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Abstract
The effective use of ASP solvers is essential for enhancing efficiency and scalability. The incidence
matrix is a simple representation used in Constraint Programming (CP) and Integer Linear
Programming for modeling combinatorial problems. Generating test cases for event-sequence
testing is to find a sequence covering array (SCA). In this paper, we consider the problem of
finding optimal sequence covering arrays by ASP and CP. Our approach is based on an effective
combination of ASP solvers and the incidence matrix. We first present three CP models from
different viewpoints of sequence covering arrays: the naïve matrix model, the event-position
matrix model, and the incidence matrix model. Particularly, in the incidence matrix model, an
SCA can be represented by a (0, 1)-matrix called the incidence matrix of the array in which
the coverage constraints of the given SCA can be concisely expressed. We then present an
ASP program of the incidence matrix model. It is compact and faithfully reflects the original
constraints of the incidence matrix model. In our experiments, we were able to significantly
improve the previously known bounds for many arrays of strength three. Moreover, we succeeded
either in finding optimal solutions or in improving known bounds for some arrays of strength four.
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1 Introduction

Recent development of Answer Set Programming (ASP) [3, 15, 21] suggests a successful
direction to extend logic programming to be more expressive and more efficient. ASP provides
a rich modeling language and can be well suited for modeling combinatorial problems in
Computer Science and Artificial Intelligence: multi-agent systems, systems biology, planning,
scheduling, semantic web, and Constraint Satisfaction Problems (CSPs). Remarkable
improvements in the efficiency of ASP solvers have been made over the last decade, through
the adoption of advanced techniques of Constraint Programming (CP) and Propositional
Satisfiability (SAT). Such improvements encourage researchers to solve hard combinatorial
problems by using ASP.

Combinatorial testing is an effective black-box testing method to detect elusive failures of
hardware/software. The basic idea is based on the observations that most failures are caused
by interactions of multiple components. The number of test cases is therefore much smaller
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than exhaustive testing. Generating test cases for combinatorial testing is to find a Covering
Array (CA) in Combinatorial Designs [2, 4, 5, 6, 7, 8, 9, 17, 18, 20, 22, 23, 27, 28]. However,
these CA-based combinatorial testing methods can not be directly applied to detect failures
that are caused by a particular event sequence, an ordering of multiple events to be processed.

Event-sequence testing is a combinatorial testing method focusing on event-driven hard-
ware/software. Suppose we want to test a system with 10 events. We have 10! = 3, 628, 800
test cases for exhaustive testing. Instead, we might be satisfied with test cases that exercise
all possible 3-sequences of 10 events (strength three event-sequence testing). Naively, we
need 10P3 = 8× 9× 10 = 720 test cases. We can reduce to less than 240 since one test case
covers at least three 3-sequences. The question is “what is the smallest number of test cases
that we need now?”. It comes down to an instance of the problem of finding optimal Sequence
Covering Array (SCA) proposed by Kuhn et al [19]. A sequence covering array provides a
set of test cases, where each row of the array can be regarded as an event sequence for an
individual test case. Fig.1 shows an optimal sequence covering array of 11 rows, an answer
of the question above.

ASP solvers have an important role in the latest ASP technology. The effective use
of them is essential for enhancing efficiency and scalability. The incidence matrix is a
simple representation used in CP and integer linear programming for modeling combinatorial
problems such as balanced incomplete block designs [9]. Our approach is based on an effective
combination of ASP solvers and the incidence matrix.

In this paper, we consider the problem of finding optimal sequence covering arrays
by ASP and CP. We first present three CP models from different viewpoints of sequence
covering arrays: naïve matrix model, event-position matrix model, and incidence matrix model.
Particularly, in the incidence matrix model, an SCA can be represented by a (0, 1)-matrix
called the incidence matrix of the array in which the coverage constraints of the given SCA
can be concisely expressed. We then present an ASP program of the incidence matrix model.
It is compact and faithfully reflects the original constraints of the incidence matrix model.
For example, it requires only 8 rules for the arrays of strength three. From the perspective of
ASP, Erdem et al. recently proposed an ASP-based approach for event-sequence testing [11],
and have shown that it enables a tester to rapidly specify problems and to experiment with
different formulations at a purely declarative level.

