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Abstract
Applications of answer set programming motivated various extensions of the stable model seman-
tics, for instance, to allow aggregates or to facilitate interface with external ontology descriptions.
We present a uniform, reductive view on these extensions by viewing them as special cases of
formulas with generalized quantifiers. This is done by extending the first-order stable model se-
mantics by Ferraris, Lee and Lifschitz to account for generalized quantifiers and then by reducing
the individual extensions to this formalism.

1998 ACM Subject Classification I.2.4 Knowledge Representation Formalisms and Methods

Keywords and phrases answer set programming, stable model semantics, generalized quantifiers

Digital Object Identifier 10.4230/LIPIcs.ICLP.2012.61

1 Introduction

Applications of answer set programming motivated various recent extensions of the stable
model semantics, for instance, to allow aggregates [4, 8, 15], or to facilitate interface with
external ontology descriptions [3]. While the extensions were driven by different motivations
and applications, a common underlying issue is how to extend the stable model semantics
to incorporate “complex atoms,” such as “aggregate atoms” and “dl-atoms.”

Most extensions involve grounding. For instance, assuming that the domain is {1, 2, . . . }
the rule

q(y)← #count{x.p(x, y)} ≥ 2 (1)

can be understood as a schema for ground instances

q(1)← #count{1.p(1, 1), 2.p(2, 1), . . . } ≥ 2
q(2)← #count{1.p(1, 2), 2.p(2, 2), . . . } ≥ 2
. . .

Here y is called a “global” variable, and x is called a “local” variable. Replacing a global
variable by ground terms increases the number of rules; replacing a local variable by ground
terms increases the size of each rule.

Instead of involving grounding, in [10], a simple approach to understanding the meaning
of the count aggregate in answer set programming was provided by reduction to first-order
formulas under the stable model semantics [6, 7]. For instance, rule (1) can be understood
as the first-order formula

∀y(∃x1x2(p(x1) ∧ p(x2) ∧ ¬(x1 = x2))→ q(y)) ,

in which quantifiers are introduced to account for local variables in aggregates.
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An attempt to extend this approach to handle arbitrary nonmonotone aggregates en-
counters some difficulty, as the quantifiers ∀ and ∃, like its propositional counterpart ∧ and
∨, are “monotone.”

It is hinted in [5] that aggregates may be viewed in terms of generalized quantifiers—a
generalization of the standard quantifiers, ∀ and ∃, introduced by Mostowski [13]. We follow
up on that suggestion, and extend the stable model semantics by [7] to allow generalized
quantifiers.

It turns out that generalized quantifiers are not only useful in explaining the meaning
of arbitrary aggregates, but also useful in explaining other recent extensions of the stable
model semantics, such as nonmonotonic dl-programs [3]. This allows us to combine the
individual extensions in a single language as in the following example.

I Example 1. We consider an extension of nonmonotonic dl-programs (T ,Π) that allows
aggregates. For instance, the ontology description T specifies that every married man has
a spouse who is a woman, and similarly for a married woman:

Man uMarried v ∃Spouse.Woman.
Woman uMarried v ∃Spouse.Man.

The following program Π counts the number of people who are eligible for an insurance
discount:

discount(x)← not accident(x),
#dl[Man ]mm,Married ]mm,Woman ]mw,Married ]mw;∃Spouse.>](x).

discount(x)← discount(y), family(y, x),not accident(x).
numOfDiscount(z)← count〈x.discount(x)〉 = z.

The first rule asserts that everybody who has a spouse and has no accident is eligible for
a discount. The second rule asserts that everybody who has no accident and has a family
member with a discount is eligible for a discount.

The paper is organized as follows. We first review the syntax and the semantics of
formulas with generalized quantifiers (GQ-formulas). Next we define stable models of GQ-
formulas, and then show the individual extensions of the stable model semantics, such as
logic programs with aggregates and/or nonmonotonic dl-atoms, can be viewed as special
cases of GQ-formulas.

2 Preliminaries

2.1 Syntax of Formulas with Generalized Quantifiers
We follow the definition of a GQ-formula from [16, Section 5] (that is to say, with Lindström
quantifiers [12] without the isomorphism closure condition).

