
A Logic Programming approach for Access
Control over RDF
Nuno Lopes1, Sabrina Kirrane2, Antoine Zimmermann3,
Axel Polleres4, and Alessandra Mileo1

1 Digital Enterprise Research Institute
{nuno.lopes,alessandra.mileo}@deri.org

2 Digital Enterprise Research Institute and Storm Technology
sabrina.kirrane@deri.org

3 École Nationale Supérieure des Mines, FAYOL-ENSMSE, LSTI, F–42023
Saint-Étienne, France
antoine.zimmermann@emse.fr

4 Siemens AG Österreich, Siemensstrasse 90, 1210 Vienna, Austria
axel.polleres@siemens.com

Abstract
The Resource Description Framework (RDF) is an interoperable data representation format
suitable for interchange and integration of data, especially in Open Data contexts. However,
RDF is also becoming increasingly attractive in scenarios involving sensitive data, where data
protection is a major concern. At its core, RDF does not support any form of access control
and current proposals for extending RDF with access control do not fit well with the RDF
representation model. Considering an enterprise scenario, we present a modelling that caters for
access control over the stored RDF data in an intuitive and transparent manner. For this paper
we rely on Annotated RDF, which introduces concepts from Annotated Logic Programming into
RDF. Based on this model of the access control annotation domain, we propose a mechanism
to manage permissions via application-specific logic rules. Furthermore, we illustrate how our
Annotated Query Language (AnQL) provides a secure way to query this access control annotated
RDF data.

1998 ACM Subject Classification I.2.4 Knowledge Representation Formalisms and Methods

Keywords and phrases Logic Programming, Annotation, Access Control, RDF

Digital Object Identifier 10.4230/LIPIcs.ICLP.2012.381

1 Introduction

Enterprises rely on stand-alone systems, commonly known as Line Of Business (LOB) applic-
ations, to efficiently perform day-to-day activities: interactions with clients in a Customer
Relationship Management (CRM) application, employee information in a Human Resources
(HR) application, project documentation in a Document Management System (DMS), etc.
These systems, although independent, often contain different information regarding the same
entities; for example, if an organisation needs to know the projects commissioned by a cus-
tomer, the employees that worked on those projects and the revenue that was generated,
they need to obtain information across these systems. However, such integration is not a
simple task, not only due to the heterogeneity of the systems, but also due to the presence
of access control mechanisms in each system. In fact, since much of the information within
the enterprise is highly sensitive, this integration step could result in information leakage to
unauthorised individuals.

© Nuno Lopes, Sabrina Kirrane, Antoine Zimmerman, Axel Polleres, and Alessandra Mileo;
licensed under Creative Commons License ND

Technical Communications of the 28th International Conference on Logic Programming (ICLP’12).
Editors: A. Dovier and V. Santos Costa; pp. 381–392

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICLP.2012.381
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

382 A Logic Programming approach for Access Control over RDF

RDF is a flexible format for representing such integrated data, however it does not provide
any mechanisms to avoid the problem of information leakage. In this paper we rely on an
integration solution that extracts information from the underlying LOB applications into
RDF. Based on this integrated data, we define a mechanism to enforce access control over the
resulting RDF graph, implemented via logic programming. Our approach provides a flexible
representation for the access control policies and also caters for permission propagation via
logic inference rules.

The solution we present builds upon an extension of the RDF data model to supply
context information (called Annotated RDF), that provides a backwards compatible model
to attach domain-specific metadata to each RDF triple. The main contribution of this
paper in relation to access control over RDF data consists of defining an annotation domain
that models access control permissions in RDF. Based on this model, access control can
be enforced by relying on an extension of SPARQL, the standard query language for RDF.
Although in this paper we are considering that the access control annotated data stems from
the integration of the data from LOB applications, the presented model can be applied as a
general model for access control in RDF, without requiring the information integration step.

The remainder of the paper is structured as follows: in Section 2 we briefly introduce
concepts from the Semantic Web research area and their extension to the annotated case.
Section 3 formalises the access control annotation domain and details our implementation
of the domain in logic programming. Finally, we describe the related work in Section 4 and
present conclusions and directions for future work in Section 5.

2 Preliminaries

In this section we provide the necessary background information regarding the semantics
of Annotated RDFS. We start by presenting the data model, giving an overview of RDF
and its extension towards Annotated RDFS which draws inspiration from Annotated Logic
Programming [13]. We then present the extension of the RDF Schema (RDFS) inference
rules for the annotated case and the extension of the SPARQL query language for query-
ing Annotated RDFS, AnQL. Finally, we present the current prototype implementation of
Annotated RDFS and AnQL which is implemented in SWI Prolog.

