
Software Model Checking by Program
Specialization
Emanuele De Angelis

University ‘G. d’Annunzio’ of Chieti-Pescara,
Viale Pindaro 42, I–65127 Pescara, Italy
Email: deangelis@sci.unich.it

Abstract
We introduce a general verification framework based on program specialization to prove properties
of the runtime behaviour of imperative programs. Given a program P written in a programming
language L and a property ϕ in a logic M , we can verify that ϕ holds for P by: (i) writing
an interpreter I for L and a semantics S for M in a suitable metalanguage, (ii) specializing I
and S with respect to P and ϕ, and (iii) analysing the specialized program by performing a
further specialization. We have instantiated our framework to verify safety properties of a simple
imperative language, called SIMP, extended with a nondeterministic choice operator. The method
is fully automatic and it has been implemented using the MAP transformation system [14].

1998 ACM Subject Classification D.2.4 Software/Program Verification

Keywords and phrases Software model checking, program specialization, constraint logic
programming.

Digital Object Identifier 10.4230/LIPIcs.ICLP.2012.439

1 Introduction and problem statement

Formal verification techniques allow us to prove that software artefacts (e.g., analysis and
design models and source code) satisfy some given specifications. These techniques have
recently received a growing attention as the basis for a promising methodology to increase the
reliability and reducing the cost of software production (e.g., by reducing time to market).

Software model checking is a body of formal verification techniques for imperative
programs that combine and extend ideas and techniques developed in the fields of static
program analysis and model checking (see [12] for a recent survey). In order to prove that
a program satisfies a given specification, software model checking methods automatically
construct a program model which is sound, in the sense that if the model satisfies the given
specification, then so does the actual program. Constructing such a model is a critical aspect
of software model checking, since it tries to meet two somewhat conflicting requirements.
On one hand, in order to make the verification process of large programs viable in practice,
it has to construct a model by abstracting away as many details as possible. On the other
hand, it would be desirable to have a model which is as precise as possible to reduce the
number of wrong detections. Unfortunately, even for small programs operating over integer
variables, an exhaustive exploration of the state space generated by the execution of programs
is practically infeasible, and simple properties such as safety (which essentially states that
‘something bad never happens’) are undecidable. Despite this undecidability limitation,
software model checking techniques work in many practical cases.

A huge amount of imperative languages is nowadays available. These languages provide
sophisticated features which continuously change. Thus, software model checkers are required
to be rapidly adapted to those changes. In order to develop tools which meet such a

© Emanuele De Angelis;
licensed under Creative Commons License ND

Technical Communications of the 28th International Conference on Logic Programming (ICLP’12).
Editors: A. Dovier and V. Santos Costa; pp. 439–444

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICLP.2012.439
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

440 Software Model Checking by Program Specialization

requirement, agile development methodologies should be employed. In this paper we consider
program specialization as a framework in which model checking of imperative programs may
be performed in a very agile, effective way. Program specialization is a program transformation
technique whose objective is the adaptation of a program to the context of use. In particular,
it turns out to be a very flexible and general methodology through which variations of the
semantics of the considered imperative language and to different logics for expressing the
properties of interest may be rapidly implemented into the software model checker. Indeed, by
following this approach, which can be regarded as a generalization of the one proposed in [16],
given a program P written in a programming language L, and a property ϕ in a logic M , we
can verify that ϕ holds for P by: (i) writing an interpreter I for L and a semantics S for M
in a suitable metalanguage, (ii) specializing the interpreter and the semantics with respect
to P and ϕ, and finally (iii) analysing the specialized program. We choose Constraint Logic
programming (CLP), which has been shown to be a very suitable language for implementing
symbolic evaluation and analysis of imperative programs [10, 11, 16, 17], as a metalanguage.

