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Abstract
This article first reminds of simulation unification, a non-standard unification proposed at the
18th International Conference on Logic Programming (ICLP 2002) for making logic programming
capable of querying semistructured data on the Web. This article further argues that, beyond
querying semistructured data on the Web, simulation unification has a potential for Web querying
of multimedia data and semantic metadata and for Web searching of data of all kinds.
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1 Introduction

This article is devoted to simulation unification, a non-standard unification which has been
introduced in 2002 at the 18th International Conference on Logic Programming (ICLP 2002)
with the article titled “Towards a Declarative Query and Transformation Language for XML
and Semistructured Data: Simulation Unification” [15] and the long version [16] of that
article. Simulation unification has been specified in more detail two years later, in 2004, in
the doctoral thesis “Xcerpt: A Rule-Based Query and Transformation Language for the Web”
[30] of Sebastian Schaffert.

This article recalls simulation unification and argues that it has a so far unexploited
potential for Web querying of multimedia and semantic data as well as for Web searching of
data of all kinds.

This article is structured as follows. After this introduction, Section 2 describes the
context in which and why we developed simulation unification. Section 3 is a brief, and
simplified, reminder of simulation unification. Section 4 is devoted to works related to
simulation unification. Section 5 discusses how simulation unification could be applied to
querying multimedia and semantic data and to searching. Section 6 is a conclusion.

2 What Led to Simulation Unification

At the beginning of the 90es of the 20th century, as the Web became a common medium,
many computer scientists first did not fully realised what impact the Web would have on their
areas of research. This was the case amongst others of the query answering community. At
the end of the 90es, that community hastily investigated Web query languages, what resulted
in XQuery [10], a “recommendation” of the W3C, so as to keep an hold on data access.
This community celebrated XQuery amongst others for its roots in functional programming,
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2 Simulation Unification: Beyond Querying Semistructured Data

and promoted it as a worthy descendant of SQL [20], the query language which had greatly
contributed to the success of relational databases.

We took the enthusiasm for XQuery with a skepticism rooted at a logic programming
practice. We found that XQuery was difficult to program with; we thought it would often
yield inelegant and therefore costly to maintain programms and we guessed that it would
require complicated runtime systems. Since, these intuitions have been amply confirmed and
XQuery is no longer the subject of much enthusiasm.

The study reported about in [28] had hinted at the potential of logic programming for
querying semistructured data. That article shows that restricting XPath [21], the data
selection sub-language of XQuery, to its forwards axes, that is, to so-called Forward XPath,
does not restrict the data selection language’s expressivity. Since a Forward XPath expression
basically amounts to a logic atom, a link between logic programming an Web querying was
established. The afore mentioned article [28] has received some attention because it makes
it possible to restrict formal investigations on XPath to XPath Forward what gives rise to
significant simplifications. Surprisingly, that the restriction to XPath Forward also, and for
the same reasons, gives rise to simpler queries and therefore eases both, programming and
query evaluation, has been rarely noticed.

Pattern-based queries for Web data had been proposed with the Web query languages
UnQL [19] and XML-QL [22] what suggested a full unification binding variables in the two
terms considered instead of a pattern matching binding variables in only in the pattern.

These two observations led us to simulation unification, a technique that makes logic
programming as convenient for querying semistructured data as for querying relational data.

Since, search engines, other tools the importance of which has not been immediately
understood within the query answering community, have considerably reduced the need for
Web query languages. Indeed, data are no longer only queried for but also, and mostly,
search for. In this article, we arge that, beyond querying semistructured data, simulation
unification also has a potential for both, Web querying of multimedia and semantic data and
Web searching of data of all kinds.

3 What is Simulation Unification?

Given two terms t1 and t2 simulation unification [15, 16, 30] determines, if possible, a most
general unifier σ for the variables in t1 and t2 such that every ground instances of t1σ
simulates in a ground instance of t2σ.

Simulation unification is based on an adaption of graph simulation to terms aimed at
representing, selecting (or querying) and constructing XML data. Simulation unification’s
principles are relatively simple. The syntactical richness necessary for an easy expression of
data selections and construction makes it, however, complicated.

In the remainder of the current section 3, rooted graph simulation is introduced in Section
3.1, database terms, query terms and construct terms in Section 3.2, term simulation and
answers to query terms in Section 3.3 and simulation unification in Section 3.4.