2.1 Annotated RDFS Data Model
We present an overview of the concepts of RDF and its extension to Annotated RDFS.

I Definition 1 (RDF triple, RDF graph). Considering the disjoint sets U, B and L, rep-
resenting respectively URIs, blank nodes and literals, an RDF triple is a tuple (s, p, o) ∈
UB×U×UBL,1 where s is called the subject, p the predicate, and o the object. An RDF
graph G is a finite set of RDF triples.

An RDF triple has the intuitive meaning that the subject is connected to the object by the
predicate relation. In this work, we avoid introducing details about the concrete syntaxes of
RDF, and we omit minutiae. Please refer to [15] and [9] for specifics.

Several extensions were presented to introduce meta-information into the RDF data
model. For example, [7] define temporal RDF, which allows for the allocation of a validity

1 For conciseness, we represent the union of sets simply by concatenating their names.

N. Lopes, S. Kirrane, A. Zimmerman, A. Polleres, and A. Mileo 383

interval to an RDF triple; [20] presents fuzzy RDF in order to attach a confidence or mem-
bership value to a triple. These and other approaches can be represented within a common
framework, called Annotated RDF [23] and further extended to include RDFS inference
rules by [21]. Annotated RDFS introduces the notion of an annotation domain into the
RDF model and defines an extension of the RDFS inference rules that, by relying on the ⊗
and ⊕ (cf Definition 2) operations defined by the annotation domain, can be specified in a
domain independent fashion. Next we present the definition of an annotation domain

I Definition 2 (Annotation Domain). Let L be a non-empty set, whose elements are con-
sidered the annotation values. We say that an annotation domain for RDFS is an idem-
potent, commutative semi-ring D = 〈L,⊕,⊗,⊥,>〉 , where ⊕ is >-annihilating. That is, for
λ, λ1, λ2 ∈ L:

1. ⊕ is idempotent, commutative, associative;
2. ⊗ is commutative and associative;
3. ⊥⊕ λ = λ, >⊗ λ = λ, ⊥⊗ λ = ⊥, and >⊕ λ = >;
4. ⊗ is distributive over ⊕, i.e. λ1 ⊗ (λ2 ⊕ λ3) = (λ1 ⊗ λ2)⊕ (λ1 ⊗ λ3);
An annotation domain D = 〈L,⊕,⊗,⊥,>〉 induces a partial order � over L defined as:
λ1 � λ2 iff λ1 ⊕ λ2 = λ2 .

I Example 3 (Annotation Domain). The Fuzzy Annotation Domain is defined as D[0,1] =
〈[0, 1],max,min, 0, 1〉. We can specify that :joeBloggs is a part-time employee of :westportCars
as follows:

(:joeBloggs, :worksFor, :westportCars) : 0.5

For the definitions of other domains, such as the temporal domain, the reader is referred
to [21]. In Section 3.1 we present the definition of an annotation domain to model access con-
trol. Further to the above annotation domain definition, we extend RDF towards annotated
RDFS:

I Definition 4 (Annotated triple, graph). An annotated triple is an expression τ : λ, where
τ is an RDF triple and λ is an annotation value. An annotated RDFS graph is a finite set
of annotated triples.

The entailment between two Annotated RDFS graphs, G |= H is defined by a model-
theoretic semantics presented in [21].

2.2 Inference Rules
RDF Schema (RDFS) [4] consists of a predefined vocabulary that assigns specific meaning to
certain URIs, allowing a reasoner to infer new triples from existing ones. A set of inference
rules can be used to provide a sound and complete reasoner for RDFS [22]. These rules
can be extended to support Annotated RDFS reasoning, in a domain-independent fashion,
simply by relying on the ⊗ and ⊕ operations (presented in Definition 2). Such rules can be
represented by the following meta-rule:

τ1 : λ1, . . . , τn : λn, {τ1, . . . τn} `RDFS τ

τ :
⊗

i λi
. (1)

This rule reads that if a classical RDFS triple τ can be inferred by applying an RDFS
inference rule to triples τ1, . . . τn (denoted {τ1, . . . , τn} `RDFS τ), the same triple can be

ICLP’12

384 A Logic Programming approach for Access Control over RDF

inferred in the annotated case with annotation term
⊗

i λi, where λi is the annotation of
triple τi. The ⊕ operation is used to combine information about the same statement: if
the same triple is inferred from different rules or steps in the inference, the following rule is
applied:

τ : λ1, τ : λ2

τ : λ1 ⊕ λ2
. (2)

It is also possible to specify a custom set of rules in order to provide application specific
inferencing.

