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Abstract
We present a Prolog program – the SAT solver of Howe and King – as a (pure) logic program with
added control. The control consists of a selection rule (delays of Prolog) and pruning the search
space. We construct the logic program together with proofs of its correctness and completeness,
with respect to a formal specification. Correctness and termination of the logic program are
inherited by the Prolog program; the change of selection rule preserves completeness. We prove
that completeness is also preserved by one case of pruning; for the other an informal justification
is presented.

For proving correctness we use a method, which should be well known but is often neglected.
For proving program completeness we employ a new, simpler variant of a method published
previously. We point out usefulness of approximate specifications. We argue that the proof
methods correspond to natural declarative thinking about programs, and that they can be used,
formally or informally, in every-day programming.
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1 Introduction

The purpose of this paper is to show to which extent the correctness related issues of a Prolog
program can, in practice, be dealt with mathematical precision. We present a construction
of a useful Prolog program. We view it as a logic program with added control. We formally
prove that the logic program conforms to its specification and partly informally justify that
adding control preserves this property. We argue that the employed methods are not difficult
and can be used by actual programmers.

Howe and King [11] presented a SAT solver which is an elegant and concise Prolog pro-
gram of 22 lines. It is not a (pure) logic program, as it includes nonvar/1 and the if-then-else
of Prolog; it was constructed as an implementation of an algorithm, using logical variables
and coroutining. The algorithm is DPLL with watched literals and unit propagation (see
[11] for references). Here we look at the program from a declarative point of view. We show
how it can be obtained by adding control to a definite clause logic program.

We first present a simple logic program of five clauses, and then modify it in order to
obtain a logic program on which the intended control can be imposed. The control involves
fixing the selection rule (by means of the delay mechanisms of Prolog), and pruning some
redundant fragments of the search space. In constructing both the introductory program
and the final one, we begin with a specification, describing the relations to be defined by
the program. We argue about usefulness of approximate specifications. For both logic
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programs we present formal proofs of their correctness and completeness. In the second case
the proofs are performed together with the construction of the program. Both programs
terminate under any selection rule. Adding control preserves correctness and termination.
Completeness of the final program with control is justified partly informally.

To facilitate the proofs we present the underlying proof methods for correctness and
completeness. For proving correctness we use the method of [4]; for completeness – a sim-
plification of the method of [8]. We also employ a method of proving that a certain kind of
pruning SLD-trees preserves completeness (from [7], an extended version of this paper).
Preliminaries. In this paper we consider definite clause programs (i.e. programs without
negation). We use the standard notation and definitions, see e.g. [1]. In our main examples
we assume a Herbrand universe H like in Prolog, based on an alphabet of infinitely many
function symbols of each arity ≥ 0. However the theoretical considerations of Sect. 3 are
valid for arbitrary nonempty Herbrand universe. By ground(P ) we mean the set of ground
instances of a program P (under a given Herbrand universe).

We use the Prolog notation for lists. Names of variables begin with an upper-case letter.
By a list we mean a term of the form [t1, . . . , tn] (so terms like [a, a|X], or [a, a|a] are not
considered lists). As we deal with clauses as data, and clauses of programs, the latter will
be called rules to avoid confusion. Given a predicate symbol p, by an atom for p we mean
an atom whose predicate symbol is p, and by a rule for p – a rule whose head is an atom
for p. By a procedure p we mean all the rules for p in the program under consideration.
Organization of the paper. The next section presents a simple and inefficient SAT
solver. Section 3 formalizes the notion of a specification, and presents methods for proving
program correctness and completeness. In Section 4 the final logic program is constructed
hand in hand with its correctness and completeness proof. Section 5 considers adding control
to the program. Section 6 discusses the presented approach and its relation to declarative
diagnosis.

2 Propositional satisfiability – first logic program

Representation of propositional formulae. We first present the encoding of proposi-
tional formulae in CNF as terms, proposed by [11] and used in this paper.