2 Background and overview of the existing literature

Constraint logic programming has been successfully applied to perform model checking of
both finite state [15] and infinite state [4] systems. In [6] a framework for the verification of
safety properties of infinite reactive systems based on CLP program specialization has been
introduced. Moreover, in [7] it has been shown that the termination of reachability analyses
of infinite state systems can be improved by encoding reachability as a CLP program and
then specializing the CLP program by incorporating the information about the initial and
the unsafe states. The use of CLP to analyse simple imperative programs has been proposed
in [16], where a CLP-based interpreter for the operational semantics of a simple imperative
language is partially evaluated w.r.t. an input program. The result of the analysis of the
residual CLP program can thus be used for annotating the original imperative program with
relations among variables occurring in the imperative program. In [8] a method is presented
for translating imperative programs supporting heap-allocated mutable data structures and
recursive procedures to CLP.

A widely used technique implemented by software model checkers (e.g. SLAM and
BLAST) is the Counter-Example Guided Abstraction Refinement (CEGAR) [12] which,
given a program P and a safety property ϕ, uses an abstract model α(P) to check whether
or not P satisfies ϕ. If α(P) satisfies ϕ then P satisfies ϕ, otherwise a counterexample,
i.e., an execution which makes the program unsafe, is produced. The counterexample is
then analysed: if it turns out to be a real execution of P (genuine counterexample) then
the program is proved to be unsafe, otherwise it has been generated due to a too coarse
abstraction (spurious counterexample) and α(P) needs to be refined. The CEGAR approach
has also been implemented by using CLP. In particular, in [17], the authors have designed a
CEGAR-based software model checker for C programs, called ARMC. In [10], another CLP-
based software model checker for C programs, called TRACER, is presented. It integrates
an abstraction refinement phase within a symbolic execution process.

3 Goal of the research

The goal of our research is to introduce a software model checking framework, based on
the specialization of CLP programs, which is parametric with respect to: (i) the imperative
language of the programs to be verified, and (ii) the specification language of the property

E. De Angelis 441

to be checked. Regardless of the actual languages, the software model checker consists
of a front-end module, which handles source code of programs, and a verification engine
module which actually performs the verification task. Since our objective is performing
software model checking of real programs we have to deal with issues arising from handling
programs consisting of thousands of lines of code and using advanced features of imperative
languages. Handling large programs introduces scalability issues which are to be carefully
considered during the realization of the front-end. Indeed, the choices made during the design
of the front-end may heavily affect the performance of the verification engine. More complex
issues arise from handling programs using static and dynamic data structures, procedures,
concurrency and objects. Consequently, a large portion of our research activity is devoted
to designing abstraction techniques to be integrated in the CLP specialization process to
prove properties which range from simple safety properties, such as array bound checking,
to more sophisticated properties dealing with contents of data structures (e.g., sortedness),
class relations (e.g., inheritance) and object interactions (e.g., effects of method invocations
on object fields) and concurrent processes.

Our first mid-term objective is to realize a software model checker for the C language,
which is still very popular, especially among device drivers and operating systems developers.
A renewed attention to the C language is demonstrated in the TACAS 2012 competition
(http://sv-comp.sosy-lab.org/2012/) in which several C software model checkers have
been tested on very large programs preprocessed by using the CIL (C Intermediate Language)
front-end (http://cil.sourceforge.net/). Thus, in order to ease the comparison with
other tools we have decided to instantiate our framework to perform model checking of the C
language by: (i) using CIL to translate the source language, and (ii) introducing a verification
engine to prove safety properties of C programs.

4 Current status of the research

As a first step of our research activity we have instantiated our framework to perform the
model checking of programs written in a simple imperative language with nondeterministic
choice (SIMP), which is an abstraction of a subset of the C language. In particular, we have
considered integer variables and the common control flow statements: while(b) { · · · } and
if(b) {· · ·} else {· · ·}. The operational, or transition, semantics of SIMP is defined in
terms of a transition relation ⇒ over states, that is, pairs of the form 〈p, e〉, where p is a
command and e is an environment, i.e, a function which maps variables occurring in p to
their values. A state s′ is said to be reachable from s if s⇒∗ s′. A specification S is a triple
〈initial-prop, p, unsafe-prop〉, where p is a command and initial-prop and unsafe-prop are two
formulas describing environments. A state 〈p, e〉 is said to be initial (unsafe) if e satisfies
initial-prop (unsafe-prop). We say that S holds, or p is safe w.r.t. S, if there is no unsafe
state which is reachable from an initial state. Performing model checking of p consists in
verifying whether or not S holds. In order to perform model checking of SIMP commands
we have defined a CLP-based interpreter of the operational semantics of SIMP as follows:

t(s(asgn(loc(X),A),E1), s(skip,E2)) :- aeval(A,E1,V), update(loc(X),V,E1,E2).
t(s(ite(B,S1,_),E), s(S1,E)) :- beval(B,E).
t(s(ite(B,_,S2),E), s(S2,E)) :- beval(not(B),E).
t(s(ite(ndc,S1,_),E), s(S1,E)).
t(s(ite(ndc,_,S2),E), s(S2,E)).
t(s(while(B,S1),E), s(ite(B,comp(S1,while(B,S1)),skip),E)).
t(s(comp(skip,S),E), s(S,E)).
t(s(comp(S1,S3),E1), s(comp(S2,S3),E2)) :- t(s(S1,E1), s(S2,E2)).

ICLP’12

http://sv-comp.sosy-lab.org/2012/
http://cil.sourceforge.net/

442 Software Model Checking by Program Specialization

where t(s(P,E), s(P1,E1)) holds iff 〈P, E〉 ⇒ 〈P1, E1〉, that is, the execution of the com-
mand P in the environment E leads to the execution of the command P1 in the environment
E1. Terms of the form s(P,E) denote states, where P ranges over ground terms built out
of the following functors: asgn for the assignment, ite for the if-then-else statement (ndc
represents the nondeterministic choice operator), while for the while loop, skip for the
empty statement, comp for the statement composition, and E is a list of terms encoding the
environment. We also have that: (i) aeval(A,E,V) holds iff V is the value of the arithmetic
expression A in the environment E, (ii) beval(B,E) holds iff the boolean expression B evalu-
ates to true in the environment E, and (iii) update(loc(X),V,E1,E2) holds iff E2 is equal
to E1 except in X which takes the value V (loc encodes a variable identifier).

Let S = 〈initial-prop, p, unsafe-prop〉 be a specification. We reduce the problem of
verifying whether or not a command is safe to a reachability problem by using the CLP
program SMC which consists of the following clauses:

unsafeProg :- initial(X), reachable(X).
reachable(X) :- unsafe(X).
reachable(X) :- t(X,X1), reachable(X1).
initial(s(p,E)) :- initial-prop.
unsafe(s(_,E)) :- unsafe-prop.

together with the clauses defining the semantics of SIMP. In the above program, p stands for
the ground term encoding the command p, while initial-prop and unsafe-prop stand for
constraints encoding the formulas initial-prop and unsafe-prop, respectively.

Our software model checking method consists in:
(Step 1) encoding the specification S into the clauses for initial, and unsafe,
(Step 2) specializing SMC with respect to unsafeProg, and
(Step 3) computing the least model M(SpSMC) of the specialized program SpSMC, and
checking whether or not unsafeProg belongs to the least model M(SpSMC).

The objective of Step 2 is to modify the initial program SMC by propagating the information
specified by initial, so that by exploiting this information, the computation of the least
model M(SpSMC) may be more effective and terminate more often than the computation of
the least model M(SMC). In particular, the interpretation overhead is compiled away by
specialization, thereby producing a CLP program where no terms encoding the command p are
present. Step 2 is performed by a rule-based program specialization strategy which makes use
of the following rules: definition introduction, unfolding, folding, and clause removal. These
rules preserve the least model semantics of CLP programs [5], thus, the specialization strategy
yield a program which is guaranteed to satisfy the same set of properties satisfied by the
original program. Indeed, we have that unsafeProg∈M(SMC) iff unsafeProg∈M(SpSMC).
In order to ensure the termination of Step 2, we use suitable generalization operators, related
to widen operators used in abstract interpretation techniques [2].