In our experiments, we were able to significantly improve the previously known bounds
obtained by a greedy algorithm [19] and an ASP-based approach [11] for many arrays of
strength three with small to large sizes of events. Moreover, we succeeded either in finding
optimal solutions or in improving known bounds for some arrays of strength four.

2 Sequence Covering Arrays and Related Work

I Definition 1. A sequence covering array SCA(n;S, t) is an n×|S| (n rows and |S| columns)
array A = (aij) over a finite set S of symbols with the property that

each row of A is a permutation of S, and
for each t-sequence σ = (e1, e2, . . . , et) over S, there exists at least one row r with column
indices 1 ≤ c1 < c2 < · · · < ct ≤ |S| such that ei = arci for all 1 ≤ i ≤ t.

The parameter n is the size of the array, S is the set of events, and t is the strength of the
array. Then trivial case when t = 2 is excluded from further consideration.

I Definition 2. The sequence covering array number SCAN(S, t) is the smallest n for which
an SCA(n;S, t) exists.

I Definition 3. A sequence covering array SCA(n;S, t) is optimal if SCAN(S, t) = n.
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Each event is represented as an alpha-
bet instead of an integer.
Each row represents an event sequence.
We highlight the different 3-sequences
over {a, b, c} to show all possible 3-
sequences (six permutations) occur at
least once.
This property holds for all 3-sequences
over {a, b, c, d, e, f, g, h, i, j}.

Figure 1 An optimal sequence covering array SCA(11; 10, 3).

I Notation 4. Let s be an integer. SCA(n; s, t) and SCAN(s, t) are intended to denote,
respectively, SCA(n; {1, . . . , s} , t) and SCAN({1, . . . , s} , t).

Fig. 1 shows an example of SCA(11; 10, 3), a sequence covering array of strength t = 3
with s = 10 events. It is an optimal sequence covering array which has n = 11 rows.

In this paper, we define two kinds of problems to make our approach more understand-
able. For a given tuple 〈n, s, t〉, SCA decision problem is the problem to decide whether an
SCA(n; s, t) exists or not, and find it if exists. For a given pair 〈s, t〉, SCA optimization prob-
lem is the problem to find an optimal covering array SCA(n; s, t). Oetsch et al. have recently
proved that the Generalised Event Sequence Testing (GEST) problem is NP-complete 1.
Most SCA decision problems studied in this paper are special cases of GEST.

Kuhn et al. proposed a greedy algorithm for solving the SCA optimization problems [19].
The practical effectiveness, especially scalability, of their algorithm has been shown by the
fact that they succeeded in finding upper bounds for the arrays of strength 3 ≤ t ≤ 4 with
s ≤ 80 events. We refer to their algorithm [19] as Kuhn’s encoding.

Erdem et al. proposed ASP encodings and an ASP-based greedy algorithm for solving
the SCA optimization problems [11]. They have found and proved optimal solutions for
the arrays of strength t = 3 with 5 ≤ s ≤ 8 events through their exact ASP encodings.
Moreover, their ASP-based greedy algorithm that synergistically integrates ASP with a
greedy method is designed to improve the scalability issue of the ASP encodings. We refer to
their encodings [11] as Erdem’s encoding. When we need to distinguish between their exact
ASP encodings and greedy algorithm, we refer to the former as Erdem’s exact encoding and
the latter as Erdem’s greedy encoding.

3 Constraint Programming Models

We propose three different CP models for solving the SCA decision problems: the naïve
matrix model, the event-position matrix model, and the incidence matrix model. We assume
throughout that we have an SCA(n; s, 3), a sequence covering array of strength t = 3, for
the sake of clarity. Note that our models can be extended in a straightforward way to the
case of any strength t ≥ 3. We also use a sequence covering array SCA(6; {a, b, c, d}, 3) of
Fig. 2 as a running example.

