weak data automaton D = (A ,C)

iff there is an accepting run of A over Profile(w) which produces a word γ1 . . . γn such that
the data word w′ =

(
γ1
d1

)(
γ2
d2

)
. . .
(
γn
dn

)
satisfies all the constraints in C .

I Definition 6. A commutative data automaton (CDA) D is a tuple (A , ϕ) such that
A = (Q,Σ×{⊥,>},Γ, δ, q0, F) is a letter-to-letter transducer and ϕ is a QFSP formula over
the variable set VΓ.

A data word w =
(
σ1
d1

)(
σ2
d2

)
. . .
(
σn
dn

)
is accepted by a commutative data automaton

D = (A , ϕ) iff there is an accepting run of A over Profile(w) which produces a word γ1 . . . γn

such that the data word w′ =
(
γ1
d1

)(
γ2
d2

)
. . .
(
γn
dn

)
satisfies that w′ |=c ϕ.

I Remark. We choose to define the class conditions of commutative data automata by QFSP
formulas, instead of finite automata with commutative transition relations. The main purpose
of this choice is to ease the extension of the results to data ω-words (c.f. Section 5). In
addition, in the definition of commutative data automata, we choose the input alphabet
of the transducer to be Σ × {⊥,>}, instead of Σ. It seems for us that this choice strictly
increases the expressive power of commutative data automata, but we admit that we do not
know how to prove it at present. J

Z. Wu 533

3 Expressiveness
In this section, we first show that the expressibility of CDA lies strictly between WDA and
DA, then we discuss the closure properties of CDA and provide a logical characterization of
CDA.
I Theorem 7. WDA < CDA < DA.
Proof.
CDA < DA.

It was shown in [12] that the language “for every occurrence of a, there is an occurrence
of b on the right with the same data value” cannot be expressed in WDA. The same proof
can be applied to show that the language is not expressible in CDA. On the other hand, it is
easy to see that the language can be defined by a DA.
WDA < CDA.

From any WDA (A ,C), an equivalent CDA (A , ϕC) can be constructed such that
ϕC :=

∧
C∈C

ϕC , where ϕC is defined as follows,

if C is of the form Key(γ), then ϕC := xγ ≤ 1,
if C is of the form D(γ) ⊆

⋃
γ′∈R

D(γ′), then ϕC := xγ ≥ 1→
∑
γ′∈R

xγ′ ≥ 1,

if C is of the form D(γ) ∩D(γ′) = ∅, then ϕC := xγ ≥ 1→ xγ′ = 0.

For the strictness of the inclusion, it is easy to observe that the language “In each class
of the data word, the letter a occurs an even number of times” is expressible in CDA. By
some pumping argument, we can show that the language is not expressible in WDA. J

I Remark. According to the above reduction of WDA to CDA, we would like to say that in
some sense, CDA = WDA + Modulo constraints in class conditions.

I Theorem 8. CDAs are closed under union and intersection, but not closed under comple-
mentation.

In the following, we define EMSO2
#(+1,∼,Σ), a counting extension of EMSO2(+1,∼,Σ),

and show that it is expressively equivalent to CDA.
The logic EMSO2

#(+1,∼,Σ) includes all the formulas of the form ∃R1 . . . Rl(ϕ ∧ ∀xψ)
(where R1, . . . , Rl are unary predicates), such that ϕ ∈ FO2(+1,∼,Σ, R1, . . . , Rl) and
ψ is a Boolean combination of atomic formulas of the form

∑
τ∈∆

#x∼y∧τ(y)(y) ≥ c, or∑
τ∈∆

#x∼y∧τ(y)(y) ≤ c, or
∑
τ∈∆

#x∼y∧τ(y)(y) = c, or
∑
τ∈∆

#x∼y∧τ(y)(y) ≡ r mod p, satisfying

that ∆ ⊆ Σ × 2{R1,...,Rl}, c ∈ N, p ≥ 2, 0 ≤ r < p, and if τ = (σ,R), then τ(y) =
σ(y) ∧

∧
i:1≤i≤l

ηRi(y), where ηRi(y) = Ri(y) if Ri ∈ R, and ηRi(y) = ¬Ri(y) otherwise.

The semantics of EMSO2(+1,∼,Σ) formulas can be extended naturally to EMSO2
#(+1,∼

,Σ) formulas by interpreting formulas ∀xψ as the counting constraints for each class. Let’s
take the formula ∀x

(
#x∼y∧τ(y)(y) ≥ c

)
as an example: Given a data word w over the

alphabet Σ× 2{R1,...,Rl}, w |= ∀x
(
#x∼y∧τ(y)(y) ≥ c

)
iff for each class X of w, the number

of τ -positions in X is at least c.
I Theorem 9. EMSO2

#(+1,∼,Σ) and CDA are expressively equivalent.
Given an EMSO2

#(+1,∼,Σ) formula ∃R1 . . . Rl(ϕ ∧ ∀xψ), a CDA D = (A , ϕ′) of
doubly exponential size can be constructed such that L(D) = L(∃R1 . . . Rl(ϕ ∧ ∀xψ)). In
addition, the size of the output alphabet of A is at most exponential over the size of
∃R1 . . . Rl(ϕ ∧ ∀xψ).
Given a CDA D = (A , ϕ), an EMSO2

#(+1,∼,Σ) formula ϕ′ of polynomial size can be
constructed such that L(D) = L(ϕ′).

CSL’12

534 Commutative Data Automata

4 The nonemptiness problem of CDA

In this section, we prove the main result of this paper.

I Theorem 10. The nonemptiness of CDA can be decided in 3-NEXPTIME.

The rest of this section is devoted to the proof of Theorem 10. Although the structure of
the proof is similar to that for WDA in [12, 5], the proofs of several lemmas become more
complicated.

Through this section, let D = (A , ϕ) be a commutative data automaton such that
A = (Q,Σ× {⊥,>},Γ, δ, q0, F) and ϕ is a QFSP formula over the variable set VΓ.

Because we are concerned with the nonemptiness problem, without loss of generality, we
can assume that A = (Q,Γ× {⊥,>}, δ, q0, F) is just a finite automaton over the alphabet
Γ× {⊥,>}. Then the nonemptiness of D is reduced to the following problem.

PROBLEM: NONEMPTINESS-PROFILE
INPUT: A finite automaton A = (Q,Γ × {⊥,>}, δ, q0, F) and a

QFSP formula ϕ over VΓ

QUESTION: Is there a data word w over Γ such that Profile(w) is
accepted by A and w |=c ϕ?