2.3 AnQL: Annotated Query Language
The proposed query language for Annotated RDFS is AnQL [14], which consists of an ex-
tension to the W3C recommended query language for RDF, SPARQL [18], while also taking
into consideration features from the upcoming SPARQL 1.1 language revision. Consider
V a set of variables disjoint from UBL. In SPARQL, a triple pattern consists of an RDF
triple with optionally a variable v ∈ V as the subject, predicate and/or object. Sets of triple
patterns are called basic graph patterns (BGP) and BGPs can be combined to create generic
graph patterns. The semantics of SPARQL is based on the notion of basic graph pattern
matching, where a substitution is a partial function µ : V→ UBL.

For the extension of SPARQL towards the AnQL query language, we propose a specific
annotation domain instance of D of the form 〈L,⊕,⊗,⊥,>〉. Let A denote the set annota-
tion variables, disjoint from UBLV and λ be an annotation value from L or an annotation
variable from A, called an annotation label. For a SPARQL triple pattern τ , we call τ : λ
an annotated triple pattern and sets of annotated triple patterns are called basic annotated
patterns (BAP). Similar to SPARQL, BAPs can be combined to create an annotated graph
pattern and for further details we refer the reader to [14].

An AnQL query is defined as a triple Q = (P,G, V) where: (1) P is an annotated
graph pattern; (2) G is an annotated RDF graph; and (3) V ⊆ VA is the set of variables
to be returned by the query. Given an annotated graph pattern P , we further denote by
var(P) ⊆ V and avar(P) ⊆ A the set of variables and annotation variables respectively
present in a graph pattern P . As presented in Example 5, the annotated graph pattern P is
specified following the WHERE keyword where the variables are specified after the SELECT
keyword.

I Example 5 (AnQL query). Considering the fuzzy domain presented in Example 3, we can
pose the following query:
SELECT ?v ?av WHERE { ?v a : Company ?av }

where ?v is a variable from V and ?av is an annotation variable from A.

The semantics of AnQL BAP matching is defined by extending the notion of SPARQL basic
graph pattern matching to cater for annotation variables and their mapping to annotation
values. For any substitution µ and variable v, µ(v) corresponds to the value assigned to v
by µ. For a BAP P , µ(P) represents the annotated triples that correspond to P except that
any variable v ∈ vars(P) ∪ avars(P) is replaced with µ(v).

I Definition 6 (BAP matching, extends [16, Definition 2]). Let P be a BAP and G an
Annotated RDFS graph. We define the evaluation of P over G, denoted [[P]]G, as the list
of substitutions that are solutions of P , i.e. [[P]]G = {µ | G |= µ(P)}, according to the
model-theoretic definition of entailment presented by [21].

N. Lopes, S. Kirrane, A. Zimmerman, A. Polleres, and A. Mileo 385

Reasoner / AnQL
Query Engine

Annotation Domain

Temporal FuzzyAccess control

Inference Rules

RDFS Custom Rules
Annotated

RDF
Graph

Figure 1 Annotated RDFS implementation schema.

The semantics of arbitrary annotated graph patterns is defined by an algebra that is built
on top of this BAP matching. For further details we refer the reader to [14] and a combined
overview of Annotated RDFS and AnQL is provided by [25].

2.4 Implementation
The system architecture of our prototype implementation, based on SWI-Prolog’s Semantic
Web library [24], is sketched in Figure 1. The main component of the system consists of
the Reasoner / AnQL Query Engine, which is composed of a forward-chaining reasoner
engine with a fix-point semantics that calculates the closure of a given Annotated RDF
Graph [21] and an implementation of the AnQL query language. This main component can
be tailored to a specific Annotation Domain and to include different Inference Rules
describing how triples and their annotation values are propagated. Such inference rules can
be specified, in domain independent fashion, by using a high-level language that abstracts
the specific details of each domain. An example of an Annotated RDFS rule is presented in
Example 7.

I Example 7 (Annotated RDFS Inference Rule). The following rule provides subclass inference
in the RDFS ruleset:

rdf(O, rdf:type , C2 , V) <== rdf(O, rdf:type , C1 , V1),
rdf(C1 , rdfs:subClassOf , C2 , V2),
infimum (V1 , V2 , V).

where the rdf/4 predicate is used to represent the annotated triples and the infimum/3
predicate corresponds to the implementation of the ⊗ domain operation (c.f. Definition 2).