1 Oetsch et al. personal communication
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1 2 3 4
a d b c
d c b a
c d a b
a c b d
b d a c
b c a d

Figure 2 A sequence covering array
SCA(6; {a, b, c, d}, 3).

a b c d
1 3 4 2
4 3 2 1
3 4 1 2
1 3 2 4
3 1 4 2
3 1 2 4

Figure 3 The event-position matrix of
SCA(6; {a, b, c, d}, 3) shown in Fig. 2.

3.1 Naïve Matrix Model
For a given SCA decision problem for SCA(n; s, 3), the most direct model would be using
an n× s (n rows and s columns) matrix of integer variables mr,i (1 ≤ r ≤ n, 1 ≤ i ≤ s). The
domain of each variable is {1, 2, . . . , s}. This matrix identifies a sequence covering array itself.
We also use the auxiliary binary variables ar,(i,j,k),(p,q,u) with 1 ≤ r ≤ n, 1 ≤ i < j < k ≤ s,
1 ≤ p, q, u ≤ s, p 6= q, p 6= u, and q 6= u. The variable ar,(i,j,k),(p,q,u) is intended to denote
mr,i = p, mr,j = q, and mr,k = u in the matrix.

A global constraint is a constraint that can specify a relation between an arbitrary
number of variables [26]. In the naïve matrix model, we use the alldifferent constraint
that is one of the best known and most studied global constraint in CP. The constraint
alldifferent(X1, X2, . . . , X`) ensures that the values assigned to the variables X1, X2, . . . , X`

must be pairwise distinct.
The constraints for SCA(n; s, 3) are defined as follows.
Permutation constraints:

alldifferent(mr,1,mr,2, . . . ,mr,s) (1)
Channeling constraints:

ar,(i,j,k),(p,q,u) = 1⇔ (mr,i = p) ∧ (mr,j = q) ∧ (mr,k = u) (2)
Coverage constraints:∑

1≤r≤n
1≤i<j<k≤s

ar,(i,j,k),(p,q,u) ≥ 1 (3)

where 1 ≤ r ≤ n, 1 ≤ i < j < k ≤ s, 1 ≤ p, q, u ≤ s, p 6= q, p 6= u, and q 6= u.
The permutation constraints can be easily expressed by using alldifferent constraints of

(1). That is, for every row, one alldifferent is enforced to ensure that every event in the range
1 to s occurs exactly once. The constraints (2) express the channeling constraints. The
constraints (3) express the coverage constraints such that every 3-sequence of the events
{1, . . . , s} occurs at least once in the matrix.

Note that the constraints of leftward arrows in (2) can be omitted. Even if they may be
omitted, we can still get a solution. For any solution, the constraints (3) ensure that every
3-sequence of the events occurs at least once. For each such an occurrence, the corresponding
entries (i.e. a 3-tuple of variables) of the matrix are derived from the constraints (2). The
condition that each row is a permutation of the events is ensured by the constraints (1).

The drawback of this model is not only the number of instances required for the coverage
constraints (3), but also the number of variables contained within each cardinality constraint
in (3). We need in total sP3 cardinality constraints, and each of them contains n

(
s
3
)
variables.

To avoid this problem, we propose another matrix model, called the event-position matrix
model.

ICLP’12
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a a b b c c a a b b d d a a c c d d b b c c d d

b c a c a b b d a d a b c d a d a c c d b d b c

c b c a b a d b d a b a d c d a c a d c d b c b

a d b c 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
d c b a 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1
c d a b 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0
a c b d 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
b d a c 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0
b c a d 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0

Figure 4 The incidence matrix of SCA(6; {a, b, c, d}, 3) shown in Fig. 2.

3.2 Event-Position Matrix Model

We give another view of sequence covering arrays. For a given sequence covering array
A = (aij), we can represent it by the event-position matrix of the array. The event-
position matrix B = (bie) of A is defined so that bie = j if aij = e. That is, the rows are
the same as before but the columns are labeled with the distinct events, and each entry
represents the position of its corresponding event. Fig. 3 shows the event-position matrix of
SCA(6; {a, b, c, d}, 3) shown in Fig. 2.