The outline of the proof goes as follows.
At first, a finite automaton A ′ of exponential size over the alphabet Γ′, and a QFSP
formula ϕ′ in the normal form of doubly exponential size over the variable set VΓ′ , are
constructed from D = (A , ϕ) such that the problem of NONEMPTINESS-PROFILE is
reduced to the following problem,

“is there a locally different data word w over the alphabet Γ′ such that Proj(w) is
accepted by A ′ and w |=c ϕ

′?”
We would like to point out that the finite automaton A ′ runs directly on the projections
of data words, instead of the profile words of them.
Let’s call this problem NONEMPTINESS-LOCALLY-DIFFERENT, which is formally
defined as follows.

PROBLEM: NONEMPTINESS-LOCALLY-DIFFERENT
INPUT: A finite automaton A = (Q,Γ, δ, q0, F) and a QFSP

formula ϕ over VΓ in the normal form
QUESTION: Is there a locally different data word w over Γ such that

Proj(w) is accepted by A and w |=c ϕ?

Then a 2-NEXPTIME algorithm is presented to solve the problem of NONEMPTINESS-
LOCALLY-DIFFERENT.

From the above description of the proof outline, it is evident that NONEMPTINESS-
PROFILE can be decided in 4-NEXPTIME. By a finer analysis, the complexity can be shown
in 3-NEXPTIME.

Since the reduction of the problem of NONEMPTINESS-PROFILE to the problem of
NONEMPTINESS-LOCALLY-DIFFERENT completely mimics that for WDA in [12, 5], it
is omitted here due to the lack of space.

In the rest of this section, we will focus on the problem of NONEMPTINESS-LOCALLY-
DIFFERENT. Before presenting an algorithm to solve the problem, we will state and prove
two lemmas.

Z. Wu 535

4.1 Two lemmas
We first introduce some notations.

I Definition 11. Let ϕ =
∨

1≤i≤m
ϕi be a QFSP formula in the normal form over the variable

set VΓ, p0 be the normalization number of ϕ, and for every i : 1 ≤ i ≤ m, ϕi =
∧
γ∈Γ

ϕi,γ , where

ϕi,γ is either xγ = ci,γ or xγ ≥ p0 ∧ xγ ≡ ri,γ mod p0 for some ci,γ , ri,γ : 0 ≤ ci,γ , ri,γ < p0.
Then for each γ ∈ Γ, define two subsets of {1, . . . ,m}, denoted by IE(ϕ, γ) and IM (ϕ, γ), as
follows: For every i : 1 ≤ i ≤ m,

i ∈ IE(ϕ, γ) iff ϕi,γ is xγ = ci,γ and ci,γ > 0,
i ∈ IM (ϕ, γ) iff ϕi,γ is xγ ≥ p0 ∧ xγ ≡ ri,γ mod p0.

Note that if i 6∈ IE(ϕ, γ) ∪ IM (ϕ, γ), then it holds that ϕi,γ is xγ = ci,γ and ci,γ = 0.

I Definition 12. Let w be a data word over Γ and ϕ =
∨

1≤i≤m
ϕi be a QFSP formula over

the variable set VΓ in the normal form. If w |=c ϕ, then for each data value d occurring
in w, there is a unique i : 1 ≤ i ≤ m such that Proj(w|X) |= ϕi, where X is the class of w
corresponding to d. This unique number i is called the index of the class condition ϕ for d,
denoted by idxϕ(d).

We are ready to state and prove the two lemmas.

I Lemma 13. For every QFSP formula ϕ =
∨

1≤i≤m
ϕi over the variable set VΓ in the normal

form, there is an EP formula ψ = ∃y1 . . . ∃ymψ′ of polynomial size such that for each word v
over Γ, v |= ψ iff there is a data word w such that Proj(w) = v and w |=c ϕ.

Proof. Suppose ϕ is a QFSP formula in the normal form over the variable set VΓ with the
normalization number p0. Then ϕ =

∨
i:1≤i≤m

ϕi, where ϕi is of the form
∧
γ∈Γ

ϕi,γ such that

ϕi,γ is equal to xγ = ci,γ or xγ ≥ p0 ∧xγ ≡ ri,γ mod p0 for some ci,γ , ri,γ : 0 ≤ ci,γ , ri,γ < p0.
In addition, those ϕi’s are mutually exclusive.

Let ψ = ∃y1 . . . ∃ymψ′ such that ψ′ is a conjunction of the quantifier-free Presburger
formulas ψ′1, ψ′2, and ψ′3, where

1. ψ′1 :=
∧
γ∈Γ

(
xγ −

(∑
i∈IE(ϕ,γ)

ci,γyi

)
−

(∑
i∈IM (ϕ,γ)

(p0 + ri,γ)yi

)
≥ 0
)
,

2. ψ′2 :=
∧
γ∈Γ

((∧
i∈IM (ϕ,γ)

yi = 0
)
→ xγ −

(∑
i∈IE(ϕ,γ)

ci,γyi

)
= 0
)
,

3. ψ′3 :=
∧
γ∈Γ

(
xγ −

(∑
i∈IE(ϕ,γ)

ci,γyi +
∑

i∈IM (ϕ,γ)
ri,γyi

)
≡ 0 mod p0

)
.

Intuitively,
y1, . . . , ym represent the numbers of classes satisfying respectively ϕ1, . . . , ϕm,
the formula ψ′1 specifies the lower bound of γ-positions for every γ ∈ Γ, which is the sum
of the lower bounds of γ-positions in all classes, more precisely, ci,γ for i ∈ IE(ϕ, γ) or
p0 + ri,γ for i ∈ IM (ϕ, γ),
the formula ψ′2 specifies that for each γ ∈ Γ, if there are no classes in which modular
constraints for γ are required (this is specified by the condition yi = 0 for every i ∈
IM (ϕ, γ)), then the number of γ-positions is equal to the sum of ci,γ for i ∈ IE(ϕ, γ),
the formula ψ′3 says that for every γ ∈ Γ, the number of γ-positions, subtracting the
lower bound specified in ψ′1, should be equal to zero modulo p0.

CSL’12

536 Commutative Data Automata

Let y denote the tuple y1, . . . , ym in the following.
“If” part:

Suppose there is a data word w such that Proj(w) = v and w |=c ϕ, namely, for each class
X in w, Proj(w|X) |= ϕ.

For each i : 1 ≤ i ≤ m, let Di be the set of data values d occurring in w such that
idxϕ(d) = i. Note that (Di)1≤i≤m forms a partition of the set of all the data values occurring
in w. In addition, let ki = |Di| for each i : 1 ≤ i ≤ m. We also use k to denote the tuple
k1, . . . , km.

It is sufficient to verify that v |= ψ′[ȳ ← k] in order to show v |= ψ.
Let’s exemplify the argument by demonstrating that v |= ψ′2[y ← k].
Suppose ki = 0 for each i ∈ IM (ϕ, γ). Then Di = ∅ for each i ∈ IM (ϕ, γ). We want to

show that #γ(v) =
∑

i∈IE(ϕ,γ)
ci,γki.

