
An Answer Set Solver for non-Herbrand Programs:
Progress Report
Marcello Balduccini1

1 Kodak Research Laboratories
Eastman Kodak Company
Rochester, NY 14650-2102 USA
marcello.balduccini@gmail.com

Abstract
In this paper we propose an extension of Answer Set Programming (ASP) by non-Herbrand
functions, i.e. functions over non-Herbrand domains, and describe a solver for the new language.
Our approach stems for our interest in practical applications, and from the corresponding need
to compute the answer sets of programs with non-Herbrand functions efficiently. Our extension
of ASP is such that the semantics of the new language is obtained by a comparatively small
change to the ASP semantics from [8]. This makes it possible to modify a state-of-the-art ASP
solver in an incremental fashion, and use it for the computation of the answer sets of (a large
class of) programs of the new language. The computation is rather efficient, as demonstrated by
our experimental evaluation.

1998 ACM Subject Classification I.2.4 Knowledge Representation Formalisms and Methods

Keywords and phrases Answer Set Programming, non-Herbrand Functions, Answer Set Solving,
Knowledge Representation and Reasoning

Digital Object Identifier 10.4230/LIPIcs.ICLP.2012.49

1 Introduction

In this paper we describe an extension of Answer Set Programming (ASP) [8, 12, 2] called
ASP{f}, and a solver for the new language.

In logic programming, functions are typically interpreted over the Herbrand Universe, with
each functional term f(x) mapped to its own canonical syntactical representation. That is,
in most logic programming languages, the value of an expression f(x) is f(x) itself, and thus
strictly speaking f(x) = 2 is false. This type of functions, the corresponding languages and
efficient implementation of solvers is the subject of a substantial amount of research (we refer
the reader to e.g. [5, 3, 13]).

When representing certain kinds of knowledge, however, it is sometimes convenient to use
functions with non-Herbrand domains (non-Herbrand functions for short), i.e. functions
that are interpreted over domains other than the Herbrand Universe. For example, when
describing a domain in which people enter and exit a room over time, it may be convenient
to represent the number of people in the room at step s by means of a function occupancy(s)
and to state the effect of a person entering the room by means of a statement such as

occupancy(S + 1) = O + 1← occupancy(S) = O

where S is a variable ranging over the possible time steps in the evolution of the domain.
© Marcello Balduccini;
licensed under Creative Commons License ND

Technical Communications of the 28th International Conference on Logic Programming (ICLP’12).
Editors: A. Dovier and V. Santos Costa; pp. 49–60

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICLP.2012.49
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

50 An Answer Set Solver for non-Herbrand Programs: Progress Report

Of course, in most logic programming languages, non-Herbrand functions can still be
represented, but the corresponding encodings are not as natural and declarative as the one
above. For instance, a common approach consists in representing the functions of interest
using relations, and then characterizing the functional nature of these relations by writing
auxiliary axioms. In ASP, one would encode the above statement by (1) introducing a
relation occupancy′(s, o), whose intuitive meaning is that occupancy′(s, o) holds iff the value
of occupancy(s) is o; and (2) re-writing the original statement as a rule

occupancy′(S + 1, O + 1)← occupancy′(S,O). (1)

The characterization of the relation as representing a function would be completed by an
axiom such as

¬occupancy′(S,O′)← occupancy′(S,O), O 6= O′. (2)

which intuitively states that occupancy(s) has a unique value. The disadvantage of this
representation is that the functional nature of occupancy′(s, o) is only stated in (2). When
reading (1), one is given no indication that occupancy′(s, o) represents a function – and, before
finding statements such as (2), one can make no assumption about the functional nature
of the relations in a program when a combination of (proper) relations and non-Herbrand
functions are present.

Various extensions of ASP with non-Herbrand functions exist in the literature. In [4],
Quantified Equilibrium Logic is extended with support for equality. A subset of the general
language, called FLP, is then identified which can be translated into normal logic programs.
Such translation makes it possible to compute the answer sets of FLP programs using
ASP solvers. [10] proposes instead the use of second-order theories for the definition of the
semantics of the language. Again, a transformation is described, which removes non-Herbrand
functions and makes it possible to use ASP solvers for the computation of the answer sets
of programs in the extended language. In [11, 14] the semantics is based on the notion
of reduct as in the original ASP semantics [8]. For the purpose of computing answer sets,
a translation is defined, which maps programs of the language from [11, 14] to constraint
satisfaction problems, so that CSP solvers can be used for the computation of the answer
sets of programs in the extended language. Finally, the language of clingcon [7] extends
ASP with elements from constraint satisfaction. The clingcon solver finds the answer sets
of a program by interleaving the computations of an ASP solver and of a CSP solver.

Our investigation stems for our interest in practical applications, and in particular from the
need for a knowledge representation language with non-Herbrand functions that can be used
for such applications and that allows for an efficient computation of answer sets. From this
point of view, the existing approaches have certain limitations.