For a given SCA decision problem for SCA(n; s, 3), in the event-position matrix model,
we use again an n× s matrix of integer variables xr,i (1 ≤ r ≤ n, 1 ≤ i ≤ s). It identifies an
event-position matrix instead of a sequence covering array. The domain of each variable is
{1, 2, . . . , s}. We also use the auxiliary binary variables yr,(i,j,k) with 1 ≤ r ≤ n, 1 ≤ i, j, k ≤ s,
i 6= j, i 6= k, and j 6= k. The variable yr,(i,j,k) is intended to denote xr,i < xr,j < xr,k in the
event-position matrix.

The constraints for SCA(n; s, 3) are defined as follows.
Permutation constraints:

alldifferent(xr,1, xr,2, . . . , xr,s) (4)

Channeling constraints:
yr,(i,j,k) = 1⇔ (xr,i < xr,j) ∧ (xr,i < xr,k) ∧ (xr,j < xr,k) (5)

Coverage constraints:∑
r

yr,(i,j,k) ≥ 1 (6)

where 1 ≤ r ≤ n, 1 ≤ i, j, k ≤ s, i 6= j, i 6= k, and j 6= k.
The constraints (4) is the same as (1) of the previous model except that each argument

represents the position of the event. The constraints (5) express the channeling constraints.
The coverage constraints can be concisely expressed by the constraints (6). That is, for every
3-sequence (i, j, k) of the events, one cardinality constraint is enforced to ensure that there is
at least one row r that satisfies the condition xr,i < xr,j < xr,k. This means that we cover
all possible 3-sequence.

The comparisons xr,i < xr,k in (5) are clearly redundant and can be omitted, but we
leave them because of efficiency improvements. The constraints of leftward arrows in (5) can
be also omitted for the same reason as before.
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3.3 Incidence Matrix Model
We now give yet another view of sequence covering arrays. For a given sequence covering
array, we can represent it by the incidence matrix of the array. Each row is labeled with one
row (i.e. an event sequence) of the array. Each column is labeled with one of all possible
t-sequences of the events. The incidence matrix C = (cij) of SCA(n; s, t) is a (0, 1)-matrix
with n rows and sPt columns such that cij = 1 if the t-sequence j is a sub-sequence of the
event sequence i, and cij = 0 otherwise.

Fig. 4 shows the incidence matrix of SCA(6; {a, b, c, d}, 3) shown in Fig. 2. Each row is
labeled with one row of the SCA(6; {a, b, c, d}, 3). Each of 4P3 = 24 columns is labeled with
one of all possible 3-sequences of the events {a, b, c, d}. The labels of the columns are written
vertically. For example, the entry in the first row and first column is a 1 since “a b c” is a
sub-sequence of “a d b c”.

In contrast, on the incidence matrix, let us consider the constraints that must be satisfied
for SCA(6; {a, b, c, d}, 3). Each column has at least one 1 (coverage constraints). From a
viewpoint of 3-combinations of the events {a, b, c, d}, there are 6 ×

(4
3
)

= 24 sub-matrices
with one row and six columns. Each sub-matrix sharing the same three events in the columns
has exactly one 1. Furthermore, for each row, such occurrences of 1’s are consistent with
each other in terms of the ordering of the events.

For a given SCA decision problem for SCA(n; s, 3), in the incidence matrix model, we
use an n× sP3 matrix of binary variables yr,(i,j,k) with 1 ≤ r ≤ n, 1 ≤ i, j, k ≤ s, i 6= j, i 6= k,
and j 6= k. We can express the permutation constraints by using only the yr,(i,j,k) variables,
but it requires a large number of constraints that are very costly to deal with. To avoid this
problem, we introduce the auxiliary binary variables prr,(i,j) with 1 ≤ r ≤ n, 1 ≤ i, j ≤ s,
and i 6= j. The variable prr,(i,j) is intended to denote the event i precedes the event j in the
row r.