For each data value d ∈ Di such that i 6∈ IM (ϕ, γ),
if i ∈ IE(ϕ, γ), i.e. ϕi,γ is equal to xγ = ci,γ and ci,γ > 0, then the letter γ occurs exactly
ci,γ times in the class of w corresponding to d;
if i 6∈ IE(ϕ, γ) ∪ IM (ϕ, γ), i.e. ϕi,γ is equal to xγ = ci,γ and ci,γ = 0, then the letter γ
does not occur in the class of w corresponding to d.

Since (Di)1≤i≤m is a partition of the set of all the data values occurring in w, it follows that
#γ(v) =

∑
i∈IE(ϕ,γ)

ci,γki. So v |= ψ′2[y ← k].

“Only if” part:
Suppose v |= ψ. Then there are numbers k = k1, . . . , km such that v |= ψ′[y ← k].
Let K = k1 + · · · + km. Define a function ξ : {1, . . . ,K} → {1, . . . ,m} such that

|ξ−1(i)| = ki for each i : 1 ≤ i ≤ m.
In the following, we assign the data values from {1, . . . ,K} to the positions in v to get a

data word w such that w |=c ϕ, namely, for each class X of w, Proj(w|X) |= ϕ.
From the fact that v |= ψ′1[y ← k], we know that for each γ ∈ Γ,

#γ(v) ≥
∑

i∈IE(ϕ,γ)

ci,γki +
∑

i∈IM (ϕ,γ)

(p0 + ri,γ)ki.

We assign the data values in {1, . . . ,K} to the positions in v through the following
two-step procedure.
Step 1 For every γ ∈ Γ and every i : 1 ≤ i ≤ m, assign the data values in ξ−1(i) to the

γ-positions in v such that each data value in ξ−1(i) is assigned to exactly (ci,γ) γ-positions
if i ∈ IE(ϕ, γ), and is assigned to exactly (p0 + ri,γ) γ-positions if i ∈ IM (ϕ, γ).

Step 2 For every γ ∈ Γ such that there is i ∈ IM (ϕ, γ) satisfying that ki > 0, select such an
index i and a data value from ξ−1(i), denoted by dγ , and assign dγ to all the γ-positions
which have not been assigned data values after Step 1.
Now all the positions of v have been assigned data values from {1, . . . ,K}, let w be the

resulting data word.
For every γ ∈ Γ, if there are still γ-positions that have not been assigned data values

after Step 1, then #γ(v) >
∑

i∈IE(ϕ,γ)
ci,γki +

∑
i∈IM (ϕ,γ)

(p0 + ri,γ)ki ≥
∑

i∈IE(ϕ,γ)
ci,γki. From

the fact that v |= ψ′2[y ← k], it follows that there is i ∈ IM (ϕ, γ) such that ki > 0. So a data
value dγ can be selected and assigned to all the pending γ-positions in Step 2.

It remains to show that w |=c ϕ. It is sufficient to prove that for every i : 1 ≤ i ≤ m

and every data value d ∈ ξ−1(i), Proj(w|X) |= ϕi, where X is the class of w corresponding
to d. Because Proj(w|X) = v|X and ϕi =

∧
γ∈Γ

ϕi,γ , it is equivalent to show that for every

Z. Wu 537

i : 1 ≤ i ≤ m, d ∈ ξ−1(i), and γ ∈ Γ, we have v|X |= ϕi,γ , where X is the class of w
corresponding to d.

Suppose i : 1 ≤ i ≤ m, d ∈ ξ−1(i), and γ ∈ Γ. Let X be the class of w corresponding to
d. In the following, we show that v|X |= ϕi,γ .

From the data value assignment procedure, we know that there are still
(
#γ(v) −∑

i∈IE(ϕ,γ)
ci,γki −

∑
i∈IM (ϕ,γ)

(p0 + ri,γ)ki
)
γ-positions which have not been assigned data values

after Step 1. Because v |= ψ′3[y ← k], it follows that #γ(v)−
∑

i∈IE(ϕ,γ)
ci,γki −

∑
i∈IM (ϕ,γ)

(p0 +

ri,γ)ki ≡ 0 mod p0. So there is tγ ∈ N such that #γ(v) −
∑

i∈IE(ϕ,γ)
ci,γki −

∑
i∈IM (ϕ,γ)

(p0 +

ri,γ)ki = tγp0.

We distinguish between the following three cases.
Case i ∈ IE(ϕ, γ). Then ϕi,γ is xγ = ci,γ and ci,γ > 0. From the data value assignment
procedure, we know that each data value in ξ−1(i), including d, has been assigned to exactly
(ci,γ) γ-positions. This implies that #γ(v|X) = ci,γ . So v|X |= ϕi,γ .
Case i ∈ IM (ϕ, γ). Then ϕi,γ is xγ ≥ p0 ∧xγ ≡ ri,γ mod p0. From the data value assignment
procedure, we know that the data value d is assigned to (p0 + ri,γ) γ-positions if d 6= dγ ,
and assigned to (p0 + ri,γ + tγp0) γ-positions otherwise. Therefore, #γ(v|X) = p0 + ri,γ or
p0 + ri,γ + tγp0. It follows that v|X |= ϕi,γ .
Case i 6∈ IE(ϕ, γ) ∪ IM (ϕ, γ). Then ϕi,γ is xγ = ci,γ and ci,γ = 0. From the data value
assignment procedure, we know that each data value in ξ−1(i), including d, has not been
assigned to any γ-position in v. Therefore, #γ(v|X) = 0 and v|X |= ϕi,γ . J

I Definition 14. Let ϕ =
∨

1≤i≤m
ϕi be a QFSP formula in the normal form over the variable

set VΓ with the normalization number p0 such that for each i : 1 ≤ i ≤ m, ϕi =
∧
γ∈Γ

ϕi,γ,

where ϕi,γ is xγ = ci,γ or xγ ≥ p0 ∧ xγ ≡ ri,γ mod p0 for 0 ≤ ci,γ , ri,γ < p0. Moreover, for
each i : 1 ≤ i ≤ m, let

hi =
∑

γ:i∈IE(ϕ,γ)

ci,γ +
∑

γ:i∈IM (ϕ,γ)

(p0 + ri,γ).

Let w be a data word over the alphabet Γ, then w is said to satisfy the class condition
ϕ with “many” data values if w |=c ϕ and for each i : 1 ≤ i ≤ m, either ki = 0 or
ki ≥ max (2p0 + 1, 2hi + 3), where ki is the number of data values d occurring in w such
that idxϕ(d) = i.