3.1 Rooted Graph Simulation
Simulation, also called graph simulation, has been studied in [26, 27]. A term t1 (seen as a
graph G1) simulates in a term t2 (seen as a graph G2) if there is a mapping of the nodes
of G1 (that is of the subterms of t1) in the nodes of G2 (that is, the subterms of t2) which
preserves the edges (that is, subterm nesting). Simulation is similar to, though more general
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Figure 1 Two simulations (with respect to node label equality) [15].

than, graph homomorphism because it allows two nodes of the one graph being mapped to a
single node of the other graph and vice versa.

In general, there might be more than one simulation between two graphs. Therefore,
so-called minimal simulations are considered.

Figure 1 from [15] gives two examples of simulations. In each of these two examples a
node of the left graph is mapped into a node of the right graph if their labels are identical.
Such simulations are simulations with respect to label identity. More generally, a simulation
can be defined with respect to any preorder relation (amongst other order and equivalence
relations). In Section 5, we argue that considering other relations than label equality makes
simulation unification convenient for querying multimedia and semantic data on the Web as
well as for searching for data of all kinds on the Web.

The following definition from [30] which refines that of [15] is inspired from [26, 27]. A
(directed) rooted graph G = (V,E, r) consists in a set V of vertices (or nodes), a set E of
edges (that is, ordered pairs of vertices), and a selected vertex r, called the root of G, from
which each vertex of G is accessible.

I Definition 1 (Rooted graph simulation with respect to a preorder relation ∼ [30]). Let
G1 = (V1, E1, r1) and G2 = (V2, E2, r2) be rooted graphs and ∼ ⊆ V1×V2 a preorder relation.
A relation S ⊆ V1 × V2 is a rooted simulation of G1 in G2 with respect to ∼ if:
1. r1 S r2.
2. If v1 S v2, then v1 ∼ v2.
3. If v1 S v2 and (v1, v

′
1, i) ∈ E1, then there exists v′2 ∈ V2 such that v′1 S v′2 and (v2, v

′
2, j) ∈

E2

A rooted simulation S of G1 in G2 with respect to ∼ is minimal if there are no rooted
simulations S ′ of G1 in G2 with respect to ∼ such that S ′ ⊂ S (and S 6= S′).

Graph simulation conveys well how the Web is queried. Web queries are mostly incomplete
specifications of data striven for that are convenientely answered by data items containing
more than the query specifies and allowing that distinct parts of the query are answered by
the same data. The relevance of graph simulation for Web querying has been first pointed
out in [19, 22].

3.2 Database Terms, Query Terms and Construct Terms

3.2.1 Database terms

Database terms are an abstraction of XML documents and a generalisation of the ground
terms of logic. Database terms are similar to logic ground terms except that the arity of a
function symbol, called “label”, is not fixed but variable, and that the order of the arguments
of a function symbol might not be compelling.

ICLP’12



4 Simulation Unification: Beyond Querying Semistructured Data

A database term whith a root labelled l and ordered children t1, . . . , tn is denoted
l[t1, . . . , tn]. A databasse term with a root labelled l and unordered children t1, . . . , tn is
denoted l{t1, . . . , tn}.

Cyles, possible in XML documents though hypertext links and ID-IDREF references, are
allowed in database terms but not considered in the following for the sake of briefness. A
database terms without cycles can be seen as a tree, a database term with cycles as a rooted
graph.

3.2.2 Query terms
Query terms are patterns specifying selections of ground terms terms. They are similar to
logic atoms except that they can express incompleteness in breath and depth and that a
variable X in a query term can be restricted.

In a query term,
the brackets [ ] and { } require answers with no more ordered respectively unordered
subterms than the query term;
double brackets [[ ]] and {{ }} accept answers having more ordered respectively unordered
subterms than the query term;
a variable X can be constrained to some query terms Q using X ; Q, where ; is read
“as";
X ; desc t, read “X descendant t”, is used to express that X is bound to a term
containing a subterm t at an unspecified depth.

Multiple constraints for a a same variable are allowed. Figure 2 hints at the semantics of
query terms formally specified in [17, 18, 30].

Constraining variables (with ;) might results in cyclic constraints that cannot be
answered by database terms because database terms are finite. A variable X is said to
depend on a variable Y in a query term t if X ; t1 is a subterm of t and Y is a subterm of
t1. A query term t is said to be variable well-formed if it contains no variables X0, . . . , Xn

(n ≥ 1) such that X0 = Xn and for all i = 1, . . . n Xi depends on Xi−1 in t. Only variable
well-formed query terms are considered in the following.