The transformations to constraint satisfaction problems used in [11, 14] certainly allow for
an efficient computation of answer sets using constraint solving techniques, as demonstrated
by the experimental results in [14]. On the other hand, the recent successes of CDCL-based
solvers (see e.g. [9]) such as clasp [6] have shown that for certain domains CSP solvers
perform poorly compared to CDCL-based solvers. For practical applications it is therefore
important to ensure the availability of a CDCL-based solver as well. Furthermore, as observed
in [4], the requirement made in [11, 14] that non-Herbrand functions be total yields some
counterintuitive results in certain knowledge representation tasks, which, from our point
of view, limits the practical applications of the language. This arguments also holds for

M. Balduccini 51

clingcon. An additional limitation of clingcon is the fact that the interleaved computation
it performs carries some overhead.

In both [4] (where functions are partial) and [10] (where functions are total) the computation
of the answer sets of a program is obtained by translating the program into a normal logic
program, and then using state-of-the-art ASP solving techniques and solvers. Unfortunately,
in both cases the translation to normal logic programs causes a substantial growth of the
size of the translated (ground) program compared to the original (ground) program. Two,
similar and often concurrent reasons exist for this growth. First of all, when a non-Herbrand
function is removed and replaced by a relation-based representation, axioms that ensure
the uniqueness of value of the function have to be introduced. In [4], for example, when a
function f(·) is removed, the following constraint is introduced:

← holds_f(X,V), holds_f(X,W), V 6= W. (3)

As usual, before an ASP solver can be used, this constraint must in turn be replaced by its
ground instances, obtained by substituting every variable in it by a constant. This process
causes the appearance of |Df |2 · |Cf | ground instances, where Df and Cf are respectively the
domain and the co-domain of function f . In the presence of functions with a sizable domain
and/or co-domain, the number of ground instances of (3) can grow quickly and impact the
performance of the solver rather substantially. Secondly, certain syntactic elements of these
extended languages, once mapped to normal logic programs, can also yield translations with
large ground instances. Taking again [4] as an example (the transformation in [10] appears
to follow the same pattern), consider the FLP rule:

p(x)← f(x) # g(x). (4)

which intuitively says that p(x) must hold if f and g are defined for x and have different
values. During the transformation to normal logic programs, this rule is translated into:

p(x)← Y 6= Z, holds_f(x, Y), holds_g(x, Z).

Similarly to the previous case, the number of ground instances of this rule grows proportionally
with |Df |2, and in the presence of non-Herbrand functions with sizable domains, solver
performance can be affected quite substantially. Although one might argue that it is possible
to modify an ASP solver to guarantee that (3) is enforced without the need to explicitly
specify it in the program, such a solution is unlikely to be applicable in the case of an
arbitrary rule such as (4).

In response to these issues, in this paper we define an extension of ASP with non-Herbrand
functions, called ASP{f}, that is obtained with a comparatively small modification to the
semantics from [8]. The nature of this change makes it possible to modify a state-of-the-art
ASP solver in an incremental fashion, and to use it directly for the computation of the answer
sets of (a large class of) ASP{f} programs. This prevents the phenomenon of the quadratic
growth of the ground instance described above and results in a rather efficient computation,
as demonstrated later in the paper.

The rest of the paper is organized as follows. The next two sections describe the syntax
and the semantics of the proposed language. In the following section we discuss the topic of
knowledge representation with non-Herbrand functions. Next, we describe our ASP{f} solver
and report experimental results. Finally, we draw conclusions and discuss future work.

ICLP’12

52 An Answer Set Solver for non-Herbrand Programs: Progress Report

2 The Syntax of ASP{f}

In this section we define the syntax of ASP{f}. To keep the presentation simple, in this
paper the version of ASP{f} described here does not allow for Herbrand functions, and thus
from now on we drop the “non-Herbrand” attribute. (Allowing for Herbrand functions is
straightforward.)

The syntax of ASP{f} is based on a signature Σ = 〈C,F ,R〉 whose elements are, respectively,
finite sets of constants, function symbols and relation symbols. A term is an expression
f(c1, . . . , cn) where f ∈ F , and ci’s are 0 or more constants. An atom is an expression
r(c1, . . . , cn), where r ∈ R, and ci’s are constants. The set of all terms (resp., atoms) that can
be formed from Σ is denoted by T (resp., A). A t-atom is an expression of the form f = g,
where f is a term and g is either a term or a constant. We call seed t-atom a t-atom of the
form f = v, where v is a constant. Any t-atom that is not a seed t-atom is a dependent t-atom.
Thus, given a signature with C = {a, b, 0, 1, 2, 3, 4} and F = {occupancy, seats}, expressions
occupancy(a) = 2 and seats(b) = 4 are seed t-atoms, while occupancy(b) = seats(b) is a
dependent t-atom.