Let v ∈ Γ∗ and ψ = ∃y1 . . . ∃ymψ′ be the EP formula obtained from ϕ as in Lemma
13. Then v is said to satisfy ψ with “large” numbers if there are a tuple of numbers
k = k1, . . . , km such that v |= ψ′[y ← k] and for each i : 1 ≤ i ≤ m, either ki = 0 or
ki ≥ max (2p0 + 1, 2hi + 3).

I Lemma 15. Let ϕ =
∨

1≤i≤m

∧
γ∈Γ

ϕi,γ be a QFSP formula in the normal form with the

normalization number p0. Moreover, let ψ = ∃y1 . . . ∃ymψ′ be the EP formula obtained from
ϕ as stated in Lemma 13. Then for any v ∈ Γ∗, v |= ψ with large numbers iff there is a
locally different data word w such that Proj(w) = v and w |=c ϕ with many data values.

Proof. “If” part: Obvious.
“Only if” part:
Suppose v satisfies ψ with large numbers, i.e. there are numbers k = k1, . . . , km such

that v |= ψ′[y ← k] and for each i : 1 ≤ i ≤ m, either ki = 0 or ki ≥ max(2p0 + 1, 2hi + 3).

CSL’12

538 Commutative Data Automata

Let K = k1 + · · · + km. Define a function ξ : {1, . . . ,K} → {1, . . . ,m} such that
|ξ−1(i)| = ki for each i : 1 ≤ i ≤ m.

As in the proof of Lemma 13, we assign data values in {1, . . . ,K} to the positions of v to
get a desired data word w. The assignment procedure is divided into two steps, Step 1 and 2.
Step 1:

The same as Step 1 of the data value assignment procedure in the proof of the “Only
if” part of Lemma 13.
After Step 1, we get a partial data word where some positions still have no data values.

Let’s assign a special data value, say], to all those positions without data values, then we
get a data word w1 =

(
γ1
d1

)(
γ2
d2

)
. . .
(
γn
dn

)
.

In w1, there may exist positions j such that dj = dj+1 and dj , dj+1 6=]. Let’s call these
positions as conflicting positions of w1.

Claim. The data word w1 can be turned into a data word w′′1 such that w′′1 contains
no conflicting positions, w1 and w′′1 have the same set of data values (including]),
and for each γ ∈ Γ and each class X of w1, #γ(w1|X) = #γ(w′′1 |X).
Proof of the claim.
Let j be a conflicting position of w1, a = γj , and i : 1 ≤ i ≤ m such that dj ∈ ξ−1(i).
From Step 1, we know that dj occurs exactly hi =

∑
γ:i∈IE(ϕ,γ)

ci,γ +
∑

γ:i∈IM (γ)
(p0 + ri,γ)

times in w1. It follows that there are at most 2hi positions adjacent to a position
with the data value dj . On the other hand, we have that ki ≥ max(2p0 + 1, 2hi + 3)
and for each data value in d ∈ ξ−1(i), there is at least one occurrence of a with
the data value d. It follows that there are (at least) three positions j′1, j′2, j′3 such
that dj′

1
, dj′

2
, dj′

3
∈ ξ−1(i), dj′

1
, dj′

2
, dj′

3
are pairwise distinct, γj′

1
= γj′

2
= γj′

3
= a,

and dj′
1−1, dj′

2−1, dj′
3−1, dj′

1+1, dj′
2+1, dj′

3+1 6= dj . From this, we deduce that there is
a position j′ such that γj′ = a, dj′ ∈ ξ−1(i), dj′ 6= dj−1, dj , and dj 6= dj′−1, dj′+1.
Because dj′ 6= dj−1, dj+1 (dj+1 = dj since j is conflicting) and dj 6= dj′−1, dj′+1, we
can swap the data value dj in the position j and the data value dj′ in the position j′
to make the two positions j and j′ non-conflicting. Let w′1 be the data word after the
swapping. It follows that w′1 has less conflicting positions than w1.
Continue like this, we finally get a data word w′′1 without conflicting positions. J

Now we return to the proof of the lemma.
From the claim, we know that a data word w′′1 containing no conflicting positions can

be obtained from w1. But w′′1 may still contain the special data value]. If this is the case,
then from the description of Step 1, we know that there exists at least one γ ∈ Γ such that
#γ(v) >

∑
i∈IE(ϕ,γ)

ci,γki +
∑

i∈IM (γ)
(p0 + ri,γ)ki.

Let γ ∈ Γ such that #γ(v) >
∑

i∈IE(ϕ,γ)
ci,γki +

∑
i∈IM (γ)

(p0 + ri,γ)ki.

From v |= ψ′3[y ← k], it follows that #γ(v) −
∑

i∈IE(ϕ,γ)
ci,γki −

∑
i∈IM (γ)

(p0 + ri,γ)ki ≡

0 mod p0. So there is tγ ≥ 1 such that #γ(v)−
∑

i∈IE(ϕ,γ)
ci,γki −

∑
i∈IM (γ)

(p0 + ri,γ)ki = tγp0.

Therefore, there are (tγp0) γ-positions in w1 of the data value]. Because w1 and w′′1 have
the same set of positions of the data value], it follows that there are also (tγp0) γ-positions
in w′′1 of the data value]. Let jγ,1 < · · · < jγ,tγp0 be a list of all such γ-positions in w′′1 .

On the other hand, because v |= ψ′2[y ← k] and #γ(v) >
∑

i∈IE(ϕ,γ)
ci,γki, it follows that

there is i ∈ IM (ϕ, γ) such that ki > 0. Let iγ be such an index i. Then from the assumption
that v satisfies ψ with large numbers, we know that kiγ ≥ max(2p0 + 1, 2hiγ + 3).

Z. Wu 539

Step 2:

For each γ ∈ Γ such that #γ(v) >
∑

i∈IE(ϕ,γ)
ci,γki +

∑
i∈IM (γ)

(p0 + ri,γ)ki, assign the

data values from {1, . . . ,K} to the γ-positions with the data value] in w′′1 as follows.
We distinguish between the following two cases.

Case tγ ≥ 2.
Initially set s := 1. Repeat following procedure until s > tγ .

Let J = {jγ,s, jγ,tγ+s, . . . , jγ,tγ(p0−1)+s} and J ′ be the set of all positions
adjacent to a position in J . In addition, let D be the set of data values
(except]) occurring in the positions belonging to J ′. Because |J | = p0, we
have |D| ≤ 2p0. On the other hand, kiγ ≥ 2p0 + 1, it follows that there is
d ∈ ξ−1(iγ) \D.
Assign the data value d to every position in J . Then we still get a non-
conflicting data word, since all the positions in J are not adjacent to each
other.
Set s := s+ 1.