A query term is ground if it contains no variables (and therefore no ; and no desc).
Further constructs such as “option” and “except” might occur in query terms so as to

ease the expression of some queries [30, 11, 31]. They are not considered in the following for
the sake of briefness.

3.2.3 Construct terms
Construct terms serve to re-assemble the values which are specified in query terms by
variables, so as to form new database terms. Thus,[ ], { } and variables may occur in
construct terms but neither [[ ]], nor {{ }}, nor ;. In a construct term, a variable might be
preceded by “all” meaning that all values, or bindings, for this variables are to be gathered.

Rules combine construct terms and query terms in the manner of logic programming:
A rule head is a construct term; a rule body is build up from query terms, conjunctions,
disjunctions, and negations.

Like in [15], simulation unification is defined below under the simplifying assumption
that {} and {{}} are the only kinds of braces. The complete definition is given in [30].
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Query terms Possible answers No answers

a[[b, c{d, e}, f ]] a[b, c{d, e, g}, f ] a{b, c{d, e}, f, g}
a[b, c{d, e, g}, f{g, h}] a[b, c{d, e}, f, g]
a[b, c{d, e{g, h}, g}, f{g, h}] a{b, c{d, e}, f}
a[b, c[d, e], f ]

a[desc f [c, d], b] a[f [c, d], b] a[b]
a[g[f [c, d]], b] a[g, b[f [c, d]]]
a[g[f [c, d], h], b]
a[g[g[f [c, d]]], b]
a[g[g[f [c, d], h], i], b]

a[X ; b[c, d], Y, e] a[b[c, d], f, e] a[c, f, e]
X bound to b[c, d] a[b[c], f, e]
Y bound to f a[h[b, c], f, e]

a[b[c, d], f [g, h], e]
X bound to b[c, d]
Y bound to f [g, h]

a{X ; b{c}, X ; b{d}} a{b{c, d}} a{b{c}}
X bound to b{c, d} a[b[c], f, e]

a[X ; b{c}, X ; f{d}] none a[b{c}]
a[f{d}]
a[b{c}, f{d}]

a{{}} a a{b}
a{b, c}
a[b]
a[b, c]

Figure 2 Query terms.

3.3 Term Simulation and Answers

Substitutions and grounding substitutions are defined as usual except that they assign
construct terms, but no query terms, to variables. Instances and ground instances of query
and construct terms are defined as usual except that an instance of X ; t is defined as
an instance of X (that is, ignoring ; t). ; and desc induce constraints on variables and
subterms of a query term. Instances of a query that fulfill these constraints are called allowed
instances. Only allowed instances are considered in the following.

Simulation of a graph G1 into a graph G2 is adapted into the simulation of a ground query
term Q into a ground construct term t by paying the necessary attention to the brackets
{} and {{}}. Ground term simulation is then extended to query and construct terms with
variables as follows: A query term Q simulates into a construct term t, denote Q � t, if
there exists a substitution σ such that every ground instance of Qσ simulates into a ground
instance of tσ.

An answer to a query term Q is a database term t such that an allowed instance of
Q simulates in t. As usual, substitution (so-called answer substitutions) are associated
with term answers. Because of the construct desc serving to express subterm constraints
and in contrast to classical logic programming, answers cannot be fully defined by answer
substitutions.

ICLP’12



6 Simulation Unification: Beyond Querying Semistructured Data

3.4 Simulation Unification
Simulation unification is a non-deterministic algorithm for solving equations of the form
Q � t, read Q simulates in t, on query terms Q and construct terms t. It is based on
the following term decomposition rules – see [15, 16, 30] for a detailed description of the
non-deterministic algorithm. The outcome of simulation unification, if it succeeds, is a finite
set of substitutions called simulation unifier.

I Definition 2 (Term Decomposition Rules). Let l (with or without indices) denote a label.
Let t1 and t2 (with or without indices) denote query terms.