Propositional variables are represented as logical variables; truth values – as constants
true, false. A literal of a clause is represented as a pair of a truth value and a variable;
a positive literal, say x, as true-X and a negative one, say ¬x, as false-X. A clause is
represented as a list of (representations of) literals, and a conjunction of clauses as a list
of their representations. For instance a formula (x ∨ ¬y ∨ z) ∧ (¬x ∨ v) is represented as
[[true-X,false-Y,true-Z],[false-X,true-V]].

An assignment of truth values to variables can be represented as a substitution. Thus a
clause (represented by) f is true under an assignment (represented by) θ iff the list fθ has
an element of the form t-t, i.e. false-false or true-true. A formula in CNF is satisfiable
iff its representation has an instance whose each element (is a list which) contains a t-t.
We will often say “formula f” for a formula in CNF represented as a term f , similarly for
clauses etc.
The program. Now we construct a simple logic program checking satisfiability of such
formulae. We begin with describing the (unary) relations to be defined by the program. Let

L0
1 =

{
[t1-u1, . . . , tn-un] ∈ H | n > 0, ti = ui for some i ∈ {1, . . . , n}

}
,

L0
2 = { [s1, . . . , sn] | n ≥ 0, s1, . . . , sn ∈ L0

1 }.
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(It may be additionally required that all tj , uj are in {true, false}, we do not impose this
restriction). A clause f is true under an assignment θ iff the list fθ is in L0

1. A formula
in CNF is satisfiable iff it has an instance in L0

2. However L0
2 is not a unique set with this

property. Moreover, a program defining (exactly) L0
2 would be unnecessarily complicated

and would involve unnecessary computations (like checking if the elements of a list are indeed
closed lists of pairs). So we extend L0

2.
A list of the form [t1-u1, . . . , tn-un] (n ≥ 0) will be called a list of pairs. Let

L1 =
{
t ∈ H | if t is a list of pairs then t ∈ L0

1
}
,

L2 =
{
s ∈ H | if s is a list of lists of pairs then s ∈ L0

2
}
.

Note that L0
1 ⊆ L1, L

0
2 ⊆ L2, and that for any set L′

2 such that L0
2 ⊆ L′

2 ⊆ L2 it holds:

A formula in CNF is satisfiable iff it has an instance in L′
2. (1)

(Because any its instance from L2 is also in L0
2, as the formula is a list of lists of pairs).

Thus a program computing any such set L′
2 would do.

A program P1 defining such L′
2 is constructed in a rather obvious way. Its main procedure

is sat_cnf. It employs sat_cl, which defines an L′
1 such that L0

1 ⊆ L′
1 ⊆ L1. In the next

section we prove that the sets defined by the program indeed satisfy these inclusions.

sat_cnf ([ ]). (2)
sat_cnf ([Clause|Clauses])← sat_cl(Clause), sat_cnf (Clauses). (3)
sat_cl([Pol-V ar|Pairs])← Pol = V ar. (4)
sat_cl([H|Pairs])← sat_cl(Pairs). (5)
=(X,X). (6)

Let f be (a representation of) a CNF formula. Then sat_cnf (f) succeeds iff f is satisfiable.

3 Correctness and completeness

Now we show how to prove that a program indeed defines the required relations. Basically
we follow the approach of [8]. We present a special case of the correctness criterion used
there, and we simplify and extend the method of proving completeness; see [7] for a wider
presentation, and for proofs of the theorems.

3.1 Specifications
We provided a specification for the program P1 by describing a set for each predicate;
the predicate should define this set. In a general case, for an n-argument predicate p the
specification describes an n-argument relation, to be defined by p. The specification in
Sect. 2 is approximate: the relations are described not exactly, each one is specified by
giving its superset and subset. It is convenient to view an approximate specification as two
specifications (in our example the first one specifies L1, L2, and the second one L0

1, L
0
2).

The former describes the tuples that are allowed to be computed, the latter those that have
to be computed. The former is related to program correctness, the latter to completeness.

In our example it was impossible to provide an exact specification, as it was not known
which of the possible relations should be implemented. The usual procedure append provides
a somehow different example of usefulness of approximate specifications [8]. In that case the
relation is known, but it is not necessary (and a bit cumbersome) to specify it exactly.