More information and downloads of the prototype implementation can be found at http:
//anql.deri.org/.

3 Access Control Annotation Domain

In this section we formalise our access control annotation domain, following the definitions
presented in Section 2.1, starting by defining the entities and annotation values and then
presenting the ⊗ and ⊕ domain operations. Finally, we briefly describe the implementation
of the presented annotation domain.

3.1 Entities and Annotations
For the modelling of the Access Control Domain (ACD) consider, in addition to the previ-
ously presented sets of URIs U, blank nodes B, and literals L, a set of credential elements
C. The elements of C are used to represent usernames, roles, and groups. To represent
attributes, we propose a set T of pairs of form (k, v), represented as key–value pairs where

ICLP’12

http://anql.deri.org/
http://anql.deri.org/

386 A Logic Programming approach for Access Control over RDF

k ∈ U and v ∈ L. For example “(:age, 30)” or “(:institute,DERI)” are elements of T.2 We
allow shortcuts to represent intervals of integers, for example “(:age, [25, 30])” to indicate
that all entities with attribute “:age” between 25 and 30 are allowed access to the triple.

Considering an element e ∈ CT, e and ¬e are access control elements, where e is called
a positive element and ¬e is called a negative element.3 An access control statement S
consists of a set of access control elements and an Access Control List (ACL) consists of
a set of access control statements. An access control statement S is consistent if and only
if, for any element e ∈ CT, only one of e and ¬e may appear in S. This restriction
avoids conflicts, where a statement is attempting to both grant and deny access to a triple.
Furthermore, we can define a partial order between access control statements S1 and S2,
as S1 ≤ S2 iff S1 ⊆ S2. This partial order can be used to eliminate redundant access
statements within an ACL: if a user is granted access by statement S2, he will also be
granted access by statement S1 (and thus S2 can be removed). Finally, an ACL is consistent
if and only if all statements therein are consistent and not redundant. In our domain
representation, only consistent ACLs are considered as annotation values. Intuitively, an
annotation value specifies which entities have read permission to the triple, or are denied
access when the annotation is preceded by ¬.

I Example 8 (Access Control List). Assume a set of entities C = {jb, js, hr, it}, where jb
and js are employee usernames and hr and it are shorthand for humanResources and in-
formationTechnology, respectively. The following annotated triple:

τ : [[it], [hr,¬js]]

states that the entities identified with it or hr (except if the js credential is also present)
have read access to the triple τ .

An ACL A can be considered as a non-recursive Datalog with negation (nr-datalog¬) pro-
gram, where each of the access control statements S ∈ A corresponds to the body of a rule
in the Datalog program. The head of each Datalog rule is a reserved element access 6∈ CT
and the evaluation of the Datalog program determines the access permission to a triple given
a specific set of credentials. The set of user credentials is assumed to be provided by an ex-
ternal authentication service and consists of elements of CT which equates to a non-empty
ACL representing the entities associated with the user. As expected, we assume that this
ACL consists of only one positive statement, i.e. the ACL will contain one statement with
all the entities associated with the user and does not contain any negative elements.

I Example 9 (Datalog Representation of an ACL). Taking into account the annotation
example presented in Example 8. The nr-datalog¬ program corresponding to the ACL
[[it], [hr,¬js]] is:

access← it.
access← hr,¬js.

The set of credentials of the user session, provided by the external authentication system
eg. [[js, it]], are facts in the nr-datalog¬ program.

2 In these examples, the default URI prefix is http://urq.deri.org/enterprise#.
3 Here we are using ¬e to represent strong negation. In our access control domain representation, ¬e
indicates that e will be specifically denied access.

http://urq.deri.org/enterprise#

N. Lopes, S. Kirrane, A. Zimmerman, A. Polleres, and A. Mileo 387

Further domain specific information, for example the encoding of hierarchies between the
credential elements, can be encoded as extra rules within the nr-datalog¬ program. These
extra rules can be used to provide implicit credentials to a user, allowing the access control
to be specified based on credentials that the authentication system does not necessarily
assign to a user.

I Example 10 (Credential Hierarchies). If the entity emp represents all the employees within
a specific company, and that jb and js correspond to employee usernames (as presented in
Example 8), the following rules can be added to the nr-datalog¬ program from Example 9:

emp← js.
emp← jb.

These rules ensure that both jb and js are given access when the credential emp is required
in an annotation value.

These rules can be used not only to express hierarchies between entities but any form of
nr-datalog¬ rules are allowed.