The constraints for SCA(n; s, 3) are defined as follows.
Permutation constraints:(

(prr,(i,j) = 1) ∧ (prr,(j,k) = 1)
)
⇒ prr,(i,k) = 1 (7)

¬(prr,(i,j) = 1) ∨ ¬(prr,(j,i) = 1) (8)
(prr,(i,j) = 1) ∨ (prr,(j,i) = 1) (9)

Channeling constraints:
yr,(i,j,k) = 1⇔ (prr,(i,j) = 1) ∧ (prr,(i,k) = 1) ∧ (prr,(j,k) = 1) (10)

Coverage constraints:∑
r

yr,(i,j,k) ≥ 1 (11)

where 1 ≤ r ≤ n, 1 ≤ i, j, k ≤ s, i 6= j, i 6= k, and j 6= k.
The permutation constraints can be expressed by enforcing total ordering on the events:

(7) for transitivity, (8) for asymmetry, and (9) for comparability (totality). Note that the
constraints (7) can be replaced with the following arithmetic constraints (12), and the
constraints (8) and (9) with (13).

prr,(i,j) + prr,(j,k) − prr,(i,k) ≤ 1 (12)
prr,(i,j) + prr,(j,i) = 1 (13)

The channeling constraints are expressed by the constraints (10) that are slightly modified
to adjust the pr variables compared with (5). The coverage constraints (11) are the same as
(6). The equations prr,(i,k) = 1 in (10) and the constraints of leftward arrows in (10) can be
omitted for the same reason as before.

ICLP’12
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Table 1 Benchmark results of different CP models for SCA(n; s, t).

n s t Result Incidence Incidence E-Position E-Position E-Position
(lex-row) (snake lex) (double lex)

6 5 3 UNSAT 1.320 < 0.000 5.457 0.008 0.011
7∗ 5 3 SAT < 0.000 < 0.000 0.005 0.010 0.010
7 6 3 UNSAT 1327.350 0.110 T.O 0.383 0.588
8∗ 6 3 SAT 0.005 0.006 0.012 0.016 0.022
7 7 3 UNSAT 1442.410 0.180 T.O 1.921 5.509
8∗ 7 3 SAT 0.008 0.015 0.032 0.077 0.027
7 8 3 UNSAT T.O 0.390 T.O 8.280 28.870
8∗ 8 3 SAT 0.070 0.094 7.870 2.815 18.160
9 9 3 SAT 0.075 0.242 6.139 6.070 64.570
9 10 3 SAT 11.896 5.890 982.580 1188.240 T.O
10 11 3 SAT 0.047 0.052 59.670 30.216 67.031
10 12 3 SAT 0.046 0.456 774.338 117.258 T.O
10 13 3 SAT 0.980 0.371 T.O T.O T.O
10 14 3 SAT 5.546 25.880 T.O T.O T.O
10 15 3 SAT 541.480 443.012 T.O T.O T.O
11 16 3 SAT 89.580 107.334 T.O T.O T.O
11 17 3 SAT 62.560 T.O T.O T.O T.O
12 18 3 SAT 3.603 3.830 T.O T.O T.O
12 19 3 SAT 2.851 18.840 T.O T.O T.O
12 20 3 SAT 22.500 180.256 T.O T.O T.O
12 21 3 SAT 1353.810 824.680 T.O T.O T.O
13 22 3 SAT 29.660 9.783 T.O T.O T.O
13 23 3 SAT T.O 898.820 T.O T.O T.O
14 24 3 SAT 4.838 13.962 T.O T.O T.O
14 25 3 SAT 25.600 7.763 T.O T.O T.O
14 26 3 SAT 67.850 8.864 T.O T.O T.O
14 27 3 SAT 1126.390 251.660 T.O T.O T.O
14 28 3 SAT T.O 641.320 T.O T.O T.O
15 29 3 SAT 127.470 18.955 T.O T.O T.O
15 30 3 SAT 673.210 190.200 T.O T.O T.O
17 40 3 SAT 771.990 T.O M.O M.O M.O
23 5 4 UNSAT T.O 0.046 T.O 3.554 4.980
24∗ 5 4 SAT 0.100 0.081 94.488 1.150 0.690
23 6 4 UNSAT T.O 0.260 T.O T.O T.O
24∗ 6 4 SAT 0.230 0.460 376.184 T.O T.O
38 7 4 SAT T.O 40.390 T.O T.O T.O
47 8 4 SAT T.O 688.400 T.O T.O T.O
52 9 4 SAT T.O 51.950 T.O T.O T.O
58 10 4 SAT 341.420 659.830 T.O T.O T.O
65 11 4 SAT T.O 159.330 T.O T.O T.O
69 12 4 SAT T.O 243.590 T.O T.O T.O