I Example 1. Let us consider the following specification 〈x = 0∧y ≥ 0, p, error = 1〉, where p
stands for: while (x < 10) { y = y+1; x = x+1; } if (y + x < 10) { error = 1; } . We
encode p into the term
comp(while(lt(loc(x),int(10)), comp(asgn(loc(y),plus(loc(y),int(1))),

asgn(loc(x),plus(loc(x),int(1))))),
ite(lt(plus(loc(y),loc(x)),int(10)), asgn(loc(error),int(1)), skip))

where the functor int encodes an integer value. By also translating the remaining components
of the specification we obtain the following clauses:

initial(s(p,[X,Y,E])) :- X=0, Y>=0, E=0.
unsafe(s(_,[X,Y,E])) :- E=1.

E. De Angelis 443

where p stands for the term encoding p. By specializing SMC with respect to unsafeProg,
we obtain the following program

new3(X,Y,E) :- X>=0, X<10, Y>=X, E=0, X1=X+1, Y1=Y+1, new3(X1,Y1,E).
new3(X,Y,E) :- X>=10, Y>=X, E=0, new5(X,Y,E).
new2(X,Y,E) :- X=0, Y>=0, E=0, X1=1, Y1=Y+1, new3(X1,Y1,E).
unsafeProg :- X=0, Y>=0, E=0, new2(X,Y,E).

whose model is used to verify whether or not p is safe. Since the program contains no
constrained fact, we have that M(SpSMC) is empty, and thus p is safe.

In [16], the interpreter is specialized w.r.t. the input program and a static analyser
for CLP programs is used to derive relations among variables occurring in the imperative
program. In our method, we discover these relations during the specialization process by
means of generalization techniques defined in terms of relations and operators on constraints
such as widening, convex-hull, and well-quasi orders.

5 Preliminary results accomplished

We have implemented our software model checking method using the MAP transformation
system [14] for the verification engine module and the Lex and Yacc tools for the front-end
module (it is currently being rewritten in CIL). We have shown the effectiveness of our method
by applying it to some examples (available at http://map.uniroma2.it/smc) taken from the
literature [9, 10], and we have compared its performance with that of ARMC and TRACER.
Among the wide variety of software model checkers nowadays available, we choose ARMC
and TRACER because they provide CLP based implementations of two dual verification
approaches: ARMC starts with a very coarse abstraction and uses counterexamples to
increase the level of details of the model and, conversely, TRACER starts with a very detailed
model and uses counterexamples to abstract away as many details as possible and, possibly,
refines it if the model is too coarse to prove the property. Our preliminary results (see
Table 1) show that our approach is viable and competitive in practice.

Table 1 Time (in seconds) for performing model checking (TRACER was run by using the option
–intp wp). ⊥ denotes ‘terminating with error’, ∞ means ‘No answer within 20 minutes’.

Tool f2 substring daggerP seesaw tracerP interp widen selectSort
ARMC ∞ 719.39 ∞ 3.98 ∞ 0.13 ∞ 0.48
TRACER 1.35 227.28 1.27 1.46 1.04 1.32 1.35 ⊥
MAP 0.21 10.20 5.37 0.03 0.03 0.06 0.07 0.06

6 Open issues and expected achievements

A challenging issue is the extension of our framework to deal with more complex language
features provided by imperative languages such as arrays, lists, procedure calls, and concur-
rency. Moreover, since it is possible to deal with imperative languages at different levels of
abstraction, it would be interesting to extend the framework to verify properties of both:
(i) high-level languages with object-oriented features, such as Java, PHP, Objective C or
C# [13], and (ii) low-level languages such as bytecode for Java [1] or for the .NET platform [3].
From the verification point of view, such extensions would require the design of suitable
interpreters for handling the newly introduced language features, posing new theoretical and
experimental challenges.