3.2 Annotation Domain
We now turn to the annotation domain operations ⊗ and ⊕ that, as presented in Sec-
tion 2.2, allow for the combination of annotation values catering for RDFS inferences. A
naive implementation of these domain operations may produce ACLs which are not consist-
ent (and would not be considered valid annotation values). To avoid such invalid ACLs, we
rely on a normalisation step that ensures the result is a valid annotation value by check-
ing for redundant statements and applying a conflict resolution policy if necessary. If an
annotation statement contains a positive and negative access control element for the same
entity, e.g [jb,¬jb], there is a conflict. There are two different ways to resolve conflicts in
the annotation statements: (i) apply a brave conflict resolution (allow access); or (ii) safe
conflict resolution (deny access). This is achieved during the normalisation step, through
the resolve function, by removing the appropriate element: ¬jb for brave or jb for safe
conflict resolution. In our current modelling, we are assuming safe conflict resolution. The
normalisation process is defined as follows:

I Definition 11 (Normalise). Let A be an ACL. We define the reduction of A into its
consistent form, denoted norm(A), as:

normalise(A) = {resolve(Si) | Si ∈ A and 6 ∃Sj ∈ A, i 6= j such that Si ≤ Sj} .

The ⊕ operation is used to combine annotations when the same triple is deduced from
different inference steps (cf. Rule (2)). For the access control domain, the ⊕ac operation
involves the union of the annotations and the subsequent normalisation operation. The result
of this operation intuitively creates a new nr-datalog¬ program consisting of the union of
all the rules from the original nr-datalog¬ programs. Formally,

A1 ⊕ac A2 = normalise (A1 ∪A2) .

The following example presents an application of the ⊕ac operation:

I Example 12 (⊕ac operation). Consider the triples τ1 = (:johnSmith, :salary, 40000) : [[js]]
and τ2 = (:johnSmith, :salary, 40000) : [[hr]]. Combining these triples with the ⊕ac operation
(by applying Rule (2)) should result in providing access to all the entities which are allowed
to access the premises:

(:johnSmith, :salary, 40000) : [[js], [hr]] .

ICLP’12

388 A Logic Programming approach for Access Control over RDF

In turn, the ⊗ operation is used when inferring new triples, with the application of Rule (1),
and for the access control domain, this operation (⊗ac) consists of merging the rules be-
longing to both annotation programs and then performing the normalisation and conflict
resolution. This equates to restricting access to inferred statements to only those entities
that have access to the both the original statements. Thus, the ⊗ operation corresponds to:

A1 ⊗ac A2 = normalise ({S1 ∪ S2 | S1 ∈ A1 and S2 ∈ A2}) ,

where S1 ∪ S2 represents the set theoretical union. Unlike the ⊕ac operation, the ⊗ac may
produce conflicts in the annotation statements. For example, the application of the ⊗ac

operation with the Annotated RDFS dom rule is as follows:

I Example 13 (⊗ac operation). Let τ1 = (:westportCars, :netIncome, 1000000) : [[hr,¬jb]]
and τ2 = (:netIncome, dom, :Company) : [[it, jb]] be triples. The annotation resulting from
applying the ⊗ac operation should provide access to the resulting triple only to entities
which are allowed to access all the premisses. Thus we can infer, not only that :westportCars
is of type :Company, but also the appropriate annotation value:

(:westportCars, type, :Company) : [[hr, it,¬jb]] .
Please note that the aforementioned conflict resolution mechanism simplifies [¬jb, jb] to [¬jb].

Lastly, the smallest and largest annotation values in the access control domain, ⊥ac and >ac

respectively, correspond in turn to an empty nr-datalog¬ program and another that provides
access to all entities e ∈ CT: ⊥ac = [] and >ac = [[]]. The ⊥ac annotation value element
indicates that the annotated triple is not accessible to any entity, since no annotation state-
ments will provide access to the triple, and an annotation value of >ac states that the triple
is public, since any credential contained in the user session will trivially provide access to the
triple. Intuitively, the >ac annotation is translated into the nr-datalog¬ program containing
only the “access” fact, while ⊥ac corresponds to an empty program. However, for practical
reasons, it might be necessary to assume a “super-user” role, for example represented as
the reserved element “su”, which will be allowed access to all triples and therefore would be
used as the ⊥ac annotation.

I Definition 14 (Access Control Annotation Domain). Let F be the set of annotation values
over CT, i.e. consistent ACLs. The access control annotation domain is formally defined
as: Dac = 〈F,⊕ac,⊗ac,⊥ac,>ac〉 .