ICLP’12
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To make it explicit which relation corresponds to which predicate, specifications will
be represented as Herbrand interpretations. A (formal exact) specification is a Herbrand
interpretation; given a specification S, each A ∈ S is called a specified atom (by S). The
fact that p(t1, . . . , tn) ∈ S is understood as that the tuple (t1, . . . , tn) is in the relation
corresponding to p.

So the approximate specification in the example of Sect. 2 consists of two specifications
S1 and S0

1 with the specified atoms of the form, respectively:

S1 : sat_cnf (t),
sat_cl(s),
x=x,

where t ∈ L2,

s ∈ L1,

x ∈ H
(7)

S0
1 : sat_cnf (t),

sat_cl(s),
x=x,

where t ∈ L0
2,

s ∈ L0
1,

x ∈ H
(8)

Correctness and completeness. In imperative programming, correctness usually means
that the program results are as specified. In logic programming, due to its non-deterministic
nature, we actually have two issues: correctness (all the results are compatible with the
specification) and completeness (all the results required by the specification are produced).
In other words, correctness means that the relation defined by the program is a subset
of the specified one, and completeness means inclusion in the opposite direction. Given a
specification S and a program P , with its least Herbrand model MP , we have: P is correct
w.r.t. S iff MP ⊆ S; it is complete w.r.t. S iff MP ⊇ S.

Notice that if a program P is both correct and complete w.r.t. S then MP = S and
the specification describes exactly the relations defined by P . An approximate specification,
given by a pair Scorr, Scompl of Herbrand interpretations, means that for one of them the
program has to be correct, for the other – complete. Formally, it is required that Scompl ⊆
MP ⊆ Scorr.

It is useful to relate correctness and completeness with answers of programs.1

I Proposition 1. Let P be a program, Q a query, and S a specification.
If P is correct w.r.t. S and Qθ is an answer for P then S |= Qθ.
If P is complete w.r.t. S and S |= Qσ, for a ground Qσ, then Qσ is an answer for P ,

and is an instance of some computed answer for P and Q.

3.2 Correctness
To prove correctness we use the following property [4]; see [8] for further explanations.

I Theorem 2 (Correctness). A sufficient condition for a program P to be correct w.r.t. a
specification S is S |= P .

Note that S |= P means that for each ground instance H ← B1, . . . , Bn of a rule of P , if
B1, . . . , Bn ∈ S then H ∈ S.

Using Th. 2, it is easy to show that P1 is correct w.r.t. S1. For instance consider rule (5),
and its arbitrary ground instance sat_cl([u|s])← sat_cl(s), such that sat_cl(s) ∈ S1. If [u|s]
is a list of pairs then s is; thus s ∈ L0

1, and [u|s] ∈ L0
1. So [u|s] ∈ L1, and sat_cl([u|s]) ∈ S1.

We leave the rest of the proof to the reader.

1 By a computed (respectively correct) answer for a program P and a query Q we mean an instance Qθ
of Q where θ is a computed (correct) answer substitution [1] for Q and P . We often say just “answer”,
as each computed answer is a correct one, and each correct answer (for Q) is a computed answer (for Q
or for some its instance Qσ). Thus, by soundness and completeness of SLD-resolution, Qθ is an answer
for P iff P |= Qθ.
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3.3 Completeness
We begin with introducing a few auxiliary notions. Let us say that a program P is complete
for a query Q = A1, . . . , An w.r.t. S when A1θ, . . . , Anθ ∈ S implies A1θ, . . . , Anθ ∈ MP ,
for any ground instance Qθ of Q. Informally, complete for Q means that all the answers for
Q required by the specification are computed. Note that a program is complete w.r.t. S iff
it is complete w.r.t. S for any query iff it is complete w.r.t. S for any query A ∈ S.