Root Elimination:
(1) l � l{t21, . . . , t2m} ⇔ true if m ≥ 1

l � l{{}} ⇔ true

(2) l{t11, . . . , t1n} � l⇔ false if n ≥ 1
l{t11, . . . , t1n} � l{{}} ⇔ false if n ≥ 1

(3) Let Π be the set of (total) functions {t11, . . . , t1n} → {t21, . . . , t2m}:
l{t11, . . . , t1n} � l{t21, . . . , t2m} ⇔

∨
π∈Π

∧
1≤i≤n t

1
i � π(t1i )

if n ≥ 1 and m ≥ 1

(4) l1{t11, . . . , t1n} � l2{t21, . . . , t2m} ⇔ false if l1 6= l2 and n ≥ 0 and m ≥ 0

; Elimination:
X ; t1 � t2 ⇔ t1 � t2 ∧ t1 � X ∧ X � t2

Descendant Elimination:
desc t1 � l2{t21, . . . , t2m} ⇔ t1 � l2{t21, . . . , t2m} ∨

∨
1≤i≤m desc t1 � t2i

if m ≥ 0

Simulation unification is sound and complete for the notion of answer recalled above
[15, 16, 30] . Like standard unification, simulation unification is symmetric since it can bind
variables in the two terms considered. Unlike standard unification, however, it is asymmetric
in the sense that it does not make the two terms considered equal, but instead makes the
one simulate into the other what in general is no symmetrical relationship.

4 Work Related to Simulation Unification

How simulation unification relates to classical involved forms of unifications is addressed in
[15] as follows:

Several unification methods have been proposed that, like simulation unification,
process flexible terms or structures, notably feature unification [1, 34] and associative-
commutative-unification, short AC-unification, [23]. Simulation unification differs
from feature unification in several aspects (discussed in [16]). Simulation unification
might remind of theory unification [2]. The significant difference between both is that
simulation unification is based upon an order relation, while theory unification refers
to a congruence relation.

Simulation unification offers a decidable alternative to equational unification [2]. We
argue in the following Section 5 that novel forms of simulation unification based on verious
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embedding or similarity relationships would be useful in querying multimedia and semantic
data as well as in searching data of all kinds.

Simulation unification has been developed for the textual query language and its visual
companion visXcerpt. Between 2002 and 2006, research prototypes of Xcerpt and visXcerpt
have been presented at database, Web, Semantic Web, logic programming and visual
programming conferences [14, 6, 7, 31, 3, 13, 4, 5].

A subsumption referring to simulation unification, called simulation subsumption, and its
use for query optimization have been introduced in [12]. Simulation subsumption expreses
query containement for queries based on simulation unification. Simulation subsumption
is useful for the query optimization, in particular for verifying the termination of recursive
queries.

5 Beyond Querying Semistructured Data

Since the publication of our original article in 2002, the Web has undergone several major
developments. First, the Semantic Web effort with its underlying technologies RDF and OWL
has gained much momentum with the emergence of “Linked Data” as a means to publish
semi-structured data using a uniform model for data representation and interlinking between
datasets. Second, while the Web of 2002 was still mainly a static, text-based Web, the Web
of 2012 is interactive and mostly consists of multimedia content. And third, with the success
of Social Software, the amount of content and data on the Web has grown tremendously,
making effective and efficient Web search more and more important. In the following, we will
briefly describe how our ideas concerning simulation unification are more important than
ever for addressing typical problems in these areas.

5.1 Generalising Simulation Unification
Simulation unification gives rise to queries retrieving structural sub-patterns within XML
data. This can be generalized to other kind of data in two complementary ways:

The first generalisation would build upon an “embedding” relationship on the data
considered which, like simulation unification, would not be symmetric.
The second generalisation would build upon a “similarity” relationship on the data
considered which, in contrast to simulation unification, would be symmetric.

In the following sections, we describe how these two generalisations could help addressing
open problems in several other areas.

5.2 RDF, RDFS and OWL
The Resource Description Framework, or “RDF“ [37], is the primary model for publishing
data on the Semantic Web. At its core, it defines a graph model where vertices represent
Web resources (identified by URIs) or literal values and edges (so-called “triples”) represent
typed relations between Web resources. RDF also defines a number of different serialization
formats for this graph data, e.g. RDF/XML, Turtle, or N-Triples. Schema information about
an RDF graph can be defined using the schema languages RDFS [36] or OWL [35]. Both are
capable of representing ontological knowledge about the schema in addition to specifying
possible relations and are based on some form of logics.