4 Experiments

To evaluate the effectiveness of our CP models, we solve SCA optimization problems (35
problems in total) of strength 3 ≤ t ≤ 4 with small to moderate sizes of events. For each
problem, we solve multiple SCA decision problems of SCA(n; s, t) with varying the value
of n. Such decision problems contain both satisfiable and unsatisfiable problems and their
optimal solutions exist on the boundaries.

For each SCA decision problem, we represent it by using our models with and without
breaking the symmetries. More precisely, we apply the lexicographic ordering constraints for
breaking the row symmetry in the naïve matrix model and the incidence matrix model. In
the event-position matrix model, for breaking the row and column symmetry, we apply the
double lex [12] and the snake lex [16] separately. In addition, we constrain every entry in the
first row to be “1 2 . . . s” for the naïve matrix model and the event-position matrix model
with double lex. We note that applying these constraints for breaking the symmetries does
not lose any solutions. For every model, we omit the constraints of leftward arrows in the
channeling constraints.
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For solving every model of each decision problem, we use a SAT-based CSP solver
Sugar 2, an award-winning system in GLOBAL category (including global constraints such
as alldifferent) of the 2008 and 2009 International CSP Solver Competitions. Sugar solves a
finite linear CSP by encoding it into SAT and then solving the SAT-encoded problem by
using an external SAT solver at the back-end. The SAT encoding that Sugar adopted is
called the order encoding [24, 25]. It is efficient in the sense that unit propagation keeps
the bounds consistency in original CSPs. We use MiniSat 2.2.0 (core) [10], Glucose 2 [1], and
clasp 2.0.2 [13, 14] as back-end SAT solvers. The first two are efficient CDCL SAT solvers.
The last one clasp is not only a state-of-the-art ASP solver, but also an efficient SAT solver.
In particular, Glucose and clasp are award-winning solvers in the 2011 SAT Competition.

Table 1 shows the best CPU time in seconds of three SAT solvers for solving SCA(n; s, t).
We only shows our best lower and/or upper bounds of n for each SCA optimization problem.
We use the symbol “∗” to indicate that the value of n is optimal. The column “Result”
indicates whether it is satisfiable (SAT) or unsatisfiable (UNSAT). The columns “Incidence”
and “E-Position” indicate the incidence matrix model and the event-position matrix model
respectively. Note that we exclude the results of the naïve matrix model from Table 1 since
it was quite inefficient. All times were collected on Mac OS X with Intel Xeon 3.2GHz and
16GB memory. We set a timeout (“T.O”) including the encoding time of Sugar to 1800
seconds for each SCA decision problem. The “M.O” indicates a memory error of SAT solvers.

We observe in Table 1 that the incidence matrix based models (“Incidence” and “Incidence
with lex-row”) are faster and much more scalable to the number of events than the event-
position matrix based models (“E-Position”, “E-Position with snake lex” and “E-Position
with double lex”). “Incidence with lex-row” solved 39 SCA decision problems out of 41,
rather than 31 of “Incidence”, 14 of “E-Position with snake lex”, 12 of “E-Position with
double lex”, and 11 of “E-Position”. The main difference between two incidence matrix based
models is that “Incidence with lex-row” were able to give solutions for 7 arrays of strength
t = 4 not solved in timeout by “Incidence”.