We also say that a program P is semi-complete w.r.t. S if P is complete for any query
Q for which there exists a finite SLD-tree. Note that the existence of a finite SLD-tree
means that P with Q terminates under some selection rule. For a semi-complete program, if
a computation for a query Q terminates then all the required by the specification answers for
Q have been obtained. Here are conditions under which “semi-complete” implies “complete.”
I Proposition 3. Let a program P be semi-complete w.r.t. S. P is complete w.r.t. S if
1. for each ground atomic query A ∈ S there exists a finite SLD-tree, or
2. the program is recurrent or acceptable [1, Chapter 6].

A ground atom H is called covered [13] by a program P w.r.t. a specification S if H is
the head of a ground instance H ← B1, . . . , Bn of a rule of the program, such that all the
atoms B1, . . . , Bn are in S. For instance, given a specification S = { p(si(0)) | i ≥ 0 }, atom
p(s(0)) is covered both by a program { p(s(X))← p(X).} and by { p(X)← p(s(X)).}.

Now we are ready to present a sufficient condition for completeness.

I Theorem 4 (Completeness). Let P be a program, and S a specification.
If all the atoms from S are covered by P then P is semi-complete w.r.t. S.

Hence, if such P satisfies one of the conditions from Prop. 3 then it is complete w.r.t. S.
Let us apply Th. 4 to our program. First let us show that all the atoms from S0

1 are
covered by P1 (and thus P1 is semi-complete). For instance consider a specified atom A =
sat_cnf (t). Thus t ∈ L0

2. If t is nonempty then t = [s|t′], where s ∈ L0
1, t′ ∈ L0

2. Hence a
ground instance A← sat_cl(s), sat_cnf (t′) of a clause of P1 has all its body atoms in S0

1 , so
A is covered. If t is empty then A is covered as it is the head of the rule sat_cnf ([ ]). The
reasoning for the remaining atoms of S1 is similar, and left to the reader.

So the program is semi-complete w.r.t. S1, and it remains to show its termination. An
informal justification is that, for an intended initial query (or for an arbitrary ground initial
query), the predicates are invoked with (closed) lists as arguments, and each recursive call
employs a shorter list. For a formal proof that the program is recurrent [2],[1, Chapter 6.2],
see [7]. Thus by Proposition 3, P1 is complete w.r.t. S1.

4 Preparing for adding control

To be able to influence the control of program P1 in the intended way, in this section we
construct a more sophisticated logic program P3, with a program P2 as an initial stage. The
construction is guided by a formal specification, and done together with a correctness and
semi-completeness proof. Most of the details are presented. However efficiency issues are
outside of the scope of this work.

As explained in Sect. 2, it is sufficient that sat_cnf defines a set Lsat_cnf such that
L0

2 ⊆ Lsat_cnf ⊆ L2 (similarly, sat_cl defines Lsat_cl , where L0
1 ⊆ Lsat_cl ⊆ L1). The rules

for sat_cnf and = from P1, i.e. (2), (3), (6), are included in P2. We modify the definition
of sat_cl, introducing some new predicates. The new predicates would define the same
propositional clauses as sat_cl, but represented in a different way.

ICLP’12
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To simplify the presentation, we provide now the specification for the new predicates.
Explanations are given later on, while introducing each predicate. In the specification for
correctness (respectively completeness) the new specified atoms are

sat_cl3(s, v, p),
sat_cl5(v1, p1, v2, p2, s),
sat_cl5a(v1, p1, v2, p2, s),

where [p-v|s] ∈ L1 (respectively ∈ L0
1),

[p1-v1, p2-v2|s] ∈ L1 (respectively ∈ L0
1).

(9)

So specification S2 for correctness is obtained by adding these literals to specification S1
(cf. (7)), and specification S0

2 for completeness – by adding to S0
1 (cf. (8)) the literals of

(9) with L1 replaced by L0
1. Note that S0

2 ⊆ S2.
In what follows, SC1 stands for the sufficient condition from Th. 2 for correctness w.r.t.