As in first-order logic, a signature σ is a set of symbols consisting of function constants
and predicate constants. Each symbol is assigned a nonnegative integer, called the arity.
Function constants with arity 0 are called object constants, and predicate constants with
arity 0 are called propositional constants. A term is an object variable or f(t1, . . . , tn), where
f is a function constant in σ of arity n, and ti are terms. An atomic formula is an expression
of the form p(t1, . . . , tn) or t1 = t2, where p is a predicate constant in σ of arity n.

We assume a set Q of symbols for generalized quantifiers. Each symbol in Q is associated
with a tuple of nonnegative integers 〈n1, . . . , nk〉 (k ≥ 0, and each ni is ≥ 0), called the type.
A GQ-formula (with the set Q of generalized quantifiers) is defined in a recursive way:
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an atomic formula is a GQ-formula;
if F1, . . . , Fk (k ≥ 0) are GQ-formulas andQ is a generalized quantifier of type 〈n1, . . . , nk〉
in Q, then

Q[x1] . . . [xk](F1(x1), . . . , Fk(xk)) (2)

is a GQ-formula, where each xi (1 ≤ i ≤ k) is a list of distinct object variables whose
length is ni.

We say that an occurrence of a variable x in a GQ-formula F is bound if it belongs
to a subformula of F that has the form Q[x1] . . . [xk](F1(x1), . . . , Fk(xk)) such that x is in
some xi. Otherwise the occurrence is free. We say that x is free in F if F contains a free
occurrence of x. A GQ-sentence is a GQ-formula with no free variables. Notice that the
distinction between free and bound variables is similar to that of global and local variables
informally described in the introduction.

We assume that Q contains a type 〈〉 quantifier Q⊥, a type 〈0〉 quantifier Q¬, type 〈0, 0〉
quantifiers Q∧, Q∨, Q→, and type 〈1〉 quantifiers Q∀, Q∃. Each of them corresponds to the
standard propositional connectives and quantifiers, ⊥,¬,∧,∨,→,∀,∃. These generalized
quantifiers will often be written in the familiar form. For example, we write F ∧G in place
of Q∧[][](F,G), and write ∀xF (x) in place of Q∀[x](F (x)).

2.2 Models of GQ-Formulas
As in first-order logic, an interpretation I of a signature σ consists of a nonempty set U ,
called the universe of I, and a mapping cI for each constant c in σ. For each function
constant f of σ whose arity is n, f I is an element of U if n is 0, and is a function from Un to
U otherwise. For each predicate constant p of σ whose arity is n, pI is an element of {t, f}
if n is 0, and is a function from Un to {t, f} otherwise. For each generalized quantifier Q
of type 〈n1, . . . , nk〉, QU is a function from P(Un1)× · · · × P(Unk ) to {t, f}, where P(Uni)
denotes the power set of Uni .

I Example 2. Besides the standard propositional connectives and quantifiers, the following
are other examples of generalized quantifiers.

type 〈1〉 quantifier Q≤2 such that QU
≤2(R) = t iff the cardinality of R is ≤ 2; 1

type 〈1〉 quantifier Qmajority such that QU
majority(R) = t iff the cardinality of R is greater

than the cardinality of U \R;
type 〈2, 1, 1〉 reachability quantifier Qreach such that QU

reach(R1, R2, R3) = t iff there are
some u, v ∈ U such that R2 = {u}, R3 = {v}, and (u, v) belongs to the transitive closure
of R1.

By σI we mean the signature obtained from σ by adding new object constants ξ∗, called
names, for every element ξ in the universe of I. We identify an interpretation I of σ with its
extension to σI defined by I(ξ∗) = ξ. For any term t of σI that does not contain variables,
we define recursively the element tI of the universe that is assigned to t by I. If t is an
object constant then tI is an element of U . For other terms, tI is defined by the equation

f(t1, . . . , tn)I = f I(tI1, . . . , tIn)

for all function constants f of arity n > 0.
Given a GQ-sentence F of σI , F I is defined recursively as follows:

1 It is clear from the type that R is any subset of U . We will skip such explanation.
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p(t1, . . . , tn)I = pI(tI1, . . . , tIn),
(t1 = t2)I = (tI1 = tI2),
For a generalized quantifier Q of type 〈n1, . . . , nk〉,

(Q[x1] . . . [xk](F1(x1), . . . , Fk(xk)))I = QU ((x1.F1(x1))I , . . . , (xk.Fk(xk))I),

where (xi.Fi(xi))I = {ξ ∈ Uni | (Fi(ξ∗))I = t}.