The presented modelling of the access control domain can be easily extended to handle
other permissions, like update, and delete by representing the annotation as an n-tuple of
ACL 〈P,Q, . . .〉, where P specifies the formula for read permission, Q for update permission,
etc. In this extended domain modelling, the domain operations can also be extended to
operate over the corresponding elements of the annotation tuple. A create permission has a
different behaviour as it would not be attached to any specific triple but rather as a graph-
wide permission and thus is out of scope for this modelling. In this paper, we are considering
only read permissions in the description of the domain and thus restrict the modelling to a
single access control list. It is worth noting that the support for create and update of RDF
is only included in the forthcoming W3C SPARQL 1.1 Recommendation [8].

3.3 Prolog Implementation
Considering the prototype described in Section 2.4, the implementation of the access control
annotation domain consists of a Prolog module that is imported by the reasoner. This

N. Lopes, S. Kirrane, A. Zimmerman, A. Polleres, and A. Mileo 389

@prefix : <http :// urq.deri.org/ enterprise #> .
: westportCars rdf:type : Company "[[jb]]".
: westportCars : netIncome 1000000 .
: joeBloggs : worksFor : westportCars .
: joeBloggs : salary 80000 "[[jb]]".
: johnSmith : worksFor : westportCars .
: johnSmith : salary 40000 "[[js]].

Figure 2 RDF triples annotated with access control permissions.

module defines the domain operations ⊗ac and ⊕ac, represented as the predicates infimum/3
and supremum/3 respectively. The annotation values are represented by using lists (in this
case lists of lists), following the notions presented in the previous section.

The implementation of the ⊕ac operation involves concatenating the list representation
of both annotations and then performing the normalisation operation. As for the ⊗ac

operation, we follow a similar procedure to the ⊕ac operation, with the additional step of
applying either the brave or the safe conflict resolution method. The evaluation of the nr-
datalog¬ program can be performed based on the representation of the annotation values,
by checking if the list of credentials of a user is a superset of any of the positive literals of
the statements of our annotation values and also that it does not contain any of the negative
literals of the statement.

An example of RDF data annotated with access control information is presented in
Figure 2, where the salary information is only available to the respective employee. In this
figure we are representing the RDF triples and annotation element using the NQuads RDF
serialisation.4 Using AnQL, the extension of the SPARQL query language described in
Section 2.3, it is possible to perform queries that take into consideration the access control
annotations. An example of an AnQL query over this data is presented in the following
example:

I Example 15 (AnQL Query Example). This query specifies that we are interested in the
salary of employees that someone with the permissions [[jb, hr, it]] is allowed to access.

SELECT * WHERE { ?p : salary ?s "[[jb , hr , it]]" }

The answers for this query (when matched against the data from Figure 2) under SPARQL
semantics, i.e. if the annotation was omitted, would be:

{{?p→ :joeBloggs, ?s→ 80000} , {?p→ :johnSmith, ?s→ 40000}} .

However, when the domain annotations are present, an AnQL query engine must also per-
form the following check: [[jb, hr, it]] satisfies the nr-datalog¬ program λ, where λ is the
program represented by the annotation of each matched triple, thus yielding only the fol-
lowing answer:

{{?p→ :joeBloggs, ?s→ 80000}} .

4 http://sw.deri.org/2008/07/n-quads/

ICLP’12

http://sw.deri.org/2008/07/n-quads/

390 A Logic Programming approach for Access Control over RDF

4 Related Work

The topic of access control has been long studied in relational databases and the approach of
enforcing access policies by query rewriting was also considered for the Quel query language
by [19]. However, the presented system does not rely on annotating the relational data but
rather access control is specified using constraints over the user credentials which are then
included in the rewritten query. A good overview of common issues, existing models and
languages for access control is provided by [5], who focus on topics also discussed in this
paper such as user hierarchy, allowing and denying access and conflict resolution.

For the Semantic Web, well known policy languages such as KAoS [3], Rei [12] and
PROTUNE [2] are based on logical formalisms and consequently have well defined semantics.
Although such policy languages enable policy specification using semantic web languages in
their current form, they do not support reasoning based on RDF data relations.

In contrast, [11], [17], and [1] propose access control models for RDF graphs and like us
allow for policy propagation and inference based on semantic relations. The policy language
proposed by [11] is not based on well defined semantics and no implementation details are
provided. [17] propose a path-based approach to policy composition. [1] state that they use
an analytical tableaux system, however they do not provide a mechanism for merging or for
inference of permissions based on RDF structure.