Case tγ = 1.
Let J = {jγ,1, jγ,2, . . . , jγ,p0} and J ′ be the set of all positions adjacent to a position
in J . In addition, let D be the set of data values (except]) occurring in the
positions belonging to J ′. Because |J | = p0, we have |D| ≤ 2p0. On the other hand,
kiγ ≥ 2p0 + 1, it follows that there is d ∈ ξ−1(iγ) \D.
Because iγ ∈ IM (ϕ, γ), each data value in ξ−1(iγ) has been assigned to exactly
(p0 + riγ ,γ) γ-positions in Step 1. During Step 1, we can do the assignments in a
way so that all the positions in J , i.e. the p0 γ-positions without data value, are
not adjacent to each other. Therefore, we can assign the data value d to every
position in J and still get a non-conflicting data word.

Let w be the resulting data word after the two steps of data value assignments. Then w
is locally different. Similar to the proof of the “Only if” part of Lemma 13, we can show
that for each i : 1 ≤ i ≤ m and each data value d ∈ ξ−1(i), Proj(w|X) |=c ϕi, where X is the
class of w corresponding to d. From this, it follows that for each i : 1 ≤ i ≤ m, the number
of data values in w such that i ∈ idxϕ(d) is equal to ki. Since for each i : 1 ≤ i ≤ m, either
ki = 0 or ki ≥ max(2p0 + 1, 2hi + 3), we conclude that w |=c ϕ with many data values. J

4.2 Algorithm for NONEMPTINESS-LOCALLY-DIFFERENT
We first give an algorithm for the following problem.

PROBLEM: NONEMPTINESS-LOCALLY-DIFFERENT-MANY
INPUT: A finite automaton A = (Q,Γ, δ, q0, F) and a QFSP

formula ϕ over VΓ in the normal form
QUESTION: is there a locally different data word w over the alphabet

Γ such that Proj(w) is accepted by A and w |=c ϕ with
many data values?

From Lemma 15, it follows that NONEMPTINESS-LOCALLY-DIFFERENT-MANY can
be solved by the following algorithm.

Suppose the normalization number of ϕ is p0 and ϕ =
∨

i:1≤i≤m

∧
γ∈Γ

ϕi,γ such that

each ϕi,γ is either xγ = ci,γ or xγ ≥ p0 ∧ xγ ≡ ri,γ mod p0 for some ci,γ , ri,γ : 0 ≤
ci,γ , ri,γ < p0. Let ψ = ∃y1 . . . ∃ymψ′ be the existential Presburger formula obtained

CSL’12

540 Commutative Data Automata

from ϕ as stated in Lemma 13. For every i : 1 ≤ i ≤ m, let hi =
∑

γ:i∈IE(ϕ,γ)
ci,γ +∑

γ:i∈IM (ϕ,γ)
(p0 + ri,γ).

1. Construct the following EP formula ψg,

ψg := ∃y1 . . . ∃ym

ψ′ ∧ ∧
1≤i≤m

(yi = 0 ∨ (yi ≥ 2p0 + 1 ∧ yi ≥ 2hi + 3))

 .

2. Decide the nonemptiness of the Presburger automaton (A , ψg).

Now we consider the problem of NONEMPTINESS-LOCALLY-DIFFERENT.
For a data word w ∈ (Γ×D)∗, if w |=c ϕ, then for each i : 1 ≤ i ≤ m, let ki be the number

of data values d occurring in w such that idxϕ(d) = i. For each i : 1 ≤ i ≤ m such that
ki < max(2p0 + 1, 2hi + 3), if we take the ki data values d such that idxϕ(d) = i as constants,
then the problem of NONEMPTINESS-LOCALLY-DIFFERENT can be solved similar to
the problem of NONEMPTINESS-LOCALLY-DIFFERENT-MANY. More specifically, the
algorithm goes as follows.

1. Guess a set J ⊆ {1, . . . ,m} and sets of constants Dj’s.
a) Guess a set J ⊆ {1, . . . ,m}.
b) For each j ∈ J , guess an integer sj < max(2p0 + 1, 2hi + 3).
c) For each j ∈ J , fix a set Dj = {αj1, . . . , αjsj} of constants such that Dj’s are

mutually disjoint and Dj ∩ D = ∅. Let DJ = ∪j∈JDj.
2. Construct an automaton A ′ over the alphabet Γ ∪ Γ×DJ from (A , ϕ) such that

A ′ accepts a word v = λ1 . . . λn ∈ (Γ ∪ Γ×DJ)∗ iff the following conditions hold.
A symbol (γ, d) appears in v iff there exists j ∈ J such that j ∈ IE(ϕ, γ)∪IM (ϕ, γ)
and d ∈ Dj.
Let u = γ1 . . . γn ∈ Γ∗ such that

γi =
{
λi if λi ∈ Γ,
γ if λi = (γ, d) ∈ Γ×DJ .

Then u is accepted by A .
For any i : 1 ≤ i < n, if λi = (γ, d) and λi+1 = (γ′, d′), then d 6= d′.
For any j ∈ J and any γ ∈ Γ, the following holds: If j ∈ IE(ϕ, γ), then for each
d ∈ Dj, the letter (γ, d) occurs exactly cj,γ times in v. If j ∈ IM (ϕ, γ), then for
each d ∈ Dj, the number of occurrences of the letter (γ, d) is at least p0 and
equal to ri,γ modulo p0.

3. Construct the following EP formula ψg,J ,

ψg,J = ∃y1 . . . ∃ym

ψ′ ∧∧
i∈J

yi = 0 ∧
∧
i 6∈J

(yi ≥ 2p0 + 1 ∧ yi ≥ 2hi + 3)

 .

Note that ψg,J is an EP formula with free variables from VΓ, and contains no
variables x(γ,d) with (γ, d) ∈ Γ×DJ .

4. Decide the nonemptiness of the Presburger automaton (A ′, ψg,J).

The proof of the correctness of the above algorithm for NONEMPTINESS-LOCALLY-
DIFFERENT follows the same line as the proof for SAT-LOCALLY-DIFFERENT in [5].

Z. Wu 541

5 Commutative Büchi data automata
In this section, we consider data automata with commutative class conditions over data
ω-words.

Let Nω = N∪{ω} with the linear order (<) and the addition (+) operation of N extended
in a natural way, i.e. n < ω for any n ∈ N, and ω + n = ω for any n ∈ Nω.

The definition of the Parikh images of finite words can be easily extended to ω-words:
Given an ω-word v over an alphabet Γ = {γ1, . . . , γl}, Parikh(v) = (#γ1(v), . . . ,#γl(v)),
where for each i : 1 ≤ i ≤ l, #γi(v) is still the number of occurrences of γi in v, in particular,
if γi occurs infinitely many times in v, then #γi(v) = ω.