Querying RDF Data. An important aspect of RDF is querying the graph data
contained in a dataset. Typical RDF queries for example express RDF subgraphs to be
found in the data queried. Given the graph model underlying RDF, pattern-based querying

ICLP’12



8 Simulation Unification: Beyond Querying Semistructured Data

of RDF is natural. In fact, the most widely used RDF query language SPARQL [39] uses
so-called “triple patterns” specifying edges to look for in the dataset. Variables in triple
patterns are bound to values when matching a pattern in the same style as in other logic
programming languages.

While SPARQL is already a well designed and widely established query language, it
is currently only defined in terms of a query algebra similar to the relational algebra and
is not offering a declarative calculus. A query approach based on (unrooted) simulation
unification could provide such a calculus for SPARQL in a style similar to the relational
calculus behind SQL and Datalog. It would thus allow for a more declarative semantics and
advanced reasoning services over RDF by opening up RDF querying to logic programming
approaches. Note that this would also give rise to expressing RDFS and OWL ontology
semantics in terms of logic programming rules. Querying RDF data corresponds to the
“embedding relationship” of simulation unification described above.

Matching RDF Datasets. On the Semantic Web with many independent data publish-
ers a common challenge is so-called “schema alignment” or “data alignment”. In schema (or
data) alignment, the goal is to create mappings between two different schemas (or datasets)
to allow better interoperability and exchange of the data. A common way of doing schema
alignment is to map concepts from the two schemas that are “similar” regarding different
criteria.

For example, both schemas might define their own “Student” concept but with slightly
different properties:

Schema 1 defines a Student with full name, email and inscription number
Schema 2 defines a Student with first name and last name, as well as email

Schema alignment could map between the Students of Schema 1 and 2 based on the name of
the concept, the shared property email, and the similarity between first name/last name on
the one hand and full name on the other hand.

A lot of research has been undertaken to investigate automatic means to carry out schema
alignment. Nevertheless, many problems in this area today remain unsolved [33]. When
representing the different attributes of a concept in terms of a graph structure, simulation
unification in the second generalisation (“similarity relationship”) could offer a new option
for identifying similar concepts by trying to find a maximal simulation between the graphs
representing two concepts.

5.3 Linked Data
Linked Data [8, 25] is a recent development within the Semantic Web effort to publish
datasets of various sizes on the Web for anyone to use and combine, using the technologies
developed in the Semantic Web context (mainly URIs and RDF). In his initial announcement,
Tim Berners-Lee described four “Linked Data Principles” [8]:
1. Use URIs as names for things
2. Use HTTP URIs so that people can look up those names.
3. When someone looks up a URI, provide useful information, using the standards (RDF,

SPARQL)
4. Include links to other URIs. so that they can discover more things.
Since then, numerous datasets have been made available under these principles. As of
September 2011, the known part of the “Web of Data” consists of about 300 datasets from
various domains with more than 30 billion triples. Moreover, these datasets are connected
with each other with about 500 million RDF links [9].
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Conceptually, the Linked Data Cloud (or “Web of Data”) can be seen as an RDF graph
structure over distributed information systems. Since no dataset has information about the
full graph, non-local parts can only be discovered by following RDF links that span across
different servers.

Even though resources on Linked Data servers are typically interlinked and thus conceptu-
ally integrate data from many different sources, querying such data is still very cumbersome.
The main reason is that existing query languages for RDF like SPARQL are rather dataset-
centric and do not easily query over distributed or even unknown sources. There are currently
four approaches to address this issue:

a central index harvests the Web for RDF data and stores it in a central repository and
offers it for querying, e.g. using SPARQL. This approach is followed e.g. by Sindice,1
which offers a public SPARQL endpoint.
a query is distributed over several query endpoints and the results are then combined.
This approach is proposed in the SPARQL 1.1 Federation Extension [38].
accepting the incompleteness of the results returned by the query and trying to improve
the recall by different heuristics, as proposed e.g. by Hartig et.al. [24]

The first two approaches have obvious disadvantages: a central repository is not always
recent and a single point of failure, while explicit federated queries are cumbersome to write
and need exact information on how and where to access the SPARQL endpoint. They also
require that all queried servers implement the SPARQL 1.1 Federation Extensions. The
third approach is in our opinion not very user friendly, since the user cannot easily determine
whether the results he will get are complete or not and important enterprise decisions might
depend on that information.