[6] describe the requirements an RDF store needs from a Semantic Wiki perspective.
Apart from efficiency and scalability, the authors refer to the need for access control on a
triple level and to integrate the structure of the organisation in the access control methods.
The described system relies on a query engine (SPARQL is mentioned but no details are
given) and a rule processor to decide the access control enforcement at query time. [10]
present the possibility of maintaing metadata for RDF to enforce access control and touch
upon of the work presented here, such as using rules for specifying access control, as possible
extensions of their model. Providing access control on a resource level is also left as an open
question, one we are tackling by the specification of rules.

5 Conclusions and Future Work

The Resource Description Framework (RDF) can be used for large scale integration of in-
formation from existing LOB applications. In this paper, we propose an access control model
that can be used to protect RDF data and demonstrate how a combination of Annotated
RDF and SPARQL can be used to control access to integrated enterprise data. Our model
is based on the previously proposed Annotated RDF framework and attaches the access
control information on a triple basis i.e. each RDF triple can contain different annotation
values. The proposed solution provides a flexible representation method for the access con-
trol annotations, based on access control rules that define which entities have access to the
triple. However, on very large datasets, challenges will arise with respect to optimal ac-
cess control policy administration. To tackle this issue we propose managing permissions
by specifying domain-specific inference rules for the annotation domain. We also suggest a
possible implementation structure for a framework to enforce the access control based on
rewriting a SPARQL query into an Annotated SPARQL query (AnQL) which relies on a
secure authentication service.

Our initial work touches on how rules can be used to simplify the management of RDF
access control permissions. In future work, we propose to investigate the interdependencies
between usernames, groups, roles, and attributes and how we can further exploit the RDF
graph structure to streamline the management of RDF access control policies. Although the

N. Lopes, S. Kirrane, A. Zimmerman, A. Polleres, and A. Mileo 391

modelling presented in this paper provides a suitable representation model for the annotation
values, its implementation and evaluation for large RDF graphs remains an open issue. To
provide acceptable query performance when compared to its non-annotated counterpart,
different optimisation strategies for both annotation storage and query evaluation will be
necessary.

Acknowledgements. This work is supported in part by the SFI under Grant No. SFI/08/
CE/I1380 (Líon-2), the IRCSET EPS and Storm Technology Ltd. We would like to thank
Gergely Lukácsy, Aidan Hogan, and Umberto Straccia for their comments on this paper.

References
1 M. Amini and R. Jalili. Multi-level authorisation model and framework for distributed

semantic-aware environments. IET Information Security, 4(4):301, 2010.
2 P.A. Bonatti, J.L. De Coi, Daniel Olmedilla, and Luigi Sauro. Rule-based policy repres-

entations and reasoning. In Semantic techniques for the web, pages 201–232, 2009.
3 J.M. Bradshaw, Stewart Dutfield, Pete Benoit, and J.D. Woolley. KAoS: Toward an

industrial-strength open agent architecture. In Software Agents, pages 375–418, 1997.
4 Dan Brickley and R.V. Guha. RDF Vocabulary Description Language 1.0: RDF Schema.

W3C Recommendation, W3C, February 2004. Available at http://www.w3.org/TR/
rdf-schema/.

5 Sabrina De Capitani di Vimercati, Pierangela Samarati, and Sushil Jajodia. Policies, Mod-
els, and Languages for Access Control. In Subhash Bhalla, editor, Databases in Networked
Information Systems, 4th International Workshop, DNIS 2005, Aizu-Wakamatsu, Japan,
March 28-30, 2005, Proceedings, volume 3433, pages 225–237. Springer, 2005.

6 Sebastian Dietzold and Sören Auer. Access Control on RDF Triple Stores from a Semantic
Wiki Perspective. In Chris Bizer, Sören Auer, and Libby Miller, editors, Proc. of 2nd
Workshop on Scripting for the Semantic Web at ESWC, Budva, Montenegro., volume 183,
June 2006.

7 Claudio Gutierrez, Carlos A. Hurtado, and Alejandro A. Vaisman. Introducing Time into
RDF. IEEE Transactions on Knowledge and Data Engineering, 19(2):207–218, February
2007.

8 Steve Harris and Andy Seaborne. SPARQL 1.1 Query Language. W3C
working draft, W3C, January 2012. Available at http://www.w3.org/TR/2012/
WD-sparql11-query-20120105/.