A regular literal is an atom a or its strong negation ¬a. A t-literal is a t-atom f = g or its
strong negation ¬(f = g), which we abbreviate f 6= g. A dependent t-literal is any t-literal that
is not a seed t-atom. A literal is a regular literal or a t-literal. A seed literal is a regular literal
or a seed t-atom. Given a signature with R = {room_evacuated}, F = {occupancy, seats}
and C = {a, b, 0, . . . , 4}, room_evacuated(a), ¬room_evacuated(b) and occupancy(a) = 2
are seed literals (as well as literals); room_evacuated(a) and ¬room_evacuated(b) are also
regular literals; occupancy(b) 6= 1 and occupancy(b) = seats(b) are dependent t-literals, but
they are not regular or seed literals.

A rule r is a statement of the form:

h← l1, . . . , lm,not lm+1, . . . ,not ln (5)

where h is a seed literal and li’s are literals. Similarly to ASP, the informal reading of r
is that a rational agent who believes l1, . . . , lm and has no reason to believe lm+1, . . . , ln
must believe h. Given a signature with R = {room_evacuated, door_stuck, room_occupied,
room_maybe_occupied}, F = {occupancy} and C = {0}, the following is an example of
ASP{f} rules encoding knowledge about the occupancy of a room:

r1 : occupancy = 0← room_evacuated, not door_stuck.

r2 : room_occupied← occupancy 6= 0.

r3 : room_maybe_occupied← not occupancy = 0.

Intuitively, rule r1 states that the occupancy of the room is 0 if the room has been evacuated
and there is no reason to believe that the door is stuck. Rule r2 says that the room is
occupied if its occupancy is different from 0. On the other hand, r3 aims at drawing a weaker
conclusion, stating that the room may be occupied if there is no explicit knowledge (i.e.
reason to believe) that its occupancy is 0.

Given rule r from (5), head(r) denotes {h}; body(r) denotes {l1, . . . ,not ln}; pos(r) denotes
{l1, . . . , lm}; neg(r) denotes {lm+1, . . . , ln}.

A constraint is a special type of rule with an empty head, informally meaning that the
condition described by the body of the constraint must never be satisfied. A constraint is
considered a shorthand of ⊥ ← l1, . . . , lm,not lm+1, . . . ,not ln,not ⊥, where ⊥ is a fresh
atom.

M. Balduccini 53

A program is a pair Π = 〈Σ, P 〉, where Σ is a signature and P is a set of rules. Whenever
possible, in this paper the signature is implicitly defined from the rules of Π, and Π is
identified with its set of rules. In that case, the signature is denoted by Σ(Π) and its elements
by C(Π), F(Π) and R(Π). A rule r is positive if neg(r) = ∅. A program Π is positive if every
r ∈ Π is positive. A program Π is also t-literal free if no t-literals occur in the rules of Π.

Like in ASP, in ASP{f} too variables can be used in place of constants and terms. The
grounding of a rule r is the set of all the syntactically valid rules (its ground instances)
obtained by replacing every variable of r with an element of C. The grounding of a program
Π is the set of the groundings of the rules of Π. A syntactic element of the language is ground
if it is variable-free and non-ground otherwise.

3 Semantics of ASP{f}

The semantics of a non-ground program is defined to coincide with the semantics of its
grounding. The semantics of ground ASP{f} programs is defined below. It is worth noting
that the semantics of ASP{f} is obtained from that of ASP in [8] by simply extending
entailment to t-literals.

In the rest of this section, we consider only ground terms, literals, rules and programs and
thus omit the word “ground.” A set S of seed literals is consistent if (1) for every atom a ∈ A,
{a,¬a} 6⊆ S; (2) for every term t ∈ T and v1, v2 ∈ C such that v1 6= v2, {t = v1, t = v2} 6⊆ S.
Hence, S1 = {p,¬q, f = 3} and S2 = {q, f = 3, g = 2} are consistent, while {p,¬p, f = 3}
and {q, f = 3, f = 2} are not. Incidentally, {p,¬q, f = g, g = 2} is not a set of seed literals,
because f = g is not a seed literal.

The value of a term t w.r.t. a consistent set S of seed literals (denoted by valS(t)) is v iff
t = v ∈ S. If, for every v ∈ C, t = v 6∈ S, the value of t w.r.t. S is undefined. The value
of a constant v ∈ C w.r.t. S (valS(v)) is v itself. For example given S1 and S2 as above,
valS2(f) is 3 and valS2(g) is 2, whereas valS1(g) is undefined. Given S1 and a signature with
C = {0, 1}, valS1(1) = 1.