We assume that, for the standard propositional connectives and quantifiers Q, functions
QU have the standard meaning:

QU
∀ (R) = t iff R = U ; QU

∃ (R) = t iff R ∩ U 6= ∅;
QU
∧ (R1, R2) = t iff R1 = R2 = {ε};2 QU

∨ (R1, R2) = t iff R1 = {ε} or R2 = {ε};
QU
→(R1, R2) = t iff R1 = ∅ or R2 = {ε};

QU
¬ (R) = t iff R = ∅;

QU
⊥() = f.

We say that an interpretation I satisfies a GQ-sentence F , or is a model of F , and write
I |= F , if F I = t. A GQ-sentence F is logically valid if every interpretation satisfies F . A
GQ-formula with free variables is said to be logically valid if its universal closure is logically
valid.

I Example 3. Let I1 be an interpretation whose universe is {1, 2, 3, 4} and let p be a
unary predicate constant such that p(ξ∗)I1 = t iff ξ ∈ {1, 2, 3}. We check that I1 satisfies
GQ-sentence F = ¬Q≤2[x] p(x) → Qmajority[y] p(y) (“if p does not contain at most two
elements in the universe, then p contains a majority”). Let I2 be another interpretation
with the same universe such that p(ξ∗)I2 = t iff ξ ∈ {1}. It is clear that I2 also satisfies F .

We say that a generalized quantifier Q is monotone in the i-th argument position if
the following holds for any universe U : if QU (R1, . . . , Rk) = t and Ri ⊆ R′i ⊆ Uni , then
QU (R1, . . . , Ri−1, R

′
i, Ri+1, . . . , Rk) = t. Similarly, we say that Q is anti-monotone in the

i-th argument position if the following holds for any universe U : if QU (R1, . . . , Rk) = t
and R′i ⊆ Ri ⊆ Uni , then QU (R1, . . . , Ri−1, R

′
i, Ri+1, . . . , Rk) = t. We call an argument

position of Q monotone (anti-monotone) if Q is monotone (anti-monotone) in that argument
position.

Let M be a subset of {1, . . . , k}. We say that Q is monotone in M if Q is monotone
in the i-th argument position for all i in M . It is easy to check that both Q∧ and Q∨ are
monotone in {1, 2}. Q→ is anti-monotone in {1} and monotone in {2}; Q¬ is anti-monotone
in {1}. In Example 2, Q≤2 is anti-monotone in {1} and Qmajority is monotone in {1}.

Predicate variables can be added to the language in the usual way as we define the
standard second-order logic. Syntactically, n-ary predicate variables are used to form atomic
formulas in the same way as n-ary predicate constants. Semantically, these variables range
over arbitrary truth-valued functions on Un.

3 Stable Models of GQ-Formulas

We now define the stable model operator SM with a list of intensional predicates. Let p
be a list of distinct predicate constants p1, . . . , pn, and let u be a list of distinct predicate

2 ε denotes the empty tuple. For any interpretation I, U0 = {ε}. For I to satisfy Q∧[][](F,G), both
(ε.F )I and (ε.G)I have to be {ε}, which means that F I = GI = t.
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variables u1, . . . , un. By u ≤ p we denote the conjunction of the formulas ∀x(ui(x)→ pi(x))
for all i = 1, . . . , n, where x is a list of distinct object variables of the same length as the
arity of pi, and by u < p we denote (u ≤ p) ∧ ¬(p ≤ u). For instance, if p and q are unary
predicate constants then (u, v) < (p, q) is

∀x(u(x)→ p(x)) ∧ ∀x(v(x)→ q(x)) ∧ ¬
(
∀x(p(x)→ u(x)) ∧ ∀x(q(x)→ v(x))

)
.