9 Patrick Hayes. RDF Semantics. W3C Recommendation, W3C, February 2004. Available
at http://www.w3.org/TR/rdf-mt/.

10 James Hollenbach, Joe Presbrey, and Tim Berners-Lee. Using RDF Metadata To Enable
Access Control on the Social Semantic Web. In Tania Tudorache, Gianluca Correndo,
Natasha Noy, Harith Alani, and Mark Greaves, editors, Proceedings of the Workshop on
Collaborative Construction, Management and Linking of Structured Knowledge (CK2009),
volume 514. CEUR-WS.org, 2009.

11 S Javanmardi, M Amini, R Jalili, and Y. GanjiSaffar. SBAC: A Semantic Based Access
Control Model. In 11th Nordic Workshop on Secure IT-systems (NordSec’06), Linkping,
Sweden, 2006.

12 L. Kagal and T. Finin. A policy language for a pervasive computing environment. In
Proceedings POLICY 2003. IEEE 4th International Workshop on Policies for Distributed
Systems and Networks, pages 63–74. IEEE Comput. Soc, 2003.

13 Michael Kifer and V. S. Subrahmanian. Theory of Generalized Annotated Logic Program-
ming and its Applications. J. Log. Program., 12(3&4):335–367, 1992.

ICLP’12

http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/2012/WD-sparql11-query-20120105/
http://www.w3.org/TR/2012/WD-sparql11-query-20120105/
http://www.w3.org/TR/rdf-mt/

392 A Logic Programming approach for Access Control over RDF

14 Nuno Lopes, Axel Polleres, Umberto Straccia, and Antoine Zimmermann. AnQL: SPAR-
QLing Up Annotated RDF. In Proceedings of the International Semantic Web Conference
(ISWC-10), number 6496 in LNCS, pages 518–533. Springer-Verlag, 2010.

15 Frank Manola and Eric Miller. RDF Primer. W3C Recommendation, http://www.w3.
org/TR/rdf-primer/, W3C, February 2004.

16 Jorge Pérez, Marcelo Arenas, and Claudio Gutiérrez. Semantics and complexity of
SPARQL. ACM Transactions on Database Systems, 34(3):1–45, 2009.

17 Tatyana Ryutov, Tatiana Kichkaylo, and Robert Neches. Access Control Policies for Se-
mantic Networks. In 2009 IEEE International Symposium on Policies for Distributed Sys-
tems and Networks, pages 150–157. IEEE, July 2009.

18 Andy Seaborne and Eric Prud’hommeaux. SPARQL Query Language for RDF.
W3C Recommendation, W3C, January 15 2008. Available at http://www.w3.org/TR/
rdf-sparql-query/.

19 Michael Stonebraker and Eugene Wong. Access control in a relational data base manage-
ment system by query modification. In Proceedings of the 1974 annual conference - Volume
1, ACM ’74, pages 180–186, New York, NY, USA, 1974. ACM.

20 Umberto Straccia. A Minimal Deductive System for General Fuzzy RDF. In Axel Polleres
and Terrance Swift, editors, RR, volume 5837, pages 166–181. Springer, 2009.

21 Umberto Straccia, Nuno Lopes, Gergely Lukacsy, and Axel Polleres. A General Framework
for Representing and Reasoning with Annotated Semantic Web Data. In Maria Fox and
David Poole, editors, Proceedings of the Twenty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2010, Atlanta, Georgia, USA, July 11-15, 2010. AAAI Press, July
2010.

22 Herman J. ter Horst. Completeness, decidability and complexity of entailment for RDF
Schema and a semantic extension involving the OWL vocabulary. J. Web Sem., 3(2-3):79–
115, 2005.

23 Octavian Udrea, Diego Reforgiato Recupero, and V. S. Subrahmanian. Annotated RDF.
ACM Trans. Comput. Logic, 11(2):1–41, 2010.

24 Jan Wielemaker, Zhisheng Huang, and Lourens van der Meij. SWI-Prolog and the Web.
Theory and Practice of Logic Programming, 8(3):363–392, 2008.

25 Antoine Zimmermann, Nuno Lopes, Axel Polleres, and Umberto Straccia. A general frame-
work for representing, reasoning and querying with annotated Semantic Web data. Web
Semantics: Science, Services and Agents on the World Wide Web, 11(0):72 – 95, 2012.

http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/

	Introduction
	Preliminaries
	Annotated RDFS Data Model
	Inference Rules
	AnQL: Annotated Query Language
	Implementation

	Access Control Annotation Domain
	Entities and Annotations
	Annotation Domain
	Prolog Implementation

	Related Work
	Conclusions and Future Work