A seed literal l is satisfied by a consistent set S of seed literals iff l ∈ S. A dependent t-literal
f = g (resp., f 6= g) is satisfied by S iff both valS(f) and valS(g) are defined, and valS(f) is
equal to valS(g) (resp., valS(f) is different from valS(g)). Thus, seed literals q and f = 3
are satisfied by S2; f 6= g is also satisfied by S2 because valS2(f) and valS2(g) are defined,
and valS2(f) is different from valS2(g). Conversely, f = g is not satisfied, because valS2(f)
is different from valS2(g). The t-literal f 6= h is also not satisfied by S2, because valS2(h)
is undefined. When a literal l is satisfied (resp., not satisfied) by S, we write S |= l (resp.,
S 6|= l).

An extended literal is a literal l or an expression of the form not l. An extended literal not l
is satisfied by a consistent set S of seed literals (S |= not l) if S 6|= l. Similarly, S 6|= not l if
S |= l. Considering set S2 again, extended literal not f = h is satisfied by S2, because f = h

is not satisfied by S2.

Finally, a set E of extended literals is satisfied by a consistent set S of seed literals (S |= E)
if S |= e for every e ∈ E.

We begin by defining the semantics of ASP{f} programs for positive programs.

A set S of seed literals is closed under positive rule r if S |= h, where head(r) = {h},
whenever S |= pos(r). Hence, set S2 described earlier is closed under f = 3 ← g 6= 1 and

ICLP’12

54 An Answer Set Solver for non-Herbrand Programs: Progress Report

(trivially) under f = 2← r, but it is not closed under p← f = 3, because S2 |= f = 3 but
S2 6|= p. S is closed under Π if it is closed under every rule r ∈ Π.

Finally, a set S of seed literals is an answer set of a positive program Π if it is consistent and
closed under Π, and is minimal (w.r.t. set-theoretic inclusion) among the sets of seed literals
that satisfy such conditions. Thus, the program {p← f = 2. f = 2. q ← q.} has one
answer sets, {f = 2, p}. The set {f = 2} is not closed under the first rule of the program, and
therefore is not an answer set. The set {f = 2, p, q} is also not an answer set, because it is not
minimal (it is a proper superset of another answer set). Notice that positive programs may
have no answer set. For example, the program {f = 3← not p. f = 2← not q.} has
no answer set. Programs that have answer sets (resp., no answer sets) are called consistent
(resp., inconsistent).

Positive programs enjoy the following property:
I Proposition 1. Every consistent positive ASP{f} program Π has a unique answer set.

Next, we define the semantics of arbitrary ASP{f} programs.

The reduct of a program Π w.r.t. a consistent set S of seed literals is the set ΠS consisting
of a rule head(r) ← pos(r) (the reduct of r w.r.t. S) for each rule r ∈ Π for which
S |= body(r) \ pos(r).

I Example 1. Consider a set of seed literals S3 = {g = 3, f = 2, p, q}, and program Π1:

r1 : p← f = 2,not g = 1,not h = 0. r2 : q ← p,not g 6= 2.
r3 : g = 3. r4 : f = 2.

and let us compute its reduct. For r1, first we have to check if S3 |= body(r1) \ pos(r1),
that is if S3 |= not g = 1,not h = 0. Extended literal not g = 1 is satisfied by S3 only
if S3 6|= g = 1. Because g = 1 is a seed literal, it is satisfied by S3 if g = 1 ∈ S3. Since
g = 1 6∈ S3, we conclude that S3 6|= g = 1 and thus not g = 1 is satisfied by S3. In a similar
way, we conclude that S3 |= not h = 0. Hence, S3 |= body(r1)\pos(r1). Therefore, the reduct
of r1 is p← f = 2. For the reduct of r2, notice that not g 6= 2 is not satisfied by S3. In fact,
S3 |= not g 6= 2 only if S3 6|= g 6= 2. However, it is not difficult to show that S3 |= g 6= 2:
in fact, valS3(g) is defined and valS3(g) 6= 2. Therefore, not g 6= 2 is not satisfied by S3,
and thus the reduct of Π1 contains no rule for r2. The reducts of r3 and r4 are the rules
themselves. Summing up, ΠS3

1 is {r′1 : p← f = 2, r′3 : g = 3, r′4 : f = 2}

Finally, a consistent set S of seed literals is an answer set of Π if S is the answer set of ΠS .

I Example 2. By applying the definitions given earlier, it is not difficult to show that an
answer set of ΠS3

1 is {f = 2, g = 3, p} = S3. Hence, S3 is an answer set of ΠS3
1 . Consider

instead S4 = S3 ∪ {h = 1}. Clearly ΠS4
1 = ΠS3

1 . From the uniqueness of the answer sets of
positive programs, it follows immediately that S4 is not an answer set of ΠS4

1 . Therefore, S4
is not an answer set of Π1.

4 Knowledge Representation with ASP{f}

In this section we demonstrate the use of ASP{f} for the formalization of key types of
knowledge. We start our discussion by addressing the encoding of defaults.