S2, and SC2 – for the sufficient condition from Th. 4 for semi-completeness w.r.t. S0
2 (i.e.

each atom from S0
2 is covered). While discussing a procedure p, we consider SC2 for atoms

of the form p(. . .) from S0
2 . Let SC stand for SC1 and SC2. We perform the correctness

and completeness proof hand in hand with introducing new rules of P3. When checking a
corresponding SC is not mentioned, it is simple and left to the reader. SC for sat_cnf and
= have been already shown.

Program P1 performs inefficient search by means of backtracking. We are going to
improve it by delaying unification of pairs Pol-Var in sat_cl. The idea is to perform such
unification if Var is the only unbound variable of the clause. Otherwise, sat_cl is to be
delayed until one of the first two variables of the clause becomes bound to true or false.

This idea will be implemented by separating two cases: the clause has one literal, or
more. We want to distinguish these two cases by means of indexing the main symbol of
the first argument. So the argument should be the tail of the list. We redefine sat_cl,
introducing an auxiliary predicate sat_cl3. It defines the same set as sat_cl, but a clause
[Pol-V ar|Pairs] is represented as three arguments Pairs, V ar, Pol of sat_cl3.

sat_cl([Pol-V ar|Pairs])← sat_cl3(Pairs, V ar, Pol). (10)

Procedure sat_cl3 has to cover each atom A = sat_cl3(s, v, p) ∈ S0
2 , i.e. each A such that

[p-v|s] ∈ L0
1. Assume first s = [ ]. Then p = v; this suggests a rule

sat_cl3([ ], V ar, Pol)← V ar = Pol. (11)

Its ground instance sat_cl3([ ], p, p) ← p= p covers A w.r.t. S0
2 . Conversely, each instance

of (11) with the body atom in S2 is of this form, its head is in S2, hence SC1 holds.
When the first argument of sat_cl3 is not [ ], we want to delay sat_cl3(Pairs, V ar, Pol)

until V ar or the first variable of Pairs is bound. In order to do this in, say, Sicstus, we
need to make the two variables to be separate arguments of a predicate. So we introduce
a five-argument predicate sat_cl5, which is going to be delayed. It defines the set of the
lists from Lsat_cl of length greater than 1; however a list [Pol1-V ar1, Pol2-V ar2 |Pairs] is
represented as the five arguments V ar1, Pol1, V ar2, Pol2, Pairs of sat_cl5. The intention
is to delay selecting sat_cl5 until its first or third argument is bound (is not a variable). So
the following rule completes the definition of sat_cl3.

sat_cl3([Pol2-V ar2|Pairs], V ar1, Pol1)← sat_cl5(V ar1, Pol1, V ar2, Pol2, Pairs). (12)

To check SC, let S = S2,L = L1 or S = S0
2 ,L = L0

1. For each ground instance of (12) the
body is in S iff the head is in S. Hence SC1 holds for (12), and each sat_cl3([p2-v2|s], v1, p1) ∈
S0

2 where s 6= [ ] is covered by (12). So SC2 for sat_cl3 holds, due to (11) and (12).
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In evaluating sat_cl5, we want to treat the bound variable (the first or the third argu-
ment) in a special way. So we make it the first argument of a new predicate sat_cl5a, with
the same declarative semantics as sat_cl5.

sat_cl5(Var1,Pol1,Var2,Pol2,Pairs)← sat_cl5a(Var1,Pol1,Var2,Pol2,Pairs). (13)
sat_cl5(Var1,Pol1,Var2,Pol2,Pairs)← sat_cl5a(Var2,Pol2,Var1,Pol1,Pairs). (14)

SC are trivially satisfied. Moreover, SC2 is satisfied by each of the two rules alone. The
control will choose the one that results in invoking sat_cl5a with its first argument bound.