Similar to QFSP formulas, we define ω-QFSP formulas over a variable set X as follows.
The syntax of ω-QFSP formulas is the same as QFSP formulas, except that the atomic

formulas can also be of the form x = ω (where x ∈ X).
The ω-QFSP formulas are interpreted on Nω: Let π : X → Nω, then the atomic ω-QFSP

formulas are interpreted as follows,

π |= x1 + · · ·+ xn op c if π(x1) + · · ·+ π(xn) op c, where op ∈ {≤,≥,=},
π |= x1 + · · ·+xn ≡ r mod p if π(x1)+ · · ·+π(xn) < ω and π(x1)+ · · ·+π(xn) ≡ r mod p,
π |= x = ω if π(x) = ω.

In addition, the Boolean operators are interpreted in a standard way.
Similar to Proposition 3, there is a normal form for ω-QFSP formulas.

I Proposition 16. Let ϕ(x1, . . . , xk) be a ω-QFSP formula. Then there exists an exponential-
time algorithm to transform ϕ into a ω-QFSP formula

∨
i:1≤i≤m

ϕi of size 2O(k|ϕ|) such that

there is p0 : 2 ≤ p0 ≤ 2|ϕ| satisfying that
each ϕi is of the form

∧
1≤j≤k

ϕi,j;

for each j : 1 ≤ j ≤ k, ϕi,j is equal to xj = ci,j or xj ≥ p0 ∧ xj ≡ ri,j mod p0, or xj = ω

for ci,j , rij : 0 ≤ ci,j , ri,j < p0;
in addition, those ϕi’s are mutually exclusive.

Let w be a data ω-word over an alphabet Γ and ϕ be a ω-QFSP formula over the variable
set VΓ, then the definition of w |=c ϕ, i.e. w satisfies the class condition ϕ, is a natural
extension of that for data words.

A commutative Büchi data automaton (CBDA) is a binary tuple (A , ϕ), where A =
(Q,Σ× {⊥,>},Γ, δ, q0, F) is a Büchi letter-to-letter transducer and ϕ is a ω-QFSP formula
over the variable set VΓ.

A CBDA (A , ϕ) accepts a data ω-word w =
(
σ1
d1

)(
σ2
d2

)
. . . if there is an accepting

run of A over Profile(w) which produces an ω-word γ1γ2 . . . such that the data ω-word
w′ =

(
γ1
d1

)(
γ2
d2

)
. satisfies that w′ |=c ϕ.

Similar to the logic EMSO2
#(+1,∼,Σ) in Section 3, we define the logic E∞MSO2

#(+1,∼
,Σ) as follows: It includes all the formulas ∃∞R1 . . . ∃∞Rk∃S1 . . . ∃Sl(ϕ ∧ ∀xψ), where
ϕ ∈ FO2(+1,∼,Σ, R1, . . . , Rk, S1, . . . , Sl) and ψ is the same as the ψ in EMSO2

#(+1,∼,Σ)
formulas, except that the atomic formulas in ψ can be also of the form #x∼y∧τ(y)(y) = ω.

The semantics of E∞MSO2(+1,∼,Σ) formulas are defined similar to EMSO2
#(+1,∼,Σ)

formulas, except that the unary relation symbols R1, . . . , Rk are restricted to bind to infinite
sets and #x∼y∧τ(y)(y) = ω are interpreted as the fact that the symbol τ appears infinitely
many times in the class that contains the position x.

Similar to CDA, we also have the following logical characterization of CBDA.

I Theorem 17. E∞MSO2
#(+1,∼,Σ) and CBDA are expressively equivalent.

CSL’12

542 Commutative Data Automata

The proof of Theorem 17 is similar to that for WBDA in [12].

I Theorem 18. The nonemptiness of CBDA can be decided in 4-NEXPTIME.

The proof of Theorem 18 is by a nondeterminstic exponential time reduction to the
nonemptiness of CDA on data words.

Acknowledgements. The author thanks Anca Muscholl for the comments and suggestions
on this work. The author also thanks anonymous referees for their valuable comments and
suggestions to improve the quality of this paper.

References
1 M. Bojańczyk, C. David, A. Muscholl, T. Schwentick, and L. Segoufin. Two-variable logic

on data words. ACM Trans. Comput. Logic, 12(4):27:1–27:26, 2011.
2 M. Bojanczyk and S. Lasota. An extension of data automata that captures xpath. Logic.

Method. in Comput. Sci., 8(1), 2012.
3 M. Bojańczyk, A. Muscholl, T. Schwentick, and L. Segoufin. Two-variable logic on data

trees and XML reasoning. J. ACM, 56(3):1–48, 2009.
4 M Chrobak. Finite automata and unary languages. Theor. Comput. Sci., 47(2):149–158,

1986.
5 C. David, L. Libkin, and T. Tan. On the satisfiability of two-variable logic over data words.

In LPAR’10, pages 248–262, 2010.
6 S. Demri and R. Lazić. LTL with the freeze quantifier and register automata. ACM Trans.

Comput. Logic, 10(3):16:1–16:30, 2009.
7 A. Ehrenfeucht and G. Rozenberg. Commutative linear languages. Technical Report CU-

CS-209-81, Department of Computer Science, University of Colorado, 1981.
8 D. Figueira. Alternating register automata on finite data words and trees. Logic. Method.

in Comput. Sci., 8(1), 2012.
9 D. Figueira. Satisfiability of downward XPath with data equality tests. In PODS, pages

197–206, 2009.
10 A. C. Gómez and G. I. Alvarez. Learning commutative regular languages. In ICGI, pages

71–83, 2008.
11 M. Kaminski and N. Francez. Finite-memory automata. Theor. Comput. Sci., 134(2):329–

363, November 1994.
12 A. Kara, T. Schwentick, and T. Tan. Feasible automata for two-variable logic with suc-

cessor on data words. In LATA, pages 351–362, 2012. A long version can be found at
http://arxiv.org/abs/1110.1221.

13 A. Manuel and R. Ramanujam. Class counting automata on datawords. Int. J. Found.
Comput. Sci., 22(4):863–882, 2011.

14 F. Neven, T. Schwentick, and V. Vianu. Finite state machines for strings over infinite
alphabets. ACM Trans. Comput. Logic, 5(3):403–435, 2004.