Consider the statements: (1) the value of f(x) is a unless otherwise specified; (2) the value of
f(x) is b if p(x) (this example is similar to, and inspired by, one from [10]). These statements

M. Balduccini 55

can be encoded in ASP{f} by P1 = {r1 : f(x) = a← not f(x) 6= a., r2 : f(x) = b← p(x).}.
Rule r1 encodes the default, and r2 encodes the exception. The informal reading of r1,
according to the description given earlier in this paper, is “if there is no reason to believe
that f(x) is different from a, then f(x) must be equal to a”.

Extending a common ASP methodology, the choice of value for a non-Herbrand function can
be encoded in ASP{f} by means of default negation. Consider the statements (adapted from
[10]): (1) the value f(X) is a if p(X); (2) otherwise, the value of f(X) is arbitrary. Let the
domain of variable X be given by a relation dom(X), and let the possible values of f(X) be
encoded by a relation val(V). A possible ASP{f} encoding of these statements is {r1 : f(X) =
a ← p(X), dom(X)., r2 : f(X) = V ← dom(X), val(V), not p(X), not f(X) 6= V.}.
Rule r1 encodes the first statement. Rule r2 formalizes the arbitrary selection of values for
f(X) in the default case.

A similar use of defaults is typically associated, in ASP, with the representation of dynamic
domains. In this case, defaults are a key tool for the encoding of the law of inertia. Let us
show how dynamic domains involving functions can be represented in ASP{f}. Consider a
domain including a button bi, which increments a counter c, and a button br, which resets
it. At each time step, the agent operating the buttons may press either button, or none. A
possible ASP{f} encoding of this domain is:

r1 : val(c, S + 1) = 0← pressed(br, S).
r2 : val(c, S + 1) = N + 1← pressed(bi, S), val(c, S) = N.

r3 : val(c, S + 1) = N ← val(c, S) = N, not val(c, S + 1) 6= val(c, S).

Rules r1 and r2 are a straightforward encoding of the effect of pressing either button (variable
S denotes a time step). Rule r3 is the ASP{f} encoding of the law of inertia for the value
of the counter, and states that the value of c does not change unless it is forced to. For
simplicity of presentation, it is instantiated for a particular function, but could be as easily
written so that it applies to arbitrary functions from the domain.

Formal results about ASP{f} that are useful for knowledge representation tasks can be found
in [1].

5 Computing the Answer Sets of ASP{f} Programs

In this section we describe an algorithm, clasp{f}, which computes the answer sets of ASP{f}
programs. Although clasp{f} is based on the clasp algorithm [6], the approach can be
easily extended to other ASP solvers. In our description we follow the notation of [6], to
which the interested reader can refer for more details on the clasp algorithm.

As customary, the algorithm operates on ground programs. To keep the presentation simple,
we further assume that every program Π considered in this section contains, for every atom a

from Π, a constraint ← a,¬a (usually this constraint is added automatically by the solver).

Given a literal l, a signed literal is an expression of the form Tl or Fl. Given a signed literal
σ, σ, called the complement of σ, denotes Fl if σ is Tl, and Tl otherwise. An assignment A
over some domain D is a sequence 〈σ1, . . . , σn〉 of signed literals for literals from D. The
domain of A is denoted by dom(A). The expression A ◦ B denotes the concatenation of
assignments A and B. For an assignment A, we denote by AT the set of literals l such that
Tl occurs in A; AF is instead the set of literals l such that Fl occurs in A.

A nogood is a set {σ1, . . . , σn} of signed literals. An assignment A is a solution for a set ∆ of
nogoods if (1) AT ∪AF = dom(A); (2) AT ∩AF = ∅; and (3) for every δ ∈ ∆, δ 6⊆ A. Given

ICLP’12

56 An Answer Set Solver for non-Herbrand Programs: Progress Report

a nogood δ, a signed literal σ ∈ δ and an assignment A, σ is called unit-resulting for δ w.r.t.
A if δ \A = {σ} and σ 6∈ A. Unit propagation is the process of iteratively extending A with
unit-resulting signed literals until no signed literal is unit-resulting for any nogood in ∆.

At the core of the computation of the answer sets of a program in clasp{f} is the process of
mapping the program to a suitable set of nogoods. Such mapping is described next, beginning
with the nogoods already used in clasp.

Given a program Π, let lit(Π) be the set of literals that occur in Π, seed(Π) the set of
seed literals that occur in Π, and body(Π) be the collection of the bodies of the rules of Π.
Furthermore, let the expression body(l) denote the set of rules of Π whose head is l.

Given a rule’s body β = {l1, . . . , lm,not lm+1, . . . ,not ln}, the expression δ(β) denotes the
nogood {Fβ,Tl1, . . . ,Tlm,Flm+1, . . . ,Fln}. The expression ∆(β) denotes instead the set of
nogoods {{{Tβ,Fl1}, . . . , {Tβ,Flm}, {Tβ,Tlm+1}, . . . , {Tβ,Tln}}}.