To build a procedure sat_cl5a we have to provide rules which cover each atom A =
sat_cl5a(v1, p1, v2, p2, s) ∈ S0

2 . Note that A ∈ S0
2 iff [p1-v1, p2-v2|s] ∈ L0

1 iff p1 = v1 or
[p2-v2|s] ∈ L0

1 iff p1 = v1 or sat_cl3(s, v2, p2) ∈ S0
2 . So two rules follow

sat_cl5a(V ar1, Pol1, V ar2, Pol2, Pairs)← V ar1 = Pol1. (15)
sat_cl5a(V ar1, Pol1, V ar2, Pol2, Pairs)← sat_cl3(Pairs, V ar2, Pol2). (16)

and SC2 holds for sat_cl5a. To check SC1, consider a ground instance of (15), with the body
atom in S2: sat_cl5a(p, p, v2, p2, s) ← p = p. As [p-p, p2-v2|s] ∈ L1, the head of the clause
is in S2. Take a ground instance sat_cl5a(v1, p1, v2, p2, s)← sat_cl3(s, v2, p2). of (16), with
the body atom in S2. Then its head is in S2, as [p2-v2|s] ∈ L1 implies [p1-v1, p2-v2|s] ∈ L1.

From a declarative point of view, our program is ready. The logic program P2 consists
of rules (2), (3), (6), and (10) – (16). It is correct w.r.t. S2 and semi-complete w.r.t. S0

2 .
Avoiding floundering. When selecting sat_cl5 is delayed as described above, program
P2 may flounder; a nonempty query with no selected atom may appear in a computation.
Floundering is a kind of pruning SLD-trees, and may cause incompleteness. To avoid it, we
add a top level predicate sat. It defines the relation (a Cartesian product) in which the first
argument is as defined by sat_cnf , and the second argument is a list of truth values.

sat(Clauses,Vars)← sat_cnf (Clauses), tflist(Vars). (17)

(Predicate tflist will define the set of truth value lists.) The intended initial queries are of
the form

sat(f, l), where f is a (representation of a) propositional formula,
l is the list of variables in f.

(18)

Such query succeeds iff the formula f is satisfiable. Floundering is avoided, as tflist will
eventually bind all the variables of f . More precisely, consider a node Q in an arbitrary
SLD-tree for a sat(f, l) of (18). We have three cases. (i) Q is the root, or its child. (ii) Q
contains an atom derived from tflist(l). Otherwise, (iii) the variables of l (and thus those
of f) are bound; hence all the atoms of Q are ground (as no rule of P2 introduces a new
variable). So no such Q consists solely of non-ground sat_cl5 atoms.

We use auxiliary predicates to define the set of truth values, and the set of the lists of
truth values. The extended formal specification S3 for correctness consists of atoms

sat(t, u), tflist(u),
tf (true), tf (false),

where t ∈ L2, u is a list whose elements are true or false, (19)

and of those of S2 (i.e. the atoms of (7), (9)). The extended specification S0
3 for completeness

consists of S0
2 and of the atoms described by a modified (19) where L2 is replaced by L0

2.
The three new predicates are defined in a rather obvious way, following [11]:

ICLP’12
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tflist([ ]). (20)
tflist([Var |Vars])← tflist(Vars), tf (Var). (21)

tf (true). (22)
tf (false). (23)

This completes our construction. The logic program P3 consists of rules (2), (3), (6), (10)
– (17), and (20) – (23). It is correct w.r.t. S3 and semi-complete w.r.t. S0

3 . It terminates
for the intended queries, under any selection rule, as it is recurrent under a suitable level
mapping, see [7]. Thus by Prop. 3, the program is complete w.r.t. S0

3 .

5 The program with control

In this section we add control to program P3. As the result we obtain the Prolog program of
Howe and King [11]. (The predicate names differ, those in the original program are related
to its operational semantics.) The idea is that P3 with this control implements the DPLL
algorithm with watched literals and unit propagation.2

The control added to P3 modifies the default Prolog selection rule, and prunes some
redundant parts of the search space (by the if-then-else construct). So correctness and
termination of P3 are preserved (as we proved termination for any selection rule).

To delay sat_cl5 until its first or third argument is not a variable we use a declaration

:- block sat_cl5(-, ?, -, ?, ?). (24)

of Sicstus. As informally discussed in Sect. 4, for the intended initial queries floundering is
avoided; thus the completeness of P3 is preserved.