In [32], we therefore proposed a path-based approach that is more suitable for querying
Linked Data. However, a path language only allows binding one variable at a time (the “end”
of the path) and is therefore rather limited in its expressivity and performance. Rooted
simulation unification as described previously for XML could give rise to a novel kind of
query language for Linked Data that does not share the problems of SPARQL and goes
beyond the expressivity of simple path navigations. A query pattern could use a context
resource from a local dataset as query root, follow links to other remote datasets and then
bind multiple variables at the same time, reducing the number of network requests and
providing a convenient way for formulating a query.

As an example, consider users publishing their basic profile information using the FOAF
(friend-of-a-friend) vocabulary. Each user publishes on his website an RDF file with his
name and email address, as well as links (foaf:knows) to the FOAF files of his friends.
A query based on simulation unification could then select the first name, last name and
email addresses of each friend in a single query by starting at the local FOAF file, following
foaf:knows, and binding the three variables at the same time. Such a query is currently
neither possible using SPARQL nor using a path-based approach.

5.4 Multimedia
An embedding realtionship can be specified for multimedia data expressing that, for example,
a given visual pattern can be found in a picture or in a video. Such a relationship can be
defined in terms of either geometrical image recognition algorithms, of features extracted
from the multimedia content, or of symbolic metadata associated with picture. Rather

1 http://sindice.com/

ICLP’12

http://sindice.com/
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different embedding relationships can be thought of that would fullfil the needs of different
applications. For example:

Existing metadata could be queried. In the scenario described in [32], we are working with
cliff-diving videos provided by Red Bull that are accompanied with precise descriptions
of the scene, transcripts of interviews, as well as music cue sheets and general metadata
about a video (persons, locations, editor, description). A query based on Simulation
Unification could query for all videos with a certain person at a certain location.

Multimedia information extraction could automatically extract faces of persons (e.g. using
an Eigenfaces algorithm) as well as prominent structures (e.g. edges with sharp contrast)
from a large collection of images and videos and store them as features. Simulation
Unification could be used to provide a query with some sample features (the face of a
person and a tower in the background) and the be evaluated over the image collection to
retrieve matching images.

Similarity relationships are often used in retrieving multimedia data. Indeed, multimedia
applications require to retrieve images similar to some given images. Image similarity can be
specified in many different manners, with and without simliarity threshold to be fulfiled by
the selected data.

5.5 Web Search and Enterprise Search

With the tremendous increase in content, Web Search and Enterprise Search are nowadays
the most important way of finding and accessing information. The most important difference
between Web Search and Enterprise Search is that Web Search can make use of the hyperlinks
between documents (e.g. in Google’s PageRank [29] ) and the novelty of documents, while
enterprise content is typically not connected and novelty is not necessarily a good measure
for relevance.

Web Search and Enterprise Search could benefit from generalisations of simulation based
on emebedding or similarity relationships in the following typical search tasks:

Search: Both Web and Enteprise Search build in its core build upon the occurring of
a words, or phrase, or of an ordered list of words or phrases in documents. Such a
relationship could be replaced by embedding or similarity relationships for multimedia or
semantic data of the afore mentioned kind. This would result in multimedia and semantic
search engines at the the cost of indexing a well-chosen selection of patterns. For example,
this would allow searches like “the fantasy book with the blue cover”.

Grouping: Search results often contain many similar documents, e.g. different versions of
the same document in an enterprise setting. When displaying the search results, such
documents should be grouped and displayed together. Detecting such groups can be a
very hard task. A simulation unification for similarity relationships could be used for
clustering similar documents based on various document properties.

Ranking: Ranking of search results in the result list is the real art of search engines.
For example, Google considers over 300 features in their ranking algorithm to determine
the relevance of documents with respect to the search query and the user context (e.g.
location, previous searches, social networking profile). When so many aspects are taken
into account, simulation unification could provide a conceptual framework for calculating
the similarity between search results and the query and user context.
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6 Conclusion

Thias article has first recalled what led its authors to develop simulation unification for
querying semistructured data on the Web. Simulation unification has been presenteed in
2002 at the 18th International Conference on Logic Programming (ICLP 2002) [15], in the
long version [16] of that article, and in more detail in the doctoral thesis [30].

This article then has given a brief reminder of simulation unification as presented in the
afore mentioned ICLP 2002 article.

Finally, this article has suggested novel directions for Web and Semantic Web research
building upon the idea of simulation unification and generalising it in various manners.

Generalising simulation unification as suggested in this article would anchor logic pro-
gramming in promising fields of research of considerable practical importance: Querying and
Web search for multimedia and semantic data.
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