Next, given a literal l such that body(l) = {β1, . . . , βk}, the expression ∆(l) denotes the set
of nogoods {{Fl,Tβ1}, . . . , {Fl,Tβk}}. Finally, δ(l) = {Tl,Fβ1, . . . ,Fβk}.

Given a program Π, let ∆Π denote {{δ(β) |β ∈ body(Π)} ∪ {δ ∈ ∆(β) |β ∈ body(Π)} ∪
{δ(l) | l ∈ seed(Π)} ∪ {δ ∈ ∆(l) | l ∈ lit(Π)}}. Intuitively, in ∆Π, δ(l) is applied only to seed
t-atoms because dependent t-literals do not occur in the head of rules.

It can be shown [6] that ∆Π can be used to find the answer sets of tight, t-literal free,
programs. To find the answer sets of non-tight programs, one needs to introduce loop nogoods.
For a program Π and some U ⊆ lit(Π), expression EBΠ(U) denotes the collection of the
external bodies of U , i.e. {body(r) | r ∈ Π, head(r) ∈ U, body(r) ∩ U = ∅}. Given a literal
l ∈ U and EBΠ(U) = {β1, . . . , βk}, the loop nogood of l is λ(l, U) = {Fβ1, . . . ,Fβk,Tl}. The
set of loop nogoods for program Π is ΛΠ =

⋃
U⊆lit(Π),U 6=∅{λ(l, U) | l ∈ U}. The following

property follows from a similar result from [6]:

I Theorem 3. For every ASP{f} program Π that contains no dependent t-literals, X ⊆ lit(Π)
is an answer set of Π iff X = AT ∩ lit(Π) for a solution A for ∆Π ∪ ΛΠ.

Next, we introduce nogoods for the computation of the answer sets of programs containing
dependent t-literals. Given a dependent t-literal l of the form f = g (resp., f 6= g), a pair of
seed t-atoms f = v and g = w formed from Σ(Π) is a satisfying pair for l if v = w (resp.,
v 6= w) and a falsifying pair for l otherwise. Let {〈f = v1, g = w1〉, . . . 〈f = vk, g = wk〉} be
the set of satisfying pairs for l. The expression ρ+(l) denotes the set of nogoods {{Fl,Tf =
v1,Tg = w1}, . . . , {Fl,Tf = vk,Tg = vk}}. Let {〈f = v1, g = w1〉, . . . 〈f = vk, g = wk〉} be
the set of falsifying pairs for l. The expression ρ−(l) denotes the set of nogoods {{Tl,Tf =
v1,Tg = w1}, . . . , {Tl,Tf = vk,Tg = vk}}. Intuitively the nogoods in ρ+(l) and ρ−(l)
enforce the truth or falsity of a dependent t-literal when suitable seed t-atoms are true.

Finally, given a dependent t-literal l, let terms(l) denote the set of terms that occur in l, and,
for every term f that occurs in l, let rel(f) denote the set of seed t-atoms of the form f = v

for some v ∈ C(Π). Intuitively rel(f) is the set of seed t-atoms that are relevant to the value of
term f . The expression κ(l) denotes the set of nogoods

⋃
f∈terms(l)({Tl}∪{Fs | s ∈ rel(f)}).

Intuitively κ(l) states that l cannot be true if one of its terms is undefined.

Let dep(Π) be the set of dependent t-literals in a program Π. ΘΠ denotes {ρ+(l) | l ∈
dep(Π)} ∪ {ρ−(l) | l ∈ dep(Π)} ∪ {κ−(l) | l ∈ dep(Π)}.

The following condition defines a (rather large) class of ASP{f} programs whose answer sets
can be found using ΘΠ. Given a program Π, we say that Π contains a t-loop for seed t-atom

M. Balduccini 57

l if, in the dependency graph for Π, there is a positive path from l to a t-literal l′ such that
terms(l) ∩ terms(l′) 6= ∅. A program containing a t-loop is for example f = 2← f 6= 3. In
practice, for most domains from the literature there appear to be t-loop free encodings. The
following result characterizes the answer sets of t-loop free programs.

I Theorem 4. For every t-loop free ASP{f} program Π, X ⊆ seed(Π) is an answer set of Π
iff X = AT ∩ seed(Π) for a solution A for ∆Π ∪ ΛΠ ∪ΘΠ.

From a high-level perspective, in the clasp algorithm the answer sets of ASP programs are
computed by iteratively (1) performing unit propagation on the nogoods for the program
and (2) non-deterministically assigning a truth value to a signed literal. Unfortunately,
performing unit propagation on the nogoods in ΘΠ is inefficient, because in the worst case
sets ρ+(l) and ρ−(l) exhibit quadratic growth. However, the conditions expressed by those
nogoods can be easily checked algorithmically. Let value(f,A) be a function that returns v
if signed literal Tf = v occurs in assignment A. Given A and a dependent t-literal f = g,
unit propagation on ρ+(f = g) can be performed by checking if value(f,A) = value(g,A)
and, if so, by adding Tf = g to A. A similar approach applies to the unit propagation for
the other elements of ΘΠ.