The first case of pruning is to use only one of the two rules (13), (14), the one which
invokes sat_cl5a with the first argument bound. According to [7, Corollary 6], this pruning
preserves completeness (see [7] for a proof). The pruning is implemented by employing the
nonvar built-in and the if-then-else construct of Prolog:

sat_cl5(V ar1, Pol1, V ar2, Pol2, Pairs)←
nonvar(V ar1)→ sat_cl5a(V ar1, Pol1, V ar2, Pol2, Pairs);

sat_cl5a(V ar2, Pol2, V ar1, Pol1, Pairs).
(25)

An efficiency improvement related to rules (15), (16) is possible. Procedure sat_cl5a
is invoked with the first argument Var1 bound. If the first argument of the initial query
sat(f, l) is a (representation of a) propositional formula then sat_cl5a is called with its
second argument Pol1 being true or false. So the unification Var1 = Pol1 in (15) works
as a test, and the rule binds no variables.3 Thus after a success of rule (15) there is no point
in invoking (16), as the success of (15) produces the most general answer for sat_cl5a(. . .),
which subsumes any other answer. Hence the search space can be pruned accordingly. We
do this by converting the two rules into

sat_cl5a(V ar1, Pol1, V ar2, Pol2, Pairs)←
V ar1 =Pol1 → true; sat_cl3(Pairs, V ar2, Pol2). (26)

This completes our construction. The obtained Prolog program consists of declaration (24),
the rules of P3 except for those for sat_cl5 and sat_cl5a, i.e. (2), (3), (6), (10) – (12), (17),
(20) – (23), and Prolog rules (25), (26). It is correct w.r.t. S3, and is complete w.r.t. S0

3 for
queries of the form (18).

2 However, when a non-watched literal in a clause becomes true, the clause is not immediately removed.
3 So = may be replaced by the built-in ==, as in [11].
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6 Discussion

Proof methods. The correctness proving method of [4] (further references in [8]) used
here should be well-known, but is often neglected. For instance, an important monograph
[1] uses a more complicated method (of [3]), which refers to the operational semantics (LD-
resolution). See [8] for comparison and argumentation that the simpler method is sufficient.

Proving completeness has been seldom considered, especially within a framework of de-
clarative semantics. For instance it is not discussed in [1]. (Instead, for a program P and
an atomic query A, a characterization of the set of computed instances of A is studied,
in a special case of the set being finite and the answers ground [1, Sect. 8.4].) Book [5]
presents criteria for program completeness, in a sophisticated framework of relating logic
programming and attribute grammars. The method presented here (Sect. 3.3, [7]) is a sim-
plification of that from [8] (an initial version appeared in [6]). Our notion of completeness
is slightly different, and programs with negation are excluded. We introduce a notion of
semi-completeness, for which the corresponding sufficient condition deals with program pro-
cedures separately, while for completeness the whole program has to be taken into account.

Correctness and completeness are declarative properties, they are independent from the
operational semantics. If dealing with them required reasoning in terms of operational
semantics then logic programming would not deserve to be meant a declarative programming
paradigm. The sufficient criteria of Th. 2, 4 for correctness and semi-completeness are purely
declarative, they treat program rules as logical formulae, and abstract from any operational
notions. However proving completeness refers to program termination. The reason is that
in practice termination has to be concerned anyway, and a pure declarative approach to
completeness [5, Th. 6.1] seems more complicated [7] (and it includes a condition similar to
those for proving termination). Note that semi-completeness alone may be a useful property,
as it guarantees that whenever the computation terminates, all the required answers have
been computed.

We want to stress the simplicity and naturalness of the sufficient conditions for cor-
rectness and semi-completeness (Th. 2, 4). Informally, the first one says that the rules of a
program should produce only correct conclusions, given correct premises. The other says
that each ground atom that should be produced by P has to be the head of a rule instance,
whose body atoms should be produced by P too. The author believes that this is a way a
competent programmer reasons about (the declarative semantics of) a logic program.