For any GQ-formula F and any list of predicates p = (p1, . . . , pn), expression SM[F ; p]
is defined as

F ∧ ¬∃u((u < p) ∧ F ∗(u)), (3)

where F ∗(u) is defined recursively:
pi(t)∗ = ui(t) for any list t of terms;
F ∗ = F for any atomic formula F that does not contain members of p;

(Q[x1] . . . [xk](F1(x1), . . . , Fk(xk)))∗ =
Q[x1] . . . [xk](F ∗1 (x1), . . . , F ∗k (xk)) ∧Q[x1] . . . [xk](F1(x1), . . . , Fk(xk)). (4)

When F is a GQ-sentence, the models of SM[F ; p] are called the p-stable models of F :
they are the models of F that are “stable” on p. We often simply write SM[F ] in place
of SM[F ; p] when p is the list of all predicate constants occurring in F , and call p-stable
models simply stable models.

I Proposition 1. Let Q[x1] . . . [xk](F1(x1), . . . , Fk(xk)) be a GQ-formula and let M be a
subset of {1, . . . , k} such that every predicate constant from p occurs in some Fj where
j ∈M .

(a) If Q is monotone in M , then

u ≤ p→ ((Q[x1] . . . [xk](F1(x1), . . . , Fk(xk)))∗ ↔ Q[x1] . . . [xk](F ∗1 (x1), . . . , F ∗k (xk)))

is logically valid.
(b) If Q is anti-monotone in M , then

u ≤ p→ ((Q[x1] . . . [xk](F1(x1), . . . , Fk(xk)))∗ ↔ Q[x1] . . . [xk](F1(x1), . . . , Fk(xk)))

is logically valid.

Proposition 1 allows us to simplify the formula F ∗(u) in (3) without affecting the models
of (3). In formula (4), if Q is monotone in all argument positions, we can drop the second
conjunctive term in view of Proposition 1 (a). If Q is anti-monotone in all argument po-
sitions, we can drop the first conjunctive term in view of Proposition 1 (b). For instance,
recall that each of Q∧, Q∨, Q∀, Q∃ is monotone in all its argument positions, and Q¬ is
anti-monotone in {1}. If F is a standard first-order formula, then (4) can be equivalently
rewritten as

(¬F )∗ = ¬F ;
(F ∧G)∗ = F ∗ ∧G∗; (F ∨G)∗ = F ∗ ∨G∗;
(F → G)∗ = (F ∗ → G∗) ∧ (F → G);
(∀xF )∗ = ∀xF ∗; (∃xF )∗ = ∃xF ∗.

ICLP’12
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This is almost the same as the definition of F ∗ given in [7], except for the case (¬F )∗, which
is a bit more concise.3 The only propositional connective which is neither monotone nor
anti-monotone in all argument positions is Q→, for which the simplification does not apply.

Example 3 continued. For the GQ-sentence F considered earlier, SM[F ] is

F ∧ ¬∃u(u < p ∧ F ∗(u)) , (5)

where F ∗(u) is equivalent to the conjunction of F and

¬Q≤2[x] p(x)→ Qmajority[y] u(y). (6)

I1 considered earlier satisfies (5): it satisfies F , and, for any proper “subset” u of p, it
satisfies the antecedent of (6) but not the consequent. Thus it is a stable model of F . On
the other hand, we can check that I2 does not satisfy (5), and is not a stable model.

4 Aggregates as GQ-Formulas

4.1 Formulas with Aggregates
The following definition of a formula with aggregates is from [5], which extends the one
from [9] to allow nested aggregates. By a number we understand an element of some fixed
set Num. For example, Num is Z∪ {+∞,−∞}, where Z is the set of integers. A multiset
is usually defined as a set of elements along with a function assigning a positive integer,
called the multiplicity, to each of its elements. An aggregate function is a partial function
from the class of multisets to Num. We assume the presence of some fixed background
signature σbg that contains all numbers. Furthermore, we assume that the interpretation
Ibg of the background signature is fixed, and interpretes each number as itself.

We consider a signature σ as a superset of σbg. An expansion I of Ibg to σ is an
interpretation of σ such that

the universe of I is the same as the universe of Ibg, and
I agrees with Ibg on all the constants in σbg.

First-order formulas with aggregates are defined as an extension of standard first-order
formulas by adding the following clause:

op〈x1.F1, . . . ,xn.Fn〉 � b (7)

is a first-order formula with aggregates, where
op is a symbol for an aggregate function (not from σ);
x1, . . . ,xn are nonempty lists of distinct object variables;
F1, . . . , Fn are arbitrary first-order formulas with aggregates of signature σ;
� is a symbol for a comparison operator (may not necessarily be from σ);
b is a term of σ.