ICLP’12

http://map.uniroma2.it/smc

444 Software Model Checking by Program Specialization

Another challenging issue is the extension of the set of properties which can be proved. In
Section 3 we listed some interesting properties depending on the content of data structures,
the relations among objects and among classes, and the behavior of concurrent processes.
Handling these properties not only requires the investigation of suitable logics in which
they may be expressed, but also raises the issue of integrating them into the verification
process. In particular, it could be necessary to resort to more sophisticated logic program
transformations based on the unfold/fold method.

References
1 E. Albert, M. Gómez-Zamalloa, L. Hubert, and G. Puebla. Verification of Java bytecode

using analysis and transformation of logic programs. In Proc. of PADL’07, volume 4354 of
LNCS, pp. 124–139, 2007.

2 P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction of approximation of fixpoints. In Proc. of POPL’77,
pp. 238–252. ACM Press, 1977.

3 P. Cousot, R. Cousot, and F. Logozzo. A parametric segmentation functor for fully auto-
matic and scalable array content analysis. In Proc. of POPL’11, pp. 105–118, 2011.

4 G. Delzanno and A. Podelski. Model checking in CLP. In Proc. of TACAS’99, LNCS 1579,
pp. 223–239, 1999.

5 S. Etalle and M. Gabbrielli. Transformations of CLP modules. Theoretical Computer
Science, 166:101–146, 1996.

6 F. Fioravanti, A. Pettorossi, and M. Proietti. Verifying CTL Properties of Infinite State
Systems by Specializing Constraint Logic Programs. In Proc. of VCL’01, pp. 85-96. Revised
and extended Version: Technical Report R.657, IASI - CNR, 2007, Roma, Italy.

7 F. Fioravanti, A. Pettorossi, M. Proietti, and V. Senni. Improving Reachability Analysis
of Infinite State Systems by Specialization. In Proc. of RP’11, pp. 165–179, 2011.

8 C. Flanagan. Automatic software model checking via constraint logic. Sci. Comput. Pro-
gram., 50(1-3):253–270, March 2004.

9 B. S. Gulavani, S. Chakraborty, A. V. Nori, and S. K. Rajamani. Automatically Refining
Abstract Interpretations. In Proc. of TACAS’08, LNCS 4963, pp. 443–458, 2008.

10 J. Jaffar, J. A. Navas, and A. E. Santosa. TRACER: A symbolic execution tool for verifi-
cation. http://paella.d1.comp.nus.edu.sg/tracer/.

11 J. Jaffar, J. A. Navas, and A. E. Santosa. Symbolic execution for verification. Computing
Research Repository, 2011.

12 R. Jhala and R. Majumdar. Software model checking. ACM Comput. Surv., 41(4):21:1–
21:54, October 2009.

13 G.T. Leavens, K. R. M. Leino, and P. Müller. Specification and verification challenges for
sequential object-oriented programs. Form. Asp. Comput., 19(2):159–189, June 2007.

14 The MAP transformation system. http://www.map.uniroma2.it/mapweb.
15 U. Nilsson and J. Lübcke. Constraint logic programming for local and symbolic model-

checking. In Proc. of CL 2000, LNAI 1861, pp. 384–398, 2000.
16 J. C. Peralta, J. P. Gallagher, and H. Saglam. Analysis of imperative programs through

analysis of constraint logic programs. In Proc. of SAS’98, LNCS 1503, pp. 246–261,1998.
17 A. Podelski and A. Rybalchenko. ARMC: The logical choice for software model checking

with abstraction refinement. In Proc. of PADL’07, LNCS 4354, pp. 245–259, 2007.

http://paella.d1.comp.nus.edu.sg/tracer/
http://www.map.uniroma2.it/mapweb

	Introduction and problem statement
	Background and overview of the existing literature
	Goal of the research
	Current status of the research
	Preliminary results accomplished
	Open issues and expected achievements