Our models reproduced and re-proved 4 previously known optimal solutions. Moreover,
we found optimal solutions for SCAN(5, 4) and SCAN(6, 4). We also improved on previously
known upper bounds [11, 19] for the arrays of strength t = 3 with 18 ≤ s ≤ 40 events and
strength t = 4 with 5 ≤ s ≤ 12 events except s = 10.

5 An ASP Program of the Incidence Matrix Model

We present an ASP program of our best incidence matrix model. It is compact and faithfully
reflects the original constraints of the incidence matrix model. Our program has

(
t
2
)

+ 5 rules
for the SCA decision problem of SCA(n; s, t). For example, Fig. 5 shows the ASP program
sca3.lp for SCA(n; s, 3), which has only

(3
2
)

+ 5 = 8 rules. Note that this program can be
extended in a straightforward way to the case of any strength t ≥ 3. We use the syntax
supported by the solver clasp and the grounder gringo [13, 14].

In Fig. 5, the first two rules row(1..n) and col(1..s) express that the row indices are
integers in the range 1 to n, and the events are integers in the range 1 to s. The constants
n and s are replaced with given values by a grounder. The third rule corresponds to the
coverage constraints (11) where the predicate y(R,I,J,K) expresses the binary variable
yr,(i,j,k). To express the coverage constraints, it uses special constructs called cardinality
expressions of the form `{a1, . . . , ak}u where each ai is an atom and ` and u are non-negative

2 http://bach.istc.kobe-u.ac.jp/sugar/
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% SCA(n;s ,3)
row (1..n). col (1..s).

% coverage constraints
1{ y(R,I,J,K) : row(R) } :- col(I;J;K), I!=J, I!=K, J!=K.

% channeling constraints
pr(R,I,J) :- y(R,I,J,K).
pr(R,I,K) :- y(R,I,J,K).
pr(R,J,K) :- y(R,I,J,K).

% asymmetry & comparability constraints
1{ pr(R,I,J), pr(R,J,I) }1 :- row(R), col(I;J), I<J.

% transitivity constraints
pr(R,I,K) :- pr(R,I,J), pr(R,J,K), row(R), col(I;J;K), I!=J, I!=K, J!=K.

Figure 5 sca3.lp: An ASP program for SCA(n; s, 3).

integers denoting the lower bound and the upper bound of the cardinality expression. The
third rule first generates a candidate for the incidence matrix, and then constrains a lower
bound on the number of atoms is 1 for each column (i.e. each 3-sequence of the events).
From the fourth to the sixth rule, the predicate pr(R,I,J) expresses the auxiliary binary
variable prr,(i,j). These three rules correspond to the constraints of rightward arrows in
the channeling constraints (10). The seventh rule again uses cardinality expressions to
express the asymmetry and comparability constraints (13). The transitivity constraints (7)
are expressed by the last rule. The command “gringo sca3.lp -c n=n -c s=s | clasp”
gives an answer set of an SCA(n; s, 3) decision problem. We can get a solution of the original
problem by decoding the resulting answer set.

6 Comparison

We compare our ASP program with different approaches. We use Kuhn’s benchmark set
that consists of 62 SCA optimization problems for SCAN(s, t) of strength 3 ≤ t ≤ 4 with
5 ≤ s ≤ 80 events. We execute our ASP program by using clasp 2.0.4 and gringo 2.0.5 to
solve multiple SCA decision problems of SCA(n; s, t) with varying the value of n for each
optimization problem. All times were measured on Mac OS X with Intel Xeon 2.66GHz and
24GB memory. We set a timeout for clasp to 3600 seconds for each SCA(n; s, t).

Table 2 shows the comparison results of different approaches on the best known upper
bounds of SCAN(s, t). Our comparison includes our ASP program with clasp, our CP models
with Sugar, Erdem encoding [11], and Kuhn encoding [19]. We note that Erdem encoding is
closely related to the event-position matrix model of our CP models. We highlight the best
value of different approaches for each SCAN(s, t). The symbol “-” is used to indicate that
the result is not available in either our experiments or published literature.