3 ¬F is understood as F → ⊥ in [7], but this difference does not affect stable models. When ¬ is a
primitive propositional connective as above,

u ≤ p→ ((F → ⊥)∗(u)↔ (¬F )∗(u))

is logically valid.
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4.2 Aggregates as GQ-Formulas
Due to the space limit, we refer the reader to [5] for the stable model semantics of formulas
with aggregates. We can explain their semantics by viewing it as a special case of the
stable model semantics presented here. Following [5], for any set X of n-tuples (n ≥ 1),
let msp(X) (“the multiset projection of X”) be the multiset consisting of all ξ1 such that
(ξ1, . . . , ξn) ∈ X for at least one (n−1)-tuple (ξ2, . . . , ξn), with the multiplicity equal to
the number of such (n − 1)-tuples (and to +∞ if there are infinitely many of them). For
example, msp({(a, a), (a, b), (b, a)}) = {{a, a, b}}.

We identify expression (7) with the GQ-formula

Q(op,�)[x1] . . . [xn][y](F1(x1), . . . , Fn(xn), y = b) , (8)

where, for any interpretation I, QU
(op,�) is a function that maps P(U |x1|)× · · · ×P(U |xn|)×

P(U) to {t, f} such that QU
(op,�)(R1, . . . , Rn, Rn+1) = t iff

op(α) is defined, where α is the join of the multisets msp(R1), . . . ,msp(Rn),
Rn+1 = {n}, where n is an element of Num, and
op(α) � n.

I Example 4. {discount(alice), discount(carol),numOfDiscounts(2)} is an Herbrand stable
model of the formula

discount(alice) ∧ discount(carol)
∧ ∀z(count〈x.discount(x)〉 = z → numOfDiscounts(z)).

The following proposition states that this definition is equivalent to the definition from [5].
I Proposition 2. Let F be a first-order sentence with aggregates whose signature is σ, and
let p be a list of predicate constants. For any expansion I of σbg to σ, I is a p-stable model
of F in the sense of [5] iff I is a p-stable model of F in our sense.

5 Nonmonotonic dl-Programs as GQ-Formulas

5.1 Review of Nonmonotonic dl-Programs
Let C be a set of object constants, and let PT and PΠ be disjoint sets of predicate constants.
A nonmonotonic dl-program [3] is a pair (T ,Π), where T is a theory in description logic
of signature 〈C,PT 〉 and Π is a generalized normal logic program of signature 〈C,PΠ〉 such
that PT ∩PΠ = ∅. We assume that Π contains no variables by applying grounding w.r.t. C.
A generalized normal logic program is a set of nondisjunctive rules that can contain queries
to T using “dl-atoms.” A dl-atom is of the form

DL[S1op1p1, . . . , Skopkpk; Query](t) (k ≥ 0), (9)

where Si ∈ PT , pi ∈ PΠ, and opi ∈ {], −∪, −∩}. Query(t) is a dl-query as defined in [3]. A
dl-rule is of the form

a ← b1, . . . , bm,not bm+1, . . . ,not bn , (10)

where a is an atom and each bi is either an atom or a dl-atom. We identify rule (10) with

a ← B,N , (11)

where B is b1, . . . , bm and N is not bm+1, . . . ,not bn. An Herbrand interpretation I satisfies
a ground atom A relative to T if I satisfies A. An Herbrand interpretation I satisfies a
ground dl-atom (9) relative to T if T ∪

⋃k
i=1Ai(I) entails Query(t), where Ai(I) is

ICLP’12
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{Si(e) | pi(e) ∈ I} if opi is ],
{¬Si(e) | pi(e) ∈ I} if opi is −∪,
{¬Si(e) | pi(e) 6∈ I} if opi is −∩.

A ground dl-atom A is monotonic relative to T if, for any two Herbrand interpretations
I and I ′ such that I ⊆ I ′ and I |=T A, we have that I ′ |=T A. Similarly, A is anti-monotonic
relative to T if, for any two Herbrand interpretations I and I ′ such that I ′ ⊆ I and I |=T A,
we have that I ′ |=T A.