15 J. E. Pin. Varieties of formal languages. Plenum Publishers, 1986.
16 L. Segoufin. Automata and logics for words and trees over an infinite alphabet. In CSL,

LNCS 4207, pages 41–57, 2006.
17 H. Seidl, T. Schwentick, and A. Muscholl. Counting in trees. In Logic and Automata:

History and Perspectives [in Honor of Wolfgang Thomas], pages 575–612, 2008.
18 A. W. To. Unary finite automata vs. arithmetic progressions. Inf. Process. Lett.,

109(17):1010–1014, 2009.
19 Z. Wu. A decidable extension of data automata. In GandALF, pages 116–130, 2011.

	p000-frontmatter
	Editors's Preface
	Conference Organization
	External Reviewers

	p001-coquand
	p006-abiteboul
	Overview

	p009-cook
	Overview

	p012-lynce
	Overview

	p014-makowsky
	Overview

	p016-altenkirch
	Introduction
	Globular Sets
	Syntax
	The syntactical framework
	Interpretation

	Structure
	Composition
	Telescopes
	Back to composition

	Units

	Laws
	Formalising left units
	Formalising all coherence cells
	Right units, associativity and interchange

	Coherence
	The need of more coherence
	Formalising coherence cells between coherence cells
	The problem with coherence

	Conclusions and Further Work
	Summary
	Related work
	Further work

	p031-aschieri
	Introduction
	The Term Calculus TClass
	Updates
	The System T
	The System TClass

	An Interactive Learning-Based Notion of Realizability for HA + EM + SK
	Language of HA + EM + SK
	Truth Value of a Formula in a State
	Interactive Realizability
	Realizability of Classical Axioms
	Curry-Howard Correspondence for HA + EM + SK

	Witness Extraction with Interactive Realizability

	p046-atkey
	Introduction
	Background
	Contributions of this Paper

	Type Polymorphism with Higher Kinds
	A Relationally Parametric Model
	Setting up the Metatheory
	Types, Relations and Identity Extension
	Kinds as Reflexive Graphs
	Interpretation of Kinds
	Interpretation of Types
	Semantics of Terms

	Applications of Higher Kinded Parametricity
	Equality Types
	Existential Types
	Categories of Indexed Types
	Functors and Initial Algebras
	Generalised Algebraic Data Types

	Extension of System F with Additional Kinds
	Conclusions

	p062-baillot
	Introduction
	Simply-Typed Term Rewriting Systems
	Definitions and Notations
	STTRSs: Dynamics
	Typed -calculi as STTRSs

	Higher-Order Polynomial Interpretations
	Higher-Order Polynomials
	Semantic Interpretation
	Assignments and Polynomial Interpretations
	A Complexity Criterion
	Examples

	Beyond Interpretations: Quasi-Interpretations
	The Termination Criterion
	Higher-Order Max-Polynomials
	Higher-Order Quasi-Interpretations
	Examples

	Discussion and Relation with Other ICC Systems
	Conclusions

	p077-berardi
	Introduction
	Solving problems by learning
	States of knowledge and their topology
	Relative truth and layered states
	Interactive Realizability
	Concluding remarks and further work

	p092-bertrand
	Introduction
	Preliminaries
	Markov chains
	PCTL

	Setting and problem statement
	Reduction to an SMT problem
	The model
	The formula

	Implementation and results
	Implementation
	The lossy channel example
	A lossy channel with bugs

	Conclusion

	p107-birkedal
	Introduction
	Language and Typing
	Definition of the logical relation
	Applications
	Parallelization Theorem: Disjoint Concurrency
	Non-disjoint Concurrency

	Discussion
	Conclusion and Future Work

	p122-bodirsky
	Introduction
	Motivation and Applications
	Composing Classification Results
	Fragments of Allen's Interval Algebra

	Techniques and Outline

	Tools…
	…from Model Theory
	…from Universal Algebra
	…from Ramsey Theory

	Equivalence Constraint Satisfaction Problems
	Endomorphisms
	Hardness
	Tractability
	Generating min(N,E,=)
	Conclusions and Future Work

	p137-brault-baron
	Introduction
	Preliminaries and Results
	Preliminaries
	Acyclicity Notions
	Statement of the Results

	Davis-Putnam Resolution with respect to a Nest Point
	Definition and Properties
	Algorithm and Complexity

	Easiness Result
	NCQ on the Boolean Domain
	Easiness Result for SCQ on the Boolean Domain
	Final Easiness Result

	Hardness Result
	A Technical Point
	Hardness Result

	p152-carraro
	Introduction
	Preliminaries
	Partial Orderings
	Lambda calculus
	Models of -calculus
	The Jacopini–Kuper technique

	On a question by Honsell and Plotkin
	The -theory
	The -theory

	Jacopini–Kuper technique for
	The main theorem

	On the order-incompleteness of -calculus
	Subtractivity and orderings

	p167-chatterjee
	Introduction
	Definitions
	Fair Alternating Simulation
	Alternating Simulation
	Improved Algorithm Through Games
	Iterative Algorithm

	Conclusion

	p183-chaudhuri
	Introduction
	Related Work
	Denotational Semantics of Classical Proofs
	Cut-Free Formalisms

	Background: Sequent Calculus, Focusing, and Canonicity
	Sequent Calculus
	Focused Sequent Calculus
	Canonicity

	Expansion Trees
	Expansions from Proofs
	Sequentialization

	Equivalence
	Conclusion

	p198-chrzaszcz
	Introduction
	ML-like system MLSTA
	Gentle introduction to MLSTA
	Properties of MLSTA
	MLSTA and PTIME
	Decidability of typechecking with ML polymorphism
	Conclusions and Further Work

	p213-dawar
	Introduction
	Background on logic and algebra
	Logic and structures
	Rings and systems of linear equations

	Solvability problems over different algebraic domains
	The structure of finite commutative rings
	Solvability problems under logical reductions
	Closure under first-order operations
	Solvability over rings of prime characteristic

	Discussion

	p228-deyoung
	Introduction
	Linear logic as asynchronous session-typed communication
	Judgmental principles
	Implication as input
	Multiplicative conjunction as output
	Multiplicative unit as termination
	Additive conjunction and disjunction as choice
	Exponential as persistent service
	Judgmental principles
	Right and left rules

	Relationship between synchronous and asynchronous process interpretations
	A synchronous, polyadic process interpretation
	Commuting conversions as process equivalences

	Correspondence with an asynchronous buffered session semantics
	A pi-calculus with explicit two-sided FIFO buffers
	Typing and well-typed reductions for buffered processes

	Related Work
	Conclusion

	p243-duedder
	Introduction
	Preliminaries
	Bounded combinatory logic
	Simple types, bclk()
	Lower bound for intersection types

	p259-erhard
	Introduction
	Categorical semantics of LL in a nutshell
	Structural natural transformations
	Weak differential LL models
	The Taylor formula

	The extensional collapse
	The relational model of LL
	The Scott model of LL
	The collapsing model of LL

	The cbv -calculus
	Linear-logic based models
	A relational model and the associated type system
	Non-idempotent intersection types
	A CBV resource calculus
	 Notation.
	 Syntax.
	 Reduction rules.