In the case of strength t = 3, our ASP program with clasp were able to produce significantly
improved bounds compared with those in Erdem greedy encoding and Kuhn encoding. The
more events are considered, the more significant are the improvements. For example, when
s = 80 events, it produced an array of n = 24 rows compared with 38 of Erdem and 42 of
Kuhn. On average, it improved every bound of Erdem greedy encoding and Kuhn encoding
by 10 and 9 rows respectively. Compared with Erdem exact encoding, our ASP program can
be more scalable. In the case of strength t = 4, although not able to match Erdem greedy
encoding for SCAN(10, 4) and SCAN(20, 4), our ASP program were able to improve every
bound of Kuhn encoding for the arrays with s ≤ 23 events by 19 rows on average.
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Table 2 Comparison of different approaches on the best known upper bounds of SCAN(s, t).

Our ASP Our CP Erdem exact Erdem greedy Kuhn encoding [19]
s with clasp with Sugar encoding [11] encoding [11]

t = 3 t = 4 t = 3 t = 4 t = 3 t = 4 t = 3 t = 4 t = 3 t = 4
5 7 24 7 24 7 − − − 8 29
6 8 24 8 24 8 − − − 10 38
7 8 40 8 38 8 − − − 12 50
8 8 44 8 47 8 − − − 12 56
9 9 53 9 52 9 − − − 14 68
10 9 59 9 58 9 − 11 55 14 72
11 10 65 10 65 10 − − − 14 78
12 10 73 10 69 10 − − − 16 86
13 10 77 10 − 10 − − − 16 92
14 10 81 10 − 10 − − − 16 100
15 10 84 10 − 10 − − − 18 108
16 11 89 11 − 11 − − − 18 112
17 11 91 11 − 11 − − − 20 118
18 12 97 12 − − − − − 20 122
19 12 100 12 − − − − − 22 128
20 12 105 12 − − − 19 104 22 134
21 12 104 12 − − − − − 22 134
22 13 111 13 − − − − − 22 140
23 14 112 13 − − − − − 24 146
24 14 − 14 − − − − − 24 146
25 14 − 14 − − − − − 24 152
26 14 − 14 − − − − − 24 158
27 14 − 14 − − − − − 26 160
28 14 − 14 − − − − − 26 162
29 15 − 15 − − − − − 26 166
30 15 − 15 − − − 23 149 26 166
40 17 − 17 − − − 27 181 32 198
50 19 − − − − − 31 − 34 214
60 21 − − − − − 34 − 38 238
70 22 − − − − − 36 − 40 250
80 24 − − − − − 38 − 42 264

7 Conclusion

In this paper, we considered the problem of finding optimal sequence covering arrays by
ASP and CP. We presented three CP models from different viewpoints of sequence covering
arrays. Among them, the incidence matrix model is efficient in the sense that an SCA can
be represented by the incidence matrix of the array in which the coverage constraints of the
given SCA can be concisely expressed. We presented a new ASP program that is compact
and faithfully reflects the incidence matrix model. To evaluate the effectiveness of our ASP
program, we solved Kuhn’s benchmark set that consists of 62 SCA optimization problems
for SCAN(s, t) of strength 3 ≤ t ≤ 4 with 5 ≤ s ≤ 80 events. We were able to significantly
improve the previously known bounds for many arrays, as shown in Table 2. Moreover, we
found optimal solutions for SCAN(5, 4) and SCAN(6, 4). However, we were still not able to
find any solutions for SCAN(s, 4) with 24 ≤ s ≤ 80 events because of expensive grounding,
which shows a limitation of our approach at present. To overcome this problem, hybrid
approaches to SCA, like Erdem greedy encoding, can be promising.

Our approach is based on an effective combination of ASP solvers and the incidence
matrix. It can be applied to a wide range of combinatorial search problems such as balanced
incomplete block designs [9] and SAT-based standard combinatorial testing [2].
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