Given a dl-program (T ,Π) and an Herbrand interpretation I of 〈C,PΠ〉, the weak dl-
transform of Π relative to T , denoted by wΠI

T , is the set of rules

a ← B′ (12)

where a← B,N is in Π, I |=T B ∧N , and B′ is obtained from B by removing all dl-atoms
in it. Similarly, the strong dl-transform of Π relative to T , denoted by sΠI

T , is the set of
rules (12), where a← B,N is in Π, I |=T B∧N , and B′ is obtained from B by removing all
nonmonotonic dl-atoms in it. The only difference between these two transforms is whether
monotonic dl-atoms remain in the positive body or not. Both transforms do not retain
nonmonotonic dl-atoms.

An Herbrand interpretation I is a weak (strong, respectively) answer set of (T ,Π) if I
is minimal among the sets of atoms that satisfy wΠI

T (sΠI
T , respectively).

5.2 Nonmonotonic dl-program as GQ-Formulas
We can view dl-programs as a special case of GQ-formulas. Consider a dl-program (T ,Π)
such that Π is ground. Under the strong answer set semantics we identify every dl-atom (9)
in Π with

Q(9)[x1] . . . [xk](p1(x1), . . . , pk(xk)) (13)

if it is monotonic relative to T , and

¬¬Q(9)[x1] . . . [xk](p1(x1), . . . , pk(xk)) (14)

otherwise. Since ¬ is an anti-monotone GQ, prepending ¬¬ in front of the quantified formula
in (14) means that, under the strong answer set semantics, every nonmonotonic dl-atom is
understood in terms of an anti-monotone GQ.

Given an interpretation I, QU
(9) is a function that maps P(U |x1|)×· · ·×P(U |xk|) to {t, f}

such that, QU
(9)(R1, . . . , Rk) = t iff T ∪

⋃k
i=1Ai(Ri) entails Query(t), where Ai(Ri) is

{Si(ξi) | ξi ∈ Ri} if opi is ],
{¬Si(ξi) | ξi ∈ Ri} if opi is −∪,
{¬Si(ξi) | ξi ∈ U |xi| \Ri} if opi is −∩.

We say that I is a strong answer set of (T ,Π) if I satisfies SM[Π;PΠ].
Similarly, a weak answer set of (T ,Π) is defined by identifying every dl-atom (9) in Π

with (14) regardless of A being monotonic or not. This means that, under the weak answer
set semantics, every dl-atom is understood in terms of an anti-monotone GQ.
Example 1 continued. The dl-atom

#dl[Man ]mm,Married ]mm,Woman ]mw,Married ]mw;∃Spouse.>](alice) (15)
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is identified with the generalized quantified formula

Q(15)[x1][x2][x3][x4](mm(x1),mm(x2),mw(x3),mw(x4)) (16)

where, for any interpretation I, QU
(15) is a function that maps P(U)×P(U)×P(U)×P(U) to

{t, f} such that QU
(15)(R1, R2, R3, R4) = t iff T ∪{Man(c) | c ∈ R1}∪{Woman(c) | c ∈ R3}∪

{Married(c) | c ∈ R2 ∪R4} entails ∃xSpouse(alice, x).
Consider an Herbrand interpretation I = {mw(alice)}, which satisfies (15). I also

satisfies (16) since (x.mw(x))I = {alice} and T ∪ {Woman(alice),Married(alice)} entails
∃xSpouse(alice, x).

The following proposition tells us that the definitions of a strong answer set and a weak
answer set given here are reformulations of the original definitions from [3].
I Proposition 3. For any dl-program (T ,Π), an Herbrand interpretation is a strong (weak,
respectively) answer set of (T ,Π) in the sense of [3] iff it is a strong (weak, respectively)
answer set of (T ,Π) in our sense.

5.3 Another Semantics of Nonmonotonic dl-programs
Shen [14] notes that both strong and weak answer set semantics suffer from circular justifi-
cations.

I Example 5. [14] Consider (T ,Π), where T = ∅ and Π is the program

p(a)← #dl[c ] p, b −∩ q; c u ¬b](a) , (17)

in which the dl-atom is neither monotonic nor anti-monotonic. This dl-program has two
strong (weak, respectively) answer sets: ∅ and {p(a)}. According to [14], the second answer
set is circularly justified:

p(a)⇐ #dl[c ] p, b −∩ q; c u ¬b](a)⇐ p(a) ∧ ¬q(a).