Using this technique, unit propagation on the nogoods of ΘΠ can be performed in constant
time w.r.t. the number of seed t-atoms in the program. (The reader may be wondering
about the cases such as the one in which the truth of Tf = v together with value(f,A) can
be used to infer value(g,A). It can be shown that support for this type of scenario can be
dropped without affecting the soundness and completeness of the solver.)

Function fLocalPropagation(Π,∇, A), shown below, iteratively augments the result
of unit propagation from clasp’s function LocalPropagation(Π,∇, A) with the unit-
resulting dependent t-literals derived from ΘΠ. The iterations continue until a fixpoint is
reached. (Function LocalPropagation(Π,∇, A) in clasp computes a fixpoint of unit
propagation by adding to assignment A the unit-resulting literals derived from nogoods in
∆Π and in ∇.)

Function: fLocalPropagation
Input: program Π, set ∇ of nogoods, assignment A
Output: an extended assignment and a set of nogoods
U ← ∅
loop

B ← LocalPropagation(Π,∇, A)
A← LocalPropagationΘ(Π,∇, B)
if A = B then return A

The algorithm for nogood propagation from [6] is modified by replacing the call to Lo-
calPropagation by a call to fLocalPropagation. The main algorithm of clasp{f} is
obtained in a similar way from algorithm cdnl-asp from [6].

6 Experimental Results

To evaluate the performance of the clasp{f} algorithm, we have compared it with the method
for computing the answer sets of programs with non-Herbrand functions used in [4] and
[10]. In that method, given a program Π with non-Herbrand functions, (1) all occurrences of

ICLP’12

58 An Answer Set Solver for non-Herbrand Programs: Progress Report

t-literals are replaced by regular ASP literals (e.g. f = g is replaced by eq(f, g)), and (2)
suitable equality and inequality axioms are added to Π. The answer sets of the resulting
program are then computed using an ASP solver. It can be shown that the answer sets of
the translation encode the answer sets of Π.

For our comparison we have chosen a planning task in which an agent starts at (0, 0) on a
n × n grid and has the goal of reaching a given position in k steps. The agent can move
either up or to the right, by one cell at a time. Concurrent actions are not allowed. To make
the task more challenging, the goal position is chosen so that the minimum number of actions
needed to achieve the goal is equal to number of steps k. This domain has been selected
because, in our experience on practical applications of ASP, solver performance decreases
rapidly when parameter n is increased. This decrease in performance is due to the growth
in the size of the grounding of the inertia axiom, and we are aware of no general-purpose
technique to alleviate this issue in ASP programs.

The ASP{f} formalization, ΠASP{f} is show below. Constants k and n are specified at
run-time. Symbol / used in the second-to-last rule denotes integer division in the dialect of
clasp.

step(0..k). loc(0..n− 1). posx(0) = 0. posy(0) = 0.

posx(S + 1) = X + 1←
step(S), step(S + 1), loc(X), loc(X + 1), posx(S) = X, o(plusx, S).

← o(plusx, S), posx(S) = n− 1.

posy(S + 1) = Y + 1←
step(S), step(S + 1), loc(Y), loc(Y + 1), posy(S) = Y, o(plusy, S).

← o(plusy, S), posy(S) = n− 1.

posx(S + 1) = X ←
step(S), step(S + 1), loc(X), posx(S) = X, not posx(S + 1) 6= posx(S).

posy(S + 1) = Y ←
step(S), step(S + 1), loc(Y), posy(S) = Y, not posy(S + 1) 6= posy(S).

1{o(plusx, S), o(plusy, S)}1← step(S), S < k.

goal← posx(k) = k/2, posy(k) = k − k/2.

← not goal.

Program ΠASP, omitted to save space, is an ASP encoding of the problem obtained by
the usual formalization techniques; it is also equivalent, modulo renaming and reification
of relations, to the translation of the formalizations in the languages of [4] and [10]. Table
1 shows a comparison of the time, in seconds, to find one answer set using ΠASP{f} and
using ΠASP. The results have been obtained for various values of parameters k and n. As
the table shows, the time for ΠASP{f} is consistently more than an order of magnitude
better than of ΠASP, even though the code for the support of non-Herbrand functions in the
implementation of clasp{f} is still largely unoptimized. The clasp{f} solver used here is an
extension of clingo 2.0.2. To ensure the fairness of the comparison, the answer sets of the
ASP encoding have been computed using clingo 2.0.2. The experiments were performed
on a computer with an Intel Q6600 processor at 2.4GHz, 1.5GB RAM and Linux Fedora
Core 11.