	Categorical denotational semantics
	Adequacy in Rel

	A Scott model and the associated type system
	Idempotent intersection types
	Adequacy in the idempotent case
	Adequacy in the idempotent case, using preorders with projections

	p274-grandjean
	Introduction
	Preliminaries
	Pictures as model theoretic structures
	Logics under consideration

	A logical characterization of recognizable picture languages
	A logical characterization of NLINca

	p289-grohe
	Introduction
	Finite variable logics and pebble games
	Basic combinatorics and linear algebra
	Decomposition into irreducible blocks
	Eigenvalues and -vectors
	Stable partitions

	Fractional isomorphism
	C2-equivalence and linear equations
	L2-equivalence and boolean linear equations

	Relaxations in the style of Sherali–Adams
	Boolean arithmetic and Lk-equivalence

	The gap

	p305-graedel
	Introduction
	Finite variable logics and pebble games
	Basic combinatorics and linear algebra
	Decomposition into irreducible blocks
	Eigenvalues and -vectors
	Stable partitions

	Fractional isomorphism
	C2-equivalence and linear equations
	L2-equivalence and boolean linear equations

	Relaxations in the style of Sherali–Adams
	Boolean arithmetic and Lk-equivalence

	The gap

	p320-hetzl
	Introduction
	Sequent Calculus and Cut-Elimination
	Regular and Rigid Tree Grammars
	Proofs as Grammars
	Invariance under Duplication
	Herbrand-Confluence
	Conclusion

	p335-hida
	Introduction
	Notations and Definitions
	Infinite Games
	Systems of Arithmetic

	Gale-Stewart's Theorem in Classical Arithmetic
	Realizability Interpretation
	A Realizer of the Negative Translation of AD
	How Does the Realizer Behave?
	Future Work
	The Realizer of the Negative Translation of Open Determinacy

	p350-jouannaud
	Introduction
	Normal rewriting
	Abstract positional rewriting
	Abstract terms and positions
	Relations
	Rewriting modulo
	Normal rewriting

	Church-Rosser properties of NARS

	First-order rewriting systems
	Terms and rules.
	Plain rewriting knuth70
	Rewriting modulo peterson81,jou:hkir:86:1
	Normal rewriting
	Example

	Higher-order rewriting systems
	Higher-order rewriting at simple types
	 as an expansion nip:91:1,may:nip:98:1
	 as a reduction:

	Higher-order rewriting at higher types
	Adding algebraic equations in E

	Conclusion

	p366-kaiser
	Introduction
	Counting -Calculus on Structure Transition Systems
	Model Checking Games and Decomposition
	Model-Checking Games
	#MSO Decomposition on Trees

	 Q[#MSO] on Tree-Producing Pushdown Systems
	Eliminating pop from Pushdown QPGs
	#MSO Evaluation Using Counters
	Guessing Types of Subtrees
	Proof of Theorem 11

	Conclusion

	p381-keller
	Introduction
	CICr: a refined calculus of constructions with universes
	The need for a refinement
	Presentation of the calculus

	Inductive types
	Inductive types and fixpoints
	Embedding CICr into CIC and coherence

	Relational parametricity
	Parametricity for the calculus without inductive types
	Why does not it work directly in CIC?
	Adding inductive types
	Overcoming the restriction over large elimination

	Examples of ``free theorems''
	The type of Church numerals
	The tree monad
	Parametricity and algebra
	Classical axioms
	Proof irrelevance
	Independence of the law of excluded middle

	Towards a Coq implementation
	Related works and discussion
	Conclusion

	p396-kieronski
	Introduction
	Preliminaries
	Conventions
	Atomic types
	Small cliques
	Saturations

	An infinity axiom
	A finite model property for formulas with two constants
	Lower bound for formulas with four constants
	A construction involving nine constants
	Four constants suffice

	Decidability of formulas with an unbounded number of constants
	Clique types
	Zones
	Making zones regular
	Decidability procedure

	NExpTime-upper bound for formulas with three constants
	Related undecidability results
	Conclusions

	p411-kotek
	Introduction
	Connection Matrices for Regular Languages
	Connection Matrices for Properties: The Framework
	Merits and Limitations of Connection Matrices
	Proving Non-definability of Properties
	L-Definable Graph Polynomials and Graph Parameters
	Non-definability of L(tau)-invariants
	Numeric L(tau)-parameters
	tau-polynomials

	p426-kufleitner
	Introduction
	Preliminaries
	Rankers
	First-order Logic
	Algebra
	The variety approach to the decidability of FO2m[<]

	The FO2 alternation hierarchy is decidable
	A collection of technical lemmas
	Proof of Proposition 9

	Conclusion

	p440-kuroda
	Introduction
	Preliminaries
	Two-sort complexity classes
	Two-sort theories

	A theory for LOGDCFL
	A theory for LOGCFL
	Finite axiomatizability
	Provability of the pumping lemma for CFLs
	Concluding Remarks

	p455-kuske
	Introduction
	Preliminaries
	Tree and word automatic structures
	Linear orders

	Automorphisms of linear orders on word languages
	Regular universe and lex
	Regular universe and lex2
	Context-free universe and lex

	Isomorphisms and automorphisms of linear orders on tree languages
	Weighted automata and Minsky machines
	Isomorphism
	Automorphisms

	Open questions

	p470-kuusisto
	Introduction
	Preliminaries
	Interpretations
	Logics and structures
	Geometric affine betweenness structures
	Tilings

	Expressivity of universal MSO and weak universal MSO over affine real structures (Rn,)
	Undecidable theories of geometric structures with an affine betweenness relation
	Lines and sequences
	Geometric structures (T,) with an undecidable monadic 11-theory

	Geometric structures (T,) with an undecidable weak monadic 11-theory
	Conclusions

	p485-leitsch
	Introduction
	CERes in LK
	Characteristic clause set
	Resolution refutation
	Projections

	CERes in LJ
	Example

	On the possibility of extending iCERes to a larger class of proofs
	Conclusions and future work

	p500-parys
	Introduction
	Preliminaries
	The hierarchy is infinite
	Types of stacks
	The algorithm

	Computing the types
	Reconstructing a run
	Bound on the run length

	Conclusions

	p516-rabinovich
	Introduction
	Preliminaries
	First-Order Monadic Logic of Order
	TL(Until,Since) Temporal Logic
	Kamp's Theorem

	 formulas
	Proof of Kamp's theorem
	Proof of Proposition 4.2
	Related Works

	p528-wu
	Introduction
	Preliminaries
	Presburger formulas and Commutative regular languages
	Data words, two-variable logic and data automata

	Expressiveness
	The nonemptiness problem of CDA
	Two lemmas
	Algorithm for NONEMPTINESS-LOCALLY-DIFFERENT

	Commutative Büchi data automata