Indeed, sΠ{p(a)}
T (wΠ{p(a)}

T , respectively) is p(a)←, and {p(a)} is its minimal model.

As we hinted in the previous section, this kind of circular justifications is related to the
treatment that understands every nonmonotonic dl-atom in terms of an anti-monotone GQ,
regardless of the nonmonotonic dl-atom’s being anti-monotonic or not. In this case, in view
of Proposition 1, predicates in a nonmonotonic dl-atom are exempt from the minimality
checking. This is different from how we treat nonmonotone aggregates, where we simply
identify them with nonmonotone GQs. This observation suggests the following alternative
semantics of dl-programs, in which we understand only anti-monotonic dl-atoms in terms of
anti-monotone GQs, unlike in the strong and the weak answer set semantics. We say that
an Herbrand interpretation I is an answer set of (T ,Π) if I satisfies SM[Π;PΠ], where we
simply identify every dl-atom (9) in Π with (13).

This definition of an answer set has a reduct-based characterization as well. Just like
we form a strong dl-transform, we first remove the negative body, but instead of removing
all nonmonotonic dl-atoms in the positive body, we remove only anti-monotonic dl-atoms
from the positive body. In other words, the reduct of Π relative to T and an Herbrand
interpretation I of 〈C,PΠ〉, denoted by ΠI

T , is the set of rules (12), where a← B,N is in Π,
I |=T B∧N , and B′ is obtained from B by removing all anti-monotonic dl-atoms in it. The
following proposition shows that this modified definition of a reduct can capture the new
answer set semantics of dl-programs.
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I Proposition 4. For any dl-program (T ,Π) and any Herbrand interpretation I of 〈C,PΠ〉,
I is an answer set of (T ,Π) according to the new definition iff I is minimal among the sets
of atoms that satisfy ΠI

T .
The new semantics does not have the circular justification problem described in Exam-

ple 5.
Example 5 continued. {p(a)} is not an answer set of (T ,Π) according to the new
definition. The reduct Π{p(a)}

T is (17) itself retaining the dl-atom unlike under the strong
and the weak answer set semantics. We check that ∅, a proper subset of {p(a)}, satisfies it,
which means that {p(a)} is not an answer set.

6 Related Work

We refer the reader to [2] for the semantics of HEX programs. It is not difficult to see that
an external atom in a HEX program can be represented in terms of a generalized quantifier.
Eiter et al. show how dl-atoms can be simulated by external atoms #dl[](x). The treatment
is similar to ours in terms of generalized quantifiers. For another example, rule

reached(x)← #reach[edge, a](x)

defines all the vertices that are reachable from the vertex a in the graph with edge. The
external atom #reach[edge, a](x) can be represented by a generalized quantified formula

Qreach[x1x2][x3][x4](edge(x1, x2), x3 = a, x4 = x),

where Qreach is as defined in Example 2.
In fact, incorporation of generalized quantifiers in logic programming was considered

earlier in [1], but the treatment there was not satisfactory because they understood general-
ized quantifiers simply as anti-monotone GQs in our sense. Without going into detail, this
amounts to modifying our definition of F ∗ as

(Q[x1] . . . [xk](F1(x1), . . . , Fk(xk)))∗ = Q[x1] . . . [xk](F1(x1), . . . , Fk(xk)) .

This approach does not allow recursion through generalized quantified formulas, and
often yields an unintuitive result. According to [1], program p(a)← ∀x p(x) has two answer
sets, ∅ and {p(a)}. The latter is “unfounded.” This is not the case with the semantics
that we introduced in this note. According to our semantics, which properly extends the
semantics from [7], {p(a)} is not an answer set.

7 Conclusion

We presented the stable model semantics for formulas containing generalized quantifiers, and
showed that some recent extensions of the stable model semantics with “complex atoms”
can be viewed as special cases of this formalism. We expect that the generality of the
formalism will be useful in providing a principled way to study and compare the different
extensions of the stable model semantics. As we observed, distinguishing among monotone,
anti-monotone, and neither monotone nor anti-monotone GQs is essential in defining the
semantics of such extensions, whereas the last group of GQs was not considered in the
traditional stable model semantics.
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