7 Conclusions and Future Work

In this paper we have defined the syntax and semantics of an extension of ASP by non-
Herbrand functions. Although the semantics of our language is a comparatively small
modification of the semantics of ASP from [8], it allows for an efficient implementation in

M. Balduccini 59

Table 1 Performance comparison between ΠASP{f} + clasp{f} and ΠASP + clingo.

k = 3 k = 5 k = 7
n ΠASP{f} ΠASP ΠASP{f} ΠASP ΠASP{f} ΠASP

100 0.000 0.045 0.011 0.063 0.018 0.108
200 0.016 0.282 0.044 0.467 0.076 0.555
500 0.115 1.919 0.212 3.149 0.458 4.530

1000 0.513 8.273 1.012 13.787 1.766 21.432
1500 1.203 21.300 2.515 37.024 4.626 56.341
2000 2.429 43.092 4.283 70.591 7.712 103.737

ASP solvers, as demonstrated by our experimental comparison with the solving techniques
for other languages supporting non-Herbrand functions. Although the language of [11, 14] is
also supported by an efficient solver, that solver uses CSP solving techniques rather than ASP
solving techniques. Currently, the ASP{f} solving algorithm is only applicable to a (large)
subclass of ASP{f} programs. We expect that it will be possible to extend our algorithm to
arbitrary programs by introducing additional nogoods.

References
1 Marcello Balduccini. Correct Reasoning: Essays on Logic-Based AI in Honour of Vladimir

Lifschitz, chapter 3. A “Conservative” Approach to Extending Answer Set Programming
with Non-Herbrand Functions, pages 23–39. Lecture Notes in Artificial Intelligence (LNCS).
Springer Verlag, Berlin, Jun 2012.

2 Chitta Baral. Knowledge Representation, Reasoning, and Declarative Problem Solving.
Cambridge University Press, Jan 2003.

3 Sabrina Baselice and Piero A. Bonatti. A Decidable Subclass of Finitary Programs. Journal
of Theory and Practice of Logic Programming (TPLP), 10(4–6):481–496, 2010.

4 Pedro Cabalar. Functional Answer Set Programming. Journal of Theory and Practice of
Logic Programming (TPLP), 11:203–234, 2011.

5 Francesco Calimeri, Susanna Cozza, Giovanbattista Ianni, and Nicola Leone. Enhancing
ASP by Functions: Decidable Classes and Implementation Techniques. In Proceedings of
the Twenty-Fourth Conference on Artificial Intelligence, pages 1666–1670, 2010.

6 Martin Gebser, Benjamin Kaufmann, Andre Neumann, and Torsten Schaub. Conflict-
Driven Answer Set Solving. In Manuela M. Veloso, editor, Proceedings of the Twentieth
International Joint Conference on Artificial Intelligence (IJCAI’07), pages 386–392, 2007.

7 Martin Gebser, Max Ostrowski, and Torsten Schaub. Constraint Answer Set Solving. In
25th International Conference on Logic Programming (ICLP09), volume 5649, 2009.

8 Michael Gelfond and Vladimir Lifschitz. Classical Negation in Logic Programs and Dis-
junctive Databases. New Generation Computing, 9:365–385, 1991.

9 Eugene Goldberg and Yakov Novikov. BerkMin: A Fast and Robust Sat-Solver. In Proceed-
ings of Design, Automation and Test in Europe Conference (DATE-2002), pages 142–149,
Mar 2002.

10 Vladimir Lifschitz. Logic Programs with Intensional Functions (Preliminary Report). In
ICLP11 Workshop on Answer Set Programming and Other Computing Paradigms (AS-
POCP11), Jul 2011.

11 Fangzhen Lin and Yisong Wang. Answer Set Programming with Functions. In Proceedings
of the International Conference on Principles of Knowledge Representation and Reasoning
(KR2008), pages 454–465, 2008.

ICLP’12

60 An Answer Set Solver for non-Herbrand Programs: Progress Report

12 Victor W. Marek and Miroslaw Truszczynski. The Logic Programming Paradigm: a 25-
Year Perspective, chapter Stable Models and an Alternative Logic Programming Paradigm,
pages 375–398. Springer Verlag, Berlin, 1999.

13 Tommi Syrjänen. Omega-Restricted Logic Programs. In Thomas Eiter, Wolfgang Faber,
and Miroslaw Truszczynski, editors, 6th International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR01), volume 2173 of Lecture Notes in Artificial
Intelligence (LNCS), pages 267–279. Springer Verlag, Berlin, 2001.

14 Yisong Wang, Jia-Huai You, Li-Yan Yuan, and Mingyi Zhang. Weight Constraint Programs
with Functions. In Esra Erdem, Fangzhen Lin, and Torsten Schaub, editors, 10th Inter-
national Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR09),
volume 5753 of Lecture Notes in Artificial Intelligence (LNCS), pages 329–341. Springer
Verlag, Berlin, Sep 2009.

	Introduction
	The Syntax of ASP{f}
	Semantics of ASP{f}
	Knowledge Representation with ASP{f}
	Computing the Answer Sets of ASP{f} Programs
	Experimental Results
	Conclusions and Future Work