Specifications. The examples of programs P1 and P3 show usefulness of approximate spe-
cifications (p. 303). They are crucial for avoiding unnecessary complications in constructing
specifications and in correctness and completeness proofs. They are natural: when starting
construction of a program, the relations it should compute are often known only approxim-
ately. Also, it is often difficult (and unnecessary) to exactly establish the relations computed
by a program. As an example, the reader may try to describe the two (distinct) sets defined
by the main procedures of P1 and P2 (cf. [7], where MP1 is given.)

Specifications which are interpretations (as here and in [1]) have a limitation. They
cannot express that e.g. for a given a there exists a b such that p(a, b). In our case, we could
not specify that it is sufficient for a SAT solver to find some variable assignment satisfying
f , whenever f is satisfiable. Our specifications S0

1 , S0
3 require that all such assignments are

found. The problem seems to be solved by introducing specifications in a form of logical
theories (where axioms like ∃b. p(a, b) can be used). This idea is present in [5, 8].

Relations to declarative diagnosis. Declarative diagnosis methods (called sometimes
declarative debugging) [13] (see also [9, 12] and references therein) locate in a program the
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reason for its incorrectness or incompleteness. A diagnosis algorithm begins with a symptom
(obtained from testing the program): an answer Q such that S 6|= Q, or a query Q for which
computation terminates but some answers required by S are not produced. The located
error turns out to be the program fragment (a rule or a procedure) which violates our
sufficient condition for correctness or, respectively, semi-completeness. Roughly speaking,
the diagnosis algorithm actually checks the sufficient conditions of Th. 2 (Th. 4), but only
for some instances of program rules (for some specified atoms) – those involved in producing
the symptom. (See [7] for further discussion.)

An attempt to prove a buggy program to be correct (complete) results in violating the
corresponding sufficient condition for some rule (specified atom). For instance, in this way
the author found an error in a former version of P1 (there was [Pairs] instead of Pairs).
Any error located by diagnosis will also be found by a proof attempt; moreover no symptom
is needed, and all the errors are found. However the sufficient condition has to be checked
for all the rules of the program (for all specified atoms).

A serious difficulty in using declarative diagnosis methods is that an exact specification (a
single intended model) of the program is needed. Then answering some diagnoser queries,
like “is append([a], b, [a|b]) correct”, may be difficult, as the programmer often does not
know some details of the intended model, like those related to applying append on non-lists.
The problem has been pointed out in [9] and discussed in [12] (see also references therein).
A solution is to employ approximate specifications; incorrectness diagnosis should use the
specification for correctness, and incompleteness diagnosis that for completeness. This seems
simpler than introducing new diagnosis algorithms based on three logical values [12].

7 Conclusions

The central part of this paper is an example of a systematic construction of a Prolog program:
the SAT solver of [11]. Starting from a formal specification, a definite clause program, called
P3, is constructed hand in hand with a proof of its correctness and completeness (Sect. 4).
The final Prolog program is obtained from P3 by adding control (delays and pruning SLD-
trees, Sect. 5). Correctness, completeness and termination of a pure logic program can be
dealt with formally, and we proved them for P3. Adding control preserves correctness and (in
this case) termination. We partly proved, and partly justified informally that completeness
is preserved too. We point out usefulness of approximate specifications.

The employed proof methods are of separate interest. The method for correctness [4]
is simple, should be well-known, but is often neglected. A contribution of this work is a
method for proving completeness (Sect. 3.3, [7]), a simplification of that of [8]. Due to lack
of space, taking pruning into account in proving completeness [7] is not discussed here.

We are interested in declarative programming. Our main example was intended to show
how much of the programming task can be done without considering the operational se-
mantics, how “logic” could be separated from “control.” A substantial part of work could be
done at the stage of a pure logic program, where correctness, completeness and termination
could be dealt with formally. It is important that all the considerations and decisions about
the program execution and efficiency (only superficially treated here) are independent from
those related to the declarative semantics, to the correctness of the final program, and – to
a substantial extent – its completeness.

We argue that the employed proof methods are simple, and correspond to a natural way
of declarative thinking about programs. We believe that they can be actually used – maybe
at an informal level – in practical programming; this is supported by our main example.
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